// --------------------------------- OpenCV license.txt --------------------------- (* // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. *) (* / ************************************************************************************************** // Project Delphi-OpenCV // ************************************************************************************************** // Contributor: // laentir Valetov // email:laex@bk.ru // ************************************************************************************************** // You may retrieve the latest version of this file at the GitHub, // located at git://github.com/Laex/Delphi-OpenCV.git // ************************************************************************************************** // License: // The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License"); // you may not use this file except in compliance with the License. You may obtain a copy of the // License at http://www.mozilla.org/MPL/ // // Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF // ANY KIND, either express or implied. See the License for the specific language governing rights // and limitations under the License. // // Alternatively, the contents of this file may be used under the terms of the // GNU Lesser General Public License (the "LGPL License"), in which case the // provisions of the LGPL License are applicable instead of those above. // If you wish to allow use of your version of this file only under the terms // of the LGPL License and not to allow others to use your version of this file // under the MPL, indicate your decision by deleting the provisions above and // replace them with the notice and other provisions required by the LGPL // License. If you do not delete the provisions above, a recipient may use // your version of this file under either the MPL or the LGPL License. // // For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html // ************************************************************************************************** // Warning: Using Delphi XE3 syntax! // ************************************************************************************************** // The Initial Developer of the Original Code: // OpenCV: open source computer vision library // Homepage: http://opencv.org // Online docs: http://docs.opencv.org // Q&A forum: http://answers.opencv.org // Dev zone: http://code.opencv.org // ************************************************************************************************** // Original file: // opencv\modules\legacy\include\opencv2\legacy.hpp // ************************************************************************************************* *) {$IFDEF DEBUG} {$A8,B-,C+,D+,E-,F-,G+,H+,I+,J-,K-,L+,M-,N+,O-,P+,Q+,R+,S-,T-,U-,V+,W+,X+,Y+,Z1} {$ELSE} {$A8,B-,C-,D-,E-,F-,G+,H+,I+,J-,K-,L-,M-,N+,O+,P+,Q-,R-,S-,T-,U-,V+,W-,X+,Y-,Z1} {$ENDIF} {$WARN SYMBOL_DEPRECATED OFF} {$WARN SYMBOL_PLATFORM OFF} {$WARN UNIT_PLATFORM OFF} {$WARN UNSAFE_TYPE OFF} {$WARN UNSAFE_CODE OFF} {$WARN UNSAFE_CAST OFF} {$POINTERMATH ON} unit legacy; interface Uses Windows, Core.types_c, imgproc.types_c; // CVAPI(CvSeq*) cvSegmentImage( const CvArr* srcarr, CvArr* dstarr, // double canny_threshold, // double ffill_threshold, // CvMemStorage* storage ); // /// ****************************************************************************************\ // * Eigen objects * // \****************************************************************************************/ // // typedef int (CV_CDECL * CvCallback)(int index, void* buffer, void* user_data); // typedef union // { // CvCallback callback; // void* data; // } // CvInput; // // #define CV_EIGOBJ_NO_CALLBACK 0 // #define CV_EIGOBJ_INPUT_CALLBACK 1 // #define CV_EIGOBJ_OUTPUT_CALLBACK 2 // #define CV_EIGOBJ_BOTH_CALLBACK 3 // /// * Calculates covariation matrix of a set of arrays */ // CVAPI(void) cvCalcCovarMatrixEx( int nObjects, void* input, int ioFlags, // int ioBufSize, uchar* buffer, void* userData, // IplImage* avg, float* covarMatrix ); // /// * Calculates eigen values and vectors of covariation matrix of a set of // arrays */ // CVAPI(void) cvCalcEigenObjects( int nObjects, void* input, void* output, // int ioFlags, int ioBufSize, void* userData, // CvTermCriteria* calcLimit, IplImage* avg, // float* eigVals ); // /// * Calculates dot product (obj - avg) * eigObj (i.e. projects image to eigen vector) */ // CVAPI(double) cvCalcDecompCoeff( IplImage* obj, IplImage* eigObj, IplImage* avg ); // /// * Projects image to eigen space (finds all decomposion coefficients */ // CVAPI(void) cvEigenDecomposite( IplImage* obj, int nEigObjs, void* eigInput, // int ioFlags, void* userData, IplImage* avg, // float* coeffs ); // /// * Projects original objects used to calculate eigen space basis to that space */ // CVAPI(void) cvEigenProjection( void* eigInput, int nEigObjs, int ioFlags, // void* userData, float* coeffs, IplImage* avg, // IplImage* proj ); // /// ****************************************************************************************\ // * 1D/2D HMM * // \****************************************************************************************/ // // typedef struct CvImgObsInfo // { // int obs_x; // int obs_y; // int obs_size; // float* obs;//consequtive observations // // int* state;/* arr of pairs superstate/state to which observation belong */ // int* mix; /* number of mixture to which observation belong */ // // } CvImgObsInfo;/*struct for 1 image*/ // // typedef CvImgObsInfo Cv1DObsInfo; // // typedef struct CvEHMMState // { // int num_mix; /*number of mixtures in this state*/ // float* mu; /*mean vectors corresponding to each mixture*/ // float* inv_var; /* square root of inversed variances corresp. to each mixture*/ // float* log_var_val; /* sum of 0.5 (LN2PI + ln(variance[i]) ) for i=1,n */ // float* weight; /*array of mixture weights. Summ of all weights in state is 1. */ // // } CvEHMMState; // // typedef struct CvEHMM // { // int level; /* 0 - lowest(i.e its states are real states), ..... */ // int num_states; /* number of HMM states */ // float* transP;/*transition probab. matrices for states */ // float** obsProb; /* if level == 0 - array of brob matrices corresponding to hmm // if level == 1 - martix of matrices */ // union // { // CvEHMMState* state; /* if level == 0 points to real states array, // if not - points to embedded hmms */ // struct CvEHMM* ehmm; /* pointer to an embedded model or NULL, if it is a leaf */ // } u; // // } CvEHMM; // /// *CVAPI(int) icvCreate1DHMM( CvEHMM** this_hmm, // int state_number, int* num_mix, int obs_size ); // // CVAPI(int) icvRelease1DHMM( CvEHMM** phmm ); // // CVAPI(int) icvUniform1DSegm( Cv1DObsInfo* obs_info, CvEHMM* hmm ); // // CVAPI(int) icvInit1DMixSegm( Cv1DObsInfo** obs_info_array, int num_img, CvEHMM* hmm); // // CVAPI(int) icvEstimate1DHMMStateParams( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm); // // CVAPI(int) icvEstimate1DObsProb( CvImgObsInfo* obs_info, CvEHMM* hmm ); // // CVAPI(int) icvEstimate1DTransProb( Cv1DObsInfo** obs_info_array, // int num_seq, // CvEHMM* hmm ); // // CVAPI(float) icvViterbi( Cv1DObsInfo* obs_info, CvEHMM* hmm); // // CVAPI(int) icv1DMixSegmL2( CvImgObsInfo** obs_info_array, int num_img, CvEHMM* hmm );*/ // /// *********************************** Embedded HMMs *************************************/ // /// * Creates 2D HMM */ // CVAPI(CvEHMM*) cvCreate2DHMM( int* stateNumber, int* numMix, int obsSize ); // /// * Releases HMM */ // CVAPI(void) cvRelease2DHMM( CvEHMM** hmm ); // // #define CV_COUNT_OBS(roi, win, delta, numObs ) \ // { \ // (numObs)->width =((roi)->width -(win)->width +(delta)->width)/(delta)->width; \ // (numObs)->height =((roi)->height -(win)->height +(delta)->height)/(delta)->height;\ // } // /// * Creates storage for observation vectors */ // CVAPI(CvImgObsInfo*) cvCreateObsInfo( CvSize numObs, int obsSize ); // /// * Releases storage for observation vectors */ // CVAPI(void) cvReleaseObsInfo( CvImgObsInfo** obs_info ); // // /// * The function takes an image on input and and returns the sequnce of observations // to be used with an embedded HMM; Each observation is top-left block of DCT // coefficient matrix */ // CVAPI(void) cvImgToObs_DCT( const CvArr* arr, float* obs, CvSize dctSize, // CvSize obsSize, CvSize delta ); // // /// * Uniformly segments all observation vectors extracted from image */ // CVAPI(void) cvUniformImgSegm( CvImgObsInfo* obs_info, CvEHMM* ehmm ); // /// * Does mixture segmentation of the states of embedded HMM */ // CVAPI(void) cvInitMixSegm( CvImgObsInfo** obs_info_array, // int num_img, CvEHMM* hmm ); // /// * Function calculates means, variances, weights of every Gaussian mixture // of every low-level state of embedded HMM */ // CVAPI(void) cvEstimateHMMStateParams( CvImgObsInfo** obs_info_array, // int num_img, CvEHMM* hmm ); // /// * Function computes transition probability matrices of embedded HMM // given observations segmentation */ // CVAPI(void) cvEstimateTransProb( CvImgObsInfo** obs_info_array, // int num_img, CvEHMM* hmm ); // /// * Function computes probabilities of appearing observations at any state // (i.e. computes P(obs|state) for every pair(obs,state)) */ // CVAPI(void) cvEstimateObsProb( CvImgObsInfo* obs_info, // CvEHMM* hmm ); // /// * Runs Viterbi algorithm for embedded HMM */ // CVAPI(float) cvEViterbi( CvImgObsInfo* obs_info, CvEHMM* hmm ); // // /// * Function clusters observation vectors from several images // given observations segmentation. // Euclidean distance used for clustering vectors. // Centers of clusters are given means of every mixture */ // CVAPI(void) cvMixSegmL2( CvImgObsInfo** obs_info_array, // int num_img, CvEHMM* hmm ); // /// ****************************************************************************************\ // * A few functions from old stereo gesture recognition demosions * // \****************************************************************************************/ // /// * Creates hand mask image given several points on the hand */ // CVAPI(void) cvCreateHandMask( CvSeq* hand_points, // IplImage *img_mask, CvRect *roi); // /// * Finds hand region in range image data */ // CVAPI(void) cvFindHandRegion (CvPoint3D32f* points, int count, // CvSeq* indexs, // float* line, CvSize2D32f size, int flag, // CvPoint3D32f* center, // CvMemStorage* storage, CvSeq **numbers); // /// * Finds hand region in range image data (advanced version) */ // CVAPI(void) cvFindHandRegionA( CvPoint3D32f* points, int count, // CvSeq* indexs, // float* line, CvSize2D32f size, int jc, // CvPoint3D32f* center, // CvMemStorage* storage, CvSeq **numbers); // /// * Calculates the cooficients of the homography matrix */ // CVAPI(void) cvCalcImageHomography( float* line, CvPoint3D32f* center, // float* intrinsic, float* homography ); // /// ****************************************************************************************\ // * More operations on sequences * // \****************************************************************************************/ // /// *****************************************************************************************/ // // #define CV_CURRENT_INT( reader ) (*((int *)(reader).ptr)) // #define CV_PREV_INT( reader ) (*((int *)(reader).prev_elem)) // // #define CV_GRAPH_WEIGHTED_VERTEX_FIELDS() CV_GRAPH_VERTEX_FIELDS()\ // float weight; // // #define CV_GRAPH_WEIGHTED_EDGE_FIELDS() CV_GRAPH_EDGE_FIELDS() // // typedef struct CvGraphWeightedVtx // { // CV_GRAPH_WEIGHTED_VERTEX_FIELDS() // } CvGraphWeightedVtx; // // typedef struct CvGraphWeightedEdge // { // CV_GRAPH_WEIGHTED_EDGE_FIELDS() // } CvGraphWeightedEdge; // // typedef enum CvGraphWeightType // { // CV_NOT_WEIGHTED, // CV_WEIGHTED_VTX, // CV_WEIGHTED_EDGE, // CV_WEIGHTED_ALL // } CvGraphWeightType; // // /// * Calculates histogram of a contour */ // CVAPI(void) cvCalcPGH( const CvSeq* contour, CvHistogram* hist ); // // #define CV_DOMINANT_IPAN 1 // /// * Finds high-curvature points of the contour */ // CVAPI(CvSeq*) cvFindDominantPoints( CvSeq* contour, CvMemStorage* storage, // int method CV_DEFAULT(CV_DOMINANT_IPAN), // double parameter1 CV_DEFAULT(0), // double parameter2 CV_DEFAULT(0), // double parameter3 CV_DEFAULT(0), // double parameter4 CV_DEFAULT(0)); // /// *****************************************************************************************/ // // /// *******************************Stereo correspondence*************************************/ // // typedef struct CvCliqueFinder // { // CvGraph* graph; // int** adj_matr; // int N; //graph size // // // stacks, counters etc/ // int k; //stack size // int* current_comp; // int** All; // // int* ne; // int* ce; // int* fixp; //node with minimal disconnections // int* nod; // int* s; //for selected candidate // int status; // int best_score; // int weighted; // int weighted_edges; // float best_weight; // float* edge_weights; // float* vertex_weights; // float* cur_weight; // float* cand_weight; // // } CvCliqueFinder; // // #define CLIQUE_TIME_OFF 2 // #define CLIQUE_FOUND 1 // #define CLIQUE_END 0 // /// *CVAPI(void) cvStartFindCliques( CvGraph* graph, CvCliqueFinder* finder, int reverse, // int weighted CV_DEFAULT(0), int weighted_edges CV_DEFAULT(0)); // CVAPI(int) cvFindNextMaximalClique( CvCliqueFinder* finder, int* clock_rest CV_DEFAULT(0) ); // CVAPI(void) cvEndFindCliques( CvCliqueFinder* finder ); // // CVAPI(void) cvBronKerbosch( CvGraph* graph );*/ // // /// *F/////////////////////////////////////////////////////////////////////////////////////// /// / /// / Name: cvSubgraphWeight /// / Purpose: finds weight of subgraph in a graph /// / Context: /// / Parameters: /// / graph - input graph. /// / subgraph - sequence of pairwise different ints. These are indices of vertices of subgraph. /// / weight_type - describes the way we measure weight. /// / one of the following: /// / CV_NOT_WEIGHTED - weight of a clique is simply its size /// / CV_WEIGHTED_VTX - weight of a clique is the sum of weights of its vertices /// / CV_WEIGHTED_EDGE - the same but edges /// / CV_WEIGHTED_ALL - the same but both edges and vertices /// / weight_vtx - optional vector of floats, with size = graph->total. /// / If weight_type is either CV_WEIGHTED_VTX or CV_WEIGHTED_ALL /// / weights of vertices must be provided. If weight_vtx not zero /// / these weights considered to be here, otherwise function assumes /// / that vertices of graph are inherited from CvGraphWeightedVtx. /// / weight_edge - optional matrix of floats, of width and height = graph->total. /// / If weight_type is either CV_WEIGHTED_EDGE or CV_WEIGHTED_ALL /// / weights of edges ought to be supplied. If weight_edge is not zero /// / function finds them here, otherwise function expects /// / edges of graph to be inherited from CvGraphWeightedEdge. /// / If this parameter is not zero structure of the graph is determined from matrix /// / rather than from CvGraphEdge's. In particular, elements corresponding to /// / absent edges should be zero. /// / Returns: /// / weight of subgraph. /// / Notes: /// /F*/ /// *CVAPI(float) cvSubgraphWeight( CvGraph *graph, CvSeq *subgraph, // CvGraphWeightType weight_type CV_DEFAULT(CV_NOT_WEIGHTED), // CvVect32f weight_vtx CV_DEFAULT(0), // CvMatr32f weight_edge CV_DEFAULT(0) );*/ // // /// *F/////////////////////////////////////////////////////////////////////////////////////// /// / /// / Name: cvFindCliqueEx /// / Purpose: tries to find clique with maximum possible weight in a graph /// / Context: /// / Parameters: /// / graph - input graph. /// / storage - memory storage to be used by the result. /// / is_complementary - optional flag showing whether function should seek for clique /// / in complementary graph. /// / weight_type - describes our notion about weight. /// / one of the following: /// / CV_NOT_WEIGHTED - weight of a clique is simply its size /// / CV_WEIGHTED_VTX - weight of a clique is the sum of weights of its vertices /// / CV_WEIGHTED_EDGE - the same but edges /// / CV_WEIGHTED_ALL - the same but both edges and vertices /// / weight_vtx - optional vector of floats, with size = graph->total. /// / If weight_type is either CV_WEIGHTED_VTX or CV_WEIGHTED_ALL /// / weights of vertices must be provided. If weight_vtx not zero /// / these weights considered to be here, otherwise function assumes /// / that vertices of graph are inherited from CvGraphWeightedVtx. /// / weight_edge - optional matrix of floats, of width and height = graph->total. /// / If weight_type is either CV_WEIGHTED_EDGE or CV_WEIGHTED_ALL /// / weights of edges ought to be supplied. If weight_edge is not zero /// / function finds them here, otherwise function expects /// / edges of graph to be inherited from CvGraphWeightedEdge. /// / Note that in case of CV_WEIGHTED_EDGE or CV_WEIGHTED_ALL /// / nonzero is_complementary implies nonzero weight_edge. /// / start_clique - optional sequence of pairwise different ints. They are indices of /// / vertices that shall be present in the output clique. /// / subgraph_of_ban - optional sequence of (maybe equal) ints. They are indices of /// / vertices that shall not be present in the output clique. /// / clique_weight_ptr - optional output parameter. Weight of found clique stored here. /// / num_generations - optional number of generations in evolutionary part of algorithm, /// / zero forces to return first found clique. /// / quality - optional parameter determining degree of required quality/speed tradeoff. /// / Must be in the range from 0 to 9. /// / 0 is fast and dirty, 9 is slow but hopefully yields good clique. /// / Returns: /// / sequence of pairwise different ints. /// / These are indices of vertices that form found clique. /// / Notes: /// / in cases of CV_WEIGHTED_EDGE and CV_WEIGHTED_ALL weights should be nonnegative. /// / start_clique has a priority over subgraph_of_ban. /// /F*/ /// *CVAPI(CvSeq*) cvFindCliqueEx( CvGraph *graph, CvMemStorage *storage, // int is_complementary CV_DEFAULT(0), // CvGraphWeightType weight_type CV_DEFAULT(CV_NOT_WEIGHTED), // CvVect32f weight_vtx CV_DEFAULT(0), // CvMatr32f weight_edge CV_DEFAULT(0), // CvSeq *start_clique CV_DEFAULT(0), // CvSeq *subgraph_of_ban CV_DEFAULT(0), // float *clique_weight_ptr CV_DEFAULT(0), // int num_generations CV_DEFAULT(3), // int quality CV_DEFAULT(2) );*/ // // // #define CV_UNDEF_SC_PARAM 12345 //default value of parameters // // #define CV_IDP_BIRCHFIELD_PARAM1 25 // #define CV_IDP_BIRCHFIELD_PARAM2 5 // #define CV_IDP_BIRCHFIELD_PARAM3 12 // #define CV_IDP_BIRCHFIELD_PARAM4 15 // #define CV_IDP_BIRCHFIELD_PARAM5 25 // // // #define CV_DISPARITY_BIRCHFIELD 0 // // /// *F/////////////////////////////////////////////////////////////////////////// /// / /// / Name: cvFindStereoCorrespondence /// / Purpose: find stereo correspondence on stereo-pair /// / Context: /// / Parameters: /// / leftImage - left image of stereo-pair (format 8uC1). /// / rightImage - right image of stereo-pair (format 8uC1). /// / mode - mode of correspondence retrieval (now CV_DISPARITY_BIRCHFIELD only) /// / dispImage - destination disparity image /// / maxDisparity - maximal disparity /// / param1, param2, param3, param4, param5 - parameters of algorithm /// / Returns: /// / Notes: /// / Images must be rectified. /// / All images must have format 8uC1. /// /F*/ // CVAPI(void) // cvFindStereoCorrespondence( // const CvArr* leftImage, const CvArr* rightImage, // int mode, // CvArr* dispImage, // int maxDisparity, // double param1 CV_DEFAULT(CV_UNDEF_SC_PARAM), // double param2 CV_DEFAULT(CV_UNDEF_SC_PARAM), // double param3 CV_DEFAULT(CV_UNDEF_SC_PARAM), // double param4 CV_DEFAULT(CV_UNDEF_SC_PARAM), // double param5 CV_DEFAULT(CV_UNDEF_SC_PARAM) ); // /// *****************************************************************************************/ /// ************ Epiline functions *******************/ // // // // typedef struct CvStereoLineCoeff // { // double Xcoef; // double XcoefA; // double XcoefB; // double XcoefAB; // // double Ycoef; // double YcoefA; // double YcoefB; // double YcoefAB; // // double Zcoef; // double ZcoefA; // double ZcoefB; // double ZcoefAB; // }CvStereoLineCoeff; // // // typedef struct CvCamera // { // float imgSize[2]; /* size of the camera view, used during calibration */ // float matrix[9]; /* intinsic camera parameters: [ fx 0 cx; 0 fy cy; 0 0 1 ] */ // float distortion[4]; /* distortion coefficients - two coefficients for radial distortion // and another two for tangential: [ k1 k2 p1 p2 ] */ // float rotMatr[9]; // float transVect[3]; /* rotation matrix and transition vector relatively // to some reference point in the space. */ // } CvCamera; // // typedef struct CvStereoCamera // { // CvCamera* camera[2]; /* two individual camera parameters */ // float fundMatr[9]; /* fundamental matrix */ // // /* New part for stereo */ // CvPoint3D32f epipole[2]; // CvPoint2D32f quad[2][4]; /* coordinates of destination quadrangle after // epipolar geometry rectification */ // double coeffs[2][3][3];/* coefficients for transformation */ // CvPoint2D32f border[2][4]; // CvSize warpSize; // CvStereoLineCoeff* lineCoeffs; // int needSwapCameras;/* flag set to 1 if need to swap cameras for good reconstruction */ // float rotMatrix[9]; // float transVector[3]; // } CvStereoCamera; // // // typedef struct CvContourOrientation // { // float egvals[2]; // float egvects[4]; // // float max, min; // minimum and maximum projections // int imax, imin; // } CvContourOrientation; // // #define CV_CAMERA_TO_WARP 1 // #define CV_WARP_TO_CAMERA 2 // // CVAPI(int) icvConvertWarpCoordinates(double coeffs[3][3], // CvPoint2D32f* cameraPoint, // CvPoint2D32f* warpPoint, // int direction); // // CVAPI(int) icvGetSymPoint3D( CvPoint3D64f pointCorner, // CvPoint3D64f point1, // CvPoint3D64f point2, // CvPoint3D64f *pointSym2); // // CVAPI(void) icvGetPieceLength3D(CvPoint3D64f point1,CvPoint3D64f point2,double* dist); // // CVAPI(int) icvCompute3DPoint( double alpha,double betta, // CvStereoLineCoeff* coeffs, // CvPoint3D64f* point); // // CVAPI(int) icvCreateConvertMatrVect( double* rotMatr1, // double* transVect1, // double* rotMatr2, // double* transVect2, // double* convRotMatr, // double* convTransVect); // // CVAPI(int) icvConvertPointSystem(CvPoint3D64f M2, // CvPoint3D64f* M1, // double* rotMatr, // double* transVect // ); // // CVAPI(int) icvComputeCoeffForStereo( CvStereoCamera* stereoCamera); // // CVAPI(int) icvGetCrossPieceVector(CvPoint2D32f p1_start,CvPoint2D32f p1_end,CvPoint2D32f v2_start,CvPoint2D32f v2_end,CvPoint2D32f *cross); // CVAPI(int) icvGetCrossLineDirect(CvPoint2D32f p1,CvPoint2D32f p2,float a,float b,float c,CvPoint2D32f* cross); // CVAPI(float) icvDefinePointPosition(CvPoint2D32f point1,CvPoint2D32f point2,CvPoint2D32f point); // CVAPI(int) icvStereoCalibration( int numImages, // int* nums, // CvSize imageSize, // CvPoint2D32f* imagePoints1, // CvPoint2D32f* imagePoints2, // CvPoint3D32f* objectPoints, // CvStereoCamera* stereoparams // ); // // // CVAPI(int) icvComputeRestStereoParams(CvStereoCamera *stereoparams); // // CVAPI(void) cvComputePerspectiveMap( const double coeffs[3][3], CvArr* rectMapX, CvArr* rectMapY ); // // CVAPI(int) icvComCoeffForLine( CvPoint2D64f point1, // CvPoint2D64f point2, // CvPoint2D64f point3, // CvPoint2D64f point4, // double* camMatr1, // double* rotMatr1, // double* transVect1, // double* camMatr2, // double* rotMatr2, // double* transVect2, // CvStereoLineCoeff* coeffs, // int* needSwapCameras); // // CVAPI(int) icvGetDirectionForPoint( CvPoint2D64f point, // double* camMatr, // CvPoint3D64f* direct); // // CVAPI(int) icvGetCrossLines(CvPoint3D64f point11,CvPoint3D64f point12, // CvPoint3D64f point21,CvPoint3D64f point22, // CvPoint3D64f* midPoint); // // CVAPI(int) icvComputeStereoLineCoeffs( CvPoint3D64f pointA, // CvPoint3D64f pointB, // CvPoint3D64f pointCam1, // double gamma, // CvStereoLineCoeff* coeffs); // /// *CVAPI(int) icvComputeFundMatrEpipoles ( double* camMatr1, // double* rotMatr1, // double* transVect1, // double* camMatr2, // double* rotMatr2, // double* transVect2, // CvPoint2D64f* epipole1, // CvPoint2D64f* epipole2, // double* fundMatr);*/ // // CVAPI(int) icvGetAngleLine( CvPoint2D64f startPoint, CvSize imageSize,CvPoint2D64f *point1,CvPoint2D64f *point2); // // CVAPI(void) icvGetCoefForPiece( CvPoint2D64f p_start,CvPoint2D64f p_end, // double *a,double *b,double *c, // int* result); // /// *CVAPI(void) icvGetCommonArea( CvSize imageSize, // CvPoint2D64f epipole1,CvPoint2D64f epipole2, // double* fundMatr, // double* coeff11,double* coeff12, // double* coeff21,double* coeff22, // int* result);*/ // // CVAPI(void) icvComputeeInfiniteProject1(double* rotMatr, // double* camMatr1, // double* camMatr2, // CvPoint2D32f point1, // CvPoint2D32f *point2); // // CVAPI(void) icvComputeeInfiniteProject2(double* rotMatr, // double* camMatr1, // double* camMatr2, // CvPoint2D32f* point1, // CvPoint2D32f point2); // // CVAPI(void) icvGetCrossDirectDirect( double* direct1,double* direct2, // CvPoint2D64f *cross,int* result); // // CVAPI(void) icvGetCrossPieceDirect( CvPoint2D64f p_start,CvPoint2D64f p_end, // double a,double b,double c, // CvPoint2D64f *cross,int* result); // // CVAPI(void) icvGetCrossPiecePiece( CvPoint2D64f p1_start,CvPoint2D64f p1_end, // CvPoint2D64f p2_start,CvPoint2D64f p2_end, // CvPoint2D64f* cross, // int* result); // // CVAPI(void) icvGetPieceLength(CvPoint2D64f point1,CvPoint2D64f point2,double* dist); // // CVAPI(void) icvGetCrossRectDirect( CvSize imageSize, // double a,double b,double c, // CvPoint2D64f *start,CvPoint2D64f *end, // int* result); // // CVAPI(void) icvProjectPointToImage( CvPoint3D64f point, // double* camMatr,double* rotMatr,double* transVect, // CvPoint2D64f* projPoint); // // CVAPI(void) icvGetQuadsTransform( CvSize imageSize, // double* camMatr1, // double* rotMatr1, // double* transVect1, // double* camMatr2, // double* rotMatr2, // double* transVect2, // CvSize* warpSize, // double quad1[4][2], // double quad2[4][2], // double* fundMatr, // CvPoint3D64f* epipole1, // CvPoint3D64f* epipole2 // ); // // CVAPI(void) icvGetQuadsTransformStruct( CvStereoCamera* stereoCamera); // // CVAPI(void) icvComputeStereoParamsForCameras(CvStereoCamera* stereoCamera); // // CVAPI(void) icvGetCutPiece( double* areaLineCoef1,double* areaLineCoef2, // CvPoint2D64f epipole, // CvSize imageSize, // CvPoint2D64f* point11,CvPoint2D64f* point12, // CvPoint2D64f* point21,CvPoint2D64f* point22, // int* result); // // CVAPI(void) icvGetMiddleAnglePoint( CvPoint2D64f basePoint, // CvPoint2D64f point1,CvPoint2D64f point2, // CvPoint2D64f* midPoint); // // CVAPI(void) icvGetNormalDirect(double* direct,CvPoint2D64f point,double* normDirect); // // CVAPI(double) icvGetVect(CvPoint2D64f basePoint,CvPoint2D64f point1,CvPoint2D64f point2); // // CVAPI(void) icvProjectPointToDirect( CvPoint2D64f point,double* lineCoeff, // CvPoint2D64f* projectPoint); // // CVAPI(void) icvGetDistanceFromPointToDirect( CvPoint2D64f point,double* lineCoef,double*dist); // // CVAPI(IplImage*) icvCreateIsometricImage( IplImage* src, IplImage* dst, // int desired_depth, int desired_num_channels ); // // CVAPI(void) cvDeInterlace( const CvArr* frame, CvArr* fieldEven, CvArr* fieldOdd ); // /// *CVAPI(int) icvSelectBestRt( int numImages, // int* numPoints, // CvSize imageSize, // CvPoint2D32f* imagePoints1, // CvPoint2D32f* imagePoints2, // CvPoint3D32f* objectPoints, // // CvMatr32f cameraMatrix1, // CvVect32f distortion1, // CvMatr32f rotMatrs1, // CvVect32f transVects1, // // CvMatr32f cameraMatrix2, // CvVect32f distortion2, // CvMatr32f rotMatrs2, // CvVect32f transVects2, // // CvMatr32f bestRotMatr, // CvVect32f bestTransVect // );*/ // // /// ****************************************************************************************\ // * Contour Tree * // \****************************************************************************************/ // /// * Contour tree header */ // typedef struct CvContourTree // { // CV_SEQUENCE_FIELDS() // CvPoint p1; /* the first point of the binary tree root segment */ // CvPoint p2; /* the last point of the binary tree root segment */ // } CvContourTree; // /// * Builds hierarhical representation of a contour */ // CVAPI(CvContourTree*) cvCreateContourTree( const CvSeq* contour, // CvMemStorage* storage, // double threshold ); // /// * Reconstruct (completelly or partially) contour a from contour tree */ // CVAPI(CvSeq*) cvContourFromContourTree( const CvContourTree* tree, // CvMemStorage* storage, // CvTermCriteria criteria ); // /// * Compares two contour trees */ // enum { CV_CONTOUR_TREES_MATCH_I1 = 1 }; // // CVAPI(double) cvMatchContourTrees( const CvContourTree* tree1, // const CvContourTree* tree2, // int method, double threshold ); // /// ****************************************************************************************\ // * Contour Morphing * // \****************************************************************************************/ // /// * finds correspondence between two contours */ // CvSeq* cvCalcContoursCorrespondence( const CvSeq* contour1, // const CvSeq* contour2, // CvMemStorage* storage); // /// * morphs contours using the pre-calculated correspondence: // alpha=0 ~ contour1, alpha=1 ~ contour2 */ // CvSeq* cvMorphContours( const CvSeq* contour1, const CvSeq* contour2, // CvSeq* corr, double alpha, // CvMemStorage* storage ); // // **************************************************************************************** // * Active Contours * // **************************************************************************************** const CV_VALUE = 1; CV_ARRAY = 2; { (* Updates active contour in order to minimize its cummulative (internal and external) energy. *) CVAPI(void) cvSnakeImage( const IplImage* image, CvPoint* points, int length, float* alpha, float* beta, float* gamma, int coeff_usage, CvSize win, CvTermCriteria criteria, int calc_gradient CV_DEFAULT(1)); } procedure cvSnakeImage(const image: pIplImage; points: pCvPointArray; length: Integer; alpha: PSingle; beta: PSingle; gamma: PSingle; coeff_usage: Integer; win: TCvSize; criteria: TCvTermCriteria; calc_gradient: Integer = 1); cdecl; /// ****************************************************************************************\ // * Texture Descriptors * // \****************************************************************************************/ // // #define CV_GLCM_OPTIMIZATION_NONE -2 // #define CV_GLCM_OPTIMIZATION_LUT -1 // #define CV_GLCM_OPTIMIZATION_HISTOGRAM 0 // // #define CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST 10 // #define CV_GLCMDESC_OPTIMIZATION_ALLOWTRIPLENEST 11 // #define CV_GLCMDESC_OPTIMIZATION_HISTOGRAM 4 // // #define CV_GLCMDESC_ENTROPY 0 // #define CV_GLCMDESC_ENERGY 1 // #define CV_GLCMDESC_HOMOGENITY 2 // #define CV_GLCMDESC_CONTRAST 3 // #define CV_GLCMDESC_CLUSTERTENDENCY 4 // #define CV_GLCMDESC_CLUSTERSHADE 5 // #define CV_GLCMDESC_CORRELATION 6 // #define CV_GLCMDESC_CORRELATIONINFO1 7 // #define CV_GLCMDESC_CORRELATIONINFO2 8 // #define CV_GLCMDESC_MAXIMUMPROBABILITY 9 // // #define CV_GLCM_ALL 0 // #define CV_GLCM_GLCM 1 // #define CV_GLCM_DESC 2 // // typedef struct CvGLCM CvGLCM; // // CVAPI(CvGLCM*) cvCreateGLCM( const IplImage* srcImage, // int stepMagnitude, // const int* stepDirections CV_DEFAULT(0), // int numStepDirections CV_DEFAULT(0), // int optimizationType CV_DEFAULT(CV_GLCM_OPTIMIZATION_NONE)); // // CVAPI(void) cvReleaseGLCM( CvGLCM** GLCM, int flag CV_DEFAULT(CV_GLCM_ALL)); // // CVAPI(void) cvCreateGLCMDescriptors( CvGLCM* destGLCM, // int descriptorOptimizationType // CV_DEFAULT(CV_GLCMDESC_OPTIMIZATION_ALLOWDOUBLENEST)); // // CVAPI(double) cvGetGLCMDescriptor( CvGLCM* GLCM, int step, int descriptor ); // // CVAPI(void) cvGetGLCMDescriptorStatistics( CvGLCM* GLCM, int descriptor, // double* average, double* standardDeviation ); // // CVAPI(IplImage*) cvCreateGLCMImage( CvGLCM* GLCM, int step ); // /// ****************************************************************************************\ // * Face eyes&mouth tracking * // \****************************************************************************************/ // // // typedef struct CvFaceTracker CvFaceTracker; // // #define CV_NUM_FACE_ELEMENTS 3 // enum CV_FACE_ELEMENTS // { // CV_FACE_MOUTH = 0, // CV_FACE_LEFT_EYE = 1, // CV_FACE_RIGHT_EYE = 2 // }; // // CVAPI(CvFaceTracker*) cvInitFaceTracker(CvFaceTracker* pFaceTracking, const IplImage* imgGray, // CvRect* pRects, int nRects); // CVAPI(int) cvTrackFace( CvFaceTracker* pFaceTracker, IplImage* imgGray, // CvRect* pRects, int nRects, // CvPoint* ptRotate, double* dbAngleRotate); // CVAPI(void) cvReleaseFaceTracker(CvFaceTracker** ppFaceTracker); // // // typedef struct CvFace // { // CvRect MouthRect; // CvRect LeftEyeRect; // CvRect RightEyeRect; // } CvFaceData; // // CvSeq * cvFindFace(IplImage * Image,CvMemStorage* storage); // CvSeq * cvPostBoostingFindFace(IplImage * Image,CvMemStorage* storage); // // /// ****************************************************************************************\ // * 3D Tracker * // \****************************************************************************************/ // // typedef unsigned char CvBool; // // typedef struct Cv3dTracker2dTrackedObject // { // int id; // CvPoint2D32f p; // pgruebele: So we do not loose precision, this needs to be float // } Cv3dTracker2dTrackedObject; // // CV_INLINE Cv3dTracker2dTrackedObject cv3dTracker2dTrackedObject(int id, CvPoint2D32f p) // { // Cv3dTracker2dTrackedObject r; // r.id = id; // r.p = p; // return r; // } // // typedef struct Cv3dTrackerTrackedObject // { // int id; // CvPoint3D32f p; // location of the tracked object // } Cv3dTrackerTrackedObject; // // CV_INLINE Cv3dTrackerTrackedObject cv3dTrackerTrackedObject(int id, CvPoint3D32f p) // { // Cv3dTrackerTrackedObject r; // r.id = id; // r.p = p; // return r; // } // // typedef struct Cv3dTrackerCameraInfo // { // CvBool valid; // float mat[4][4]; /* maps camera coordinates to world coordinates */ // CvPoint2D32f principal_point; /* copied from intrinsics so this structure */ // /* has all the info we need */ // } Cv3dTrackerCameraInfo; // // typedef struct Cv3dTrackerCameraIntrinsics // { // CvPoint2D32f principal_point; // float focal_length[2]; // float distortion[4]; // } Cv3dTrackerCameraIntrinsics; // // CVAPI(CvBool) cv3dTrackerCalibrateCameras(int num_cameras, // const Cv3dTrackerCameraIntrinsics camera_intrinsics[], /* size is num_cameras */ // CvSize etalon_size, // float square_size, // IplImage *samples[], /* size is num_cameras */ // Cv3dTrackerCameraInfo camera_info[]); /* size is num_cameras */ // // CVAPI(int) cv3dTrackerLocateObjects(int num_cameras, int num_objects, // const Cv3dTrackerCameraInfo camera_info[], /* size is num_cameras */ // const Cv3dTracker2dTrackedObject tracking_info[], /* size is num_objects*num_cameras */ // Cv3dTrackerTrackedObject tracked_objects[]); /* size is num_objects */ /// **************************************************************************************** // tracking_info is a rectangular array; one row per camera, num_objects elements per row. // The id field of any unused slots must be -1. Ids need not be ordered or consecutive. On // completion, the return value is the number of objects located; i.e., the number of objects // visible by more than one camera. The id field of any unused slots in tracked objects is // set to -1. // ****************************************************************************************/ // // /// ****************************************************************************************\ // * Skeletons and Linear-Contour Models * // \****************************************************************************************/ // // typedef enum CvLeeParameters // { // CV_LEE_INT = 0, // CV_LEE_FLOAT = 1, // CV_LEE_DOUBLE = 2, // CV_LEE_AUTO = -1, // CV_LEE_ERODE = 0, // CV_LEE_ZOOM = 1, // CV_LEE_NON = 2 // } CvLeeParameters; // // #define CV_NEXT_VORONOISITE2D( SITE ) ((SITE)->edge[0]->site[((SITE)->edge[0]->site[0] == (SITE))]) // #define CV_PREV_VORONOISITE2D( SITE ) ((SITE)->edge[1]->site[((SITE)->edge[1]->site[0] == (SITE))]) // #define CV_FIRST_VORONOIEDGE2D( SITE ) ((SITE)->edge[0]) // #define CV_LAST_VORONOIEDGE2D( SITE ) ((SITE)->edge[1]) // #define CV_NEXT_VORONOIEDGE2D( EDGE, SITE ) ((EDGE)->next[(EDGE)->site[0] != (SITE)]) // #define CV_PREV_VORONOIEDGE2D( EDGE, SITE ) ((EDGE)->next[2 + ((EDGE)->site[0] != (SITE))]) // #define CV_VORONOIEDGE2D_BEGINNODE( EDGE, SITE ) ((EDGE)->node[((EDGE)->site[0] != (SITE))]) // #define CV_VORONOIEDGE2D_ENDNODE( EDGE, SITE ) ((EDGE)->node[((EDGE)->site[0] == (SITE))]) // #define CV_TWIN_VORONOISITE2D( SITE, EDGE ) ( (EDGE)->site[((EDGE)->site[0] == (SITE))]) // // #define CV_VORONOISITE2D_FIELDS() \ // struct CvVoronoiNode2D *node[2]; \ // struct CvVoronoiEdge2D *edge[2]; // // typedef struct CvVoronoiSite2D // { // CV_VORONOISITE2D_FIELDS() // struct CvVoronoiSite2D *next[2]; // } CvVoronoiSite2D; // // #define CV_VORONOIEDGE2D_FIELDS() \ // struct CvVoronoiNode2D *node[2]; \ // struct CvVoronoiSite2D *site[2]; \ // struct CvVoronoiEdge2D *next[4]; // // typedef struct CvVoronoiEdge2D // { // CV_VORONOIEDGE2D_FIELDS() // } CvVoronoiEdge2D; // // #define CV_VORONOINODE2D_FIELDS() \ // CV_SET_ELEM_FIELDS(CvVoronoiNode2D) \ // CvPoint2D32f pt; \ // float radius; // // typedef struct CvVoronoiNode2D // { // CV_VORONOINODE2D_FIELDS() // } CvVoronoiNode2D; // // #define CV_VORONOIDIAGRAM2D_FIELDS() \ // CV_GRAPH_FIELDS() \ // CvSet *sites; // // typedef struct CvVoronoiDiagram2D // { // CV_VORONOIDIAGRAM2D_FIELDS() // } CvVoronoiDiagram2D; // /// * Computes Voronoi Diagram for given polygons with holes */ // CVAPI(int) cvVoronoiDiagramFromContour(CvSeq* ContourSeq, // CvVoronoiDiagram2D** VoronoiDiagram, // CvMemStorage* VoronoiStorage, // CvLeeParameters contour_type CV_DEFAULT(CV_LEE_INT), // int contour_orientation CV_DEFAULT(-1), // int attempt_number CV_DEFAULT(10)); // /// * Computes Voronoi Diagram for domains in given image */ // CVAPI(int) cvVoronoiDiagramFromImage(IplImage* pImage, // CvSeq** ContourSeq, // CvVoronoiDiagram2D** VoronoiDiagram, // CvMemStorage* VoronoiStorage, // CvLeeParameters regularization_method CV_DEFAULT(CV_LEE_NON), // float approx_precision CV_DEFAULT(CV_LEE_AUTO)); // /// * Deallocates the storage */ // CVAPI(void) cvReleaseVoronoiStorage(CvVoronoiDiagram2D* VoronoiDiagram, // CvMemStorage** pVoronoiStorage); // /// *********************** Linear-Contour Model ****************************/ // // struct CvLCMEdge; // struct CvLCMNode; // // typedef struct CvLCMEdge // { // CV_GRAPH_EDGE_FIELDS() // CvSeq* chain; // float width; // int index1; // int index2; // } CvLCMEdge; // // typedef struct CvLCMNode // { // CV_GRAPH_VERTEX_FIELDS() // CvContour* contour; // } CvLCMNode; // // /// * Computes hybrid model from Voronoi Diagram */ // CVAPI(CvGraph*) cvLinearContorModelFromVoronoiDiagram(CvVoronoiDiagram2D* VoronoiDiagram, // float maxWidth); // /// * Releases hybrid model storage */ // CVAPI(int) cvReleaseLinearContorModelStorage(CvGraph** Graph); // // /// * two stereo-related functions */ // // CVAPI(void) cvInitPerspectiveTransform( CvSize size, const CvPoint2D32f vertex[4], double matrix[3][3], // CvArr* rectMap ); // /// *CVAPI(void) cvInitStereoRectification( CvStereoCamera* params, // CvArr* rectMap1, CvArr* rectMap2, // int do_undistortion );*/ // /// *************************** View Morphing Functions ************************/ // // typedef struct CvMatrix3 // { // float m[3][3]; // } CvMatrix3; // /// * The order of the function corresponds to the order they should appear in // the view morphing pipeline */ // /// * Finds ending points of scanlines on left and right images of stereo-pair */ // CVAPI(void) cvMakeScanlines( const CvMatrix3* matrix, CvSize img_size, // int* scanlines1, int* scanlines2, // int* lengths1, int* lengths2, // int* line_count ); // /// * Grab pixel values from scanlines and stores them sequentially // (some sort of perspective image transform) */ // CVAPI(void) cvPreWarpImage( int line_count, // IplImage* img, // uchar* dst, // int* dst_nums, // int* scanlines); // /// * Approximate each grabbed scanline by a sequence of runs // (lossy run-length compression) */ // CVAPI(void) cvFindRuns( int line_count, // uchar* prewarp1, // uchar* prewarp2, // int* line_lengths1, // int* line_lengths2, // int* runs1, // int* runs2, // int* num_runs1, // int* num_runs2); // /// * Compares two sets of compressed scanlines */ // CVAPI(void) cvDynamicCorrespondMulti( int line_count, // int* first, // int* first_runs, // int* second, // int* second_runs, // int* first_corr, // int* second_corr); // /// * Finds scanline ending coordinates for some intermediate "virtual" camera position */ // CVAPI(void) cvMakeAlphaScanlines( int* scanlines1, // int* scanlines2, // int* scanlinesA, // int* lengths, // int line_count, // float alpha); // /// * Blends data of the left and right image scanlines to get // pixel values of "virtual" image scanlines */ // CVAPI(void) cvMorphEpilinesMulti( int line_count, // uchar* first_pix, // int* first_num, // uchar* second_pix, // int* second_num, // uchar* dst_pix, // int* dst_num, // float alpha, // int* first, // int* first_runs, // int* second, // int* second_runs, // int* first_corr, // int* second_corr); // /// * Does reverse warping of the morphing result to make // it fill the destination image rectangle */ // CVAPI(void) cvPostWarpImage( int line_count, // uchar* src, // int* src_nums, // IplImage* img, // int* scanlines); // /// * Deletes Moire (missed pixels that appear due to discretization) */ // CVAPI(void) cvDeleteMoire( IplImage* img ); // // // typedef struct CvConDensation // { // int MP; // int DP; // float* DynamMatr; /* Matrix of the linear Dynamics system */ // float* State; /* Vector of State */ // int SamplesNum; /* Number of the Samples */ // float** flSamples; /* arr of the Sample Vectors */ // float** flNewSamples; /* temporary array of the Sample Vectors */ // float* flConfidence; /* Confidence for each Sample */ // float* flCumulative; /* Cumulative confidence */ // float* Temp; /* Temporary vector */ // float* RandomSample; /* RandomVector to update sample set */ // struct CvRandState* RandS; /* Array of structures to generate random vectors */ // } CvConDensation; // /// * Creates ConDensation filter state */ // CVAPI(CvConDensation*) cvCreateConDensation( int dynam_params, // int measure_params, // int sample_count ); // /// * Releases ConDensation filter state */ // CVAPI(void) cvReleaseConDensation( CvConDensation** condens ); // /// * Updates ConDensation filter by time (predict future state of the system) */ // CVAPI(void) cvConDensUpdateByTime( CvConDensation* condens); // /// * Initializes ConDensation filter samples */ // CVAPI(void) cvConDensInitSampleSet( CvConDensation* condens, CvMat* lower_bound, CvMat* upper_bound ); // // CV_INLINE int iplWidth( const IplImage* img ) // { // return !img ? 0 : !img->roi ? img->width : img->roi->width; // } // // CV_INLINE int iplHeight( const IplImage* img ) // { // return !img ? 0 : !img->roi ? img->height : img->roi->height; // } // // #ifdef __cplusplus // } // #endif // // #ifdef __cplusplus // /// ****************************************************************************************\ // * Calibration engine * // \****************************************************************************************/ // // typedef enum CvCalibEtalonType // { // CV_CALIB_ETALON_USER = -1, // CV_CALIB_ETALON_CHESSBOARD = 0, // CV_CALIB_ETALON_CHECKERBOARD = CV_CALIB_ETALON_CHESSBOARD // } // CvCalibEtalonType; // // class CV_EXPORTS CvCalibFilter // { // public: // /* Constructor & destructor */ // CvCalibFilter(); // virtual ~CvCalibFilter(); // // /* Sets etalon type - one for all cameras. // etalonParams is used in case of pre-defined etalons (such as chessboard). // Number of elements in etalonParams is determined by etalonType. // E.g., if etalon type is CV_ETALON_TYPE_CHESSBOARD then: // etalonParams[0] is number of squares per one side of etalon // etalonParams[1] is number of squares per another side of etalon // etalonParams[2] is linear size of squares in the board in arbitrary units. // pointCount & points are used in case of // CV_CALIB_ETALON_USER (user-defined) etalon. */ // virtual bool // SetEtalon( CvCalibEtalonType etalonType, double* etalonParams, // int pointCount = 0, CvPoint2D32f* points = 0 ); // // /* Retrieves etalon parameters/or and points */ // virtual CvCalibEtalonType // GetEtalon( int* paramCount = 0, const double** etalonParams = 0, // int* pointCount = 0, const CvPoint2D32f** etalonPoints = 0 ) const; // // /* Sets number of cameras calibrated simultaneously. It is equal to 1 initially */ // virtual void SetCameraCount( int cameraCount ); // // /* Retrieves number of cameras */ // int GetCameraCount() const { return cameraCount; } // // /* Starts cameras calibration */ // virtual bool SetFrames( int totalFrames ); // // /* Stops cameras calibration */ // virtual void Stop( bool calibrate = false ); // // /* Retrieves number of cameras */ // bool IsCalibrated() const { return isCalibrated; } // // /* Feeds another serie of snapshots (one per each camera) to filter. // Etalon points on these images are found automatically. // If the function can't locate points, it returns false */ // virtual bool FindEtalon( IplImage** imgs ); // // /* The same but takes matrices */ // virtual bool FindEtalon( CvMat** imgs ); // // /* Lower-level function for feeding filter with already found etalon points. // Array of point arrays for each camera is passed. */ // virtual bool Push( const CvPoint2D32f** points = 0 ); // // /* Returns total number of accepted frames and, optionally, // total number of frames to collect */ // virtual int GetFrameCount( int* framesTotal = 0 ) const; // // /* Retrieves camera parameters for specified camera. // If camera is not calibrated the function returns 0 */ // virtual const CvCamera* GetCameraParams( int idx = 0 ) const; // // virtual const CvStereoCamera* GetStereoParams() const; // // /* Sets camera parameters for all cameras */ // virtual bool SetCameraParams( CvCamera* params ); // // /* Saves all camera parameters to file */ // virtual bool SaveCameraParams( const char* filename ); // // /* Loads all camera parameters from file */ // virtual bool LoadCameraParams( const char* filename ); // // /* Undistorts images using camera parameters. Some of src pointers can be NULL. */ // virtual bool Undistort( IplImage** src, IplImage** dst ); // // /* Undistorts images using camera parameters. Some of src pointers can be NULL. */ // virtual bool Undistort( CvMat** src, CvMat** dst ); // // /* Returns array of etalon points detected/partally detected // on the latest frame for idx-th camera */ // virtual bool GetLatestPoints( int idx, CvPoint2D32f** pts, // int* count, bool* found ); // // /* Draw the latest detected/partially detected etalon */ // virtual void DrawPoints( IplImage** dst ); // // /* Draw the latest detected/partially detected etalon */ // virtual void DrawPoints( CvMat** dst ); // // virtual bool Rectify( IplImage** srcarr, IplImage** dstarr ); // virtual bool Rectify( CvMat** srcarr, CvMat** dstarr ); // // protected: // // enum { MAX_CAMERAS = 3 }; // // /* etalon data */ // CvCalibEtalonType etalonType; // int etalonParamCount; // double* etalonParams; // int etalonPointCount; // CvPoint2D32f* etalonPoints; // CvSize imgSize; // CvMat* grayImg; // CvMat* tempImg; // CvMemStorage* storage; // // /* camera data */ // int cameraCount; // CvCamera cameraParams[MAX_CAMERAS]; // CvStereoCamera stereo; // CvPoint2D32f* points[MAX_CAMERAS]; // CvMat* undistMap[MAX_CAMERAS][2]; // CvMat* undistImg; // int latestCounts[MAX_CAMERAS]; // CvPoint2D32f* latestPoints[MAX_CAMERAS]; // CvMat* rectMap[MAX_CAMERAS][2]; // // /* Added by Valery */ // //CvStereoCamera stereoParams; // // int maxPoints; // int framesTotal; // int framesAccepted; // bool isCalibrated; // }; // // #include // #include // // class CV_EXPORTS CvImage // { // public: // CvImage() : image(0), refcount(0) {} // CvImage( CvSize _size, int _depth, int _channels ) // { // image = cvCreateImage( _size, _depth, _channels ); // refcount = image ? new int(1) : 0; // } // // CvImage( IplImage* img ) : image(img) // { // refcount = image ? new int(1) : 0; // } // // CvImage( const CvImage& img ) : image(img.image), refcount(img.refcount) // { // if( refcount ) ++(*refcount); // } // // CvImage( const char* filename, const char* imgname=0, int color=-1 ) : image(0), refcount(0) // { load( filename, imgname, color ); } // // CvImage( CvFileStorage* fs, const char* mapname, const char* imgname ) : image(0), refcount(0) // { read( fs, mapname, imgname ); } // // CvImage( CvFileStorage* fs, const char* seqname, int idx ) : image(0), refcount(0) // { read( fs, seqname, idx ); } // // ~CvImage() // { // if( refcount && !(--*refcount) ) // { // cvReleaseImage( &image ); // delete refcount; // } // } // // CvImage clone() { return CvImage(image ? cvCloneImage(image) : 0); } // // void create( CvSize _size, int _depth, int _channels ) // { // if( !image || !refcount || // image->width != _size.width || image->height != _size.height || // image->depth != _depth || image->nChannels != _channels ) // attach( cvCreateImage( _size, _depth, _channels )); // } // // void release() { detach(); } // void clear() { detach(); } // // void attach( IplImage* img, bool use_refcount=true ) // { // if( refcount && --*refcount == 0 ) // { // cvReleaseImage( &image ); // delete refcount; // } // image = img; // refcount = use_refcount && image ? new int(1) : 0; // } // // void detach() // { // if( refcount && --*refcount == 0 ) // { // cvReleaseImage( &image ); // delete refcount; // } // image = 0; // refcount = 0; // } // // bool load( const char* filename, const char* imgname=0, int color=-1 ); // bool read( CvFileStorage* fs, const char* mapname, const char* imgname ); // bool read( CvFileStorage* fs, const char* seqname, int idx ); // void save( const char* filename, const char* imgname, const int* params=0 ); // void write( CvFileStorage* fs, const char* imgname ); // // void show( const char* window_name ); // bool is_valid() { return image != 0; } // // int width() const { return image ? image->width : 0; } // int height() const { return image ? image->height : 0; } // // CvSize size() const { return image ? cvSize(image->width, image->height) : cvSize(0,0); } // // CvSize roi_size() const // { // return !image ? cvSize(0,0) : // !image->roi ? cvSize(image->width,image->height) : // cvSize(image->roi->width, image->roi->height); // } // // CvRect roi() const // { // return !image ? cvRect(0,0,0,0) : // !image->roi ? cvRect(0,0,image->width,image->height) : // cvRect(image->roi->xOffset,image->roi->yOffset, // image->roi->width,image->roi->height); // } // // int coi() const { return !image || !image->roi ? 0 : image->roi->coi; } // // void set_roi(CvRect _roi) { cvSetImageROI(image,_roi); } // void reset_roi() { cvResetImageROI(image); } // void set_coi(int _coi) { cvSetImageCOI(image,_coi); } // int depth() const { return image ? image->depth : 0; } // int channels() const { return image ? image->nChannels : 0; } // int pix_size() const { return image ? ((image->depth & 255)>>3)*image->nChannels : 0; } // // uchar* data() { return image ? (uchar*)image->imageData : 0; } // const uchar* data() const { return image ? (const uchar*)image->imageData : 0; } // int step() const { return image ? image->widthStep : 0; } // int origin() const { return image ? image->origin : 0; } // // uchar* roi_row(int y) // { // assert(0<=y); // assert(!image ? // 1 : image->roi ? // yroi->height : yheight); // // return !image ? 0 : // !image->roi ? // (uchar*)(image->imageData + y*image->widthStep) : // (uchar*)(image->imageData + (y+image->roi->yOffset)*image->widthStep + // image->roi->xOffset*((image->depth & 255)>>3)*image->nChannels); // } // // const uchar* roi_row(int y) const // { // assert(0<=y); // assert(!image ? // 1 : image->roi ? // yroi->height : yheight); // // return !image ? 0 : // !image->roi ? // (const uchar*)(image->imageData + y*image->widthStep) : // (const uchar*)(image->imageData + (y+image->roi->yOffset)*image->widthStep + // image->roi->xOffset*((image->depth & 255)>>3)*image->nChannels); // } // // operator const IplImage* () const { return image; } // operator IplImage* () { return image; } // // CvImage& operator = (const CvImage& img) // { // if( img.refcount ) // ++*img.refcount; // if( refcount && !(--*refcount) ) // cvReleaseImage( &image ); // image=img.image; // refcount=img.refcount; // return *this; // } // // protected: // IplImage* image; // int* refcount; // }; // // // class CV_EXPORTS CvMatrix // { // public: // CvMatrix() : matrix(0) {} // CvMatrix( int _rows, int _cols, int _type ) // { matrix = cvCreateMat( _rows, _cols, _type ); } // // CvMatrix( int _rows, int _cols, int _type, CvMat* hdr, // void* _data=0, int _step=CV_AUTOSTEP ) // { matrix = cvInitMatHeader( hdr, _rows, _cols, _type, _data, _step ); } // // CvMatrix( int rows, int cols, int type, CvMemStorage* storage, bool alloc_data=true ); // // CvMatrix( int _rows, int _cols, int _type, void* _data, int _step=CV_AUTOSTEP ) // { matrix = cvCreateMatHeader( _rows, _cols, _type ); // cvSetData( matrix, _data, _step ); } // // CvMatrix( CvMat* m ) // { matrix = m; } // // CvMatrix( const CvMatrix& m ) // { // matrix = m.matrix; // addref(); // } // // CvMatrix( const char* filename, const char* matname=0, int color=-1 ) : matrix(0) // { load( filename, matname, color ); } // // CvMatrix( CvFileStorage* fs, const char* mapname, const char* matname ) : matrix(0) // { read( fs, mapname, matname ); } // // CvMatrix( CvFileStorage* fs, const char* seqname, int idx ) : matrix(0) // { read( fs, seqname, idx ); } // // ~CvMatrix() // { // release(); // } // // CvMatrix clone() { return CvMatrix(matrix ? cvCloneMat(matrix) : 0); } // // void set( CvMat* m, bool add_ref ) // { // release(); // matrix = m; // if( add_ref ) // addref(); // } // // void create( int _rows, int _cols, int _type ) // { // if( !matrix || !matrix->refcount || // matrix->rows != _rows || matrix->cols != _cols || // CV_MAT_TYPE(matrix->type) != _type ) // set( cvCreateMat( _rows, _cols, _type ), false ); // } // // void addref() const // { // if( matrix ) // { // if( matrix->hdr_refcount ) // ++matrix->hdr_refcount; // else if( matrix->refcount ) // ++*matrix->refcount; // } // } // // void release() // { // if( matrix ) // { // if( matrix->hdr_refcount ) // { // if( --matrix->hdr_refcount == 0 ) // cvReleaseMat( &matrix ); // } // else if( matrix->refcount ) // { // if( --*matrix->refcount == 0 ) // cvFree( &matrix->refcount ); // } // matrix = 0; // } // } // // void clear() // { // release(); // } // // bool load( const char* filename, const char* matname=0, int color=-1 ); // bool read( CvFileStorage* fs, const char* mapname, const char* matname ); // bool read( CvFileStorage* fs, const char* seqname, int idx ); // void save( const char* filename, const char* matname, const int* params=0 ); // void write( CvFileStorage* fs, const char* matname ); // // void show( const char* window_name ); // // bool is_valid() { return matrix != 0; } // // int rows() const { return matrix ? matrix->rows : 0; } // int cols() const { return matrix ? matrix->cols : 0; } // // CvSize size() const // { // return !matrix ? cvSize(0,0) : cvSize(matrix->rows,matrix->cols); // } // // int type() const { return matrix ? CV_MAT_TYPE(matrix->type) : 0; } // int depth() const { return matrix ? CV_MAT_DEPTH(matrix->type) : 0; } // int channels() const { return matrix ? CV_MAT_CN(matrix->type) : 0; } // int pix_size() const { return matrix ? CV_ELEM_SIZE(matrix->type) : 0; } // // uchar* data() { return matrix ? matrix->data.ptr : 0; } // const uchar* data() const { return matrix ? matrix->data.ptr : 0; } // int step() const { return matrix ? matrix->step : 0; } // // void set_data( void* _data, int _step=CV_AUTOSTEP ) // { cvSetData( matrix, _data, _step ); } // // uchar* row(int i) { return !matrix ? 0 : matrix->data.ptr + i*matrix->step; } // const uchar* row(int i) const // { return !matrix ? 0 : matrix->data.ptr + i*matrix->step; } // // operator const CvMat* () const { return matrix; } // operator CvMat* () { return matrix; } // // CvMatrix& operator = (const CvMatrix& _m) // { // _m.addref(); // release(); // matrix = _m.matrix; // return *this; // } // // protected: // CvMat* matrix; // }; // /// ****************************************************************************************\ // * CamShiftTracker * // \****************************************************************************************/ // // class CV_EXPORTS CvCamShiftTracker // { // public: // // CvCamShiftTracker(); // virtual ~CvCamShiftTracker(); // // /**** Characteristics of the object that are calculated by track_object method *****/ // float get_orientation() const // orientation of the object in degrees // { return m_box.angle; } // float get_length() const // the larger linear size of the object // { return m_box.size.height; } // float get_width() const // the smaller linear size of the object // { return m_box.size.width; } // CvPoint2D32f get_center() const // center of the object // { return m_box.center; } // CvRect get_window() const // bounding rectangle for the object // { return m_comp.rect; } // // /*********************** Tracking parameters ************************/ // int get_threshold() const // thresholding value that applied to back project // { return m_threshold; } // // int get_hist_dims( int* dims = 0 ) const // returns number of histogram dimensions and sets // { return m_hist ? cvGetDims( m_hist->bins, dims ) : 0; } // // int get_min_ch_val( int channel ) const // get the minimum allowed value of the specified channel // { return m_min_ch_val[channel]; } // // int get_max_ch_val( int channel ) const // get the maximum allowed value of the specified channel // { return m_max_ch_val[channel]; } // // // set initial object rectangle (must be called before initial calculation of the histogram) // bool set_window( CvRect window) // { m_comp.rect = window; return true; } // // bool set_threshold( int threshold ) // threshold applied to the histogram bins // { m_threshold = threshold; return true; } // // bool set_hist_bin_range( int dim, int min_val, int max_val ); // // bool set_hist_dims( int c_dims, int* dims );// set the histogram parameters // // bool set_min_ch_val( int channel, int val ) // set the minimum allowed value of the specified channel // { m_min_ch_val[channel] = val; return true; } // bool set_max_ch_val( int channel, int val ) // set the maximum allowed value of the specified channel // { m_max_ch_val[channel] = val; return true; } // // /************************ The processing methods *********************************/ // // update object position // virtual bool track_object( const IplImage* cur_frame ); // // // update object histogram // virtual bool update_histogram( const IplImage* cur_frame ); // // // reset histogram // virtual void reset_histogram(); // // /************************ Retrieving internal data *******************************/ // // get back project image // virtual IplImage* get_back_project() // { return m_back_project; } // // float query( int* bin ) const // { return m_hist ? (float)cvGetRealND(m_hist->bins, bin) : 0.f; } // // protected: // // // internal method for color conversion: fills m_color_planes group // virtual void color_transform( const IplImage* img ); // // CvHistogram* m_hist; // // CvBox2D m_box; // CvConnectedComp m_comp; // // float m_hist_ranges_data[CV_MAX_DIM][2]; // float* m_hist_ranges[CV_MAX_DIM]; // // int m_min_ch_val[CV_MAX_DIM]; // int m_max_ch_val[CV_MAX_DIM]; // int m_threshold; // // IplImage* m_color_planes[CV_MAX_DIM]; // IplImage* m_back_project; // IplImage* m_temp; // IplImage* m_mask; // }; // /// ****************************************************************************************\ // * Expectation - Maximization * // \****************************************************************************************/ // struct CV_EXPORTS_W_MAP CvEMParams // { // CvEMParams(); // CvEMParams( int nclusters, int cov_mat_type=cv::EM::COV_MAT_DIAGONAL, // int start_step=cv::EM::START_AUTO_STEP, // CvTermCriteria term_crit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON), // const CvMat* probs=0, const CvMat* weights=0, const CvMat* means=0, const CvMat** covs=0 ); // // CV_PROP_RW int nclusters; // CV_PROP_RW int cov_mat_type; // CV_PROP_RW int start_step; // const CvMat* probs; // const CvMat* weights; // const CvMat* means; // const CvMat** covs; // CV_PROP_RW CvTermCriteria term_crit; // }; // // // class CV_EXPORTS_W CvEM : public CvStatModel // { // public: // // Type of covariation matrices // enum { COV_MAT_SPHERICAL=cv::EM::COV_MAT_SPHERICAL, // COV_MAT_DIAGONAL =cv::EM::COV_MAT_DIAGONAL, // COV_MAT_GENERIC =cv::EM::COV_MAT_GENERIC }; // // // The initial step // enum { START_E_STEP=cv::EM::START_E_STEP, // START_M_STEP=cv::EM::START_M_STEP, // START_AUTO_STEP=cv::EM::START_AUTO_STEP }; // // CV_WRAP CvEM(); // CvEM( const CvMat* samples, const CvMat* sampleIdx=0, // CvEMParams params=CvEMParams(), CvMat* labels=0 ); // // virtual ~CvEM(); // // virtual bool train( const CvMat* samples, const CvMat* sampleIdx=0, // CvEMParams params=CvEMParams(), CvMat* labels=0 ); // // virtual float predict( const CvMat* sample, CV_OUT CvMat* probs ) const; // // CV_WRAP CvEM( const cv::Mat& samples, const cv::Mat& sampleIdx=cv::Mat(), // CvEMParams params=CvEMParams() ); // // CV_WRAP virtual bool train( const cv::Mat& samples, // const cv::Mat& sampleIdx=cv::Mat(), // CvEMParams params=CvEMParams(), // CV_OUT cv::Mat* labels=0 ); // // CV_WRAP virtual float predict( const cv::Mat& sample, CV_OUT cv::Mat* probs=0 ) const; // CV_WRAP virtual double calcLikelihood( const cv::Mat &sample ) const; // // CV_WRAP int getNClusters() const; // CV_WRAP cv::Mat getMeans() const; // CV_WRAP void getCovs(CV_OUT std::vector& covs) const; // CV_WRAP cv::Mat getWeights() const; // CV_WRAP cv::Mat getProbs() const; // // CV_WRAP inline double getLikelihood() const { return emObj.isTrained() ? logLikelihood : DBL_MAX; } // // CV_WRAP virtual void clear(); // // int get_nclusters() const; // const CvMat* get_means() const; // const CvMat** get_covs() const; // const CvMat* get_weights() const; // const CvMat* get_probs() const; // // inline double get_log_likelihood() const { return getLikelihood(); } // // virtual void read( CvFileStorage* fs, CvFileNode* node ); // virtual void write( CvFileStorage* fs, const char* name ) const; // // protected: // void set_mat_hdrs(); // // cv::EM emObj; // cv::Mat probs; // double logLikelihood; // // CvMat meansHdr; // std::vector covsHdrs; // std::vector covsPtrs; // CvMat weightsHdr; // CvMat probsHdr; // }; // // namespace cv // { // // typedef CvEMParams EMParams; // typedef CvEM ExpectationMaximization; // /// *! // The Patch Generator class // */ // class CV_EXPORTS PatchGenerator // { // public: // PatchGenerator(); // PatchGenerator(double _backgroundMin, double _backgroundMax, // double _noiseRange, bool _randomBlur=true, // double _lambdaMin=0.6, double _lambdaMax=1.5, // double _thetaMin=-CV_PI, double _thetaMax=CV_PI, // double _phiMin=-CV_PI, double _phiMax=CV_PI ); // void operator()(const Mat& image, Point2f pt, Mat& patch, Size patchSize, RNG& rng) const; // void operator()(const Mat& image, const Mat& transform, Mat& patch, // Size patchSize, RNG& rng) const; // void warpWholeImage(const Mat& image, Mat& matT, Mat& buf, // CV_OUT Mat& warped, int border, RNG& rng) const; // void generateRandomTransform(Point2f srcCenter, Point2f dstCenter, // CV_OUT Mat& transform, RNG& rng, // bool inverse=false) const; // void setAffineParam(double lambda, double theta, double phi); // // double backgroundMin, backgroundMax; // double noiseRange; // bool randomBlur; // double lambdaMin, lambdaMax; // double thetaMin, thetaMax; // double phiMin, phiMax; // }; // // // class CV_EXPORTS LDetector // { // public: // LDetector(); // LDetector(int _radius, int _threshold, int _nOctaves, // int _nViews, double _baseFeatureSize, double _clusteringDistance); // void operator()(const Mat& image, // CV_OUT std::vector& keypoints, // int maxCount=0, bool scaleCoords=true) const; // void operator()(const std::vector& pyr, // CV_OUT std::vector& keypoints, // int maxCount=0, bool scaleCoords=true) const; // void getMostStable2D(const Mat& image, CV_OUT std::vector& keypoints, // int maxCount, const PatchGenerator& patchGenerator) const; // void setVerbose(bool verbose); // // void read(const FileNode& node); // void write(FileStorage& fs, const String& name=String()) const; // // int radius; // int threshold; // int nOctaves; // int nViews; // bool verbose; // // double baseFeatureSize; // double clusteringDistance; // }; // // typedef LDetector YAPE; // // class CV_EXPORTS FernClassifier // { // public: // FernClassifier(); // FernClassifier(const FileNode& node); // FernClassifier(const std::vector >& points, // const std::vector& refimgs, // const std::vector >& labels=std::vector >(), // int _nclasses=0, int _patchSize=PATCH_SIZE, // int _signatureSize=DEFAULT_SIGNATURE_SIZE, // int _nstructs=DEFAULT_STRUCTS, // int _structSize=DEFAULT_STRUCT_SIZE, // int _nviews=DEFAULT_VIEWS, // int _compressionMethod=COMPRESSION_NONE, // const PatchGenerator& patchGenerator=PatchGenerator()); // virtual ~FernClassifier(); // virtual void read(const FileNode& n); // virtual void write(FileStorage& fs, const String& name=String()) const; // virtual void trainFromSingleView(const Mat& image, // const std::vector& keypoints, // int _patchSize=PATCH_SIZE, // int _signatureSize=DEFAULT_SIGNATURE_SIZE, // int _nstructs=DEFAULT_STRUCTS, // int _structSize=DEFAULT_STRUCT_SIZE, // int _nviews=DEFAULT_VIEWS, // int _compressionMethod=COMPRESSION_NONE, // const PatchGenerator& patchGenerator=PatchGenerator()); // virtual void train(const std::vector >& points, // const std::vector& refimgs, // const std::vector >& labels=std::vector >(), // int _nclasses=0, int _patchSize=PATCH_SIZE, // int _signatureSize=DEFAULT_SIGNATURE_SIZE, // int _nstructs=DEFAULT_STRUCTS, // int _structSize=DEFAULT_STRUCT_SIZE, // int _nviews=DEFAULT_VIEWS, // int _compressionMethod=COMPRESSION_NONE, // const PatchGenerator& patchGenerator=PatchGenerator()); // virtual int operator()(const Mat& img, Point2f kpt, std::vector& signature) const; // virtual int operator()(const Mat& patch, std::vector& signature) const; // virtual void clear(); // virtual bool empty() const; // void setVerbose(bool verbose); // // int getClassCount() const; // int getStructCount() const; // int getStructSize() const; // int getSignatureSize() const; // int getCompressionMethod() const; // Size getPatchSize() const; // // struct Feature // { // uchar x1, y1, x2, y2; // Feature() : x1(0), y1(0), x2(0), y2(0) {} // Feature(int _x1, int _y1, int _x2, int _y2) // : x1((uchar)_x1), y1((uchar)_y1), x2((uchar)_x2), y2((uchar)_y2) // {} // template bool operator ()(const Mat_<_Tp>& patch) const // { return patch(y1,x1) > patch(y2, x2); } // }; // // enum // { // PATCH_SIZE = 31, // DEFAULT_STRUCTS = 50, // DEFAULT_STRUCT_SIZE = 9, // DEFAULT_VIEWS = 5000, // DEFAULT_SIGNATURE_SIZE = 176, // COMPRESSION_NONE = 0, // COMPRESSION_RANDOM_PROJ = 1, // COMPRESSION_PCA = 2, // DEFAULT_COMPRESSION_METHOD = COMPRESSION_NONE // }; // // protected: // virtual void prepare(int _nclasses, int _patchSize, int _signatureSize, // int _nstructs, int _structSize, // int _nviews, int _compressionMethod); // virtual void finalize(RNG& rng); // virtual int getLeaf(int fidx, const Mat& patch) const; // // bool verbose; // int nstructs; // int structSize; // int nclasses; // int signatureSize; // int compressionMethod; // int leavesPerStruct; // Size patchSize; // std::vector features; // std::vector classCounters; // std::vector posteriors; // }; // // /// ****************************************************************************************\ // * Calonder Classifier * // \****************************************************************************************/ // // struct RTreeNode; // // struct CV_EXPORTS BaseKeypoint // { // int x; // int y; // IplImage* image; // // BaseKeypoint() // : x(0), y(0), image(NULL) // {} // // BaseKeypoint(int _x, int _y, IplImage* _image) // : x(_x), y(_y), image(_image) // {} // }; // // class CV_EXPORTS RandomizedTree // { // public: // friend class RTreeClassifier; // // static const uchar PATCH_SIZE = 32; // static const int DEFAULT_DEPTH = 9; // static const int DEFAULT_VIEWS = 5000; // static const size_t DEFAULT_REDUCED_NUM_DIM = 176; // static float GET_LOWER_QUANT_PERC() { return .03f; } // static float GET_UPPER_QUANT_PERC() { return .92f; } // // RandomizedTree(); // ~RandomizedTree(); // // void train(std::vector const& base_set, RNG &rng, // int depth, int views, size_t reduced_num_dim, int num_quant_bits); // void train(std::vector const& base_set, RNG &rng, // PatchGenerator &make_patch, int depth, int views, size_t reduced_num_dim, // int num_quant_bits); // // // following two funcs are EXPERIMENTAL (do not use unless you know exactly what you do) // static void quantizeVector(float *vec, int dim, int N, float bnds[2], int clamp_mode=0); // static void quantizeVector(float *src, int dim, int N, float bnds[2], uchar *dst); // // // patch_data must be a 32x32 array (no row padding) // float* getPosterior(uchar* patch_data); // const float* getPosterior(uchar* patch_data) const; // uchar* getPosterior2(uchar* patch_data); // const uchar* getPosterior2(uchar* patch_data) const; // // void read(const char* file_name, int num_quant_bits); // void read(std::istream &is, int num_quant_bits); // void write(const char* file_name) const; // void write(std::ostream &os) const; // // int classes() { return classes_; } // int depth() { return depth_; } // // //void setKeepFloatPosteriors(bool b) { keep_float_posteriors_ = b; } // void discardFloatPosteriors() { freePosteriors(1); } // // inline void applyQuantization(int num_quant_bits) { makePosteriors2(num_quant_bits); } // // // debug // void savePosteriors(String url, bool append=false); // void savePosteriors2(String url, bool append=false); // // private: // int classes_; // int depth_; // int num_leaves_; // std::vector nodes_; // float **posteriors_; // 16-bytes aligned posteriors // uchar **posteriors2_; // 16-bytes aligned posteriors // std::vector leaf_counts_; // // void createNodes(int num_nodes, RNG &rng); // void allocPosteriorsAligned(int num_leaves, int num_classes); // void freePosteriors(int which); // which: 1=posteriors_, 2=posteriors2_, 3=both // void init(int classes, int depth, RNG &rng); // void addExample(int class_id, uchar* patch_data); // void finalize(size_t reduced_num_dim, int num_quant_bits); // int getIndex(uchar* patch_data) const; // inline float* getPosteriorByIndex(int index); // inline const float* getPosteriorByIndex(int index) const; // inline uchar* getPosteriorByIndex2(int index); // inline const uchar* getPosteriorByIndex2(int index) const; // //void makeRandomMeasMatrix(float *cs_phi, PHI_DISTR_TYPE dt, size_t reduced_num_dim); // void convertPosteriorsToChar(); // void makePosteriors2(int num_quant_bits); // void compressLeaves(size_t reduced_num_dim); // void estimateQuantPercForPosteriors(float perc[2]); // }; // // // inline uchar* getData(IplImage* image) // { // return reinterpret_cast(image->imageData); // } // // inline float* RandomizedTree::getPosteriorByIndex(int index) // { // return const_cast(const_cast(this)->getPosteriorByIndex(index)); // } // // inline const float* RandomizedTree::getPosteriorByIndex(int index) const // { // return posteriors_[index]; // } // // inline uchar* RandomizedTree::getPosteriorByIndex2(int index) // { // return const_cast(const_cast(this)->getPosteriorByIndex2(index)); // } // // inline const uchar* RandomizedTree::getPosteriorByIndex2(int index) const // { // return posteriors2_[index]; // } // // struct CV_EXPORTS RTreeNode // { // short offset1, offset2; // // RTreeNode() {} // RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2) // : offset1(y1*RandomizedTree::PATCH_SIZE + x1), // offset2(y2*RandomizedTree::PATCH_SIZE + x2) // {} // // //! Left child on 0, right child on 1 // inline bool operator() (uchar* patch_data) const // { // return patch_data[offset1] > patch_data[offset2]; // } // }; // // class CV_EXPORTS RTreeClassifier // { // public: // static const int DEFAULT_TREES = 48; // static const size_t DEFAULT_NUM_QUANT_BITS = 4; // // RTreeClassifier(); // void train(std::vector const& base_set, // RNG &rng, // int num_trees = RTreeClassifier::DEFAULT_TREES, // int depth = RandomizedTree::DEFAULT_DEPTH, // int views = RandomizedTree::DEFAULT_VIEWS, // size_t reduced_num_dim = RandomizedTree::DEFAULT_REDUCED_NUM_DIM, // int num_quant_bits = DEFAULT_NUM_QUANT_BITS); // void train(std::vector const& base_set, // RNG &rng, // PatchGenerator &make_patch, // int num_trees = RTreeClassifier::DEFAULT_TREES, // int depth = RandomizedTree::DEFAULT_DEPTH, // int views = RandomizedTree::DEFAULT_VIEWS, // size_t reduced_num_dim = RandomizedTree::DEFAULT_REDUCED_NUM_DIM, // int num_quant_bits = DEFAULT_NUM_QUANT_BITS); // // // sig must point to a memory block of at least classes()*sizeof(float|uchar) bytes // void getSignature(IplImage *patch, uchar *sig) const; // void getSignature(IplImage *patch, float *sig) const; // void getSparseSignature(IplImage *patch, float *sig, float thresh) const; // // TODO: deprecated in favor of getSignature overload, remove // void getFloatSignature(IplImage *patch, float *sig) const { getSignature(patch, sig); } // // static int countNonZeroElements(float *vec, int n, double tol=1e-10); // static inline void safeSignatureAlloc(uchar **sig, int num_sig=1, int sig_len=176); // static inline uchar* safeSignatureAlloc(int num_sig=1, int sig_len=176); // // inline int classes() const { return classes_; } // inline int original_num_classes() const { return original_num_classes_; } // // void setQuantization(int num_quant_bits); // void discardFloatPosteriors(); // // void read(const char* file_name); // void read(std::istream &is); // void write(const char* file_name) const; // void write(std::ostream &os) const; // // // experimental and debug // void saveAllFloatPosteriors(String file_url); // void saveAllBytePosteriors(String file_url); // void setFloatPosteriorsFromTextfile_176(String url); // float countZeroElements(); // // std::vector trees_; // // private: // int classes_; // int num_quant_bits_; // mutable uchar **posteriors_; // mutable unsigned short *ptemp_; // int original_num_classes_; // bool keep_floats_; // }; // /// ****************************************************************************************\ // * One-Way Descriptor * // \****************************************************************************************/ // /// / CvAffinePose: defines a parameterized affine transformation of an image patch. /// / An image patch is rotated on angle phi (in degrees), then scaled lambda1 times /// / along horizontal and lambda2 times along vertical direction, and then rotated again /// / on angle (theta - phi). // class CV_EXPORTS CvAffinePose // { // public: // float phi; // float theta; // float lambda1; // float lambda2; // }; // // class CV_EXPORTS OneWayDescriptor // { // public: // OneWayDescriptor(); // ~OneWayDescriptor(); // // // allocates memory for given descriptor parameters // void Allocate(int pose_count, CvSize size, int nChannels); // // // GenerateSamples: generates affine transformed patches with averaging them over small transformation variations. // // If external poses and transforms were specified, uses them instead of generating random ones // // - pose_count: the number of poses to be generated // // - frontal: the input patch (can be a roi in a larger image) // // - norm: if nonzero, normalizes the output patch so that the sum of pixel intensities is 1 // void GenerateSamples(int pose_count, IplImage* frontal, int norm = 0); // // // GenerateSamplesFast: generates affine transformed patches with averaging them over small transformation variations. // // Uses precalculated transformed pca components. // // - frontal: the input patch (can be a roi in a larger image) // // - pca_hr_avg: pca average vector // // - pca_hr_eigenvectors: pca eigenvectors // // - pca_descriptors: an array of precomputed descriptors of pca components containing their affine transformations // // pca_descriptors[0] corresponds to the average, pca_descriptors[1]-pca_descriptors[pca_dim] correspond to eigenvectors // void GenerateSamplesFast(IplImage* frontal, CvMat* pca_hr_avg, // CvMat* pca_hr_eigenvectors, OneWayDescriptor* pca_descriptors); // // // sets the poses and corresponding transforms // void SetTransforms(CvAffinePose* poses, CvMat** transforms); // // // Initialize: builds a descriptor. // // - pose_count: the number of poses to build. If poses were set externally, uses them rather than generating random ones // // - frontal: input patch. Can be a roi in a larger image // // - feature_name: the feature name to be associated with the descriptor // // - norm: if 1, the affine transformed patches are normalized so that their sum is 1 // void Initialize(int pose_count, IplImage* frontal, const char* feature_name = 0, int norm = 0); // // // InitializeFast: builds a descriptor using precomputed descriptors of pca components // // - pose_count: the number of poses to build // // - frontal: input patch. Can be a roi in a larger image // // - feature_name: the feature name to be associated with the descriptor // // - pca_hr_avg: average vector for PCA // // - pca_hr_eigenvectors: PCA eigenvectors (one vector per row) // // - pca_descriptors: precomputed descriptors of PCA components, the first descriptor for the average vector // // followed by the descriptors for eigenvectors // void InitializeFast(int pose_count, IplImage* frontal, const char* feature_name, // CvMat* pca_hr_avg, CvMat* pca_hr_eigenvectors, OneWayDescriptor* pca_descriptors); // // // ProjectPCASample: unwarps an image patch into a vector and projects it into PCA space // // - patch: input image patch // // - avg: PCA average vector // // - eigenvectors: PCA eigenvectors, one per row // // - pca_coeffs: output PCA coefficients // void ProjectPCASample(IplImage* patch, CvMat* avg, CvMat* eigenvectors, CvMat* pca_coeffs) const; // // // InitializePCACoeffs: projects all warped patches into PCA space // // - avg: PCA average vector // // - eigenvectors: PCA eigenvectors, one per row // void InitializePCACoeffs(CvMat* avg, CvMat* eigenvectors); // // // EstimatePose: finds the closest match between an input patch and a set of patches with different poses // // - patch: input image patch // // - pose_idx: the output index of the closest pose // // - distance: the distance to the closest pose (L2 distance) // void EstimatePose(IplImage* patch, int& pose_idx, float& distance) const; // // // EstimatePosePCA: finds the closest match between an input patch and a set of patches with different poses. // // The distance between patches is computed in PCA space // // - patch: input image patch // // - pose_idx: the output index of the closest pose // // - distance: distance to the closest pose (L2 distance in PCA space) // // - avg: PCA average vector. If 0, matching without PCA is used // // - eigenvectors: PCA eigenvectors, one per row // void EstimatePosePCA(CvArr* patch, int& pose_idx, float& distance, CvMat* avg, CvMat* eigenvalues) const; // // // GetPatchSize: returns the size of each image patch after warping (2 times smaller than the input patch) // CvSize GetPatchSize() const // { // return m_patch_size; // } // // // GetInputPatchSize: returns the required size of the patch that the descriptor is built from // // (2 time larger than the patch after warping) // CvSize GetInputPatchSize() const // { // return cvSize(m_patch_size.width*2, m_patch_size.height*2); // } // // // GetPatch: returns a patch corresponding to specified pose index // // - index: pose index // // - return value: the patch corresponding to specified pose index // IplImage* GetPatch(int index); // // // GetPose: returns a pose corresponding to specified pose index // // - index: pose index // // - return value: the pose corresponding to specified pose index // CvAffinePose GetPose(int index) const; // // // Save: saves all patches with different poses to a specified path // void Save(const char* path); // // // ReadByName: reads a descriptor from a file storage // // - fs: file storage // // - parent: parent node // // - name: node name // // - return value: 1 if succeeded, 0 otherwise // int ReadByName(CvFileStorage* fs, CvFileNode* parent, const char* name); // // // ReadByName: reads a descriptor from a file node // // - parent: parent node // // - name: node name // // - return value: 1 if succeeded, 0 otherwise // int ReadByName(const FileNode &parent, const char* name); // // // Write: writes a descriptor into a file storage // // - fs: file storage // // - name: node name // void Write(CvFileStorage* fs, const char* name); // // // GetFeatureName: returns a name corresponding to a feature // const char* GetFeatureName() const; // // // GetCenter: returns the center of the feature // CvPoint GetCenter() const; // // void SetPCADimHigh(int pca_dim_high) {m_pca_dim_high = pca_dim_high;}; // void SetPCADimLow(int pca_dim_low) {m_pca_dim_low = pca_dim_low;}; // // int GetPCADimLow() const; // int GetPCADimHigh() const; // // CvMat** GetPCACoeffs() const {return m_pca_coeffs;} // // protected: // int m_pose_count; // the number of poses // CvSize m_patch_size; // size of each image // IplImage** m_samples; // an array of length m_pose_count containing the patch in different poses // IplImage* m_input_patch; // IplImage* m_train_patch; // CvMat** m_pca_coeffs; // an array of length m_pose_count containing pca decomposition of the patch in different poses // CvAffinePose* m_affine_poses; // an array of poses // CvMat** m_transforms; // an array of affine transforms corresponding to poses // // String m_feature_name; // the name of the feature associated with the descriptor // CvPoint m_center; // the coordinates of the feature (the center of the input image ROI) // // int m_pca_dim_high; // the number of descriptor pca components to use for generating affine poses // int m_pca_dim_low; // the number of pca components to use for comparison // }; // // /// / OneWayDescriptorBase: encapsulates functionality for training/loading a set of one way descriptors /// / and finding the nearest closest descriptor to an input feature // class CV_EXPORTS OneWayDescriptorBase // { // public: // // // creates an instance of OneWayDescriptor from a set of training files // // - patch_size: size of the input (large) patch // // - pose_count: the number of poses to generate for each descriptor // // - train_path: path to training files // // - pca_config: the name of the file that contains PCA for small patches (2 times smaller // // than patch_size each dimension // // - pca_hr_config: the name of the file that contains PCA for large patches (of patch_size size) // // - pca_desc_config: the name of the file that contains descriptors of PCA components // OneWayDescriptorBase(CvSize patch_size, int pose_count, const char* train_path = 0, const char* pca_config = 0, // const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1, // int pca_dim_high = 100, int pca_dim_low = 100); // // OneWayDescriptorBase(CvSize patch_size, int pose_count, const String &pca_filename, const String &train_path = String(), const String &images_list = String(), // float _scale_min = 0.7f, float _scale_max=1.5f, float _scale_step=1.2f, int pyr_levels = 1, // int pca_dim_high = 100, int pca_dim_low = 100); // // // virtual ~OneWayDescriptorBase(); // void clear (); // // // // Allocate: allocates memory for a given number of descriptors // void Allocate(int train_feature_count); // // // AllocatePCADescriptors: allocates memory for pca descriptors // void AllocatePCADescriptors(); // // // returns patch size // CvSize GetPatchSize() const {return m_patch_size;}; // // returns the number of poses for each descriptor // int GetPoseCount() const {return m_pose_count;}; // // // returns the number of pyramid levels // int GetPyrLevels() const {return m_pyr_levels;}; // // // returns the number of descriptors // int GetDescriptorCount() const {return m_train_feature_count;}; // // // CreateDescriptorsFromImage: creates descriptors for each of the input features // // - src: input image // // - features: input features // // - pyr_levels: the number of pyramid levels // void CreateDescriptorsFromImage(IplImage* src, const std::vector& features); // // // CreatePCADescriptors: generates descriptors for PCA components, needed for fast generation of feature descriptors // void CreatePCADescriptors(); // // // returns a feature descriptor by feature index // const OneWayDescriptor* GetDescriptor(int desc_idx) const {return &m_descriptors[desc_idx];}; // // // FindDescriptor: finds the closest descriptor // // - patch: input image patch // // - desc_idx: output index of the closest descriptor to the input patch // // - pose_idx: output index of the closest pose of the closest descriptor to the input patch // // - distance: distance from the input patch to the closest feature pose // // - _scales: scales of the input patch for each descriptor // // - scale_ranges: input scales variation (float[2]) // void FindDescriptor(IplImage* patch, int& desc_idx, int& pose_idx, float& distance, float* _scale = 0, float* scale_ranges = 0) const; // // // - patch: input image patch // // - n: number of the closest indexes // // - desc_idxs: output indexes of the closest descriptor to the input patch (n) // // - pose_idx: output indexes of the closest pose of the closest descriptor to the input patch (n) // // - distances: distance from the input patch to the closest feature pose (n) // // - _scales: scales of the input patch // // - scale_ranges: input scales variation (float[2]) // void FindDescriptor(IplImage* patch, int n, std::vector& desc_idxs, std::vector& pose_idxs, // std::vector& distances, std::vector& _scales, float* scale_ranges = 0) const; // // // FindDescriptor: finds the closest descriptor // // - src: input image // // - pt: center of the feature // // - desc_idx: output index of the closest descriptor to the input patch // // - pose_idx: output index of the closest pose of the closest descriptor to the input patch // // - distance: distance from the input patch to the closest feature pose // void FindDescriptor(IplImage* src, cv::Point2f pt, int& desc_idx, int& pose_idx, float& distance) const; // // // InitializePoses: generates random poses // void InitializePoses(); // // // InitializeTransformsFromPoses: generates 2x3 affine matrices from poses (initializes m_transforms) // void InitializeTransformsFromPoses(); // // // InitializePoseTransforms: subsequently calls InitializePoses and InitializeTransformsFromPoses // void InitializePoseTransforms(); // // // InitializeDescriptor: initializes a descriptor // // - desc_idx: descriptor index // // - train_image: image patch (ROI is supported) // // - feature_label: feature textual label // void InitializeDescriptor(int desc_idx, IplImage* train_image, const char* feature_label); // // void InitializeDescriptor(int desc_idx, IplImage* train_image, const KeyPoint& keypoint, const char* feature_label); // // // InitializeDescriptors: load features from an image and create descriptors for each of them // void InitializeDescriptors(IplImage* train_image, const std::vector& features, // const char* feature_label = "", int desc_start_idx = 0); // // // Write: writes this object to a file storage // // - fs: output filestorage // void Write (FileStorage &fs) const; // // // Read: reads OneWayDescriptorBase object from a file node // // - fn: input file node // void Read (const FileNode &fn); // // // LoadPCADescriptors: loads PCA descriptors from a file // // - filename: input filename // int LoadPCADescriptors(const char* filename); // // // LoadPCADescriptors: loads PCA descriptors from a file node // // - fn: input file node // int LoadPCADescriptors(const FileNode &fn); // // // SavePCADescriptors: saves PCA descriptors to a file // // - filename: output filename // void SavePCADescriptors(const char* filename); // // // SavePCADescriptors: saves PCA descriptors to a file storage // // - fs: output file storage // void SavePCADescriptors(CvFileStorage* fs) const; // // // GeneratePCA: calculate and save PCA components and descriptors // // - img_path: path to training PCA images directory // // - images_list: filename with filenames of training PCA images // void GeneratePCA(const char* img_path, const char* images_list, int pose_count=500); // // // SetPCAHigh: sets the high resolution pca matrices (copied to internal structures) // void SetPCAHigh(CvMat* avg, CvMat* eigenvectors); // // // SetPCALow: sets the low resolution pca matrices (copied to internal structures) // void SetPCALow(CvMat* avg, CvMat* eigenvectors); // // int GetLowPCA(CvMat** avg, CvMat** eigenvectors) // { // *avg = m_pca_avg; // *eigenvectors = m_pca_eigenvectors; // return m_pca_dim_low; // }; // // int GetPCADimLow() const {return m_pca_dim_low;}; // int GetPCADimHigh() const {return m_pca_dim_high;}; // // void ConvertDescriptorsArrayToTree(); // Converting pca_descriptors array to KD tree // // // GetPCAFilename: get default PCA filename // static String GetPCAFilename () { return "pca.yml"; } // // virtual bool empty() const { return m_train_feature_count <= 0 ? true : false; } // // protected: // CvSize m_patch_size; // patch size // int m_pose_count; // the number of poses for each descriptor // int m_train_feature_count; // the number of the training features // OneWayDescriptor* m_descriptors; // array of train feature descriptors // CvMat* m_pca_avg; // PCA average Vector for small patches // CvMat* m_pca_eigenvectors; // PCA eigenvectors for small patches // CvMat* m_pca_hr_avg; // PCA average Vector for large patches // CvMat* m_pca_hr_eigenvectors; // PCA eigenvectors for large patches // OneWayDescriptor* m_pca_descriptors; // an array of PCA descriptors // // cv::flann::Index* m_pca_descriptors_tree; // CvMat* m_pca_descriptors_matrix; // // CvAffinePose* m_poses; // array of poses // CvMat** m_transforms; // array of affine transformations corresponding to poses // // int m_pca_dim_high; // int m_pca_dim_low; // // int m_pyr_levels; // float scale_min; // float scale_max; // float scale_step; // // // SavePCAall: saves PCA components and descriptors to a file storage // // - fs: output file storage // void SavePCAall (FileStorage &fs) const; // // // LoadPCAall: loads PCA components and descriptors from a file node // // - fn: input file node // void LoadPCAall (const FileNode &fn); // }; // // class CV_EXPORTS OneWayDescriptorObject : public OneWayDescriptorBase // { // public: // // creates an instance of OneWayDescriptorObject from a set of training files // // - patch_size: size of the input (large) patch // // - pose_count: the number of poses to generate for each descriptor // // - train_path: path to training files // // - pca_config: the name of the file that contains PCA for small patches (2 times smaller // // than patch_size each dimension // // - pca_hr_config: the name of the file that contains PCA for large patches (of patch_size size) // // - pca_desc_config: the name of the file that contains descriptors of PCA components // OneWayDescriptorObject(CvSize patch_size, int pose_count, const char* train_path, const char* pca_config, // const char* pca_hr_config = 0, const char* pca_desc_config = 0, int pyr_levels = 1); // // OneWayDescriptorObject(CvSize patch_size, int pose_count, const String &pca_filename, // const String &train_path = String (), const String &images_list = String (), // float _scale_min = 0.7f, float _scale_max=1.5f, float _scale_step=1.2f, int pyr_levels = 1); // // // virtual ~OneWayDescriptorObject(); // // // Allocate: allocates memory for a given number of features // // - train_feature_count: the total number of features // // - object_feature_count: the number of features extracted from the object // void Allocate(int train_feature_count, int object_feature_count); // // // void SetLabeledFeatures(const std::vector& features) {m_train_features = features;}; // std::vector& GetLabeledFeatures() {return m_train_features;}; // const std::vector& GetLabeledFeatures() const {return m_train_features;}; // std::vector _GetLabeledFeatures() const; // // // IsDescriptorObject: returns 1 if descriptor with specified index is positive, otherwise 0 // int IsDescriptorObject(int desc_idx) const; // // // MatchPointToPart: returns the part number of a feature if it matches one of the object parts, otherwise -1 // int MatchPointToPart(CvPoint pt) const; // // // GetDescriptorPart: returns the part number of the feature corresponding to a specified descriptor // // - desc_idx: descriptor index // int GetDescriptorPart(int desc_idx) const; // // // void InitializeObjectDescriptors(IplImage* train_image, const std::vector& features, // const char* feature_label, int desc_start_idx = 0, float scale = 1.0f, // int is_background = 0); // // // GetObjectFeatureCount: returns the number of object features // int GetObjectFeatureCount() const {return m_object_feature_count;}; // // protected: // int* m_part_id; // contains part id for each of object descriptors // std::vector m_train_features; // train features // int m_object_feature_count; // the number of the positive features // // }; // // /// * // * OneWayDescriptorMatcher // */ // class OneWayDescriptorMatcher; // typedef OneWayDescriptorMatcher OneWayDescriptorMatch; // // class CV_EXPORTS OneWayDescriptorMatcher : public GenericDescriptorMatcher // { // public: // class CV_EXPORTS Params // { // public: // static const int POSE_COUNT = 500; // static const int PATCH_WIDTH = 24; // static const int PATCH_HEIGHT = 24; // static float GET_MIN_SCALE() { return 0.7f; } // static float GET_MAX_SCALE() { return 1.5f; } // static float GET_STEP_SCALE() { return 1.2f; } // // Params( int poseCount = POSE_COUNT, // Size patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT), // String pcaFilename = String(), // String trainPath = String(), String trainImagesList = String(), // float minScale = GET_MIN_SCALE(), float maxScale = GET_MAX_SCALE(), // float stepScale = GET_STEP_SCALE() ); // // int poseCount; // Size patchSize; // String pcaFilename; // String trainPath; // String trainImagesList; // // float minScale, maxScale, stepScale; // }; // // OneWayDescriptorMatcher( const Params& params=Params() ); // virtual ~OneWayDescriptorMatcher(); // // void initialize( const Params& params, const Ptr& base=Ptr() ); // // // Clears keypoints storing in collection and OneWayDescriptorBase // virtual void clear(); // // virtual void train(); // // virtual bool isMaskSupported(); // // virtual void read( const FileNode &fn ); // virtual void write( FileStorage& fs ) const; // // virtual bool empty() const; // // virtual Ptr clone( bool emptyTrainData=false ) const; // // protected: // // Matches a set of keypoints from a single image of the training set. A rectangle with a center in a keypoint // // and size (patch_width/2*scale, patch_height/2*scale) is cropped from the source image for each // // keypoint. scale is iterated from DescriptorOneWayParams::min_scale to DescriptorOneWayParams::max_scale. // // The minimum distance to each training patch with all its affine poses is found over all scales. // // The class ID of a match is returned for each keypoint. The distance is calculated over PCA components // // loaded with DescriptorOneWay::Initialize, kd tree is used for finding minimum distances. // virtual void knnMatchImpl( const Mat& queryImage, std::vector& queryKeypoints, // std::vector >& matches, int k, // const std::vector& masks, bool compactResult ); // virtual void radiusMatchImpl( const Mat& queryImage, std::vector& queryKeypoints, // std::vector >& matches, float maxDistance, // const std::vector& masks, bool compactResult ); // // Ptr base; // Params params; // int prevTrainCount; // }; // /// * // * FernDescriptorMatcher // */ // class FernDescriptorMatcher; // typedef FernDescriptorMatcher FernDescriptorMatch; // // class CV_EXPORTS FernDescriptorMatcher : public GenericDescriptorMatcher // { // public: // class CV_EXPORTS Params // { // public: // Params( int nclasses=0, // int patchSize=FernClassifier::PATCH_SIZE, // int signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE, // int nstructs=FernClassifier::DEFAULT_STRUCTS, // int structSize=FernClassifier::DEFAULT_STRUCT_SIZE, // int nviews=FernClassifier::DEFAULT_VIEWS, // int compressionMethod=FernClassifier::COMPRESSION_NONE, // const PatchGenerator& patchGenerator=PatchGenerator() ); // // Params( const String& filename ); // // int nclasses; // int patchSize; // int signatureSize; // int nstructs; // int structSize; // int nviews; // int compressionMethod; // PatchGenerator patchGenerator; // // String filename; // }; // // FernDescriptorMatcher( const Params& params=Params() ); // virtual ~FernDescriptorMatcher(); // // virtual void clear(); // // virtual void train(); // // virtual bool isMaskSupported(); // // virtual void read( const FileNode &fn ); // virtual void write( FileStorage& fs ) const; // virtual bool empty() const; // // virtual Ptr clone( bool emptyTrainData=false ) const; // // protected: // virtual void knnMatchImpl( const Mat& queryImage, std::vector& queryKeypoints, // std::vector >& matches, int k, // const std::vector& masks, bool compactResult ); // virtual void radiusMatchImpl( const Mat& queryImage, std::vector& queryKeypoints, // std::vector >& matches, float maxDistance, // const std::vector& masks, bool compactResult ); // // void trainFernClassifier(); // void calcBestProbAndMatchIdx( const Mat& image, const Point2f& pt, // float& bestProb, int& bestMatchIdx, std::vector& signature ); // Ptr classifier; // Params params; // int prevTrainCount; // }; // // /// * // * CalonderDescriptorExtractor // */ // template // class CV_EXPORTS CalonderDescriptorExtractor : public DescriptorExtractor // { // public: // CalonderDescriptorExtractor( const String& classifierFile ); // // virtual void read( const FileNode &fn ); // virtual void write( FileStorage &fs ) const; // // virtual int descriptorSize() const { return classifier_.classes(); } // virtual int descriptorType() const { return DataType::type; } // // virtual bool empty() const; // // protected: // virtual void computeImpl( const Mat& image, std::vector& keypoints, Mat& descriptors ) const; // // RTreeClassifier classifier_; // static const int BORDER_SIZE = 16; // }; // // template // CalonderDescriptorExtractor::CalonderDescriptorExtractor(const String& classifier_file) // { // classifier_.read( classifier_file.c_str() ); // } // // template // void CalonderDescriptorExtractor::computeImpl( const Mat& image, // std::vector& keypoints, // Mat& descriptors) const // { // // Cannot compute descriptors for keypoints on the image border. // KeyPointsFilter::runByImageBorder(keypoints, image.size(), BORDER_SIZE); // // /// @todo Check 16-byte aligned // descriptors.create((int)keypoints.size(), classifier_.classes(), cv::DataType::type); // // int patchSize = RandomizedTree::PATCH_SIZE; // int offset = patchSize / 2; // for (size_t i = 0; i < keypoints.size(); ++i) // { // cv::Point2f pt = keypoints[i].pt; // IplImage ipl = image( Rect((int)(pt.x - offset), (int)(pt.y - offset), patchSize, patchSize) ); // classifier_.getSignature( &ipl, descriptors.ptr((int)i)); // } // } // // template // void CalonderDescriptorExtractor::read( const FileNode& ) // {} // // template // void CalonderDescriptorExtractor::write( FileStorage& ) const // {} // // template // bool CalonderDescriptorExtractor::empty() const // { // return classifier_.trees_.empty(); // } // // /// ///////////////////// Brute Force Matcher ////////////////////////// // // template // class CV_EXPORTS BruteForceMatcher : public BFMatcher // { // public: // BruteForceMatcher( Distance d = Distance() ) : BFMatcher(Distance::normType, false) {(void)d;} // virtual ~BruteForceMatcher() {} // }; // // /// ****************************************************************************************\ // * Planar Object Detection * // \****************************************************************************************/ // // class CV_EXPORTS PlanarObjectDetector // { // public: // PlanarObjectDetector(); // PlanarObjectDetector(const FileNode& node); // PlanarObjectDetector(const std::vector& pyr, int _npoints=300, // int _patchSize=FernClassifier::PATCH_SIZE, // int _nstructs=FernClassifier::DEFAULT_STRUCTS, // int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE, // int _nviews=FernClassifier::DEFAULT_VIEWS, // const LDetector& detector=LDetector(), // const PatchGenerator& patchGenerator=PatchGenerator()); // virtual ~PlanarObjectDetector(); // virtual void train(const std::vector& pyr, int _npoints=300, // int _patchSize=FernClassifier::PATCH_SIZE, // int _nstructs=FernClassifier::DEFAULT_STRUCTS, // int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE, // int _nviews=FernClassifier::DEFAULT_VIEWS, // const LDetector& detector=LDetector(), // const PatchGenerator& patchGenerator=PatchGenerator()); // virtual void train(const std::vector& pyr, const std::vector& keypoints, // int _patchSize=FernClassifier::PATCH_SIZE, // int _nstructs=FernClassifier::DEFAULT_STRUCTS, // int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE, // int _nviews=FernClassifier::DEFAULT_VIEWS, // const LDetector& detector=LDetector(), // const PatchGenerator& patchGenerator=PatchGenerator()); // Rect getModelROI() const; // std::vector getModelPoints() const; // const LDetector& getDetector() const; // const FernClassifier& getClassifier() const; // void setVerbose(bool verbose); // // void read(const FileNode& node); // void write(FileStorage& fs, const String& name=String()) const; // bool operator()(const Mat& image, CV_OUT Mat& H, CV_OUT std::vector& corners) const; // bool operator()(const std::vector& pyr, const std::vector& keypoints, // CV_OUT Mat& H, CV_OUT std::vector& corners, // CV_OUT std::vector* pairs=0) const; // // protected: // bool verbose; // Rect modelROI; // std::vector modelPoints; // LDetector ldetector; // FernClassifier fernClassifier; // }; // // } // /// / 2009-01-12, Xavier Delacour // // struct lsh_hash { // int h1, h2; // }; // // struct CvLSHOperations // { // virtual ~CvLSHOperations() {} // // virtual int vector_add(const void* data) = 0; // virtual void vector_remove(int i) = 0; // virtual const void* vector_lookup(int i) = 0; // virtual void vector_reserve(int n) = 0; // virtual unsigned int vector_count() = 0; // // virtual void hash_insert(lsh_hash h, int l, int i) = 0; // virtual void hash_remove(lsh_hash h, int l, int i) = 0; // virtual int hash_lookup(lsh_hash h, int l, int* ret_i, int ret_i_max) = 0; // }; // // #endif // // #ifdef __cplusplus // extern "C" { // #endif // /// * Splits color or grayscale image into multiple connected components // of nearly the same color/brightness using modification of Burt algorithm. // comp with contain a pointer to sequence (CvSeq) // of connected components (CvConnectedComp) */ // CVAPI(void) cvPyrSegmentation( IplImage* src, IplImage* dst, // CvMemStorage* storage, CvSeq** comp, // int level, double threshold1, // double threshold2 ); // /// ****************************************************************************************\ // * Planar subdivisions * // \****************************************************************************************/ type pCvSubdiv2DEdge = ^TCvSubdiv2DEdge; TCvSubdiv2DEdge = size_t; // // #define CV_QUADEDGE2D_FIELDS() \ // int flags; \ // struct CvSubdiv2DPoint* pt[4]; \ // CvSubdiv2DEdge next[4]; // // #define CV_SUBDIV2D_POINT_FIELDS()\ // int flags; \ // CvSubdiv2DEdge first; \ // CvPoint2D32f pt; \ // int id; // // #define CV_SUBDIV2D_VIRTUAL_POINT_FLAG (1 << 30) // // typedef struct CvQuadEdge2D // { // CV_QUADEDGE2D_FIELDS() // } // CvQuadEdge2D; // // typedef struct CvSubdiv2DPoint // { // CV_SUBDIV2D_POINT_FIELDS() // } // CvSubdiv2DPoint; // // #define CV_SUBDIV2D_FIELDS() \ // CV_GRAPH_FIELDS() \ // int quad_edges; \ // int is_geometry_valid; \ // CvSubdiv2DEdge recent_edge; \ // CvPoint2D32f topleft; \ // CvPoint2D32f bottomright; // // typedef struct CvSubdiv2D // { // CV_SUBDIV2D_FIELDS() // } // CvSubdiv2D; Type TCvSubdiv2DPointLocation = Integer; const { CvSubdiv2DPointLocation enum } CV_PTLOC_ERROR = -2; CV_PTLOC_OUTSIDE_RECT = -1; CV_PTLOC_INSIDE = 0; CV_PTLOC_VERTEX = 1; CV_PTLOC_ON_EDGE = 2; Type TCvNextEdgeType = Integer; const { CvNextEdgeType enum } CV_NEXT_AROUND_ORG = $00; CV_NEXT_AROUND_DST = $22; CV_PREV_AROUND_ORG = $11; CV_PREV_AROUND_DST = $33; CV_NEXT_AROUND_LEFT = $13; CV_NEXT_AROUND_RIGHT = $31; CV_PREV_AROUND_LEFT = $20; CV_PREV_AROUND_RIGHT = $02; /// * get the next edge with the same origin point (counterwise) */ // #define CV_SUBDIV2D_NEXT_EDGE( edge ) (((CvQuadEdge2D*)((edge) & ~3))->next[(edge)&3]) /// * Initializes Delaunay triangulation */ // CVAPI(void) cvInitSubdivDelaunay2D( CvSubdiv2D* subdiv, CvRect rect ); procedure cvInitSubdivDelaunay2D(subdiv: pCvSubdiv2D; rect: TCvRect); cdecl; /// * Creates new subdivision */ // CVAPI(CvSubdiv2D*) cvCreateSubdiv2D( int subdiv_type, int header_size, // int vtx_size, int quadedge_size, // CvMemStorage* storage ); function cvCreateSubdiv2D(subdiv_type: Integer; header_size: Integer; vtx_size: Integer; quadedge_size: Integer; storage: pCvMemStorage): pCvSubdiv2D; cdecl; /// ************************* high-level subdivision functions ***************************/ // /// * Simplified Delaunay diagram creation */ // CV_INLINE CvSubdiv2D* cvCreateSubdivDelaunay2D( CvRect rect, CvMemStorage* storage ) // { // CvSubdiv2D* subdiv = cvCreateSubdiv2D( CV_SEQ_KIND_SUBDIV2D, sizeof(*subdiv), // sizeof(CvSubdiv2DPoint), sizeof(CvQuadEdge2D), storage ); // // cvInitSubdivDelaunay2D( subdiv, rect ); // return subdiv; // } /// * Inserts new point to the Delaunay triangulation */ // CVAPI(CvSubdiv2DPoint*) cvSubdivDelaunay2DInsert( CvSubdiv2D* subdiv, CvPoint2D32f pt); function cvSubdivDelaunay2DInsert(subdiv: pCvSubdiv2D; pt: TCvPoint2D32f): pCvSubdiv2DPoint; cdecl; /// * Locates a point within the Delaunay triangulation (finds the edge // the point is left to or belongs to, or the triangulation point the given // point coinsides with */ // CVAPI(CvSubdiv2DPointLocation) cvSubdiv2DLocate( // CvSubdiv2D* subdiv, CvPoint2D32f pt, // CvSubdiv2DEdge* edge, // CvSubdiv2DPoint** vertex CV_DEFAULT(NULL) ); function cvSubdiv2DLocate(subdiv: pCvSubdiv2D; pt: TCvPoint2D32f; edge: pCvSubdiv2DEdge; vertex: pCvSubdiv2DPoint = nil) : TCvSubdiv2DPointLocation; cdecl; /// * Calculates Voronoi tesselation (i.e. coordinates of Voronoi points) */ // CVAPI(void) cvCalcSubdivVoronoi2D( CvSubdiv2D* subdiv ); procedure cvCalcSubdivVoronoi2D(subdiv: pCvSubdiv2D); cdecl; /// * Removes all Voronoi points from the tesselation */ // CVAPI(void) cvClearSubdivVoronoi2D( CvSubdiv2D* subdiv ); // // /// * Finds the nearest to the given point vertex in subdivision. */ // CVAPI(CvSubdiv2DPoint*) cvFindNearestPoint2D( CvSubdiv2D* subdiv, CvPoint2D32f pt ); // // /// ************ Basic quad-edge navigation and operations ************/ // // CV_INLINE CvSubdiv2DEdge cvSubdiv2DNextEdge( CvSubdiv2DEdge edge ) // { // return CV_SUBDIV2D_NEXT_EDGE(edge); // } // CV_INLINE CvSubdiv2DEdge cvSubdiv2DRotateEdge( CvSubdiv2DEdge edge, int rotate ) // { // return (edge & ~3) + ((edge + rotate) & 3); // } function cvSubdiv2DRotateEdge(edge: TCvSubdiv2DEdge; rotate: Integer): TCvSubdiv2DEdge; // inline; // CV_INLINE CvSubdiv2DEdge cvSubdiv2DSymEdge( CvSubdiv2DEdge edge ) // { // return edge ^ 2; // } // CV_INLINE CvSubdiv2DEdge cvSubdiv2DGetEdge( CvSubdiv2DEdge edge, CvNextEdgeType type ) // { // CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3); // edge = e->next[(edge + (int)type) & 3]; // return (edge & ~3) + ((edge + ((int)type >> 4)) & 3); // } function cvSubdiv2DGetEdge(edge: TCvSubdiv2DEdge; _type: TCvNextEdgeType): TCvSubdiv2DEdge; // inline; // CV_INLINE CvSubdiv2DPoint* cvSubdiv2DEdgeOrg( CvSubdiv2DEdge edge ) // { // CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3); // return (CvSubdiv2DPoint*)e->pt[edge & 3]; // } function cvSubdiv2DEdgeOrg(edge: TCvSubdiv2DEdge): pCvSubdiv2DPoint; // inline; // CV_INLINE CvSubdiv2DPoint* cvSubdiv2DEdgeDst( CvSubdiv2DEdge edge ) // { // CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3); // return (CvSubdiv2DPoint*)e->pt[(edge + 2) & 3]; // } function cvSubdiv2DEdgeDst(edge: TCvSubdiv2DEdge): pCvSubdiv2DPoint; // inline; /// ****************************************************************************************\ // * Additional operations on Subdivisions * // \****************************************************************************************/ // /// / paints voronoi diagram: just demo function // CVAPI(void) icvDrawMosaic( CvSubdiv2D* subdiv, IplImage* src, IplImage* dst ); // /// / checks planar subdivision for correctness. It is not an absolute check, /// / but it verifies some relations between quad-edges // CVAPI(int) icvSubdiv2DCheck( CvSubdiv2D* subdiv ); // /// / returns squared distance between two 2D points with floating-point coordinates. // CV_INLINE double icvSqDist2D32f( CvPoint2D32f pt1, CvPoint2D32f pt2 ) // { // double dx = pt1.x - pt2.x; // double dy = pt1.y - pt2.y; // // return dx*dx + dy*dy; // } // // // // // CV_INLINE double cvTriangleArea( CvPoint2D32f a, CvPoint2D32f b, CvPoint2D32f c ) // { // return ((double)b.x - a.x) * ((double)c.y - a.y) - ((double)b.y - a.y) * ((double)c.x - a.x); // } // // /// * Constructs kd-tree from set of feature descriptors */ // CVAPI(struct CvFeatureTree*) cvCreateKDTree(CvMat* desc); // /// * Constructs spill-tree from set of feature descriptors */ // CVAPI(struct CvFeatureTree*) cvCreateSpillTree( const CvMat* raw_data, // const int naive CV_DEFAULT(50), // const double rho CV_DEFAULT(.7), // const double tau CV_DEFAULT(.1) ); // /// * Release feature tree */ // CVAPI(void) cvReleaseFeatureTree(struct CvFeatureTree* tr); // /// * Searches feature tree for k nearest neighbors of given reference points, // searching (in case of kd-tree/bbf) at most emax leaves. */ // CVAPI(void) cvFindFeatures(struct CvFeatureTree* tr, const CvMat* query_points, // CvMat* indices, CvMat* dist, int k, int emax CV_DEFAULT(20)); // /// * Search feature tree for all points that are inlier to given rect region. // Only implemented for kd trees */ // CVAPI(int) cvFindFeaturesBoxed(struct CvFeatureTree* tr, // CvMat* bounds_min, CvMat* bounds_max, // CvMat* out_indices); // // /// * Construct a Locality Sensitive Hash (LSH) table, for indexing d-dimensional vectors of // given type. Vectors will be hashed L times with k-dimensional p-stable (p=2) functions. */ // CVAPI(struct CvLSH*) cvCreateLSH(struct CvLSHOperations* ops, int d, // int L CV_DEFAULT(10), int k CV_DEFAULT(10), // int type CV_DEFAULT(CV_64FC1), double r CV_DEFAULT(4), // int64 seed CV_DEFAULT(-1)); // /// * Construct in-memory LSH table, with n bins. */ // CVAPI(struct CvLSH*) cvCreateMemoryLSH(int d, int n, int L CV_DEFAULT(10), int k CV_DEFAULT(10), // int type CV_DEFAULT(CV_64FC1), double r CV_DEFAULT(4), // int64 seed CV_DEFAULT(-1)); // /// * Free the given LSH structure. */ // CVAPI(void) cvReleaseLSH(struct CvLSH** lsh); // /// * Return the number of vectors in the LSH. */ // CVAPI(unsigned int) LSHSize(struct CvLSH* lsh); // /// * Add vectors to the LSH structure, optionally returning indices. */ // CVAPI(void) cvLSHAdd(struct CvLSH* lsh, const CvMat* data, CvMat* indices CV_DEFAULT(0)); // /// * Remove vectors from LSH, as addressed by given indices. */ // CVAPI(void) cvLSHRemove(struct CvLSH* lsh, const CvMat* indices); // /// * Query the LSH n times for at most k nearest points; data is n x d, // indices and dist are n x k. At most emax stored points will be accessed. */ // CVAPI(void) cvLSHQuery(struct CvLSH* lsh, const CvMat* query_points, // CvMat* indices, CvMat* dist, int k, int emax); // /// * Kolmogorov-Zabin stereo-correspondence algorithm (a.k.a. KZ1) */ // #define CV_STEREO_GC_OCCLUDED SHRT_MAX Type pCvStereoGCState = ^TCvStereoGCState; TCvStereoGCState = packed record Ithreshold: Integer; interactionRadius: Integer; K, lambda, lambda1, lambda2: Single; occlusionCost: Integer; minDisparity: Integer; numberOfDisparities: Integer; maxIters: Integer; left: pCvMat; right: pCvMat; dispLeft: pCvMat; dispRight: pCvMat; ptrLeft: pCvMat; ptrRight: pCvMat; vtxBuf: pCvMat; edgeBuf: pCvMat; end; // CVAPI(CvStereoGCState*) cvCreateStereoGCState( int numberOfDisparities, int maxIters ); function cvCreateStereoGCState(numberOfDisparities: Integer; maxIters: Integer): pCvStereoGCState; cdecl; // CVAPI(void) cvReleaseStereoGCState( CvStereoGCState** state ); procedure cvReleaseStereoGCState(Var state: pCvStereoGCState); cdecl; { CVAPI(void) cvFindStereoCorrespondenceGC( const CvArr* left, const CvArr* right, CvArr* disparityLeft, CvArr* disparityRight, CvStereoGCState* state, int useDisparityGuess CV_DEFAULT(0) ); } procedure cvFindStereoCorrespondenceGC(const left: pIplImage; const right: pIplImage; disparityLeft: pCvMat; disparityRight: pCvMat; state: pCvStereoGCState; useDisparityGuess: Integer = 0); cdecl; /// * Calculates optical flow for 2 images using classical Lucas & Kanade algorithm */ // CVAPI(void) cvCalcOpticalFlowLK( const CvArr* prev, const CvArr* curr, // CvSize win_size, CvArr* velx, CvArr* vely ); // /// * Calculates optical flow for 2 images using block matching algorithm */ // CVAPI(void) cvCalcOpticalFlowBM( const CvArr* prev, const CvArr* curr, // CvSize block_size, CvSize shift_size, // CvSize max_range, int use_previous, // CvArr* velx, CvArr* vely ); // /// * Calculates Optical flow for 2 images using Horn & Schunck algorithm */ // CVAPI(void) cvCalcOpticalFlowHS( const CvArr* prev, const CvArr* curr, // int use_previous, CvArr* velx, CvArr* vely, // double lambda, CvTermCriteria criteria ); // // /// ****************************************************************************************\ // * Background/foreground segmentation * // \****************************************************************************************/ // /// * We discriminate between foreground and background pixels // * by building and maintaining a model of the background. // * Any pixel which does not fit this model is then deemed // * to be foreground. // * // * At present we support two core background models, // * one of which has two variations: // * // * o CV_BG_MODEL_FGD: latest and greatest algorithm, described in // * // * Foreground Object Detection from Videos Containing Complex Background. // * Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian. // * ACM MM2003 9p // * // * o CV_BG_MODEL_FGD_SIMPLE: // * A code comment describes this as a simplified version of the above, // * but the code is in fact currently identical // * // * o CV_BG_MODEL_MOG: "Mixture of Gaussians", older algorithm, described in // * // * Moving target classification and tracking from real-time video. // * A Lipton, H Fujijoshi, R Patil // * Proceedings IEEE Workshop on Application of Computer Vision pp 8-14 1998 // * // * Learning patterns of activity using real-time tracking // * C Stauffer and W Grimson August 2000 // * IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8):747-757 // */ // const CV_BG_MODEL_FGD = 0; CV_BG_MODEL_MOG = 1; // * "Mixture of Gaussians". */ CV_BG_MODEL_FGD_SIMPLE = 2; Type ppCvBGStatModel = ^pCvBGStatModel; pCvBGStatModel = ^TCvBGStatModel; // typedef void (CV_CDECL * CvReleaseBGStatModel)( struct CvBGStatModel** bg_model ); TCvReleaseBGStatModel = procedure(Var bg_model: pCvBGStatModel); cdecl; // typedef int (CV_CDECL * CvUpdateBGStatModel)( IplImage* curr_frame, struct CvBGStatModel* bg_model, double learningRate ); TCvUpdateBGStatModel = function(curr_frame: pIplImage; bg_model: pCvBGStatModel; learningRate: double) : Integer; cdecl; TCvBGStatModel = packed record _type: Integer; // *type of BG model release: TCvReleaseBGStatModel; update: TCvUpdateBGStatModel; background: pIplImage; // *8UC3 reference background image foreground: pIplImage; // *8UC1 foreground image layers: pIplImage; // *8UC3 reference background image, can be null layer_count: Integer; // * can be zero storage: pCvMemStorage; // *storage for foreground_regions foreground_regions: pCvSeq; // *foreground object contours end; // #define CV_BG_STAT_MODEL_FIELDS() \ // int type; /*type of BG model*/ \ // CvReleaseBGStatModel release; \ // CvUpdateBGStatModel update; \ // IplImage* background; /*8UC3 reference background image*/ \ // IplImage* foreground; /*8UC1 foreground image*/ \ // IplImage** layers; /*8UC3 reference background image, can be null */ \ // int layer_count; /* can be zero */ \ // CvMemStorage* storage; /*storage for foreground_regions*/ \ // CvSeq* foreground_regions /*foreground object contours*/ /// / Releases memory used by BGStatModel // CVAPI(void) cvReleaseBGStatModel( CvBGStatModel** bg_model ); procedure cvReleaseBGStatModel(Var bg_model: pCvBGStatModel); cdecl; // Updates statistical model and returns number of found foreground regions // CVAPI(int) cvUpdateBGStatModel( IplImage* current_frame, CvBGStatModel* bg_model, // double learningRate CV_DEFAULT(-1)); function cvUpdateBGStatModel(current_frame: pIplImage; bg_model: pCvBGStatModel; learningRate: double = -1) : Integer; cdecl; /// / Performs FG post-processing using segmentation /// / (all pixels of a region will be classified as foreground if majority of pixels of the region are FG). /// / parameters: /// / segments - pointer to result of segmentation (for example MeanShiftSegmentation) /// / bg_model - pointer to CvBGStatModel structure // CVAPI(void) cvRefineForegroundMaskBySegm( CvSeq* segments, CvBGStatModel* bg_model ); // /// * Common use change detection function */ // CVAPI(int) cvChangeDetection( IplImage* prev_frame, // IplImage* curr_frame, // IplImage* change_mask ); // // Interface of ACM MM2003 algorithm // const // Default parameters of foreground detection algorithm: CV_BGFG_FGD_LC = 128; CV_BGFG_FGD_N1C = 15; CV_BGFG_FGD_N2C = 25; CV_BGFG_FGD_LCC = 64; CV_BGFG_FGD_N1CC = 25; CV_BGFG_FGD_N2CC = 40; // Background reference image update parameter: */ CV_BGFG_FGD_ALPHA_1 = 0.1; /// * stat model update parameter // * 0.002f ~ 1K frame(~45sec), 0.005 ~ 18sec (if 25fps and absolutely static BG) // */ CV_BGFG_FGD_ALPHA_2 = 0.005; // * start value for alpha parameter (to fast initiate statistic model) */ CV_BGFG_FGD_ALPHA_3 = 0.1; CV_BGFG_FGD_DELTA = 2; CV_BGFG_FGD_T = 0.9; CV_BGFG_FGD_MINAREA = 15; CV_BGFG_FGD_BG_UPDATE_TRESH = 0.5; /// * See the above-referenced Li/Huang/Gu/Tian paper // * for a full description of these background-model // * tuning parameters. // * // * Nomenclature: 'c' == "color", a three-component red/green/blue vector. // * We use histograms of these to model the range of // * colors we've seen at a given background pixel. // * // * 'cc' == "color co-occurrence", a six-component vector giving // * RGB color for both this frame and preceding frame. // * We use histograms of these to model the range of // * color CHANGES we've seen at a given background pixel. // */ Type pCvFGDStatModelParams = ^TCvFGDStatModelParams; TCvFGDStatModelParams = packed record Lc: Integer; // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128. N1c: Integer; // Number of color vectors used to model normal background color variation at a given pixel. N2c: Integer; // Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c. // Used to allow the first N1c vectors to adapt over time to changing background. Lcc: Integer; // Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64. N1cc: Integer; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel. N2cc: Integer; // Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc. // Used to allow the first N1cc vectors to adapt over time to changing background. is_obj_without_holes: Integer; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE. perform_morphing: Integer; // Number of erode-dilate-erode foreground-blob cleanup iterations. // These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1. alpha1: Single; // How quickly we forget old background pixel values seen. Typically set to 0.1 alpha2: Single; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005. alpha3: Single; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1. delta: Single; // Affects color and color co-occurrence quantization, typically set to 2. T: Single; // "A percentage value which determines when new features can be recognized as new background." (Typically 0.9). minArea: Single; // Discard foreground blobs whose bounding box is smaller than this threshold. end; // // typedef struct CvBGPixelCStatTable // { // float Pv, Pvb; // uchar v[3]; // } CvBGPixelCStatTable; // // typedef struct CvBGPixelCCStatTable // { // float Pv, Pvb; // uchar v[6]; // } CvBGPixelCCStatTable; // // typedef struct CvBGPixelStat // { // float Pbc; // float Pbcc; // CvBGPixelCStatTable* ctable; // CvBGPixelCCStatTable* cctable; // uchar is_trained_st_model; // uchar is_trained_dyn_model; // } CvBGPixelStat; // // // typedef struct CvFGDStatModel // { // CV_BG_STAT_MODEL_FIELDS(); // CvBGPixelStat* pixel_stat; // IplImage* Ftd; // IplImage* Fbd; // IplImage* prev_frame; // CvFGDStatModelParams params; // } CvFGDStatModel; /// * Creates FGD model */ // CVAPI(CvBGStatModel*) cvCreateFGDStatModel( IplImage* first_frame, CvFGDStatModelParams* parameters CV_DEFAULT(NULL)); function cvCreateFGDStatModel(first_frame: pIplImage; parameters: pCvFGDStatModelParams = nil): pCvBGStatModel; cdecl // Interface of Gaussian mixture algorithm // // "An improved adaptive background mixture model for real-time tracking with shadow detection" // P. KadewTraKuPong and R. Bowden, // Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001." // http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf // /// * Note: "MOG" == "Mixture Of Gaussians": */ const CV_BGFG_MOG_MAX_NGAUSSIANS = 500; // * default parameters of gaussian background detection algorithm */ CV_BGFG_MOG_BACKGROUND_THRESHOLD = 0.7; // * threshold sum of weights for background test */ CV_BGFG_MOG_STD_THRESHOLD = 2.5; // * lambda=2.5 is 99% */ CV_BGFG_MOG_WINDOW_SIZE = 200; // * Learning rate; alpha = 1/CV_GBG_WINDOW_SIZE */ CV_BGFG_MOG_NGAUSSIANS = 5; // * = K = number of Gaussians in mixture */ CV_BGFG_MOG_WEIGHT_INIT = 0.05; CV_BGFG_MOG_SIGMA_INIT = 30; CV_BGFG_MOG_MINAREA = 15; CV_BGFG_MOG_NCOLORS = 3; type pCvGaussBGStatModelParams = ^TCvGaussBGStatModelParams; TCvGaussBGStatModelParams = packed record win_size: Integer; // * = 1/alpha n_gauss: Integer; bg_threshold, std_threshold, minArea: double; weight_init, variance_init: double; end; pCvGaussBGValues = ^TCvGaussBGValues; TCvGaussBGValues = packed record match_sum: Integer; weight: double; variance: array [0 .. CV_BGFG_MOG_NCOLORS - 1] of double; mean: array [0 .. CV_BGFG_MOG_NCOLORS - 1] of double; end; pCvGaussBGPoint = ^TCvGaussBGPoint; TCvGaussBGPoint = packed record g_values: pCvGaussBGValues; end; pCvGaussBGModel = ^TCvGaussBGModel; TCvGaussBGModel = packed record // CV_BG_STAT_MODEL_FIELDS(); _type: Integer; // type of BG model release: TCvReleaseBGStatModel; update: TCvUpdateBGStatModel; background: pIplImage; // 8UC3 reference background image foreground: pIplImage; // 8UC1 foreground image layers: pIplImage; // 8UC3 reference background image, can be null layer_count: Integer; // can be zero storage: pCvMemStorage; // storage for foreground_regions foreground_regions: pCvSeq; // foreground object contours params: TCvGaussBGStatModelParams; g_point: pCvGaussBGPoint; countFrames: Integer; mog: Pointer; end; // * Creates Gaussian mixture background model */ // CVAPI(CvBGStatModel*) cvCreateGaussianBGModel( IplImage* first_frame, CvGaussBGStatModelParams* parameters CV_DEFAULT(NULL)); function cvCreateGaussianBGModel(first_frame: pIplImage; parameters: pCvGaussBGStatModelParams = nil) : pCvBGStatModel; cdecl; type pCvBGCodeBookElem = ^TCvBGCodeBookElem; TCvBGCodeBookElem = packed record next: pCvBGCodeBookElem; tLastUpdate: Integer; stale: Integer; boxMin: array [0 .. 2] of byte; boxMax: array [0 .. 2] of byte; learnMin: array [0 .. 2] of byte; learnMax: array [0 .. 2] of byte; end; pCvBGCodeBookModel = ^TCvBGCodeBookModel; TCvBGCodeBookModel = packed record size: TCvSize; T: Integer; cbBounds: array [0 .. 2] of byte; modMin: array [0 .. 2] of byte; modMax: array [0 .. 2] of byte; cbmap: pCvBGCodeBookElem; storage: pCvMemStorage; freeList: pCvBGCodeBookElem; end; // CVAPI(CvBGCodeBookModel*) cvCreateBGCodeBookModel( void ); function cvCreateBGCodeBookModel: pCvBGCodeBookModel; cdecl; // CVAPI(void) cvReleaseBGCodeBookModel( CvBGCodeBookModel** model ); procedure cvReleaseBGCodeBookModel(model: pCvBGCodeBookModel); cdecl; // CVAPI(void) cvBGCodeBookUpdate( CvBGCodeBookModel* model, const CvArr* image, CvRect roi CV_DEFAULT(cvRect(0,0,0,0)),const CvArr* mask CV_DEFAULT(0) ); procedure cvBGCodeBookUpdate(model: pCvBGCodeBookModel; const image: pIplImage; roi: TCvRect { =CV_DEFAULT(cvRect(0,0,0,0)) }; const mask: pCvArr { =0 } ); cdecl; // CVAPI(int) cvBGCodeBookDiff( const CvBGCodeBookModel* model, const CvArr* image, CvArr* fgmask, CvRect roi CV_DEFAULT(cvRect(0,0,0,0)) ); function cvBGCodeBookDiff(const model: pCvBGCodeBookModel; const image: pCvArr; fgmask: pCvArr; roi: TCvRect { = cvRect(0,0,0,0) } ): Integer; cdecl; // CVAPI(void) cvBGCodeBookClearStale( CvBGCodeBookModel* model, int staleThresh, CvRect roi CV_DEFAULT(cvRect(0,0,0,0)), const CvArr* mask CV_DEFAULT(0) ); procedure cvBGCodeBookClearStale(model: pCvBGCodeBookModel; staleThresh: Integer; roi: TCvRect { =cvRect(0,0,0,0) }; const mask: pCvArr = nil ); cdecl; // CVAPI(CvSeq*) cvSegmentFGMask( CvArr *fgmask, int poly1Hull0 CV_DEFAULT(1), float perimScale CV_DEFAULT(4.f), CvMemStorage* storage CV_DEFAULT(0), CvPoint offset CV_DEFAULT(cvPoint(0,0))); function cvSegmentFGMask(fgmask: pCvArr; poly1Hull0: Integer { =1 }; perimScale: Single { = 4 }; storage: pCvMemStorage { =nil }; offset: TCvPoint { =cvPoint(0,0) } ): pCvSeq; cdecl; implementation Uses uLibName; function cvCreateStereoGCState; external legacy_Dll; procedure cvFindStereoCorrespondenceGC; external legacy_Dll; procedure cvReleaseStereoGCState; external legacy_Dll; procedure cvSnakeImage; external legacy_Dll; function cvCreateSubdiv2D; external legacy_Dll; procedure cvInitSubdivDelaunay2D; external legacy_Dll; function cvSubdiv2DEdgeOrg(edge: TCvSubdiv2DEdge): pCvSubdiv2DPoint; inline; Var e: pCvQuadEdge2D; begin // CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3); e := pCvQuadEdge2D(edge and (not 3)); // return (CvSubdiv2DPoint*)e->pt[edge & 3]; Result := pCvSubdiv2DPoint(e^.pt[edge and 3]); end; function cvSubdiv2DEdgeDst(edge: TCvSubdiv2DEdge): pCvSubdiv2DPoint; Var e: pCvQuadEdge2D; begin // CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3); e := pCvQuadEdge2D(edge and (not 3)); // return (CvSubdiv2DPoint*)e->pt[(edge + 2) & 3]; Result := pCvSubdiv2DPoint(e^.pt[(edge + 2) and 3]); end; function cvSubdiv2DLocate; external legacy_Dll; function cvSubdiv2DGetEdge(edge: TCvSubdiv2DEdge; _type: TCvNextEdgeType): TCvSubdiv2DEdge; Var e: pCvQuadEdge2D; begin // CvQuadEdge2D* e = (CvQuadEdge2D*)(edge & ~3); e := pCvQuadEdge2D(edge and (not 3)); // edge = e->next[(edge + (int)type) & 3]; edge := e^.next[(edge + _type) and 3]; // return (edge & ~3) + ((edge + ((int)type >> 4)) & 3); Result := (edge and (not 3)) + ((edge + (_type shr 4)) and 3); end; function cvSubdiv2DRotateEdge(edge: TCvSubdiv2DEdge; rotate: Integer): TCvSubdiv2DEdge; begin // return (edge & ~3) + ((edge + rotate) & 3); Result := (edge and (not 3)) + ((edge + rotate) and 3); end; procedure cvCalcSubdivVoronoi2D; external legacy_Dll; function cvSubdivDelaunay2DInsert; external legacy_Dll; function cvCreateGaussianBGModel; external legacy_Dll; function cvUpdateBGStatModel; external legacy_Dll; procedure cvReleaseBGStatModel; external legacy_Dll; function cvCreateFGDStatModel; external legacy_Dll; function cvCreateBGCodeBookModel; external legacy_Dll; procedure cvReleaseBGCodeBookModel; external legacy_Dll; procedure cvBGCodeBookUpdate; external legacy_Dll; function cvBGCodeBookDiff; external legacy_Dll; procedure cvBGCodeBookClearStale; external legacy_Dll; function cvSegmentFGMask; external legacy_Dll; end.