Delphi-OpenCV/samples/opencv_classes/CvKNearest/cls2DPointClassification.dpr

148 lines
4.6 KiB
ObjectPascal
Raw Normal View History

// *****************************************************************
// Delphi-OpenCV Class Demo
// Copyright (C) 2013 Project Delphi-OpenCV
// ****************************************************************
// Contributor:
// Laentir Valetov
// email:laex@bk.ru
// ****************************************************************
// You may retrieve the latest version of this file at the GitHub,
// located at git://github.com/Laex/Delphi-OpenCV.git
// ****************************************************************
// The contents of this file are used with permission, subject to
// the Mozilla Public License Version 1.1 (the "License"); you may
// not use this file except in compliance with the License. You may
// obtain a copy of the License at
// http://www.mozilla.org/MPL/MPL-1_1Final.html
//
// Software distributed under the License is distributed on an
// "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
// implied. See the License for the specific language governing
// rights and limitations under the License.
// *******************************************************************
// Original:
// http://docs.ocv.org/modules/ml/doc/k_nearest_neighbors.html#cvknearest-is-regression
// *******************************************************************
program cls2DPointClassification;
{$APPTYPE CONSOLE}
{$POINTERMATH ON}
{$R *.res}
uses
System.SysUtils,
System.Classes,
ocv.Core.types_c,
ocv.core_c,
ocv.highgui_c,
ocv.ml;
Const
K10: Integer = 10;
Var
i, j, K, accuracy: Integer;
response: float;
train_sample_count: Integer = 100;
rng_state: TCvRNG;
trainData: pCvMat;
trainClasses: pCvMat;
img: pIplImage;
_sample: array [0 .. 1] of float;
sample: TCvMat;
trainData1, //
trainData2, //
trainClasses1, //
trainClasses2: TCvMat;
knn: TCvKNearest;
nearests: pCvMat;
t: TCvScalar;
pt: TCvPoint;
begin
try
rng_state := CvRNG(-1);
trainData := cvCreateMat(train_sample_count, 2, CV_32FC1);
trainClasses := cvCreateMat(train_sample_count, 1, CV_32FC1);
img := cvCreateImage(cvSize(500, 500), 8, 3);
sample := CvMat(1, 2, CV_32FC1, @_sample);
cvZero(img);
// form the training samples
cvGetRows(trainData, @trainData1, 0, train_sample_count div 2);
cvRandArr(@rng_state, @trainData1, CV_RAND_NORMAL, cvScalar(200, 200), cvScalar(50, 50));
cvGetRows(trainData, @trainData2, train_sample_count div 2, train_sample_count);
cvRandArr(@rng_state, @trainData2, CV_RAND_NORMAL, cvScalar(300, 300), cvScalar(50, 50));
cvGetRows(trainClasses, @trainClasses1, 0, train_sample_count div 2);
cvSet(@trainClasses1, cvScalar(1));
cvGetRows(trainClasses, @trainClasses2, train_sample_count div 2, train_sample_count);
cvSet(@trainClasses2, cvScalar(2));
// learn classifier
knn := CreateCvKNearest(trainData, trainClasses, nil, false, K10);
nearests := cvCreateMat(1, K10, CV_32FC1);
for i := 0 to img^.height - 1 do
begin
for j := 0 to img^.width - 1 do
begin
pFloat(sample.data)[0] := j;
pFloat(sample.data)[1] := i;
// estimate the response and get the neighbors' labels
response := knn.find_nearest(@sample, K10, nil, nil, nearests, nil);
// compute the number of neighbors representing the majority
accuracy := 0;
for K := 0 to K10 - 1 do
begin
if (pFloat(nearests^.data)[K] = response) then
Inc(accuracy);
end;
// highlight the pixel depending on the accuracy (or confidence)
if response = 1 then
begin
if accuracy > 5 then
t := CV_RGB(180, 0, 0)
else
CV_RGB(180, 120, 0);
end
else
begin
if accuracy > 5 then
t := CV_RGB(0, 180, 0)
else
CV_RGB(120, 120, 0);
end;
cvSet2D(img, i, j, t);
end;
end;
ReleaseCvKNearest(knn);
// display the original training samples
for i := 0 to (train_sample_count div 2) - 1 do
begin
pt.x := cvRound(pFloat(trainData1.data)[i * 2]);
pt.y := cvRound(pFloat(trainData1.data)[i * 2 + 1]);
cvCircle(img, pt, 2, CV_RGB(255, 0, 0), CV_FILLED);
pt.x := cvRound(pFloat(trainData2.data)[i * 2]);
pt.y := cvRound(pFloat(trainData2.data)[i * 2 + 1]);
cvCircle(img, pt, 2, CV_RGB(0, 255, 0), CV_FILLED);
end;
cvNamedWindow('classifier result', 1);
cvShowImage('classifier result', img);
cvWaitKey(0);
cvReleaseMat(trainClasses);
cvReleaseMat(trainData);
except
on E: Exception do
WriteLn(E.ClassName, ': ', E.Message);
end;
end.