Delphi-OpenCV/include/objdetect/objdetect_c.pas

355 lines
14 KiB
ObjectPascal
Raw Normal View History

// --------------------------------- OpenCV license.txt ---------------------------
(* // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage. *)
(* / **************************************************************************************************
// Project Delphi-OpenCV
// **************************************************************************************************
// Contributor:
// laentir Valetov
// email:laex@bk.ru
// **************************************************************************************************
// You may retrieve the latest version of this file at the GitHub,
// located at git://github.com/Laex/Delphi-OpenCV.git
// **************************************************************************************************
// License:
// The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License");
// you may not use this file except in compliance with the License. You may obtain a copy of the
// License at http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF
// ANY KIND, either express or implied. See the License for the specific language governing rights
// and limitations under the License.
//
// Alternatively, the contents of this file may be used under the terms of the
// GNU Lesser General Public License (the "LGPL License"), in which case the
// provisions of the LGPL License are applicable instead of those above.
// If you wish to allow use of your version of this file only under the terms
// of the LGPL License and not to allow others to use your version of this file
// under the MPL, indicate your decision by deleting the provisions above and
// replace them with the notice and other provisions required by the LGPL
// License. If you do not delete the provisions above, a recipient may use
// your version of this file under either the MPL or the LGPL License.
//
// For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html
// **************************************************************************************************
// Warning: Using Delphi XE3 syntax!
// **************************************************************************************************
// The Initial Developer of the Original Code:
// OpenCV: open source computer vision library
// Homepage: http://opencv.org
// Online docs: http://docs.opencv.org
// Q&A forum: http://answers.opencv.org
// Dev zone: http://code.opencv.org
// **************************************************************************************************
// Original file:
// opencv\modules\objdetect\include\opencv2\objdetect_c.h
// ************************************************************************************************* *)
{$IFDEF DEBUG}
{$A8,B-,C+,D+,E-,F-,G+,H+,I+,J-,K-,L+,M-,N+,O-,P+,Q+,R+,S-,T-,U-,V+,W+,X+,Y+,Z1}
{$ELSE}
{$A8,B-,C-,D-,E-,F-,G+,H+,I+,J-,K-,L-,M-,N+,O+,P+,Q-,R-,S-,T-,U-,V+,W-,X+,Y-,Z1}
{$ENDIF}
{$WARN SYMBOL_DEPRECATED OFF}
{$WARN SYMBOL_PLATFORM OFF}
{$WARN UNIT_PLATFORM OFF}
{$WARN UNSAFE_TYPE OFF}
{$WARN UNSAFE_CODE OFF}
{$WARN UNSAFE_CAST OFF}
unit objdetect_c;
interface
Uses core_c, Core.types_c;
/// ****************************************************************************************\
// * Haar-like Object Detection functions *
// \****************************************************************************************/
//
// #define CV_HAAR_MAGIC_VAL 0x42500000
// #define CV_TYPE_NAME_HAAR "opencv-haar-classifier"
//
// #define CV_IS_HAAR_CLASSIFIER( haar ) \
// ((haar) != NULL && \
// (((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
//
// #define CV_HAAR_FEATURE_MAX 3
//
// typedef struct CvHaarFeature
// {
// int tilted;
// struct
// {
// CvRect r;
// float weight;
// } rect[CV_HAAR_FEATURE_MAX];
// } CvHaarFeature;
//
// typedef struct CvHaarClassifier
// {
// int count;
// CvHaarFeature* haar_feature;
// float* threshold;
// int* left;
// int* right;
// float* alpha;
// } CvHaarClassifier;
//
// typedef struct CvHaarStageClassifier
// {
// int count;
// float threshold;
// CvHaarClassifier* classifier;
//
// int next;
// int child;
// int parent;
// } CvHaarStageClassifier;
//
// typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
//
// typedef struct CvHaarClassifierCascade
// {
// int flags;
// int count;
// CvSize orig_window_size;
// CvSize real_window_size;
// double scale;
// CvHaarStageClassifier* stage_classifier;
// CvHidHaarClassifierCascade* hid_cascade;
// } CvHaarClassifierCascade;
//
// typedef struct CvAvgComp
// {
// CvRect rect;
// int neighbors;
// } CvAvgComp;
//
/// * Loads haar classifier cascade from a directory.
// It is obsolete: convert your cascade to xml and use cvLoad instead */
// CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
// const char* directory, CvSize orig_window_size);
//
// CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );
//
// #define CV_HAAR_DO_CANNY_PRUNING 1
// #define CV_HAAR_SCALE_IMAGE 2
// #define CV_HAAR_FIND_BIGGEST_OBJECT 4
// #define CV_HAAR_DO_ROUGH_SEARCH 8
//
// CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
// CvHaarClassifierCascade* cascade, CvMemStorage* storage,
// double scale_factor CV_DEFAULT(1.1),
// int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
// CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)));
//
/// * sets images for haar classifier cascade */
// CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
// const CvArr* sum, const CvArr* sqsum,
// const CvArr* tilted_sum, double scale );
//
/// * runs the cascade on the specified window */
// CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
// CvPoint pt, int start_stage CV_DEFAULT(0));
//
//
/// ****************************************************************************************\
// * Latent SVM Object Detection functions *
// \****************************************************************************************/
// DataType: STRUCT position
/// / Structure describes the position of the filter in the feature pyramid
/// / l - level in the feature pyramid
/// / (x, y) - coordinate in level l
type
pCvLSVMFilterPosition = ^TCvLSVMFilterPosition;
TCvLSVMFilterPosition = packed record
x: Integer;
y: Integer;
l: Integer;
end;
// DataType: STRUCT filterObject
// Description of the filter, which corresponds to the part of the object
// V - ideal (penalty = 0) position of the partial filter
// from the root filter position (V_i in the paper)
// penaltyFunction - vector describes penalty function (d_i in the paper)
// pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2
// FILTER DESCRIPTION
// Rectangular map (sizeX x sizeY),
// every cell stores feature vector (dimension = p)
// H - matrix of feature vectors
// to set and get feature vectors (i,j)
// used formula H[(j * sizeX + i) * p + k], where
// k - component of feature vector in cell (i, j)
// END OF FILTER DESCRIPTION
Type
pCvLSVMFilterObject = ^TCvLSVMFilterObject;
TpCvLSVMFilterObject = array [0 .. 1] of pCvLSVMFilterObject;
ppCvLSVMFilterObject = ^TpCvLSVMFilterObject;
TCvLSVMFilterObject = packed record
V: TCvLSVMFilterPosition;
fineFunction: array [0 .. 3] of single;
sizeX: Integer;
sizeY: Integer;
numFeatures: Integer;
H: pSingle;
end;
// data type: STRUCT CvLatentSvmDetector
// structure contains internal representation of trained Latent SVM detector
// num_filters - total number of filters (root plus part) in model
// num_components - number of components in model
// num_part_filters - array containing number of part filters for each component
// filters - root and part filters for all model components
// b - biases for all model components
// score_threshold - confidence level threshold
Type
pCvLatentSvmDetector = ^TCvLatentSvmDetector;
TCvLatentSvmDetector = packed record
num_filters: Integer;
num_components: Integer;
num_part_filters: pInteger;
filters: ppCvLSVMFilterObject;
b: pSingle;
score_threshold: single;
end;
// data type: STRUCT CvObjectDetection
// structure contains the bounding box and confidence level for detected object
// rect - bounding box for a detected object
// score - confidence level
pCvObjectDetection = ^TCvObjectDetection;
TCvObjectDetection = packed record
rect: TCvRect;
score: single;
end;
/// /////////////// Object Detection using Latent SVM //////////////
// load trained detector from a file
//
// API
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
// INPUT
// filename - path to the file containing the parameters of
// - trained Latent SVM detector
// OUTPUT
// trained Latent SVM detector in internal representation
// CVAPI(CvLatentSvmDetector*) cvLoadLatentSvmDetector(const char* filename);
function cvLoadLatentSvmDetector(const filename: pCVChar): pCvLatentSvmDetector; stdcall;
// release memory allocated for CvLatentSvmDetector structure
//
// API
// void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
// INPUT
// detector - CvLatentSvmDetector structure to be released
// OUTPUT
// CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
procedure cvReleaseLatentSvmDetector(Var detector: pCvLatentSvmDetector); stdcall;
// find rectangular regions in the given image that are likely
// to contain objects and corresponding confidence levels
//
// CvSeq* cvLatentSvmDetectObjects(const IplImage* image,
// CvLatentSvmDetector* detector,
// CvMemStorage* storage,
// float overlap_threshold = 0.5f,
// int numThreads = -1);
// INPUT
// image - image to detect objects in
// detector - Latent SVM detector in internal representation
// storage - memory storage to store the resultant sequence
// of the object candidate rectangles
// overlap_threshold - threshold for the non-maximum suppression algorithm
// = 0.5f [here will be the reference to original paper]
// OUTPUT
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
// CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image,
// CvLatentSvmDetector* detector,
// CvMemStorage* storage,
// float overlap_threshold CV_DEFAULT(0.5f),
// int numThreads CV_DEFAULT(-1));
function cvLatentSvmDetectObjects(image: pIplImage; detector: pCvLatentSvmDetector; storage: pCvMemStorage;
overlap_threshold: single = 0.5; numThreads: Integer = -1): pCvSeq; stdcall;
// #ifdef __cplusplus
// }
//
// CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image,
// CvHaarClassifierCascade* cascade, CvMemStorage* storage,
// std::vector<int>& rejectLevels, std::vector<double>& levelWeightds,
// double scale_factor = 1.1,
// int min_neighbors = 3, int flags = 0,
// CvSize min_size = cvSize(0, 0), CvSize max_size = cvSize(0, 0),
// bool outputRejectLevels = false );
//
// struct CvDataMatrixCode
// {
// char msg[4];
// CvMat* original;
// CvMat* corners;
// };
//
// CV_EXPORTS std::deque<CvDataMatrixCode> cvFindDataMatrix(CvMat *im);
//
// #endif
//
//
// #endif /* __OPENCV_OBJDETECT_C_H__ */
implementation
Uses uLibName;
function cvLatentSvmDetectObjects; external objdetect_dll;
function cvLoadLatentSvmDetector; external objdetect_dll;
procedure cvReleaseLatentSvmDetector; external objdetect_dll;
end.