Delphi-OpenCV/source/ocv.compat.pas

1122 lines
42 KiB
ObjectPascal
Raw Normal View History

(*
**************************************************************************************************
Project Delphi-OpenCV
**************************************************************************************************
Contributor:
Laentir Valetov
email:laex@bk.ru
Mikhail Grigorev
email:sleuthound@gmail.com
**************************************************************************************************
You may retrieve the latest version of this file at the GitHub,
located at git://github.com/Laex/Delphi-OpenCV.git
**************************************************************************************************
License:
The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License");
you may not use this file except in compliance with the License. You may obtain a copy of the
License at http://www.mozilla.org/MPL/
Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF
ANY KIND, either express or implied. See the License for the specific language governing rights
and limitations under the License.
Alternatively, the contents of this file may be used under the terms of the
GNU Lesser General Public License (the "LGPL License"), in which case the
provisions of the LGPL License are applicable instead of those above.
If you wish to allow use of your version of this file only under the terms
of the LGPL License and not to allow others to use your version of this file
under the MPL, indicate your decision by deleting the provisions above and
replace them with the notice and other provisions required by the LGPL
License. If you do not delete the provisions above, a recipient may use
your version of this file under either the MPL or the LGPL License.
For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html
**************************************************************************************************
Warning: Using Delphi XE3 syntax!
**************************************************************************************************
The Initial Developer of the Original Code:
OpenCV: open source computer vision library
Homepage: http://ocv.org
Online docs: http://docs.ocv.org
Q&A forum: http://answers.ocv.org
Dev zone: http://code.ocv.org
**************************************************************************************************
Original file:
opencv\modules\legacy\include\opencv2\legacy\compat.hpp
*************************************************************************************************
*)
unit ocv.compat;
{$I OpenCV.inc}
interface
uses ocv.core.types_c, ocv.imgproc.types_c, ocv.core_c;
type
// typedef int CvMatType;
TCvMatType = Integer;
// typedef int CvDisMaskType;
TCvDisMaskType = Integer;
// typedef CvMat CvMatArray;
TCvMatArray = TCvMat;
// typedef int CvThreshType;
TCvThreshType = Integer;
// typedef int CvAdaptiveThreshMethod;
TCvAdaptiveThreshMethod = Integer;
// typedef int CvCompareMethod;
TCvCompareMethod = Integer;
// typedef int CvFontFace;
TCvFontFace = Integer;
// typedef int CvPolyApproxMethod;
TCvPolyApproxMethod = Integer;
// typedef int CvContoursMatchMethod;
TCvContoursMatchMethod = Integer;
// typedef int CvContourTreesMatchMethod;
TCvContourTreesMatchMethod = Integer;
// typedef int CvCoeffType;
TCvCoeffType = Integer;
// typedef int CvRodriguesType;
TCvRodriguesType = Integer;
// typedef int CvElementShape;
TCvElementShape = Integer;
// typedef int CvMorphOp;
TCvMorphOp = Integer;
// typedef int CvTemplMatchMethod;
TCvTemplMatchMethod = Integer;
// typedef CvPoint2D64f CvPoint2D64d;
TCvPoint2D64d = TCvPoint2D64f;
// typedef CvPoint3D64f CvPoint3D64d;
TCvPoint3D64d = TCvPoint3D64f;
var
// Assigning values tothe constants has been moved to the section of the module initialization
CV_MAT32F: Integer; // = CV_32FC1;
CV_MAT3x1_32F: Integer; // = CV_32FC1;
CV_MAT4x1_32F: Integer; // = CV_32FC1;
CV_MAT3x3_32F: Integer; // = CV_32FC1;
CV_MAT4x4_32F: Integer; // = CV_32FC1;
CV_MAT64D: Integer; // = CV_64FC1;
CV_MAT3x1_64D: Integer; // = CV_64FC1;
CV_MAT4x1_64D: Integer; // = CV_64FC1;
CV_MAT3x3_64D: Integer; // = CV_64FC1;
CV_MAT4x4_64D: Integer; // = CV_64FC1;
const
IPL_GAUSSIAN_5x5 = 7;
type
// typedef CvBox2D CvBox2D32f;
TCvBox2D32f = TCvBox2D;
/// * allocation/deallocation macros */
// #define cvCreateImageData cvCreateData
// #define cvReleaseImageData cvReleaseData
// #define cvSetImageData cvSetData
// #define cvGetImageRawData cvGetRawData
//
// #define cvmAlloc cvCreateData
// #define cvmFree cvReleaseData
// #define cvmAllocArray cvCreateData
// #define cvmFreeArray cvReleaseData
//
// #define cvIntegralImage cvIntegral
// #define cvMatchContours cvMatchShapes
(*
CV_EXPORTS CvMat cvMatArray( int rows, int cols, int type,
int count, void* data CV_DEFAULT(0));
*)
function cvMatArray(rows: Integer; cols: Integer; type_: Integer; count: Integer; data: Pointer = nil): TCvMat; cdecl;
// #define cvUpdateMHIByTime cvUpdateMotionHistory
//
// #define cvAccMask cvAcc
// #define cvSquareAccMask cvSquareAcc
// #define cvMultiplyAccMask cvMultiplyAcc
// #define cvRunningAvgMask(imgY, imgU, mask, alpha) cvRunningAvg(imgY, imgU, alpha, mask)
//
// #define cvSetHistThresh cvSetHistBinRanges
// #define cvCalcHistMask(img, mask, hist, doNotClear) cvCalcHist(img, hist, doNotClear, mask)
(*
CV_EXPORTS double cvMean( const CvArr* image, const CvArr* mask CV_DEFAULT(0));
*)
function cvMean(const image: pCvArr; const mask: pCvArr = nil): double; cdecl;
(*
CV_EXPORTS double cvSumPixels( const CvArr* image );
*)
function cvSumPixels(const image: pCvArr): double; cdecl;
(*
CV_EXPORTS void cvMean_StdDev( const CvArr* image, double* mean, double* sdv,
const CvArr* mask CV_DEFAULT(0));
*)
procedure cvMean_StdDev(const image: pCvArr; mean: PDouble; sdv: PDouble; const mask: pCvArr = nil); cdecl;
(*
CV_EXPORTS void cvmPerspectiveProject( const CvMat* mat, const CvArr* src, CvArr* dst );
*)
procedure cvmPerspectiveProject(const mat: PCvMat; const src: pCvArr; dst: pCvArr); cdecl;
(*
CV_EXPORTS void cvFillImage( CvArr* mat, double color );
*)
procedure cvFillImage(mat: pCvArr; color: double); cdecl;
// #define cvCvtPixToPlane cvSplit
// #define cvCvtPlaneToPix cvMerge
type
// typedef struct CvRandState
// {
// CvRNG state; /* RNG state (the current seed and carry)*/
// int disttype; /* distribution type */
// CvScalar param[2]; /* parameters of RNG */
// } CvRandState;
pCvRandState = ^TCvRandState;
TCvRandState = record
state: TCvRNG; (* RNG state (the current seed and carry) *)
disttype: Integer; (* distribution type *)
param: array [0 .. 1] of TCvScalar; (* parameters of RNG *)
end;
(*
Changes RNG range while preserving RNG state
CV_EXPORTS void cvRandSetRange( CvRandState* state, double param1,
double param2, int index CV_DEFAULT(-1));
*)
procedure cvRandSetRange(state: pCvRandState; param1: double; param2: double; index: Integer = -1); cdecl;
(*
CV_EXPORTS void cvRandInit( CvRandState* state, double param1,
double param2, int seed,
int disttype CV_DEFAULT(CV_RAND_UNI));
*)
procedure cvRandInit(state: pCvRandState; param1: double; param2: double; seed: Integer; disttype: Integer = CV_RAND_UNI); cdecl;
(*
Fills array with random numbers
CV_EXPORTS void cvRand( CvRandState* state, CvArr* arr );
*)
procedure cvRand(state: pCvRandState; arr: pCvArr); cdecl;
// #define cvRandNext( _state ) cvRandInt( &(_state)->state )
// CV_EXPORTS void cvbRand( CvRandState* state, float* dst, int len );
procedure cvbRand(state: pCvRandState; dst: PSingle; len: Integer); cdecl;
// CV_EXPORTS void cvbCartToPolar( const float* y, const float* x, float* magnitude, float* angle, int len );
procedure cvbCartToPolar(const y: PSingle; const x: PSingle; Var magnitude: Single; Var angle: Single; len: Integer); cdecl;
// CV_EXPORTS void cvbFastArctan( const float* y, const float* x, float* angle, int len );
procedure cvbFastArctan(const y: PSingle; const x: PSingle; Var angle: Single; len: Integer); cdecl;
// CV_EXPORTS void cvbSqrt( const float* x, float* y, int len );
procedure cvbSqrt(const x: PSingle; Var y: Single; len: Integer); cdecl;
// CV_EXPORTS void cvbInvSqrt( const float* x, float* y, int len );
procedure cvbInvSqrt(const x: PSingle; Var y: Single; len: Integer); cdecl;
// CV_EXPORTS void cvbReciprocal( const float* x, float* y, int len );
procedure cvbReciprocal(const x: PSingle; var y: Single; len: Integer); cdecl;
// CV_EXPORTS void cvbFastExp( const float* x, double* y, int len );
procedure cvbFastExp(const x: PSingle; Var y: double; len: Integer); cdecl;
// CV_EXPORTS void cvbFastLog( const double* x, float* y, int len );
procedure cvbFastLog(const x: PDouble; Var y: Single; len: Integer); cdecl;
(*
CV_EXPORTS CvRect cvContourBoundingRect( void* point_set, int update CV_DEFAULT(0));
*)
function cvContourBoundingRect(point_set: Pointer; update: Integer = 0): TCvRect; cdecl;
(*
CV_EXPORTS double cvPseudoInverse( const CvArr* src, CvArr* dst );
*)
function cvPseudoInverse(const src: pCvArr; dst: pCvArr): double; cdecl;
// #define cvPseudoInv cvPseudoInverse
// #define cvContourMoments( contour, moments ) cvMoments( contour, moments, 0 )
//
// #define cvGetPtrAt cvPtr2D
// #define cvGetAt cvGet2D
// #define cvSetAt(arr,val,y,x) cvSet2D((arr),(y),(x),(val))
//
// #define cvMeanMask cvMean
// #define cvMean_StdDevMask(img,mask,mean,sdv) cvMean_StdDev(img,mean,sdv,mask)
//
// #define cvNormMask(imgA,imgB,mask,normType) cvNorm(imgA,imgB,normType,mask)
//
// #define cvMinMaxLocMask(img, mask, min_val, max_val, min_loc, max_loc) \
// cvMinMaxLoc(img, min_val, max_val, min_loc, max_loc, mask)
//
// #define cvRemoveMemoryManager CV_NOOP
// #define cvSetMemoryManager CV_NOOP
//
// #define cvmSetZero( mat ) cvSetZero( mat )
// #define cvmSetIdentity( mat ) cvSetIdentity( mat )
// #define cvmAdd( src1, src2, dst ) cvAdd( src1, src2, dst, 0 )
// #define cvmSub( src1, src2, dst ) cvSub( src1, src2, dst, 0 )
// #define cvmCopy( src, dst ) cvCopy( src, dst, 0 )
// #define cvmMul( src1, src2, dst ) cvMatMulAdd( src1, src2, 0, dst )
// #define cvmTranspose( src, dst ) cvT( src, dst )
// #define cvmInvert( src, dst ) cvInv( src, dst )
// #define cvmMahalanobis(vec1, vec2, mat) cvMahalanobis( vec1, vec2, mat )
// #define cvmDotProduct( vec1, vec2 ) cvDotProduct( vec1, vec2 )
// #define cvmCrossProduct(vec1, vec2,dst) cvCrossProduct( vec1, vec2, dst )
// #define cvmTrace( mat ) (cvTrace( mat )).val[0]
// #define cvmMulTransposed( src, dst, order ) cvMulTransposed( src, dst, order )
// #define cvmEigenVV( mat, evec, eval, eps) cvEigenVV( mat, evec, eval, eps )
// #define cvmDet( mat ) cvDet( mat )
// #define cvmScale( src, dst, scale ) cvScale( src, dst, scale )
//
// #define cvCopyImage( src, dst ) cvCopy( src, dst, 0 )
// #define cvReleaseMatHeader cvReleaseMat
(*
Calculates exact convex hull of 2d point set
CV_EXPORTS void cvConvexHull( CvPoint* points, int num_points,
CvRect* bound_rect,
int orientation, int* hull, int* hullsize );
*)
procedure cvConvexHull(points: PCvPoint; num_points: Integer; bound_rect: PCvRect; orientation: Integer; Var hull: Integer;
Var hullsize: Integer); cdecl;
(*
CV_EXPORTS void cvMinAreaRect( CvPoint* points, int n,
int left, int bottom,
int right, int top,
CvPoint2D32f* anchor,
CvPoint2D32f* vect1,
CvPoint2D32f* vect2 );
*)
procedure cvMinAreaRect(points: PCvPoint; n: Integer; left: Integer; bottom: Integer; right: Integer; top: Integer; anchor: PCvPoint2D32f;
vect1: PCvPoint2D32f; vect2: PCvPoint2D32f); cdecl;
Type
TCvDisType = type Integer;
TCvChainApproxMethod = type Integer;
TCvContourRetrievalMode = type Integer;
(*
CV_EXPORTS void cvFitLine3D( CvPoint3D32f* points, int count, int dist,
void *param, float reps, float aeps, float* line );
*)
procedure cvFitLine3D(points: PCvPoint3D32f; count: Integer; dist: Integer; param: Pointer; reps: Single; aeps: Single;
Var line: Single); cdecl;
(*
Fits a line into set of 2d points in a robust way (M-estimator technique)
CV_EXPORTS void cvFitLine2D( CvPoint2D32f* points, int count, int dist,
void *param, float reps, float aeps, float* line );
*)
procedure cvFitLine2D(points: PCvPoint2D32f; count: Integer; dist: Integer; param: Pointer; reps: Single; aeps: Single;
Var line: Single); cdecl;
// CV_EXPORTS void cvFitEllipse( const CvPoint2D32f* points, int count, CvBox2D* box );
procedure cvFitEllipse(const points: PCvPoint2D32f; count: Integer; Var box: TCvBox2D); cdecl;
(*
Projects 2d points to one of standard coordinate planes
(i.e. removes one of coordinates)
CV_EXPORTS void cvProject3D( CvPoint3D32f* points3D, int count,
CvPoint2D32f* points2D,
int xIndx CV_DEFAULT(0),
int yIndx CV_DEFAULT(1));
*)
procedure cvProject3D(points3D: PCvPoint3D32f; count: Integer; points2D: PCvPoint2D32f; xIndx: Integer = 0; yIndx: Integer = 1); cdecl;
(* Retrieves value of the particular bin
of x-dimensional (x=1,2,3,...) histogram
#define cvQueryHistValue_1D( hist, idx0 ) \
((float)cvGetReal1D( (hist)->bins, (idx0)))
#define cvQueryHistValue_2D( hist, idx0, idx1 ) \
((float)cvGetReal2D( (hist)->bins, (idx0), (idx1)))
#define cvQueryHistValue_3D( hist, idx0, idx1, idx2 ) \
((float)cvGetReal3D( (hist)->bins, (idx0), (idx1), (idx2)))
#define cvQueryHistValue_nD( hist, idx ) \
((float)cvGetRealND( (hist)->bins, (idx)))
*)
(* Returns pointer to the particular bin of x-dimesional histogram.
For sparse histogram the bin is created if it didn't exist before
#define cvGetHistValue_1D( hist, idx0 ) \
((float* )cvPtr1D( (hist)->bins, (idx0), 0))
#define cvGetHistValue_2D( hist, idx0, idx1 ) \
((float* )cvPtr2D( (hist)->bins, (idx0), (idx1), 0))
#define cvGetHistValue_3D( hist, idx0, idx1, idx2 ) \
((float* )cvPtr3D( (hist)->bins, (idx0), (idx1), (idx2), 0))
#define cvGetHistValue_nD( hist, idx ) \
((float* )cvPtrND( (hist)->bins, (idx), 0))
*)
// #define CV_IS_SET_ELEM_EXISTS CV_IS_SET_ELEM
(*
CV_EXPORTS int cvHoughLines( CvArr* image, double rho,
double theta, int threshold,
float* lines, int linesNumber );
*)
function cvHoughLines(image: pCvArr; rho: double; theta: double; threshold: Integer; lines: pfloat; linesNumber: Integer): Integer; cdecl;
(*
CV_EXPORTS int cvHoughLinesP( CvArr* image, double rho,
double theta, int threshold,
int lineLength, int lineGap,
int* lines, int linesNumber );
*)
function cvHoughLinesP(image: pCvArr; rho: double; theta: double; threshold: Integer; lineLength: Integer; lineGap: Integer;
lines: pInteger; linesNumber: Integer): Integer; cdecl;
(*
CV_EXPORTS int cvHoughLinesSDiv( CvArr* image, double rho, int srn,
double theta, int stn, int threshold,
float* lines, int linesNumber );
*)
function cvHoughLinesSDiv(image: pCvArr; rho: double; srn: Integer; theta: double; stn: Integer; threshold: Integer; lines: pfloat;
linesNumber: Integer): Integer; cdecl;
(*
CV_EXPORTS float cvCalcEMD( const float* signature1, int size1,
const float* signature2, int size2,
int dims, int dist_type CV_DEFAULT(CV_DIST_L2),
CvDistanceFunction dist_func CV_DEFAULT(0),
float* lower_bound CV_DEFAULT(0),
void* user_param CV_DEFAULT(0));
*)
function cvCalcEMD(const signature1: pfloat; size1: Integer; const signature2: pfloat; size2: Integer; dims: Integer;
dist_type: Integer = CV_DIST_L2; dist_func: TCvDistanceFunction = nil; lower_bound: pfloat = nil; user_param: Pointer = nil)
: float; cdecl;
(*
CV_EXPORTS void cvKMeans( int num_clusters, float** samples,
int num_samples, int vec_size,
CvTermCriteria termcrit, int* cluster_idx );
*)
procedure cvKMeans(num_clusters: Integer; Var samples: PSingle; num_samples: Integer; vec_size: Integer; termcrit: TCvTermCriteria;
Var cluster_idx: Integer); cdecl;
(*
CV_EXPORTS void cvStartScanGraph( CvGraph* graph, CvGraphScanner* scanner,
CvGraphVtx* vtx CV_DEFAULT(NULL),
int mask CV_DEFAULT(CV_GRAPH_ALL_ITEMS));
*)
procedure cvStartScanGraph(graph: PCvGraph; scanner: PCvGraphScanner; vtx: PCvGraphVtx = nil; mask: Integer = CV_GRAPH_ALL_ITEMS); cdecl;
// CV_EXPORTS void cvEndScanGraph( CvGraphScanner* scanner );
procedure cvEndScanGraph(scanner: PCvGraphScanner); cdecl;
(* old drawing functions *)
(*
CV_EXPORTS void cvLineAA( CvArr* img, CvPoint pt1, CvPoint pt2,
double color, int scale CV_DEFAULT(0));
*)
procedure cvLineAA(img: pCvArr; pt1: TCvPoint; pt2: TCvPoint; color: double; scale: Integer = 0); cdecl;
(*
CV_EXPORTS void cvCircleAA( CvArr* img, CvPoint center, int radius,
double color, int scale CV_DEFAULT(0) );
*)
procedure cvCircleAA(img: pCvArr; center: TCvPoint; radius: Integer; color: double; scale: Integer = 0); cdecl;
(*
CV_EXPORTS void cvEllipseAA( CvArr* img, CvPoint center, CvSize axes,
double angle, double start_angle,
double end_angle, double color,
int scale CV_DEFAULT(0) );
*)
procedure cvEllipseAA(img: pCvArr; center: TCvPoint; axes: TCvSize; angle: double; start_angle: double; end_angle: double; color: double;
scale: Integer = 0); cdecl;
(*
CV_EXPORTS void cvPolyLineAA( CvArr* img, CvPoint** pts, int* npts, int contours,
int is_closed, double color, int scale CV_DEFAULT(0) );
*)
procedure cvPolyLineAA(img: pCvArr; Var pts: PCvPoint; Var npts: Integer; contours: Integer; is_closed: Integer; color: double;
scale: Integer = 0); cdecl;
(* ***************************************************************************************\
* Pixel Access Macros *
\*************************************************************************************** *)
Type
// typedef struct _CvPixelPosition8u
// {
// uchar* currline; /* pointer to the start of the current pixel line */
// uchar* topline; /* pointer to the start of the top pixel line */
// uchar* bottomline; /* pointer to the start of the first line */
// /* which is below the image */
// int x; /* current x coordinate ( in pixels ) */
// int width; /* width of the image ( in pixels ) */
// int height; /* height of the image ( in pixels ) */
// int step; /* distance between lines ( in elements of single */
// /* plane ) */
// int step_arr[3]; /* array: ( 0, -step, step ). It is used for */
// /* vertical moving */
// } CvPixelPosition8u;
TCvPixelPosition8u = record
currline: PUChar; (* pointer to the start of the current pixel line *)
topline: PUChar; (* pointer to the start of the top pixel line *)
bottomline: PUChar; (* pointer to the start of the first line *)
(* which is below the image *)
x: Integer; (* current x coordinate ( in pixels ) *)
width: Integer; (* width of the image ( in pixels ) *)
height: Integer; (* height of the image ( in pixels ) *)
step: Integer; (* distance between lines ( in elements of single *)
(* plane ) *)
step_arr: array [0 .. 2] of Integer; (* array: ( 0, -step, step ). It is used for *)
(* vertical moving *)
end;
/// * this structure differs from the above only in data type */
// typedef struct _CvPixelPosition8s
// {
// schar* currline;
// schar* topline;
// schar* bottomline;
// int x;
// int width;
// int height;
// int step;
// int step_arr[3];
// } CvPixelPosition8s;
TCvPixelPosition8s = record
currline: Pschar;
topline: Pschar;
bottomline: Pschar;
x: Integer;
width: Integer;
height: Integer;
step: Integer;
step_arr: array [0 .. 2] of Integer;
end;
/// * this structure differs from the CvPixelPosition8u only in data type */
// typedef struct _CvPixelPosition32f
// {
// float* currline;
// float* topline;
// float* bottomline;
// int x;
// int width;
// int height;
// int step;
// int step_arr[3];
// } CvPixelPosition32f;
TCvPixelPosition32f = record
currline: PSingle;
topline: PSingle;
bottomline: PSingle;
x: Integer;
width: Integer;
height: Integer;
step: Integer;
step_arr: array [0 .. 2] of Integer;
end;
(* Initialize one of the CvPixelPosition structures. *)
(* pos - initialized structure *)
(* origin - pointer to the left-top corner of the ROI *)
(* step - width of the whole image in bytes *)
(* roi - width & height of the ROI *)
(* x, y - initial position *)
// #define CV_INIT_PIXEL_POS(pos, origin, _step, roi, _x, _y, orientation) \
// ( \
// (pos).step = (_step)/sizeof((pos).currline[0]) * (orientation ? -1 : 1), \
// (pos).width = (roi).width, \
// (pos).height = (roi).height, \
// (pos).bottomline = (origin) + (pos).step*(pos).height, \
// (pos).topline = (origin) - (pos).step, \
// (pos).step_arr[0] = 0, \
// (pos).step_arr[1] = -(pos).step, \
// (pos).step_arr[2] = (pos).step, \
// (pos).x = (_x), \
// (pos).currline = (origin) + (pos).step*(_y) )
(* Move to specified point ( absolute shift ) *)
(* pos - position structure *)
(* x, y - coordinates of the new position *)
(* cs - number of the image channels *)
// #define CV_MOVE_TO( pos, _x, _y, cs ) \
// ((pos).currline = (_y) >= 0 && (_y) < (pos).height ? (pos).topline + ((_y)+1)*(pos).step : 0, \
// (pos).x = (_x) >= 0 && (_x) < (pos).width ? (_x) : 0, (pos).currline + (_x) * (cs) )
(* Get current coordinates *)
(* pos - position structure *)
(* x, y - coordinates of the new position *)
(* cs - number of the image channels *)
// #define CV_GET_CURRENT( pos, cs ) ((pos).currline + (pos).x * (cs))
(* Move by one pixel relatively to current position *)
(* pos - position structure *)
(* cs - number of the image channels *)
(* left *)
// #define CV_MOVE_LEFT( pos, cs ) \
// ( --(pos).x >= 0 ? (pos).currline + (pos).x*(cs) : 0 )
(* right *)
// #define CV_MOVE_RIGHT( pos, cs ) \
// ( ++(pos).x < (pos).width ? (pos).currline + (pos).x*(cs) : 0 )
(* up *)
// #define CV_MOVE_UP( pos, cs ) \
// (((pos).currline -= (pos).step) != (pos).topline ? (pos).currline + (pos).x*(cs) : 0 )
(* down *)
// #define CV_MOVE_DOWN( pos, cs ) \
// (((pos).currline += (pos).step) != (pos).bottomline ? (pos).currline + (pos).x*(cs) : 0 )
(* left up *)
// #define CV_MOVE_LU( pos, cs ) ( CV_MOVE_LEFT(pos, cs), CV_MOVE_UP(pos, cs))
(* right up *)
// #define CV_MOVE_RU( pos, cs ) ( CV_MOVE_RIGHT(pos, cs), CV_MOVE_UP(pos, cs))
(* left down *)
// #define CV_MOVE_LD( pos, cs ) ( CV_MOVE_LEFT(pos, cs), CV_MOVE_DOWN(pos, cs))
(* right down *)
// #define CV_MOVE_RD( pos, cs ) ( CV_MOVE_RIGHT(pos, cs), CV_MOVE_DOWN(pos, cs))
(* Move by one pixel relatively to current position with wrapping when the position */
(* achieves image boundary */
(* pos - position structure */
(* cs - number of the image channels */
//
(* left *)
// #define CV_MOVE_LEFT_WRAP( pos, cs ) \
// ((pos).currline + ( --(pos).x >= 0 ? (pos).x : ((pos).x = (pos).width-1))*(cs))
//
(* right *)
// #define CV_MOVE_RIGHT_WRAP( pos, cs ) \
// ((pos).currline + ( ++(pos).x < (pos).width ? (pos).x : ((pos).x = 0))*(cs) )
//
(* up *)
// #define CV_MOVE_UP_WRAP( pos, cs ) \
// ((((pos).currline -= (pos).step) != (pos).topline ? \
// (pos).currline : ((pos).currline = (pos).bottomline - (pos).step)) + (pos).x*(cs) )
//
(* down *)
// #define CV_MOVE_DOWN_WRAP( pos, cs ) \
// ((((pos).currline += (pos).step) != (pos).bottomline ? \
// (pos).currline : ((pos).currline = (pos).topline + (pos).step)) + (pos).x*(cs) )
(* left up *)
// #define CV_MOVE_LU_WRAP( pos, cs ) ( CV_MOVE_LEFT_WRAP(pos, cs), CV_MOVE_UP_WRAP(pos, cs))
(* right up *)
// #define CV_MOVE_RU_WRAP( pos, cs ) ( CV_MOVE_RIGHT_WRAP(pos, cs), CV_MOVE_UP_WRAP(pos, cs))
(* left down *)
// #define CV_MOVE_LD_WRAP( pos, cs ) ( CV_MOVE_LEFT_WRAP(pos, cs), CV_MOVE_DOWN_WRAP(pos, cs))
(* right down *)
// #define CV_MOVE_RD_WRAP( pos, cs ) ( CV_MOVE_RIGHT_WRAP(pos, cs), CV_MOVE_DOWN_WRAP(pos, cs))
(* Numeric constants which used for moving in arbitrary direction *)
// enum
// {
// CV_SHIFT_NONE = 2,
// CV_SHIFT_LEFT = 1,
// CV_SHIFT_RIGHT = 3,
// CV_SHIFT_UP = 6,
// CV_SHIFT_DOWN = 10,
// CV_SHIFT_LU = 5,
// CV_SHIFT_RU = 7,
// CV_SHIFT_LD = 9,
// CV_SHIFT_RD = 11
// };
(* Move by one pixel in specified direction *)
(* pos - position structure *)
(* shift - direction ( it's value must be one of the CV_SHIFT_Ö constants ) *)
(* cs - number of the image channels *)
// #define CV_MOVE_PARAM( pos, shift, cs ) \
// ( (pos).currline += (pos).step_arr[(shift)>>2], (pos).x += ((shift)&3)-2, \
// ((pos).currline != (pos).topline && (pos).currline != (pos).bottomline && \
// (pos).x >= 0 && (pos).x < (pos).width) ? (pos).currline + (pos).x*(cs) : 0 )
(* Move by one pixel in specified direction with wrapping when the *)
(* position achieves image boundary *)
(* pos - position structure *)
(* shift - direction ( it's value must be one of the CV_SHIFT_Ö constants ) *)
(* cs - number of the image channels *)
// #define CV_MOVE_PARAM_WRAP( pos, shift, cs ) \
// ( (pos).currline += (pos).step_arr[(shift)>>2], \
// (pos).currline = ((pos).currline == (pos).topline ? \
// (pos).bottomline - (pos).step : \
// (pos).currline == (pos).bottomline ? \
// (pos).topline + (pos).step : (pos).currline), \
// \
// (pos).x += ((shift)&3)-2, \
// (pos).x = ((pos).x < 0 ? (pos).width-1 : (pos).x >= (pos).width ? 0 : (pos).x), \
// \
// (pos).currline + (pos).x*(cs) )
Type
// typedef float* CvVect32f;
TCvVect32f = PSingle;
// typedef float* CvMatr32f;
TCvMatr32f = PSingle;
// typedef double* CvVect64d;
TCvVect64d = PDouble;
// typedef double* CvMatr64d;
TCvMatr64d = PDouble;
(*
CV_EXPORTS void cvUnDistortOnce( const CvArr* src, CvArr* dst,
const float* intrinsic_matrix,
const float* distortion_coeffs,
int interpolate );
*)
procedure cvUnDistortOnce(const src: pCvArr; dst: pCvArr; const intrinsic_matrix: PSingle; const distortion_coeffs: PSingle;
interpolate: Integer); cdecl;
(*
the two functions below have quite hackerish implementations, use with care
(or, which is better, switch to cvUndistortInitMap and cvRemap instead
CV_EXPORTS void cvUnDistortInit( const CvArr* src,
CvArr* undistortion_map,
const float* A, const float* k,
int interpolate );
CV_EXPORTS void cvUnDistort( const CvArr* src, CvArr* dst,
const CvArr* undistortion_map,
int interpolate );
*)
procedure cvUnDistortInit(const src: pCvArr; undistortion_map: pCvArr; const A: PSingle; const k: PSingle; interpolate: Integer); cdecl;
procedure cvUnDistort(const src: pCvArr; dst: pCvArr; const undistortion_map: pCvArr; interpolate: Integer); cdecl;
(*
Find fundamental matrix
CV_EXPORTS void cvFindFundamentalMatrix( int* points1, int* points2,
int numpoints, int method, float* matrix );
*)
procedure cvFindFundamentalMatrix(Var points1: Integer; Var points2: Integer; numpoints: Integer; method: Integer;
Var matrix: Single); cdecl;
(*
CV_EXPORTS int cvFindChessBoardCornerGuesses( const void* arr, void* thresharr,
CvMemStorage* storage,
CvSize pattern_size, CvPoint2D32f * corners,
int *corner_count );
*)
function cvFindChessBoardCornerGuesses(const arr: Pointer; thresharr: Pointer; storage: pCvMemStorage; pattern_size: TCvSize;
corners: PCvPoint2D32f; corner_count: pInteger): Integer; cdecl;
(*
Calibrates camera using multiple views of calibration pattern
CV_EXPORTS void cvCalibrateCamera( int image_count, int* _point_counts,
CvSize image_size, CvPoint2D32f* _image_points, CvPoint3D32f* _object_points,
float* _distortion_coeffs, float* _camera_matrix, float* _translation_vectors,
float* _rotation_matrices, int flags );
*)
procedure cvCalibrateCamera(image_count: Integer; Var _point_counts: Integer; image_size: TCvSize; _image_points: PCvPoint2D32f;
_object_points: PCvPoint3D32f; _distortion_coeffs: PSingle; _camera_matrix: PSingle; _translation_vectors: PSingle;
_rotation_matrices: PSingle; flags: Integer); cdecl;
(*
CV_EXPORTS void cvCalibrateCamera_64d( int image_count, int* _point_counts,
CvSize image_size, CvPoint2D64f* _image_points, CvPoint3D64f* _object_points,
double* _distortion_coeffs, double* _camera_matrix, double* _translation_vectors,
double* _rotation_matrices, int flags );
*)
procedure cvCalibrateCamera_64d(image_count: Integer; Var _point_counts: Integer; image_size: TCvSize; _image_points: PCvPoint2D64f;
_object_points: PCvPoint3D64f; _distortion_coeffs: PDouble; _camera_matrix: PDouble; _translation_vectors: PDouble;
_rotation_matrices: PDouble; flags: Integer); cdecl;
(*
Find 3d position of object given intrinsic camera parameters,
3d model of the object and projection of the object into view plane
CV_EXPORTS void cvFindExtrinsicCameraParams( int point_count,
CvSize image_size, CvPoint2D32f* _image_points,
CvPoint3D32f* _object_points, float* focal_length,
CvPoint2D32f principal_point, float* _distortion_coeffs,
float* _rotation_vector, float* _translation_vector );
*)
procedure cvFindExtrinsicCameraParams(point_count: Integer; image_size: TCvSize; _image_points: PCvPoint2D32f;
_object_points: PCvPoint3D32f; focal_length: PSingle; principal_point: TCvPoint2D32f; _distortion_coeffs: PSingle;
_rotation_vector: PSingle; _translation_vector: PSingle); cdecl;
(*
Variant of the previous function that takes double-precision parameters
CV_EXPORTS void cvFindExtrinsicCameraParams_64d( int point_count,
CvSize image_size, CvPoint2D64f* _image_points,
CvPoint3D64f* _object_points, double* focal_length,
CvPoint2D64f principal_point, double* _distortion_coeffs,
double* _rotation_vector, double* _translation_vector );
*)
procedure cvFindExtrinsicCameraParams_64d(point_count: Integer; image_size: TCvSize; _image_points: PCvPoint2D64f;
_object_points: PCvPoint3D64f; focal_length: PDouble; principal_point: TCvPoint2D64f; _distortion_coeffs: PDouble;
_rotation_vector: PDouble; _translation_vector: PDouble); cdecl;
const
(* Rodrigues transform *)
CV_RODRIGUES_M2V = 0;
CV_RODRIGUES_V2M = 1;
(*
Converts rotation_matrix matrix to rotation_matrix vector or vice versa
CV_EXPORTS void cvRodrigues( CvMat* rotation_matrix, CvMat* rotation_vector,
CvMat* jacobian, int conv_type );
*)
procedure cvRodrigues(rotation_matrix: PCvMat; rotation_vector: PCvMat; jacobian: PCvMat; conv_type: Integer); cdecl;
(*
Does reprojection of 3d object points to the view plane
CV_EXPORTS void cvProjectPoints( int point_count, CvPoint3D64f* _object_points,
double* _rotation_vector, double* _translation_vector,
double* focal_length, CvPoint2D64f principal_point,
double* _distortion, CvPoint2D64f* _image_points,
double* _deriv_points_rotation_matrix,
double* _deriv_points_translation_vect,
double* _deriv_points_focal,
double* _deriv_points_principal_point,
double* _deriv_points_distortion_coeffs );
*)
procedure cvProjectPoints(point_count: Integer; _object_points: PCvPoint3D64f; _rotation_vector: PDouble; _translation_vector: PDouble;
focal_length: PDouble; principal_point: TCvPoint2D64f; _distortion: PDouble; _image_points: PCvPoint2D64f;
_deriv_points_rotation_matrix: PDouble; _deriv_points_translation_vect: PDouble; _deriv_points_focal: PDouble;
_deriv_points_principal_point: PDouble; _deriv_points_distortion_coeffs: PDouble); cdecl;
(*
Simpler version of the previous function
CV_EXPORTS void cvProjectPointsSimple( int point_count, CvPoint3D64f* _object_points,
double* _rotation_matrix, double* _translation_vector,
double* _camera_matrix, double* _distortion, CvPoint2D64f* _image_points );
*)
procedure cvProjectPointsSimple(point_count: Integer; _object_points: PCvPoint3D64f; _rotation_matrix: PDouble;
_translation_vector: PDouble; _camera_matrix: PDouble; _distortion: PDouble; _image_points: PCvPoint2D64f); cdecl;
// #define cvMake2DPoints cvConvertPointsHomogeneous
// #define cvMake3DPoints cvConvertPointsHomogeneous
//
// #define cvWarpPerspectiveQMatrix cvGetPerspectiveTransform
//
// #define cvConvertPointsHomogenious cvConvertPointsHomogeneous
/// /////////////////////////////////// feature extractors: obsolete API //////////////////////////////////
type
pCvSURFPoint = ^TCvSURFPoint;
TCvSURFPoint = record
pt: TCvPoint2D32f;
laplacian: Integer;
size: Integer;
dir: Single;
hessian: Single;
end;
//
// CV_INLINE CvSURFPoint cvSURFPoint( CvPoint2D32f pt, int laplacian,
// int size, float dir CV_DEFAULT(0),
// float hessian CV_DEFAULT(0))
// {
// CvSURFPoint kp;
//
// kp.pt = pt;
// kp.laplacian = laplacian;
// kp.size = size;
// kp.dir = dir;
// kp.hessian = hessian;
//
// return kp;
// }
type
pCvSURFParams = ^TCvSURFParams;
TCvSURFParams = record
extended: Integer;
upright: Integer;
hessianThreshold: double;
nOctaves: Integer;
nOctaveLayers: Integer;
end;
// CVAPI(CvSURFParams) cvSURFParams( double hessianThreshold, int extended CV_DEFAULT(0) );
function cvSURFParams(hessianThreshold: double; _extended: Integer = 0): TCvSURFParams; cdecl;
(*
If useProvidedKeyPts!=0, keypoints are not detected, but descriptors are computed
at the locations provided in keypoints (a CvSeq of CvSURFPoint).
CVAPI(void) cvExtractSURF( const CvArr* img, const CvArr* mask,
CvSeq** keypoints, CvSeq** descriptors,
CvMemStorage* storage, CvSURFParams params,
int useProvidedKeyPts CV_DEFAULT(0) );
*)
procedure cvExtractSURF(const img: pCvArr; const mask: pCvArr; keypoints: ppCvSeq; descriptors: ppCvSeq; storage: pCvMemStorage;
params: TCvSURFParams; useProvidedKeyPts: Integer = 0); cdecl;
Type
(* Maximal Stable Regions Parameters *)
(* typedef struct CvMSERParams
{
//! delta, in the code, it compares (size_{i}-size_{i-delta})/size_{i-delta}
int delta;
//! prune the area which bigger than maxArea
int maxArea;
//! prune the area which smaller than minArea
int minArea;
//! prune the area have simliar size to its children
float maxVariation;
//! trace back to cut off mser with diversity < min_diversity
float minDiversity;
/////// the next few params for MSER of color image
//! for color image, the evolution steps
int maxEvolution;
//! the area threshold to cause re-initialize
double areaThreshold;
//! ignore too small margin
double minMargin;
//! the aperture size for edge blur
int edgeBlurSize;
} CvMSERParams;
*)
pCvMSERParams = ^TCvMSERParams;
TCvMSERParams = record
// ! delta, in the code, it compares (size_{i}-size_{i-delta})/size_{i-delta}
delta: Integer;
// ! prune the area which bigger than maxArea
maxArea: Integer;
// ! prune the area which smaller than minArea
minArea: Integer;
// ! prune the area have simliar size to its children
maxVariation: Single;
// ! trace back to cut off mser with diversity < min_diversity
minDiversity: Single;
/// //// the next few params for MSER of color image
// ! for color image, the evolution steps
maxEvolution: Integer;
// ! the area threshold to cause re-initialize
areaThreshold: double;
// ! ignore too small margin
minMargin: double;
// ! the aperture size for edge blur
edgeBlurSize: Integer;
end;
(*
CVAPI(CvMSERParams) cvMSERParams( int delta CV_DEFAULT(5), int min_area CV_DEFAULT(60),
int max_area CV_DEFAULT(14400), float max_variation CV_DEFAULT(.25f),
float min_diversity CV_DEFAULT(.2f), int max_evolution CV_DEFAULT(200),
double area_threshold CV_DEFAULT(1.01),
double min_margin CV_DEFAULT(.003),
int edge_blur_size CV_DEFAULT(5) );
*)
function cvMSERParams(delta: Integer = 5; min_area: Integer = 60; max_area: Integer = 14400; max_variation: float = 0.25;
min_diversity: float = 0.2; max_evolution: Integer = 200; area_threshold: double = 1.01; min_margin: double = 0.003;
edge_blur_size: Integer = 5): TCvMSERParams; cdecl;
(*
Extracts the contours of Maximally Stable Extremal Regions
CVAPI(void) cvExtractMSER( CvArr* _img, CvArr* _mask, CvSeq** contours, CvMemStorage* storage, CvMSERParams params );
*)
procedure cvExtractMSER(_img: pCvArr; _mask: pCvArr; Var contours: PCvSeq; storage: pCvMemStorage; params: TCvMSERParams); cdecl;
Type
(*
typedef struct CvStarKeypoint
{
CvPoint pt;
int size;
float response;
} CvStarKeypoint;
*)
TCvStarKeypoint = record
pt: TCvPoint;
size: Integer;
response: Single;
end;
(*
CV_INLINE CvStarKeypoint cvStarKeypoint(CvPoint pt, int size, float response)
{
CvStarKeypoint kpt;
kpt.pt = pt;
kpt.size = size;
kpt.response = response;
return kpt;
}
*)
(* typedef struct CvStarDetectorParams
{
int maxSize;
int responseThreshold;
int lineThresholdProjected;
int lineThresholdBinarized;
int suppressNonmaxSize;
} CvStarDetectorParams;
*)
pCvStarDetectorParams = ^TCvStarDetectorParams;
TCvStarDetectorParams = record
maxSize: Integer;
responseThreshold: Integer;
lineThresholdProjected: Integer;
lineThresholdBinarized: Integer;
suppressNonmaxSize: Integer;
end;
(*
// CV_INLINE CvStarDetectorParams cvStarDetectorParams(
// int maxSize CV_DEFAULT(45),
// int responseThreshold CV_DEFAULT(30),
// int lineThresholdProjected CV_DEFAULT(10),
// int lineThresholdBinarized CV_DEFAULT(8),
// int suppressNonmaxSize CV_DEFAULT(5))
// {
// CvStarDetectorParams params;
// params.maxSize = maxSize;
// params.responseThreshold = responseThreshold;
// params.lineThresholdProjected = lineThresholdProjected;
// params.lineThresholdBinarized = lineThresholdBinarized;
// params.suppressNonmaxSize = suppressNonmaxSize;
//
// return params;
// }
*)
function cvStarDetectorParams(maxSize: Integer = 45; responseThreshold: Integer = 30; lineThresholdProjected: Integer = 10;
lineThresholdBinarized: Integer = 8; suppressNonmaxSize: Integer = 5): TCvStarDetectorParams; inline;
(*
CVAPI(CvSeq* ) cvGetStarKeypoints( const CvArr* img, CvMemStorage* storage,
CvStarDetectorParams params CV_DEFAULT(cvStarDetectorParams()));
*)
function cvGetStarKeypoints(const img: pCvArr; storage: pCvMemStorage;
params: TCvStarDetectorParams { = CV_DEFAULT(cvStarDetectorParams()) } ): PCvSeq; cdecl;
implementation
uses ocv.lib;
const
libname = legacy_lib;
// function cvSURFParams; external legacy_lib;
// procedure cvExtractSURF; external legacy_lib;
function cvMatArray; external libname;
function cvMean; external libname;
function cvSumPixels; external libname;
procedure cvMean_StdDev; external libname;
procedure cvmPerspectiveProject; external libname;
procedure cvFillImage; external libname;
procedure cvRandSetRange; external libname;
procedure cvRandInit; external libname;
procedure cvRand; external libname;
procedure cvbRand; external libname;
procedure cvbCartToPolar; external libname;
procedure cvbFastArctan; external libname;
procedure cvbSqrt; external libname;
procedure cvbInvSqrt; external libname;
procedure cvbReciprocal; external libname;
procedure cvbFastExp; external libname;
procedure cvbFastLog; external libname;
function cvContourBoundingRect; external libname;
function cvPseudoInverse; external libname;
procedure cvConvexHull; external libname;
procedure cvMinAreaRect; external libname;
procedure cvFitLine3D; external libname;
procedure cvFitLine2D; external libname;
procedure cvFitEllipse; external libname;
procedure cvProject3D; external libname;
function cvHoughLines; external libname;
function cvHoughLinesP; external libname;
function cvHoughLinesSDiv; external libname;
function cvCalcEMD; external libname;
procedure cvKMeans; external libname;
procedure cvStartScanGraph; external libname;
procedure cvEndScanGraph; external libname;
procedure cvLineAA; external libname;
procedure cvCircleAA; external libname;
procedure cvEllipseAA; external libname;
procedure cvPolyLineAA; external libname;
procedure cvUnDistortOnce; external libname;
procedure cvUnDistortInit; external libname;
procedure cvUnDistort; external libname;
procedure cvFindFundamentalMatrix; external libname;
function cvFindChessBoardCornerGuesses; external libname;
procedure cvCalibrateCamera; external libname;
procedure cvCalibrateCamera_64d; external libname;
procedure cvFindExtrinsicCameraParams; external libname;
procedure cvFindExtrinsicCameraParams_64d; external libname;
procedure cvRodrigues; external libname;
procedure cvProjectPoints; external libname;
procedure cvProjectPointsSimple; external libname;
function cvSURFParams; external libname;
procedure cvExtractSURF; external libname;
function cvMSERParams; external libname;
procedure cvExtractMSER; external libname;
function cvGetStarKeypoints; external libname;
function cvStarDetectorParams(maxSize: Integer = 45; responseThreshold: Integer = 30; lineThresholdProjected: Integer = 10;
lineThresholdBinarized: Integer = 8; suppressNonmaxSize: Integer = 5): TCvStarDetectorParams; inline;
begin
Result.maxSize := maxSize;
Result.responseThreshold := responseThreshold;
Result.lineThresholdProjected := lineThresholdProjected;
Result.lineThresholdBinarized := lineThresholdBinarized;
Result.suppressNonmaxSize := suppressNonmaxSize;
end;
initialization
CV_MAT32F := CV_32FC1;
CV_MAT3x1_32F := CV_32FC1;
CV_MAT4x1_32F := CV_32FC1;
CV_MAT3x3_32F := CV_32FC1;
CV_MAT4x4_32F := CV_32FC1;
CV_MAT64D := CV_64FC1;
CV_MAT3x1_64D := CV_64FC1;
CV_MAT4x1_64D := CV_64FC1;
CV_MAT3x3_64D := CV_64FC1;
CV_MAT4x4_64D := CV_64FC1;
finalization
end.