// --------------------------------- OpenCV license.txt --------------------------- (* // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. *) (* / ************************************************************************************************** // Project Delphi-OpenCV // ************************************************************************************************** // Contributor: // laentir Valetov // email:laex@bk.ru // ************************************************************************************************** // You may retrieve the latest version of this file at the GitHub, // located at git://github.com/Laex/Delphi-OpenCV.git // ************************************************************************************************** // License: // The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License"); // you may not use this file except in compliance with the License. You may obtain a copy of the // License at http://www.mozilla.org/MPL/ // // Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF // ANY KIND, either express or implied. See the License for the specific language governing rights // and limitations under the License. // // Alternatively, the contents of this file may be used under the terms of the // GNU Lesser General Public License (the "LGPL License"), in which case the // provisions of the LGPL License are applicable instead of those above. // If you wish to allow use of your version of this file only under the terms // of the LGPL License and not to allow others to use your version of this file // under the MPL, indicate your decision by deleting the provisions above and // replace them with the notice and other provisions required by the LGPL // License. If you do not delete the provisions above, a recipient may use // your version of this file under either the MPL or the LGPL License. // // For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html // ************************************************************************************************** // Warning: Using Delphi XE3 syntax! // ************************************************************************************************** // The Initial Developer of the Original Code: // OpenCV: open source computer vision library // Homepage: http://opencv.org // Online docs: http://docs.opencv.org // Q&A forum: http://answers.opencv.org // Dev zone: http://code.opencv.org // ************************************************************************************************** // Original file: // opencv\modules\imgproc\include\opencv2\imgproc.hpp // ************************************************************************************************* *) {$IFDEF DEBUG} {$A8,B-,C+,D+,E-,F-,G+,H+,I+,J-,K-,L+,M-,N+,O-,P+,Q+,R+,S-,T-,U-,V+,W+,X+,Y+,Z1} {$ELSE} {$A8,B-,C-,D-,E-,F-,G+,H+,I+,J-,K-,L-,M-,N+,O+,P+,Q-,R-,S-,T-,U-,V+,W-,X+,Y-,Z1} {$ENDIF} {$WARN SYMBOL_DEPRECATED OFF} {$WARN SYMBOL_PLATFORM OFF} {$WARN UNIT_PLATFORM OFF} {$WARN UNSAFE_TYPE OFF} {$WARN UNSAFE_CODE OFF} {$WARN UNSAFE_CAST OFF} {$POINTERMATH ON} unit imgproc; interface Uses Core.types_c, imgproc.types_c, Mat, Core.types; // { // /// /! various border interpolation methods const BORDER_REPLICATE = IPL_BORDER_REPLICATE; BORDER_CONSTANT = IPL_BORDER_CONSTANT; BORDER_REFLECT = IPL_BORDER_REFLECT; BORDER_WRAP = IPL_BORDER_WRAP; BORDER_REFLECT_101 = IPL_BORDER_REFLECT_101; BORDER_REFLECT101 = BORDER_REFLECT_101; BORDER_TRANSPARENT = IPL_BORDER_TRANSPARENT; BORDER_DEFAULT = BORDER_REFLECT_101; BORDER_ISOLATED = 16; // /// /! 1D interpolation function: returns coordinate of the "donor" pixel for the specified location p. // CV_EXPORTS_W int borderInterpolate( int p, int len, int borderType ); /// *! // The Base Class for 1D or Row-wise Filters // // This is the base class for linear or non-linear filters that process 1D data. // In particular, such filters are used for the "horizontal" filtering parts in separable filters. // // Several functions in OpenCV return Ptr for the specific types of filters, // and those pointers can be used directly or within cv::FilterEngine. // */ // class CV_EXPORTS BaseRowFilter // { // public: // //! the default constructor // BaseRowFilter(); // //! the destructor // virtual ~BaseRowFilter(); // //! the filtering operator. Must be overrided in the derived classes. The horizontal border interpolation is done outside of the class. // virtual void operator()(const uchar* src, uchar* dst, // int width, int cn) = 0; // int ksize, anchor; // }; // /// *! // The Base Class for Column-wise Filters // // This is the base class for linear or non-linear filters that process columns of 2D arrays. // Such filters are used for the "vertical" filtering parts in separable filters. // // Several functions in OpenCV return Ptr for the specific types of filters, // and those pointers can be used directly or within cv::FilterEngine. // // Unlike cv::BaseRowFilter, cv::BaseColumnFilter may have some context information, // i.e. box filter keeps the sliding sum of elements. To reset the state BaseColumnFilter::reset() // must be called (e.g. the method is called by cv::FilterEngine) // */ // class CV_EXPORTS BaseColumnFilter // { // public: // //! the default constructor // BaseColumnFilter(); // //! the destructor // virtual ~BaseColumnFilter(); // //! the filtering operator. Must be overrided in the derived classes. The vertical border interpolation is done outside of the class. // virtual void operator()(const uchar** src, uchar* dst, int dststep, // int dstcount, int width) = 0; // //! resets the internal buffers, if any // virtual void reset(); // int ksize, anchor; // }; // *! // The Base Class for Non-Separable 2D Filters. // // This is the base class for linear or non-linear 2D filters. // // Several functions in OpenCV return Ptr for the specific types of filters, // and those pointers can be used directly or within cv::FilterEngine. // // Similar to cv::BaseColumnFilter, the class may have some context information, // that should be reset using BaseFilter::reset() method before processing the new array. // // class CV_EXPORTS BaseFilter // { // public: // //! the default constructor // BaseFilter(); // //! the destructor // virtual ~BaseFilter(); // //! the filtering operator. The horizontal and the vertical border interpolation is done outside of the class. // virtual void operator()(const uchar** src, uchar* dst, int dststep, // int dstcount, int width, int cn) = 0; // //! resets the internal buffers, if any // virtual void reset(); // Size ksize; // Point anchor; // }; /// *! // The Main Class for Image Filtering. // // The class can be used to apply an arbitrary filtering operation to an image. // It contains all the necessary intermediate buffers, it computes extrapolated values // of the "virtual" pixels outside of the image etc. // Pointers to the initialized cv::FilterEngine instances // are returned by various OpenCV functions, such as cv::createSeparableLinearFilter(), // cv::createLinearFilter(), cv::createGaussianFilter(), cv::createDerivFilter(), // cv::createBoxFilter() and cv::createMorphologyFilter(). // // Using the class you can process large images by parts and build complex pipelines // that include filtering as some of the stages. If all you need is to apply some pre-defined // filtering operation, you may use cv::filter2D(), cv::erode(), cv::dilate() etc. // functions that create FilterEngine internally. // // Here is the example on how to use the class to implement Laplacian operator, which is the sum of // second-order derivatives. More complex variant for different types is implemented in cv::Laplacian(). // // \code // void laplace_f(const Mat& src, Mat& dst) // { // CV_Assert( src.type() == CV_32F ); // // make sure the destination array has the proper size and type // dst.create(src.size(), src.type()); // // // get the derivative and smooth kernels for d2I/dx2. // // for d2I/dy2 we could use the same kernels, just swapped // Mat kd, ks; // getSobelKernels( kd, ks, 2, 0, ksize, false, ktype ); // // // let's process 10 source rows at once // int DELTA = std::min(10, src.rows); // Ptr Fxx = createSeparableLinearFilter(src.type(), // dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() ); // Ptr Fyy = createSeparableLinearFilter(src.type(), // dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() ); // // int y = Fxx->start(src), dsty = 0, dy = 0; // Fyy->start(src); // const uchar* sptr = src.data + y*src.step; // // // allocate the buffers for the spatial image derivatives; // // the buffers need to have more than DELTA rows, because at the // // last iteration the output may take max(kd.rows-1,ks.rows-1) // // rows more than the input. // Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() ); // Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() ); // // // inside the loop we always pass DELTA rows to the filter // // (note that the "proceed" method takes care of possibe overflow, since // // it was given the actual image height in the "start" method) // // on output we can get: // // * < DELTA rows (the initial buffer accumulation stage) // // * = DELTA rows (settled state in the middle) // // * > DELTA rows (then the input image is over, but we generate // // "virtual" rows using the border mode and filter them) // // this variable number of output rows is dy. // // dsty is the current output row. // // sptr is the pointer to the first input row in the portion to process // for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy ) // { // Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step ); // dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step ); // if( dy > 0 ) // { // Mat dstripe = dst.rowRange(dsty, dsty + dy); // add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe); // } // } // } // \endcode // */ // class CV_EXPORTS FilterEngine // { // public: // //! the default constructor // FilterEngine(); // //! the full constructor. Either _filter2D or both _rowFilter and _columnFilter must be non-empty. // FilterEngine(const Ptr& _filter2D, // const Ptr& _rowFilter, // const Ptr& _columnFilter, // int srcType, int dstType, int bufType, // int _rowBorderType=BORDER_REPLICATE, // int _columnBorderType=-1, // const Scalar& _borderValue=Scalar()); // //! the destructor // virtual ~FilterEngine(); // //! reinitializes the engine. The previously assigned filters are released. // void init(const Ptr& _filter2D, // const Ptr& _rowFilter, // const Ptr& _columnFilter, // int srcType, int dstType, int bufType, // int _rowBorderType=BORDER_REPLICATE, int _columnBorderType=-1, // const Scalar& _borderValue=Scalar()); // //! starts filtering of the specified ROI of an image of size wholeSize. // virtual int start(Size wholeSize, Rect roi, int maxBufRows=-1); // //! starts filtering of the specified ROI of the specified image. // virtual int start(const Mat& src, const Rect& srcRoi=Rect(0,0,-1,-1), // bool isolated=false, int maxBufRows=-1); // //! processes the next srcCount rows of the image. // virtual int proceed(const uchar* src, int srcStep, int srcCount, // uchar* dst, int dstStep); // //! applies filter to the specified ROI of the image. if srcRoi=(0,0,-1,-1), the whole image is filtered. // virtual void apply( const Mat& src, Mat& dst, // const Rect& srcRoi=Rect(0,0,-1,-1), // Point dstOfs=Point(0,0), // bool isolated=false); // //! returns true if the filter is separable // bool isSeparable() const { return (const BaseFilter*)filter2D == 0; } // //! returns the number // int remainingInputRows() const; // int remainingOutputRows() const; // // int srcType, dstType, bufType; // Size ksize; // Point anchor; // int maxWidth; // Size wholeSize; // Rect roi; // int dx1, dx2; // int rowBorderType, columnBorderType; // std::vector borderTab; // int borderElemSize; // std::vector ringBuf; // std::vector srcRow; // std::vector constBorderValue; // std::vector constBorderRow; // int bufStep, startY, startY0, endY, rowCount, dstY; // std::vector rows; // // Ptr filter2D; // Ptr rowFilter; // Ptr columnFilter; // }; /// /! type of the kernel // enum { KERNEL_GENERAL=0, KERNEL_SYMMETRICAL=1, KERNEL_ASYMMETRICAL=2, // KERNEL_SMOOTH=4, KERNEL_INTEGER=8 }; // /// /! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients. // CV_EXPORTS int getKernelType(InputArray kernel, Point anchor); // /// /! returns the primitive row filter with the specified kernel // CV_EXPORTS Ptr getLinearRowFilter(int srcType, int bufType, // InputArray kernel, int anchor, // int symmetryType); // /// /! returns the primitive column filter with the specified kernel // CV_EXPORTS Ptr getLinearColumnFilter(int bufType, int dstType, // InputArray kernel, int anchor, // int symmetryType, double delta=0, // int bits=0); // /// /! returns 2D filter with the specified kernel // CV_EXPORTS Ptr getLinearFilter(int srcType, int dstType, // InputArray kernel, // Point anchor=Point(-1,-1), // double delta=0, int bits=0); // ! returns the separable linear filter engine // CV_EXPORTS Ptr createSeparableLinearFilter(int srcType, int dstType, // InputArray rowKernel, InputArray columnKernel, // Point anchor=Point(-1,-1), double delta=0, // int rowBorderType=BORDER_DEFAULT, // int columnBorderType=-1, // const Scalar& borderValue=Scalar()); /// /! returns the non-separable linear filter engine // CV_EXPORTS Ptr createLinearFilter(int srcType, int dstType, // InputArray kernel, Point _anchor=Point(-1,-1), // double delta=0, int rowBorderType=BORDER_DEFAULT, // int columnBorderType=-1, const Scalar& borderValue=Scalar()); // /// /! returns the Gaussian kernel with the specified parameters // CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype=CV_64F ); // ! returns the Gaussian filter engine // CV_EXPORTS Ptr createGaussianFilter( int type, Size ksize, // double sigma1, double sigma2=0, // int borderType=BORDER_DEFAULT); /// /! initializes kernels of the generalized Sobel operator // CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky, // int dx, int dy, int ksize, // bool normalize=false, int ktype=CV_32F ); /// /! returns filter engine for the generalized Sobel operator // CV_EXPORTS Ptr createDerivFilter( int srcType, int dstType, // int dx, int dy, int ksize, // int borderType=BORDER_DEFAULT ); /// /! returns horizontal 1D box filter // CV_EXPORTS Ptr getRowSumFilter(int srcType, int sumType, // int ksize, int anchor=-1); /// /! returns vertical 1D box filter // CV_EXPORTS Ptr getColumnSumFilter( int sumType, int dstType, // int ksize, int anchor=-1, // double scale=1); /// /! returns box filter engine // CV_EXPORTS Ptr createBoxFilter( int srcType, int dstType, Size ksize, // Point anchor=Point(-1,-1), // bool normalize=true, // int borderType=BORDER_DEFAULT); // /// /! returns the Gabor kernel with the specified parameters // CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd, // double gamma, double psi=CV_PI*0.5, int ktype=CV_64F ); // /// /! type of morphological operation // enum { MORPH_ERODE=CV_MOP_ERODE, MORPH_DILATE=CV_MOP_DILATE, // MORPH_OPEN=CV_MOP_OPEN, MORPH_CLOSE=CV_MOP_CLOSE, // MORPH_GRADIENT=CV_MOP_GRADIENT, MORPH_TOPHAT=CV_MOP_TOPHAT, // MORPH_BLACKHAT=CV_MOP_BLACKHAT }; // /// /! returns horizontal 1D morphological filter // CV_EXPORTS Ptr getMorphologyRowFilter(int op, int type, int ksize, int anchor=-1); /// /! returns vertical 1D morphological filter // CV_EXPORTS Ptr getMorphologyColumnFilter(int op, int type, int ksize, int anchor=-1); /// /! returns 2D morphological filter // CV_EXPORTS Ptr getMorphologyFilter(int op, int type, InputArray kernel, // Point anchor=Point(-1,-1)); // /// /! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation. // static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); } // /// /! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported. // CV_EXPORTS Ptr createMorphologyFilter(int op, int type, InputArray kernel, // Point anchor=Point(-1,-1), int rowBorderType=BORDER_CONSTANT, // int columnBorderType=-1, // const Scalar& borderValue=morphologyDefaultBorderValue()); const /// /! shape of the structuring element // enum { MORPH_RECT=0, MORPH_CROSS=1, MORPH_ELLIPSE=2 }; MORPH_RECT = 0; MORPH_CROSS = 1; MORPH_ELLIPSE = 2; /// /! returns structuring element of the specified shape and size // CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1)); function getStructuringElement(shape: Integer; ksize: ISize; anchor: IPoint = nil { =Point(-1,-1) } ): IMat; // template<> CV_EXPORTS void Ptr::delete_obj(); // /// /! copies 2D array to a larger destination array with extrapolation of the outer part of src using the specified border mode // CV_EXPORTS_W void copyMakeBorder( InputArray src, OutputArray dst, // int top, int bottom, int left, int right, // int borderType, const Scalar& value=Scalar() ); // /// /! smooths the image using median filter. // CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize ); // ! smooths the image using Gaussian filter. // CV_EXPORTS_W void GaussianBlur( InputArray src, // OutputArray dst, Size ksize, // double sigmaX, double sigmaY=0, // int borderType=BORDER_DEFAULT ); /// /! smooths the image using bilateral filter // CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d, // double sigmaColor, double sigmaSpace, // int borderType=BORDER_DEFAULT ); /// /! smooths the image using the box filter. Each pixel is processed in O(1) time // CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth, // Size ksize, Point anchor=Point(-1,-1), // bool normalize=true, // int borderType=BORDER_DEFAULT ); /// /! a synonym for normalized box filter // CV_EXPORTS_W void blur( InputArray src, OutputArray dst, // Size ksize, Point anchor=Point(-1,-1), // int borderType=BORDER_DEFAULT ); // /// /! applies non-separable 2D linear filter to the image // CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth, // InputArray kernel, Point anchor=Point(-1,-1), // double delta=0, int borderType=BORDER_DEFAULT ); // /// /! applies separable 2D linear filter to the image // CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth, // InputArray kernelX, InputArray kernelY, // Point anchor=Point(-1,-1), // double delta=0, int borderType=BORDER_DEFAULT ); // /// /! applies generalized Sobel operator to the image // CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth, // int dx, int dy, int ksize=3, // double scale=1, double delta=0, // int borderType=BORDER_DEFAULT ); // /// /! applies the vertical or horizontal Scharr operator to the image // CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth, // int dx, int dy, double scale=1, double delta=0, // int borderType=BORDER_DEFAULT ); // /// /! applies Laplacian operator to the image // CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth, // int ksize=1, double scale=1, double delta=0, // int borderType=BORDER_DEFAULT ); // /// /! applies Canny edge detector and produces the edge map. // CV_EXPORTS_W void Canny( InputArray image, OutputArray edges, // double threshold1, double threshold2, // int apertureSize=3, bool L2gradient=false ); // /// /! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria // CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst, // int blockSize, int ksize=3, // int borderType=BORDER_DEFAULT ); // /// /! computes Harris cornerness criteria at each image pixel // CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize, // int ksize, double k, // int borderType=BORDER_DEFAULT ); // /// / low-level function for computing eigenvalues and eigenvectors of 2x2 matrices // CV_EXPORTS void eigen2x2( const float* a, float* e, int n ); // /// /! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix at each pixel. The output is stored as 6-channel matrix. // CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst, // int blockSize, int ksize, // int borderType=BORDER_DEFAULT ); // /// /! computes another complex cornerness criteria at each pixel // CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize, // int borderType=BORDER_DEFAULT ); // /// /! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria // CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners, // Size winSize, Size zeroZone, // TermCriteria criteria ); // /// /! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima // CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners, // int maxCorners, double qualityLevel, double minDistance, // InputArray mask=noArray(), int blockSize=3, // bool useHarrisDetector=false, double k=0.04 ); // /// /! finds lines in the black-n-white image using the standard or pyramid Hough transform // CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines, // double rho, double theta, int threshold, // double srn=0, double stn=0 ); // /// /! finds line segments in the black-n-white image using probabalistic Hough transform // CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines, // double rho, double theta, int threshold, // double minLineLength=0, double maxLineGap=0 ); // /// /! finds circles in the grayscale image using 2+1 gradient Hough transform // CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles, // int method, double dp, double minDist, // double param1=100, double param2=100, // int minRadius=0, int maxRadius=0 ); // // enum // { // GHT_POSITION = 0, // GHT_SCALE = 1, // GHT_ROTATION = 2 // }; // /// /! finds arbitrary template in the grayscale image using Generalized Hough Transform /// /! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. /// /! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038. // class CV_EXPORTS GeneralizedHough : public Algorithm // { // public: // static Ptr create(int method); // // virtual ~GeneralizedHough(); // // //! set template to search // void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1)); // void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)); // // //! find template on image // void detect(InputArray image, OutputArray positions, OutputArray votes = cv::noArray(), int cannyThreshold = 100); // void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = cv::noArray()); // // void release(); // // protected: // virtual void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter) = 0; // virtual void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) = 0; // virtual void releaseImpl() = 0; // // private: // Mat edges_, dx_, dy_; // }; // // ! erodes the image (applies the local minimum operator) // CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel, // Point anchor=Point(-1,-1), int iterations=1, // int borderType=BORDER_CONSTANT, // const Scalar& borderValue=morphologyDefaultBorderValue()); procedure erode(src: IMat; dst: IMat; kernel: IMat; anchor: IPoint { =Point(-1,-1) }; iterations: Integer { =1 }; borderType: Integer { =BORDER_CONSTANT }; const borderValue: IScalar { =morphologyDefaultBorderValue() } ); /// /! dilates the image (applies the local maximum operator) // CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel, // Point anchor=Point(-1,-1), int iterations=1, // int borderType=BORDER_CONSTANT, // const Scalar& borderValue=morphologyDefaultBorderValue() ); // /// /! applies an advanced morphological operation to the image // CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst, // int op, InputArray kernel, // Point anchor=Point(-1,-1), int iterations=1, // int borderType=BORDER_CONSTANT, // const Scalar& borderValue=morphologyDefaultBorderValue() ); // /// /! interpolation algorithm // enum // { // INTER_NEAREST=CV_INTER_NN, //!< nearest neighbor interpolation // INTER_LINEAR=CV_INTER_LINEAR, //!< bilinear interpolation // INTER_CUBIC=CV_INTER_CUBIC, //!< bicubic interpolation // INTER_AREA=CV_INTER_AREA, //!< area-based (or super) interpolation // INTER_LANCZOS4=CV_INTER_LANCZOS4, //!< Lanczos interpolation over 8x8 neighborhood // INTER_MAX=7, // WARP_INVERSE_MAP=CV_WARP_INVERSE_MAP // }; // /// /! resizes the image // CV_EXPORTS_W void resize( InputArray src, OutputArray dst, // Size dsize, double fx=0, double fy=0, // int interpolation=INTER_LINEAR ); // /// /! warps the image using affine transformation // CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst, // InputArray M, Size dsize, // int flags=INTER_LINEAR, // int borderMode=BORDER_CONSTANT, // const Scalar& borderValue=Scalar()); // /// /! warps the image using perspective transformation // CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst, // InputArray M, Size dsize, // int flags=INTER_LINEAR, // int borderMode=BORDER_CONSTANT, // const Scalar& borderValue=Scalar()); // // enum // { // INTER_BITS=5, INTER_BITS2=INTER_BITS*2, // INTER_TAB_SIZE=(1< CV_EXPORTS void Ptr::delete_obj(); // /// /! computes the joint dense histogram for a set of images. // CV_EXPORTS void calcHist( const Mat* images, int nimages, // const int* channels, InputArray mask, // OutputArray hist, int dims, const int* histSize, // const float** ranges, bool uniform=true, bool accumulate=false ); // /// /! computes the joint sparse histogram for a set of images. // CV_EXPORTS void calcHist( const Mat* images, int nimages, // const int* channels, InputArray mask, // SparseMat& hist, int dims, // const int* histSize, const float** ranges, // bool uniform=true, bool accumulate=false ); // // CV_EXPORTS_W void calcHist( InputArrayOfArrays images, // const std::vector& channels, // InputArray mask, OutputArray hist, // const std::vector& histSize, // const std::vector& ranges, // bool accumulate=false ); // /// /! computes back projection for the set of images // CV_EXPORTS void calcBackProject( const Mat* images, int nimages, // const int* channels, InputArray hist, // OutputArray backProject, const float** ranges, // double scale=1, bool uniform=true ); // /// /! computes back projection for the set of images // CV_EXPORTS void calcBackProject( const Mat* images, int nimages, // const int* channels, const SparseMat& hist, // OutputArray backProject, const float** ranges, // double scale=1, bool uniform=true ); // // CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector& channels, // InputArray hist, OutputArray dst, // const std::vector& ranges, // double scale ); // /// *CV_EXPORTS void calcBackProjectPatch( const Mat* images, int nimages, const int* channels, // InputArray hist, OutputArray dst, Size patchSize, // int method, double factor=1 ); // // CV_EXPORTS_W void calcBackProjectPatch( InputArrayOfArrays images, const std::vector& channels, // InputArray hist, OutputArray dst, Size patchSize, // int method, double factor=1 );*/ // /// /! compares two histograms stored in dense arrays // CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method ); // /// /! compares two histograms stored in sparse arrays // CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method ); // /// /! normalizes the grayscale image brightness and contrast by normalizing its histogram // CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst ); // // class CV_EXPORTS CLAHE : public Algorithm // { // public: // virtual void apply(InputArray src, OutputArray dst) = 0; // // virtual void setClipLimit(double clipLimit) = 0; // virtual double getClipLimit() const = 0; // // virtual void setTilesGridSize(Size tileGridSize) = 0; // virtual Size getTilesGridSize() const = 0; // // virtual void collectGarbage() = 0; // }; // CV_EXPORTS Ptr createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); // // CV_EXPORTS float EMD( InputArray signature1, InputArray signature2, // int distType, InputArray cost=noArray(), // float* lowerBound=0, OutputArray flow=noArray() ); // /// /! segments the image using watershed algorithm // CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers ); // /// /! filters image using meanshift algorithm // CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst, // double sp, double sr, int maxLevel=1, // TermCriteria termcrit=TermCriteria( // TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) ); // /// /! class of the pixel in GrabCut algorithm // enum // { // GC_BGD = 0, //!< background // GC_FGD = 1, //!< foreground // GC_PR_BGD = 2, //!< most probably background // GC_PR_FGD = 3 //!< most probably foreground // }; // /// /! GrabCut algorithm flags // enum // { // GC_INIT_WITH_RECT = 0, // GC_INIT_WITH_MASK = 1, // GC_EVAL = 2 // }; // /// /! segments the image using GrabCut algorithm // CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect, // InputOutputArray bgdModel, InputOutputArray fgdModel, // int iterCount, int mode = GC_EVAL ); // // enum // { // DIST_LABEL_CCOMP = 0, // DIST_LABEL_PIXEL = 1 // }; // /// /! builds the discrete Voronoi diagram // CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst, // OutputArray labels, int distanceType, int maskSize, // int labelType=DIST_LABEL_CCOMP ); // /// /! computes the distance transform map // CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst, // int distanceType, int maskSize ); // // enum { FLOODFILL_FIXED_RANGE = 1 << 16, FLOODFILL_MASK_ONLY = 1 << 17 }; // /// /! fills the semi-uniform image region starting from the specified seed point // CV_EXPORTS int floodFill( InputOutputArray image, // Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0, // Scalar loDiff=Scalar(), Scalar upDiff=Scalar(), // int flags=4 ); // /// /! fills the semi-uniform image region and/or the mask starting from the specified seed point // CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask, // Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0, // Scalar loDiff=Scalar(), Scalar upDiff=Scalar(), // int flags=4 ); // // // enum // { // COLOR_BGR2BGRA =0, // COLOR_RGB2RGBA =COLOR_BGR2BGRA, // // COLOR_BGRA2BGR =1, // COLOR_RGBA2RGB =COLOR_BGRA2BGR, // // COLOR_BGR2RGBA =2, // COLOR_RGB2BGRA =COLOR_BGR2RGBA, // // COLOR_RGBA2BGR =3, // COLOR_BGRA2RGB =COLOR_RGBA2BGR, // // COLOR_BGR2RGB =4, // COLOR_RGB2BGR =COLOR_BGR2RGB, // // COLOR_BGRA2RGBA =5, // COLOR_RGBA2BGRA =COLOR_BGRA2RGBA, // // COLOR_BGR2GRAY =6, // COLOR_RGB2GRAY =7, // COLOR_GRAY2BGR =8, // COLOR_GRAY2RGB =COLOR_GRAY2BGR, // COLOR_GRAY2BGRA =9, // COLOR_GRAY2RGBA =COLOR_GRAY2BGRA, // COLOR_BGRA2GRAY =10, // COLOR_RGBA2GRAY =11, // // COLOR_BGR2BGR565 =12, // COLOR_RGB2BGR565 =13, // COLOR_BGR5652BGR =14, // COLOR_BGR5652RGB =15, // COLOR_BGRA2BGR565 =16, // COLOR_RGBA2BGR565 =17, // COLOR_BGR5652BGRA =18, // COLOR_BGR5652RGBA =19, // // COLOR_GRAY2BGR565 =20, // COLOR_BGR5652GRAY =21, // // COLOR_BGR2BGR555 =22, // COLOR_RGB2BGR555 =23, // COLOR_BGR5552BGR =24, // COLOR_BGR5552RGB =25, // COLOR_BGRA2BGR555 =26, // COLOR_RGBA2BGR555 =27, // COLOR_BGR5552BGRA =28, // COLOR_BGR5552RGBA =29, // // COLOR_GRAY2BGR555 =30, // COLOR_BGR5552GRAY =31, // // COLOR_BGR2XYZ =32, // COLOR_RGB2XYZ =33, // COLOR_XYZ2BGR =34, // COLOR_XYZ2RGB =35, // // COLOR_BGR2YCrCb =36, // COLOR_RGB2YCrCb =37, // COLOR_YCrCb2BGR =38, // COLOR_YCrCb2RGB =39, // // COLOR_BGR2HSV =40, // COLOR_RGB2HSV =41, // // COLOR_BGR2Lab =44, // COLOR_RGB2Lab =45, // // COLOR_BayerBG2BGR =46, // COLOR_BayerGB2BGR =47, // COLOR_BayerRG2BGR =48, // COLOR_BayerGR2BGR =49, // // COLOR_BayerBG2RGB =COLOR_BayerRG2BGR, // COLOR_BayerGB2RGB =COLOR_BayerGR2BGR, // COLOR_BayerRG2RGB =COLOR_BayerBG2BGR, // COLOR_BayerGR2RGB =COLOR_BayerGB2BGR, // // COLOR_BGR2Luv =50, // COLOR_RGB2Luv =51, // COLOR_BGR2HLS =52, // COLOR_RGB2HLS =53, // // COLOR_HSV2BGR =54, // COLOR_HSV2RGB =55, // // COLOR_Lab2BGR =56, // COLOR_Lab2RGB =57, // COLOR_Luv2BGR =58, // COLOR_Luv2RGB =59, // COLOR_HLS2BGR =60, // COLOR_HLS2RGB =61, // // COLOR_BayerBG2BGR_VNG =62, // COLOR_BayerGB2BGR_VNG =63, // COLOR_BayerRG2BGR_VNG =64, // COLOR_BayerGR2BGR_VNG =65, // // COLOR_BayerBG2RGB_VNG =COLOR_BayerRG2BGR_VNG, // COLOR_BayerGB2RGB_VNG =COLOR_BayerGR2BGR_VNG, // COLOR_BayerRG2RGB_VNG =COLOR_BayerBG2BGR_VNG, // COLOR_BayerGR2RGB_VNG =COLOR_BayerGB2BGR_VNG, // // COLOR_BGR2HSV_FULL = 66, // COLOR_RGB2HSV_FULL = 67, // COLOR_BGR2HLS_FULL = 68, // COLOR_RGB2HLS_FULL = 69, // // COLOR_HSV2BGR_FULL = 70, // COLOR_HSV2RGB_FULL = 71, // COLOR_HLS2BGR_FULL = 72, // COLOR_HLS2RGB_FULL = 73, // // COLOR_LBGR2Lab = 74, // COLOR_LRGB2Lab = 75, // COLOR_LBGR2Luv = 76, // COLOR_LRGB2Luv = 77, // // COLOR_Lab2LBGR = 78, // COLOR_Lab2LRGB = 79, // COLOR_Luv2LBGR = 80, // COLOR_Luv2LRGB = 81, // // COLOR_BGR2YUV = 82, // COLOR_RGB2YUV = 83, // COLOR_YUV2BGR = 84, // COLOR_YUV2RGB = 85, // // COLOR_BayerBG2GRAY = 86, // COLOR_BayerGB2GRAY = 87, // COLOR_BayerRG2GRAY = 88, // COLOR_BayerGR2GRAY = 89, // // //YUV 4:2:0 formats family // COLOR_YUV2RGB_NV12 = 90, // COLOR_YUV2BGR_NV12 = 91, // COLOR_YUV2RGB_NV21 = 92, // COLOR_YUV2BGR_NV21 = 93, // COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21, // COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21, // // COLOR_YUV2RGBA_NV12 = 94, // COLOR_YUV2BGRA_NV12 = 95, // COLOR_YUV2RGBA_NV21 = 96, // COLOR_YUV2BGRA_NV21 = 97, // COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, // COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, // // COLOR_YUV2RGB_YV12 = 98, // COLOR_YUV2BGR_YV12 = 99, // COLOR_YUV2RGB_IYUV = 100, // COLOR_YUV2BGR_IYUV = 101, // COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV, // COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV, // COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12, // COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12, // // COLOR_YUV2RGBA_YV12 = 102, // COLOR_YUV2BGRA_YV12 = 103, // COLOR_YUV2RGBA_IYUV = 104, // COLOR_YUV2BGRA_IYUV = 105, // COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, // COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, // COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12, // COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12, // // COLOR_YUV2GRAY_420 = 106, // COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, // COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, // COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, // COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, // COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, // COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, // COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420, // // //YUV 4:2:2 formats family // COLOR_YUV2RGB_UYVY = 107, // COLOR_YUV2BGR_UYVY = 108, // //COLOR_YUV2RGB_VYUY = 109, // //COLOR_YUV2BGR_VYUY = 110, // COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, // COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, // COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, // COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, // // COLOR_YUV2RGBA_UYVY = 111, // COLOR_YUV2BGRA_UYVY = 112, // //COLOR_YUV2RGBA_VYUY = 113, // //COLOR_YUV2BGRA_VYUY = 114, // COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, // COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, // COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, // COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, // // COLOR_YUV2RGB_YUY2 = 115, // COLOR_YUV2BGR_YUY2 = 116, // COLOR_YUV2RGB_YVYU = 117, // COLOR_YUV2BGR_YVYU = 118, // COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, // COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, // COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, // COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, // // COLOR_YUV2RGBA_YUY2 = 119, // COLOR_YUV2BGRA_YUY2 = 120, // COLOR_YUV2RGBA_YVYU = 121, // COLOR_YUV2BGRA_YVYU = 122, // COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, // COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, // COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, // COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, // // COLOR_YUV2GRAY_UYVY = 123, // COLOR_YUV2GRAY_YUY2 = 124, // //COLOR_YUV2GRAY_VYUY = COLOR_YUV2GRAY_UYVY, // COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, // COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, // COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, // COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, // COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, // // // alpha premultiplication // COLOR_RGBA2mRGBA = 125, // COLOR_mRGBA2RGBA = 126, // // COLOR_RGB2YUV_I420 = 127, // COLOR_BGR2YUV_I420 = 128, // COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420, // COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420, // // COLOR_RGBA2YUV_I420 = 129, // COLOR_BGRA2YUV_I420 = 130, // COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, // COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, // COLOR_RGB2YUV_YV12 = 131, // COLOR_BGR2YUV_YV12 = 132, // COLOR_RGBA2YUV_YV12 = 133, // COLOR_BGRA2YUV_YV12 = 134, // // // Edge-Aware Demosaicing // COLOR_BayerBG2BGR_EA = 135, // COLOR_BayerGB2BGR_EA = 136, // COLOR_BayerRG2BGR_EA = 137, // COLOR_BayerGR2BGR_EA = 138, // // COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA, // COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA, // COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA, // COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA, // // COLOR_COLORCVT_MAX = 139 // }; // // /// /! converts image from one color space to another // CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn=0 ); // /// /! raster image moments // class CV_EXPORTS_W_MAP Moments // { // public: // //! the default constructor // Moments(); // //! the full constructor // Moments(double m00, double m10, double m01, double m20, double m11, // double m02, double m30, double m21, double m12, double m03 ); // //! the conversion from CvMoments // Moments( const CvMoments& moments ); // //! the conversion to CvMoments // operator CvMoments() const; // // //! spatial moments // CV_PROP_RW double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03; // //! central moments // CV_PROP_RW double mu20, mu11, mu02, mu30, mu21, mu12, mu03; // //! central normalized moments // CV_PROP_RW double nu20, nu11, nu02, nu30, nu21, nu12, nu03; // }; // /// /! computes moments of the rasterized shape or a vector of points // CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage=false ); // /// /! computes 7 Hu invariants from the moments // CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] ); // CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu ); // /// /! type of the template matching operation // enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 }; // /// /! computes the proximity map for the raster template and the image where the template is searched for // CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ, // OutputArray result, int method ); // // enum { CC_STAT_LEFT=0, CC_STAT_TOP=1, CC_STAT_WIDTH=2, CC_STAT_HEIGHT=3, CC_STAT_AREA=4, CC_STAT_MAX = 5}; // /// / computes the connected components labeled image of boolean image ``image`` /// / with 4 or 8 way connectivity - returns N, the total /// / number of labels [0, N-1] where 0 represents the background label. /// / ltype specifies the output label image type, an important /// / consideration based on the total number of labels or /// / alternatively the total number of pixels in the source image. // CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels, // int connectivity = 8, int ltype=CV_32S); // CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels, // OutputArray stats, OutputArray centroids, // int connectivity = 8, int ltype=CV_32S); // /// /! mode of the contour retrieval algorithm // enum // { // RETR_EXTERNAL=CV_RETR_EXTERNAL, //!< retrieve only the most external (top-level) contours // RETR_LIST=CV_RETR_LIST, //!< retrieve all the contours without any hierarchical information // RETR_CCOMP=CV_RETR_CCOMP, //!< retrieve the connected components (that can possibly be nested) // RETR_TREE=CV_RETR_TREE, //!< retrieve all the contours and the whole hierarchy // RETR_FLOODFILL=CV_RETR_FLOODFILL // }; // /// /! the contour approximation algorithm // enum // { // CHAIN_APPROX_NONE=CV_CHAIN_APPROX_NONE, // CHAIN_APPROX_SIMPLE=CV_CHAIN_APPROX_SIMPLE, // CHAIN_APPROX_TC89_L1=CV_CHAIN_APPROX_TC89_L1, // CHAIN_APPROX_TC89_KCOS=CV_CHAIN_APPROX_TC89_KCOS // }; // /// /! retrieves contours and the hierarchical information from black-n-white image. // CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours, // OutputArray hierarchy, int mode, // int method, Point offset=Point()); // /// /! retrieves contours from black-n-white image. // CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours, // int mode, int method, Point offset=Point()); // /// /! approximates contour or a curve using Douglas-Peucker algorithm // CV_EXPORTS_W void approxPolyDP( InputArray curve, // OutputArray approxCurve, // double epsilon, bool closed ); // /// /! computes the contour perimeter (closed=true) or a curve length // CV_EXPORTS_W double arcLength( InputArray curve, bool closed ); /// /! computes the bounding rectangle for a contour // CV_EXPORTS_W Rect boundingRect( InputArray points ); /// /! computes the contour area // CV_EXPORTS_W double contourArea( InputArray contour, bool oriented=false ); /// /! computes the minimal rotated rectangle for a set of points // CV_EXPORTS_W RotatedRect minAreaRect( InputArray points ); /// /! computes the minimal enclosing circle for a set of points // CV_EXPORTS_W void minEnclosingCircle( InputArray points, // CV_OUT Point2f& center, CV_OUT float& radius ); /// /! matches two contours using one of the available algorithms // CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2, // int method, double parameter ); /// /! computes convex hull for a set of 2D points. // CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull, // bool clockwise=false, bool returnPoints=true ); /// /! computes the contour convexity defects // CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects ); // /// /! returns true if the contour is convex. Does not support contours with self-intersection // CV_EXPORTS_W bool isContourConvex( InputArray contour ); // /// /! finds intersection of two convex polygons // CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2, // OutputArray _p12, bool handleNested=true ); // /// /! fits ellipse to the set of 2D points // CV_EXPORTS_W RotatedRect fitEllipse( InputArray points ); // /// /! fits line to the set of 2D points using M-estimator algorithm // CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType, // double param, double reps, double aeps ); /// /! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary // CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist ); // // // class CV_EXPORTS_W Subdiv2D // { // public: // enum // { // PTLOC_ERROR = -2, // PTLOC_OUTSIDE_RECT = -1, // PTLOC_INSIDE = 0, // PTLOC_VERTEX = 1, // PTLOC_ON_EDGE = 2 // }; // // enum // { // NEXT_AROUND_ORG = 0x00, // NEXT_AROUND_DST = 0x22, // PREV_AROUND_ORG = 0x11, // PREV_AROUND_DST = 0x33, // NEXT_AROUND_LEFT = 0x13, // NEXT_AROUND_RIGHT = 0x31, // PREV_AROUND_LEFT = 0x20, // PREV_AROUND_RIGHT = 0x02 // }; // // CV_WRAP Subdiv2D(); // CV_WRAP Subdiv2D(Rect rect); // CV_WRAP void initDelaunay(Rect rect); // // CV_WRAP int insert(Point2f pt); // CV_WRAP void insert(const std::vector& ptvec); // CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex); // // CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt=0); // CV_WRAP void getEdgeList(CV_OUT std::vector& edgeList) const; // CV_WRAP void getTriangleList(CV_OUT std::vector& triangleList) const; // CV_WRAP void getVoronoiFacetList(const std::vector& idx, CV_OUT std::vector >& facetList, // CV_OUT std::vector& facetCenters); // // CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge=0) const; // // CV_WRAP int getEdge( int edge, int nextEdgeType ) const; // CV_WRAP int nextEdge(int edge) const; // CV_WRAP int rotateEdge(int edge, int rotate) const; // CV_WRAP int symEdge(int edge) const; // CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt=0) const; // CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt=0) const; // // protected: // int newEdge(); // void deleteEdge(int edge); // int newPoint(Point2f pt, bool isvirtual, int firstEdge=0); // void deletePoint(int vtx); // void setEdgePoints( int edge, int orgPt, int dstPt ); // void splice( int edgeA, int edgeB ); // int connectEdges( int edgeA, int edgeB ); // void swapEdges( int edge ); // int isRightOf(Point2f pt, int edge) const; // void calcVoronoi(); // void clearVoronoi(); // void checkSubdiv() const; // // struct CV_EXPORTS Vertex // { // Vertex(); // Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0); // bool isvirtual() const; // bool isfree() const; // int firstEdge; // int type; // Point2f pt; // }; // struct CV_EXPORTS QuadEdge // { // QuadEdge(); // QuadEdge(int edgeidx); // bool isfree() const; // int next[4]; // int pt[4]; // }; // // std::vector vtx; // std::vector qedges; // int freeQEdge; // int freePoint; // bool validGeometry; // // int recentEdge; // Point2f topLeft; // Point2f bottomRight; // }; // /// / main function for all demosaicing procceses // CV_EXPORTS_W void demosaicing(InputArray _src, OutputArray _dst, int code, int dcn = 0); // // } // // #endif /* __cplusplus */ // // #endif // /// * End of file. */ implementation Uses uLibName; // CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel, // Point anchor=Point(-1,-1), int iterations=1, // int borderType=BORDER_CONSTANT, // const Scalar& borderValue=morphologyDefaultBorderValue()); procedure _erode(src: Pointer; dst: Pointer; kernel: Pointer; anchor: Pointer { =Point(-1,-1) }; iterations: Integer { =1 }; borderType: Integer { =BORDER_CONSTANT }; const borderValue: Pointer { =morphologyDefaultBorderValue() } ); cdecl; external imgproc_Dll name 'erode'; procedure erode(src: IMat; dst: IMat; kernel: IMat; anchor: IPoint { =Point(-1,-1) }; iterations: Integer { =1 }; borderType: Integer { =BORDER_CONSTANT }; const borderValue: IScalar { =morphologyDefaultBorderValue() } ); begin end; // ! dilates the image (applies the local maximum operator) // CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel, // Point anchor=Point(-1,-1), int iterations=1, // int borderType=BORDER_CONSTANT, // const Scalar& borderValue=morphologyDefaultBorderValue() ); // ! applies an advanced morphological operation to the image // CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst, // int op, InputArray kernel, // Point anchor=Point(-1,-1), int iterations=1, // int borderType=BORDER_CONSTANT, // const Scalar& borderValue=morphologyDefaultBorderValue() ); function _getStructuringElement(shape: Integer; ksize: Pointer; anchor: Pointer): Pointer; cdecl; external imgproc_Dll name 'getStructuringElement'; // CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1)); function getStructuringElement(shape: Integer; ksize: ISize; anchor: IPoint { =Point(-1,-1) } ): IMat; begin if not Assigned(anchor) then anchor := Point(-1, -1); Result := CreateMat(_getStructuringElement(shape, ksize.getSize, anchor.getPoint)); end; end.