// --------------------------------- OpenCV license.txt --------------------------- (* // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage.*) (* / ************************************************************************************************** // Project Delphi-OpenCV // ************************************************************************************************** // Contributor: // laentir Valetov // email:laex@bk.ru // ************************************************************************************************** // You may retrieve the latest version of this file at the GitHub, // located at git://github.com/Laex/Delphi-OpenCV.git // ************************************************************************************************** // License: // The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License"); // you may not use this file except in compliance with the License. You may obtain a copy of the // License at http://www.mozilla.org/MPL/ // // Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF // ANY KIND, either express or implied. See the License for the specific language governing rights // and limitations under the License. // // Alternatively, the contents of this file may be used under the terms of the // GNU Lesser General Public License (the "LGPL License"), in which case the // provisions of the LGPL License are applicable instead of those above. // If you wish to allow use of your version of this file only under the terms // of the LGPL License and not to allow others to use your version of this file // under the MPL, indicate your decision by deleting the provisions above and // replace them with the notice and other provisions required by the LGPL // License. If you do not delete the provisions above, a recipient may use // your version of this file under either the MPL or the LGPL License. // // For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html // ************************************************************************************************** // Warning: Using Delphi XE3 syntax! // ************************************************************************************************** // The Initial Developer of the Original Code: // OpenCV: open source computer vision library // Homepage: http://opencv.org // Online docs: http://docs.opencv.org // Q&A forum: http://answers.opencv.org // Dev zone: http://code.opencv.org // ************************************************************************************************** // Original file: // opencv\modules\objdetect\include\opencv2\objdetect_c.h // **************************************************************************************************) {$IFDEF DEBUG} {$A8,B-,C+,D+,E-,F-,G+,H+,I+,J-,K-,L+,M-,N+,O-,P+,Q+,R+,S-,T-,U-,V+,W+,X+,Y+,Z1} {$ELSE} {$A8,B-,C-,D-,E-,F-,G+,H+,I+,J-,K-,L-,M-,N+,O+,P+,Q-,R-,S-,T-,U-,V+,W-,X+,Y-,Z1} {$ENDIF} {$WARN SYMBOL_DEPRECATED OFF} {$WARN SYMBOL_PLATFORM OFF} {$WARN UNIT_PLATFORM OFF} {$WARN UNSAFE_TYPE OFF} {$WARN UNSAFE_CODE OFF} {$WARN UNSAFE_CAST OFF} unit objdetect_c; interface Uses core_c, Core.types_c; /// ****************************************************************************************\ // * Haar-like Object Detection functions * // \****************************************************************************************/ // // #define CV_HAAR_MAGIC_VAL 0x42500000 // #define CV_TYPE_NAME_HAAR "opencv-haar-classifier" // // #define CV_IS_HAAR_CLASSIFIER( haar ) \ // ((haar) != NULL && \ // (((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL) const // #define CV_HAAR_FEATURE_MAX 3 CV_HAAR_FEATURE_MAX = 3; Type pCvHaarFeature = ^TCvHaarFeature; TCvHaarFeatureRect = record r: TCvRect; weight: Float; end; TCvHaarFeature = record tilted: Integer; // int tilted; // struct // { // CvRect r; // float weight; // } rect[CV_HAAR_FEATURE_MAX]; rect: array [0 .. CV_HAAR_FEATURE_MAX - 1] of TCvHaarFeatureRect; end; pCvHaarClassifier = ^TCvHaarClassifier; TCvHaarClassifier = record count: Integer; // int count; haar_feature: pCvHaarFeature; // CvHaarFeature* haar_feature; threshold: pFloat; // float* threshold; left: pInteger; // int* left; right: pInteger; // int* right; alpha: pFloat; // float* alpha; end; pCvHaarStageClassifier = ^TCvHaarStageClassifier; TCvHaarStageClassifier = record count: Integer; // int count; threshold: Float; // float threshold; classifier: pCvHaarClassifier; // CvHaarClassifier* classifier; next: Integer; // int next; child: Integer; // int child; parent: Integer; // int parent; end; // typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade; TCvHidHaarClassifierCascade = record end; pCvHidHaarClassifierCascade = ^TCvHidHaarClassifierCascade; pCvHaarClassifierCascade = ^TCvHaarClassifierCascade; // typedef struct CvHaarClassifierCascade TCvHaarClassifierCascade = record flags: Integer; // int flags; count: Integer; // int count; orig_window_size: TCvSize; // CvSize orig_window_size; real_window_size: TCvSize; // CvSize real_window_size; scale: Double; // double scale; stage_classifier: pCvHaarStageClassifier; // CvHaarStageClassifier* stage_classifier; hid_cascade: pCvHidHaarClassifierCascade; // CvHidHaarClassifierCascade* hid_cascade; end; // typedef struct CvAvgComp // { // CvRect rect; // int neighbors; // } CvAvgComp; // Loads haar classifier cascade from a directory. // It is obsolete: convert your cascade to xml and use cvLoad instead // CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade( // const char* directory, CvSize orig_window_size); function cvLoadHaarClassifierCascade(const directory: PAnsiChar; orig_window_size: TCvSize): pCvHaarClassifierCascade; cdecl; // CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade ); procedure cvReleaseHaarClassifierCascade(Var cascade: pCvHaarClassifierCascade); cdecl; Const CV_HAAR_DO_CANNY_PRUNING = 1; CV_HAAR_SCALE_IMAGE = 2; CV_HAAR_FIND_BIGGEST_OBJECT = 4; CV_HAAR_DO_ROUGH_SEARCH = 8; // CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image, // CvHaarClassifierCascade* cascade, CvMemStorage* storage, // double scale_factor CV_DEFAULT(1.1), // int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0), // CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0))); // CVAPI(CvSeq*) function cvHaarDetectObjects(const image: pCvArr; cascade: pCvHaarClassifierCascade; storage: pCvMemStorage; scale_factor: Double {1.1}; min_neighbors: Integer {3}; flags: Integer {0}; min_size: TCvSize {CV_DEFAULT(cvSize(0,0))}; max_size: TCvSize {CV_DEFAULT(cvSize(0,0))} ): pCvSeq; cdecl; /// * sets images for haar classifier cascade */ // CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade, // const CvArr* sum, const CvArr* sqsum, // const CvArr* tilted_sum, double scale ); // /// * runs the cascade on the specified window */ // CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade, // CvPoint pt, int start_stage CV_DEFAULT(0)); // // /// ****************************************************************************************\ // * Latent SVM Object Detection functions * // \****************************************************************************************/ // DataType: STRUCT position /// / Structure describes the position of the filter in the feature pyramid /// / l - level in the feature pyramid /// / (x, y) - coordinate in level l type pCvLSVMFilterPosition = ^TCvLSVMFilterPosition; TCvLSVMFilterPosition = record x: Integer; y: Integer; l: Integer; end; // DataType: STRUCT filterObject // Description of the filter, which corresponds to the part of the object // V - ideal (penalty = 0) position of the partial filter // from the root filter position (V_i in the paper) // penaltyFunction - vector describes penalty function (d_i in the paper) // pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2 // FILTER DESCRIPTION // Rectangular map (sizeX x sizeY), // every cell stores feature vector (dimension = p) // H - matrix of feature vectors // to set and get feature vectors (i,j) // used formula H[(j * sizeX + i) * p + k], where // k - component of feature vector in cell (i, j) // END OF FILTER DESCRIPTION Type pCvLSVMFilterObject = ^TCvLSVMFilterObject; TpCvLSVMFilterObject = array [0 .. 1] of pCvLSVMFilterObject; ppCvLSVMFilterObject = ^TpCvLSVMFilterObject; TCvLSVMFilterObject = record V: TCvLSVMFilterPosition; fineFunction: array [0 .. 3] of single; sizeX: Integer; sizeY: Integer; numFeatures: Integer; H: pSingle; end; // data type: STRUCT CvLatentSvmDetector // structure contains internal representation of trained Latent SVM detector // num_filters - total number of filters (root plus part) in model // num_components - number of components in model // num_part_filters - array containing number of part filters for each component // filters - root and part filters for all model components // b - biases for all model components // score_threshold - confidence level threshold Type pCvLatentSvmDetector = ^TCvLatentSvmDetector; TCvLatentSvmDetector = record num_filters: Integer; num_components: Integer; num_part_filters: pInteger; filters: ppCvLSVMFilterObject; b: pSingle; score_threshold: single; end; // data type: STRUCT CvObjectDetection // structure contains the bounding box and confidence level for detected object // rect - bounding box for a detected object // score - confidence level pCvObjectDetection = ^TCvObjectDetection; TCvObjectDetection = record rect: TCvRect; score: single; end; /// /////////////// Object Detection using Latent SVM ////////////// // load trained detector from a file // // API // CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename); // INPUT // filename - path to the file containing the parameters of // - trained Latent SVM detector // OUTPUT // trained Latent SVM detector in internal representation // CVAPI(CvLatentSvmDetector*) cvLoadLatentSvmDetector(const char* filename); function cvLoadLatentSvmDetector(const filename: pCVChar): pCvLatentSvmDetector; stdcall; // release memory allocated for CvLatentSvmDetector structure // // API // void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector); // INPUT // detector - CvLatentSvmDetector structure to be released // OUTPUT // CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector); procedure cvReleaseLatentSvmDetector(Var detector: pCvLatentSvmDetector); stdcall; // find rectangular regions in the given image that are likely // to contain objects and corresponding confidence levels // // CvSeq* cvLatentSvmDetectObjects(const IplImage* image, // CvLatentSvmDetector* detector, // CvMemStorage* storage, // float overlap_threshold = 0.5f, // int numThreads = -1); // INPUT // image - image to detect objects in // detector - Latent SVM detector in internal representation // storage - memory storage to store the resultant sequence // of the object candidate rectangles // overlap_threshold - threshold for the non-maximum suppression algorithm // = 0.5f [here will be the reference to original paper] // OUTPUT // sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures) // CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image, // CvLatentSvmDetector* detector, // CvMemStorage* storage, // float overlap_threshold CV_DEFAULT(0.5f), // int numThreads CV_DEFAULT(-1)); function cvLatentSvmDetectObjects(image: pIplImage; detector: pCvLatentSvmDetector; storage: pCvMemStorage; overlap_threshold: single = 0.5; numThreads: Integer = -1): pCvSeq; stdcall; // #ifdef __cplusplus // } // // CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image, // CvHaarClassifierCascade* cascade, CvMemStorage* storage, // std::vector& rejectLevels, std::vector& levelWeightds, // double scale_factor = 1.1, // int min_neighbors = 3, int flags = 0, // CvSize min_size = cvSize(0, 0), CvSize max_size = cvSize(0, 0), // bool outputRejectLevels = false ); // // struct CvDataMatrixCode // { // char msg[4]; // CvMat* original; // CvMat* corners; // }; // // CV_EXPORTS std::deque cvFindDataMatrix(CvMat *im); // // #endif // // // #endif /* __OPENCV_OBJDETECT_C_H__ */ implementation Uses uLibName; function cvLatentSvmDetectObjects; external objdetect_dll; function cvLoadLatentSvmDetector; external objdetect_dll; procedure cvReleaseLatentSvmDetector; external objdetect_dll; function cvHaarDetectObjects; external objdetect_dll; function cvLoadHaarClassifierCascade; external objdetect_dll; procedure cvReleaseHaarClassifierCascade; external objdetect_dll; end.