(* //////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // /// *) Unit ObjDetect; interface Uses core_c, Core.types_c, haar, System.Types, Xml.XMLDoc; (* //****************************************************************************************\ //* Haar-like Object Detection functions * //****************************************************************************************/ *) Const CV_HAAR_MAGIC_VAL = $42500000; CV_TYPE_NAME_HAAR = 'opencv-haar-classifier'; // #define CV_IS_HAAR_CLASSIFIER( haar ) \ // ((haar) != NULL && \ // (((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL) type THaarFeature = record r: TCvRect; weight: Single; end; pCvHaarFeature = ^TCvHaarFeature; TCvHaarFeature = packed record tilted: Integer; rect: array [0 .. CV_HAAR_FEATURE_MAX - 1] of THaarFeature; end; pCvHaarClassifier = ^TCvHaarClassifier; TCvHaarClassifier = packed record count: Integer; haar_feature: pCvHaarFeature; threshold: pSingle; left: pInteger; right: pInteger; alpha: pSingle; end; pCvHaarStageClassifier = ^TCvHaarStageClassifier; TCvHaarStageClassifier = packed record count: Integer; threshold: Single; classifier: pCvHaarClassifier; next: Integer; child: Integer; parent: Integer; end; // TCvHidHaarClassifierCascade = TCvHidHaarClassifierCascade; pCvHidHaarClassifierCascade = ^TCvHidHaarClassifierCascade; pCvHaarClassifierCascade = ^TCvHaarClassifierCascade; TCvHaarClassifierCascade = packed record flags: Integer; count: Integer; orig_window_size: TCvSize; real_window_size: TCvSize; scale: Real; stage_classifier: pCvHaarStageClassifier; hid_cascade: pCvHidHaarClassifierCascade; end; TCvAvgComp = packed record rect: TCvRect; neighbors: Integer; end; { // Loads haar classifier cascade from a directory. // It is obsolete: convert your cascade to xml and use cvLoad instead CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade( const char* directory, CvSize orig_window_size); } function cvLoadHaarClassifierCascade(const directory: pCVChar; orig_window_size: TCvSize) : pCvHaarClassifierCascade; cdecl; // CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade ); procedure cvReleaseHaarClassifierCascade(Var cascade: pCvHaarClassifierCascade); cdecl; Const CV_HAAR_DO_CANNY_PRUNING = 1; CV_HAAR_SCALE_IMAGE = 2; CV_HAAR_FIND_BIGGEST_OBJECT = 4; CV_HAAR_DO_ROUGH_SEARCH = 8; // CVAPI(CvSeq*) cvHaarDetectObjectsForROC( const CvArr* image, // CvHaarClassifierCascade* cascade, CvMemStorage* storage, // CvSeq** rejectLevels, CvSeq** levelWeightds, // double scale_factor CV_DEFAULT(1.1), // int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0), // CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)), // bool outputRejectLevels = false ); { CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image, CvHaarClassifierCascade* cascade, CvMemStorage* storage, double scale_factor CV_DEFAULT(1.1), int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0), CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0))); } function cvHaarDetectObjects( { } const image: pIplImage; { } cascade: pCvHaarClassifierCascade; { } storage: pCvMemStorage; { } scale_factor: double { =1.1 }; { } min_neighbors: Integer { =3 }; { } flags: Integer { = 0 }; { } min_size: TCvSize { =CV_DEFAULT(cvSize(0,0)) }; { } max_size: TCvSize { =CV_DEFAULT(cvSize(0,0)) } ): pCvSeq; cdecl; { /* sets images for haar classifier cascade */ CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade, const CvArr* sum, const CvArr* sqsum, const CvArr* tilted_sum, double scale ); } procedure cvSetImagesForHaarClassifierCascade( { } cascade: pCvHaarClassifierCascade; { } const sum: pCvArr; { } const sqsum: pCvArr; { } const tilted_sum: pCvArr; { } scale: double); cdecl; // /// * runs the cascade on the specified window */ // CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade, // CvPoint pt, int start_stage CV_DEFAULT(0)); // // /// ****************************************************************************************\ // * Latent SVM Object Detection functions * // \****************************************************************************************/ // /// / DataType: STRUCT position /// / Structure describes the position of the filter in the feature pyramid /// / l - level in the feature pyramid /// / (x, y) - coordinate in level l // typedef struct CvLSVMFilterPosition // { // int x; // int y; // int l; // } CvLSVMFilterPosition; // /// / DataType: STRUCT filterObject /// / Description of the filter, which corresponds to the part of the object /// / V - ideal (penalty = 0) position of the partial filter /// / from the root filter position (V_i in the paper) /// / penaltyFunction - vector describes penalty function (d_i in the paper) /// / pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2 /// / FILTER DESCRIPTION /// / Rectangular map (sizeX x sizeY), /// / every cell stores feature vector (dimension = p) /// / H - matrix of feature vectors /// / to set and get feature vectors (i,j) /// / used formula H[(j * sizeX + i) * p + k], where /// / k - component of feature vector in cell (i, j) /// / END OF FILTER DESCRIPTION // typedef struct CvLSVMFilterObject{ // CvLSVMFilterPosition V; // float fineFunction[4]; // int sizeX; // int sizeY; // int numFeatures; // float *H; // } CvLSVMFilterObject; // /// / data type: STRUCT CvLatentSvmDetector /// / structure contains internal representation of trained Latent SVM detector /// / num_filters - total number of filters (root plus part) in model /// / num_components - number of components in model /// / num_part_filters - array containing number of part filters for each component /// / filters - root and part filters for all model components /// / b - biases for all model components /// / score_threshold - confidence level threshold // typedef struct CvLatentSvmDetector // { // int num_filters; // int num_components; // int* num_part_filters; // CvLSVMFilterObject** filters; // float* b; // float score_threshold; // } // CvLatentSvmDetector; // /// / data type: STRUCT CvObjectDetection /// / structure contains the bounding box and confidence level for detected object /// / rect - bounding box for a detected object /// / score - confidence level // typedef struct CvObjectDetection // { // CvRect rect; // float score; // } CvObjectDetection; // /// /////////////// Object Detection using Latent SVM ////////////// // // /// * /// / load trained detector from a file /// / /// / API /// / CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename); /// / INPUT /// / filename - path to the file containing the parameters of // - trained Latent SVM detector /// / OUTPUT /// / trained Latent SVM detector in internal representation // */ // CVAPI(CvLatentSvmDetector*) cvLoadLatentSvmDetector(const char* filename); // /// * /// / release memory allocated for CvLatentSvmDetector structure /// / /// / API /// / void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector); /// / INPUT /// / detector - CvLatentSvmDetector structure to be released /// / OUTPUT // */ // CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector); // /// * /// / find rectangular regions in the given image that are likely /// / to contain objects and corresponding confidence levels /// / /// / API /// / CvSeq* cvLatentSvmDetectObjects(const IplImage* image, /// / CvLatentSvmDetector* detector, /// / CvMemStorage* storage, /// / float overlap_threshold = 0.5f, /// / int numThreads = -1); /// / INPUT /// / image - image to detect objects in /// / detector - Latent SVM detector in internal representation /// / storage - memory storage to store the resultant sequence /// / of the object candidate rectangles /// / overlap_threshold - threshold for the non-maximum suppression algorithm // = 0.5f [here will be the reference to original paper] /// / OUTPUT /// / sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures) // */ // CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image, // CvLatentSvmDetector* detector, // CvMemStorage* storage, // float overlap_threshold CV_DEFAULT(0.5f), // int numThreads CV_DEFAULT(-1)); // // #ifdef __cplusplus // } // // CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image, // CvHaarClassifierCascade* cascade, CvMemStorage* storage, // std::vector& rejectLevels, std::vector& levelWeightds, // double scale_factor CV_DEFAULT(1.1), // int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0), // CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)), // bool outputRejectLevels = false ); // // namespace cv // { // /// //////////////////////////// Object Detection //////////////////////////// // /// * // * This is a class wrapping up the structure CvLatentSvmDetector and functions working with it. // * The class goals are: // * 1) provide c++ interface; // * 2) make it possible to load and detect more than one class (model) unlike CvLatentSvmDetector. // */ // class CV_EXPORTS LatentSvmDetector // { // public: // struct CV_EXPORTS ObjectDetection // { // ObjectDetection(); // ObjectDetection( const Rect& rect, float score, int classID=-1 ); // Rect rect; // float score; // int classID; // }; // // LatentSvmDetector(); // LatentSvmDetector( const std::vector& filenames, const std::vector& classNames=std::vector() ); // virtual ~LatentSvmDetector(); // // virtual void clear(); // virtual bool empty() const; // bool load( const std::vector& filenames, const std::vector& classNames=std::vector() ); // // virtual void detect( const Mat& image, // std::vector& objectDetections, // float overlapThreshold=0.5f, // int numThreads=-1 ); // // const std::vector& getClassNames() const; // size_t getClassCount() const; // // private: // std::vector detectors; // std::vector classNames; // }; // // CV_EXPORTS void groupRectangles(CV_OUT CV_IN_OUT std::vector& rectList, int groupThreshold, double eps=0.2); // CV_EXPORTS_W void groupRectangles(CV_OUT CV_IN_OUT std::vector& rectList, CV_OUT std::vector& weights, int groupThreshold, double eps=0.2); // CV_EXPORTS void groupRectangles( std::vector& rectList, int groupThreshold, double eps, std::vector* weights, std::vector* levelWeights ); // CV_EXPORTS void groupRectangles(std::vector& rectList, std::vector& rejectLevels, // std::vector& levelWeights, int groupThreshold, double eps=0.2); // CV_EXPORTS void groupRectangles_meanshift(std::vector& rectList, std::vector& foundWeights, std::vector& foundScales, // double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); // // // class CV_EXPORTS FeatureEvaluator // { // public: // enum { HAAR = 0, LBP = 1, HOG = 2 }; // virtual ~FeatureEvaluator(); // // virtual bool read(const FileNode& node); // virtual Ptr clone() const; // virtual int getFeatureType() const; // // virtual bool setImage(const Mat& img, Size origWinSize); // virtual bool setWindow(Point p); // // virtual double calcOrd(int featureIdx) const; // virtual int calcCat(int featureIdx) const; // // static Ptr create(int type); // }; // // template<> CV_EXPORTS void Ptr::delete_obj(); // // enum // { // CASCADE_DO_CANNY_PRUNING=1, // CASCADE_SCALE_IMAGE=2, // CASCADE_FIND_BIGGEST_OBJECT=4, // CASCADE_DO_ROUGH_SEARCH=8 // }; // Type TCascadeClassifier = class public // CV_WRAP CascadeClassifier(); constructor Create; overload; // CV_WRAP CascadeClassifier( const String& filename ); constructor Create(const filename: String); overload; // virtual ~CascadeClassifier(); destructor Destroy; override; // CV_WRAP virtual bool empty() const; function Empty: Boolean; virtual; // CV_WRAP bool load( const String& filename ); function Load(const filename: String): Boolean; // virtual bool read( const FileNode& node ); function Read(const node: TXMLNode): Boolean; virtual; // CV_WRAP virtual void detectMultiScale( const Mat& image, // CV_OUT std::vector& objects, // double scaleFactor=1.1, // int minNeighbors=3, int flags=0, // Size minSize=Size(), // Size maxSize=Size() ); procedure detectMultiScale( { } const image: pIplImage; { } const objects: TArray; { } scaleFactor: double { =1.1 }; { } minNeighbors: Integer { =3 }; { } flags: Integer { =0 }; { } minSize: TCvSize { =Size() }; { } maxSize: TCvSize { =Size() } ); overload; // CV_WRAP virtual void detectMultiScale( const Mat& image, // CV_OUT std::vector& objects, // std::vector& rejectLevels, // std::vector& levelWeights, // double scaleFactor=1.1, // int minNeighbors=3, int flags=0, // Size minSize=Size(), // Size maxSize=Size(), // bool outputRejectLevels=false ); procedure detectMultiScale( { } const image: pIplImage; { } const objects: TArray; { } const rejectLevels: TArray; { } const levelWeights: TArray; { } scaleFactor: double { =1.1 }; { } minNeighbors: Integer { =3 }; { } flags: Integer { =0 }; { } minSize: TCvSize { =Size() }; { } maxSize: TCvSize { =Size() }; { } outputRejectLevels: Boolean { =false } ); overload; // bool isOldFormatCascade() const; function isOldFormatCascade: Boolean; // virtual Size getOriginalWindowSize() const; function getOriginalWindowSize: TCvSize; virtual; // int getFeatureType() const; function getFeatureType: Integer; // bool setImage( const Mat& ); function setImage(const image: pIplImage):Boolean; protected // virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize, // int stripSize, int yStep, double factor, std::vector& candidates, // std::vector& rejectLevels, std::vector& levelWeights, bool outputRejectLevels=false); function detectSingleScale(const image: pIplImage; stripCount: Integer; processingRectSize: TCvSize; stripSize: Integer; yStep: Integer; factor: double; candidates: TArray; rejectLevels: TArray; levelWeights: TArray; outputRejectLevels: Boolean = false): Boolean; virtual; const BOOST = 0; DO_CANNY_PRUNING = 1; SCALE_IMAGE = 2; FIND_BIGGEST_OBJECT = 4; DO_ROUGH_SEARCH = 8; end; // friend class CascadeClassifierInvoker; // // template // friend int predictOrdered( CascadeClassifier& cascade, Ptr &featureEvaluator, double& weight); // // template // friend int predictCategorical( CascadeClassifier& cascade, Ptr &featureEvaluator, double& weight); // // template // friend int predictOrderedStump( CascadeClassifier& cascade, Ptr &featureEvaluator, double& weight); // // template // friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr &featureEvaluator, double& weight); // // bool setImage( Ptr& feval, const Mat& image); // virtual int runAt( Ptr& feval, Point pt, double& weight ); // // class Data // { // public: // struct CV_EXPORTS DTreeNode // { // int featureIdx; // float threshold; // for ordered features only // int left; // int right; // }; // // struct CV_EXPORTS DTree // { // int nodeCount; // }; // // struct CV_EXPORTS Stage // { // int first; // int ntrees; // float threshold; // }; // // bool read(const FileNode &node); // // bool isStumpBased; // // int stageType; // int featureType; // int ncategories; // Size origWinSize; // // std::vector stages; // std::vector classifiers; // std::vector nodes; // std::vector leaves; // std::vector subsets; // }; // // Data data; // Ptr featureEvaluator; // Ptr oldCascade; // // public: // class CV_EXPORTS MaskGenerator // { // public: // virtual ~MaskGenerator() {} // virtual cv::Mat generateMask(const cv::Mat& src)=0; // virtual void initializeMask(const cv::Mat& /*src*/) {}; // }; // void setMaskGenerator(Ptr maskGenerator); // Ptr getMaskGenerator(); // // void setFaceDetectionMaskGenerator(); // // protected: // Ptr maskGenerator; // }; // /// /////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// // /// / struct for detection region of interest (ROI) // struct DetectionROI // { // // scale(size) of the bounding box // double scale; // // set of requrested locations to be evaluated // std::vector locations; // // vector that will contain confidence values for each location // std::vector confidences; // }; // // struct CV_EXPORTS_W HOGDescriptor // { // public: // enum { L2Hys=0 }; // enum { DEFAULT_NLEVELS=64 }; // // CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), // cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), // histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), // nlevels(HOGDescriptor::DEFAULT_NLEVELS) // {} // // CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, // Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, // int _histogramNormType=HOGDescriptor::L2Hys, // double _L2HysThreshold=0.2, bool _gammaCorrection=false, // int _nlevels=HOGDescriptor::DEFAULT_NLEVELS) // : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), // nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), // histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), // gammaCorrection(_gammaCorrection), nlevels(_nlevels) // {} // // CV_WRAP HOGDescriptor(const String& filename) // { // load(filename); // } // // HOGDescriptor(const HOGDescriptor& d) // { // d.copyTo(*this); // } // // virtual ~HOGDescriptor() {} // // CV_WRAP size_t getDescriptorSize() const; // CV_WRAP bool checkDetectorSize() const; // CV_WRAP double getWinSigma() const; // // CV_WRAP virtual void setSVMDetector(InputArray _svmdetector); // // virtual bool read(FileNode& fn); // virtual void write(FileStorage& fs, const String& objname) const; // // CV_WRAP virtual bool load(const String& filename, const String& objname=String()); // CV_WRAP virtual void save(const String& filename, const String& objname=String()) const; // virtual void copyTo(HOGDescriptor& c) const; // // CV_WRAP virtual void compute(const Mat& img, // CV_OUT std::vector& descriptors, // Size winStride=Size(), Size padding=Size(), // const std::vector& locations=std::vector()) const; // //with found weights output // CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector& foundLocations, // CV_OUT std::vector& weights, // double hitThreshold=0, Size winStride=Size(), // Size padding=Size(), // const std::vector& searchLocations=std::vector()) const; // //without found weights output // virtual void detect(const Mat& img, CV_OUT std::vector& foundLocations, // double hitThreshold=0, Size winStride=Size(), // Size padding=Size(), // const std::vector& searchLocations=std::vector()) const; // //with result weights output // CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT std::vector& foundLocations, // CV_OUT std::vector& foundWeights, double hitThreshold=0, // Size winStride=Size(), Size padding=Size(), double scale=1.05, // double finalThreshold=2.0,bool useMeanshiftGrouping = false) const; // //without found weights output // virtual void detectMultiScale(const Mat& img, CV_OUT std::vector& foundLocations, // double hitThreshold=0, Size winStride=Size(), // Size padding=Size(), double scale=1.05, // double finalThreshold=2.0, bool useMeanshiftGrouping = false) const; // // CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs, // Size paddingTL=Size(), Size paddingBR=Size()) const; // // CV_WRAP static std::vector getDefaultPeopleDetector(); // CV_WRAP static std::vector getDaimlerPeopleDetector(); // // CV_PROP Size winSize; // CV_PROP Size blockSize; // CV_PROP Size blockStride; // CV_PROP Size cellSize; // CV_PROP int nbins; // CV_PROP int derivAperture; // CV_PROP double winSigma; // CV_PROP int histogramNormType; // CV_PROP double L2HysThreshold; // CV_PROP bool gammaCorrection; // CV_PROP std::vector svmDetector; // CV_PROP int nlevels; // // // // evaluate specified ROI and return confidence value for each location // virtual void detectROI(const cv::Mat& img, const std::vector &locations, // CV_OUT std::vector& foundLocations, CV_OUT std::vector& confidences, // double hitThreshold = 0, cv::Size winStride = Size(), // cv::Size padding = Size()) const; // // // evaluate specified ROI and return confidence value for each location in multiple scales // virtual void detectMultiScaleROI(const cv::Mat& img, // CV_OUT std::vector& foundLocations, // std::vector& locations, // double hitThreshold = 0, // int groupThreshold = 0) const; // // // read/parse Dalal's alt model file // void readALTModel(String modelfile); // }; // // // CV_EXPORTS_W void findDataMatrix(InputArray image, // CV_OUT std::vector& codes, // OutputArray corners=noArray(), // OutputArrayOfArrays dmtx=noArray()); // CV_EXPORTS_W void drawDataMatrixCodes(InputOutputArray image, // const std::vector& codes, // InputArray corners); // } // /// ****************************************************************************************\ // * Datamatrix * // \****************************************************************************************/ // // struct CV_EXPORTS CvDataMatrixCode { // char msg[4]; // CvMat *original; // CvMat *corners; // }; // // CV_EXPORTS std::deque cvFindDataMatrix(CvMat *im); // /// ****************************************************************************************\ // * LINE-MOD * // \****************************************************************************************/ // // namespace cv { // namespace linemod { // /// // @todo Convert doxy comments to rst // /// ** // * \brief Discriminant feature described by its location and label. // */ // struct CV_EXPORTS Feature // { // int x; ///< x offset // int y; ///< y offset // int label; ///< Quantization // // Feature() : x(0), y(0), label(0) {} // Feature(int x, int y, int label); // // void read(const FileNode& fn); // void write(FileStorage& fs) const; // }; // // inline Feature::Feature(int _x, int _y, int _label) : x(_x), y(_y), label(_label) {} // // struct CV_EXPORTS Template // { // int width; // int height; // int pyramid_level; // std::vector features; // // void read(const FileNode& fn); // void write(FileStorage& fs) const; // }; // /// ** // * \brief Represents a modality operating over an image pyramid. // */ // class QuantizedPyramid // { // public: // // Virtual destructor // virtual ~QuantizedPyramid() {} // // /** // * \brief Compute quantized image at current pyramid level for online detection. // * // * \param[out] dst The destination 8-bit image. For each pixel at most one bit is set, // * representing its classification. // */ // virtual void quantize(Mat& dst) const =0; // // /** // * \brief Extract most discriminant features at current pyramid level to form a new template. // * // * \param[out] templ The new template. // */ // virtual bool extractTemplate(Template& templ) const =0; // // /** // * \brief Go to the next pyramid level. // * // * \todo Allow pyramid scale factor other than 2 // */ // virtual void pyrDown() =0; // // protected: // /// Candidate feature with a score // struct Candidate // { // Candidate(int x, int y, int label, float score); // // /// Sort candidates with high score to the front // bool operator<(const Candidate& rhs) const // { // return score > rhs.score; // } // // Feature f; // float score; // }; // // /** // * \brief Choose candidate features so that they are not bunched together. // * // * \param[in] candidates Candidate features sorted by score. // * \param[out] features Destination vector of selected features. // * \param[in] num_features Number of candidates to select. // * \param[in] distance Hint for desired distance between features. // */ // static void selectScatteredFeatures(const std::vector& candidates, // std::vector& features, // size_t num_features, float distance); // }; // // inline QuantizedPyramid::Candidate::Candidate(int x, int y, int label, float _score) : f(x, y, label), score(_score) {} // /// ** // * \brief Interface for modalities that plug into the LINE template matching representation. // * // * \todo Max response, to allow optimization of summing (255/MAX) features as uint8 // */ // class CV_EXPORTS Modality // { // public: // // Virtual destructor // virtual ~Modality() {} // // /** // * \brief Form a quantized image pyramid from a source image. // * // * \param[in] src The source image. Type depends on the modality. // * \param[in] mask Optional mask. If not empty, unmasked pixels are set to zero // * in quantized image and cannot be extracted as features. // */ // Ptr process(const Mat& src, // const Mat& mask = Mat()) const // { // return processImpl(src, mask); // } // // virtual String name() const =0; // // virtual void read(const FileNode& fn) =0; // virtual void write(FileStorage& fs) const =0; // // /** // * \brief Create modality by name. // * // * The following modality types are supported: // * - "ColorGradient" // * - "DepthNormal" // */ // static Ptr create(const String& modality_type); // // /** // * \brief Load a modality from file. // */ // static Ptr create(const FileNode& fn); // // protected: // // Indirection is because process() has a default parameter. // virtual Ptr processImpl(const Mat& src, // const Mat& mask) const =0; // }; // /// ** // * \brief Modality that computes quantized gradient orientations from a color image. // */ // class CV_EXPORTS ColorGradient : public Modality // { // public: // /** // * \brief Default constructor. Uses reasonable default parameter values. // */ // ColorGradient(); // // /** // * \brief Constructor. // * // * \param weak_threshold When quantizing, discard gradients with magnitude less than this. // * \param num_features How many features a template must contain. // * \param strong_threshold Consider as candidate features only gradients whose norms are // * larger than this. // */ // ColorGradient(float weak_threshold, size_t num_features, float strong_threshold); // // virtual String name() const; // // virtual void read(const FileNode& fn); // virtual void write(FileStorage& fs) const; // // float weak_threshold; // size_t num_features; // float strong_threshold; // // protected: // virtual Ptr processImpl(const Mat& src, // const Mat& mask) const; // }; // /// ** // * \brief Modality that computes quantized surface normals from a dense depth map. // */ // class CV_EXPORTS DepthNormal : public Modality // { // public: // /** // * \brief Default constructor. Uses reasonable default parameter values. // */ // DepthNormal(); // // /** // * \brief Constructor. // * // * \param distance_threshold Ignore pixels beyond this distance. // * \param difference_threshold When computing normals, ignore contributions of pixels whose // * depth difference with the central pixel is above this threshold. // * \param num_features How many features a template must contain. // * \param extract_threshold Consider as candidate feature only if there are no differing // * orientations within a distance of extract_threshold. // */ // DepthNormal(int distance_threshold, int difference_threshold, size_t num_features, // int extract_threshold); // // virtual String name() const; // // virtual void read(const FileNode& fn); // virtual void write(FileStorage& fs) const; // // int distance_threshold; // int difference_threshold; // size_t num_features; // int extract_threshold; // // protected: // virtual Ptr processImpl(const Mat& src, // const Mat& mask) const; // }; // /// ** // * \brief Debug function to colormap a quantized image for viewing. // */ // void colormap(const Mat& quantized, Mat& dst); // /// ** // * \brief Represents a successful template match. // */ // struct CV_EXPORTS Match // { // Match() // { // } // // Match(int x, int y, float similarity, const String& class_id, int template_id); // // /// Sort matches with high similarity to the front // bool operator<(const Match& rhs) const // { // // Secondarily sort on template_id for the sake of duplicate removal // if (similarity != rhs.similarity) // return similarity > rhs.similarity; // else // return template_id < rhs.template_id; // } // // bool operator==(const Match& rhs) const // { // return x == rhs.x && y == rhs.y && similarity == rhs.similarity && class_id == rhs.class_id; // } // // int x; // int y; // float similarity; // String class_id; // int template_id; // }; // // inline Match::Match(int _x, int _y, float _similarity, const String& _class_id, int _template_id) // : x(_x), y(_y), similarity(_similarity), class_id(_class_id), template_id(_template_id) // { // } // /// ** // * \brief Object detector using the LINE template matching algorithm with any set of // * modalities. // */ // class CV_EXPORTS Detector // { // public: // /** // * \brief Empty constructor, initialize with read(). // */ // Detector(); // // /** // * \brief Constructor. // * // * \param modalities Modalities to use (color gradients, depth normals, ...). // * \param T_pyramid Value of the sampling step T at each pyramid level. The // * number of pyramid levels is T_pyramid.size(). // */ // Detector(const std::vector< Ptr >& modalities, const std::vector& T_pyramid); // // /** // * \brief Detect objects by template matching. // * // * Matches globally at the lowest pyramid level, then refines locally stepping up the pyramid. // * // * \param sources Source images, one for each modality. // * \param threshold Similarity threshold, a percentage between 0 and 100. // * \param[out] matches Template matches, sorted by similarity score. // * \param class_ids If non-empty, only search for the desired object classes. // * \param[out] quantized_images Optionally return vector of quantized images. // * \param masks The masks for consideration during matching. The masks should be CV_8UC1 // * where 255 represents a valid pixel. If non-empty, the vector must be // * the same size as sources. Each element must be // * empty or the same size as its corresponding source. // */ // void match(const std::vector& sources, float threshold, std::vector& matches, // const std::vector& class_ids = std::vector(), // OutputArrayOfArrays quantized_images = noArray(), // const std::vector& masks = std::vector()) const; // // /** // * \brief Add new object template. // * // * \param sources Source images, one for each modality. // * \param class_id Object class ID. // * \param object_mask Mask separating object from background. // * \param[out] bounding_box Optionally return bounding box of the extracted features. // * // * \return Template ID, or -1 if failed to extract a valid template. // */ // int addTemplate(const std::vector& sources, const String& class_id, // const Mat& object_mask, Rect* bounding_box = NULL); // // /** // * \brief Add a new object template computed by external means. // */ // int addSyntheticTemplate(const std::vector