mirror of
https://github.com/Laex/Delphi-OpenCV.git
synced 2024-11-18 01:05:53 +01:00
1182 lines
35 KiB
ObjectPascal
1182 lines
35 KiB
ObjectPascal
|
// --------------------------------- OpenCV license.txt ---------------------------
|
||
|
(* // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage. *)
|
||
|
|
||
|
(* / **************************************************************************************************
|
||
|
// Project Delphi-OpenCV
|
||
|
// **************************************************************************************************
|
||
|
// Contributor:
|
||
|
// laentir Valetov
|
||
|
// email:laex@bk.ru
|
||
|
// **************************************************************************************************
|
||
|
// You may retrieve the latest version of this file at the GitHub,
|
||
|
// located at git://github.com/Laex/Delphi-OpenCV.git
|
||
|
// **************************************************************************************************
|
||
|
// License:
|
||
|
// The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License");
|
||
|
// you may not use this file except in compliance with the License. You may obtain a copy of the
|
||
|
// License at http://www.mozilla.org/MPL/
|
||
|
//
|
||
|
// Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF
|
||
|
// ANY KIND, either express or implied. See the License for the specific language governing rights
|
||
|
// and limitations under the License.
|
||
|
//
|
||
|
// Alternatively, the contents of this file may be used under the terms of the
|
||
|
// GNU Lesser General Public License (the "LGPL License"), in which case the
|
||
|
// provisions of the LGPL License are applicable instead of those above.
|
||
|
// If you wish to allow use of your version of this file only under the terms
|
||
|
// of the LGPL License and not to allow others to use your version of this file
|
||
|
// under the MPL, indicate your decision by deleting the provisions above and
|
||
|
// replace them with the notice and other provisions required by the LGPL
|
||
|
// License. If you do not delete the provisions above, a recipient may use
|
||
|
// your version of this file under either the MPL or the LGPL License.
|
||
|
//
|
||
|
// For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html
|
||
|
// **************************************************************************************************
|
||
|
// Warning: Using Delphi XE3 syntax!
|
||
|
// **************************************************************************************************
|
||
|
// The Initial Developer of the Original Code:
|
||
|
// OpenCV: open source computer vision library
|
||
|
// Homepage: http://opencv.org
|
||
|
// Online docs: http://docs.opencv.org
|
||
|
// Q&A forum: http://answers.opencv.org
|
||
|
// Dev zone: http://code.opencv.org
|
||
|
// **************************************************************************************************
|
||
|
// Original file:
|
||
|
// opencv\modules\imgproc\src\smooth.cpp
|
||
|
// ************************************************************************************************* *)
|
||
|
|
||
|
{$IFDEF DEBUG}
|
||
|
{$A8,B-,C+,D+,E-,F-,G+,H+,I+,J-,K-,L+,M-,N+,O-,P+,Q+,R+,S-,T-,U-,V+,W+,X+,Y+,Z1}
|
||
|
{$ELSE}
|
||
|
{$A8,B-,C-,D-,E-,F-,G+,H+,I+,J-,K-,L-,M-,N+,O+,P+,Q-,R-,S-,T-,U-,V+,W-,X+,Y-,Z1}
|
||
|
{$ENDIF}
|
||
|
{$WARN SYMBOL_DEPRECATED OFF}
|
||
|
{$WARN SYMBOL_PLATFORM OFF}
|
||
|
{$WARN UNIT_PLATFORM OFF}
|
||
|
{$WARN UNSAFE_TYPE OFF}
|
||
|
{$WARN UNSAFE_CODE OFF}
|
||
|
{$WARN UNSAFE_CAST OFF}
|
||
|
unit smooth;
|
||
|
|
||
|
{$POINTERMATH ON}
|
||
|
|
||
|
interface
|
||
|
|
||
|
Uses Core.types_c;
|
||
|
|
||
|
{$IFDEF CV_SSE2}
|
||
|
|
||
|
const
|
||
|
MEDIAN_HAVE_SIMD = true;
|
||
|
|
||
|
// static inline void histogram_add_simd(const HT x[16], HT y[16])
|
||
|
// {
|
||
|
// const __m128i* rx = (const __m128i*)x;
|
||
|
// __m128i* ry = (__m128i*)y;
|
||
|
// __m128i r0 = _mm_add_epi16(_mm_load_si128(ry+0),_mm_load_si128(rx+0));
|
||
|
// __m128i r1 = _mm_add_epi16(_mm_load_si128(ry+1),_mm_load_si128(rx+1));
|
||
|
// _mm_store_si128(ry+0, r0);
|
||
|
// _mm_store_si128(ry+1, r1);
|
||
|
// }
|
||
|
//
|
||
|
// static inline void histogram_sub_simd(const HT x[16], HT y[16])
|
||
|
// {
|
||
|
// const __m128i* rx = (const __m128i*)x;
|
||
|
// __m128i* ry = (__m128i*)y;
|
||
|
// __m128i r0 = _mm_sub_epi16(_mm_load_si128(ry+0),_mm_load_si128(rx+0));
|
||
|
// __m128i r1 = _mm_sub_epi16(_mm_load_si128(ry+1),_mm_load_si128(rx+1));
|
||
|
// _mm_store_si128(ry+0, r0);
|
||
|
// _mm_store_si128(ry+1, r1);
|
||
|
// }
|
||
|
|
||
|
{$ELSE}
|
||
|
|
||
|
const
|
||
|
MEDIAN_HAVE_SIMD = false;
|
||
|
{$ENDIF}
|
||
|
|
||
|
procedure medianBlur(src0: pIplImage; dst: pIplImage; ksize: Integer);
|
||
|
|
||
|
implementation
|
||
|
|
||
|
Uses core_c, imgproc_c, imgproc, Math, System.Generics.Defaults, Windows, imgproc.types_c;
|
||
|
|
||
|
// ****************************************************************************************
|
||
|
// * Median Filter *
|
||
|
// ****************************************************************************************
|
||
|
|
||
|
Type
|
||
|
HT = ushort;
|
||
|
|
||
|
/// **
|
||
|
// * This structure represents a two-tier histogram. The first tier (known as the
|
||
|
// * "coarse" level) is 4 bit wide and the second tier (known as the "fine" level)
|
||
|
// * is 8 bit wide. Pixels inserted in the fine level also get inserted into the
|
||
|
// * coarse bucket designated by the 4 MSBs of the fine bucket value.
|
||
|
// *
|
||
|
// * The structure is aligned on 16 bits, which is a prerequisite for SIMD
|
||
|
// * instructions. Each bucket is 16 bit wide, which means that extra care must be
|
||
|
// * taken to prevent overflow.
|
||
|
// */
|
||
|
|
||
|
pHistogramArray = ^THistogramArray;
|
||
|
THistogramArray = array [0 .. 15] of HT;
|
||
|
|
||
|
THistogram = packed record
|
||
|
coarse: THistogramArray;
|
||
|
fine: array [0 .. 15] of THistogramArray;
|
||
|
end;
|
||
|
|
||
|
{$IFDEF CV_SSE2}
|
||
|
// static inline void histogram_add_simd(const HT x[16], HT y[16])
|
||
|
// {
|
||
|
// const __m128i* rx = (const __m128i*)x;
|
||
|
// __m128i* ry = (__m128i*)y;
|
||
|
// __m128i r0 = _mm_add_epi16(_mm_load_si128(ry+0),_mm_load_si128(rx+0));
|
||
|
// __m128i r1 = _mm_add_epi16(_mm_load_si128(ry+1),_mm_load_si128(rx+1));
|
||
|
// _mm_store_si128(ry+0, r0);
|
||
|
// _mm_store_si128(ry+1, r1);
|
||
|
// }
|
||
|
//
|
||
|
// static inline void histogram_sub_simd(const HT x[16], HT y[16])
|
||
|
// {
|
||
|
// const __m128i* rx = (const __m128i*)x;
|
||
|
// __m128i* ry = (__m128i*)y;
|
||
|
// __m128i r0 = _mm_sub_epi16(_mm_load_si128(ry+0),_mm_load_si128(rx+0));
|
||
|
// __m128i r1 = _mm_sub_epi16(_mm_load_si128(ry+1),_mm_load_si128(rx+1));
|
||
|
// _mm_store_si128(ry+0, r0);
|
||
|
// _mm_store_si128(ry+1, r1);
|
||
|
// }
|
||
|
{$ELSE}
|
||
|
|
||
|
procedure histogram_add(const x, y: pHistogramArray); inline;
|
||
|
var
|
||
|
i: Integer;
|
||
|
begin
|
||
|
for i := 0 to 15 do
|
||
|
y^[i] := y^[i] + x^[i];
|
||
|
end;
|
||
|
|
||
|
procedure histogram_sub(const x, y: pHistogramArray); inline;
|
||
|
var
|
||
|
i: Integer;
|
||
|
begin
|
||
|
for i := 0 to 15 do
|
||
|
y^[i] := y^[i] - x^[i];
|
||
|
end;
|
||
|
|
||
|
procedure histogram_muladd(a: Integer; const x, y: pHistogramArray); inline;
|
||
|
var
|
||
|
i: Integer;
|
||
|
begin
|
||
|
for i := 0 to 15 do
|
||
|
y^[i] := y^[i] + a * x^[i];
|
||
|
end;
|
||
|
|
||
|
{$ENDIF}
|
||
|
|
||
|
procedure medianBlur_8u_Om(const _src: pIplImage; _dst: pIplImage; m: Integer);
|
||
|
Const
|
||
|
N = 16;
|
||
|
Var
|
||
|
zone0: array [0 .. 3, 0 .. N - 1] of Integer;
|
||
|
zone1: array [0 .. 3, 0 .. N * N - 1] of Integer;
|
||
|
x, y: Integer;
|
||
|
n2: Integer;
|
||
|
size: TcvSize;
|
||
|
src, dst: PByte;
|
||
|
src_step, dst_step, cn: Integer;
|
||
|
src_max: PByte;
|
||
|
dst_cur, src_top, src_bottom: PByte;
|
||
|
k, c: Integer;
|
||
|
src_step1, dst_step1: Integer;
|
||
|
s: Integer;
|
||
|
t: Integer;
|
||
|
p, q: Integer;
|
||
|
|
||
|
procedure UPDATE_ACC01(pix, cn: Integer; op: Integer);
|
||
|
begin
|
||
|
zone1[cn][pix] := zone1[cn][pix] + op;
|
||
|
zone0[cn][pix shr 4] := zone0[cn][pix shr 4] + op;
|
||
|
end;
|
||
|
|
||
|
begin
|
||
|
n2 := m * m div 2;
|
||
|
size := cvGetSize(_dst);
|
||
|
src := _src^.imagedata;
|
||
|
dst := _dst^.imagedata;
|
||
|
src_step := _src.widthstep;
|
||
|
dst_step := _dst.widthstep;
|
||
|
cn := _src^.nchannels;
|
||
|
src_max := src + size.height * src_step;
|
||
|
|
||
|
// CV_Assert( size.height >= nx and size.width >= nx );
|
||
|
for x := 0 to size.width - 1 do
|
||
|
// src + = cn, dst + = cn
|
||
|
begin
|
||
|
dst_cur := dst;
|
||
|
src_top := src;
|
||
|
src_bottom := src;
|
||
|
src_step1 := src_step;
|
||
|
dst_step1 := dst_step;
|
||
|
|
||
|
if (x mod 2 <> 0) then
|
||
|
begin
|
||
|
src_top := src_top + src_step * (size.height - 1);
|
||
|
src_bottom := src_top;
|
||
|
dst_cur := dst_cur + dst_step * (size.height - 1);
|
||
|
src_step1 := -src_step1;
|
||
|
dst_step1 := -dst_step1;
|
||
|
end;
|
||
|
|
||
|
// init accumulator
|
||
|
FillChar(zone0, sizeof(zone0[0]) * cn, 0);
|
||
|
FillChar(zone1, sizeof(zone1[0]) * cn, 0);
|
||
|
|
||
|
for y := 0 to (m div 2) do
|
||
|
begin
|
||
|
for c := 0 to cn - 1 do
|
||
|
begin
|
||
|
if (y > 0) then
|
||
|
begin
|
||
|
k := 0;
|
||
|
while k < m * cn do
|
||
|
begin
|
||
|
UPDATE_ACC01(src_bottom[k + c], c, 1);
|
||
|
k := k + cn;
|
||
|
end;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
k := 0;
|
||
|
while k < m * cn do
|
||
|
begin
|
||
|
UPDATE_ACC01(src_bottom[k + c], c, m div 2 + 1);
|
||
|
k := k + cn;
|
||
|
end;
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
if ((src_step1 > 0) and (y < size.height - 1)) or ((src_step1 < 0) and (size.height - y - 1 > 0)) then
|
||
|
src_bottom := src_bottom + src_step1;
|
||
|
end;
|
||
|
|
||
|
for y := 0 to size.height - 1 do
|
||
|
begin
|
||
|
// find median
|
||
|
for c := 0 to cn - 1 do
|
||
|
begin
|
||
|
s := 0;
|
||
|
k := 0;
|
||
|
while true do
|
||
|
begin
|
||
|
t := s + zone0[c][k];
|
||
|
if (t > n2) then
|
||
|
break;
|
||
|
s := t;
|
||
|
Inc(k);
|
||
|
end;
|
||
|
|
||
|
k := k * N;
|
||
|
while true do
|
||
|
begin
|
||
|
s := s + zone1[c][k];
|
||
|
if (s > n2) then
|
||
|
break;
|
||
|
Inc(k);
|
||
|
end;
|
||
|
dst_cur[c] := k;
|
||
|
dst_cur := dst_cur + dst_step1;
|
||
|
end;
|
||
|
|
||
|
if (y + 1) = size.height then
|
||
|
break;
|
||
|
|
||
|
if (cn = 1) then
|
||
|
begin
|
||
|
for k := 0 to m - 1 do
|
||
|
begin
|
||
|
p := src_top[k];
|
||
|
q := src_bottom[k];
|
||
|
Dec(zone1[0][p]);
|
||
|
Dec(zone0[0][p shr 4]);
|
||
|
Inc(zone1[0][q]);
|
||
|
Inc(zone0[0][q shr 4]);
|
||
|
end;
|
||
|
end
|
||
|
else if (cn = 3) then
|
||
|
begin
|
||
|
k := 0;
|
||
|
while k < m * 3 do
|
||
|
begin
|
||
|
UPDATE_ACC01(src_top[k], 0, -1);
|
||
|
UPDATE_ACC01(src_top[k + 1], 1, -1);
|
||
|
UPDATE_ACC01(src_top[k + 2], 2, -1);
|
||
|
|
||
|
UPDATE_ACC01(src_bottom[k], 0, 1);
|
||
|
UPDATE_ACC01(src_bottom[k + 1], 1, 1);
|
||
|
UPDATE_ACC01(src_bottom[k + 2], 2, 1);
|
||
|
k := k + 3;
|
||
|
end;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
assert(cn = 4);
|
||
|
k := 0;
|
||
|
while k < m * 4 do
|
||
|
begin
|
||
|
UPDATE_ACC01(src_top[k], 0, -1);
|
||
|
UPDATE_ACC01(src_top[k + 1], 1, -1);
|
||
|
UPDATE_ACC01(src_top[k + 2], 2, -1);
|
||
|
UPDATE_ACC01(src_top[k + 3], 3, -1);
|
||
|
|
||
|
UPDATE_ACC01(src_bottom[k], 0, 1);
|
||
|
UPDATE_ACC01(src_bottom[k + 1], 1, 1);
|
||
|
UPDATE_ACC01(src_bottom[k + 2], 2, 1);
|
||
|
UPDATE_ACC01(src_bottom[k + 3], 3, 1);
|
||
|
k := k + 4;
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
if ((src_step1 > 0) and (src_bottom + src_step1 < src_max)) or
|
||
|
((src_step1 < 0) and (src_bottom + src_step1 >= src)) then
|
||
|
src_bottom := src_bottom + src_step1;
|
||
|
|
||
|
if (y >= m div 2) then
|
||
|
src_top := src_top + src_step1;
|
||
|
end;
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
procedure medianBlur_8u_O1(const _src: pIplImage; _dst: pIplImage; ksize: Integer);
|
||
|
|
||
|
// **
|
||
|
// * HOP is short for Histogram OPeration. This macro makes an operation \a op on
|
||
|
// * histogram \a h for pixel value \a x. It takes care of handling both levels.
|
||
|
// */
|
||
|
// procedure HOP(h,x,op)
|
||
|
// h.coarse[x shr 4] op,
|
||
|
// *((HT*)h.fine + x) op
|
||
|
var
|
||
|
cn, m, r: Integer;
|
||
|
sstep, dstep: size_t;
|
||
|
H: array [0 .. 3] of THistogram;
|
||
|
luc: array [0 .. 3] of array [0 .. 15] of HT;
|
||
|
STRIPE_SIZE: Integer;
|
||
|
_h_coarse, _h_fine: TArray<HT>;
|
||
|
h_coarse, h_fine: ^HT;
|
||
|
{$IFDEF MEDIAN_HAVE_SIMD}
|
||
|
useSIMD: Boolean;
|
||
|
{$ENDIF}
|
||
|
x: Integer;
|
||
|
i, j, k, c, N: Integer;
|
||
|
src, dst: PByte;
|
||
|
|
||
|
procedure COP(c, j, x, op: Integer);
|
||
|
begin
|
||
|
h_coarse[16 * (N * c + j) + (x shr 4)] := h_coarse[16 * (N * c + j) + (x shr 4)] + op;
|
||
|
h_fine[16 * (N * (16 * c + (x shr 4)) + j) + (x and $F)] :=
|
||
|
h_fine[16 * (N * (16 * c + (x shr 4)) + j) + (x and $F)] + op;
|
||
|
end;
|
||
|
|
||
|
var
|
||
|
p: PByte;
|
||
|
p0, p1: PByte;
|
||
|
t, b, sum: Integer;
|
||
|
segment: ^HT;
|
||
|
|
||
|
begin
|
||
|
cn := _dst^.nchannels;
|
||
|
m := _dst^.height;
|
||
|
r := (ksize - 1) div 2;
|
||
|
sstep := _src.widthstep;
|
||
|
dstep := _dst.widthstep;
|
||
|
STRIPE_SIZE := min(_dst.width, 512 div cn);
|
||
|
|
||
|
SetLength(_h_coarse, 1 * 16 * (STRIPE_SIZE + 2 * r) * cn + 16);
|
||
|
SetLength(_h_fine, 16 * 16 * (STRIPE_SIZE + 2 * r) * cn + 16);
|
||
|
h_coarse := @_h_coarse[0];
|
||
|
h_fine := @_h_fine[0];
|
||
|
{$IFDEF MEDIAN_HAVE_SIMD}
|
||
|
useSIMD := cvCheckHardwareSupport(CV_CPU_SSE2);
|
||
|
{$ENDIF}
|
||
|
x := 0;
|
||
|
while x < _dst^.width do
|
||
|
// x + = STRIPE_SIZE
|
||
|
begin
|
||
|
N := min(_dst.width - x, STRIPE_SIZE) + r * 2;
|
||
|
src := _src.imagedata + x * cn;
|
||
|
dst := _dst.imagedata + (x - r) * cn;
|
||
|
ZeroMemory(h_coarse, 16 * N * cn * sizeof(h_coarse[0]));
|
||
|
ZeroMemory(h_fine, 16 * 16 * N * cn * sizeof(h_fine[0]));
|
||
|
|
||
|
// First row initialization
|
||
|
for c := 0 to cn - 1 do
|
||
|
begin
|
||
|
for j := 0 to N - 1 do
|
||
|
COP(c, j, src[cn * j + c], (r + 2));
|
||
|
|
||
|
for i := 1 to r - 1 do
|
||
|
begin
|
||
|
p := src + sstep * min(i, m - 1);
|
||
|
for j := 0 to N - 1 do
|
||
|
COP(c, j, p[cn * j + c], 1);
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
for i := 0 to m - 1 do
|
||
|
begin
|
||
|
p0 := src + sstep * max(0, i - r - 1);
|
||
|
p1 := src + sstep * min(m - 1, i + r);
|
||
|
|
||
|
ZeroMemory(@H, cn * sizeof(H[0]));
|
||
|
ZeroMemory(@luc, cn * sizeof(luc[0]));
|
||
|
for c := 0 to cn - 1 do
|
||
|
begin
|
||
|
// Update column histograms for the entire row.
|
||
|
for j := 0 to N - 1 do
|
||
|
begin
|
||
|
COP(c, j, p0[j * cn + c], -1);
|
||
|
COP(c, j, p1[j * cn + c], 1);
|
||
|
end;
|
||
|
|
||
|
// First column initialization
|
||
|
for k := 1 to 16 do
|
||
|
histogram_muladd(2 * r + 1, @h_fine[16 * N * (16 * c + k)], @H[c].fine[k][0]);
|
||
|
|
||
|
{$IFDEF MEDIAN_HAVE_SIMD}
|
||
|
// if (useSIMD) then
|
||
|
// begin
|
||
|
// for j := 0 to 2 * r-1 do
|
||
|
// histogram_add_simd(&h_coarse[16 * (N * c + j)], H[c].coarse);
|
||
|
//
|
||
|
// for (j := r; j < N - r; j + +)begin int t := 2 * r * r + 2 * r, b, sum := 0;
|
||
|
// HT * segment;
|
||
|
//
|
||
|
// histogram_add_simd(&h_coarse[16 * (N * c + std: : min(j + r, N - 1))], H[c].coarse);
|
||
|
//
|
||
|
// // Find median at coarse level
|
||
|
// for (k := 0; k < 16; + + k)begin sum + = H[c].coarse[k];
|
||
|
// if (sum > t)begin sum - = H[c].coarse[k];
|
||
|
// break;
|
||
|
// end;
|
||
|
// end;
|
||
|
// assert(k < 16);
|
||
|
//
|
||
|
// / * Update corresponding Histogram segment * /
|
||
|
// if (luc[c][k] <= j - r)begin memset(&H[c].fine[k], 0, 16 * sizeof(HT));
|
||
|
// for (luc[c][k] := cv: : HT(j - r); luc[c][k] < min(j + r + 1, N); + + luc[c][k])
|
||
|
// histogram_add_simd(&h_fine[16 * (N * (16 * c + k) + luc[c][k])], H[c].fine[k]);
|
||
|
//
|
||
|
// if (luc[c][k] < j + r + 1)begin histogram_muladd(j + r + 1 - N, &h_fine[16 * (N * (16 * c + k) + (N - 1))],
|
||
|
// &H[c].fine[k][0]);
|
||
|
// luc[c][k] := (HT)(j + r + 1);
|
||
|
// end;
|
||
|
// end;
|
||
|
// else
|
||
|
// begin
|
||
|
// for (; luc[c][k] < j + r + 1; + + luc[c][k])begin histogram_sub_simd
|
||
|
// (&h_fine[16 * (N * (16 * c + k) + max(luc[c][k] - 2 * r - 1, 0))], H[c].fine[k]);
|
||
|
// histogram_add_simd(&h_fine[16 * (N * (16 * c + k) + min(luc[c][k], N - 1))], H[c].fine[k]);
|
||
|
// end;
|
||
|
// end;
|
||
|
//
|
||
|
// histogram_sub_simd(&h_coarse[16 * (N * c + max(j - r, 0))], H[c].coarse);
|
||
|
//
|
||
|
/// * Find median in segment * / segment := H[c].fine[k];
|
||
|
// for (b := 0; b < 16; b + +)begin sum + = segment[b];
|
||
|
// if (sum > t)begin dst[dstep * i + cn * j + c] := (uchar)(16 * k + b);
|
||
|
// break;
|
||
|
// end;
|
||
|
// end;
|
||
|
// assert(b < 16);
|
||
|
// end;
|
||
|
// end;
|
||
|
// else
|
||
|
{$ENDIF}
|
||
|
begin
|
||
|
for j := 0 to 2 * r - 1 do
|
||
|
histogram_add(@h_coarse[16 * (N * c + j)], @H[c].coarse);
|
||
|
|
||
|
for j := r to (N - r) - 1 do
|
||
|
begin
|
||
|
t := 2 * r * r + 2 * r;
|
||
|
sum := 0;
|
||
|
histogram_add(@h_coarse[16 * (N * c + min(j + r, N - 1))], @H[c].coarse);
|
||
|
|
||
|
// Find median at coarse level
|
||
|
for k := 0 to 15 do
|
||
|
begin
|
||
|
sum := sum + H[c].coarse[k];
|
||
|
if (sum > t) then
|
||
|
begin
|
||
|
sum := sum - H[c].coarse[k];
|
||
|
break;
|
||
|
end;
|
||
|
end;
|
||
|
assert(k < 16);
|
||
|
|
||
|
// * Update corresponding Histogram segment * /
|
||
|
if (luc[c][k] <= j - r) then
|
||
|
begin
|
||
|
ZeroMemory(@H[c].fine[k], 16 * sizeof(HT));
|
||
|
luc[c][k] := (j - r);
|
||
|
while luc[c][k] < min(j + r + 1, N) do
|
||
|
begin
|
||
|
histogram_add(@h_fine[16 * (N * (16 * c + k) + luc[c][k])], @H[c].fine[k]);
|
||
|
Inc(luc[c][k]);
|
||
|
end;
|
||
|
|
||
|
if (luc[c][k] < j + r + 1) then
|
||
|
begin
|
||
|
histogram_muladd(j + r + 1 - N, @h_fine[16 * (N * (16 * c + k) + (N - 1))], @H[c].fine[k][0]);
|
||
|
luc[c][k] := j + r + 1;
|
||
|
end;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
while luc[c][k] < j + r + 1 do
|
||
|
begin
|
||
|
histogram_sub(@h_fine[16 * (N * (16 * c + k) + max(luc[c][k] - 2 * r - 1, 0))], @H[c].fine[k]);
|
||
|
histogram_add(@h_fine[16 * (N * (16 * c + k) + min(luc[c][k], N - 1))], @H[c].fine[k]);
|
||
|
Inc(luc[c][k]);
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
histogram_sub(@h_coarse[16 * (N * c + max(j - r, 0))], @H[c].coarse);
|
||
|
|
||
|
// * Find median in segment * / segment := H[c].fine[k];
|
||
|
for b := 0 to 15 do
|
||
|
begin
|
||
|
sum := sum + segment[b];
|
||
|
if (sum > t) then
|
||
|
begin
|
||
|
dst[dstep * i + cn * j + c] := 16 * k + b;
|
||
|
break;
|
||
|
end;
|
||
|
end;
|
||
|
assert(b < 16);
|
||
|
end;
|
||
|
end;
|
||
|
end;
|
||
|
end;
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
Type
|
||
|
MinMax < t: record >= record
|
||
|
|
||
|
const
|
||
|
_SIZE = 1;
|
||
|
|
||
|
function load(const ptr: Pointer): t;
|
||
|
|
||
|
procedure store(ptr: Pointer; val: t);
|
||
|
procedure op(var a, b: t);
|
||
|
end;
|
||
|
|
||
|
mm8u = Byte; // CV_8U
|
||
|
mm16u = Word; // CV_16U
|
||
|
mm16s = SmallInt; // CV_16S
|
||
|
mm32f = Single; // CV_32F
|
||
|
|
||
|
TmedianBlur<t: record > = class public class
|
||
|
procedure SortNet(const _src: pIplImage; _dst: pIplImage; m: Integer);
|
||
|
end;
|
||
|
|
||
|
procedure medianBlur(src0: pIplImage; dst: pIplImage; ksize: Integer);
|
||
|
Var
|
||
|
useSortNet: Boolean;
|
||
|
src: pIplImage;
|
||
|
cn: Integer;
|
||
|
img_size_mp: double;
|
||
|
begin
|
||
|
if (ksize <= 1) then
|
||
|
begin
|
||
|
cvCopy(src0, dst);
|
||
|
Exit;
|
||
|
end;
|
||
|
|
||
|
assert((ksize mod 2 = 1));
|
||
|
|
||
|
{$IFDEF HAVE_TEGRA_OPTIMIZATION}
|
||
|
if (tegra_medianBlur(src0, dst, ksize)) then
|
||
|
Exit;
|
||
|
{$ENDIF}
|
||
|
useSortNet := (ksize = 3) or (ksize = 5
|
||
|
{$IFNDEF CV_SSE2}
|
||
|
) and (src0^.depth > CV_8U
|
||
|
{$ENDIF}
|
||
|
);
|
||
|
|
||
|
if useSortNet then
|
||
|
begin
|
||
|
if (dst^.imagedata <> src0^.imagedata) then
|
||
|
src := src0
|
||
|
else
|
||
|
cvCopy(src0, src);
|
||
|
|
||
|
if (src^.depth = CV_8U) then
|
||
|
TmedianBlur<mm8u>.SortNet(src, dst, ksize)
|
||
|
else if (src^.depth = CV_16U) then
|
||
|
TmedianBlur<mm16u>.SortNet(src, dst, ksize)
|
||
|
else if (src^.depth = CV_16S) then
|
||
|
TmedianBlur<mm16s>.SortNet(src, dst, ksize)
|
||
|
else if (src^.depth = CV_32F) then
|
||
|
TmedianBlur<mm32f>.SortNet(src, dst, ksize)
|
||
|
else
|
||
|
assert(false, 'CV_StsUnsupportedFormat');
|
||
|
Exit;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
cvCopyMakeBorder(src0, src, CvPoint(0, 0), { ksize / 2, ksize / 2, } BORDER_REPLICATE, cvScalarAll(0));
|
||
|
cn := src0^.nchannels;
|
||
|
assert((src^.depth = CV_8U) and ((cn = 1) or (cn = 3) or (cn = 4)));
|
||
|
|
||
|
img_size_mp := (src0^.width * src0^.height) / (1 shl 20);
|
||
|
if ksize <= (3 + (iif(img_size_mp < 1, 12, iif(img_size_mp < 4, 6, 2)) *
|
||
|
(iif(MEDIAN_HAVE_SIMD and (cvCheckHardwareSupport(CV_CPU_SSE2) <> 0), 1, 3)))) then
|
||
|
medianBlur_8u_Om(src, dst, ksize)
|
||
|
else
|
||
|
medianBlur_8u_O1(src, dst, ksize);
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
{ MinMax<T> }
|
||
|
|
||
|
function MinMax<t>.load(const ptr: Pointer): t;
|
||
|
begin
|
||
|
Result := t(ptr^);
|
||
|
end;
|
||
|
|
||
|
procedure MinMax<t>.op(var a, b: t);
|
||
|
var
|
||
|
_t: t;
|
||
|
Comparer: IComparer<t>;
|
||
|
begin
|
||
|
_t := a;
|
||
|
Comparer := TComparer<t>.Default;
|
||
|
if Comparer.Compare(a, b) > 0 then // min
|
||
|
a := b;
|
||
|
if Comparer.Compare(b, _t) < 0 then // max
|
||
|
b := _t;
|
||
|
end;
|
||
|
|
||
|
procedure MinMax<t>.store(ptr: Pointer; val: t);
|
||
|
begin
|
||
|
t(ptr^) := val;
|
||
|
end;
|
||
|
|
||
|
{ TmedianBlur<T> }
|
||
|
|
||
|
class procedure TmedianBlur<t>.SortNet(const _src: pIplImage; _dst: pIplImage; m: Integer);
|
||
|
type
|
||
|
pT = ^t;
|
||
|
Var
|
||
|
MM: MinMax<t>;
|
||
|
src, dst: pT;
|
||
|
sstep, dstep: Integer;
|
||
|
size: TcvSize;
|
||
|
i, j, k, cn: Integer;
|
||
|
useSIMD: Boolean;
|
||
|
len, sdelta, sdelta0, ddelta: Integer;
|
||
|
p0, p1, p2, p3, p4, p5, p6, p7, p8: t;
|
||
|
row0, row1, row2: pT;
|
||
|
limit: Integer;
|
||
|
j0, j1, j2, j3, j4: Integer;
|
||
|
i1, i0, i3, i4: Integer;
|
||
|
row: array [0 .. 4] of pT;
|
||
|
p: array [0 .. 24] of t;
|
||
|
rowk: pT;
|
||
|
|
||
|
begin
|
||
|
src := pT(_src.imagedata);
|
||
|
dst := pT(_dst.imagedata);
|
||
|
sstep := _src^.widthstep div sizeof(t);
|
||
|
dstep := _dst.widthstep div sizeof(t);
|
||
|
size := cvGetSize(_dst);
|
||
|
cn := _src^.nchannels;
|
||
|
useSIMD := cvCheckHardwareSupport(CV_CPU_SSE2) <> 0;
|
||
|
|
||
|
if (m = 3) then
|
||
|
begin
|
||
|
if (size.width = 1) or (size.height = 1) then
|
||
|
begin
|
||
|
len := size.width + size.height - 1;
|
||
|
sdelta := iif(size.height = 1, cn, sstep);
|
||
|
sdelta0 := iif(size.height = 1, 0, sstep - cn);
|
||
|
ddelta := iif(size.height = 1, cn, dstep);
|
||
|
|
||
|
for i := 0 to len - 1 do
|
||
|
begin
|
||
|
for j := 0 to cn - 1 do
|
||
|
begin
|
||
|
p0 := src[Integer(iif(i > 0, -sdelta, 0))];
|
||
|
p1 := src[0];
|
||
|
p2 := src[Integer(iif(i < len - 1, sdelta, 0))];
|
||
|
|
||
|
MM.op(p0, p1);
|
||
|
MM.op(p1, p2);
|
||
|
MM.op(p0, p1);
|
||
|
dst[j] := p1;
|
||
|
src := src + sizeof(t);
|
||
|
end;
|
||
|
src := src + sdelta0;
|
||
|
dst := dst + ddelta;
|
||
|
end;
|
||
|
Exit;
|
||
|
end;
|
||
|
|
||
|
size.width := size.width * cn;
|
||
|
for i := 0 to size.height - 1 do
|
||
|
begin
|
||
|
row0 := src + max(i - 1, 0) * sstep;
|
||
|
row1 := src + i * sstep;
|
||
|
row2 := src + min(i + 1, size.height - 1) * sstep;
|
||
|
limit := iif(useSIMD, cn, size.width);
|
||
|
|
||
|
j := 0;
|
||
|
while true do
|
||
|
begin
|
||
|
while j < limit do
|
||
|
begin
|
||
|
j0 := iif(j >= cn, j - cn, j);
|
||
|
j2 := iif(j < size.width - cn, j + cn, j);
|
||
|
p0 := row0[j0];
|
||
|
p1 := row0[j];
|
||
|
p2 := row0[j2];
|
||
|
p3 := row1[j0];
|
||
|
p4 := row1[j];
|
||
|
p5 := row1[j2];
|
||
|
p6 := row2[j0];
|
||
|
p7 := row2[j];
|
||
|
p8 := row2[j2];
|
||
|
|
||
|
MM.op(p1, p2);
|
||
|
MM.op(p4, p5);
|
||
|
MM.op(p7, p8);
|
||
|
MM.op(p0, p1);
|
||
|
MM.op(p3, p4);
|
||
|
MM.op(p6, p7);
|
||
|
MM.op(p1, p2);
|
||
|
MM.op(p4, p5);
|
||
|
MM.op(p7, p8);
|
||
|
MM.op(p0, p3);
|
||
|
MM.op(p5, p8);
|
||
|
MM.op(p4, p7);
|
||
|
MM.op(p3, p6);
|
||
|
MM.op(p1, p4);
|
||
|
MM.op(p2, p5);
|
||
|
MM.op(p4, p7);
|
||
|
MM.op(p4, p2);
|
||
|
MM.op(p6, p4);
|
||
|
MM.op(p4, p2);
|
||
|
dst[j] := p4;
|
||
|
Inc(j);
|
||
|
end;
|
||
|
|
||
|
if (limit = size.width) then
|
||
|
break;
|
||
|
|
||
|
While j <= size.width - MM._SIZE - cn do
|
||
|
begin
|
||
|
p0 := MM.load(row0 + j - cn);
|
||
|
p1 := MM.load(row0 + j);
|
||
|
p2 := MM.load(row0 + j + cn);
|
||
|
p3 := MM.load(row1 + j - cn);
|
||
|
p4 := MM.load(row1 + j);
|
||
|
p5 := MM.load(row1 + j + cn);
|
||
|
p6 := MM.load(row2 + j - cn);
|
||
|
p7 := MM.load(row2 + j);
|
||
|
p8 := MM.load(row2 + j + cn);
|
||
|
|
||
|
MM.op(p1, p2);
|
||
|
MM.op(p4, p5);
|
||
|
MM.op(p7, p8);
|
||
|
MM.op(p0, p1);
|
||
|
MM.op(p3, p4);
|
||
|
MM.op(p6, p7);
|
||
|
MM.op(p1, p2);
|
||
|
MM.op(p4, p5);
|
||
|
MM.op(p7, p8);
|
||
|
MM.op(p0, p3);
|
||
|
MM.op(p5, p8);
|
||
|
MM.op(p4, p7);
|
||
|
MM.op(p3, p6);
|
||
|
MM.op(p1, p4);
|
||
|
MM.op(p2, p5);
|
||
|
MM.op(p4, p7);
|
||
|
MM.op(p4, p2);
|
||
|
MM.op(p6, p4);
|
||
|
MM.op(p4, p2);
|
||
|
MM.store(dst + j, p4);
|
||
|
j := j + MM._SIZE
|
||
|
end;
|
||
|
|
||
|
limit := size.width;
|
||
|
end;
|
||
|
dst := dst + dstep;
|
||
|
end;
|
||
|
end
|
||
|
else if (m = 5) then
|
||
|
begin
|
||
|
if (size.width = 1) or (size.height = 1) then
|
||
|
begin
|
||
|
len := size.width + size.height - 1;
|
||
|
sdelta := iif(size.height = 1, cn, sstep);
|
||
|
sdelta0 := iif(size.height = 1, 0, sstep - cn);
|
||
|
ddelta := iif(size.height = 1, cn, dstep);
|
||
|
|
||
|
for i := 0 to len - 1 do
|
||
|
begin
|
||
|
for j := 0 to cn - 1 do
|
||
|
begin
|
||
|
i1 := iif(i > 0, -sdelta, 0);
|
||
|
i0 := iif(i > 1, -sdelta * 2, i1);
|
||
|
i3 := iif(i < len - 1, sdelta, 0);
|
||
|
i4 := iif(i < len - 2, sdelta * 2, i3);
|
||
|
p0 := src[i0];
|
||
|
p1 := src[i1];
|
||
|
p2 := src[0];
|
||
|
p3 := src[i3];
|
||
|
p4 := src[i4];
|
||
|
|
||
|
MM.op(p0, p1);
|
||
|
MM.op(p3, p4);
|
||
|
MM.op(p2, p3);
|
||
|
MM.op(p3, p4);
|
||
|
MM.op(p0, p2);
|
||
|
MM.op(p2, p4);
|
||
|
MM.op(p1, p3);
|
||
|
MM.op(p1, p2);
|
||
|
dst[j] := p2;
|
||
|
src := src + sizeof(t);
|
||
|
end;
|
||
|
src := src + sdelta0;
|
||
|
dst := dst + ddelta;
|
||
|
end;
|
||
|
Exit;
|
||
|
end;
|
||
|
|
||
|
size.width := size.width * cn;
|
||
|
for i := 0 to size.height - 1 do
|
||
|
begin
|
||
|
row[0] := src + max(i - 2, 0) * sstep;
|
||
|
row[1] := src + max(i - 1, 0) * sstep;
|
||
|
row[2] := src + i * sstep;
|
||
|
row[3] := src + min(i + 1, size.height - 1) * sstep;
|
||
|
row[4] := src + min(i + 2, size.height - 1) * sstep;
|
||
|
limit := iif(useSIMD, cn * 2, size.width);
|
||
|
|
||
|
j := 0;
|
||
|
while true do
|
||
|
begin
|
||
|
while j < limit do
|
||
|
begin
|
||
|
j1 := iif(j >= cn, j - cn, j);
|
||
|
j0 := iif(j >= cn * 2, j - cn * 2, j1);
|
||
|
j3 := iif(j < size.width - cn, j + cn, j);
|
||
|
j4 := iif(j < size.width - cn * 2, j + cn * 2, j3);
|
||
|
for k := 0 to 4 do
|
||
|
begin
|
||
|
rowk := row[k];
|
||
|
p[k * 5] := rowk[j0];
|
||
|
p[k * 5 + 1] := rowk[j1];
|
||
|
p[k * 5 + 2] := rowk[j];
|
||
|
p[k * 5 + 3] := rowk[j3];
|
||
|
p[k * 5 + 4] := rowk[j4];
|
||
|
end;
|
||
|
|
||
|
MM.op(p[1], p[2]);
|
||
|
MM.op(p[0], p[1]);
|
||
|
MM.op(p[1], p[2]);
|
||
|
MM.op(p[4], p[5]);
|
||
|
MM.op(p[3], p[4]);
|
||
|
MM.op(p[4], p[5]);
|
||
|
MM.op(p[0], p[3]);
|
||
|
MM.op(p[2], p[5]);
|
||
|
MM.op(p[2], p[3]);
|
||
|
MM.op(p[1], p[4]);
|
||
|
MM.op(p[1], p[2]);
|
||
|
MM.op(p[3], p[4]);
|
||
|
MM.op(p[7], p[8]);
|
||
|
MM.op(p[6], p[7]);
|
||
|
MM.op(p[7], p[8]);
|
||
|
MM.op(p[10], p[11]);
|
||
|
MM.op(p[9], p[10]);
|
||
|
MM.op(p[10], p[11]);
|
||
|
MM.op(p[6], p[9]);
|
||
|
MM.op(p[8], p[11]);
|
||
|
MM.op(p[8], p[9]);
|
||
|
MM.op(p[7], p[10]);
|
||
|
MM.op(p[7], p[8]);
|
||
|
MM.op(p[9], p[10]);
|
||
|
MM.op(p[0], p[6]);
|
||
|
MM.op(p[4], p[10]);
|
||
|
MM.op(p[4], p[6]);
|
||
|
MM.op(p[2], p[8]);
|
||
|
MM.op(p[2], p[4]);
|
||
|
MM.op(p[6], p[8]);
|
||
|
MM.op(p[1], p[7]);
|
||
|
MM.op(p[5], p[11]);
|
||
|
MM.op(p[5], p[7]);
|
||
|
MM.op(p[3], p[9]);
|
||
|
MM.op(p[3], p[5]);
|
||
|
MM.op(p[7], p[9]);
|
||
|
MM.op(p[1], p[2]);
|
||
|
MM.op(p[3], p[4]);
|
||
|
MM.op(p[5], p[6]);
|
||
|
MM.op(p[7], p[8]);
|
||
|
MM.op(p[9], p[10]);
|
||
|
MM.op(p[13], p[14]);
|
||
|
MM.op(p[12], p[13]);
|
||
|
MM.op(p[13], p[14]);
|
||
|
MM.op(p[16], p[17]);
|
||
|
MM.op(p[15], p[16]);
|
||
|
MM.op(p[16], p[17]);
|
||
|
MM.op(p[12], p[15]);
|
||
|
MM.op(p[14], p[17]);
|
||
|
MM.op(p[14], p[15]);
|
||
|
MM.op(p[13], p[16]);
|
||
|
MM.op(p[13], p[14]);
|
||
|
MM.op(p[15], p[16]);
|
||
|
MM.op(p[19], p[20]);
|
||
|
MM.op(p[18], p[19]);
|
||
|
MM.op(p[19], p[20]);
|
||
|
MM.op(p[21], p[22]);
|
||
|
MM.op(p[23], p[24]);
|
||
|
MM.op(p[21], p[23]);
|
||
|
MM.op(p[22], p[24]);
|
||
|
MM.op(p[22], p[23]);
|
||
|
MM.op(p[18], p[21]);
|
||
|
MM.op(p[20], p[23]);
|
||
|
MM.op(p[20], p[21]);
|
||
|
MM.op(p[19], p[22]);
|
||
|
MM.op(p[22], p[24]);
|
||
|
MM.op(p[19], p[20]);
|
||
|
MM.op(p[21], p[22]);
|
||
|
MM.op(p[23], p[24]);
|
||
|
MM.op(p[12], p[18]);
|
||
|
MM.op(p[16], p[22]);
|
||
|
MM.op(p[16], p[18]);
|
||
|
MM.op(p[14], p[20]);
|
||
|
MM.op(p[20], p[24]);
|
||
|
MM.op(p[14], p[16]);
|
||
|
MM.op(p[18], p[20]);
|
||
|
MM.op(p[22], p[24]);
|
||
|
MM.op(p[13], p[19]);
|
||
|
MM.op(p[17], p[23]);
|
||
|
MM.op(p[17], p[19]);
|
||
|
MM.op(p[15], p[21]);
|
||
|
MM.op(p[15], p[17]);
|
||
|
MM.op(p[19], p[21]);
|
||
|
MM.op(p[13], p[14]);
|
||
|
MM.op(p[15], p[16]);
|
||
|
MM.op(p[17], p[18]);
|
||
|
MM.op(p[19], p[20]);
|
||
|
MM.op(p[21], p[22]);
|
||
|
MM.op(p[23], p[24]);
|
||
|
MM.op(p[0], p[12]);
|
||
|
MM.op(p[8], p[20]);
|
||
|
MM.op(p[8], p[12]);
|
||
|
MM.op(p[4], p[16]);
|
||
|
MM.op(p[16], p[24]);
|
||
|
MM.op(p[12], p[16]);
|
||
|
MM.op(p[2], p[14]);
|
||
|
MM.op(p[10], p[22]);
|
||
|
MM.op(p[10], p[14]);
|
||
|
MM.op(p[6], p[18]);
|
||
|
MM.op(p[6], p[10]);
|
||
|
MM.op(p[10], p[12]);
|
||
|
MM.op(p[1], p[13]);
|
||
|
MM.op(p[9], p[21]);
|
||
|
MM.op(p[9], p[13]);
|
||
|
MM.op(p[5], p[17]);
|
||
|
MM.op(p[13], p[17]);
|
||
|
MM.op(p[3], p[15]);
|
||
|
MM.op(p[11], p[23]);
|
||
|
MM.op(p[11], p[15]);
|
||
|
MM.op(p[7], p[19]);
|
||
|
MM.op(p[7], p[11]);
|
||
|
MM.op(p[11], p[13]);
|
||
|
MM.op(p[11], p[12]);
|
||
|
dst[j] := p[12];
|
||
|
Inc(j);
|
||
|
end;
|
||
|
|
||
|
if (limit = size.width) then
|
||
|
break;
|
||
|
|
||
|
While j <= size.width - MM._SIZE - cn * 2 do
|
||
|
begin
|
||
|
for k := 0 to 4 do
|
||
|
begin
|
||
|
rowk := row[k];
|
||
|
p[k * 5] := MM.load(rowk + j - cn * 2);
|
||
|
p[k * 5 + 1] := MM.load(rowk + j - cn);
|
||
|
p[k * 5 + 2] := MM.load(rowk + j);
|
||
|
p[k * 5 + 3] := MM.load(rowk + j + cn);
|
||
|
p[k * 5 + 4] := MM.load(rowk + j + cn * 2);
|
||
|
end;
|
||
|
MM.op(p[1], p[2]);
|
||
|
MM.op(p[0], p[1]);
|
||
|
MM.op(p[1], p[2]);
|
||
|
MM.op(p[4], p[5]);
|
||
|
MM.op(p[3], p[4]);
|
||
|
MM.op(p[4], p[5]);
|
||
|
MM.op(p[0], p[3]);
|
||
|
MM.op(p[2], p[5]);
|
||
|
MM.op(p[2], p[3]);
|
||
|
MM.op(p[1], p[4]);
|
||
|
MM.op(p[1], p[2]);
|
||
|
MM.op(p[3], p[4]);
|
||
|
MM.op(p[7], p[8]);
|
||
|
MM.op(p[6], p[7]);
|
||
|
MM.op(p[7], p[8]);
|
||
|
MM.op(p[10], p[11]);
|
||
|
MM.op(p[9], p[10]);
|
||
|
MM.op(p[10], p[11]);
|
||
|
MM.op(p[6], p[9]);
|
||
|
MM.op(p[8], p[11]);
|
||
|
MM.op(p[8], p[9]);
|
||
|
MM.op(p[7], p[10]);
|
||
|
MM.op(p[7], p[8]);
|
||
|
MM.op(p[9], p[10]);
|
||
|
MM.op(p[0], p[6]);
|
||
|
MM.op(p[4], p[10]);
|
||
|
MM.op(p[4], p[6]);
|
||
|
MM.op(p[2], p[8]);
|
||
|
MM.op(p[2], p[4]);
|
||
|
MM.op(p[6], p[8]);
|
||
|
MM.op(p[1], p[7]);
|
||
|
MM.op(p[5], p[11]);
|
||
|
MM.op(p[5], p[7]);
|
||
|
MM.op(p[3], p[9]);
|
||
|
MM.op(p[3], p[5]);
|
||
|
MM.op(p[7], p[9]);
|
||
|
MM.op(p[1], p[2]);
|
||
|
MM.op(p[3], p[4]);
|
||
|
MM.op(p[5], p[6]);
|
||
|
MM.op(p[7], p[8]);
|
||
|
MM.op(p[9], p[10]);
|
||
|
MM.op(p[13], p[14]);
|
||
|
MM.op(p[12], p[13]);
|
||
|
MM.op(p[13], p[14]);
|
||
|
MM.op(p[16], p[17]);
|
||
|
MM.op(p[15], p[16]);
|
||
|
MM.op(p[16], p[17]);
|
||
|
MM.op(p[12], p[15]);
|
||
|
MM.op(p[14], p[17]);
|
||
|
MM.op(p[14], p[15]);
|
||
|
MM.op(p[13], p[16]);
|
||
|
MM.op(p[13], p[14]);
|
||
|
MM.op(p[15], p[16]);
|
||
|
MM.op(p[19], p[20]);
|
||
|
MM.op(p[18], p[19]);
|
||
|
MM.op(p[19], p[20]);
|
||
|
MM.op(p[21], p[22]);
|
||
|
MM.op(p[23], p[24]);
|
||
|
MM.op(p[21], p[23]);
|
||
|
MM.op(p[22], p[24]);
|
||
|
MM.op(p[22], p[23]);
|
||
|
MM.op(p[18], p[21]);
|
||
|
MM.op(p[20], p[23]);
|
||
|
MM.op(p[20], p[21]);
|
||
|
MM.op(p[19], p[22]);
|
||
|
MM.op(p[22], p[24]);
|
||
|
MM.op(p[19], p[20]);
|
||
|
MM.op(p[21], p[22]);
|
||
|
MM.op(p[23], p[24]);
|
||
|
MM.op(p[12], p[18]);
|
||
|
MM.op(p[16], p[22]);
|
||
|
MM.op(p[16], p[18]);
|
||
|
MM.op(p[14], p[20]);
|
||
|
MM.op(p[20], p[24]);
|
||
|
MM.op(p[14], p[16]);
|
||
|
MM.op(p[18], p[20]);
|
||
|
MM.op(p[22], p[24]);
|
||
|
MM.op(p[13], p[19]);
|
||
|
MM.op(p[17], p[23]);
|
||
|
MM.op(p[17], p[19]);
|
||
|
MM.op(p[15], p[21]);
|
||
|
MM.op(p[15], p[17]);
|
||
|
MM.op(p[19], p[21]);
|
||
|
MM.op(p[13], p[14]);
|
||
|
MM.op(p[15], p[16]);
|
||
|
MM.op(p[17], p[18]);
|
||
|
MM.op(p[19], p[20]);
|
||
|
MM.op(p[21], p[22]);
|
||
|
MM.op(p[23], p[24]);
|
||
|
MM.op(p[0], p[12]);
|
||
|
MM.op(p[8], p[20]);
|
||
|
MM.op(p[8], p[12]);
|
||
|
MM.op(p[4], p[16]);
|
||
|
MM.op(p[16], p[24]);
|
||
|
MM.op(p[12], p[16]);
|
||
|
MM.op(p[2], p[14]);
|
||
|
MM.op(p[10], p[22]);
|
||
|
MM.op(p[10], p[14]);
|
||
|
MM.op(p[6], p[18]);
|
||
|
MM.op(p[6], p[10]);
|
||
|
MM.op(p[10], p[12]);
|
||
|
MM.op(p[1], p[13]);
|
||
|
MM.op(p[9], p[21]);
|
||
|
MM.op(p[9], p[13]);
|
||
|
MM.op(p[5], p[17]);
|
||
|
MM.op(p[13], p[17]);
|
||
|
MM.op(p[3], p[15]);
|
||
|
MM.op(p[11], p[23]);
|
||
|
MM.op(p[11], p[15]);
|
||
|
MM.op(p[7], p[19]);
|
||
|
MM.op(p[7], p[11]);
|
||
|
MM.op(p[11], p[13]);
|
||
|
MM.op(p[11], p[12]);
|
||
|
MM.store(dst + j, p[12]);
|
||
|
j := j + MM._SIZE
|
||
|
end;
|
||
|
limit := size.width;
|
||
|
end;
|
||
|
dst := dst + dstep;
|
||
|
end;
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
end.
|