snes9x/fxemu.cpp

987 lines
22 KiB
C++
Raw Normal View History

2010-09-25 17:46:12 +02:00
/***********************************************************************************
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
(c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com),
Jerremy Koot (jkoot@snes9x.com)
(c) Copyright 2002 - 2004 Matthew Kendora
(c) Copyright 2002 - 2005 Peter Bortas (peter@bortas.org)
(c) Copyright 2004 - 2005 Joel Yliluoma (http://iki.fi/bisqwit/)
(c) Copyright 2001 - 2006 John Weidman (jweidman@slip.net)
(c) Copyright 2002 - 2006 funkyass (funkyass@spam.shaw.ca),
Kris Bleakley (codeviolation@hotmail.com)
(c) Copyright 2002 - 2010 Brad Jorsch (anomie@users.sourceforge.net),
Nach (n-a-c-h@users.sourceforge.net),
2011-04-11 21:51:20 +02:00
(c) Copyright 2002 - 2011 zones (kasumitokoduck@yahoo.com)
2010-09-25 17:46:12 +02:00
(c) Copyright 2006 - 2007 nitsuja
2011-04-11 21:51:20 +02:00
(c) Copyright 2009 - 2011 BearOso,
2010-09-25 17:46:12 +02:00
OV2
BS-X C emulator code
(c) Copyright 2005 - 2006 Dreamer Nom,
zones
C4 x86 assembler and some C emulation code
(c) Copyright 2000 - 2003 _Demo_ (_demo_@zsnes.com),
Nach,
zsKnight (zsknight@zsnes.com)
C4 C++ code
(c) Copyright 2003 - 2006 Brad Jorsch,
Nach
DSP-1 emulator code
(c) Copyright 1998 - 2006 _Demo_,
Andreas Naive (andreasnaive@gmail.com),
Gary Henderson,
Ivar (ivar@snes9x.com),
John Weidman,
Kris Bleakley,
Matthew Kendora,
Nach,
neviksti (neviksti@hotmail.com)
DSP-2 emulator code
(c) Copyright 2003 John Weidman,
Kris Bleakley,
Lord Nightmare (lord_nightmare@users.sourceforge.net),
Matthew Kendora,
neviksti
DSP-3 emulator code
(c) Copyright 2003 - 2006 John Weidman,
Kris Bleakley,
Lancer,
z80 gaiden
DSP-4 emulator code
(c) Copyright 2004 - 2006 Dreamer Nom,
John Weidman,
Kris Bleakley,
Nach,
z80 gaiden
OBC1 emulator code
(c) Copyright 2001 - 2004 zsKnight,
pagefault (pagefault@zsnes.com),
Kris Bleakley
Ported from x86 assembler to C by sanmaiwashi
SPC7110 and RTC C++ emulator code used in 1.39-1.51
(c) Copyright 2002 Matthew Kendora with research by
zsKnight,
John Weidman,
Dark Force
SPC7110 and RTC C++ emulator code used in 1.52+
(c) Copyright 2009 byuu,
neviksti
S-DD1 C emulator code
(c) Copyright 2003 Brad Jorsch with research by
Andreas Naive,
John Weidman
S-RTC C emulator code
(c) Copyright 2001 - 2006 byuu,
John Weidman
ST010 C++ emulator code
(c) Copyright 2003 Feather,
John Weidman,
Kris Bleakley,
Matthew Kendora
Super FX x86 assembler emulator code
(c) Copyright 1998 - 2003 _Demo_,
pagefault,
zsKnight
Super FX C emulator code
(c) Copyright 1997 - 1999 Ivar,
Gary Henderson,
John Weidman
Sound emulator code used in 1.5-1.51
(c) Copyright 1998 - 2003 Brad Martin
(c) Copyright 1998 - 2006 Charles Bilyue'
Sound emulator code used in 1.52+
(c) Copyright 2004 - 2007 Shay Green (gblargg@gmail.com)
SH assembler code partly based on x86 assembler code
(c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se)
2xSaI filter
(c) Copyright 1999 - 2001 Derek Liauw Kie Fa
HQ2x, HQ3x, HQ4x filters
(c) Copyright 2003 Maxim Stepin (maxim@hiend3d.com)
NTSC filter
(c) Copyright 2006 - 2007 Shay Green
GTK+ GUI code
2011-04-11 21:51:20 +02:00
(c) Copyright 2004 - 2011 BearOso
2010-09-25 17:46:12 +02:00
Win32 GUI code
(c) Copyright 2003 - 2006 blip,
funkyass,
Matthew Kendora,
Nach,
nitsuja
2011-04-11 21:51:20 +02:00
(c) Copyright 2009 - 2011 OV2
2010-09-25 17:46:12 +02:00
Mac OS GUI code
(c) Copyright 1998 - 2001 John Stiles
2011-04-11 21:51:20 +02:00
(c) Copyright 2001 - 2011 zones
2010-09-25 17:46:12 +02:00
Specific ports contains the works of other authors. See headers in
individual files.
Snes9x homepage: http://www.snes9x.com/
Permission to use, copy, modify and/or distribute Snes9x in both binary
and source form, for non-commercial purposes, is hereby granted without
fee, providing that this license information and copyright notice appear
with all copies and any derived work.
This software is provided 'as-is', without any express or implied
warranty. In no event shall the authors be held liable for any damages
arising from the use of this software or it's derivatives.
Snes9x is freeware for PERSONAL USE only. Commercial users should
seek permission of the copyright holders first. Commercial use includes,
but is not limited to, charging money for Snes9x or software derived from
Snes9x, including Snes9x or derivatives in commercial game bundles, and/or
using Snes9x as a promotion for your commercial product.
The copyright holders request that bug fixes and improvements to the code
should be forwarded to them so everyone can benefit from the modifications
in future versions.
Super NES and Super Nintendo Entertainment System are trademarks of
Nintendo Co., Limited and its subsidiary companies.
***********************************************************************************/
#include "snes9x.h"
#include "memmap.h"
#include "fxinst.h"
#include "fxemu.h"
static void FxReset (struct FxInfo_s *);
static void fx_readRegisterSpace (void);
static void fx_writeRegisterSpace (void);
static void fx_updateRamBank (uint8);
static void fx_dirtySCBR (void);
static bool8 fx_checkStartAddress (void);
static uint32 FxEmulate (uint32);
static void FxCacheWriteAccess (uint16);
static void FxFlushCache (void);
void S9xInitSuperFX (void)
{
memset((uint8 *) &GSU, 0, sizeof(struct FxRegs_s));
}
void S9xResetSuperFX (void)
{
// FIXME: Snes9x can't execute CPU and SuperFX at a time. Don't ask me what is 0.417 :P
SuperFX.speedPerLine = (uint32) (0.417 * 10.5e6 * ((1.0 / (float) Memory.ROMFramesPerSecond) / ((float) (Timings.V_Max))));
SuperFX.oneLineDone = FALSE;
SuperFX.vFlags = 0;
CPU.IRQExternal = FALSE;
2010-09-25 17:46:12 +02:00
FxReset(&SuperFX);
}
void S9xSetSuperFX (uint8 byte, uint16 address)
{
switch (address)
{
case 0x3030:
if ((Memory.FillRAM[0x3030] ^ byte) & FLG_G)
{
Memory.FillRAM[0x3030] = byte;
if (byte & FLG_G)
{
if (!SuperFX.oneLineDone)
{
S9xSuperFXExec();
SuperFX.oneLineDone = TRUE;
}
}
else
FxFlushCache();
}
else
Memory.FillRAM[0x3030] = byte;
break;
case 0x3031:
Memory.FillRAM[0x3031] = byte;
break;
case 0x3033:
Memory.FillRAM[0x3033] = byte;
break;
case 0x3034:
Memory.FillRAM[0x3034] = byte & 0x7f;
break;
case 0x3036:
Memory.FillRAM[0x3036] = byte & 0x7f;
break;
case 0x3037:
Memory.FillRAM[0x3037] = byte;
break;
case 0x3038:
Memory.FillRAM[0x3038] = byte;
fx_dirtySCBR();
break;
case 0x3039:
Memory.FillRAM[0x3039] = byte;
break;
case 0x303a:
Memory.FillRAM[0x303a] = byte;
break;
case 0x303b:
break;
case 0x303c:
Memory.FillRAM[0x303c] = byte;
fx_updateRamBank(byte);
break;
case 0x303f:
Memory.FillRAM[0x303f] = byte;
break;
case 0x301f:
Memory.FillRAM[0x301f] = byte;
Memory.FillRAM[0x3000 + GSU_SFR] |= FLG_G;
if (!SuperFX.oneLineDone)
{
S9xSuperFXExec();
SuperFX.oneLineDone = TRUE;
}
break;
default:
Memory.FillRAM[address] = byte;
if (address >= 0x3100)
FxCacheWriteAccess(address);
break;
}
}
uint8 S9xGetSuperFX (uint16 address)
{
uint8 byte;
byte = Memory.FillRAM[address];
2010-09-25 17:46:12 +02:00
if (address == 0x3031)
{
CPU.IRQExternal = FALSE;
2010-09-25 17:46:12 +02:00
Memory.FillRAM[0x3031] = byte & 0x7f;
}
return (byte);
}
void S9xSuperFXExec (void)
{
if ((Memory.FillRAM[0x3000 + GSU_SFR] & FLG_G) && (Memory.FillRAM[0x3000 + GSU_SCMR] & 0x18) == 0x18)
{
FxEmulate((Memory.FillRAM[0x3000 + GSU_CLSR] & 1) ? SuperFX.speedPerLine * 2 : SuperFX.speedPerLine);
uint16 GSUStatus = Memory.FillRAM[0x3000 + GSU_SFR] | (Memory.FillRAM[0x3000 + GSU_SFR + 1] << 8);
if ((GSUStatus & (FLG_G | FLG_IRQ)) == FLG_IRQ)
CPU.IRQExternal = TRUE;
2010-09-25 17:46:12 +02:00
}
}
static void FxReset (struct FxInfo_s *psFxInfo)
{
// Clear all internal variables
memset((uint8 *) &GSU, 0, sizeof(struct FxRegs_s));
// Set default registers
GSU.pvSreg = GSU.pvDreg = &R0;
// Set RAM and ROM pointers
GSU.pvRegisters = psFxInfo->pvRegisters;
GSU.nRamBanks = psFxInfo->nRamBanks;
GSU.pvRam = psFxInfo->pvRam;
GSU.nRomBanks = psFxInfo->nRomBanks;
GSU.pvRom = psFxInfo->pvRom;
GSU.vPrevScreenHeight = ~0;
GSU.vPrevMode = ~0;
// The GSU can't access more than 2mb (16mbits)
if (GSU.nRomBanks > 0x20)
GSU.nRomBanks = 0x20;
// Clear FxChip register space
memset(GSU.pvRegisters, 0, 0x300);
// Set FxChip version Number
GSU.pvRegisters[0x3b] = 0;
// Make ROM bank table
for (int i = 0; i < 256; i++)
{
uint32 b = i & 0x7f;
if (b >= 0x40)
{
if (GSU.nRomBanks > 1)
b %= GSU.nRomBanks;
else
b &= 1;
GSU.apvRomBank[i] = &GSU.pvRom[b << 16];
}
else
{
b %= GSU.nRomBanks * 2;
GSU.apvRomBank[i] = &GSU.pvRom[(b << 16) + 0x200000];
}
}
// Make RAM bank table
for (int i = 0; i < 4; i++)
{
GSU.apvRamBank[i] = &GSU.pvRam[(i % GSU.nRamBanks) << 16];
GSU.apvRomBank[0x70 + i] = GSU.apvRamBank[i];
}
// Start with a nop in the pipe
GSU.vPipe = 0x01;
// Set pointer to GSU cache
GSU.pvCache = &GSU.pvRegisters[0x100];
fx_readRegisterSpace();
}
static void fx_readRegisterSpace (void)
{
static uint32 avHeight[] = { 128, 160, 192, 256 };
static uint32 avMult[] = { 16, 32, 32, 64 };
uint8 *p;
int n;
GSU.vErrorCode = 0;
// Update R0-R15
p = GSU.pvRegisters;
for (int i = 0; i < 16; i++)
{
GSU.avReg[i] = *p++;
GSU.avReg[i] += ((uint32) (*p++)) << 8;
}
// Update other registers
p = GSU.pvRegisters;
GSU.vStatusReg = (uint32) p[GSU_SFR];
GSU.vStatusReg |= ((uint32) p[GSU_SFR + 1]) << 8;
GSU.vPrgBankReg = (uint32) p[GSU_PBR];
GSU.vRomBankReg = (uint32) p[GSU_ROMBR];
GSU.vRamBankReg = ((uint32) p[GSU_RAMBR]) & (FX_RAM_BANKS - 1);
GSU.vCacheBaseReg = (uint32) p[GSU_CBR];
GSU.vCacheBaseReg |= ((uint32) p[GSU_CBR + 1]) << 8;
// Update status register variables
GSU.vZero = !(GSU.vStatusReg & FLG_Z);
GSU.vSign = (GSU.vStatusReg & FLG_S) << 12;
GSU.vOverflow = (GSU.vStatusReg & FLG_OV) << 16;
GSU.vCarry = (GSU.vStatusReg & FLG_CY) >> 2;
// Set bank pointers
GSU.pvRamBank = GSU.apvRamBank[GSU.vRamBankReg & 0x3];
GSU.pvRomBank = GSU.apvRomBank[GSU.vRomBankReg];
GSU.pvPrgBank = GSU.apvRomBank[GSU.vPrgBankReg];
// Set screen pointers
GSU.pvScreenBase = &GSU.pvRam[USEX8(p[GSU_SCBR]) << 10];
n = (int) (!!(p[GSU_SCMR] & 0x04));
n |= ((int) (!!(p[GSU_SCMR] & 0x20))) << 1;
GSU.vScreenHeight = GSU.vScreenRealHeight = avHeight[n];
GSU.vMode = p[GSU_SCMR] & 0x03;
if (n == 3)
GSU.vScreenSize = (256 / 8) * (256 / 8) * 32;
else
GSU.vScreenSize = (GSU.vScreenHeight / 8) * (256 / 8) * avMult[GSU.vMode];
if (GSU.vPlotOptionReg & 0x10) // OBJ Mode (for drawing into sprites)
GSU.vScreenHeight = 256;
if (GSU.pvScreenBase + GSU.vScreenSize > GSU.pvRam + (GSU.nRamBanks * 65536))
GSU.pvScreenBase = GSU.pvRam + (GSU.nRamBanks * 65536) - GSU.vScreenSize;
GSU.pfPlot = fx_PlotTable[GSU.vMode];
GSU.pfRpix = fx_PlotTable[GSU.vMode + 5];
fx_OpcodeTable[0x04c] = GSU.pfPlot;
fx_OpcodeTable[0x14c] = GSU.pfRpix;
fx_OpcodeTable[0x24c] = GSU.pfPlot;
fx_OpcodeTable[0x34c] = GSU.pfRpix;
fx_computeScreenPointers();
//fx_backupCache();
}
static void fx_writeRegisterSpace (void)
{
uint8 *p;
p = GSU.pvRegisters;
for (int i = 0; i < 16; i++)
{
*p++ = (uint8) GSU.avReg[i];
*p++ = (uint8) (GSU.avReg[i] >> 8);
}
// Update status register
if (USEX16(GSU.vZero) == 0)
SF(Z);
else
CF(Z);
if (GSU.vSign & 0x8000)
SF(S);
else
CF(S);
if (GSU.vOverflow >= 0x8000 || GSU.vOverflow < -0x8000)
SF(OV);
else
CF(OV);
if (GSU.vCarry)
SF(CY);
else
CF(CY);
p = GSU.pvRegisters;
p[GSU_SFR] = (uint8) GSU.vStatusReg;
p[GSU_SFR + 1] = (uint8) (GSU.vStatusReg >> 8);
p[GSU_PBR] = (uint8) GSU.vPrgBankReg;
p[GSU_ROMBR] = (uint8) GSU.vRomBankReg;
p[GSU_RAMBR] = (uint8) GSU.vRamBankReg;
p[GSU_CBR] = (uint8) GSU.vCacheBaseReg;
p[GSU_CBR + 1] = (uint8) (GSU.vCacheBaseReg >> 8);
//fx_restoreCache();
}
// Update RamBankReg and RAM Bank pointer
static void fx_updateRamBank (uint8 byte)
{
// Update BankReg and Bank pointer
GSU.vRamBankReg = (uint32) byte & (FX_RAM_BANKS - 1);
GSU.pvRamBank = GSU.apvRamBank[byte & 0x3];
}
// SCBR write seen. We need to update our cached screen pointers
static void fx_dirtySCBR (void)
{
GSU.vSCBRDirty = TRUE;
}
static bool8 fx_checkStartAddress (void)
{
// Check if we start inside the cache
if (GSU.bCacheActive && R15 >= GSU.vCacheBaseReg && R15 < (GSU.vCacheBaseReg + 512))
return (TRUE);
/*
// Check if we're in an unused area
if (GSU.vPrgBankReg < 0x40 && R15 < 0x8000)
return (FALSE);
*/
if (GSU.vPrgBankReg >= 0x60 && GSU.vPrgBankReg <= 0x6f)
return (FALSE);
if (GSU.vPrgBankReg >= 0x74)
return (FALSE);
// Check if we're in RAM and the RAN flag is not set
if (GSU.vPrgBankReg >= 0x70 && GSU.vPrgBankReg <= 0x73 && !(SCMR & (1 << 3)))
return (FALSE);
// If not, we're in ROM, so check if the RON flag is set
if (!(SCMR & (1 << 4)))
return (FALSE);
return (TRUE);
}
// Execute until the next stop instruction
static uint32 FxEmulate (uint32 nInstructions)
{
uint32 vCount;
// Read registers and initialize GSU session
fx_readRegisterSpace();
// Check if the start address is valid
if (!fx_checkStartAddress())
{
CF(G);
fx_writeRegisterSpace();
/*
GSU.vIllegalAddress = (GSU.vPrgBankReg << 24) | R15;
return (FX_ERROR_ILLEGAL_ADDRESS);
*/
return (0);
}
// Execute GSU session
CF(IRQ);
/*
if (GSU.bBreakPoint)
vCount = fx_run_to_breakpoint(nInstructions);
else
*/
vCount = fx_run(nInstructions);
// Store GSU registers
fx_writeRegisterSpace();
// Check for error code
if (GSU.vErrorCode)
return (GSU.vErrorCode);
else
return (vCount);
}
void fx_computeScreenPointers (void)
{
if (GSU.vMode != GSU.vPrevMode || GSU.vPrevScreenHeight != GSU.vScreenHeight || GSU.vSCBRDirty)
{
GSU.vSCBRDirty = FALSE;
// Make a list of pointers to the start of each screen column
switch (GSU.vScreenHeight)
{
case 128:
switch (GSU.vMode)
{
case 0:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4);
GSU.x[i] = i << 8;
}
break;
case 1:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5);
GSU.x[i] = i << 9;
}
break;
case 2:
case 3:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6);
GSU.x[i] = i << 10;
}
break;
}
break;
case 160:
switch (GSU.vMode)
{
case 0:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4);
GSU.x[i] = (i << 8) + (i << 6);
}
break;
case 1:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5);
GSU.x[i] = (i << 9) + (i << 7);
}
break;
case 2:
case 3:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6);
GSU.x[i] = (i << 10) + (i << 8);
}
break;
}
break;
case 192:
switch (GSU.vMode)
{
case 0:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4);
GSU.x[i] = (i << 8) + (i << 7);
}
break;
case 1:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5);
GSU.x[i] = (i << 9) + (i << 8);
}
break;
case 2:
case 3:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6);
GSU.x[i] = (i << 10) + (i << 9);
}
break;
}
break;
case 256:
switch (GSU.vMode)
{
case 0:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 9) + ((i & 0xf) << 8);
GSU.x[i] = ((i & 0x10) << 8) + ((i & 0xf) << 4);
}
break;
case 1:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 10) + ((i & 0xf) << 9);
GSU.x[i] = ((i & 0x10) << 9) + ((i & 0xf) << 5);
}
break;
case 2:
case 3:
for (int i = 0; i < 32; i++)
{
GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 11) + ((i & 0xf) << 10);
GSU.x[i] = ((i & 0x10) << 10) + ((i & 0xf) << 6);
}
break;
}
break;
}
GSU.vPrevMode = GSU.vMode;
GSU.vPrevScreenHeight = GSU.vScreenHeight;
}
}
// Write access to the cache
static void FxCacheWriteAccess (uint16 vAddress)
{
/*
if (!GSU.bCacheActive)
{
uint8 v = GSU.pvCache[GSU.pvCache[vAddress & 0x1ff];
fx_setCache();
GSU.pvCache[GSU.pvCache[vAddress & 0x1ff] = v;
}
*/
if ((vAddress & 0x00f) == 0x00f)
GSU.vCacheFlags |= 1 << ((vAddress & 0x1f0) >> 4);
}
static void FxFlushCache (void)
{
GSU.vCacheFlags = 0;
GSU.vCacheBaseReg = 0;
GSU.bCacheActive = FALSE;
//GSU.vPipe = 0x1;
}
void fx_flushCache (void)
{
//fx_restoreCache();
GSU.vCacheFlags = 0;
GSU.bCacheActive = FALSE;
}
/*
static void fx_setCache (void)
{
uint32 c;
GSU.bCacheActive = TRUE;
GSU.pvRegisters[0x3e] &= 0xf0;
c = (uint32) GSU.pvRegisters[0x3e];
c |= ((uint32) GSU.pvRegisters[0x3f]) << 8;
if (c == GSU.vCacheBaseReg)
return;
GSU.vCacheBaseReg = c;
GSU.vCacheFlags = 0;
if (c < (0x10000 - 512))
{
const uint8 *t = &ROM(c);
memcpy(GSU.pvCache, t, 512);
}
else
{
const uint8 *t1, *t2;
uint32 i = 0x10000 - c;
t1 = &ROM(c);
t2 = &ROM(0);
memcpy(GSU.pvCache, t1, i);
memcpy(&GSU.pvCache[i], t2, 512 - i);
}
}
*/
/*
static void fx_backupCache (void)
{
uint32 v = GSU.vCacheFlags;
uint32 c = USEX16(GSU.vCacheBaseReg);
if (v)
{
for (int i = 0; i < 32; i++)
{
if (v & 1)
{
if (c < (0x10000 - 16))
{
uint8 *t = &GSU.pvPrgBank[c];
memcpy(&GSU.avCacheBackup[i << 4], t, 16);
memcpy(t, &GSU.pvCache[i << 4], 16);
}
else
{
uint8 *t1, *t2;
uint32 a = 0x10000 - c;
t1 = &GSU.pvPrgBank[c];
t2 = &GSU.pvPrgBank[0];
memcpy(&GSU.avCacheBackup[i << 4], t1, a);
memcpy(t1, &GSU.pvCache[i << 4], a);
memcpy(&GSU.avCacheBackup[(i << 4) + a], t2, 16 - a);
memcpy(t2, &GSU.pvCache[(i << 4) + a], 16 - a);
}
}
c = USEX16(c + 16);
v >>= 1;
}
}
}
*/
/*
static void fx_restoreCache()
{
uint32 v = GSU.vCacheFlags;
uint32 c = USEX16(GSU.vCacheBaseReg);
if (v)
{
for (int i = 0; i < 32; i++)
{
if (v & 1)
{
if (c < (0x10000 - 16))
{
uint8 *t = &GSU.pvPrgBank[c];
memcpy(t, &GSU.avCacheBackup[i << 4], 16);
memcpy(&GSU.pvCache[i << 4], t, 16);
}
else
{
uint8 *t1, *t2;
uint32 a = 0x10000 - c;
t1 = &GSU.pvPrgBank[c];
t2 = &GSU.pvPrgBank[0];
memcpy(t1, &GSU.avCacheBackup[i << 4], a);
memcpy(&GSU.pvCache[i << 4], t1, a);
memcpy(t2, &GSU.avCacheBackup[(i << 4) + a], 16 - a);
memcpy(&GSU.pvCache[(i << 4) + a], t2, 16 - a);
}
}
c = USEX16(c + 16);
v >>= 1;
}
}
}
*/
// Breakpoints
/*
static void FxBreakPointSet (uint32 vAddress)
{
GSU.bBreakPoint = TRUE;
GSU.vBreakPoint = USEX16(vAddress);
}
*/
/*
static void FxBreakPointClear (void)
{
GSU.bBreakPoint = FALSE;
}
*/
// Step by step execution
/*
static uint32 FxStepOver (uint32 nInstructions)
{
uint32 vCount;
fx_readRegisterSpace();
if (!fx_checkStartAddress())
{
CF(G);
#if 0
GSU.vIllegalAddress = (GSU.vPrgBankReg << 24) | R15;
return (FX_ERROR_ILLEGAL_ADDRESS);
#else
return (0);
#endif
}
if (PIPE >= 0xf0)
GSU.vStepPoint = USEX16(R15 + 3);
else
if ((PIPE >= 0x05 && PIPE <= 0x0f) || (PIPE >= 0xa0 && PIPE <= 0xaf))
GSU.vStepPoint = USEX16(R15 + 2);
else
GSU.vStepPoint = USEX16(R15 + 1);
vCount = fx_step_over(nInstructions);
fx_writeRegisterSpace();
if (GSU.vErrorCode)
return (GSU.vErrorCode);
else
return (vCount);
}
*/
// Errors
/*
static int FxGetErrorCode (void)
{
return (GSU.vErrorCode);
}
*/
/*
static int FxGetIllegalAddress (void)
{
return (GSU.vIllegalAddress);
}
*/
// Access to internal registers
/*
static uint32 FxGetColorRegister (void)
{
return (GSU.vColorReg & 0xff);
}
*/
/*
static uint32 FxGetPlotOptionRegister (void)
{
return (GSU.vPlotOptionReg & 0x1f);
}
*/
/*
static uint32 FxGetSourceRegisterIndex (void)
{
return (GSU.pvSreg - GSU.avReg);
}
*/
/*
static uint32 FxGetDestinationRegisterIndex (void)
{
return (GSU.pvDreg - GSU.avReg);
}
*/
// Get the byte currently in the pipe
/*
static uint8 FxPipe (void)
{
return (GSU.vPipe);
}
*/