/// file core.hpp // brief The Core Functionality (* /////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M *) {$IFDEF DEBUG} {$A8,B-,C+,D+,E-,F-,G+,H+,I+,J-,K-,L+,M-,N+,O-,P+,Q+,R+,S-,T-,U-,V+,W+,X+,Y+,Z1} {$ELSE} {$A8,B-,C-,D-,E-,F-,G+,H+,I+,J-,K-,L-,M-,N+,O+,P+,Q-,R-,S-,T-,U-,V+,W-,X+,Y-,Z1} {$ENDIF} {$WARN SYMBOL_DEPRECATED OFF} {$WARN SYMBOL_PLATFORM OFF} {$WARN UNIT_PLATFORM OFF} {$WARN UNSAFE_TYPE OFF} {$WARN UNSAFE_CODE OFF} {$WARN UNSAFE_CAST OFF} unit core; interface Uses core.types_c {,cvdef} {,version ,cvstd}; // { // // template class CV_EXPORTS Size_; // template class CV_EXPORTS Point_; // template class CV_EXPORTS Rect_; // template class CV_EXPORTS Vec; // template class CV_EXPORTS Matx; // // class Mat; // class SparseMat; // typedef Mat MatND; // // namespace ogl { // class Buffer; // class Texture2D; // class Arrays; // } // // namespace gpu { // class GpuMat; // } // // class CV_EXPORTS MatExpr; // class CV_EXPORTS MatOp_Base; // class CV_EXPORTS MatArg; // class CV_EXPORTS MatConstIterator; // // template class CV_EXPORTS Mat_; // template class CV_EXPORTS MatIterator_; // template class CV_EXPORTS MatConstIterator_; // template class CV_EXPORTS MatCommaInitializer_; // /// / matrix decomposition types // enum { DECOMP_LU=0, DECOMP_SVD=1, DECOMP_EIG=2, DECOMP_CHOLESKY=3, DECOMP_QR=4, DECOMP_NORMAL=16 }; // enum { NORM_INF=1, NORM_L1=2, NORM_L2=4, NORM_L2SQR=5, NORM_HAMMING=6, NORM_HAMMING2=7, NORM_TYPE_MASK=7, NORM_RELATIVE=8, NORM_MINMAX=32 }; // enum { CMP_EQ=0, CMP_GT=1, CMP_GE=2, CMP_LT=3, CMP_LE=4, CMP_NE=5 }; // enum { GEMM_1_T=1, GEMM_2_T=2, GEMM_3_T=4 }; // enum { DFT_INVERSE=1, DFT_SCALE=2, DFT_ROWS=4, DFT_COMPLEX_OUTPUT=16, DFT_REAL_OUTPUT=32, // DCT_INVERSE = DFT_INVERSE, DCT_ROWS=DFT_ROWS }; // // /// *! // The standard OpenCV exception class. // Instances of the class are thrown by various functions and methods in the case of critical errors. // */ // class CV_EXPORTS Exception : public std::exception // { // public: // /*! // Default constructor // */ // Exception(); // /*! // Full constructor. Normally the constuctor is not called explicitly. // Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used. // */ // Exception(int _code, const String& _err, const String& _func, const String& _file, int _line); // virtual ~Exception() throw(); // // /*! // \return the error description and the context as a text string. // */ // virtual const char *what() const throw(); // void formatMessage(); // // String msg; ///< the formatted error message // // int code; ///< error code @see CVStatus // String err; ///< error description // String func; ///< function name. Available only when the compiler supports __func__ macro // String file; ///< source file name where the error has occured // int line; ///< line number in the source file where the error has occured // }; // // /// /! Signals an error and raises the exception. // /// *! // By default the function prints information about the error to stderr, // then it either stops if setBreakOnError() had been called before or raises the exception. // It is possible to alternate error processing by using redirectError(). // // \param exc the exception raisen. // */ // CV_EXPORTS void error( const Exception& exc ); // // #ifdef __GNUC__ // #define CV_Error( code, msg ) cv::error( cv::Exception(code, msg, __func__, __FILE__, __LINE__) ) // #define CV_Error_( code, args ) cv::error( cv::Exception(code, cv::format args, __func__, __FILE__, __LINE__) ) // #define CV_Assert( expr ) if(!!(expr)) ; else cv::error( cv::Exception(CV_StsAssert, #expr, __func__, __FILE__, __LINE__) ) // #else // #define CV_Error( code, msg ) cv::error( cv::Exception(code, msg, "", __FILE__, __LINE__) ) // #define CV_Error_( code, args ) cv::error( cv::Exception(code, cv::format args, "", __FILE__, __LINE__) ) // #define CV_Assert( expr ) if(!!(expr)) ; else cv::error( cv::Exception(CV_StsAssert, #expr, "", __FILE__, __LINE__) ) // #endif // // #ifdef _DEBUG // #define CV_DbgAssert(expr) CV_Assert(expr) // #else // #define CV_DbgAssert(expr) // #endif // /// *! // Allocates memory buffer // // This is specialized OpenCV memory allocation function that returns properly aligned memory buffers. // The usage is identical to malloc(). The allocated buffers must be freed with cv::fastFree(). // If there is not enough memory, the function calls cv::error(), which raises an exception. // // \param bufSize buffer size in bytes // \return the allocated memory buffer. // */ // CV_EXPORTS void* fastMalloc(size_t bufSize); // /// *! // Frees the memory allocated with cv::fastMalloc // // This is the corresponding deallocation function for cv::fastMalloc(). // When ptr==NULL, the function has no effect. // */ // CV_EXPORTS void fastFree(void* ptr); // // template static inline _Tp* allocate(size_t n) // { // return new _Tp[n]; // } // // template static inline void deallocate(_Tp* ptr, size_t) // { // delete[] ptr; // } // /// *! // The STL-compilant memory Allocator based on cv::fastMalloc() and cv::fastFree() // */ // template class CV_EXPORTS Allocator // { // public: // typedef _Tp value_type; // typedef value_type* pointer; // typedef const value_type* const_pointer; // typedef value_type& reference; // typedef const value_type& const_reference; // typedef size_t size_type; // typedef ptrdiff_t difference_type; // template class rebind { typedef Allocator other; }; // // explicit Allocator() {} // ~Allocator() {} // explicit Allocator(Allocator const&) {} // template // explicit Allocator(Allocator const&) {} // // // address // pointer address(reference r) { return &r; } // const_pointer address(const_reference r) { return &r; } // // pointer allocate(size_type count, const void* =0) // { return reinterpret_cast(fastMalloc(count * sizeof (_Tp))); } // // void deallocate(pointer p, size_type) {fastFree(p); } // // size_type max_size() const // { return max(static_cast<_Tp>(-1)/sizeof(_Tp), 1); } // // void construct(pointer p, const _Tp& v) { new(static_cast(p)) _Tp(v); } // void destroy(pointer p) { p->~_Tp(); } // }; // /// ////////////////////// Vec (used as element of multi-channel images ///////////////////// // /// *! // A helper class for cv::DataType // // The class is specialized for each fundamental numerical data type supported by OpenCV. // It provides DataDepth::value constant. // */ // template class CV_EXPORTS DataDepth {}; // // template<> class DataDepth { public: enum { value = CV_8U, fmt=(int)'u' }; }; // template<> class DataDepth { public: enum { value = CV_8U, fmt=(int)'u' }; }; // template<> class DataDepth { public: enum { value = CV_8S, fmt=(int)'c' }; }; // template<> class DataDepth { public: enum { value = CV_8S, fmt=(int)'c' }; }; // template<> class DataDepth { public: enum { value = CV_16U, fmt=(int)'w' }; }; // template<> class DataDepth { public: enum { value = CV_16S, fmt=(int)'s' }; }; // template<> class DataDepth { public: enum { value = CV_32S, fmt=(int)'i' }; }; /// / this is temporary solution to support 32-bit unsigned integers // template<> class DataDepth { public: enum { value = CV_32S, fmt=(int)'i' }; }; // template<> class DataDepth { public: enum { value = CV_32F, fmt=(int)'f' }; }; // template<> class DataDepth { public: enum { value = CV_64F, fmt=(int)'d' }; }; // template class DataDepth<_Tp*> { public: enum { value = CV_USRTYPE1, fmt=(int)'r' }; }; // // /// ///////////////////////////// Small Matrix /////////////////////////// // /// *! // A short numerical vector. // // This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements) // on which you can perform basic arithmetical operations, access individual elements using [] operator etc. // The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc., // which elements are dynamically allocated in the heap. // // The template takes 2 parameters: // -# _Tp element type // -# cn the number of elements // // In addition to the universal notation like Vec, you can use shorter aliases // for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec. // */ // // struct CV_EXPORTS Matx_AddOp {}; // struct CV_EXPORTS Matx_SubOp {}; // struct CV_EXPORTS Matx_ScaleOp {}; // struct CV_EXPORTS Matx_MulOp {}; // struct CV_EXPORTS Matx_MatMulOp {}; // struct CV_EXPORTS Matx_TOp {}; // // template class CV_EXPORTS Matx // { // public: // typedef _Tp value_type; // typedef Matx<_Tp, (m < n ? m : n), 1> diag_type; // typedef Matx<_Tp, m, n> mat_type; // enum { depth = DataDepth<_Tp>::value, rows = m, cols = n, channels = rows*cols, // type = CV_MAKETYPE(depth, channels) }; // // //! default constructor // Matx(); // // Matx(_Tp v0); //!< 1x1 matrix // Matx(_Tp v0, _Tp v1); //!< 1x2 or 2x1 matrix // Matx(_Tp v0, _Tp v1, _Tp v2); //!< 1x3 or 3x1 matrix // Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 1x4, 2x2 or 4x1 matrix // Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 1x5 or 5x1 matrix // Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 1x6, 2x3, 3x2 or 6x1 matrix // Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 1x7 or 7x1 matrix // Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 1x8, 2x4, 4x2 or 8x1 matrix // Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 1x9, 3x3 or 9x1 matrix // Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 1x10, 2x5 or 5x2 or 10x1 matrix // Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, // _Tp v4, _Tp v5, _Tp v6, _Tp v7, // _Tp v8, _Tp v9, _Tp v10, _Tp v11); //!< 1x12, 2x6, 3x4, 4x3, 6x2 or 12x1 matrix // Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, // _Tp v4, _Tp v5, _Tp v6, _Tp v7, // _Tp v8, _Tp v9, _Tp v10, _Tp v11, // _Tp v12, _Tp v13, _Tp v14, _Tp v15); //!< 1x16, 4x4 or 16x1 matrix // explicit Matx(const _Tp* vals); //!< initialize from a plain array // // static Matx all(_Tp alpha); // static Matx zeros(); // static Matx ones(); // static Matx eye(); // static Matx diag(const diag_type& d); // static Matx randu(_Tp a, _Tp b); // static Matx randn(_Tp a, _Tp b); // // //! dot product computed with the default precision // _Tp dot(const Matx<_Tp, m, n>& v) const; // // //! dot product computed in double-precision arithmetics // double ddot(const Matx<_Tp, m, n>& v) const; // // //! convertion to another data type // template operator Matx() const; // // //! change the matrix shape // template Matx<_Tp, m1, n1> reshape() const; // // //! extract part of the matrix // template Matx<_Tp, m1, n1> get_minor(int i, int j) const; // // //! extract the matrix row // Matx<_Tp, 1, n> row(int i) const; // // //! extract the matrix column // Matx<_Tp, m, 1> col(int i) const; // // //! extract the matrix diagonal // diag_type diag() const; // // //! transpose the matrix // Matx<_Tp, n, m> t() const; // // //! invert matrix the matrix // Matx<_Tp, n, m> inv(int method=DECOMP_LU) const; // // //! solve linear system // template Matx<_Tp, n, l> solve(const Matx<_Tp, m, l>& rhs, int flags=DECOMP_LU) const; // Vec<_Tp, n> solve(const Vec<_Tp, m>& rhs, int method) const; // // //! multiply two matrices element-wise // Matx<_Tp, m, n> mul(const Matx<_Tp, m, n>& a) const; // // //! element access // const _Tp& operator ()(int i, int j) const; // _Tp& operator ()(int i, int j); // // //! 1D element access // const _Tp& operator ()(int i) const; // _Tp& operator ()(int i); // // Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp); // Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp); // template Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp); // Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp); // template Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp); // Matx(const Matx<_Tp, n, m>& a, Matx_TOp); // // _Tp val[m*n]; //< matrix elements // }; // // // typedef Matx Matx12f; // typedef Matx Matx12d; // typedef Matx Matx13f; // typedef Matx Matx13d; // typedef Matx Matx14f; // typedef Matx Matx14d; // typedef Matx Matx16f; // typedef Matx Matx16d; // // typedef Matx Matx21f; // typedef Matx Matx21d; // typedef Matx Matx31f; // typedef Matx Matx31d; // typedef Matx Matx41f; // typedef Matx Matx41d; // typedef Matx Matx61f; // typedef Matx Matx61d; // // typedef Matx Matx22f; // typedef Matx Matx22d; // typedef Matx Matx23f; // typedef Matx Matx23d; // typedef Matx Matx32f; // typedef Matx Matx32d; // // typedef Matx Matx33f; // typedef Matx Matx33d; // // typedef Matx Matx34f; // typedef Matx Matx34d; // typedef Matx Matx43f; // typedef Matx Matx43d; // // typedef Matx Matx44f; // typedef Matx Matx44d; // typedef Matx Matx66f; // typedef Matx Matx66d; // // /// *! // A short numerical vector. // // This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements) // on which you can perform basic arithmetical operations, access individual elements using [] operator etc. // The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc., // which elements are dynamically allocated in the heap. // // The template takes 2 parameters: // -# _Tp element type // -# cn the number of elements // // In addition to the universal notation like Vec, you can use shorter aliases // for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec. // */ // template class CV_EXPORTS Vec : public Matx<_Tp, cn, 1> // { // public: // typedef _Tp value_type; // enum { depth = DataDepth<_Tp>::value, channels = cn, type = CV_MAKETYPE(depth, channels) }; // // //! default constructor // Vec(); // // Vec(_Tp v0); //!< 1-element vector constructor // Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor // Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor // Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor // Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor // Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor // Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor // Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor // Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor // Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor // explicit Vec(const _Tp* values); // // Vec(const Vec<_Tp, cn>& v); // // static Vec all(_Tp alpha); // // //! per-element multiplication // Vec mul(const Vec<_Tp, cn>& v) const; // // //! conjugation (makes sense for complex numbers and quaternions) // Vec conj() const; // // /*! // cross product of the two 3D vectors. // // For other dimensionalities the exception is raised // */ // Vec cross(const Vec& v) const; // //! convertion to another data type // template operator Vec() const; // //! conversion to 4-element CvScalar. // operator CvScalar() const; // // /*! element access */ // const _Tp& operator [](int i) const; // _Tp& operator[](int i); // const _Tp& operator ()(int i) const; // _Tp& operator ()(int i); // // Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp); // Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp); // template Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp); // }; // // /// * \typedef // // Shorter aliases for the most popular specializations of Vec // */ // typedef Vec Vec2b; // typedef Vec Vec3b; // typedef Vec Vec4b; // // typedef Vec Vec2s; // typedef Vec Vec3s; // typedef Vec Vec4s; // // typedef Vec Vec2w; // typedef Vec Vec3w; // typedef Vec Vec4w; // // typedef Vec Vec2i; // typedef Vec Vec3i; // typedef Vec Vec4i; // typedef Vec Vec6i; // typedef Vec Vec8i; // // typedef Vec Vec2f; // typedef Vec Vec3f; // typedef Vec Vec4f; // typedef Vec Vec6f; // // typedef Vec Vec2d; // typedef Vec Vec3d; // typedef Vec Vec4d; // typedef Vec Vec6d; // // /// /////////////////////////////// Complex ////////////////////////////// // /// *! // A complex number class. // // The template class is similar and compatible with std::complex, however it provides slightly // more convenient access to the real and imaginary parts using through the simple field access, as opposite // to std::complex::real() and std::complex::imag(). // */ // template class CV_EXPORTS Complex // { // public: // // //! constructors // Complex(); // Complex( _Tp _re, _Tp _im=0 ); // Complex( const std::complex<_Tp>& c ); // // //! conversion to another data type // template operator Complex() const; // //! conjugation // Complex conj() const; // //! conversion to std::complex // operator std::complex<_Tp>() const; // // _Tp re, im; //< the real and the imaginary parts // }; // // /// *! // \typedef // */ // typedef Complex Complexf; // typedef Complex Complexd; // // /// /////////////////////////////// Point_ //////////////////////////////// // /// *! // template 2D point class. // // The class defines a point in 2D space. Data type of the point coordinates is specified // as a template parameter. There are a few shorter aliases available for user convenience. // See cv::Point, cv::Point2i, cv::Point2f and cv::Point2d. // */ // template class CV_EXPORTS Point_ // { // public: // typedef _Tp value_type; // // // various constructors // Point_(); // Point_(_Tp _x, _Tp _y); // Point_(const Point_& pt); // Point_(const CvPoint& pt); // Point_(const CvPoint2D32f& pt); // Point_(const Size_<_Tp>& sz); // Point_(const Vec<_Tp, 2>& v); // // Point_& operator = (const Point_& pt); // //! conversion to another data type // template operator Point_<_Tp2>() const; // // //! conversion to the old-style C structures // operator CvPoint() const; // operator CvPoint2D32f() const; // operator Vec<_Tp, 2>() const; // // //! dot product // _Tp dot(const Point_& pt) const; // //! dot product computed in double-precision arithmetics // double ddot(const Point_& pt) const; // //! cross-product // double cross(const Point_& pt) const; // //! checks whether the point is inside the specified rectangle // bool inside(const Rect_<_Tp>& r) const; // // _Tp x, y; //< the point coordinates // }; // /// *! // template 3D point class. // // The class defines a point in 3D space. Data type of the point coordinates is specified // as a template parameter. // // \see cv::Point3i, cv::Point3f and cv::Point3d // */ // template class CV_EXPORTS Point3_ // { // public: // typedef _Tp value_type; // // // various constructors // Point3_(); // Point3_(_Tp _x, _Tp _y, _Tp _z); // Point3_(const Point3_& pt); // explicit Point3_(const Point_<_Tp>& pt); // Point3_(const CvPoint3D32f& pt); // Point3_(const Vec<_Tp, 3>& v); // // Point3_& operator = (const Point3_& pt); // //! conversion to another data type // template operator Point3_<_Tp2>() const; // //! conversion to the old-style CvPoint... // operator CvPoint3D32f() const; // //! conversion to cv::Vec<> // operator Vec<_Tp, 3>() const; // // //! dot product // _Tp dot(const Point3_& pt) const; // //! dot product computed in double-precision arithmetics // double ddot(const Point3_& pt) const; // //! cross product of the 2 3D points // Point3_ cross(const Point3_& pt) const; // // _Tp x, y, z; //< the point coordinates // }; // /// /////////////////////////////// Size_ //////////////////////////////// // /// *! // The 2D size class // // The class represents the size of a 2D rectangle, image size, matrix size etc. // Normally, cv::Size ~ cv::Size_ is used. // */ // template class CV_EXPORTS Size_ // { // public: // typedef _Tp value_type; // // //! various constructors // Size_(); // Size_(_Tp _width, _Tp _height); // Size_(const Size_& sz); // Size_(const CvSize& sz); // Size_(const CvSize2D32f& sz); // Size_(const Point_<_Tp>& pt); // // Size_& operator = (const Size_& sz); // //! the area (width*height) // _Tp area() const; // // //! conversion of another data type. // template operator Size_<_Tp2>() const; // // //! conversion to the old-style OpenCV types // operator CvSize() const; // operator CvSize2D32f() const; // // _Tp width, height; // the width and the height // }; // /// /////////////////////////////// Rect_ //////////////////////////////// // /// *! // The 2D up-right rectangle class // // The class represents a 2D rectangle with coordinates of the specified data type. // Normally, cv::Rect ~ cv::Rect_ is used. // */ // template class CV_EXPORTS Rect_ // { // public: // typedef _Tp value_type; // // //! various constructors // Rect_(); // Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height); // Rect_(const Rect_& r); // Rect_(const CvRect& r); // Rect_(const Point_<_Tp>& org, const Size_<_Tp>& sz); // Rect_(const Point_<_Tp>& pt1, const Point_<_Tp>& pt2); // // Rect_& operator = ( const Rect_& r ); // //! the top-left corner // Point_<_Tp> tl() const; // //! the bottom-right corner // Point_<_Tp> br() const; // // //! size (width, height) of the rectangle // Size_<_Tp> size() const; // //! area (width*height) of the rectangle // _Tp area() const; // // //! conversion to another data type // template operator Rect_<_Tp2>() const; // //! conversion to the old-style CvRect // operator CvRect() const; // // //! checks whether the rectangle contains the point // bool contains(const Point_<_Tp>& pt) const; // // _Tp x, y, width, height; //< the top-left corner, as well as width and height of the rectangle // }; // // /// *! // \typedef // // shorter aliases for the most popular cv::Point_<>, cv::Size_<> and cv::Rect_<> specializations // */ // typedef Point_ Point2i; // typedef Point2i Point; // typedef Size_ Size2i; // typedef Size2i Size; // typedef Rect_ Rect; // typedef Point_ Point2f; // typedef Point_ Point2d; // typedef Size_ Size2f; // typedef Point3_ Point3i; // typedef Point3_ Point3f; // typedef Point3_ Point3d; // // /// *! // The rotated 2D rectangle. // // The class represents rotated (i.e. not up-right) rectangles on a plane. // Each rectangle is described by the center point (mass center), length of each side // (represented by cv::Size2f structure) and the rotation angle in degrees. // */ // class CV_EXPORTS RotatedRect // { // public: // //! various constructors // RotatedRect(); // RotatedRect(const Point2f& center, const Size2f& size, float angle); // RotatedRect(const CvBox2D& box); // // //! returns 4 vertices of the rectangle // void points(Point2f pts[]) const; // //! returns the minimal up-right rectangle containing the rotated rectangle // Rect boundingRect() const; // //! conversion to the old-style CvBox2D structure // operator CvBox2D() const; // // Point2f center; //< the rectangle mass center // Size2f size; //< width and height of the rectangle // float angle; //< the rotation angle. When the angle is 0, 90, 180, 270 etc., the rectangle becomes an up-right rectangle. // }; // /// /////////////////////////////// Scalar_ /////////////////////////////// // /// *! // The template scalar class. // // This is partially specialized cv::Vec class with the number of elements = 4, i.e. a short vector of four elements. // Normally, cv::Scalar ~ cv::Scalar_ is used. // */ // template class CV_EXPORTS Scalar_ : public Vec<_Tp, 4> // { // public: // //! various constructors // Scalar_(); // Scalar_(_Tp v0, _Tp v1, _Tp v2=0, _Tp v3=0); // Scalar_(const CvScalar& s); // Scalar_(_Tp v0); // // //! returns a scalar with all elements set to v0 // static Scalar_<_Tp> all(_Tp v0); // //! conversion to the old-style CvScalar // operator CvScalar() const; // // //! conversion to another data type // template operator Scalar_() const; // // //! per-element product // Scalar_<_Tp> mul(const Scalar_<_Tp>& t, double scale=1 ) const; // // // returns (v0, -v1, -v2, -v3) // Scalar_<_Tp> conj() const; // // // returns true iff v1 == v2 == v3 == 0 // bool isReal() const; // }; // // typedef Scalar_ Scalar; // // CV_EXPORTS void scalarToRawData(const Scalar& s, void* buf, int type, int unroll_to=0); // /// /////////////////////////////// Range ///////////////////////////////// // /// *! // The 2D range class // // This is the class used to specify a continuous subsequence, i.e. part of a contour, or a column span in a matrix. // */ // class CV_EXPORTS Range // { // public: // Range(); // Range(int _start, int _end); // Range(const CvSlice& slice); // int size() const; // bool empty() const; // static Range all(); // operator CvSlice() const; // // int start, end; // }; // // // /// ////////////////////////////// KeyPoint //////////////////////////////// // /// *! // The Keypoint Class // // The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint detectors, such as // Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, cv::LDetector etc. // // The keypoint is characterized by the 2D position, scale // (proportional to the diameter of the neighborhood that needs to be taken into account), // orientation and some other parameters. The keypoint neighborhood is then analyzed by another algorithm that builds a descriptor // (usually represented as a feature vector). The keypoints representing the same object in different images can then be matched using // cv::KDTree or another method. // */ // class CV_EXPORTS_W_SIMPLE KeyPoint // { // public: // //! the default constructor // CV_WRAP KeyPoint(); // //! the full constructor // KeyPoint(Point2f _pt, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1); // //! another form of the full constructor // CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1); // // size_t hash() const; // // //! converts vector of keypoints to vector of points // static void convert(const std::vector& keypoints, // CV_OUT std::vector& points2f, // const std::vector& keypointIndexes=std::vector()); // //! converts vector of points to the vector of keypoints, where each keypoint is assigned the same size and the same orientation // static void convert(const std::vector& points2f, // CV_OUT std::vector& keypoints, // float size=1, float response=1, int octave=0, int class_id=-1); // // //! computes overlap for pair of keypoints; // //! overlap is a ratio between area of keypoint regions intersection and // //! area of keypoint regions union (now keypoint region is circle) // static float overlap(const KeyPoint& kp1, const KeyPoint& kp2); // // CV_PROP_RW Point2f pt; //!< coordinates of the keypoints // CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood // CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable); // //!< it's in [0,360) degrees and measured relative to // //!< image coordinate system, ie in clockwise. // CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling // CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted // CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to) // }; // // inline KeyPoint::KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {} // inline KeyPoint::KeyPoint(Point2f _pt, float _size, float _angle, float _response, int _octave, int _class_id) // : pt(_pt), size(_size), angle(_angle), response(_response), octave(_octave), class_id(_class_id) {} // inline KeyPoint::KeyPoint(float x, float y, float _size, float _angle, float _response, int _octave, int _class_id) // : pt(x, y), size(_size), angle(_angle), response(_response), octave(_octave), class_id(_class_id) {} // // // /// /////////////////////////////// DMatch ///////////////////////////////// // /// * // * Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors. // */ // struct CV_EXPORTS_W_SIMPLE DMatch // { // CV_WRAP DMatch(); // CV_WRAP DMatch(int _queryIdx, int _trainIdx, float _distance); // CV_WRAP DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance); // // CV_PROP_RW int queryIdx; // query descriptor index // CV_PROP_RW int trainIdx; // train descriptor index // CV_PROP_RW int imgIdx; // train image index // // CV_PROP_RW float distance; // // // less is better // bool operator<(const DMatch &m) const; // }; // // inline DMatch::DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {} // inline DMatch::DMatch(int _queryIdx, int _trainIdx, float _distance) // : queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {} // inline DMatch::DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance) // : queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {} // inline bool DMatch::operator<(const DMatch &m) const { return distance < m.distance; } // // // /// ////////////////////////////// DataType //////////////////////////////// // /// *! // Informative template class for OpenCV "scalars". // // The class is specialized for each primitive numerical type supported by OpenCV (such as unsigned char or float), // as well as for more complex types, like cv::Complex<>, std::complex<>, cv::Vec<> etc. // The common property of all such types (called "scalars", do not confuse it with cv::Scalar_) // is that each of them is basically a tuple of numbers of the same type. Each "scalar" can be represented // by the depth id (CV_8U ... CV_64F) and the number of channels. // OpenCV matrices, 2D or nD, dense or sparse, can store "scalars", // as long as the number of channels does not exceed CV_CN_MAX. // */ // template class DataType // { // public: // typedef _Tp value_type; // typedef value_type work_type; // typedef value_type channel_type; // typedef value_type vec_type; // enum { generic_type = 1, depth = -1, channels = 1, fmt=0, // type = CV_MAKETYPE(depth, channels) }; // }; // // template<> class DataType // { // public: // typedef bool value_type; // typedef int work_type; // typedef value_type channel_type; // typedef value_type vec_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 1, // fmt=DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // }; // // template<> class DataType // { // public: // typedef uchar value_type; // typedef int work_type; // typedef value_type channel_type; // typedef value_type vec_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 1, // fmt=DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // }; // // template<> class DataType // { // public: // typedef schar value_type; // typedef int work_type; // typedef value_type channel_type; // typedef value_type vec_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 1, // fmt=DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // }; // // template<> class DataType // { // public: // typedef schar value_type; // typedef int work_type; // typedef value_type channel_type; // typedef value_type vec_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 1, // fmt=DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // }; // // template<> class DataType // { // public: // typedef ushort value_type; // typedef int work_type; // typedef value_type channel_type; // typedef value_type vec_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 1, // fmt=DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // }; // // template<> class DataType // { // public: // typedef short value_type; // typedef int work_type; // typedef value_type channel_type; // typedef value_type vec_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 1, // fmt=DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // }; // // template<> class DataType // { // public: // typedef int value_type; // typedef value_type work_type; // typedef value_type channel_type; // typedef value_type vec_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 1, // fmt=DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // }; // // template<> class DataType // { // public: // typedef float value_type; // typedef value_type work_type; // typedef value_type channel_type; // typedef value_type vec_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 1, // fmt=DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // }; // // template<> class DataType // { // public: // typedef double value_type; // typedef value_type work_type; // typedef value_type channel_type; // typedef value_type vec_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 1, // fmt=DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // }; // // template class DataType > // { // public: // typedef Matx<_Tp, m, n> value_type; // typedef Matx::work_type, m, n> work_type; // typedef _Tp channel_type; // typedef value_type vec_type; // enum { generic_type = 0, depth = DataDepth::value, channels = m*n, // fmt = ((channels-1)<<8) + DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // }; // // template class DataType > // { // public: // typedef Vec<_Tp, cn> value_type; // typedef Vec::work_type, cn> work_type; // typedef _Tp channel_type; // typedef value_type vec_type; // enum { generic_type = 0, depth = DataDepth::value, channels = cn, // fmt = ((channels-1)<<8) + DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // }; // // template class DataType > // { // public: // typedef std::complex<_Tp> value_type; // typedef value_type work_type; // typedef _Tp channel_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 2, // fmt = ((channels-1)<<8) + DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // typedef Vec vec_type; // }; // // template class DataType > // { // public: // typedef Complex<_Tp> value_type; // typedef value_type work_type; // typedef _Tp channel_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 2, // fmt = ((channels-1)<<8) + DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // typedef Vec vec_type; // }; // // template class DataType > // { // public: // typedef Point_<_Tp> value_type; // typedef Point_::work_type> work_type; // typedef _Tp channel_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 2, // fmt = ((channels-1)<<8) + DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // typedef Vec vec_type; // }; // // template class DataType > // { // public: // typedef Point3_<_Tp> value_type; // typedef Point3_::work_type> work_type; // typedef _Tp channel_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 3, // fmt = ((channels-1)<<8) + DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // typedef Vec vec_type; // }; // // template class DataType > // { // public: // typedef Size_<_Tp> value_type; // typedef Size_::work_type> work_type; // typedef _Tp channel_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 2, // fmt = ((channels-1)<<8) + DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // typedef Vec vec_type; // }; // // template class DataType > // { // public: // typedef Rect_<_Tp> value_type; // typedef Rect_::work_type> work_type; // typedef _Tp channel_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 4, // fmt = ((channels-1)<<8) + DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // typedef Vec vec_type; // }; // // template class DataType > // { // public: // typedef Scalar_<_Tp> value_type; // typedef Scalar_::work_type> work_type; // typedef _Tp channel_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 4, // fmt = ((channels-1)<<8) + DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // typedef Vec vec_type; // }; // // template<> class DataType // { // public: // typedef Range value_type; // typedef value_type work_type; // typedef int channel_type; // enum { generic_type = 0, depth = DataDepth::value, channels = 2, // fmt = ((channels-1)<<8) + DataDepth::fmt, // type = CV_MAKETYPE(depth, channels) }; // typedef Vec vec_type; // }; // /// /////////////////// generic_type ref-counting pointer class for C/C++ objects //////////////////////// // /// *! // Smart pointer to dynamically allocated objects. // // This is template pointer-wrapping class that stores the associated reference counter along with the // object pointer. The class is similar to std::smart_ptr<> from the recent addons to the C++ standard, // but is shorter to write :) and self-contained (i.e. does add any dependency on the compiler or an external library). // // Basically, you can use "Ptr ptr" (or faster "const Ptr& ptr" for read-only access) // everywhere instead of "MyObjectType* ptr", where MyObjectType is some C structure or a C++ class. // To make it all work, you need to specialize Ptr<>::delete_obj(), like: // // \code // template<> void Ptr::delete_obj() { call_destructor_func(obj); } // \endcode // // \note{if MyObjectType is a C++ class with a destructor, you do not need to specialize delete_obj(), // since the default implementation calls "delete obj;"} // // \note{Another good property of the class is that the operations on the reference counter are atomic, // i.e. it is safe to use the class in multi-threaded applications} // */ // template class CV_EXPORTS Ptr // { // public: // //! empty constructor // Ptr(); // //! take ownership of the pointer. The associated reference counter is allocated and set to 1 // Ptr(_Tp* _obj); // //! calls release() // ~Ptr(); // //! copy constructor. Copies the members and calls addref() // Ptr(const Ptr& ptr); // template Ptr(const Ptr<_Tp2>& ptr); // //! copy operator. Calls ptr.addref() and release() before copying the members // Ptr& operator = (const Ptr& ptr); // //! increments the reference counter // void addref(); // //! decrements the reference counter. If it reaches 0, delete_obj() is called // void release(); // //! deletes the object. Override if needed // void delete_obj(); // //! returns true iff obj==NULL // bool empty() const; // // //! cast pointer to another type // template Ptr<_Tp2> ptr(); // template const Ptr<_Tp2> ptr() const; // // //! helper operators making "Ptr ptr" use very similar to "T* ptr". // _Tp* operator -> (); // const _Tp* operator -> () const; // // operator _Tp* (); // operator const _Tp*() const; // // _Tp* obj; //< the object pointer. // int* refcount; //< the associated reference counter // }; // // template bool operator==(Ptr const & a, Ptr const & b); // template bool operator!=(Ptr const & a, Ptr const & b); // // /// /////////////////////// Input/Output Array Arguments ///////////////////////////////// // /// *! // Proxy datatype for passing Mat's and vector<>'s as input parameters // */ // class CV_EXPORTS _InputArray // { // public: // enum { // KIND_SHIFT = 16, // FIXED_TYPE = 0x8000 << KIND_SHIFT, // FIXED_SIZE = 0x4000 << KIND_SHIFT, // KIND_MASK = ~(FIXED_TYPE|FIXED_SIZE) - (1 << KIND_SHIFT) + 1, // // NONE = 0 << KIND_SHIFT, // MAT = 1 << KIND_SHIFT, // MATX = 2 << KIND_SHIFT, // STD_VECTOR = 3 << KIND_SHIFT, // STD_VECTOR_VECTOR = 4 << KIND_SHIFT, // STD_VECTOR_MAT = 5 << KIND_SHIFT, // EXPR = 6 << KIND_SHIFT, // OPENGL_BUFFER = 7 << KIND_SHIFT, // OPENGL_TEXTURE = 8 << KIND_SHIFT, // GPU_MAT = 9 << KIND_SHIFT // }; // _InputArray(); // // _InputArray(const Mat& m); // _InputArray(const MatExpr& expr); // template _InputArray(const _Tp* vec, int n); // template _InputArray(const std::vector<_Tp>& vec); // template _InputArray(const std::vector >& vec); // _InputArray(const std::vector& vec); // template _InputArray(const std::vector >& vec); // template _InputArray(const Mat_<_Tp>& m); // template _InputArray(const Matx<_Tp, m, n>& matx); // _InputArray(const Scalar& s); // _InputArray(const double& val); // _InputArray(const gpu::GpuMat& d_mat); // _InputArray(const ogl::Buffer& buf); // _InputArray(const ogl::Texture2D& tex); // // virtual Mat getMat(int i=-1) const; // virtual void getMatVector(std::vector& mv) const; // virtual gpu::GpuMat getGpuMat() const; // virtual ogl::Buffer getOGlBuffer() const; // virtual ogl::Texture2D getOGlTexture2D() const; // // virtual int kind() const; // virtual Size size(int i=-1) const; // virtual size_t total(int i=-1) const; // virtual int type(int i=-1) const; // virtual int depth(int i=-1) const; // virtual int channels(int i=-1) const; // virtual bool empty() const; // // virtual ~_InputArray(); // // int flags; // void* obj; // Size sz; // }; // // // enum // { // DEPTH_MASK_8U = 1 << CV_8U, // DEPTH_MASK_8S = 1 << CV_8S, // DEPTH_MASK_16U = 1 << CV_16U, // DEPTH_MASK_16S = 1 << CV_16S, // DEPTH_MASK_32S = 1 << CV_32S, // DEPTH_MASK_32F = 1 << CV_32F, // DEPTH_MASK_64F = 1 << CV_64F, // DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1, // DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S, // DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F // }; // // /// *! // Proxy datatype for passing Mat's and vector<>'s as input parameters // */ // class CV_EXPORTS _OutputArray : public _InputArray // { // public: // _OutputArray(); // // _OutputArray(Mat& m); // template _OutputArray(std::vector<_Tp>& vec); // template _OutputArray(std::vector >& vec); // _OutputArray(std::vector& vec); // template _OutputArray(std::vector >& vec); // template _OutputArray(Mat_<_Tp>& m); // template _OutputArray(Matx<_Tp, m, n>& matx); // template _OutputArray(_Tp* vec, int n); // _OutputArray(gpu::GpuMat& d_mat); // _OutputArray(ogl::Buffer& buf); // _OutputArray(ogl::Texture2D& tex); // // _OutputArray(const Mat& m); // template _OutputArray(const std::vector<_Tp>& vec); // template _OutputArray(const std::vector >& vec); // _OutputArray(const std::vector& vec); // template _OutputArray(const std::vector >& vec); // template _OutputArray(const Mat_<_Tp>& m); // template _OutputArray(const Matx<_Tp, m, n>& matx); // template _OutputArray(const _Tp* vec, int n); // _OutputArray(const gpu::GpuMat& d_mat); // _OutputArray(const ogl::Buffer& buf); // _OutputArray(const ogl::Texture2D& tex); // // virtual bool fixedSize() const; // virtual bool fixedType() const; // virtual bool needed() const; // virtual Mat& getMatRef(int i=-1) const; // virtual gpu::GpuMat& getGpuMatRef() const; // virtual ogl::Buffer& getOGlBufferRef() const; // virtual ogl::Texture2D& getOGlTexture2DRef() const; // virtual void create(Size sz, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const; // virtual void create(int rows, int cols, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const; // virtual void create(int dims, const int* size, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const; // virtual void release() const; // virtual void clear() const; // // virtual ~_OutputArray(); // }; // // typedef const _InputArray& InputArray; // typedef InputArray InputArrayOfArrays; // typedef const _OutputArray& OutputArray; // typedef OutputArray OutputArrayOfArrays; // typedef OutputArray InputOutputArray; // typedef OutputArray InputOutputArrayOfArrays; // // CV_EXPORTS OutputArray noArray(); // /// ////////////////////////////////////// Mat /////////////////////////////////////////// // // enum { MAGIC_MASK=0xFFFF0000, TYPE_MASK=0x00000FFF, DEPTH_MASK=7 }; // /// *! // Custom array allocator // // */ // class CV_EXPORTS MatAllocator // { // public: // MatAllocator() {} // virtual ~MatAllocator() {} // virtual void allocate(int dims, const int* sizes, int type, int*& refcount, // uchar*& datastart, uchar*& data, size_t* step) = 0; // virtual void deallocate(int* refcount, uchar* datastart, uchar* data) = 0; // }; // /// *! // The n-dimensional matrix class. // // The class represents an n-dimensional dense numerical array that can act as // a matrix, image, optical flow map, 3-focal tensor etc. // It is very similar to CvMat and CvMatND types from earlier versions of OpenCV, // and similarly to those types, the matrix can be multi-channel. It also fully supports ROI mechanism. // // There are many different ways to create cv::Mat object. Here are the some popular ones: //
    //
  • using cv::Mat::create(nrows, ncols, type) method or // the similar constructor cv::Mat::Mat(nrows, ncols, type[, fill_value]) constructor. // A new matrix of the specified size and specifed type will be allocated. // "type" has the same meaning as in cvCreateMat function, // e.g. CV_8UC1 means 8-bit single-channel matrix, CV_32FC2 means 2-channel (i.e. complex) // floating-point matrix etc: // // \code // // make 7x7 complex matrix filled with 1+3j. // cv::Mat M(7,7,CV_32FC2,Scalar(1,3)); // // and now turn M to 100x60 15-channel 8-bit matrix. // // The old content will be deallocated // M.create(100,60,CV_8UC(15)); // \endcode // // As noted in the introduction of this chapter, Mat::create() // will only allocate a new matrix when the current matrix dimensionality // or type are different from the specified. // //
  • by using a copy constructor or assignment operator, where on the right side it can // be a matrix or expression, see below. Again, as noted in the introduction, // matrix assignment is O(1) operation because it only copies the header // and increases the reference counter. cv::Mat::clone() method can be used to get a full // (a.k.a. deep) copy of the matrix when you need it. // //
  • by constructing a header for a part of another matrix. It can be a single row, single column, // several rows, several columns, rectangular region in the matrix (called a minor in algebra) or // a diagonal. Such operations are also O(1), because the new header will reference the same data. // You can actually modify a part of the matrix using this feature, e.g. // // \code // // add 5-th row, multiplied by 3 to the 3rd row // M.row(3) = M.row(3) + M.row(5)*3; // // // now copy 7-th column to the 1-st column // // M.col(1) = M.col(7); // this will not work // Mat M1 = M.col(1); // M.col(7).copyTo(M1); // // // create new 320x240 image // cv::Mat img(Size(320,240),CV_8UC3); // // select a roi // cv::Mat roi(img, Rect(10,10,100,100)); // // fill the ROI with (0,255,0) (which is green in RGB space); // // the original 320x240 image will be modified // roi = Scalar(0,255,0); // \endcode // // Thanks to the additional cv::Mat::datastart and cv::Mat::dataend members, it is possible to // compute the relative sub-matrix position in the main "container" matrix using cv::Mat::locateROI(): // // \code // Mat A = Mat::eye(10, 10, CV_32S); // // extracts A columns, 1 (inclusive) to 3 (exclusive). // Mat B = A(Range::all(), Range(1, 3)); // // extracts B rows, 5 (inclusive) to 9 (exclusive). // // that is, C ~ A(Range(5, 9), Range(1, 3)) // Mat C = B(Range(5, 9), Range::all()); // Size size; Point ofs; // C.locateROI(size, ofs); // // size will be (width=10,height=10) and the ofs will be (x=1, y=5) // \endcode // // As in the case of whole matrices, if you need a deep copy, use cv::Mat::clone() method // of the extracted sub-matrices. // //
  • by making a header for user-allocated-data. It can be useful for //
      //
    1. processing "foreign" data using OpenCV (e.g. when you implement // a DirectShow filter or a processing module for gstreamer etc.), e.g. // // \code // void process_video_frame(const unsigned char* pixels, // int width, int height, int step) // { // cv::Mat img(height, width, CV_8UC3, pixels, step); // cv::GaussianBlur(img, img, cv::Size(7,7), 1.5, 1.5); // } // \endcode // //
    2. for quick initialization of small matrices and/or super-fast element access // // \code // double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}}; // cv::Mat M = cv::Mat(3, 3, CV_64F, m).inv(); // \endcode //
    // // partial yet very common cases of this "user-allocated data" case are conversions // from CvMat and IplImage to cv::Mat. For this purpose there are special constructors // taking pointers to CvMat or IplImage and the optional // flag indicating whether to copy the data or not. // // Backward conversion from cv::Mat to CvMat or IplImage is provided via cast operators // cv::Mat::operator CvMat() an cv::Mat::operator IplImage(). // The operators do not copy the data. // // // \code // IplImage* img = cvLoadImage("greatwave.jpg", 1); // Mat mtx(img); // convert IplImage* -> cv::Mat // CvMat oldmat = mtx; // convert cv::Mat -> CvMat // CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height && // oldmat.data.ptr == (uchar*)img->imageData && oldmat.step == img->widthStep); // \endcode // //
  • by using MATLAB-style matrix initializers, cv::Mat::zeros(), cv::Mat::ones(), cv::Mat::eye(), e.g.: // // \code // // create a double-precision identity martix and add it to M. // M += Mat::eye(M.rows, M.cols, CV_64F); // \endcode // //
  • by using comma-separated initializer: // // \code // // create 3x3 double-precision identity matrix // Mat M = (Mat_(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1); // \endcode // // here we first call constructor of cv::Mat_ class (that we describe further) with the proper matrix, // and then we just put "<<" operator followed by comma-separated values that can be constants, // variables, expressions etc. Also, note the extra parentheses that are needed to avoid compiler errors. // //
// // Once matrix is created, it will be automatically managed by using reference-counting mechanism // (unless the matrix header is built on top of user-allocated data, // in which case you should handle the data by yourself). // The matrix data will be deallocated when no one points to it; // if you want to release the data pointed by a matrix header before the matrix destructor is called, // use cv::Mat::release(). // // The next important thing to learn about the matrix class is element access. Here is how the matrix is stored. // The elements are stored in row-major order (row by row). The cv::Mat::data member points to the first element of the first row, // cv::Mat::rows contains the number of matrix rows and cv::Mat::cols - the number of matrix columns. There is yet another member, // cv::Mat::step that is used to actually compute address of a matrix element. cv::Mat::step is needed because the matrix can be // a part of another matrix or because there can some padding space in the end of each row for a proper alignment. // // \image html roi.png // // Given these parameters, address of the matrix element M_{ij} is computed as following: // // addr(M_{ij})=M.data + M.step*i + j*M.elemSize() // // if you know the matrix element type, e.g. it is float, then you can use cv::Mat::at() method: // // addr(M_{ij})=&M.at(i,j) // // (where & is used to convert the reference returned by cv::Mat::at() to a pointer). // if you need to process a whole row of matrix, the most efficient way is to get // the pointer to the row first, and then just use plain C operator []: // // \code // // compute sum of positive matrix elements // // (assuming that M is double-precision matrix) // double sum=0; // for(int i = 0; i < M.rows; i++) // { // const double* Mi = M.ptr(i); // for(int j = 0; j < M.cols; j++) // sum += std::max(Mi[j], 0.); // } // \endcode // // Some operations, like the above one, do not actually depend on the matrix shape, // they just process elements of a matrix one by one (or elements from multiple matrices // that are sitting in the same place, e.g. matrix addition). Such operations are called // element-wise and it makes sense to check whether all the input/output matrices are continuous, // i.e. have no gaps in the end of each row, and if yes, process them as a single long row: // // \code // // compute sum of positive matrix elements, optimized variant // double sum=0; // int cols = M.cols, rows = M.rows; // if(M.isContinuous()) // { // cols *= rows; // rows = 1; // } // for(int i = 0; i < rows; i++) // { // const double* Mi = M.ptr(i); // for(int j = 0; j < cols; j++) // sum += std::max(Mi[j], 0.); // } // \endcode // in the case of continuous matrix the outer loop body will be executed just once, // so the overhead will be smaller, which will be especially noticeable in the case of small matrices. // // Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows: // \code // // compute sum of positive matrix elements, iterator-based variant // double sum=0; // MatConstIterator_ it = M.begin(), it_end = M.end(); // for(; it != it_end; ++it) // sum += std::max(*it, 0.); // \endcode // // The matrix iterators are random-access iterators, so they can be passed // to any STL algorithm, including std::sort(). // */ // class CV_EXPORTS Mat // { // public: // //! default constructor // Mat(); // //! constructs 2D matrix of the specified size and type // // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.) // Mat(int rows, int cols, int type); // Mat(Size size, int type); // //! constucts 2D matrix and fills it with the specified value _s. // Mat(int rows, int cols, int type, const Scalar& s); // Mat(Size size, int type, const Scalar& s); // // //! constructs n-dimensional matrix // Mat(int ndims, const int* sizes, int type); // Mat(int ndims, const int* sizes, int type, const Scalar& s); // // //! copy constructor // Mat(const Mat& m); // //! constructor for matrix headers pointing to user-allocated data // Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP); // Mat(Size size, int type, void* data, size_t step=AUTO_STEP); // Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0); // // //! creates a matrix header for a part of the bigger matrix // Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all()); // Mat(const Mat& m, const Rect& roi); // Mat(const Mat& m, const Range* ranges); // //! converts old-style CvMat to the new matrix; the data is not copied by default // Mat(const CvMat* m, bool copyData=false); // //! converts old-style CvMatND to the new matrix; the data is not copied by default // Mat(const CvMatND* m, bool copyData=false); // //! converts old-style IplImage to the new matrix; the data is not copied by default // Mat(const IplImage* img, bool copyData=false); // //! builds matrix from std::vector with or without copying the data // template explicit Mat(const std::vector<_Tp>& vec, bool copyData=false); // //! builds matrix from cv::Vec; the data is copied by default // template explicit Mat(const Vec<_Tp, n>& vec, bool copyData=true); // //! builds matrix from cv::Matx; the data is copied by default // template explicit Mat(const Matx<_Tp, m, n>& mtx, bool copyData=true); // //! builds matrix from a 2D point // template explicit Mat(const Point_<_Tp>& pt, bool copyData=true); // //! builds matrix from a 3D point // template explicit Mat(const Point3_<_Tp>& pt, bool copyData=true); // //! builds matrix from comma initializer // template explicit Mat(const MatCommaInitializer_<_Tp>& commaInitializer); // // //! download data from GpuMat // explicit Mat(const gpu::GpuMat& m); // // //! destructor - calls release() // ~Mat(); // //! assignment operators // Mat& operator = (const Mat& m); // Mat& operator = (const MatExpr& expr); // // //! returns a new matrix header for the specified row // Mat row(int y) const; // //! returns a new matrix header for the specified column // Mat col(int x) const; // //! ... for the specified row span // Mat rowRange(int startrow, int endrow) const; // Mat rowRange(const Range& r) const; // //! ... for the specified column span // Mat colRange(int startcol, int endcol) const; // Mat colRange(const Range& r) const; // //! ... for the specified diagonal // // (d=0 - the main diagonal, // // >0 - a diagonal from the lower half, // // <0 - a diagonal from the upper half) // Mat diag(int d=0) const; // //! constructs a square diagonal matrix which main diagonal is vector "d" // static Mat diag(const Mat& d); // // //! returns deep copy of the matrix, i.e. the data is copied // Mat clone() const; // //! copies the matrix content to "m". // // It calls m.create(this->size(), this->type()). // void copyTo( OutputArray m ) const; // //! copies those matrix elements to "m" that are marked with non-zero mask elements. // void copyTo( OutputArray m, InputArray mask ) const; // //! converts matrix to another datatype with optional scalng. See cvConvertScale. // void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const; // // void assignTo( Mat& m, int type=-1 ) const; // // //! sets every matrix element to s // Mat& operator = (const Scalar& s); // //! sets some of the matrix elements to s, according to the mask // Mat& setTo(InputArray value, InputArray mask=noArray()); // //! creates alternative matrix header for the same data, with different // // number of channels and/or different number of rows. see cvReshape. // Mat reshape(int cn, int rows=0) const; // Mat reshape(int cn, int newndims, const int* newsz) const; // // //! matrix transposition by means of matrix expressions // MatExpr t() const; // //! matrix inversion by means of matrix expressions // MatExpr inv(int method=DECOMP_LU) const; // //! per-element matrix multiplication by means of matrix expressions // MatExpr mul(InputArray m, double scale=1) const; // // //! computes cross-product of 2 3D vectors // Mat cross(InputArray m) const; // //! computes dot-product // double dot(InputArray m) const; // // //! Matlab-style matrix initialization // static MatExpr zeros(int rows, int cols, int type); // static MatExpr zeros(Size size, int type); // static MatExpr zeros(int ndims, const int* sz, int type); // static MatExpr ones(int rows, int cols, int type); // static MatExpr ones(Size size, int type); // static MatExpr ones(int ndims, const int* sz, int type); // static MatExpr eye(int rows, int cols, int type); // static MatExpr eye(Size size, int type); // // //! allocates new matrix data unless the matrix already has specified size and type. // // previous data is unreferenced if needed. // void create(int rows, int cols, int type); // void create(Size size, int type); // void create(int ndims, const int* sizes, int type); // // //! increases the reference counter; use with care to avoid memleaks // void addref(); // //! decreases reference counter; // // deallocates the data when reference counter reaches 0. // void release(); // // //! deallocates the matrix data // void deallocate(); // //! internal use function; properly re-allocates _size, _step arrays // void copySize(const Mat& m); // // //! reserves enough space to fit sz hyper-planes // void reserve(size_t sz); // //! resizes matrix to the specified number of hyper-planes // void resize(size_t sz); // //! resizes matrix to the specified number of hyper-planes; initializes the newly added elements // void resize(size_t sz, const Scalar& s); // //! internal function // void push_back_(const void* elem); // //! adds element to the end of 1d matrix (or possibly multiple elements when _Tp=Mat) // template void push_back(const _Tp& elem); // template void push_back(const Mat_<_Tp>& elem); // void push_back(const Mat& m); // //! removes several hyper-planes from bottom of the matrix // void pop_back(size_t nelems=1); // // //! locates matrix header within a parent matrix. See below // void locateROI( Size& wholeSize, Point& ofs ) const; // //! moves/resizes the current matrix ROI inside the parent matrix. // Mat& adjustROI( int dtop, int dbottom, int dleft, int dright ); // //! extracts a rectangular sub-matrix // // (this is a generalized form of row, rowRange etc.) // Mat operator()( Range rowRange, Range colRange ) const; // Mat operator()( const Rect& roi ) const; // Mat operator()( const Range* ranges ) const; // // //! converts header to CvMat; no data is copied // operator CvMat() const; // //! converts header to CvMatND; no data is copied // operator CvMatND() const; // //! converts header to IplImage; no data is copied // operator IplImage() const; // // template operator std::vector<_Tp>() const; // template operator Vec<_Tp, n>() const; // template operator Matx<_Tp, m, n>() const; // // //! returns true iff the matrix data is continuous // // (i.e. when there are no gaps between successive rows). // // similar to CV_IS_MAT_CONT(cvmat->type) // bool isContinuous() const; // // //! returns true if the matrix is a submatrix of another matrix // bool isSubmatrix() const; // // //! returns element size in bytes, // // similar to CV_ELEM_SIZE(cvmat->type) // size_t elemSize() const; // //! returns the size of element channel in bytes. // size_t elemSize1() const; // //! returns element type, similar to CV_MAT_TYPE(cvmat->type) // int type() const; // //! returns element type, similar to CV_MAT_DEPTH(cvmat->type) // int depth() const; // //! returns element type, similar to CV_MAT_CN(cvmat->type) // int channels() const; // //! returns step/elemSize1() // size_t step1(int i=0) const; // //! returns true if matrix data is NULL // bool empty() const; // //! returns the total number of matrix elements // size_t total() const; // // //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise // int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const; // // //! returns pointer to i0-th submatrix along the dimension #0 // uchar* ptr(int i0=0); // const uchar* ptr(int i0=0) const; // // //! returns pointer to (i0,i1) submatrix along the dimensions #0 and #1 // uchar* ptr(int i0, int i1); // const uchar* ptr(int i0, int i1) const; // // //! returns pointer to (i0,i1,i3) submatrix along the dimensions #0, #1, #2 // uchar* ptr(int i0, int i1, int i2); // const uchar* ptr(int i0, int i1, int i2) const; // // //! returns pointer to the matrix element // uchar* ptr(const int* idx); // //! returns read-only pointer to the matrix element // const uchar* ptr(const int* idx) const; // // template uchar* ptr(const Vec& idx); // template const uchar* ptr(const Vec& idx) const; // // //! template version of the above method // template _Tp* ptr(int i0=0); // template const _Tp* ptr(int i0=0) const; // // template _Tp* ptr(int i0, int i1); // template const _Tp* ptr(int i0, int i1) const; // // template _Tp* ptr(int i0, int i1, int i2); // template const _Tp* ptr(int i0, int i1, int i2) const; // // template _Tp* ptr(const int* idx); // template const _Tp* ptr(const int* idx) const; // // template _Tp* ptr(const Vec& idx); // template const _Tp* ptr(const Vec& idx) const; // // //! the same as above, with the pointer dereferencing // template _Tp& at(int i0=0); // template const _Tp& at(int i0=0) const; // // template _Tp& at(int i0, int i1); // template const _Tp& at(int i0, int i1) const; // // template _Tp& at(int i0, int i1, int i2); // template const _Tp& at(int i0, int i1, int i2) const; // // template _Tp& at(const int* idx); // template const _Tp& at(const int* idx) const; // // template _Tp& at(const Vec& idx); // template const _Tp& at(const Vec& idx) const; // // //! special versions for 2D arrays (especially convenient for referencing image pixels) // template _Tp& at(Point pt); // template const _Tp& at(Point pt) const; // // //! template methods for iteration over matrix elements. // // the iterators take care of skipping gaps in the end of rows (if any) // template MatIterator_<_Tp> begin(); // template MatIterator_<_Tp> end(); // template MatConstIterator_<_Tp> begin() const; // template MatConstIterator_<_Tp> end() const; // // enum { MAGIC_VAL=0x42FF0000, AUTO_STEP=0, CONTINUOUS_FLAG=CV_MAT_CONT_FLAG, SUBMATRIX_FLAG=CV_SUBMAT_FLAG }; // // /*! includes several bit-fields: // - the magic signature // - continuity flag // - depth // - number of channels // */ // int flags; // //! the matrix dimensionality, >= 2 // int dims; // //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions // int rows, cols; // //! pointer to the data // uchar* data; // // //! pointer to the reference counter; // // when matrix points to user-allocated data, the pointer is NULL // int* refcount; // // //! helper fields used in locateROI and adjustROI // uchar* datastart; // uchar* dataend; // uchar* datalimit; // // //! custom allocator // MatAllocator* allocator; // // struct CV_EXPORTS MSize // { // MSize(int* _p); // Size operator()() const; // const int& operator[](int i) const; // int& operator[](int i); // operator const int*() const; // bool operator == (const MSize& sz) const; // bool operator != (const MSize& sz) const; // // int* p; // }; // // struct CV_EXPORTS MStep // { // MStep(); // MStep(size_t s); // const size_t& operator[](int i) const; // size_t& operator[](int i); // operator size_t() const; // MStep& operator = (size_t s); // // size_t* p; // size_t buf[2]; // protected: // MStep& operator = (const MStep&); // }; // // MSize size; // MStep step; // // protected: // void initEmpty(); // }; // // /// *! // Random Number Generator // // The class implements RNG using Multiply-with-Carry algorithm // */ // class CV_EXPORTS RNG // { // public: // enum { UNIFORM=0, NORMAL=1 }; // // RNG(); // RNG(uint64 state); // //! updates the state and returns the next 32-bit unsigned integer random number // unsigned next(); // // operator uchar(); // operator schar(); // operator ushort(); // operator short(); // operator unsigned(); // //! returns a random integer sampled uniformly from [0, N). // unsigned operator ()(unsigned N); // unsigned operator ()(); // operator int(); // operator float(); // operator double(); // //! returns uniformly distributed integer random number from [a,b) range // int uniform(int a, int b); // //! returns uniformly distributed floating-point random number from [a,b) range // float uniform(float a, float b); // //! returns uniformly distributed double-precision floating-point random number from [a,b) range // double uniform(double a, double b); // void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange=false ); // //! returns Gaussian random variate with mean zero. // double gaussian(double sigma); // // uint64 state; // }; // // class CV_EXPORTS RNG_MT19937 // { // public: // RNG_MT19937(); // RNG_MT19937(unsigned s); // void seed(unsigned s); // // unsigned next(); // // operator int(); // operator unsigned(); // operator float(); // operator double(); // // unsigned operator ()(unsigned N); // unsigned operator ()(); // // // returns uniformly distributed integer random number from [a,b) range // int uniform(int a, int b); // // returns uniformly distributed floating-point random number from [a,b) range // float uniform(float a, float b); // // returns uniformly distributed double-precision floating-point random number from [a,b) range // double uniform(double a, double b); // // private: // enum PeriodParameters {N = 624, M = 397}; // unsigned state[N]; // int mti; // }; // /// *! // Termination criteria in iterative algorithms // */ // class CV_EXPORTS TermCriteria // { // public: // enum // { // COUNT=1, //!< the maximum number of iterations or elements to compute // MAX_ITER=COUNT, //!< ditto // EPS=2 //!< the desired accuracy or change in parameters at which the iterative algorithm stops // }; // // //! default constructor // TermCriteria(); // //! full constructor // TermCriteria(int type, int maxCount, double epsilon); // //! conversion from CvTermCriteria // TermCriteria(const CvTermCriteria& criteria); // //! conversion to CvTermCriteria // operator CvTermCriteria() const; // // int type; //!< the type of termination criteria: COUNT, EPS or COUNT + EPS // int maxCount; // the maximum number of iterations/elements // double epsilon; // the desired accuracy // }; // // // typedef void (*BinaryFunc)(const uchar* src1, size_t step1, // const uchar* src2, size_t step2, // uchar* dst, size_t step, Size sz, // void*); // // CV_EXPORTS BinaryFunc getConvertFunc(int sdepth, int ddepth); // CV_EXPORTS BinaryFunc getConvertScaleFunc(int sdepth, int ddepth); // CV_EXPORTS BinaryFunc getCopyMaskFunc(size_t esz); // /// /! swaps two matrices // CV_EXPORTS void swap(Mat& a, Mat& b); // /// /! extracts Channel of Interest from CvMat or IplImage and makes cv::Mat out of it. // CV_EXPORTS void extractImageCOI(const CvArr* arr, OutputArray coiimg, int coi=-1); /// /! inserts single-channel cv::Mat into a multi-channel CvMat or IplImage // CV_EXPORTS void insertImageCOI(InputArray coiimg, CvArr* arr, int coi=-1); // /// /! adds one matrix to another (dst = src1 + src2) // CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst, // InputArray mask=noArray(), int dtype=-1); /// /! subtracts one matrix from another (dst = src1 - src2) // CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst, // InputArray mask=noArray(), int dtype=-1); // /// /! computes element-wise weighted product of the two arrays (dst = scale*src1*src2) // CV_EXPORTS_W void multiply(InputArray src1, InputArray src2, // OutputArray dst, double scale=1, int dtype=-1); // /// /! computes element-wise weighted quotient of the two arrays (dst = scale*src1/src2) // CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst, // double scale=1, int dtype=-1); // /// /! computes element-wise weighted reciprocal of an array (dst = scale/src2) // CV_EXPORTS_W void divide(double scale, InputArray src2, // OutputArray dst, int dtype=-1); // /// /! adds scaled array to another one (dst = alpha*src1 + src2) // CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst); // /// /! computes weighted sum of two arrays (dst = alpha*src1 + beta*src2 + gamma) // CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2, // double beta, double gamma, OutputArray dst, int dtype=-1); // /// /! scales array elements, computes absolute values and converts the results to 8-bit unsigned integers: dst(i)=saturate_castabs(src(i)*alpha+beta) // CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst, // double alpha=1, double beta=0); /// /! transforms array of numbers using a lookup table: dst(i)=lut(src(i)) // CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst, // int interpolation=0); // /// /! computes sum of array elements // CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src); /// /! computes the number of nonzero array elements // CV_EXPORTS_W int countNonZero( InputArray src ); /// /! returns the list of locations of non-zero pixels // CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx ); // /// /! computes mean value of selected array elements // CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask=noArray()); /// /! computes mean value and standard deviation of all or selected array elements // CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, // InputArray mask=noArray()); /// /! computes norm of the selected array part // CV_EXPORTS_W double norm(InputArray src1, int normType=NORM_L2, InputArray mask=noArray()); /// /! computes norm of selected part of the difference between two arrays // CV_EXPORTS_W double norm(InputArray src1, InputArray src2, // int normType=NORM_L2, InputArray mask=noArray()); // /// /! naive nearest neighbor finder // CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2, // OutputArray dist, int dtype, OutputArray nidx, // int normType=NORM_L2, int K=0, // InputArray mask=noArray(), int update=0, // bool crosscheck=false); // /// /! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values // CV_EXPORTS_W void normalize( InputArray src, OutputArray dst, double alpha=1, double beta=0, // int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray()); // /// /! finds global minimum and maximum array elements and returns their values and their locations // CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal, // CV_OUT double* maxVal=0, CV_OUT Point* minLoc=0, // CV_OUT Point* maxLoc=0, InputArray mask=noArray()); // CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal, // int* minIdx=0, int* maxIdx=0, InputArray mask=noArray()); // /// /! transforms 2D matrix to 1D row or column vector by taking sum, minimum, maximum or mean value over all the rows // CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype=-1); // /// /! makes multi-channel array out of several single-channel arrays // CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst); /// /! makes multi-channel array out of several single-channel arrays // CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst); // /// /! copies each plane of a multi-channel array to a dedicated array // CV_EXPORTS void split(const Mat& src, Mat* mvbegin); /// /! copies each plane of a multi-channel array to a dedicated array // CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv); // /// /! copies selected channels from the input arrays to the selected channels of the output arrays // CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, // const int* fromTo, size_t npairs); // CV_EXPORTS void mixChannels(const std::vector& src, std::vector& dst, // const int* fromTo, size_t npairs); // CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputArrayOfArrays dst, // const std::vector& fromTo); // /// /! extracts a single channel from src (coi is 0-based index) // CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi); // /// /! inserts a single channel to dst (coi is 0-based index) // CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi); // /// /! reverses the order of the rows, columns or both in a matrix // CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode); // /// /! replicates the input matrix the specified number of times in the horizontal and/or vertical direction // CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst); // CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx); // // CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst); // CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst); // CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst); // // CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst); // CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst); // CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst); // /// /! computes bitwise conjunction of the two arrays (dst = src1 & src2) // CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2, // OutputArray dst, InputArray mask=noArray()); /// /! computes bitwise disjunction of the two arrays (dst = src1 | src2) // CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2, // OutputArray dst, InputArray mask=noArray()); /// /! computes bitwise exclusive-or of the two arrays (dst = src1 ^ src2) // CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2, // OutputArray dst, InputArray mask=noArray()); /// /! inverts each bit of array (dst = ~src) // CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst, // InputArray mask=noArray()); // static BinaryFunc absdiffTab[] = // { // (BinaryFunc)GET_OPTIMIZED(absdiff8u), (BinaryFunc)GET_OPTIMIZED(absdiff8s), // (BinaryFunc)GET_OPTIMIZED(absdiff16u), (BinaryFunc)GET_OPTIMIZED(absdiff16s), // (BinaryFunc)GET_OPTIMIZED(absdiff32s), // (BinaryFunc)GET_OPTIMIZED(absdiff32f), (BinaryFunc)absdiff64f, // 0 // }; // ! computes element-wise absolute difference of two arrays (dst = abs(src1 - src2)) // CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst); procedure absdiff(src1: pIplImage; src2: pIplImage; dst: pIplImage); /// /! set mask elements for those array elements which are within the element-specific bounding box (dst = lowerb <= src && src < upperb) // CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb, // InputArray upperb, OutputArray dst); /// /! compares elements of two arrays (dst = src1 src2) // CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop); /// /! computes per-element minimum of two arrays (dst = min(src1, src2)) // CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst); /// /! computes per-element maximum of two arrays (dst = max(src1, src2)) // CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst); // /// /! computes per-element minimum of two arrays (dst = min(src1, src2)) // CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst); /// /! computes per-element minimum of array and scalar (dst = min(src1, src2)) // CV_EXPORTS void min(const Mat& src1, double src2, Mat& dst); /// /! computes per-element maximum of two arrays (dst = max(src1, src2)) // CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst); /// /! computes per-element maximum of array and scalar (dst = max(src1, src2)) // CV_EXPORTS void max(const Mat& src1, double src2, Mat& dst); // /// /! computes square root of each matrix element (dst = src**0.5) // CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst); /// /! raises the input matrix elements to the specified power (b = a**power) // CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst); /// /! computes exponent of each matrix element (dst = e**src) // CV_EXPORTS_W void exp(InputArray src, OutputArray dst); /// /! computes natural logarithm of absolute value of each matrix element: dst = log(abs(src)) // CV_EXPORTS_W void log(InputArray src, OutputArray dst); /// /! computes cube root of the argument // CV_EXPORTS_W float cubeRoot(float val); /// /! computes the angle in degrees (0..360) of the vector (x,y) // CV_EXPORTS_W float fastAtan2(float y, float x); // // CV_EXPORTS void exp(const float* src, float* dst, int n); // CV_EXPORTS void log(const float* src, float* dst, int n); // CV_EXPORTS void fastAtan2(const float* y, const float* x, float* dst, int n, bool angleInDegrees); // CV_EXPORTS void magnitude(const float* x, const float* y, float* dst, int n); // /// /! converts polar coordinates to Cartesian // CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle, // OutputArray x, OutputArray y, bool angleInDegrees=false); /// /! converts Cartesian coordinates to polar // CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y, // OutputArray magnitude, OutputArray angle, // bool angleInDegrees=false); /// /! computes angle (angle(i)) of each (x(i), y(i)) vector // CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle, // bool angleInDegrees=false); /// /! computes magnitude (magnitude(i)) of each (x(i), y(i)) vector // CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude); /// /! checks that each matrix element is within the specified range. // CV_EXPORTS_W bool checkRange(InputArray a, bool quiet=true, CV_OUT Point* pos=0, // double minVal=-DBL_MAX, double maxVal=DBL_MAX); /// /! converts NaN's to the given number // CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val=0); // /// /! implements generalized matrix product algorithm GEMM from BLAS // CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha, // InputArray src3, double gamma, OutputArray dst, int flags=0); /// /! multiplies matrix by its transposition from the left or from the right // CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa, // InputArray delta=noArray(), // double scale=1, int dtype=-1 ); /// /! transposes the matrix // CV_EXPORTS_W void transpose(InputArray src, OutputArray dst); /// /! performs affine transformation of each element of multi-channel input matrix // CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m ); /// /! performs perspective transformation of each element of multi-channel input matrix // CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m ); // /// /! extends the symmetrical matrix from the lower half or from the upper half // CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper=false); /// /! initializes scaled identity matrix // CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s=Scalar(1)); /// /! computes determinant of a square matrix // CV_EXPORTS_W double determinant(InputArray mtx); /// /! computes trace of a matrix // CV_EXPORTS_W Scalar trace(InputArray mtx); /// /! computes inverse or pseudo-inverse matrix // CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags=DECOMP_LU); /// /! solves linear system or a least-square problem // CV_EXPORTS_W bool solve(InputArray src1, InputArray src2, // OutputArray dst, int flags=DECOMP_LU); // // enum // { // SORT_EVERY_ROW=0, // SORT_EVERY_COLUMN=1, // SORT_ASCENDING=0, // SORT_DESCENDING=16 // }; // /// /! sorts independently each matrix row or each matrix column // CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags); /// /! sorts independently each matrix row or each matrix column // CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags); /// /! finds real roots of a cubic polynomial // CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots); /// /! finds real and complex roots of a polynomial // CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters=300); /// /! finds eigenvalues of a symmetric matrix // CV_EXPORTS bool eigen(InputArray src, OutputArray eigenvalues, int lowindex=-1, // int highindex=-1); /// /! finds eigenvalues and eigenvectors of a symmetric matrix // CV_EXPORTS bool eigen(InputArray src, OutputArray eigenvalues, // OutputArray eigenvectors, // int lowindex=-1, int highindex=-1); // CV_EXPORTS_W bool eigen(InputArray src, bool computeEigenvectors, // OutputArray eigenvalues, OutputArray eigenvectors); // // enum // { // COVAR_SCRAMBLED=0, // COVAR_NORMAL=1, // COVAR_USE_AVG=2, // COVAR_SCALE=4, // COVAR_ROWS=8, // COVAR_COLS=16 // }; // /// /! computes covariation matrix of a set of samples // CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean, // int flags, int ctype=CV_64F); /// /! computes covariation matrix of a set of samples // CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar, // OutputArray mean, int flags, int ctype=CV_64F); // /// *! // Principal Component Analysis // // The class PCA is used to compute the special basis for a set of vectors. // The basis will consist of eigenvectors of the covariance matrix computed // from the input set of vectors. After PCA is performed, vectors can be transformed from // the original high-dimensional space to the subspace formed by a few most // prominent eigenvectors (called the principal components), // corresponding to the largest eigenvalues of the covariation matrix. // Thus the dimensionality of the vector and the correlation between the coordinates is reduced. // // The following sample is the function that takes two matrices. The first one stores the set // of vectors (a row per vector) that is used to compute PCA, the second one stores another // "test" set of vectors (a row per vector) that are first compressed with PCA, // then reconstructed back and then the reconstruction error norm is computed and printed for each vector. // // \code // using namespace cv; // // PCA compressPCA(const Mat& pcaset, int maxComponents, // const Mat& testset, Mat& compressed) // { // PCA pca(pcaset, // pass the data // Mat(), // we do not have a pre-computed mean vector, // // so let the PCA engine to compute it // CV_PCA_DATA_AS_ROW, // indicate that the vectors // // are stored as matrix rows // // (use CV_PCA_DATA_AS_COL if the vectors are // // the matrix columns) // maxComponents // specify, how many principal components to retain // ); // // if there is no test data, just return the computed basis, ready-to-use // if( !testset.data ) // return pca; // CV_Assert( testset.cols == pcaset.cols ); // // compressed.create(testset.rows, maxComponents, testset.type()); // // Mat reconstructed; // for( int i = 0; i < testset.rows; i++ ) // { // Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed; // // compress the vector, the result will be stored // // in the i-th row of the output matrix // pca.project(vec, coeffs); // // and then reconstruct it // pca.backProject(coeffs, reconstructed); // // and measure the error // printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2)); // } // return pca; // } // \endcode // */ // class CV_EXPORTS PCA // { // public: // //! default constructor // PCA(); // //! the constructor that performs PCA // PCA(InputArray data, InputArray mean, int flags, int maxComponents=0); // PCA(InputArray data, InputArray mean, int flags, double retainedVariance); // //! operator that performs PCA. The previously stored data, if any, is released // PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents=0); // PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance); // //! projects vector from the original space to the principal components subspace // Mat project(InputArray vec) const; // //! projects vector from the original space to the principal components subspace // void project(InputArray vec, OutputArray result) const; // //! reconstructs the original vector from the projection // Mat backProject(InputArray vec) const; // //! reconstructs the original vector from the projection // void backProject(InputArray vec, OutputArray result) const; // // Mat eigenvectors; //!< eigenvectors of the covariation matrix // Mat eigenvalues; //!< eigenvalues of the covariation matrix // Mat mean; //!< mean value subtracted before the projection and added after the back projection // }; // // CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean, // OutputArray eigenvectors, int maxComponents=0); // // CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean, // OutputArray eigenvectors, double retainedVariance); // // CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean, // InputArray eigenvectors, OutputArray result); // // CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean, // InputArray eigenvectors, OutputArray result); // // /// *! // Singular Value Decomposition class // // The class is used to compute Singular Value Decomposition of a floating-point matrix and then // use it to solve least-square problems, under-determined linear systems, invert matrices, // compute condition numbers etc. // // For a bit faster operation you can pass flags=SVD::MODIFY_A|... to modify the decomposed matrix // when it is not necessarily to preserve it. If you want to compute condition number of a matrix // or absolute value of its determinant - you do not need SVD::u or SVD::vt, // so you can pass flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that the full-size SVD::u and SVD::vt // must be computed, which is not necessary most of the time. // */ // class CV_EXPORTS SVD // { // public: // enum { MODIFY_A=1, NO_UV=2, FULL_UV=4 }; // //! the default constructor // SVD(); // //! the constructor that performs SVD // SVD( InputArray src, int flags=0 ); // //! the operator that performs SVD. The previously allocated SVD::u, SVD::w are SVD::vt are released. // SVD& operator ()( InputArray src, int flags=0 ); // // //! decomposes matrix and stores the results to user-provided matrices // static void compute( InputArray src, OutputArray w, // OutputArray u, OutputArray vt, int flags=0 ); // //! computes singular values of a matrix // static void compute( InputArray src, OutputArray w, int flags=0 ); // //! performs back substitution // static void backSubst( InputArray w, InputArray u, // InputArray vt, InputArray rhs, // OutputArray dst ); // // template static void compute( const Matx<_Tp, m, n>& a, // Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt ); // template static void compute( const Matx<_Tp, m, n>& a, // Matx<_Tp, nm, 1>& w ); // template static void backSubst( const Matx<_Tp, nm, 1>& w, // const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst ); // // //! finds dst = arg min_{|dst|=1} |m*dst| // static void solveZ( InputArray src, OutputArray dst ); // //! performs back substitution, so that dst is the solution or pseudo-solution of m*dst = rhs, where m is the decomposed matrix // void backSubst( InputArray rhs, OutputArray dst ) const; // // Mat u, w, vt; // }; // /// /! computes SVD of src // CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0 ); // /// /! performs back substitution for the previously computed SVD // CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt, // InputArray rhs, OutputArray dst ); // /// /! computes Mahalanobis distance between two vectors: sqrt((v1-v2)'*icovar*(v1-v2)), where icovar is the inverse covariation matrix // CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar); /// /! a synonym for Mahalanobis // CV_EXPORTS double Mahalonobis(InputArray v1, InputArray v2, InputArray icovar); // /// /! performs forward or inverse 1D or 2D Discrete Fourier Transformation // CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags=0, int nonzeroRows=0); /// /! performs inverse 1D or 2D Discrete Fourier Transformation // CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags=0, int nonzeroRows=0); /// /! performs forward or inverse 1D or 2D Discrete Cosine Transformation // CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags=0); /// /! performs inverse 1D or 2D Discrete Cosine Transformation // CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags=0); /// /! computes element-wise product of the two Fourier spectrums. The second spectrum can optionally be conjugated before the multiplication // CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c, // int flags, bool conjB=false); /// /! computes the minimal vector size vecsize1 >= vecsize so that the dft() of the vector of length vecsize1 can be computed efficiently // CV_EXPORTS_W int getOptimalDFTSize(int vecsize); // /// *! // Various k-Means flags // */ // enum // { // KMEANS_RANDOM_CENTERS=0, // Chooses random centers for k-Means initialization // KMEANS_PP_CENTERS=2, // Uses k-Means++ algorithm for initialization // KMEANS_USE_INITIAL_LABELS=1 // Uses the user-provided labels for K-Means initialization // }; /// /! clusters the input data using k-Means algorithm // CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels, // TermCriteria criteria, int attempts, // int flags, OutputArray centers=noArray() ); // /// /! returns the thread-local Random number generator // CV_EXPORTS RNG& theRNG(); // /// /! returns the next unifomly-distributed random number of the specified type // template static inline _Tp randu() { return (_Tp)theRNG(); } // /// /! fills array with uniformly-distributed random numbers from the range [low, high) // CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high); // /// /! fills array with normally-distributed random numbers with the specified mean and the standard deviation // CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev); // /// /! shuffles the input array elements // CV_EXPORTS void randShuffle(InputOutputArray dst, double iterFactor=1., RNG* rng=0); // CV_EXPORTS_AS(randShuffle) void randShuffle_(InputOutputArray dst, double iterFactor=1.); // /// /! draws the line segment (pt1, pt2) in the image // CV_EXPORTS_W void line(CV_IN_OUT Mat& img, Point pt1, Point pt2, const Scalar& color, // int thickness=1, int lineType=8, int shift=0); // /// /! draws the rectangle outline or a solid rectangle with the opposite corners pt1 and pt2 in the image // CV_EXPORTS_W void rectangle(CV_IN_OUT Mat& img, Point pt1, Point pt2, // const Scalar& color, int thickness=1, // int lineType=8, int shift=0); // /// /! draws the rectangle outline or a solid rectangle covering rec in the image // CV_EXPORTS void rectangle(CV_IN_OUT Mat& img, Rect rec, // const Scalar& color, int thickness=1, // int lineType=8, int shift=0); // /// /! draws the circle outline or a solid circle in the image // CV_EXPORTS_W void circle(CV_IN_OUT Mat& img, Point center, int radius, // const Scalar& color, int thickness=1, // int lineType=8, int shift=0); // /// /! draws an elliptic arc, ellipse sector or a rotated ellipse in the image // CV_EXPORTS_W void ellipse(CV_IN_OUT Mat& img, Point center, Size axes, // double angle, double startAngle, double endAngle, // const Scalar& color, int thickness=1, // int lineType=8, int shift=0); // /// /! draws a rotated ellipse in the image // CV_EXPORTS_W void ellipse(CV_IN_OUT Mat& img, const RotatedRect& box, const Scalar& color, // int thickness=1, int lineType=8); // /// /! draws a filled convex polygon in the image // CV_EXPORTS void fillConvexPoly(Mat& img, const Point* pts, int npts, // const Scalar& color, int lineType=8, // int shift=0); // CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points, // const Scalar& color, int lineType=8, // int shift=0); // /// /! fills an area bounded by one or more polygons // CV_EXPORTS void fillPoly(Mat& img, const Point** pts, // const int* npts, int ncontours, // const Scalar& color, int lineType=8, int shift=0, // Point offset=Point() ); // // CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts, // const Scalar& color, int lineType=8, int shift=0, // Point offset=Point() ); // /// /! draws one or more polygonal curves // CV_EXPORTS void polylines(Mat& img, const Point* const* pts, const int* npts, // int ncontours, bool isClosed, const Scalar& color, // int thickness=1, int lineType=8, int shift=0 ); // // CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts, // bool isClosed, const Scalar& color, // int thickness=1, int lineType=8, int shift=0 ); // /// /! draws contours in the image // CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours, // int contourIdx, const Scalar& color, // int thickness=1, int lineType=8, // InputArray hierarchy=noArray(), // int maxLevel=INT_MAX, Point offset=Point() ); // /// /! clips the line segment by the rectangle Rect(0, 0, imgSize.width, imgSize.height) // CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2); // /// /! clips the line segment by the rectangle imgRect // CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2); // /// *! // Line iterator class // // The class is used to iterate over all the pixels on the raster line // segment connecting two specified points. // */ // class CV_EXPORTS LineIterator // { // public: // //! intializes the iterator // LineIterator( const Mat& img, Point pt1, Point pt2, // int connectivity=8, bool leftToRight=false ); // //! returns pointer to the current pixel // uchar* operator *(); // //! prefix increment operator (++it). shifts iterator to the next pixel // LineIterator& operator ++(); // //! postfix increment operator (it++). shifts iterator to the next pixel // LineIterator operator ++(int); // //! returns coordinates of the current pixel // Point pos() const; // // uchar* ptr; // const uchar* ptr0; // int step, elemSize; // int err, count; // int minusDelta, plusDelta; // int minusStep, plusStep; // }; // /// /! converts elliptic arc to a polygonal curve // CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle, // int arcStart, int arcEnd, int delta, // CV_OUT std::vector& pts ); // // enum // { // FONT_HERSHEY_SIMPLEX = 0, // FONT_HERSHEY_PLAIN = 1, // FONT_HERSHEY_DUPLEX = 2, // FONT_HERSHEY_COMPLEX = 3, // FONT_HERSHEY_TRIPLEX = 4, // FONT_HERSHEY_COMPLEX_SMALL = 5, // FONT_HERSHEY_SCRIPT_SIMPLEX = 6, // FONT_HERSHEY_SCRIPT_COMPLEX = 7, // FONT_ITALIC = 16 // }; // /// /! renders text string in the image // CV_EXPORTS_W void putText( Mat& img, const String& text, Point org, // int fontFace, double fontScale, Scalar color, // int thickness=1, int lineType=8, // bool bottomLeftOrigin=false ); // /// /! returns bounding box of the text string // CV_EXPORTS_W Size getTextSize(const String& text, int fontFace, // double fontScale, int thickness, // CV_OUT int* baseLine); // /// //////////////////////////////// Mat_<_Tp> //////////////////////////////////// // /// *! // Template matrix class derived from Mat // // The class Mat_ is a "thin" template wrapper on top of cv::Mat. It does not have any extra data fields, // nor it or cv::Mat have any virtual methods and thus references or pointers to these two classes // can be safely converted one to another. But do it with care, for example: // // \code // // create 100x100 8-bit matrix // Mat M(100,100,CV_8U); // // this will compile fine. no any data conversion will be done. // Mat_& M1 = (Mat_&)M; // // the program will likely crash at the statement below // M1(99,99) = 1.f; // \endcode // // While cv::Mat is sufficient in most cases, cv::Mat_ can be more convenient if you use a lot of element // access operations and if you know matrix type at compile time. // Note that cv::Mat::at<_Tp>(int y, int x) and cv::Mat_<_Tp>::operator ()(int y, int x) do absolutely the // same thing and run at the same speed, but the latter is certainly shorter: // // \code // Mat_ M(20,20); // for(int i = 0; i < M.rows; i++) // for(int j = 0; j < M.cols; j++) // M(i,j) = 1./(i+j+1); // Mat E, V; // eigen(M,E,V); // cout << E.at(0,0)/E.at(M.rows-1,0); // \endcode // // It is easy to use Mat_ for multi-channel images/matrices - just pass cv::Vec as cv::Mat_ template parameter: // // \code // // allocate 320x240 color image and fill it with green (in RGB space) // Mat_ img(240, 320, Vec3b(0,255,0)); // // now draw a diagonal white line // for(int i = 0; i < 100; i++) // img(i,i)=Vec3b(255,255,255); // // and now modify the 2nd (red) channel of each pixel // for(int i = 0; i < img.rows; i++) // for(int j = 0; j < img.cols; j++) // img(i,j)[2] ^= (uchar)(i ^ j); // img(y,x)[c] accesses c-th channel of the pixel (x,y) // \endcode // */ // template class CV_EXPORTS Mat_ : public Mat // { // public: // typedef _Tp value_type; // typedef typename DataType<_Tp>::channel_type channel_type; // typedef MatIterator_<_Tp> iterator; // typedef MatConstIterator_<_Tp> const_iterator; // // //! default constructor // Mat_(); // //! equivalent to Mat(_rows, _cols, DataType<_Tp>::type) // Mat_(int _rows, int _cols); // //! constructor that sets each matrix element to specified value // Mat_(int _rows, int _cols, const _Tp& value); // //! equivalent to Mat(_size, DataType<_Tp>::type) // explicit Mat_(Size _size); // //! constructor that sets each matrix element to specified value // Mat_(Size _size, const _Tp& value); // //! n-dim array constructor // Mat_(int _ndims, const int* _sizes); // //! n-dim array constructor that sets each matrix element to specified value // Mat_(int _ndims, const int* _sizes, const _Tp& value); // //! copy/conversion contructor. If m is of different type, it's converted // Mat_(const Mat& m); // //! copy constructor // Mat_(const Mat_& m); // //! constructs a matrix on top of user-allocated data. step is in bytes(!!!), regardless of the type // Mat_(int _rows, int _cols, _Tp* _data, size_t _step=AUTO_STEP); // //! constructs n-dim matrix on top of user-allocated data. steps are in bytes(!!!), regardless of the type // Mat_(int _ndims, const int* _sizes, _Tp* _data, const size_t* _steps=0); // //! selects a submatrix // Mat_(const Mat_& m, const Range& rowRange, const Range& colRange=Range::all()); // //! selects a submatrix // Mat_(const Mat_& m, const Rect& roi); // //! selects a submatrix, n-dim version // Mat_(const Mat_& m, const Range* ranges); // //! from a matrix expression // explicit Mat_(const MatExpr& e); // //! makes a matrix out of Vec, std::vector, Point_ or Point3_. The matrix will have a single column // explicit Mat_(const std::vector<_Tp>& vec, bool copyData=false); // template explicit Mat_(const Vec::channel_type, n>& vec, bool copyData=true); // template explicit Mat_(const Matx::channel_type, m, n>& mtx, bool copyData=true); // explicit Mat_(const Point_::channel_type>& pt, bool copyData=true); // explicit Mat_(const Point3_::channel_type>& pt, bool copyData=true); // explicit Mat_(const MatCommaInitializer_<_Tp>& commaInitializer); // // Mat_& operator = (const Mat& m); // Mat_& operator = (const Mat_& m); // //! set all the elements to s. // Mat_& operator = (const _Tp& s); // //! assign a matrix expression // Mat_& operator = (const MatExpr& e); // // //! iterators; they are smart enough to skip gaps in the end of rows // iterator begin(); // iterator end(); // const_iterator begin() const; // const_iterator end() const; // // //! equivalent to Mat::create(_rows, _cols, DataType<_Tp>::type) // void create(int _rows, int _cols); // //! equivalent to Mat::create(_size, DataType<_Tp>::type) // void create(Size _size); // //! equivalent to Mat::create(_ndims, _sizes, DatType<_Tp>::type) // void create(int _ndims, const int* _sizes); // //! cross-product // Mat_ cross(const Mat_& m) const; // //! data type conversion // template operator Mat_() const; // //! overridden forms of Mat::row() etc. // Mat_ row(int y) const; // Mat_ col(int x) const; // Mat_ diag(int d=0) const; // Mat_ clone() const; // // //! overridden forms of Mat::elemSize() etc. // size_t elemSize() const; // size_t elemSize1() const; // int type() const; // int depth() const; // int channels() const; // size_t step1(int i=0) const; // //! returns step()/sizeof(_Tp) // size_t stepT(int i=0) const; // // //! overridden forms of Mat::zeros() etc. Data type is omitted, of course // static MatExpr zeros(int rows, int cols); // static MatExpr zeros(Size size); // static MatExpr zeros(int _ndims, const int* _sizes); // static MatExpr ones(int rows, int cols); // static MatExpr ones(Size size); // static MatExpr ones(int _ndims, const int* _sizes); // static MatExpr eye(int rows, int cols); // static MatExpr eye(Size size); // // //! some more overriden methods // Mat_& adjustROI( int dtop, int dbottom, int dleft, int dright ); // Mat_ operator()( const Range& rowRange, const Range& colRange ) const; // Mat_ operator()( const Rect& roi ) const; // Mat_ operator()( const Range* ranges ) const; // // //! more convenient forms of row and element access operators // _Tp* operator [](int y); // const _Tp* operator [](int y) const; // // //! returns reference to the specified element // _Tp& operator ()(const int* idx); // //! returns read-only reference to the specified element // const _Tp& operator ()(const int* idx) const; // // //! returns reference to the specified element // template _Tp& operator ()(const Vec& idx); // //! returns read-only reference to the specified element // template const _Tp& operator ()(const Vec& idx) const; // // //! returns reference to the specified element (1D case) // _Tp& operator ()(int idx0); // //! returns read-only reference to the specified element (1D case) // const _Tp& operator ()(int idx0) const; // //! returns reference to the specified element (2D case) // _Tp& operator ()(int idx0, int idx1); // //! returns read-only reference to the specified element (2D case) // const _Tp& operator ()(int idx0, int idx1) const; // //! returns reference to the specified element (3D case) // _Tp& operator ()(int idx0, int idx1, int idx2); // //! returns read-only reference to the specified element (3D case) // const _Tp& operator ()(int idx0, int idx1, int idx2) const; // // _Tp& operator ()(Point pt); // const _Tp& operator ()(Point pt) const; // // //! conversion to vector. // operator std::vector<_Tp>() const; // //! conversion to Vec // template operator Vec::channel_type, n>() const; // //! conversion to Matx // template operator Matx::channel_type, m, n>() const; // }; // // typedef Mat_ Mat1b; // typedef Mat_ Mat2b; // typedef Mat_ Mat3b; // typedef Mat_ Mat4b; // // typedef Mat_ Mat1s; // typedef Mat_ Mat2s; // typedef Mat_ Mat3s; // typedef Mat_ Mat4s; // // typedef Mat_ Mat1w; // typedef Mat_ Mat2w; // typedef Mat_ Mat3w; // typedef Mat_ Mat4w; // // typedef Mat_ Mat1i; // typedef Mat_ Mat2i; // typedef Mat_ Mat3i; // typedef Mat_ Mat4i; // // typedef Mat_ Mat1f; // typedef Mat_ Mat2f; // typedef Mat_ Mat3f; // typedef Mat_ Mat4f; // // typedef Mat_ Mat1d; // typedef Mat_ Mat2d; // typedef Mat_ Mat3d; // typedef Mat_ Mat4d; // /// /////////// Iterators & Comma initializers ////////////////// // // class CV_EXPORTS MatConstIterator // { // public: // typedef uchar* value_type; // typedef ptrdiff_t difference_type; // typedef const uchar** pointer; // typedef uchar* reference; // typedef std::random_access_iterator_tag iterator_category; // // //! default constructor // MatConstIterator(); // //! constructor that sets the iterator to the beginning of the matrix // MatConstIterator(const Mat* _m); // //! constructor that sets the iterator to the specified element of the matrix // MatConstIterator(const Mat* _m, int _row, int _col=0); // //! constructor that sets the iterator to the specified element of the matrix // MatConstIterator(const Mat* _m, Point _pt); // //! constructor that sets the iterator to the specified element of the matrix // MatConstIterator(const Mat* _m, const int* _idx); // //! copy constructor // MatConstIterator(const MatConstIterator& it); // // //! copy operator // MatConstIterator& operator = (const MatConstIterator& it); // //! returns the current matrix element // uchar* operator *() const; // //! returns the i-th matrix element, relative to the current // uchar* operator [](ptrdiff_t i) const; // // //! shifts the iterator forward by the specified number of elements // MatConstIterator& operator += (ptrdiff_t ofs); // //! shifts the iterator backward by the specified number of elements // MatConstIterator& operator -= (ptrdiff_t ofs); // //! decrements the iterator // MatConstIterator& operator --(); // //! decrements the iterator // MatConstIterator operator --(int); // //! increments the iterator // MatConstIterator& operator ++(); // //! increments the iterator // MatConstIterator operator ++(int); // //! returns the current iterator position // Point pos() const; // //! returns the current iterator position // void pos(int* _idx) const; // ptrdiff_t lpos() const; // void seek(ptrdiff_t ofs, bool relative=false); // void seek(const int* _idx, bool relative=false); // // const Mat* m; // size_t elemSize; // uchar* ptr; // uchar* sliceStart; // uchar* sliceEnd; // }; // /// *! // Matrix read-only iterator // // */ // template // class CV_EXPORTS MatConstIterator_ : public MatConstIterator // { // public: // typedef _Tp value_type; // typedef ptrdiff_t difference_type; // typedef const _Tp* pointer; // typedef const _Tp& reference; // typedef std::random_access_iterator_tag iterator_category; // // //! default constructor // MatConstIterator_(); // //! constructor that sets the iterator to the beginning of the matrix // MatConstIterator_(const Mat_<_Tp>* _m); // //! constructor that sets the iterator to the specified element of the matrix // MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col=0); // //! constructor that sets the iterator to the specified element of the matrix // MatConstIterator_(const Mat_<_Tp>* _m, Point _pt); // //! constructor that sets the iterator to the specified element of the matrix // MatConstIterator_(const Mat_<_Tp>* _m, const int* _idx); // //! copy constructor // MatConstIterator_(const MatConstIterator_& it); // // //! copy operator // MatConstIterator_& operator = (const MatConstIterator_& it); // //! returns the current matrix element // _Tp operator *() const; // //! returns the i-th matrix element, relative to the current // _Tp operator [](ptrdiff_t i) const; // // //! shifts the iterator forward by the specified number of elements // MatConstIterator_& operator += (ptrdiff_t ofs); // //! shifts the iterator backward by the specified number of elements // MatConstIterator_& operator -= (ptrdiff_t ofs); // //! decrements the iterator // MatConstIterator_& operator --(); // //! decrements the iterator // MatConstIterator_ operator --(int); // //! increments the iterator // MatConstIterator_& operator ++(); // //! increments the iterator // MatConstIterator_ operator ++(int); // //! returns the current iterator position // Point pos() const; // }; // // /// *! // Matrix read-write iterator // // */ // template // class CV_EXPORTS MatIterator_ : public MatConstIterator_<_Tp> // { // public: // typedef _Tp* pointer; // typedef _Tp& reference; // typedef std::random_access_iterator_tag iterator_category; // // //! the default constructor // MatIterator_(); // //! constructor that sets the iterator to the beginning of the matrix // MatIterator_(Mat_<_Tp>* _m); // //! constructor that sets the iterator to the specified element of the matrix // MatIterator_(Mat_<_Tp>* _m, int _row, int _col=0); // //! constructor that sets the iterator to the specified element of the matrix // MatIterator_(const Mat_<_Tp>* _m, Point _pt); // //! constructor that sets the iterator to the specified element of the matrix // MatIterator_(const Mat_<_Tp>* _m, const int* _idx); // //! copy constructor // MatIterator_(const MatIterator_& it); // //! copy operator // MatIterator_& operator = (const MatIterator_<_Tp>& it ); // // //! returns the current matrix element // _Tp& operator *() const; // //! returns the i-th matrix element, relative to the current // _Tp& operator [](ptrdiff_t i) const; // // //! shifts the iterator forward by the specified number of elements // MatIterator_& operator += (ptrdiff_t ofs); // //! shifts the iterator backward by the specified number of elements // MatIterator_& operator -= (ptrdiff_t ofs); // //! decrements the iterator // MatIterator_& operator --(); // //! decrements the iterator // MatIterator_ operator --(int); // //! increments the iterator // MatIterator_& operator ++(); // //! increments the iterator // MatIterator_ operator ++(int); // }; // // template class CV_EXPORTS MatOp_Iter_; // /// *! // Comma-separated Matrix Initializer // // The class instances are usually not created explicitly. // Instead, they are created on "matrix << firstValue" operator. // // The sample below initializes 2x2 rotation matrix: // // \code // double angle = 30, a = cos(angle*CV_PI/180), b = sin(angle*CV_PI/180); // Mat R = (Mat_(2,2) << a, -b, b, a); // \endcode // */ // template class CV_EXPORTS MatCommaInitializer_ // { // public: // //! the constructor, created by "matrix << firstValue" operator, where matrix is cv::Mat // MatCommaInitializer_(Mat_<_Tp>* _m); // //! the operator that takes the next value and put it to the matrix // template MatCommaInitializer_<_Tp>& operator , (T2 v); // //! another form of conversion operator // Mat_<_Tp> operator *() const; // operator Mat_<_Tp>() const; // protected: // MatIterator_<_Tp> it; // }; // // // template class CV_EXPORTS MatxCommaInitializer // { // public: // MatxCommaInitializer(Matx<_Tp, m, n>* _mtx); // template MatxCommaInitializer<_Tp, m, n>& operator , (T2 val); // Matx<_Tp, m, n> operator *() const; // // Matx<_Tp, m, n>* dst; // int idx; // }; // // template class CV_EXPORTS VecCommaInitializer : public MatxCommaInitializer<_Tp, m, 1> // { // public: // VecCommaInitializer(Vec<_Tp, m>* _vec); // template VecCommaInitializer<_Tp, m>& operator , (T2 val); // Vec<_Tp, m> operator *() const; // }; // /// ////////////////////////// multi-dimensional dense matrix ////////////////////////// // /// *! // n-Dimensional Dense Matrix Iterator Class. // // The class cv::NAryMatIterator is used for iterating over one or more n-dimensional dense arrays (cv::Mat's). // // The iterator is completely different from cv::Mat_ and cv::SparseMat_ iterators. // It iterates through the slices (or planes), not the elements, where "slice" is a continuous part of the arrays. // // Here is the example on how the iterator can be used to normalize 3D histogram: // // \code // void normalizeColorHist(Mat& hist) // { // #if 1 // // intialize iterator (the style is different from STL). // // after initialization the iterator will contain // // the number of slices or planes // // the iterator will go through // Mat* arrays[] = { &hist, 0 }; // Mat planes[1]; // NAryMatIterator it(arrays, planes); // double s = 0; // // iterate through the matrix. on each iteration // // it.planes[i] (of type Mat) will be set to the current plane of // // i-th n-dim matrix passed to the iterator constructor. // for(int p = 0; p < it.nplanes; p++, ++it) // s += sum(it.planes[0])[0]; // it = NAryMatIterator(hist); // s = 1./s; // for(int p = 0; p < it.nplanes; p++, ++it) // it.planes[0] *= s; // #elif 1 // // this is a shorter implementation of the above // // using built-in operations on Mat // double s = sum(hist)[0]; // hist.convertTo(hist, hist.type(), 1./s, 0); // #else // // and this is even shorter one // // (assuming that the histogram elements are non-negative) // normalize(hist, hist, 1, 0, NORM_L1); // #endif // } // \endcode // // You can iterate through several matrices simultaneously as long as they have the same geometry // (dimensionality and all the dimension sizes are the same), which is useful for binary // and n-ary operations on such matrices. Just pass those matrices to cv::MatNDIterator. // Then, during the iteration it.planes[0], it.planes[1], ... will // be the slices of the corresponding matrices // */ // class CV_EXPORTS NAryMatIterator // { // public: // //! the default constructor // NAryMatIterator(); // //! the full constructor taking arbitrary number of n-dim matrices // NAryMatIterator(const Mat** arrays, uchar** ptrs, int narrays=-1); // //! the full constructor taking arbitrary number of n-dim matrices // NAryMatIterator(const Mat** arrays, Mat* planes, int narrays=-1); // //! the separate iterator initialization method // void init(const Mat** arrays, Mat* planes, uchar** ptrs, int narrays=-1); // // //! proceeds to the next plane of every iterated matrix // NAryMatIterator& operator ++(); // //! proceeds to the next plane of every iterated matrix (postfix increment operator) // NAryMatIterator operator ++(int); // // //! the iterated arrays // const Mat** arrays; // //! the current planes // Mat* planes; // //! data pointers // uchar** ptrs; // //! the number of arrays // int narrays; // //! the number of hyper-planes that the iterator steps through // size_t nplanes; // //! the size of each segment (in elements) // size_t size; // protected: // int iterdepth; // size_t idx; // }; // /// /typedef NAryMatIterator NAryMatNDIterator; // // typedef void (*ConvertData)(const void* from, void* to, int cn); // typedef void (*ConvertScaleData)(const void* from, void* to, int cn, double alpha, double beta); // /// /! returns the function for converting pixels from one data type to another // CV_EXPORTS ConvertData getConvertElem(int fromType, int toType); /// /! returns the function for converting pixels from one data type to another with the optional scaling // CV_EXPORTS ConvertScaleData getConvertScaleElem(int fromType, int toType); // // /// ////////////////////////// multi-dimensional sparse matrix ////////////////////////// // // class SparseMatIterator; // class SparseMatConstIterator; // template class SparseMatIterator_; // template class SparseMatConstIterator_; // /// *! // Sparse matrix class. // // The class represents multi-dimensional sparse numerical arrays. Such a sparse array can store elements // of any type that cv::Mat is able to store. "Sparse" means that only non-zero elements // are stored (though, as a result of some operations on a sparse matrix, some of its stored elements // can actually become 0. It's user responsibility to detect such elements and delete them using cv::SparseMat::erase(). // The non-zero elements are stored in a hash table that grows when it's filled enough, // so that the search time remains O(1) in average. Elements can be accessed using the following methods: // //
    //
  1. Query operations: cv::SparseMat::ptr() and the higher-level cv::SparseMat::ref(), // cv::SparseMat::value() and cv::SparseMat::find, for example: // \code // const int dims = 5; // int size[] = {10, 10, 10, 10, 10}; // SparseMat sparse_mat(dims, size, CV_32F); // for(int i = 0; i < 1000; i++) // { // int idx[dims]; // for(int k = 0; k < dims; k++) // idx[k] = rand()%sparse_mat.size(k); // sparse_mat.ref(idx) += 1.f; // } // \endcode // //
  2. Sparse matrix iterators. Like cv::Mat iterators and unlike cv::Mat iterators, the sparse matrix iterators are STL-style, // that is, the iteration is done as following: // \code // // prints elements of a sparse floating-point matrix and the sum of elements. // SparseMatConstIterator_ // it = sparse_mat.begin(), // it_end = sparse_mat.end(); // double s = 0; // int dims = sparse_mat.dims(); // for(; it != it_end; ++it) // { // // print element indices and the element value // const Node* n = it.node(); // printf("(") // for(int i = 0; i < dims; i++) // printf("%3d%c", n->idx[i], i < dims-1 ? ',' : ')'); // printf(": %f\n", *it); // s += *it; // } // printf("Element sum is %g\n", s); // \endcode // If you run this loop, you will notice that elements are enumerated // in no any logical order (lexicographical etc.), // they come in the same order as they stored in the hash table, i.e. semi-randomly. // // You may collect pointers to the nodes and sort them to get the proper ordering. // Note, however, that pointers to the nodes may become invalid when you add more // elements to the matrix; this is because of possible buffer reallocation. // //
  3. A combination of the above 2 methods when you need to process 2 or more sparse // matrices simultaneously, e.g. this is how you can compute unnormalized // cross-correlation of the 2 floating-point sparse matrices: // \code // double crossCorr(const SparseMat& a, const SparseMat& b) // { // const SparseMat *_a = &a, *_b = &b; // // if b contains less elements than a, // // it's faster to iterate through b // if(_a->nzcount() > _b->nzcount()) // std::swap(_a, _b); // SparseMatConstIterator_ it = _a->begin(), // it_end = _a->end(); // double ccorr = 0; // for(; it != it_end; ++it) // { // // take the next element from the first matrix // float avalue = *it; // const Node* anode = it.node(); // // and try to find element with the same index in the second matrix. // // since the hash value depends only on the element index, // // we reuse hashvalue stored in the node // float bvalue = _b->value(anode->idx,&anode->hashval); // ccorr += avalue*bvalue; // } // return ccorr; // } // \endcode //
// */ // class CV_EXPORTS SparseMat // { // public: // typedef SparseMatIterator iterator; // typedef SparseMatConstIterator const_iterator; // // //! the sparse matrix header // struct CV_EXPORTS Hdr // { // Hdr(int _dims, const int* _sizes, int _type); // void clear(); // int refcount; // int dims; // int valueOffset; // size_t nodeSize; // size_t nodeCount; // size_t freeList; // std::vector pool; // std::vector hashtab; // int size[CV_MAX_DIM]; // }; // // //! sparse matrix node - element of a hash table // struct CV_EXPORTS Node // { // //! hash value // size_t hashval; // //! index of the next node in the same hash table entry // size_t next; // //! index of the matrix element // int idx[CV_MAX_DIM]; // }; // // //! default constructor // SparseMat(); // //! creates matrix of the specified size and type // SparseMat(int dims, const int* _sizes, int _type); // //! copy constructor // SparseMat(const SparseMat& m); // //! converts dense 2d matrix to the sparse form // /*! // \param m the input matrix // \param try1d if true and m is a single-column matrix (Nx1), // then the sparse matrix will be 1-dimensional. // */ // explicit SparseMat(const Mat& m); // //! converts old-style sparse matrix to the new-style. All the data is copied // SparseMat(const CvSparseMat* m); // //! the destructor // ~SparseMat(); // // //! assignment operator. This is O(1) operation, i.e. no data is copied // SparseMat& operator = (const SparseMat& m); // //! equivalent to the corresponding constructor // SparseMat& operator = (const Mat& m); // // //! creates full copy of the matrix // SparseMat clone() const; // // //! copies all the data to the destination matrix. All the previous content of m is erased // void copyTo( SparseMat& m ) const; // //! converts sparse matrix to dense matrix. // void copyTo( Mat& m ) const; // //! multiplies all the matrix elements by the specified scale factor alpha and converts the results to the specified data type // void convertTo( SparseMat& m, int rtype, double alpha=1 ) const; // //! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling. // /*! // \param rtype The output matrix data type. When it is =-1, the output array will have the same data type as (*this) // \param alpha The scale factor // \param beta The optional delta added to the scaled values before the conversion // */ // void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const; // // // not used now // void assignTo( SparseMat& m, int type=-1 ) const; // // //! reallocates sparse matrix. // /*! // If the matrix already had the proper size and type, // it is simply cleared with clear(), otherwise, // the old matrix is released (using release()) and the new one is allocated. // */ // void create(int dims, const int* _sizes, int _type); // //! sets all the sparse matrix elements to 0, which means clearing the hash table. // void clear(); // //! manually increments the reference counter to the header. // void addref(); // // decrements the header reference counter. When the counter reaches 0, the header and all the underlying data are deallocated. // void release(); // // //! converts sparse matrix to the old-style representation; all the elements are copied. // operator CvSparseMat*() const; // //! returns the size of each element in bytes (not including the overhead - the space occupied by SparseMat::Node elements) // size_t elemSize() const; // //! returns elemSize()/channels() // size_t elemSize1() const; // // //! returns type of sparse matrix elements // int type() const; // //! returns the depth of sparse matrix elements // int depth() const; // //! returns the number of channels // int channels() const; // // //! returns the array of sizes, or NULL if the matrix is not allocated // const int* size() const; // //! returns the size of i-th matrix dimension (or 0) // int size(int i) const; // //! returns the matrix dimensionality // int dims() const; // //! returns the number of non-zero elements (=the number of hash table nodes) // size_t nzcount() const; // // //! computes the element hash value (1D case) // size_t hash(int i0) const; // //! computes the element hash value (2D case) // size_t hash(int i0, int i1) const; // //! computes the element hash value (3D case) // size_t hash(int i0, int i1, int i2) const; // //! computes the element hash value (nD case) // size_t hash(const int* idx) const; // // //@{ // /*! // specialized variants for 1D, 2D, 3D cases and the generic_type one for n-D case. // // return pointer to the matrix element. //
    //
  • if the element is there (it's non-zero), the pointer to it is returned //
  • if it's not there and createMissing=false, NULL pointer is returned //
  • if it's not there and createMissing=true, then the new element // is created and initialized with 0. Pointer to it is returned //
  • if the optional hashval pointer is not NULL, the element hash value is // not computed, but *hashval is taken instead. //
// */ // //! returns pointer to the specified element (1D case) // uchar* ptr(int i0, bool createMissing, size_t* hashval=0); // //! returns pointer to the specified element (2D case) // uchar* ptr(int i0, int i1, bool createMissing, size_t* hashval=0); // //! returns pointer to the specified element (3D case) // uchar* ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval=0); // //! returns pointer to the specified element (nD case) // uchar* ptr(const int* idx, bool createMissing, size_t* hashval=0); // //@} // // //@{ // /*! // return read-write reference to the specified sparse matrix element. // // ref<_Tp>(i0,...[,hashval]) is equivalent to *(_Tp*)ptr(i0,...,true[,hashval]). // The methods always return a valid reference. // If the element did not exist, it is created and initialiazed with 0. // */ // //! returns reference to the specified element (1D case) // template _Tp& ref(int i0, size_t* hashval=0); // //! returns reference to the specified element (2D case) // template _Tp& ref(int i0, int i1, size_t* hashval=0); // //! returns reference to the specified element (3D case) // template _Tp& ref(int i0, int i1, int i2, size_t* hashval=0); // //! returns reference to the specified element (nD case) // template _Tp& ref(const int* idx, size_t* hashval=0); // //@} // // //@{ // /*! // return value of the specified sparse matrix element. // // value<_Tp>(i0,...[,hashval]) is equivalent // // \code // { const _Tp* p = find<_Tp>(i0,...[,hashval]); return p ? *p : _Tp(); } // \endcode // // That is, if the element did not exist, the methods return 0. // */ // //! returns value of the specified element (1D case) // template _Tp value(int i0, size_t* hashval=0) const; // //! returns value of the specified element (2D case) // template _Tp value(int i0, int i1, size_t* hashval=0) const; // //! returns value of the specified element (3D case) // template _Tp value(int i0, int i1, int i2, size_t* hashval=0) const; // //! returns value of the specified element (nD case) // template _Tp value(const int* idx, size_t* hashval=0) const; // //@} // // //@{ // /*! // Return pointer to the specified sparse matrix element if it exists // // find<_Tp>(i0,...[,hashval]) is equivalent to (_const Tp*)ptr(i0,...false[,hashval]). // // If the specified element does not exist, the methods return NULL. // */ // //! returns pointer to the specified element (1D case) // template const _Tp* find(int i0, size_t* hashval=0) const; // //! returns pointer to the specified element (2D case) // template const _Tp* find(int i0, int i1, size_t* hashval=0) const; // //! returns pointer to the specified element (3D case) // template const _Tp* find(int i0, int i1, int i2, size_t* hashval=0) const; // //! returns pointer to the specified element (nD case) // template const _Tp* find(const int* idx, size_t* hashval=0) const; // // //! erases the specified element (2D case) // void erase(int i0, int i1, size_t* hashval=0); // //! erases the specified element (3D case) // void erase(int i0, int i1, int i2, size_t* hashval=0); // //! erases the specified element (nD case) // void erase(const int* idx, size_t* hashval=0); // // //@{ // /*! // return the sparse matrix iterator pointing to the first sparse matrix element // */ // //! returns the sparse matrix iterator at the matrix beginning // SparseMatIterator begin(); // //! returns the sparse matrix iterator at the matrix beginning // template SparseMatIterator_<_Tp> begin(); // //! returns the read-only sparse matrix iterator at the matrix beginning // SparseMatConstIterator begin() const; // //! returns the read-only sparse matrix iterator at the matrix beginning // template SparseMatConstIterator_<_Tp> begin() const; // //@} // /*! // return the sparse matrix iterator pointing to the element following the last sparse matrix element // */ // //! returns the sparse matrix iterator at the matrix end // SparseMatIterator end(); // //! returns the read-only sparse matrix iterator at the matrix end // SparseMatConstIterator end() const; // //! returns the typed sparse matrix iterator at the matrix end // template SparseMatIterator_<_Tp> end(); // //! returns the typed read-only sparse matrix iterator at the matrix end // template SparseMatConstIterator_<_Tp> end() const; // // //! returns the value stored in the sparse martix node // template _Tp& value(Node* n); // //! returns the value stored in the sparse martix node // template const _Tp& value(const Node* n) const; // // ////////////// some internal-use methods /////////////// // Node* node(size_t nidx); // const Node* node(size_t nidx) const; // // uchar* newNode(const int* idx, size_t hashval); // void removeNode(size_t hidx, size_t nidx, size_t previdx); // void resizeHashTab(size_t newsize); // // enum { MAGIC_VAL=0x42FD0000, MAX_DIM=CV_MAX_DIM, HASH_SCALE=0x5bd1e995, HASH_BIT=0x80000000 }; // // int flags; // Hdr* hdr; // }; // /// /! finds global minimum and maximum sparse array elements and returns their values and their locations // CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal, // double* maxVal, int* minIdx=0, int* maxIdx=0); /// /! computes norm of a sparse matrix // CV_EXPORTS double norm( const SparseMat& src, int normType ); /// /! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values // CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType ); // /// *! // Read-Only Sparse Matrix Iterator. // Here is how to use the iterator to compute the sum of floating-point sparse matrix elements: // // \code // SparseMatConstIterator it = m.begin(), it_end = m.end(); // double s = 0; // CV_Assert( m.type() == CV_32F ); // for( ; it != it_end; ++it ) // s += it.value(); // \endcode // */ // class CV_EXPORTS SparseMatConstIterator // { // public: // //! the default constructor // SparseMatConstIterator(); // //! the full constructor setting the iterator to the first sparse matrix element // SparseMatConstIterator(const SparseMat* _m); // //! the copy constructor // SparseMatConstIterator(const SparseMatConstIterator& it); // // //! the assignment operator // SparseMatConstIterator& operator = (const SparseMatConstIterator& it); // // //! template method returning the current matrix element // template const _Tp& value() const; // //! returns the current node of the sparse matrix. it.node->idx is the current element index // const SparseMat::Node* node() const; // // //! moves iterator to the previous element // SparseMatConstIterator& operator --(); // //! moves iterator to the previous element // SparseMatConstIterator operator --(int); // //! moves iterator to the next element // SparseMatConstIterator& operator ++(); // //! moves iterator to the next element // SparseMatConstIterator operator ++(int); // // //! moves iterator to the element after the last element // void seekEnd(); // // const SparseMat* m; // size_t hashidx; // uchar* ptr; // }; // /// *! // Read-write Sparse Matrix Iterator // // The class is similar to cv::SparseMatConstIterator, // but can be used for in-place modification of the matrix elements. // */ // class CV_EXPORTS SparseMatIterator : public SparseMatConstIterator // { // public: // //! the default constructor // SparseMatIterator(); // //! the full constructor setting the iterator to the first sparse matrix element // SparseMatIterator(SparseMat* _m); // //! the full constructor setting the iterator to the specified sparse matrix element // SparseMatIterator(SparseMat* _m, const int* idx); // //! the copy constructor // SparseMatIterator(const SparseMatIterator& it); // // //! the assignment operator // SparseMatIterator& operator = (const SparseMatIterator& it); // //! returns read-write reference to the current sparse matrix element // template _Tp& value() const; // //! returns pointer to the current sparse matrix node. it.node->idx is the index of the current element (do not modify it!) // SparseMat::Node* node() const; // // //! moves iterator to the next element // SparseMatIterator& operator ++(); // //! moves iterator to the next element // SparseMatIterator operator ++(int); // }; // /// *! // The Template Sparse Matrix class derived from cv::SparseMat // // The class provides slightly more convenient operations for accessing elements. // // \code // SparseMat m; // ... // SparseMat_ m_ = (SparseMat_&)m; // m_.ref(1)++; // equivalent to m.ref(1)++; // m_.ref(2) += m_(3); // equivalent to m.ref(2) += m.value(3); // \endcode // */ // template class CV_EXPORTS SparseMat_ : public SparseMat // { // public: // typedef SparseMatIterator_<_Tp> iterator; // typedef SparseMatConstIterator_<_Tp> const_iterator; // // //! the default constructor // SparseMat_(); // //! the full constructor equivelent to SparseMat(dims, _sizes, DataType<_Tp>::type) // SparseMat_(int dims, const int* _sizes); // //! the copy constructor. If DataType<_Tp>.type != m.type(), the m elements are converted // SparseMat_(const SparseMat& m); // //! the copy constructor. This is O(1) operation - no data is copied // SparseMat_(const SparseMat_& m); // //! converts dense matrix to the sparse form // SparseMat_(const Mat& m); // //! converts the old-style sparse matrix to the C++ class. All the elements are copied // SparseMat_(const CvSparseMat* m); // //! the assignment operator. If DataType<_Tp>.type != m.type(), the m elements are converted // SparseMat_& operator = (const SparseMat& m); // //! the assignment operator. This is O(1) operation - no data is copied // SparseMat_& operator = (const SparseMat_& m); // //! converts dense matrix to the sparse form // SparseMat_& operator = (const Mat& m); // // //! makes full copy of the matrix. All the elements are duplicated // SparseMat_ clone() const; // //! equivalent to cv::SparseMat::create(dims, _sizes, DataType<_Tp>::type) // void create(int dims, const int* _sizes); // //! converts sparse matrix to the old-style CvSparseMat. All the elements are copied // operator CvSparseMat*() const; // // //! returns type of the matrix elements // int type() const; // //! returns depth of the matrix elements // int depth() const; // //! returns the number of channels in each matrix element // int channels() const; // // //! equivalent to SparseMat::ref<_Tp>(i0, hashval) // _Tp& ref(int i0, size_t* hashval=0); // //! equivalent to SparseMat::ref<_Tp>(i0, i1, hashval) // _Tp& ref(int i0, int i1, size_t* hashval=0); // //! equivalent to SparseMat::ref<_Tp>(i0, i1, i2, hashval) // _Tp& ref(int i0, int i1, int i2, size_t* hashval=0); // //! equivalent to SparseMat::ref<_Tp>(idx, hashval) // _Tp& ref(const int* idx, size_t* hashval=0); // // //! equivalent to SparseMat::value<_Tp>(i0, hashval) // _Tp operator()(int i0, size_t* hashval=0) const; // //! equivalent to SparseMat::value<_Tp>(i0, i1, hashval) // _Tp operator()(int i0, int i1, size_t* hashval=0) const; // //! equivalent to SparseMat::value<_Tp>(i0, i1, i2, hashval) // _Tp operator()(int i0, int i1, int i2, size_t* hashval=0) const; // //! equivalent to SparseMat::value<_Tp>(idx, hashval) // _Tp operator()(const int* idx, size_t* hashval=0) const; // // //! returns sparse matrix iterator pointing to the first sparse matrix element // SparseMatIterator_<_Tp> begin(); // //! returns read-only sparse matrix iterator pointing to the first sparse matrix element // SparseMatConstIterator_<_Tp> begin() const; // //! returns sparse matrix iterator pointing to the element following the last sparse matrix element // SparseMatIterator_<_Tp> end(); // //! returns read-only sparse matrix iterator pointing to the element following the last sparse matrix element // SparseMatConstIterator_<_Tp> end() const; // }; // // /// *! // Template Read-Only Sparse Matrix Iterator Class. // // This is the derived from SparseMatConstIterator class that // introduces more convenient operator *() for accessing the current element. // */ // template class CV_EXPORTS SparseMatConstIterator_ : public SparseMatConstIterator // { // public: // typedef std::forward_iterator_tag iterator_category; // // //! the default constructor // SparseMatConstIterator_(); // //! the full constructor setting the iterator to the first sparse matrix element // SparseMatConstIterator_(const SparseMat_<_Tp>* _m); // //! the copy constructor // SparseMatConstIterator_(const SparseMatConstIterator_& it); // // //! the assignment operator // SparseMatConstIterator_& operator = (const SparseMatConstIterator_& it); // //! the element access operator // const _Tp& operator *() const; // // //! moves iterator to the next element // SparseMatConstIterator_& operator ++(); // //! moves iterator to the next element // SparseMatConstIterator_ operator ++(int); // }; // /// *! // Template Read-Write Sparse Matrix Iterator Class. // // This is the derived from cv::SparseMatConstIterator_ class that // introduces more convenient operator *() for accessing the current element. // */ // template class CV_EXPORTS SparseMatIterator_ : public SparseMatConstIterator_<_Tp> // { // public: // typedef std::forward_iterator_tag iterator_category; // // //! the default constructor // SparseMatIterator_(); // //! the full constructor setting the iterator to the first sparse matrix element // SparseMatIterator_(SparseMat_<_Tp>* _m); // //! the copy constructor // SparseMatIterator_(const SparseMatIterator_& it); // // //! the assignment operator // SparseMatIterator_& operator = (const SparseMatIterator_& it); // //! returns the reference to the current element // _Tp& operator *() const; // // //! moves the iterator to the next element // SparseMatIterator_& operator ++(); // //! moves the iterator to the next element // SparseMatIterator_ operator ++(int); // }; // /// /////////////////// Fast Nearest-Neighbor Search Structure //////////////////// // /// *! // Fast Nearest Neighbor Search Class. // // The class implements D. Lowe BBF (Best-Bin-First) algorithm for the last // approximate (or accurate) nearest neighbor search in multi-dimensional spaces. // // First, a set of vectors is passed to KDTree::KDTree() constructor // or KDTree::build() method, where it is reordered. // // Then arbitrary vectors can be passed to KDTree::findNearest() methods, which // find the K nearest neighbors among the vectors from the initial set. // The user can balance between the speed and accuracy of the search by varying Emax // parameter, which is the number of leaves that the algorithm checks. // The larger parameter values yield more accurate results at the expense of lower processing speed. // // \code // KDTree T(points, false); // const int K = 3, Emax = INT_MAX; // int idx[K]; // float dist[K]; // T.findNearest(query_vec, K, Emax, idx, 0, dist); // CV_Assert(dist[0] <= dist[1] && dist[1] <= dist[2]); // \endcode // */ // class CV_EXPORTS_W KDTree // { // public: // /*! // The node of the search tree. // */ // struct Node // { // Node() : idx(-1), left(-1), right(-1), boundary(0.f) {} // Node(int _idx, int _left, int _right, float _boundary) // : idx(_idx), left(_left), right(_right), boundary(_boundary) {} // //! split dimension; >=0 for nodes (dim), < 0 for leaves (index of the point) // int idx; // //! node indices of the left and the right branches // int left, right; // //! go to the left if query_vec[node.idx]<=node.boundary, otherwise go to the right // float boundary; // }; // // //! the default constructor // CV_WRAP KDTree(); // //! the full constructor that builds the search tree // CV_WRAP KDTree(InputArray points, bool copyAndReorderPoints=false); // //! the full constructor that builds the search tree // CV_WRAP KDTree(InputArray points, InputArray _labels, // bool copyAndReorderPoints=false); // //! builds the search tree // CV_WRAP void build(InputArray points, bool copyAndReorderPoints=false); // //! builds the search tree // CV_WRAP void build(InputArray points, InputArray labels, // bool copyAndReorderPoints=false); // //! finds the K nearest neighbors of "vec" while looking at Emax (at most) leaves // CV_WRAP int findNearest(InputArray vec, int K, int Emax, // OutputArray neighborsIdx, // OutputArray neighbors=noArray(), // OutputArray dist=noArray(), // OutputArray labels=noArray()) const; // //! finds all the points from the initial set that belong to the specified box // CV_WRAP void findOrthoRange(InputArray minBounds, // InputArray maxBounds, // OutputArray neighborsIdx, // OutputArray neighbors=noArray(), // OutputArray labels=noArray()) const; // //! returns vectors with the specified indices // CV_WRAP void getPoints(InputArray idx, OutputArray pts, // OutputArray labels=noArray()) const; // //! return a vector with the specified index // const float* getPoint(int ptidx, int* label=0) const; // //! returns the search space dimensionality // CV_WRAP int dims() const; // // std::vector nodes; //!< all the tree nodes // CV_PROP Mat points; //!< all the points. It can be a reordered copy of the input vector set or the original vector set. // CV_PROP std::vector labels; //!< the parallel array of labels. // CV_PROP int maxDepth; //!< maximum depth of the search tree. Do not modify it // CV_PROP_RW int normType; //!< type of the distance (cv::NORM_L1 or cv::NORM_L2) used for search. Initially set to cv::NORM_L2, but you can modify it // }; // /// /////////////////////////////////////// XML & YAML I/O //////////////////////////////////// // // class CV_EXPORTS FileNode; // /// *! // XML/YAML File Storage Class. // // The class describes an object associated with XML or YAML file. // It can be used to store data to such a file or read and decode the data. // // The storage is organized as a tree of nested sequences (or lists) and mappings. // Sequence is a heterogenious array, which elements are accessed by indices or sequentially using an iterator. // Mapping is analogue of std::map or C structure, which elements are accessed by names. // The most top level structure is a mapping. // Leaves of the file storage tree are integers, floating-point numbers and text strings. // // For example, the following code: // // \code // // open file storage for writing. Type of the file is determined from the extension // FileStorage fs("test.yml", FileStorage::WRITE); // fs << "test_int" << 5 << "test_real" << 3.1 << "test_string" << "ABCDEFGH"; // fs << "test_mat" << Mat::eye(3,3,CV_32F); // // fs << "test_list" << "[" << 0.0000000000001 << 2 << CV_PI << -3435345 << "2-502 2-029 3egegeg" << // "{:" << "month" << 12 << "day" << 31 << "year" << 1969 << "}" << "]"; // fs << "test_map" << "{" << "x" << 1 << "y" << 2 << "width" << 100 << "height" << 200 << "lbp" << "[:"; // // const uchar arr[] = {0, 1, 1, 0, 1, 1, 0, 1}; // fs.writeRaw("u", arr, (int)(sizeof(arr)/sizeof(arr[0]))); // // fs << "]" << "}"; // \endcode // // will produce the following file: // // \verbatim // %YAML:1.0 // test_int: 5 // test_real: 3.1000000000000001e+00 // test_string: ABCDEFGH // test_mat: !!opencv-matrix // rows: 3 // cols: 3 // dt: f // data: [ 1., 0., 0., 0., 1., 0., 0., 0., 1. ] // test_list: // - 1.0000000000000000e-13 // - 2 // - 3.1415926535897931e+00 // - -3435345 // - "2-502 2-029 3egegeg" // - { month:12, day:31, year:1969 } // test_map: // x: 1 // y: 2 // width: 100 // height: 200 // lbp: [ 0, 1, 1, 0, 1, 1, 0, 1 ] // \endverbatim // // and to read the file above, the following code can be used: // // \code // // open file storage for reading. // // Type of the file is determined from the content, not the extension // FileStorage fs("test.yml", FileStorage::READ); // int test_int = (int)fs["test_int"]; // double test_real = (double)fs["test_real"]; // String test_string = (String)fs["test_string"]; // // Mat M; // fs["test_mat"] >> M; // // FileNode tl = fs["test_list"]; // CV_Assert(tl.type() == FileNode::SEQ && tl.size() == 6); // double tl0 = (double)tl[0]; // int tl1 = (int)tl[1]; // double tl2 = (double)tl[2]; // int tl3 = (int)tl[3]; // String tl4 = (String)tl[4]; // CV_Assert(tl[5].type() == FileNode::MAP && tl[5].size() == 3); // // int month = (int)tl[5]["month"]; // int day = (int)tl[5]["day"]; // int year = (int)tl[5]["year"]; // // FileNode tm = fs["test_map"]; // // int x = (int)tm["x"]; // int y = (int)tm["y"]; // int width = (int)tm["width"]; // int height = (int)tm["height"]; // // int lbp_val = 0; // FileNodeIterator it = tm["lbp"].begin(); // // for(int k = 0; k < 8; k++, ++it) // lbp_val |= ((int)*it) << k; // \endcode // */ // class CV_EXPORTS_W FileStorage // { // public: // //! file storage mode // enum // { // READ=0, //! read mode // WRITE=1, //! write mode // APPEND=2, //! append mode // MEMORY=4, // FORMAT_MASK=(7<<3), // FORMAT_AUTO=0, // FORMAT_XML=(1<<3), // FORMAT_YAML=(2<<3) // }; // enum // { // UNDEFINED=0, // VALUE_EXPECTED=1, // NAME_EXPECTED=2, // INSIDE_MAP=4 // }; // //! the default constructor // CV_WRAP FileStorage(); // //! the full constructor that opens file storage for reading or writing // CV_WRAP FileStorage(const String& source, int flags, const String& encoding=String()); // //! the constructor that takes pointer to the C FileStorage structure // FileStorage(CvFileStorage* fs); // //! the destructor. calls release() // virtual ~FileStorage(); // // //! opens file storage for reading or writing. The previous storage is closed with release() // CV_WRAP virtual bool open(const String& filename, int flags, const String& encoding=String()); // //! returns true if the object is associated with currently opened file. // CV_WRAP virtual bool isOpened() const; // //! closes the file and releases all the memory buffers // CV_WRAP virtual void release(); // //! closes the file, releases all the memory buffers and returns the text string // CV_WRAP virtual String releaseAndGetString(); // // //! returns the first element of the top-level mapping // CV_WRAP FileNode getFirstTopLevelNode() const; // //! returns the top-level mapping. YAML supports multiple streams // CV_WRAP FileNode root(int streamidx=0) const; // //! returns the specified element of the top-level mapping // FileNode operator[](const String& nodename) const; // //! returns the specified element of the top-level mapping // CV_WRAP FileNode operator[](const char* nodename) const; // // //! returns pointer to the underlying C FileStorage structure // CvFileStorage* operator *() { return fs; } // //! returns pointer to the underlying C FileStorage structure // const CvFileStorage* operator *() const { return fs; } // //! writes one or more numbers of the specified format to the currently written structure // void writeRaw( const String& fmt, const uchar* vec, size_t len ); // //! writes the registered C structure (CvMat, CvMatND, CvSeq). See cvWrite() // void writeObj( const String& name, const void* obj ); // // //! returns the normalized object name for the specified file name // static String getDefaultObjectName(const String& filename); // // Ptr fs; //!< the underlying C FileStorage structure // String elname; //!< the currently written element // std::vector structs; //!< the stack of written structures // int state; //!< the writer state // }; // // class CV_EXPORTS FileNodeIterator; // /// *! // File Storage Node class // // The node is used to store each and every element of the file storage opened for reading - // from the primitive objects, such as numbers and text strings, to the complex nodes: // sequences, mappings and the registered objects. // // Note that file nodes are only used for navigating file storages opened for reading. // When a file storage is opened for writing, no data is stored in memory after it is written. // */ // class CV_EXPORTS_W_SIMPLE FileNode // { // public: // //! type of the file storage node // enum // { // NONE=0, //!< empty node // INT=1, //!< an integer // REAL=2, //!< floating-point number // FLOAT=REAL, //!< synonym or REAL // STR=3, //!< text string in UTF-8 encoding // STRING=STR, //!< synonym for STR // REF=4, //!< integer of size size_t. Typically used for storing complex dynamic structures where some elements reference the others // SEQ=5, //!< sequence // MAP=6, //!< mapping // TYPE_MASK=7, // FLOW=8, //!< compact representation of a sequence or mapping. Used only by YAML writer // USER=16, //!< a registered object (e.g. a matrix) // EMPTY=32, //!< empty structure (sequence or mapping) // NAMED=64 //!< the node has a name (i.e. it is element of a mapping) // }; // //! the default constructor // CV_WRAP FileNode(); // //! the full constructor wrapping CvFileNode structure. // FileNode(const CvFileStorage* fs, const CvFileNode* node); // //! the copy constructor // FileNode(const FileNode& node); // //! returns element of a mapping node // FileNode operator[](const String& nodename) const; // //! returns element of a mapping node // CV_WRAP FileNode operator[](const char* nodename) const; // //! returns element of a sequence node // CV_WRAP FileNode operator[](int i) const; // //! returns type of the node // CV_WRAP int type() const; // // //! returns true if the node is empty // CV_WRAP bool empty() const; // //! returns true if the node is a "none" object // CV_WRAP bool isNone() const; // //! returns true if the node is a sequence // CV_WRAP bool isSeq() const; // //! returns true if the node is a mapping // CV_WRAP bool isMap() const; // //! returns true if the node is an integer // CV_WRAP bool isInt() const; // //! returns true if the node is a floating-point number // CV_WRAP bool isReal() const; // //! returns true if the node is a text string // CV_WRAP bool isString() const; // //! returns true if the node has a name // CV_WRAP bool isNamed() const; // //! returns the node name or an empty string if the node is nameless // CV_WRAP String name() const; // //! returns the number of elements in the node, if it is a sequence or mapping, or 1 otherwise. // CV_WRAP size_t size() const; // //! returns the node content as an integer. If the node stores floating-point number, it is rounded. // operator int() const; // //! returns the node content as float // operator float() const; // //! returns the node content as double // operator double() const; // //! returns the node content as text string // operator String() const; // #ifndef OPENCV_NOSTL // operator std::string() const; // #endif // // //! returns pointer to the underlying file node // CvFileNode* operator *(); // //! returns pointer to the underlying file node // const CvFileNode* operator* () const; // // //! returns iterator pointing to the first node element // FileNodeIterator begin() const; // //! returns iterator pointing to the element following the last node element // FileNodeIterator end() const; // // //! reads node elements to the buffer with the specified format // void readRaw( const String& fmt, uchar* vec, size_t len ) const; // //! reads the registered object and returns pointer to it // void* readObj() const; // // // do not use wrapper pointer classes for better efficiency // const CvFileStorage* fs; // const CvFileNode* node; // }; // // /// *! // File Node Iterator // // The class is used for iterating sequences (usually) and mappings. // */ // class CV_EXPORTS FileNodeIterator // { // public: // //! the default constructor // FileNodeIterator(); // //! the full constructor set to the ofs-th element of the node // FileNodeIterator(const CvFileStorage* fs, const CvFileNode* node, size_t ofs=0); // //! the copy constructor // FileNodeIterator(const FileNodeIterator& it); // //! returns the currently observed element // FileNode operator *() const; // //! accesses the currently observed element methods // FileNode operator ->() const; // // //! moves iterator to the next node // FileNodeIterator& operator ++ (); // //! moves iterator to the next node // FileNodeIterator operator ++ (int); // //! moves iterator to the previous node // FileNodeIterator& operator -- (); // //! moves iterator to the previous node // FileNodeIterator operator -- (int); // //! moves iterator forward by the specified offset (possibly negative) // FileNodeIterator& operator += (int ofs); // //! moves iterator backward by the specified offset (possibly negative) // FileNodeIterator& operator -= (int ofs); // // //! reads the next maxCount elements (or less, if the sequence/mapping last element occurs earlier) to the buffer with the specified format // FileNodeIterator& readRaw( const String& fmt, uchar* vec, // size_t maxCount=(size_t)INT_MAX ); // // const CvFileStorage* fs; // const CvFileNode* container; // CvSeqReader reader; // size_t remaining; // }; // /// ///////////// convenient wrappers for operating old-style dynamic structures ////////////// // // template class SeqIterator; // // typedef Ptr MemStorage; // /// *! // Template Sequence Class derived from CvSeq // // The class provides more convenient access to sequence elements, // STL-style operations and iterators. // // \note The class is targeted for simple data types, // i.e. no constructors or destructors // are called for the sequence elements. // */ // template class CV_EXPORTS Seq // { // public: // typedef SeqIterator<_Tp> iterator; // typedef SeqIterator<_Tp> const_iterator; // // //! the default constructor // Seq(); // //! the constructor for wrapping CvSeq structure. The real element type in CvSeq should match _Tp. // Seq(const CvSeq* seq); // //! creates the empty sequence that resides in the specified storage // Seq(MemStorage& storage, int headerSize = sizeof(CvSeq)); // //! returns read-write reference to the specified element // _Tp& operator [](int idx); // //! returns read-only reference to the specified element // const _Tp& operator[](int idx) const; // //! returns iterator pointing to the beginning of the sequence // SeqIterator<_Tp> begin() const; // //! returns iterator pointing to the element following the last sequence element // SeqIterator<_Tp> end() const; // //! returns the number of elements in the sequence // size_t size() const; // //! returns the type of sequence elements (CV_8UC1 ... CV_64FC(CV_CN_MAX) ...) // int type() const; // //! returns the depth of sequence elements (CV_8U ... CV_64F) // int depth() const; // //! returns the number of channels in each sequence element // int channels() const; // //! returns the size of each sequence element // size_t elemSize() const; // //! returns index of the specified sequence element // size_t index(const _Tp& elem) const; // //! appends the specified element to the end of the sequence // void push_back(const _Tp& elem); // //! appends the specified element to the front of the sequence // void push_front(const _Tp& elem); // //! appends zero or more elements to the end of the sequence // void push_back(const _Tp* elems, size_t count); // //! appends zero or more elements to the front of the sequence // void push_front(const _Tp* elems, size_t count); // //! inserts the specified element to the specified position // void insert(int idx, const _Tp& elem); // //! inserts zero or more elements to the specified position // void insert(int idx, const _Tp* elems, size_t count); // //! removes element at the specified position // void remove(int idx); // //! removes the specified subsequence // void remove(const Range& r); // // //! returns reference to the first sequence element // _Tp& front(); // //! returns read-only reference to the first sequence element // const _Tp& front() const; // //! returns reference to the last sequence element // _Tp& back(); // //! returns read-only reference to the last sequence element // const _Tp& back() const; // //! returns true iff the sequence contains no elements // bool empty() const; // // //! removes all the elements from the sequence // void clear(); // //! removes the first element from the sequence // void pop_front(); // //! removes the last element from the sequence // void pop_back(); // //! removes zero or more elements from the beginning of the sequence // void pop_front(_Tp* elems, size_t count); // //! removes zero or more elements from the end of the sequence // void pop_back(_Tp* elems, size_t count); // // //! copies the whole sequence or the sequence slice to the specified vector // void copyTo(std::vector<_Tp>& vec, const Range& range=Range::all()) const; // //! returns the vector containing all the sequence elements // operator std::vector<_Tp>() const; // // CvSeq* seq; // }; // // /// *! // STL-style Sequence Iterator inherited from the CvSeqReader structure // */ // template class CV_EXPORTS SeqIterator : public CvSeqReader // { // public: // //! the default constructor // SeqIterator(); // //! the constructor setting the iterator to the beginning or to the end of the sequence // SeqIterator(const Seq<_Tp>& seq, bool seekEnd=false); // //! positions the iterator within the sequence // void seek(size_t pos); // //! reports the current iterator position // size_t tell() const; // //! returns reference to the current sequence element // _Tp& operator *(); // //! returns read-only reference to the current sequence element // const _Tp& operator *() const; // //! moves iterator to the next sequence element // SeqIterator& operator ++(); // //! moves iterator to the next sequence element // SeqIterator operator ++(int) const; // //! moves iterator to the previous sequence element // SeqIterator& operator --(); // //! moves iterator to the previous sequence element // SeqIterator operator --(int) const; // // //! moves iterator forward by the specified offset (possibly negative) // SeqIterator& operator +=(int); // //! moves iterator backward by the specified offset (possibly negative) // SeqIterator& operator -=(int); // // // this is index of the current element module seq->total*2 // // (to distinguish between 0 and seq->total) // int index; // }; // // class CV_EXPORTS Algorithm; // class CV_EXPORTS AlgorithmInfo; // struct CV_EXPORTS AlgorithmInfoData; // // template struct ParamType {}; // /// *! // Base class for high-level OpenCV algorithms // */ // class CV_EXPORTS_W Algorithm // { // public: // Algorithm(); // virtual ~Algorithm(); // String name() const; // // template typename ParamType<_Tp>::member_type get(const String& name) const; // template typename ParamType<_Tp>::member_type get(const char* name) const; // // CV_WRAP int getInt(const String& name) const; // CV_WRAP double getDouble(const String& name) const; // CV_WRAP bool getBool(const String& name) const; // CV_WRAP String getString(const String& name) const; // CV_WRAP Mat getMat(const String& name) const; // CV_WRAP std::vector getMatVector(const String& name) const; // CV_WRAP Ptr getAlgorithm(const String& name) const; // // void set(const String& name, int value); // void set(const String& name, double value); // void set(const String& name, bool value); // void set(const String& name, const String& value); // void set(const String& name, const Mat& value); // void set(const String& name, const std::vector& value); // void set(const String& name, const Ptr& value); // template void set(const String& name, const Ptr<_Tp>& value); // // CV_WRAP void setInt(const String& name, int value); // CV_WRAP void setDouble(const String& name, double value); // CV_WRAP void setBool(const String& name, bool value); // CV_WRAP void setString(const String& name, const String& value); // CV_WRAP void setMat(const String& name, const Mat& value); // CV_WRAP void setMatVector(const String& name, const std::vector& value); // CV_WRAP void setAlgorithm(const String& name, const Ptr& value); // template void setAlgorithm(const String& name, const Ptr<_Tp>& value); // // void set(const char* name, int value); // void set(const char* name, double value); // void set(const char* name, bool value); // void set(const char* name, const String& value); // void set(const char* name, const Mat& value); // void set(const char* name, const std::vector& value); // void set(const char* name, const Ptr& value); // template void set(const char* name, const Ptr<_Tp>& value); // // void setInt(const char* name, int value); // void setDouble(const char* name, double value); // void setBool(const char* name, bool value); // void setString(const char* name, const String& value); // void setMat(const char* name, const Mat& value); // void setMatVector(const char* name, const std::vector& value); // void setAlgorithm(const char* name, const Ptr& value); // template void setAlgorithm(const char* name, const Ptr<_Tp>& value); // // CV_WRAP String paramHelp(const String& name) const; // int paramType(const char* name) const; // CV_WRAP int paramType(const String& name) const; // CV_WRAP void getParams(CV_OUT std::vector& names) const; // // // virtual void write(FileStorage& fs) const; // virtual void read(const FileNode& fn); // // typedef Algorithm* (*Constructor)(void); // typedef int (Algorithm::*Getter)() const; // typedef void (Algorithm::*Setter)(int); // // CV_WRAP static void getList(CV_OUT std::vector& algorithms); // CV_WRAP static Ptr _create(const String& name); // template static Ptr<_Tp> create(const String& name); // // virtual AlgorithmInfo* info() const /* TODO: make it = 0;*/ { return 0; } // }; // // // class CV_EXPORTS AlgorithmInfo // { // public: // friend class Algorithm; // AlgorithmInfo(const String& name, Algorithm::Constructor create); // ~AlgorithmInfo(); // void get(const Algorithm* algo, const char* name, int argType, void* value) const; // void addParam_(Algorithm& algo, const char* name, int argType, // void* value, bool readOnly, // Algorithm::Getter getter, Algorithm::Setter setter, // const String& help=String()); // String paramHelp(const char* name) const; // int paramType(const char* name) const; // void getParams(std::vector& names) const; // // void write(const Algorithm* algo, FileStorage& fs) const; // void read(Algorithm* algo, const FileNode& fn) const; // String name() const; // // void addParam(Algorithm& algo, const char* name, // int& value, bool readOnly=false, // int (Algorithm::*getter)()=0, // void (Algorithm::*setter)(int)=0, // const String& help=String()); // void addParam(Algorithm& algo, const char* name, // bool& value, bool readOnly=false, // int (Algorithm::*getter)()=0, // void (Algorithm::*setter)(int)=0, // const String& help=String()); // void addParam(Algorithm& algo, const char* name, // double& value, bool readOnly=false, // double (Algorithm::*getter)()=0, // void (Algorithm::*setter)(double)=0, // const String& help=String()); // void addParam(Algorithm& algo, const char* name, // String& value, bool readOnly=false, // String (Algorithm::*getter)()=0, // void (Algorithm::*setter)(const String&)=0, // const String& help=String()); // void addParam(Algorithm& algo, const char* name, // Mat& value, bool readOnly=false, // Mat (Algorithm::*getter)()=0, // void (Algorithm::*setter)(const Mat&)=0, // const String& help=String()); // void addParam(Algorithm& algo, const char* name, // std::vector& value, bool readOnly=false, // std::vector (Algorithm::*getter)()=0, // void (Algorithm::*setter)(const std::vector&)=0, // const String& help=String()); // void addParam(Algorithm& algo, const char* name, // Ptr& value, bool readOnly=false, // Ptr (Algorithm::*getter)()=0, // void (Algorithm::*setter)(const Ptr&)=0, // const String& help=String()); // void addParam(Algorithm& algo, const char* name, // float& value, bool readOnly=false, // float (Algorithm::*getter)()=0, // void (Algorithm::*setter)(float)=0, // const String& help=String()); // void addParam(Algorithm& algo, const char* name, // unsigned int& value, bool readOnly=false, // unsigned int (Algorithm::*getter)()=0, // void (Algorithm::*setter)(unsigned int)=0, // const String& help=String()); // void addParam(Algorithm& algo, const char* name, // uint64& value, bool readOnly=false, // uint64 (Algorithm::*getter)()=0, // void (Algorithm::*setter)(uint64)=0, // const String& help=String()); // void addParam(Algorithm& algo, const char* name, // uchar& value, bool readOnly=false, // uchar (Algorithm::*getter)()=0, // void (Algorithm::*setter)(uchar)=0, // const String& help=String()); // template void addParam(Algorithm& algo, const char* name, // Ptr<_Tp>& value, bool readOnly=false, // Ptr<_Tp> (Algorithm::*getter)()=0, // void (Algorithm::*setter)(const Ptr<_Tp>&)=0, // const String& help=String()); // template void addParam(Algorithm& algo, const char* name, // Ptr<_Tp>& value, bool readOnly=false, // Ptr<_Tp> (Algorithm::*getter)()=0, // void (Algorithm::*setter)(const Ptr<_Tp>&)=0, // const String& help=String()); // protected: // AlgorithmInfoData* data; // void set(Algorithm* algo, const char* name, int argType, // const void* value, bool force=false) const; // }; // // // struct CV_EXPORTS Param // { // enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7, UNSIGNED_INT=8, UINT64=9, UCHAR=11 }; // // Param(); // Param(int _type, bool _readonly, int _offset, // Algorithm::Getter _getter=0, // Algorithm::Setter _setter=0, // const String& _help=String()); // int type; // int offset; // bool readonly; // Algorithm::Getter getter; // Algorithm::Setter setter; // String help; // }; // // template<> struct ParamType // { // typedef bool const_param_type; // typedef bool member_type; // // enum { type = Param::BOOLEAN }; // }; // // template<> struct ParamType // { // typedef int const_param_type; // typedef int member_type; // // enum { type = Param::INT }; // }; // // template<> struct ParamType // { // typedef double const_param_type; // typedef double member_type; // // enum { type = Param::REAL }; // }; // // template<> struct ParamType // { // typedef const String& const_param_type; // typedef String member_type; // // enum { type = Param::STRING }; // }; // // template<> struct ParamType // { // typedef const Mat& const_param_type; // typedef Mat member_type; // // enum { type = Param::MAT }; // }; // // template<> struct ParamType > // { // typedef const std::vector& const_param_type; // typedef std::vector member_type; // // enum { type = Param::MAT_VECTOR }; // }; // // template<> struct ParamType // { // typedef const Ptr& const_param_type; // typedef Ptr member_type; // // enum { type = Param::ALGORITHM }; // }; // // template<> struct ParamType // { // typedef float const_param_type; // typedef float member_type; // // enum { type = Param::FLOAT }; // }; // // template<> struct ParamType // { // typedef unsigned const_param_type; // typedef unsigned member_type; // // enum { type = Param::UNSIGNED_INT }; // }; // // template<> struct ParamType // { // typedef uint64 const_param_type; // typedef uint64 member_type; // // enum { type = Param::UINT64 }; // }; // // template<> struct ParamType // { // typedef uchar const_param_type; // typedef uchar member_type; // // enum { type = Param::UCHAR }; // }; // // } //namespace cv // // #include "opencv2/core/operations.hpp" // #include "opencv2/core/mat.hpp" // // #include "opencv2/core/cvstd.inl.hpp" // #endif // __cplusplus // // // #endif /*__OPENCV_CORE_HPP__*/ implementation procedure absdiff(src1: pIplImage; src2: pIplImage; dst: pIplImage); begin // arithm_op(src1, src2, dst, noArray(), -1, absdiffTab); end; end.