// **************************************************************************** // * This file is part of the HqMAME project. It is distributed under * // * GNU General Public License: http://www.gnu.org/licenses/gpl.html * // * Copyright (C) Zenju (zenju AT gmx DOT de) - All Rights Reserved * // * * // * Additionally and as a special exception, the author gives permission * // * to link the code of this program with the MAME library (or with modified * // * versions of MAME that use the same license as MAME), and distribute * // * linked combinations including the two. You must obey the GNU General * // * Public License in all respects for all of the code used other than MAME. * // * If you modify this file, you may extend this exception to your version * // * of the file, but you are not obligated to do so. If you do not wish to * // * do so, delete this exception statement from your version. * // **************************************************************************** #include "xbrz.h" #include #include #include namespace { template inline unsigned char getByte(uint32_t val) { return static_cast((val >> (8 * N)) & 0xff); } inline unsigned char getAlpha(uint32_t val) { return getByte<3>(val); } inline unsigned char getRed (uint32_t val) { return getByte<2>(val); } inline unsigned char getGreen(uint32_t val) { return getByte<1>(val); } inline unsigned char getBlue (uint32_t val) { return getByte<0>(val); } template inline T abs(T value) { //static_assert(std::is_signed::value, "abs() requires signed types"); return value < 0 ? -value : value; } const uint32_t redMask = 0xff0000; const uint32_t greenMask = 0x00ff00; const uint32_t blueMask = 0x0000ff; template inline void alphaBlend(uint32_t& dst, uint32_t col) //blend color over destination with opacity M / N { //static_assert(0 < M && M < N && N <= 256, "possible overflow of (col & byte1Mask) * M + (dst & byte1Mask) * (N - M)"); const uint32_t byte1Mask = 0x000000ff; const uint32_t byte2Mask = 0x0000ff00; const uint32_t byte3Mask = 0x00ff0000; const uint32_t byte4Mask = 0xff000000; dst = (byte1Mask & (((col & byte1Mask) * M + (dst & byte1Mask) * (N - M)) / N)) | // (byte2Mask & (((col & byte2Mask) * M + (dst & byte2Mask) * (N - M)) / N)) | //this works because next higher 8 bits are free (byte3Mask & (((col & byte3Mask) * M + (dst & byte3Mask) * (N - M)) / N)) | // (byte4Mask & (((((col & byte4Mask) >> 8) * M + ((dst & byte4Mask) >> 8) * (N - M)) / N) << 8)); //next 8 bits are not free, so shift //the last row operating on a potential alpha channel costs only ~1% perf => negligible! } //inline //double fastSqrt(double n) //{ // __asm //speeds up xBRZ by about 9% compared to std::sqrt which internally uses the same assembler instructions but adds some "fluff" // { // fld n // fsqrt // } //} // //inline //uint32_t alphaBlend2(uint32_t pix1, uint32_t pix2, double alpha) //{ // return (redMask & static_cast((pix1 & redMask ) * alpha + (pix2 & redMask ) * (1 - alpha))) | // (greenMask & static_cast((pix1 & greenMask) * alpha + (pix2 & greenMask) * (1 - alpha))) | // (blueMask & static_cast((pix1 & blueMask ) * alpha + (pix2 & blueMask ) * (1 - alpha))); //} uint32_t* byteAdvance( uint32_t* ptr, int bytes) { return reinterpret_cast< uint32_t*>(reinterpret_cast< char*>(ptr) + bytes); } const uint32_t* byteAdvance(const uint32_t* ptr, int bytes) { return reinterpret_cast(reinterpret_cast(ptr) + bytes); } //fill block with the given color inline void fillBlock(uint32_t* trg, int pitch, uint32_t col, int blockWidth, int blockHeight) { //for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch)) // std::fill(trg, trg + blockWidth, col); for (int y = 0; y < blockHeight; ++y, trg = byteAdvance(trg, pitch)) for (int x = 0; x < blockWidth; ++x) trg[x] = col; } inline void fillBlock(uint32_t* trg, int pitch, uint32_t col, int n) { fillBlock(trg, pitch, col, n, n); } #ifdef _MSC_VER #define FORCE_INLINE __forceinline #elif defined __GNUC__ #define FORCE_INLINE __attribute__((always_inline)) inline #else #define FORCE_INLINE inline #endif enum RotationDegree //clock-wise { ROT_0, ROT_90, ROT_180, ROT_270 }; //calculate input matrix coordinates after rotation at compile time template struct MatrixRotation; template struct MatrixRotation { static const size_t I_old = I; static const size_t J_old = J; }; template //(i, j) = (row, col) indices, N = size of (square) matrix struct MatrixRotation { static const size_t I_old = N - 1 - MatrixRotation(rotDeg - 1), I, J, N>::J_old; //old coordinates before rotation! static const size_t J_old = MatrixRotation(rotDeg - 1), I, J, N>::I_old; // }; template class OutputMatrix { public: OutputMatrix(uint32_t* out, int outWidth) : //access matrix area, top-left at position "out" for image with given width out_(out), outWidth_(outWidth) {} template uint32_t& ref() const { static const size_t I_old = MatrixRotation::I_old; static const size_t J_old = MatrixRotation::J_old; return *(out_ + J_old + I_old * outWidth_); } private: uint32_t* out_; const int outWidth_; }; template inline T square(T value) { return value * value; } /* inline void rgbtoLuv(uint32_t c, double& L, double& u, double& v) { //http://www.easyrgb.com/index.php?X=MATH&H=02#text2 double r = getRed (c) / 255.0; double g = getGreen(c) / 255.0; double b = getBlue (c) / 255.0; if ( r > 0.04045 ) r = std::pow(( ( r + 0.055 ) / 1.055 ) , 2.4); else r /= 12.92; if ( g > 0.04045 ) g = std::pow(( ( g + 0.055 ) / 1.055 ) , 2.4); else g /= 12.92; if ( b > 0.04045 ) b = std::pow(( ( b + 0.055 ) / 1.055 ) , 2.4); else b /= 12.92; r *= 100; g *= 100; b *= 100; double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b; double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b; double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b; //--------------------- double var_U = 4 * x / ( x + 15 * y + 3 * z ); double var_V = 9 * y / ( x + 15 * y + 3 * z ); double var_Y = y / 100; if ( var_Y > 0.008856 ) var_Y = std::pow(var_Y , 1.0/3 ); else var_Y = 7.787 * var_Y + 16.0 / 116; const double ref_X = 95.047; //Observer= 2°, Illuminant= D65 const double ref_Y = 100.000; const double ref_Z = 108.883; const double ref_U = ( 4 * ref_X ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) ); const double ref_V = ( 9 * ref_Y ) / ( ref_X + ( 15 * ref_Y ) + ( 3 * ref_Z ) ); L = ( 116 * var_Y ) - 16; u = 13 * L * ( var_U - ref_U ); v = 13 * L * ( var_V - ref_V ); } */ inline void rgbtoLab(uint32_t c, unsigned char& L, signed char& A, signed char& B) { //code: http://www.easyrgb.com/index.php?X=MATH //test: http://www.workwithcolor.com/color-converter-01.htm //------RGB to XYZ------ double r = getRed (c) / 255.0; double g = getGreen(c) / 255.0; double b = getBlue (c) / 255.0; r = r > 0.04045 ? std::pow(( r + 0.055 ) / 1.055, 2.4) : r / 12.92; r = g > 0.04045 ? std::pow(( g + 0.055 ) / 1.055, 2.4) : g / 12.92; r = b > 0.04045 ? std::pow(( b + 0.055 ) / 1.055, 2.4) : b / 12.92; r *= 100; g *= 100; b *= 100; double x = 0.4124564 * r + 0.3575761 * g + 0.1804375 * b; double y = 0.2126729 * r + 0.7151522 * g + 0.0721750 * b; double z = 0.0193339 * r + 0.1191920 * g + 0.9503041 * b; //------XYZ to Lab------ const double refX = 95.047; // const double refY = 100.000; //Observer= 2°, Illuminant= D65 const double refZ = 108.883; // double var_X = x / refX; double var_Y = y / refY; double var_Z = z / refZ; var_X = var_X > 0.008856 ? std::pow(var_X, 1.0 / 3) : 7.787 * var_X + 4.0 / 29; var_Y = var_Y > 0.008856 ? std::pow(var_Y, 1.0 / 3) : 7.787 * var_Y + 4.0 / 29; var_Z = var_Z > 0.008856 ? std::pow(var_Z, 1.0 / 3) : 7.787 * var_Z + 4.0 / 29; L = static_cast(116 * var_Y - 16); A = static_cast< signed char>(500 * (var_X - var_Y)); B = static_cast< signed char>(200 * (var_Y - var_Z)); }; inline double distLAB(uint32_t pix1, uint32_t pix2) { unsigned char L1 = 0; //[0, 100] signed char a1 = 0; //[-128, 127] signed char b1 = 0; //[-128, 127] rgbtoLab(pix1, L1, a1, b1); unsigned char L2 = 0; signed char a2 = 0; signed char b2 = 0; rgbtoLab(pix2, L2, a2, b2); //----------------------------- //http://www.easyrgb.com/index.php?X=DELT //Delta E/CIE76 return std::sqrt(square(1.0 * L1 - L2) + square(1.0 * a1 - a2) + square(1.0 * b1 - b2)); } /* inline void rgbtoHsl(uint32_t c, double& h, double& s, double& l) { //http://www.easyrgb.com/index.php?X=MATH&H=18#text18 const int r = getRed (c); const int g = getGreen(c); const int b = getBlue (c); const int varMin = numeric::min(r, g, b); const int varMax = numeric::max(r, g, b); const int delMax = varMax - varMin; l = (varMax + varMin) / 2.0 / 255.0; if (delMax == 0) //gray, no chroma... { h = 0; s = 0; } else { s = l < 0.5 ? delMax / (1.0 * varMax + varMin) : delMax / (2.0 * 255 - varMax - varMin); double delR = ((varMax - r) / 6.0 + delMax / 2.0) / delMax; double delG = ((varMax - g) / 6.0 + delMax / 2.0) / delMax; double delB = ((varMax - b) / 6.0 + delMax / 2.0) / delMax; if (r == varMax) h = delB - delG; else if (g == varMax) h = 1 / 3.0 + delR - delB; else if (b == varMax) h = 2 / 3.0 + delG - delR; if (h < 0) h += 1; if (h > 1) h -= 1; } } inline double distHSL(uint32_t pix1, uint32_t pix2, double lightningWeight) { double h1 = 0; double s1 = 0; double l1 = 0; rgbtoHsl(pix1, h1, s1, l1); double h2 = 0; double s2 = 0; double l2 = 0; rgbtoHsl(pix2, h2, s2, l2); //HSL is in cylindric coordinatates where L represents height, S radius, H angle, //however we interpret the cylinder as a bi-conic solid with top/bottom radius 0, middle radius 1 assert(0 <= h1 && h1 <= 1); assert(0 <= h2 && h2 <= 1); double r1 = l1 < 0.5 ? l1 * 2 : 2 - l1 * 2; double x1 = r1 * s1 * std::cos(h1 * 2 * numeric::pi); double y1 = r1 * s1 * std::sin(h1 * 2 * numeric::pi); double z1 = l1; double r2 = l2 < 0.5 ? l2 * 2 : 2 - l2 * 2; double x2 = r2 * s2 * std::cos(h2 * 2 * numeric::pi); double y2 = r2 * s2 * std::sin(h2 * 2 * numeric::pi); double z2 = l2; return 255 * std::sqrt(square(x1 - x2) + square(y1 - y2) + square(lightningWeight * (z1 - z2))); } */ inline double distRGB(uint32_t pix1, uint32_t pix2) { const double r_diff = static_cast(getRed (pix1)) - getRed (pix2); const double g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); const double b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); //euklidean RGB distance return std::sqrt(square(r_diff) + square(g_diff) + square(b_diff)); } inline double distNonLinearRGB(uint32_t pix1, uint32_t pix2) { //non-linear rgb: http://www.compuphase.com/cmetric.htm const double r_diff = static_cast(getRed (pix1)) - getRed (pix2); const double g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); const double b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); const double r_avg = (static_cast(getRed(pix1)) + getRed(pix2)) / 2; return std::sqrt((2 + r_avg / 255) * square(r_diff) + 4 * square(g_diff) + (2 + (255 - r_avg) / 255) * square(b_diff)); } inline double distYCbCr(uint32_t pix1, uint32_t pix2, double lumaWeight) { //http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion //YCbCr conversion is a matrix multiplication => take advantage of linearity by subtracting first! const int r_diff = static_cast(getRed (pix1)) - getRed (pix2); //we may delay division by 255 to after matrix multiplication const int g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); // const int b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); //substraction for int is noticeable faster than for double! //const double k_b = 0.0722; //ITU-R BT.709 conversion //const double k_r = 0.2126; // const double k_b = 0.0593; //ITU-R BT.2020 conversion const double k_r = 0.2627; // const double k_g = 1 - k_b - k_r; const double scale_b = 0.5 / (1 - k_b); const double scale_r = 0.5 / (1 - k_r); const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! const double c_b = scale_b * (b_diff - y); const double c_r = scale_r * (r_diff - y); //we skip division by 255 to have similar range like other distance functions return std::sqrt(square(lumaWeight * y) + square(c_b) + square(c_r)); } struct DistYCbCrBuffer //30% perf boost compared to distYCbCr()! { public: DistYCbCrBuffer() : buffer(256 * 256 * 256) { for (uint32_t i = 0; i < 256 * 256 * 256; ++i) //startup time: 114 ms on Intel Core i5 (four cores) { const int r_diff = getByte<2>(i) * 2 - 255; const int g_diff = getByte<1>(i) * 2 - 255; const int b_diff = getByte<0>(i) * 2 - 255; const double k_b = 0.0593; //ITU-R BT.2020 conversion const double k_r = 0.2627; // const double k_g = 1 - k_b - k_r; const double scale_b = 0.5 / (1 - k_b); const double scale_r = 0.5 / (1 - k_r); const double y = k_r * r_diff + k_g * g_diff + k_b * b_diff; //[!], analog YCbCr! const double c_b = scale_b * (b_diff - y); const double c_r = scale_r * (r_diff - y); buffer[i] = static_cast(std::sqrt(square(y) + square(c_b) + square(c_r))); } } double dist(uint32_t pix1, uint32_t pix2) const { //if (pix1 == pix2) -> 8% perf degradation! // return 0; //if (pix1 > pix2) // std::swap(pix1, pix2); -> 30% perf degradation!!! const int r_diff = static_cast(getRed (pix1)) - getRed (pix2); const int g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); const int b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); return buffer[(((r_diff + 255) / 2) << 16) | //slightly reduce precision (division by 2) to squeeze value into single byte (((g_diff + 255) / 2) << 8) | (( b_diff + 255) / 2)]; } private: std::vector buffer; //consumes 64 MB memory; using double is 2% faster, but takes 128 MB } distYCbCrBuffer; inline double distYUV(uint32_t pix1, uint32_t pix2, double luminanceWeight) { //perf: it's not worthwhile to buffer the YUV-conversion, the direct code is faster by ~ 6% //since RGB -> YUV conversion is essentially a matrix multiplication, we can calculate the RGB diff before the conversion (distributive property) const double r_diff = static_cast(getRed (pix1)) - getRed (pix2); const double g_diff = static_cast(getGreen(pix1)) - getGreen(pix2); const double b_diff = static_cast(getBlue (pix1)) - getBlue (pix2); //http://en.wikipedia.org/wiki/YUV#Conversion_to.2Ffrom_RGB const double w_b = 0.114; const double w_r = 0.299; const double w_g = 1 - w_r - w_b; const double u_max = 0.436; const double v_max = 0.615; const double scale_u = u_max / (1 - w_b); const double scale_v = v_max / (1 - w_r); double y = w_r * r_diff + w_g * g_diff + w_b * b_diff;//value range: 255 * [-1, 1] double u = scale_u * (b_diff - y); //value range: 255 * 2 * u_max * [-1, 1] double v = scale_v * (r_diff - y); //value range: 255 * 2 * v_max * [-1, 1] #ifndef NDEBUG const double eps = 0.5; #endif assert(abs(y) <= 255 + eps); assert(abs(u) <= 255 * 2 * u_max + eps); assert(abs(v) <= 255 * 2 * v_max + eps); return std::sqrt(square(luminanceWeight * y) + square(u) + square(v)); } enum BlendType { BLEND_NONE = 0, BLEND_NORMAL, //a normal indication to blend BLEND_DOMINANT, //a strong indication to blend //attention: BlendType must fit into the value range of 2 bit!!! }; struct BlendResult { BlendType /**/blend_f, blend_g, /**/blend_j, blend_k; }; struct Kernel_4x4 //kernel for preprocessing step { uint32_t /**/a, b, c, d, /**/e, f, g, h, /**/i, j, k, l, /**/m, n, o, p; }; #define cdist(pix1, pix2) ColorDistance::dist((pix1), (pix2), cfg.luminanceWeight_) /* input kernel area naming convention: ----------------- | A | B | C | D | ----|---|---|---| | E | F | G | H | //evaluate the four corners between F, G, J, K ----|---|---|---| //input pixel is at position F | I | J | K | L | ----|---|---|---| | M | N | O | P | ----------------- */ template FORCE_INLINE //detect blend direction BlendResult preProcessCorners(const Kernel_4x4& ker, const xbrz::ScalerCfg& cfg) //result: F, G, J, K corners of "GradientType" { BlendResult result = {}; if ((ker.f == ker.g && ker.j == ker.k) || (ker.f == ker.j && ker.g == ker.k)) return result; //auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_); }; const int weight = 4; double jg = cdist(ker.i, ker.f) + cdist(ker.f, ker.c) + cdist(ker.n, ker.k) + cdist(ker.k, ker.h) + weight * cdist(ker.j, ker.g); double fk = cdist(ker.e, ker.j) + cdist(ker.j, ker.o) + cdist(ker.b, ker.g) + cdist(ker.g, ker.l) + weight * cdist(ker.f, ker.k); if (jg < fk) //test sample: 70% of values max(jg, fk) / min(jg, fk) are between 1.1 and 3.7 with median being 1.8 { const bool dominantGradient = cfg.dominantDirectionThreshold * jg < fk; if (ker.f != ker.g && ker.f != ker.j) result.blend_f = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; if (ker.k != ker.j && ker.k != ker.g) result.blend_k = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; } else if (fk < jg) { const bool dominantGradient = cfg.dominantDirectionThreshold * fk < jg; if (ker.j != ker.f && ker.j != ker.k) result.blend_j = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; if (ker.g != ker.f && ker.g != ker.k) result.blend_g = dominantGradient ? BLEND_DOMINANT : BLEND_NORMAL; } return result; } struct Kernel_3x3 { uint32_t /**/a, b, c, /**/d, e, f, /**/g, h, i; }; #define DEF_GETTER(x) template uint32_t inline get_##x(const Kernel_3x3& ker) { return ker.x; } //we cannot and NEED NOT write "ker.##x" since ## concatenates preprocessor tokens but "." is not a token DEF_GETTER(a) DEF_GETTER(b) DEF_GETTER(c) DEF_GETTER(d) DEF_GETTER(e) DEF_GETTER(f) DEF_GETTER(g) DEF_GETTER(h) DEF_GETTER(i) #undef DEF_GETTER #define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } DEF_GETTER(a, g) DEF_GETTER(b, d) DEF_GETTER(c, a) DEF_GETTER(d, h) DEF_GETTER(e, e) DEF_GETTER(f, b) DEF_GETTER(g, i) DEF_GETTER(h, f) DEF_GETTER(i, c) #undef DEF_GETTER #define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } DEF_GETTER(a, i) DEF_GETTER(b, h) DEF_GETTER(c, g) DEF_GETTER(d, f) DEF_GETTER(e, e) DEF_GETTER(f, d) DEF_GETTER(g, c) DEF_GETTER(h, b) DEF_GETTER(i, a) #undef DEF_GETTER #define DEF_GETTER(x, y) template <> inline uint32_t get_##x(const Kernel_3x3& ker) { return ker.y; } DEF_GETTER(a, c) DEF_GETTER(b, f) DEF_GETTER(c, i) DEF_GETTER(d, b) DEF_GETTER(e, e) DEF_GETTER(f, h) DEF_GETTER(g, a) DEF_GETTER(h, d) DEF_GETTER(i, g) #undef DEF_GETTER //compress four blend types into a single byte inline BlendType getTopL (unsigned char b) { return static_cast(0x3 & b); } inline BlendType getTopR (unsigned char b) { return static_cast(0x3 & (b >> 2)); } inline BlendType getBottomR(unsigned char b) { return static_cast(0x3 & (b >> 4)); } inline BlendType getBottomL(unsigned char b) { return static_cast(0x3 & (b >> 6)); } inline void setTopL (unsigned char& b, BlendType bt) { b |= bt; } //buffer is assumed to be initialized before preprocessing! inline void setTopR (unsigned char& b, BlendType bt) { b |= (bt << 2); } inline void setBottomR(unsigned char& b, BlendType bt) { b |= (bt << 4); } inline void setBottomL(unsigned char& b, BlendType bt) { b |= (bt << 6); } inline bool blendingNeeded(unsigned char b) { return b != 0; } template inline unsigned char rotateBlendInfo(unsigned char b) { return b; } template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 2) | (b >> 6)) & 0xff; } template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 4) | (b >> 4)) & 0xff; } template <> inline unsigned char rotateBlendInfo(unsigned char b) { return ((b << 6) | (b >> 2)) & 0xff; } #ifndef NDEBUG int debugPixelX = -1; int debugPixelY = 84; bool breakIntoDebugger = false; #endif #define eq(pix1, pix2) (ColorDistance::dist((pix1), (pix2), cfg.luminanceWeight_) < cfg.equalColorTolerance_) /* input kernel area naming convention: ------------- | A | B | C | ----|---|---| | D | E | F | //input pixel is at position E ----|---|---| | G | H | I | ------------- */ template FORCE_INLINE //perf: quite worth it! void blendPixel(const Kernel_3x3& ker, uint32_t* target, int trgWidth, unsigned char blendInfo, //result of preprocessing all four corners of pixel "e" const xbrz::ScalerCfg& cfg) { #define a get_a(ker) #define b get_b(ker) #define c get_c(ker) #define d get_d(ker) #define e get_e(ker) #define f get_f(ker) #define g get_g(ker) #define h get_h(ker) #define i get_i(ker) #ifndef NDEBUG if (breakIntoDebugger) __debugbreak(); //__asm int 3; #endif const unsigned char blend = rotateBlendInfo(blendInfo); if (getBottomR(blend) >= BLEND_NORMAL) { //auto eq = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_) < cfg.equalColorTolerance_; }; //auto dist = [&](uint32_t pix1, uint32_t pix2) { return ColorDistance::dist(pix1, pix2, cfg.luminanceWeight_); }; bool doLineBlend = true; if (getBottomR(blend) >= BLEND_DOMINANT) doLineBlend = true; //make sure there is no second blending in an adjacent rotation for this pixel: handles insular pixels, mario eyes else if (getTopR(blend) != BLEND_NONE && !eq(e, g)) //but support double-blending for 90° corners doLineBlend = false; else if(getBottomL(blend) != BLEND_NONE && !eq(e, c)) doLineBlend = false; //no full blending for L-shapes; blend corner only (handles "mario mushroom eyes") else if (!eq(e, i) && eq(g, h) && eq(h , i) && eq(i, f) && eq(f, c)) doLineBlend = false; else doLineBlend = true; const uint32_t px = cdist(e, f) <= cdist(e, h) ? f : h; //choose most similar color OutputMatrix out(target, trgWidth); if (doLineBlend) { const double fg = cdist(f, g); //test sample: 70% of values max(fg, hc) / min(fg, hc) are between 1.1 and 3.7 with median being 1.9 const double hc = cdist(h, c); // const bool haveShallowLine = cfg.steepDirectionThreshold * fg <= hc && e != g && d != g; const bool haveSteepLine = cfg.steepDirectionThreshold * hc <= fg && e != c && b != c; if (haveShallowLine) { if (haveSteepLine) Scaler::blendLineSteepAndShallow(px, out); else Scaler::blendLineShallow(px, out); } else { if (haveSteepLine) Scaler::blendLineSteep(px, out); else Scaler::blendLineDiagonal(px,out); } } else Scaler::blendCorner(px, out); } #undef a #undef b #undef c #undef d #undef e #undef f #undef g #undef h #undef i } template //scaler policy: see "Scaler2x" reference implementation void scaleImage(const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) { yFirst = std::max(yFirst, 0); yLast = std::min(yLast, srcHeight); if (yFirst >= yLast || srcWidth <= 0) return; const int trgWidth = srcWidth * Scaler::scale; //"use" space at the end of the image as temporary buffer for "on the fly preprocessing": we even could use larger area of //"sizeof(uint32_t) * srcWidth * (yLast - yFirst)" bytes without risk of accidental overwriting before accessing const int bufferSize = srcWidth; unsigned char* preProcBuffer = reinterpret_cast(trg + yLast * Scaler::scale * trgWidth) - bufferSize; std::fill(preProcBuffer, preProcBuffer + bufferSize, 0); //static_assert(BLEND_NONE == 0, ""); //initialize preprocessing buffer for first row of current stripe: detect upper left and right corner blending //this cannot be optimized for adjacent processing stripes; we must not allow for a memory race condition! if (yFirst > 0) { const int y = yFirst - 1; const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0); const uint32_t* s_0 = src + srcWidth * y; //center line const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1); const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1); for (int x = 0; x < srcWidth; ++x) { const int x_m1 = std::max(x - 1, 0); const int x_p1 = std::min(x + 1, srcWidth - 1); const int x_p2 = std::min(x + 2, srcWidth - 1); Kernel_4x4 ker = {}; //perf: initialization is negligible ker.a = s_m1[x_m1]; //read sequentially from memory as far as possible ker.b = s_m1[x]; ker.c = s_m1[x_p1]; ker.d = s_m1[x_p2]; ker.e = s_0[x_m1]; ker.f = s_0[x]; ker.g = s_0[x_p1]; ker.h = s_0[x_p2]; ker.i = s_p1[x_m1]; ker.j = s_p1[x]; ker.k = s_p1[x_p1]; ker.l = s_p1[x_p2]; ker.m = s_p2[x_m1]; ker.n = s_p2[x]; ker.o = s_p2[x_p1]; ker.p = s_p2[x_p2]; const BlendResult res = preProcessCorners(ker, cfg); /* preprocessing blend result: --------- | F | G | //evalute corner between F, G, J, K ----|---| //input pixel is at position F | J | K | --------- */ setTopR(preProcBuffer[x], res.blend_j); if (x + 1 < bufferSize) setTopL(preProcBuffer[x + 1], res.blend_k); } } //------------------------------------------------------------------------------------ for (int y = yFirst; y < yLast; ++y) { uint32_t* out = trg + Scaler::scale * y * trgWidth; //consider MT "striped" access const uint32_t* s_m1 = src + srcWidth * std::max(y - 1, 0); const uint32_t* s_0 = src + srcWidth * y; //center line const uint32_t* s_p1 = src + srcWidth * std::min(y + 1, srcHeight - 1); const uint32_t* s_p2 = src + srcWidth * std::min(y + 2, srcHeight - 1); unsigned char blend_xy1 = 0; //corner blending for current (x, y + 1) position for (int x = 0; x < srcWidth; ++x, out += Scaler::scale) { #ifndef NDEBUG breakIntoDebugger = debugPixelX == x && debugPixelY == y; #endif //all those bounds checks have only insignificant impact on performance! const int x_m1 = std::max(x - 1, 0); //perf: prefer array indexing to additional pointers! const int x_p1 = std::min(x + 1, srcWidth - 1); const int x_p2 = std::min(x + 2, srcWidth - 1); Kernel_4x4 ker4 = {}; //perf: initialization is negligible ker4.a = s_m1[x_m1]; //read sequentially from memory as far as possible ker4.b = s_m1[x]; ker4.c = s_m1[x_p1]; ker4.d = s_m1[x_p2]; ker4.e = s_0[x_m1]; ker4.f = s_0[x]; ker4.g = s_0[x_p1]; ker4.h = s_0[x_p2]; ker4.i = s_p1[x_m1]; ker4.j = s_p1[x]; ker4.k = s_p1[x_p1]; ker4.l = s_p1[x_p2]; ker4.m = s_p2[x_m1]; ker4.n = s_p2[x]; ker4.o = s_p2[x_p1]; ker4.p = s_p2[x_p2]; //evaluate the four corners on bottom-right of current pixel unsigned char blend_xy = 0; //for current (x, y) position { const BlendResult res = preProcessCorners(ker4, cfg); /* preprocessing blend result: --------- | F | G | //evalute corner between F, G, J, K ----|---| //current input pixel is at position F | J | K | --------- */ blend_xy = preProcBuffer[x]; setBottomR(blend_xy, res.blend_f); //all four corners of (x, y) have been determined at this point due to processing sequence! setTopR(blend_xy1, res.blend_j); //set 2nd known corner for (x, y + 1) preProcBuffer[x] = blend_xy1; //store on current buffer position for use on next row blend_xy1 = 0; setTopL(blend_xy1, res.blend_k); //set 1st known corner for (x + 1, y + 1) and buffer for use on next column if (x + 1 < bufferSize) //set 3rd known corner for (x + 1, y) setBottomL(preProcBuffer[x + 1], res.blend_g); } //fill block of size scale * scale with the given color fillBlock(out, trgWidth * sizeof(uint32_t), ker4.f, Scaler::scale); //place *after* preprocessing step, to not overwrite the results while processing the the last pixel! //blend four corners of current pixel if (blendingNeeded(blend_xy)) //good 5% perf-improvement { Kernel_3x3 ker3 = {}; //perf: initialization is negligible ker3.a = ker4.a; ker3.b = ker4.b; ker3.c = ker4.c; ker3.d = ker4.e; ker3.e = ker4.f; ker3.f = ker4.g; ker3.g = ker4.i; ker3.h = ker4.j; ker3.i = ker4.k; blendPixel(ker3, out, trgWidth, blend_xy, cfg); blendPixel(ker3, out, trgWidth, blend_xy, cfg); blendPixel(ker3, out, trgWidth, blend_xy, cfg); blendPixel(ker3, out, trgWidth, blend_xy, cfg); } } } } //------------------------------------------------------------------------------------ struct Scaler2x { static const int scale = 2; template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaBlend<1, 4>(out.template ref(), col); alphaBlend<3, 4>(out.template ref(), col); } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaBlend<1, 4>(out.template ref<1, 0>(), col); alphaBlend<1, 4>(out.template ref<0, 1>(), col); alphaBlend<5, 6>(out.template ref<1, 1>(), col); //[!] fixes 7/8 used in xBR } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaBlend<1, 2>(out.template ref<1, 1>(), col); } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaBlend<21, 100>(out.template ref<1, 1>(), col); //exact: 1 - pi/4 = 0.2146018366 } }; struct Scaler3x { static const int scale = 3; template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaBlend<1, 4>(out.template ref(), col); alphaBlend<1, 4>(out.template ref(), col); alphaBlend<3, 4>(out.template ref(), col); out.template ref() = col; } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); out.template ref<2, scale - 1>() = col; } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaBlend<1, 4>(out.template ref<2, 0>(), col); alphaBlend<1, 4>(out.template ref<0, 2>(), col); alphaBlend<3, 4>(out.template ref<2, 1>(), col); alphaBlend<3, 4>(out.template ref<1, 2>(), col); out.template ref<2, 2>() = col; } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaBlend<1, 8>(out.template ref<1, 2>(), col); alphaBlend<1, 8>(out.template ref<2, 1>(), col); alphaBlend<7, 8>(out.template ref<2, 2>(), col); } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaBlend<45, 100>(out.template ref<2, 2>(), col); //exact: 0.4545939598 //alphaBlend<14, 1000>(out.template ref<2, 1>(), col); //0.01413008627 -> negligible //alphaBlend<14, 1000>(out.template ref<1, 2>(), col); //0.01413008627 } }; struct Scaler4x { static const int scale = 4; template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaBlend<1, 4>(out.template ref(), col); alphaBlend<1, 4>(out.template ref(), col); alphaBlend<3, 4>(out.template ref(), col); alphaBlend<3, 4>(out.template ref(), col); out.template ref() = col; out.template ref() = col; } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaBlend<3, 4>(out.template ref<3, 1>(), col); alphaBlend<3, 4>(out.template ref<1, 3>(), col); alphaBlend<1, 4>(out.template ref<3, 0>(), col); alphaBlend<1, 4>(out.template ref<0, 3>(), col); alphaBlend<1, 3>(out.template ref<2, 2>(), col); //[!] fixes 1/4 used in xBR out.template ref<3, 3>() = out.template ref<3, 2>() = out.template ref<2, 3>() = col; } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaBlend<1, 2>(out.template ref(), col); alphaBlend<1, 2>(out.template ref(), col); out.template ref() = col; } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaBlend<68, 100>(out.template ref<3, 3>(), col); //exact: 0.6848532563 alphaBlend< 9, 100>(out.template ref<3, 2>(), col); //0.08677704501 alphaBlend< 9, 100>(out.template ref<2, 3>(), col); //0.08677704501 } }; struct Scaler5x { static const int scale = 5; template static void blendLineShallow(uint32_t col, OutputMatrix& out) { alphaBlend<1, 4>(out.template ref(), col); alphaBlend<1, 4>(out.template ref(), col); alphaBlend<1, 4>(out.template ref(), col); alphaBlend<3, 4>(out.template ref(), col); alphaBlend<3, 4>(out.template ref(), col); out.template ref() = col; out.template ref() = col; out.template ref() = col; out.template ref() = col; } template static void blendLineSteep(uint32_t col, OutputMatrix& out) { alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); alphaBlend<1, 4>(out.template ref<4, scale - 3>(), col); alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); alphaBlend<3, 4>(out.template ref<3, scale - 2>(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; out.template ref<4, scale - 1>() = col; out.template ref<4, scale - 2>() = col; } template static void blendLineSteepAndShallow(uint32_t col, OutputMatrix& out) { alphaBlend<1, 4>(out.template ref<0, scale - 1>(), col); alphaBlend<1, 4>(out.template ref<2, scale - 2>(), col); alphaBlend<3, 4>(out.template ref<1, scale - 1>(), col); alphaBlend<1, 4>(out.template ref(), col); alphaBlend<1, 4>(out.template ref(), col); alphaBlend<3, 4>(out.template ref(), col); out.template ref<2, scale - 1>() = col; out.template ref<3, scale - 1>() = col; out.template ref() = col; out.template ref() = col; out.template ref<4, scale - 1>() = col; alphaBlend<2, 3>(out.template ref<3, 3>(), col); } template static void blendLineDiagonal(uint32_t col, OutputMatrix& out) { alphaBlend<1, 8>(out.template ref(), col); alphaBlend<1, 8>(out.template ref(), col); alphaBlend<1, 8>(out.template ref(), col); alphaBlend<7, 8>(out.template ref<4, 3>(), col); alphaBlend<7, 8>(out.template ref<3, 4>(), col); out.template ref<4, 4>() = col; } template static void blendCorner(uint32_t col, OutputMatrix& out) { //model a round corner alphaBlend<86, 100>(out.template ref<4, 4>(), col); //exact: 0.8631434088 alphaBlend<23, 100>(out.template ref<4, 3>(), col); //0.2306749731 alphaBlend<23, 100>(out.template ref<3, 4>(), col); //0.2306749731 //alphaBlend<8, 1000>(out.template ref<4, 2>(), col); //0.008384061834 -> negligible //alphaBlend<8, 1000>(out.template ref<2, 4>(), col); //0.008384061834 } }; //------------------------------------------------------------------------------------ struct ColorDistanceRGB { static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight) { return distYCbCrBuffer.dist(pix1, pix2); //if (pix1 == pix2) //about 4% perf boost // return 0; //return distYCbCr(pix1, pix2, luminanceWeight); } }; struct ColorDistanceARGB { static double dist(uint32_t pix1, uint32_t pix2, double luminanceWeight) { const double a1 = getAlpha(pix1) / 255.0 ; const double a2 = getAlpha(pix2) / 255.0 ; /* Requirements for a color distance handling alpha channel: with a1, a2 in [0, 1] 1. if a1 = a2, distance should be: a1 * distYCbCr() 2. if a1 = 0, distance should be: a2 * distYCbCr(black, white) = a2 * 255 3. if a1 = 1, distance should be: 255 * (1 - a2) + a2 * distYCbCr() */ return std::min(a1, a2) * distYCbCrBuffer.dist(pix1, pix2) + 255 * abs(a1 - a2); //if (pix1 == pix2) // return 0; //return std::min(a1, a2) * distYCbCr(pix1, pix2, luminanceWeight) + 255 * abs(a1 - a2); } }; } void xbrz::scale(size_t factor, const uint32_t* src, uint32_t* trg, int srcWidth, int srcHeight, ColorFormat colFmt, const xbrz::ScalerCfg& cfg, int yFirst, int yLast) { switch (colFmt) { case ColorFormat::ARGB: switch (factor) { case 2: return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 3: return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 4: return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 5: return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); } break; case ColorFormat::RGB: switch (factor) { case 2: return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 3: return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 4: return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); case 5: return scaleImage(src, trg, srcWidth, srcHeight, cfg, yFirst, yLast); } break; } assert(false); } bool xbrz::equalColorTest(uint32_t col1, uint32_t col2, ColorFormat colFmt, double luminanceWeight, double equalColorTolerance) { switch (colFmt) { case ColorFormat::ARGB: return ColorDistanceARGB::dist(col1, col2, luminanceWeight) < equalColorTolerance; case ColorFormat::RGB: return ColorDistanceRGB::dist(col1, col2, luminanceWeight) < equalColorTolerance; } assert(false); return false; } void xbrz::nearestNeighborScale(const uint32_t* src, int srcWidth, int srcHeight, int srcPitch, uint32_t* trg, int trgWidth, int trgHeight, int trgPitch, SliceType st, int yFirst, int yLast) { if (srcPitch < srcWidth * static_cast(sizeof(uint32_t)) || trgPitch < trgWidth * static_cast(sizeof(uint32_t))) { assert(false); return; } switch (st) { case NN_SCALE_SLICE_SOURCE: //nearest-neighbor (going over source image - fast for upscaling, since source is read only once yFirst = std::max(yFirst, 0); yLast = std::min(yLast, srcHeight); if (yFirst >= yLast || trgWidth <= 0 || trgHeight <= 0) return; for (int y = yFirst; y < yLast; ++y) { //mathematically: ySrc = floor(srcHeight * yTrg / trgHeight) // => search for integers in: [ySrc, ySrc + 1) * trgHeight / srcHeight //keep within for loop to support MT input slices! const int yTrg_first = ( y * trgHeight + srcHeight - 1) / srcHeight; //=ceil(y * trgHeight / srcHeight) const int yTrg_last = ((y + 1) * trgHeight + srcHeight - 1) / srcHeight; //=ceil(((y + 1) * trgHeight) / srcHeight) const int blockHeight = yTrg_last - yTrg_first; if (blockHeight > 0) { const uint32_t* srcLine = byteAdvance(src, y * srcPitch); uint32_t* trgLine = byteAdvance(trg, yTrg_first * trgPitch); int xTrg_first = 0; for (int x = 0; x < srcWidth; ++x) { int xTrg_last = ((x + 1) * trgWidth + srcWidth - 1) / srcWidth; const int blockWidth = xTrg_last - xTrg_first; if (blockWidth > 0) { xTrg_first = xTrg_last; fillBlock(trgLine, trgPitch, srcLine[x], blockWidth, blockHeight); trgLine += blockWidth; } } } } break; case NN_SCALE_SLICE_TARGET: //nearest-neighbor (going over target image - slow for upscaling, since source is read multiple times missing out on cache! Fast for similar image sizes!) yFirst = std::max(yFirst, 0); yLast = std::min(yLast, trgHeight); if (yFirst >= yLast || srcHeight <= 0 || srcWidth <= 0) return; for (int y = yFirst; y < yLast; ++y) { uint32_t* trgLine = byteAdvance(trg, y * trgPitch); const int ySrc = srcHeight * y / trgHeight; const uint32_t* srcLine = byteAdvance(src, ySrc * srcPitch); for (int x = 0; x < trgWidth; ++x) { const int xSrc = srcWidth * x / trgWidth; trgLine[x] = srcLine[xSrc]; } } break; } }