// ************************************************************************************************** // Project Delphi-OpenCV // ************************************************************************************************** // Contributor: // Laentir Valetov // email:laex@bk.ru // Mikhail Grigorev // email:sleuthound@gmail.com // ************************************************************************************************** // You may retrieve the latest version of this file at the GitHub, // located at git://github.com/Laex/Delphi-OpenCV.git // ************************************************************************************************** // License: // The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License"); // you may not use this file except in compliance with the License. You may obtain a copy of the // License at http://www.mozilla.org/MPL/ // // Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF // ANY KIND, either express or implied. See the License for the specific language governing rights // and limitations under the License. // // Alternatively, the contents of this file may be used under the terms of the // GNU Lesser General Public License (the "LGPL License"), in which case the // provisions of the LGPL License are applicable instead of those above. // If you wish to allow use of your version of this file only under the terms // of the LGPL License and not to allow others to use your version of this file // under the MPL, indicate your decision by deleting the provisions above and // replace them with the notice and other provisions required by the LGPL // License. If you do not delete the provisions above, a recipient may use // your version of this file under either the MPL or the LGPL License. // // For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html // ************************************************************************************************** // Warning: Using Delphi XE3 syntax! // ************************************************************************************************** // The Initial Developer of the Original Code: // OpenCV: open source computer vision library // Homepage: http://ocv.org // Online docs: http://docs.ocv.org // Q&A forum: http://answers.ocv.org // Dev zone: http://code.ocv.org // ************************************************************************************************** // Original file: // opencv\modules\calib3d\include\opencv2\calib3d\calib3d_c.h // ************************************************************************************************* {$IFDEF DEBUG} {$A8,B-,C+,D+,E-,F-,G+,H+,I+,J-,K-,L+,M-,N+,O-,P+,Q+,R+,S-,T-,U-,V+,W+,X+,Y+,Z1} {$ELSE} {$A8,B-,C-,D-,E-,F-,G+,H+,I+,J-,K-,L-,M-,N+,O+,P+,Q-,R-,S-,T-,U-,V+,W-,X+,Y-,Z1} {$ENDIF} {$WARN SYMBOL_DEPRECATED OFF} {$WARN SYMBOL_PLATFORM OFF} {$WARN UNIT_PLATFORM OFF} {$WARN UNSAFE_TYPE OFF} {$WARN UNSAFE_CODE OFF} {$WARN UNSAFE_CAST OFF} unit ocv.calib3d_c; interface uses ocv.core.types_c, ocv.compat; /// ****************************************************************************************\ // * Camera Calibration, Pose Estimation and Stereo * // \****************************************************************************************/ Type // typedef struct CvPOSITObject CvPOSITObject; PCvPOSITObject = ^TCvPOSITObject; TCvPOSITObject = record N: Integer; inv_matr: PSingle; obj_vecs: PSingle; img_vecs: PSingle; end; /// * Allocates and initializes CvPOSITObject structure before doing cvPOSIT */ // CVAPI(CvPOSITObject*) cvCreatePOSITObject( CvPoint3D32f* points, int point_count ); function cvCreatePOSITObject(points: pCvPoint3D32f; point_count: Integer): PCvPOSITObject; cdecl; /// * Runs POSIT (POSe from ITeration) algorithm for determining 3d position of // an object given its model and projection in a weak-perspective case */ // CVAPI(void) cvPOSIT( CvPOSITObject* posit_object, CvPoint2D32f* image_points, // double focal_length, CvTermCriteria criteria, // float* rotation_matrix, float* translation_vector); procedure cvPOSIT(posit_object: PCvPOSITObject; imagePoints: pCvPoint2D32f; focal_length: double; criteria: TCvTermCriteria; rotation_matrix: TCvMatr32f; translation_vector: TCvVect32f); cdecl; /// * Releases CvPOSITObject structure */ // CVAPI(void) cvReleasePOSITObject( CvPOSITObject** posit_object ); procedure cvReleasePOSITObject(Var posit_object: PCvPOSITObject); cdecl; /// * updates the number of RANSAC iterations */ // CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob, // int model_points, int max_iters ); function cvRANSACUpdateNumIters(p: double; err_prob: double; model_points: Integer; max_iters: Integer): Integer; cdecl; // CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst ); procedure cvConvertPointsHomogeneous(const src: pCvMat; dst: pCvMat); cdecl; const /// * Calculates fundamental matrix given a set of corresponding points */ CV_FM_7POINT = 1; CV_FM_8POINT = 2; CV_LMEDS = 4; CV_RANSAC = 8; CV_FM_LMEDS_ONLY = CV_LMEDS; CV_FM_RANSAC_ONLY = CV_RANSAC; CV_FM_LMEDS = CV_LMEDS; CV_FM_RANSAC = CV_RANSAC; CV_ITERATIVE = 0; CV_EPNP = 1; // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" CV_P3P = 2; // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem" // CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2, // CvMat* fundamental_matrix, // int method CV_DEFAULT(CV_FM_RANSAC), // double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99), // CvMat* status CV_DEFAULT(NULL) ); // /// * For each input point on one of images // computes parameters of the corresponding // epipolar line on the other image */ // CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points, // int which_image, // const CvMat* fundamental_matrix, // CvMat* correspondent_lines ); // /// * Triangulation functions */ // // CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2, // CvMat* projPoints1, CvMat* projPoints2, // CvMat* points4D); // // CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2, // CvMat* new_points1, CvMat* new_points2); // // /// * Computes the optimal new camera matrix according to the free scaling parameter alpha: // alpha=0 - only valid pixels will be retained in the undistorted image // alpha=1 - all the source image pixels will be retained in the undistorted image // */ // CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix, // const CvMat* dist_coeffs, // CvSize image_size, double alpha, // CvMat* new_camera_matrix, // CvSize new_imag_size CV_DEFAULT(cvSize(0,0)), // CvRect* valid_pixel_ROI CV_DEFAULT(0), // int center_principal_point CV_DEFAULT(0)); // // * Converts rotation vector to rotation matrix or vice versa */ // CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst, // CvMat* jacobian CV_DEFAULT(0) ); function cvRodrigues2(const src: pCvMat; dst: pCvMat; jacobian: pCvMat = nil): Integer; cdecl; /// * Finds perspective transformation between the object plane and image (view) plane */ // CVAPI(int) cvFindHomography( const CvMat* src_points, // const CvMat* dst_points, // CvMat* homography, // int method CV_DEFAULT(0), // double ransacReprojThreshold CV_DEFAULT(3), // CvMat* mask CV_DEFAULT(0)); function cvFindHomography(const src_points: pCvMat; const dst_points: pCvMat; homography: pCvMat; method: Integer = 0; ransacReprojThreshold: double = 3; mask: pCvMat = nil): Integer; cdecl; /// * Computes RQ decomposition for 3x3 matrices */ // CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ, // CvMat *matrixQx CV_DEFAULT(NULL), // CvMat *matrixQy CV_DEFAULT(NULL), // CvMat *matrixQz CV_DEFAULT(NULL), // CvPoint3D64f *eulerAngles CV_DEFAULT(NULL)); // /// * Computes projection matrix decomposition */ // CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr, // CvMat *rotMatr, CvMat *posVect, // CvMat *rotMatrX CV_DEFAULT(NULL), // CvMat *rotMatrY CV_DEFAULT(NULL), // CvMat *rotMatrZ CV_DEFAULT(NULL), // CvPoint3D64f *eulerAngles CV_DEFAULT(NULL)); // /// * Computes d(AB)/dA and d(AB)/dB */ // CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB ); // /// * Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)), // t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */ // CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1, // const CvMat* _rvec2, const CvMat* _tvec2, // CvMat* _rvec3, CvMat* _tvec3, // CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0), // CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0), // CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0), // CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) ); /// * Projects object points to the view plane using // the specified extrinsic and intrinsic camera parameters */ // CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector, // const CvMat* translation_vector, const CvMat* camera_matrix, // const CvMat* distortion_coeffs, CvMat* image_points, // CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL), // CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL), // CvMat* dpddist CV_DEFAULT(NULL), // double aspect_ratio CV_DEFAULT(0)); procedure cvProjectPoints2(const object_points: pCvMat; const rotation_vector: pCvMat; const translation_vector: pCvMat; const camera_matrix: pCvMat; const distortion_coeffs: pCvMat; image_points: pCvMat; dpdrot: pCvMat = nil; dpdt: pCvMat = nil; dpdf: pCvMat = nil; dpdc: pCvMat = nil; dpddist: pCvMat = nil; aspect_ratio: double = 0); cdecl; // * Finds extrinsic camera parameters from // a few known corresponding point pairs and intrinsic parameters */ // CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points, // const CvMat* image_points, // const CvMat* camera_matrix, // const CvMat* distortion_coeffs, // CvMat* rotation_vector, // CvMat* translation_vector, // int use_extrinsic_guess CV_DEFAULT(0) ); procedure cvFindExtrinsicCameraParams2(const object_points: pCvMat; const image_points: pCvMat; const camera_matrix: pCvMat; const distortion_coeffs: pCvMat; rotation_vector: pCvMat; translation_vector: pCvMat; use_extrinsic_guess: Integer = 0); cdecl; /// * Computes initial estimate of the intrinsic camera parameters // in case of planar calibration target (e.g. chessboard) */ // CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points, // const CvMat* image_points, // const CvMat* npoints, CvSize image_size, // CvMat* camera_matrix, // double aspect_ratio CV_DEFAULT(1.) ); // // #define CV_CALIB_CB_ADAPTIVE_THRESH 1 // #define CV_CALIB_CB_NORMALIZE_IMAGE 2 // #define CV_CALIB_CB_FILTER_QUADS 4 // #define CV_CALIB_CB_FAST_CHECK 8 // { // Performs a fast check if a chessboard is in the input image. This is a workaround to // a problem of cvFindChessboardCorners being slow on images with no chessboard // - src: input image // - size: chessboard size // Returns 1 if a chessboard can be in this image and findChessboardCorners should be called, // 0 if there is no chessboard, -1 in case of error CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size); } function cvCheckChessboard(const image: pCvArr; size: TCvSize): Integer; cdecl; // /* Detects corners on a chessboard calibration pattern */ // CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size, // CvPoint2D32f* corners, // int* corner_count CV_DEFAULT(NULL), // int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) ); const CV_CALIB_USE_INTRINSIC_GUESS = 1; CV_CALIB_FIX_ASPECT_RATIO = 2; CV_CALIB_FIX_PRINCIPAL_POINT = 4; CV_CALIB_ZERO_TANGENT_DIST = 8; CV_CALIB_FIX_FOCAL_LENGTH = 16; CV_CALIB_FIX_K1 = 32; CV_CALIB_FIX_K2 = 64; CV_CALIB_FIX_K3 = 128; CV_CALIB_FIX_K4 = 2048; CV_CALIB_FIX_K5 = 4096; CV_CALIB_FIX_K6 = 8192; CV_CALIB_RATIONAL_MODEL = 16384; CV_CALIB_THIN_PRISM_MODEL = 32768; CV_CALIB_FIX_S1_S2_S3_S4 = 65536; { /* Draws individual chessboard corners or the whole chessboard detected */ CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size, CvPoint2D32f* corners, int count, int pattern_was_found ); } procedure cvDrawChessboardCorners(image: pIplImage; pattern_size: TCvSize; corners: pCvPoint2D32f; count: Integer; pattern_was_found: Integer); cdecl; { /* Finds intrinsic and extrinsic camera parameters from a few views of known calibration pattern */ CVAPI(double) cvCalibrateCamera2( const CvMat* object_points, const CvMat* image_points, const CvMat* point_counts, CvSize image_size, CvMat* camera_matrix, CvMat* distortion_coeffs, CvMat* rotation_vectors CV_DEFAULT(NULL), CvMat* translation_vectors CV_DEFAULT(NULL), int flags CV_DEFAULT(0), CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) ); } function cvCalibrateCamera2( { } const object_points: pCvMat; { } const image_points: pCvMat; { } const point_counts: pCvMat; { } image_size: TCvSize; { } camera_matrix: pCvMat; { } distortion_coeffs: pCvMat; { } rotation_vectors: pCvMat { =nil }; { } translation_vectors: pCvMat { =nil }; { } flags: Integer { =0 }; { } term_crit: TCvTermCriteria { =cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON) } ): double; cdecl; /// * Computes various useful characteristics of the camera from the data computed by // cvCalibrateCamera2 */ // CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix, // CvSize image_size, // double aperture_width CV_DEFAULT(0), // double aperture_height CV_DEFAULT(0), // double *fovx CV_DEFAULT(NULL), // double *fovy CV_DEFAULT(NULL), // double *focal_length CV_DEFAULT(NULL), // CvPoint2D64f *principal_point CV_DEFAULT(NULL), // double *pixel_aspect_ratio CV_DEFAULT(NULL)); // // #define CV_CALIB_FIX_INTRINSIC 256 // #define CV_CALIB_SAME_FOCAL_LENGTH 512 // /// * Computes the transformation from one camera coordinate system to another one // from a few correspondent views of the same calibration target. Optionally, calibrates // both cameras */ // CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1, // const CvMat* image_points2, const CvMat* npoints, // CvMat* camera_matrix1, CvMat* dist_coeffs1, // CvMat* camera_matrix2, CvMat* dist_coeffs2, // CvSize image_size, CvMat* R, CvMat* T, // CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0), // CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria( // CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)), // int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC)); const CV_CALIB_ZERO_DISPARITY = 1024; // Computes 3D rotations (+ optional shift) for each camera coordinate system to make both // views parallel (=> to make all the epipolar lines horizontal or vertical) // CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2, // const CvMat* dist_coeffs1, const CvMat* dist_coeffs2, // CvSize image_size, const CvMat* R, const CvMat* T, // CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2, // CvMat* Q CV_DEFAULT(0), // int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY), // double alpha CV_DEFAULT(-1), // CvSize new_image_size CV_DEFAULT(cvSize(0,0)), // CvRect* valid_pix_ROI1 CV_DEFAULT(0), // CvRect* valid_pix_ROI2 CV_DEFAULT(0)); procedure cvStereoRectify(const camera_matrix1: pCvMat; const camera_matrix2: pCvMat; const dist_coeffs1: pCvMat; const dist_coeffs2: pCvMat; image_size: TCvSize; const R: pCvMat; const T: pCvMat; R1: pCvMat; R2: pCvMat; P1: pCvMat; P2: pCvMat; Q: pCvMat { = nil }; flags: Integer { = CV_CALIB_ZERO_DISPARITY }; alpha: double { = -1 }; new_image_size: TCvSize { =CV_DEFAULT(cvSize(0,0)) }; valid_pix_ROI1: pCvRect { =nil }; valid_pix_ROI2: pCvRect { =nil } ); cdecl; /// * Computes rectification transformations for uncalibrated pair of images using a set // of point correspondences */ // CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2, // const CvMat* F, CvSize img_size, // CvMat* H1, CvMat* H2, // double threshold CV_DEFAULT(5)); // // // /// * stereo correspondence parameters and functions */ // // #define CV_STEREO_BM_NORMALIZED_RESPONSE 0 // #define CV_STEREO_BM_XSOBEL 1 // /// * Block matching algorithm structure */ // typedef struct CvStereoBMState // { // // pre-filtering (normalization of input images) // int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now // int preFilterSize; // averaging window size: ~5x5..21x21 // int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap] // // // correspondence using Sum of Absolute Difference (SAD) // int SADWindowSize; // ~5x5..21x21 // int minDisparity; // minimum disparity (can be negative) // int numberOfDisparities; // maximum disparity - minimum disparity (> 0) // // // post-filtering // int textureThreshold; // the disparity is only computed for pixels // // with textured enough neighborhood // int uniquenessRatio; // accept the computed disparity d* only if // // SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.) // // for any d != d*+/-1 within the search range. // int speckleWindowSize; // disparity variation window // int speckleRange; // acceptable range of variation in window // // int trySmallerWindows; // if 1, the results may be more accurate, // // at the expense of slower processing // CvRect roi1, roi2; // int disp12MaxDiff; // // // temporary buffers // CvMat* preFilteredImg0; // CvMat* preFilteredImg1; // CvMat* slidingSumBuf; // CvMat* cost; // CvMat* disp; // } CvStereoBMState; // // #define CV_STEREO_BM_BASIC 0 // #define CV_STEREO_BM_FISH_EYE 1 // #define CV_STEREO_BM_NARROW 2 // // CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC), // int numberOfDisparities CV_DEFAULT(0)); // // CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state ); // // CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right, // CvArr* disparity, CvStereoBMState* state ); // // CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity, // int numberOfDisparities, int SADWindowSize ); // // CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost, // int minDisparity, int numberOfDisparities, // int disp12MaxDiff CV_DEFAULT(1) ); { /* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */ CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage, CvArr* _3dImage, const CvMat* Q, int handleMissingValues CV_DEFAULT(0) ); } procedure cvReprojectImageTo3D( { } const disparityImage: pCvMat; { } _3dImage: pIplImage; { } const Q: pCvMat; { } handleMissingValues: Integer = 0); cdecl; Const CV_CALIB_CB_ADAPTIVE_THRESH = 1; CV_CALIB_CB_NORMALIZE_IMAGE = 2; CV_CALIB_CB_FILTER_QUADS = 4; CV_CALIB_CB_FAST_CHECK = 8; { /* Detects corners on a chessboard calibration pattern */ CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size, CvPoint2D32f* corners, int* corner_count CV_DEFAULT(NULL), int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) ); } function cvFindChessboardCorners(const image: Pointer; pattern_size: TCvSize; corners: pCvPoint2D32f; corner_count: pInteger = nil; flags: Integer = CV_CALIB_CB_ADAPTIVE_THRESH + CV_CALIB_CB_NORMALIZE_IMAGE) : Integer; cdecl; implementation uses ocv.lib; procedure cvReprojectImageTo3D; external calib3d_lib; function cvFindChessboardCorners; external calib3d_lib; procedure cvDrawChessboardCorners; external calib3d_lib; function cvCalibrateCamera2; external calib3d_lib; procedure cvProjectPoints2; external calib3d_lib; procedure cvFindExtrinsicCameraParams2; external calib3d_lib; function cvFindHomography; external calib3d_lib; function cvCreatePOSITObject; external calib3d_lib; procedure cvPOSIT; external calib3d_lib; procedure cvReleasePOSITObject; external calib3d_lib; function cvRANSACUpdateNumIters; external calib3d_lib; procedure cvConvertPointsHomogeneous(const src: pCvMat; dst: pCvMat); external calib3d_lib; function cvCheckChessboard; external calib3d_lib; function cvRodrigues2; external calib3d_lib; procedure cvStereoRectify; external calib3d_lib; end.