mirror of
https://github.com/Laex/Delphi-OpenCV.git
synced 2024-11-15 07:45:53 +01:00
7edf1d9684
Signed-off-by: Laentir Valetov <laex@bk.ru>
10931 lines
350 KiB
XML
10931 lines
350 KiB
XML
<?xml version="1.0"?>
|
|
<!--
|
|
45x11 Eye pair detector computed with 7000 positive samples
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
| Contributors License Agreement
|
|
| IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
| By downloading, copying, installing or using the software you agree
|
|
| to this license.
|
|
| If you do not agree to this license, do not download, install,
|
|
| copy or use the software.
|
|
|
|
|
| Copyright (c) 2006, Modesto Castrillon-Santana (IUSIANI, University of
|
|
| Las Palmas de Gran Canaria, Spain).
|
|
| All rights reserved.
|
|
|
|
|
| Redistribution and use in source and binary forms, with or without
|
|
| modification, are permitted provided that the following conditions are
|
|
| met:
|
|
|
|
|
| * Redistributions of source code must retain the above copyright
|
|
| notice, this list of conditions and the following disclaimer.
|
|
| * Redistributions in binary form must reproduce the above
|
|
| copyright notice, this list of conditions and the following
|
|
| disclaimer in the documentation and/or other materials provided
|
|
| with the distribution.
|
|
| * The name of Contributor may not used to endorse or promote products
|
|
| derived from this software without specific prior written permission.
|
|
|
|
|
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
| CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
| PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
| LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
| NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to
|
|
| Top
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
RESEARCH USE:
|
|
If you are using any of the detectors or involved ideas please cite one of these papers:
|
|
|
|
@ARTICLE{Castrillon07-jvci,
|
|
author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Tejera, M. and Guerra Artal, C.",
|
|
title = "ENCARA2: Real-time Detection of Multiple Faces at Different Resolutions in Video Streams",
|
|
journal = "Journal of Visual Communication and Image Representation",
|
|
year = "2007",
|
|
vol = "18",
|
|
issue = "2",
|
|
month = "April",
|
|
pages = "130-140"
|
|
}
|
|
|
|
@INPROCEEDINGS{Castrillon07-swb,
|
|
author = "Castrill\'on Santana, M. and D\'eniz Su\'arez, O. and Hern\'andez Sosa, D. and Lorenzo Navarro, J. ",
|
|
title = "Using Incremental Principal Component Analysis to Learn a Gender Classifier Automatically",
|
|
booktitle = "1st Spanish Workshop on Biometrics",
|
|
year = "2007",
|
|
month = "June",
|
|
address = "Girona, Spain",
|
|
file = F
|
|
}
|
|
|
|
A comparison of this and other face related classifiers can be found in:
|
|
|
|
@InProceedings{Castrillon08a-visapp,
|
|
'athor = "Modesto Castrill\'on-Santana and O. D\'eniz-Su\'arez, L. Ant\'on-Canal\'{\i}s and J. Lorenzo-Navarro",
|
|
title = "Face and Facial Feature Detection Evaluation"
|
|
booktitle = "Third International Conference on Computer Vision Theory and Applications, VISAPP08"
|
|
year = "2008",
|
|
month = "January"
|
|
}
|
|
|
|
|
|
More information can be found at http://mozart.dis.ulpgc.es/Gias/modesto_eng.html or in the papers.
|
|
|
|
COMMERCIAL USE:
|
|
If you have any commercial interest in this work please contact
|
|
mcastrillon@iusiani.ulpgc.es
|
|
-->
|
|
<opencv_storage>
|
|
<parojos_7000pos_15000neg_45x11 type_id="opencv-haar-classifier">
|
|
<size>
|
|
45 11</size>
|
|
<stages>
|
|
<_>
|
|
<!-- stage 0 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 30 3 -1.</_>
|
|
<_>
|
|
17 3 10 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1012997999787331</threshold>
|
|
<left_val>-0.7954636812210083</left_val>
|
|
<right_val>0.7811083793640137</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 5 11 6 -1.</_>
|
|
<_>
|
|
34 8 11 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0312121100723743</threshold>
|
|
<left_val>-0.7282348275184631</left_val>
|
|
<right_val>0.6224442720413208</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 6 9 -1.</_>
|
|
<_>
|
|
8 4 2 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0549067892134190</threshold>
|
|
<left_val>0.6679443120956421</left_val>
|
|
<right_val>-0.6076071262359619</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 15 11 -1.</_>
|
|
<_>
|
|
20 0 5 11 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1310410946607590</threshold>
|
|
<left_val>-0.4881607890129089</left_val>
|
|
<right_val>0.6749575734138489</right_val></_></_></trees>
|
|
<stage_threshold>-1.4563479423522949</stage_threshold>
|
|
<parent>-1</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 1 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 30 3 -1.</_>
|
|
<_>
|
|
17 3 10 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1507283002138138</threshold>
|
|
<left_val>-0.6390901207923889</left_val>
|
|
<right_val>0.8053625822067261</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 5 11 6 -1.</_>
|
|
<_>
|
|
34 8 11 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0228874403983355</threshold>
|
|
<left_val>-0.7231366038322449</left_val>
|
|
<right_val>0.3992983996868134</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 5 11 6 -1.</_>
|
|
<_>
|
|
0 8 11 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0276746600866318</threshold>
|
|
<left_val>-0.7064399719238281</left_val>
|
|
<right_val>0.4885388016700745</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 0 6 11 -1.</_>
|
|
<_>
|
|
22 0 3 11 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0318998582661152</threshold>
|
|
<left_val>-0.4218417108058929</left_val>
|
|
<right_val>0.5392153263092041</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 6 11 -1.</_>
|
|
<_>
|
|
20 0 3 11 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0369728282094002</threshold>
|
|
<left_val>-0.4240063130855560</left_val>
|
|
<right_val>0.5681108236312866</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 0 1 9 -1.</_>
|
|
<_>
|
|
36 3 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0167110897600651</threshold>
|
|
<left_val>0.4617055952548981</left_val>
|
|
<right_val>-0.4238983988761902</right_val></_></_></trees>
|
|
<stage_threshold>-1.4917520284652710</stage_threshold>
|
|
<parent>0</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 2 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 27 6 -1.</_>
|
|
<_>
|
|
18 0 9 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2120860069990158</threshold>
|
|
<left_val>-0.6502287983894348</left_val>
|
|
<right_val>0.5993312001228333</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 0 1 9 -1.</_>
|
|
<_>
|
|
36 3 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0227453205734491</threshold>
|
|
<left_val>0.5193532109260559</left_val>
|
|
<right_val>-0.4416399896144867</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 4 8 -1.</_>
|
|
<_>
|
|
7 7 4 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0215619597584009</threshold>
|
|
<left_val>-0.6439520120620728</left_val>
|
|
<right_val>0.5154399871826172</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 2 12 8 -1.</_>
|
|
<_>
|
|
21 2 4 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0875263586640358</threshold>
|
|
<left_val>-0.3723556995391846</left_val>
|
|
<right_val>0.4822827875614166</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 7 5 4 -1.</_>
|
|
<_>
|
|
1 9 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.7132370267063379e-003</threshold>
|
|
<left_val>-0.6259062886238098</left_val>
|
|
<right_val>0.3193156123161316</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 1 9 9 -1.</_>
|
|
<_>
|
|
34 4 3 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1218293979763985</threshold>
|
|
<left_val>0.4427149891853333</left_val>
|
|
<right_val>-0.2849208116531372</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 8 4 -1.</_>
|
|
<_>
|
|
2 3 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0165680497884750</threshold>
|
|
<left_val>0.4386225938796997</left_val>
|
|
<right_val>-0.3060705065727234</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 2 12 9 -1.</_>
|
|
<_>
|
|
22 2 4 9 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0805537775158882</threshold>
|
|
<left_val>0.6011540293693543</left_val>
|
|
<right_val>-0.0198485106229782</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 12 9 -1.</_>
|
|
<_>
|
|
19 2 4 9 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0945484191179276</threshold>
|
|
<left_val>-0.2503345906734467</left_val>
|
|
<right_val>0.4800544977188110</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 4 9 3 -1.</_>
|
|
<_>
|
|
34 4 3 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.6633229404687881e-003</threshold>
|
|
<left_val>0.2112565934658051</left_val>
|
|
<right_val>-0.2550820112228394</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 9 4 2 -1.</_>
|
|
<_>
|
|
20 9 2 1 2.</_>
|
|
<_>
|
|
22 10 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.7194730462506413e-003</threshold>
|
|
<left_val>-0.7437624931335449</left_val>
|
|
<right_val>0.1356191039085388</right_val></_></_></trees>
|
|
<stage_threshold>-1.6821570396423340</stage_threshold>
|
|
<parent>1</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 3 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 24 9 -1.</_>
|
|
<_>
|
|
8 3 8 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2984513044357300</threshold>
|
|
<left_val>0.5768417119979858</left_val>
|
|
<right_val>-0.5636575222015381</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 36 4 -1.</_>
|
|
<_>
|
|
16 3 18 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0848317891359329</threshold>
|
|
<left_val>-0.4878582060337067</left_val>
|
|
<right_val>0.3023360073566437</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 5 4 2 -1.</_>
|
|
<_>
|
|
11 5 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.8235268332064152e-003</threshold>
|
|
<left_val>-0.4168018996715546</left_val>
|
|
<right_val>0.5473024249076843</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 0 6 10 -1.</_>
|
|
<_>
|
|
22 0 3 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0247961003333330</threshold>
|
|
<left_val>-0.4074968099594116</left_val>
|
|
<right_val>0.2987192869186401</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 5 6 6 -1.</_>
|
|
<_>
|
|
0 8 6 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.8466311097145081e-003</threshold>
|
|
<left_val>-0.6626297235488892</left_val>
|
|
<right_val>0.3087947070598602</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 8 11 -1.</_>
|
|
<_>
|
|
21 0 4 11 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0881724432110786</threshold>
|
|
<left_val>-0.1964032948017120</left_val>
|
|
<right_val>0.1787654012441635</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 3 42 8 -1.</_>
|
|
<_>
|
|
1 3 21 4 2.</_>
|
|
<_>
|
|
22 7 21 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.7136192228645086e-004</threshold>
|
|
<left_val>-0.4565294086933136</left_val>
|
|
<right_val>0.4721651077270508</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 0 8 3 -1.</_>
|
|
<_>
|
|
26 2 4 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.8130059187533334e-005</threshold>
|
|
<left_val>0.0189487598836422</left_val>
|
|
<right_val>-0.2790096104145050</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 3 8 -1.</_>
|
|
<_>
|
|
19 2 3 4 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-7.0680370554327965e-003</threshold>
|
|
<left_val>0.4315592050552368</left_val>
|
|
<right_val>-0.5228719115257263</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 3 2 8 -1.</_>
|
|
<_>
|
|
35 7 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0104867396876216</threshold>
|
|
<left_val>-0.6200038194656372</left_val>
|
|
<right_val>0.4006851017475128</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 4 36 5 -1.</_>
|
|
<_>
|
|
11 4 18 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0301965996623039</threshold>
|
|
<left_val>-0.7257996201515198</left_val>
|
|
<right_val>0.1910271048545837</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 21 1 -1.</_>
|
|
<_>
|
|
19 0 7 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.2740899585187435e-003</threshold>
|
|
<left_val>-0.7437924742698669</left_val>
|
|
<right_val>0.1435914039611816</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 5 2 6 -1.</_>
|
|
<_>
|
|
8 8 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8281889390200377e-003</threshold>
|
|
<left_val>-0.7035927176475525</left_val>
|
|
<right_val>0.2077458947896957</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 9 11 2 -1.</_>
|
|
<_>
|
|
24 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.4722010544501245e-005</threshold>
|
|
<left_val>-0.6866136193275452</left_val>
|
|
<right_val>0.2300024032592773</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 7 2 4 -1.</_>
|
|
<_>
|
|
2 9 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.8486708439886570e-005</threshold>
|
|
<left_val>-0.7492769956588745</left_val>
|
|
<right_val>0.1742060035467148</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
42 4 2 2 -1.</_>
|
|
<_>
|
|
42 4 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.3329051297623664e-005</threshold>
|
|
<left_val>0.1954517960548401</left_val>
|
|
<right_val>-0.6460217237472534</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 2 2 -1.</_>
|
|
<_>
|
|
3 4 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-1.9914070435333997e-005</threshold>
|
|
<left_val>0.3191055059432983</left_val>
|
|
<right_val>-0.5000588893890381</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 6 16 5 -1.</_>
|
|
<_>
|
|
27 6 8 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0284833405166864</threshold>
|
|
<left_val>0.2720688879489899</left_val>
|
|
<right_val>-0.1728384047746658</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 2 2 4 -1.</_>
|
|
<_>
|
|
9 3 2 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-7.0301168598234653e-003</threshold>
|
|
<left_val>0.4906997084617615</left_val>
|
|
<right_val>-0.2584682106971741</right_val></_></_></trees>
|
|
<stage_threshold>-2.4261860847473145</stage_threshold>
|
|
<parent>2</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 4 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 3 33 3 -1.</_>
|
|
<_>
|
|
17 3 11 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1710568964481354</threshold>
|
|
<left_val>-0.5641617774963379</left_val>
|
|
<right_val>0.5475422739982605</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 1 9 9 -1.</_>
|
|
<_>
|
|
34 4 3 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1049742996692658</threshold>
|
|
<left_val>0.4727413058280945</left_val>
|
|
<right_val>-0.4532259106636047</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 6 3 -1.</_>
|
|
<_>
|
|
11 2 2 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0313814692199230</threshold>
|
|
<left_val>0.4900924861431122</left_val>
|
|
<right_val>-0.3593046963214874</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 1 8 10 -1.</_>
|
|
<_>
|
|
21 1 4 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0624266900122166</threshold>
|
|
<left_val>-0.3127166032791138</left_val>
|
|
<right_val>0.3738982081413269</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 26 5 -1.</_>
|
|
<_>
|
|
20 3 13 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0547255501151085</threshold>
|
|
<left_val>-0.4385116994380951</left_val>
|
|
<right_val>0.3331047892570496</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
40 5 3 6 -1.</_>
|
|
<_>
|
|
40 8 3 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.7346241772174835e-003</threshold>
|
|
<left_val>-0.6414120793342590</left_val>
|
|
<right_val>0.2531161010265350</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 5 3 6 -1.</_>
|
|
<_>
|
|
2 8 3 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.9919751733541489e-003</threshold>
|
|
<left_val>-0.4680531024932861</left_val>
|
|
<right_val>0.2431025952100754</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 21 1 -1.</_>
|
|
<_>
|
|
20 0 7 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0162186194211245</threshold>
|
|
<left_val>-0.3655829131603241</left_val>
|
|
<right_val>0.1935510039329529</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 9 11 2 -1.</_>
|
|
<_>
|
|
10 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.7070839423686266e-003</threshold>
|
|
<left_val>-0.6236888766288757</left_val>
|
|
<right_val>0.1524621993303299</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 2 4 3 -1.</_>
|
|
<_>
|
|
36 3 2 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0145703395828605</threshold>
|
|
<left_val>0.2548831999301910</left_val>
|
|
<right_val>-0.1017727032303810</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 26 10 -1.</_>
|
|
<_>
|
|
9 0 13 5 2.</_>
|
|
<_>
|
|
22 5 13 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0742893293499947</threshold>
|
|
<left_val>-0.5963190197944641</left_val>
|
|
<right_val>0.1414172053337097</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 9 44 2 -1.</_>
|
|
<_>
|
|
23 9 22 1 2.</_>
|
|
<_>
|
|
1 10 22 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0174824707210064</threshold>
|
|
<left_val>0.0689812228083611</left_val>
|
|
<right_val>-0.8075261712074280</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 9 2 2 -1.</_>
|
|
<_>
|
|
21 9 1 1 2.</_>
|
|
<_>
|
|
22 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.4595998739823699e-004</threshold>
|
|
<left_val>0.0899708569049835</left_val>
|
|
<right_val>-0.7547813057899475</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 45 9 -1.</_>
|
|
<_>
|
|
15 3 15 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.6811965703964233</threshold>
|
|
<left_val>0.1251329034566879</left_val>
|
|
<right_val>-0.5950785279273987</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 9 2 2 -1.</_>
|
|
<_>
|
|
21 9 1 1 2.</_>
|
|
<_>
|
|
22 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.2223601010628045e-004</threshold>
|
|
<left_val>-0.5476635098457336</left_val>
|
|
<right_val>0.1417046040296555</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 9 5 2 -1.</_>
|
|
<_>
|
|
39 10 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.3318139826878905e-003</threshold>
|
|
<left_val>-0.4610851109027863</left_val>
|
|
<right_val>0.0877417027950287</right_val></_></_></trees>
|
|
<stage_threshold>-1.6515820026397705</stage_threshold>
|
|
<parent>3</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 5 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 3 32 3 -1.</_>
|
|
<_>
|
|
12 3 16 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0799669772386551</threshold>
|
|
<left_val>-0.6659880876541138</left_val>
|
|
<right_val>0.4235262870788574</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 1 11 8 -1.</_>
|
|
<_>
|
|
26 3 11 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0272646602243185</threshold>
|
|
<left_val>0.3397392928600311</left_val>
|
|
<right_val>-0.5063499212265015</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 1 6 9 -1.</_>
|
|
<_>
|
|
20 1 3 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0288831908255816</threshold>
|
|
<left_val>-0.4901154041290283</left_val>
|
|
<right_val>0.4012367129325867</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 3 11 8 -1.</_>
|
|
<_>
|
|
27 7 11 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0397321991622448</threshold>
|
|
<left_val>-0.4774664044380188</left_val>
|
|
<right_val>0.2059060037136078</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 1 9 9 -1.</_>
|
|
<_>
|
|
8 4 3 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0972145274281502</threshold>
|
|
<left_val>0.4514232873916626</left_val>
|
|
<right_val>-0.4699657857418060</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 21 1 -1.</_>
|
|
<_>
|
|
20 0 7 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.0403199642896652e-003</threshold>
|
|
<left_val>-0.5051323175430298</left_val>
|
|
<right_val>0.1872223019599915</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 3 11 8 -1.</_>
|
|
<_>
|
|
9 7 11 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0100332498550415</threshold>
|
|
<left_val>-0.6071605086326599</left_val>
|
|
<right_val>0.2049857974052429</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
38 5 6 2 -1.</_>
|
|
<_>
|
|
40 5 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2186320275068283e-003</threshold>
|
|
<left_val>0.2791998982429504</left_val>
|
|
<right_val>-0.3909184932708740</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 9 16 1 -1.</_>
|
|
<_>
|
|
16 9 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0728399306535721</threshold>
|
|
<left_val>-8.7004872038960457e-003</left_val>
|
|
<right_val>-4.3667841796875000e+003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 0 15 10 -1.</_>
|
|
<_>
|
|
23 0 5 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0686440467834473</threshold>
|
|
<left_val>0.5467174053192139</left_val>
|
|
<right_val>-0.0971203967928886</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 9 4 2 -1.</_>
|
|
<_>
|
|
3 10 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.3757557149510831e-005</threshold>
|
|
<left_val>-0.4377388954162598</left_val>
|
|
<right_val>0.2073774039745331</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 5 2 2 -1.</_>
|
|
<_>
|
|
31 5 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.8882959848269820e-003</threshold>
|
|
<left_val>0.2805308103561401</left_val>
|
|
<right_val>-0.1123835965991020</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 20 6 -1.</_>
|
|
<_>
|
|
12 0 10 3 2.</_>
|
|
<_>
|
|
22 3 10 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0362426303327084</threshold>
|
|
<left_val>-0.6370964050292969</left_val>
|
|
<right_val>0.1478706002235413</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 0 10 6 -1.</_>
|
|
<_>
|
|
31 2 10 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0333381183445454</threshold>
|
|
<left_val>0.4726848006248474</left_val>
|
|
<right_val>-0.2124014943838120</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 10 4 1 -1.</_>
|
|
<_>
|
|
9 10 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.5847079232335091e-003</threshold>
|
|
<left_val>0.1234423965215683</left_val>
|
|
<right_val>-0.7409923076629639</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 0 15 4 -1.</_>
|
|
<_>
|
|
30 0 5 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0203724894672632</threshold>
|
|
<left_val>0.1377898007631302</left_val>
|
|
<right_val>-0.1994089931249619</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 10 6 1 -1.</_>
|
|
<_>
|
|
7 10 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.6333200987428427e-003</threshold>
|
|
<left_val>0.0793613791465759</left_val>
|
|
<right_val>-0.7600020766258240</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
38 5 4 4 -1.</_>
|
|
<_>
|
|
40 5 2 2 2.</_>
|
|
<_>
|
|
38 7 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.6827611513435841e-003</threshold>
|
|
<left_val>-0.0661458671092987</left_val>
|
|
<right_val>0.1733255982398987</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 5 4 4 -1.</_>
|
|
<_>
|
|
3 5 2 2 2.</_>
|
|
<_>
|
|
5 7 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.8445351421833038e-003</threshold>
|
|
<left_val>0.4480114877223969</left_val>
|
|
<right_val>-0.1564396023750305</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 18 9 -1.</_>
|
|
<_>
|
|
21 2 6 9 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2481960952281952</threshold>
|
|
<left_val>-0.0861529707908630</left_val>
|
|
<right_val>0.3375715017318726</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 15 11 -1.</_>
|
|
<_>
|
|
17 0 5 11 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1942128986120224</threshold>
|
|
<left_val>-0.1405933052301407</left_val>
|
|
<right_val>0.5112164020538330</right_val></_></_></trees>
|
|
<stage_threshold>-1.8342440128326416</stage_threshold>
|
|
<parent>4</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 6 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 1 6 1 -1.</_>
|
|
<_>
|
|
10 3 2 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.6888672560453415e-003</threshold>
|
|
<left_val>0.3895721137523651</left_val>
|
|
<right_val>-0.4811824858188629</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 27 7 -1.</_>
|
|
<_>
|
|
18 0 9 7 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2981027960777283</threshold>
|
|
<left_val>-0.4800634086132050</left_val>
|
|
<right_val>0.3955416977405548</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 2 3 4 -1.</_>
|
|
<_>
|
|
9 3 3 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.8945433273911476e-003</threshold>
|
|
<left_val>0.4206601083278656</left_val>
|
|
<right_val>-0.3444811105728149</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 3 9 8 -1.</_>
|
|
<_>
|
|
21 3 3 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0562895499169827</threshold>
|
|
<left_val>-0.2323781996965408</left_val>
|
|
<right_val>0.4200125038623810</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 5 11 6 -1.</_>
|
|
<_>
|
|
0 8 11 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0281865298748016</threshold>
|
|
<left_val>-0.5498821139335632</left_val>
|
|
<right_val>0.1948453038930893</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 3 44 8 -1.</_>
|
|
<_>
|
|
23 3 22 4 2.</_>
|
|
<_>
|
|
1 7 22 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0471157617866993</threshold>
|
|
<left_val>0.1684277057647705</left_val>
|
|
<right_val>-0.5307763814926148</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 4 4 4 -1.</_>
|
|
<_>
|
|
2 4 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.1187951099127531e-003</threshold>
|
|
<left_val>0.1967993974685669</left_val>
|
|
<right_val>-0.3741619884967804</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 3 11 8 -1.</_>
|
|
<_>
|
|
24 7 11 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0194239094853401</threshold>
|
|
<left_val>-0.4466922879219055</left_val>
|
|
<right_val>0.1685253977775574</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 1 39 9 -1.</_>
|
|
<_>
|
|
16 4 13 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2618069946765900</threshold>
|
|
<left_val>-0.8378089070320129</left_val>
|
|
<right_val>0.0617749504745007</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 7 11 4 -1.</_>
|
|
<_>
|
|
24 9 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.8632198013365269e-003</threshold>
|
|
<left_val>-0.4800944924354553</left_val>
|
|
<right_val>0.0667717605829239</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 4 22 6 -1.</_>
|
|
<_>
|
|
11 4 11 3 2.</_>
|
|
<_>
|
|
22 7 11 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0384115986526012</threshold>
|
|
<left_val>0.1338039934635162</left_val>
|
|
<right_val>-0.5834993124008179</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 9 6 2 -1.</_>
|
|
<_>
|
|
35 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.7644587941467762e-003</threshold>
|
|
<left_val>0.0822187215089798</left_val>
|
|
<right_val>-0.8142058849334717</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 7 6 -1.</_>
|
|
<_>
|
|
6 2 7 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0277032200247049</threshold>
|
|
<left_val>0.4725336134433746</left_val>
|
|
<right_val>-0.1494240015745163</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 0 6 1 -1.</_>
|
|
<_>
|
|
24 0 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.9970629839226604e-004</threshold>
|
|
<left_val>-0.3508217036724091</left_val>
|
|
<right_val>0.1178899034857750</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 10 3 -1.</_>
|
|
<_>
|
|
4 2 10 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.6997818648815155e-003</threshold>
|
|
<left_val>-0.1563594043254852</left_val>
|
|
<right_val>0.3656086921691895</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 9 9 2 -1.</_>
|
|
<_>
|
|
36 10 9 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.8159940736950375e-005</threshold>
|
|
<left_val>-0.3140079081058502</left_val>
|
|
<right_val>0.1277565956115723</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 9 4 2 -1.</_>
|
|
<_>
|
|
8 9 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.3775480221956968e-003</threshold>
|
|
<left_val>-0.7156819105148315</left_val>
|
|
<right_val>0.0758587494492531</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 9 10 2 -1.</_>
|
|
<_>
|
|
23 9 5 1 2.</_>
|
|
<_>
|
|
18 10 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.4308858923614025e-003</threshold>
|
|
<left_val>-0.5795493125915527</left_val>
|
|
<right_val>0.0658802017569542</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 30 6 -1.</_>
|
|
<_>
|
|
7 0 15 3 2.</_>
|
|
<_>
|
|
22 3 15 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0826033428311348</threshold>
|
|
<left_val>0.0700204968452454</left_val>
|
|
<right_val>-0.6617522239685059</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 5 3 6 -1.</_>
|
|
<_>
|
|
22 7 1 2 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.3666313439607620e-003</threshold>
|
|
<left_val>-0.4901342988014221</left_val>
|
|
<right_val>0.0937642827630043</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 9 10 2 -1.</_>
|
|
<_>
|
|
16 9 5 1 2.</_>
|
|
<_>
|
|
21 10 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.2126090265810490e-003</threshold>
|
|
<left_val>-0.5854789018630981</left_val>
|
|
<right_val>0.0777199864387512</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 9 11 2 -1.</_>
|
|
<_>
|
|
24 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.4681339962407947e-003</threshold>
|
|
<left_val>-0.2495546936988831</left_val>
|
|
<right_val>0.1152582988142967</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 7 3 -1.</_>
|
|
<_>
|
|
5 3 7 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.7278228923678398e-003</threshold>
|
|
<left_val>-0.1196860969066620</left_val>
|
|
<right_val>0.4248318970203400</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 0 4 1 -1.</_>
|
|
<_>
|
|
26 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.5779332071542740e-003</threshold>
|
|
<left_val>0.0282375905662775</left_val>
|
|
<right_val>-0.4071775972843170</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 4 1 -1.</_>
|
|
<_>
|
|
17 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.2635639905056451e-005</threshold>
|
|
<left_val>-0.3278765082359314</left_val>
|
|
<right_val>0.1463759988546372</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 0 11 4 -1.</_>
|
|
<_>
|
|
26 2 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.6048699878156185e-003</threshold>
|
|
<left_val>0.1842471063137054</left_val>
|
|
<right_val>-0.2354689985513687</right_val></_></_></trees>
|
|
<stage_threshold>-1.6580430269241333</stage_threshold>
|
|
<parent>5</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 7 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 22 3 -1.</_>
|
|
<_>
|
|
18 3 11 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0616270788013935</threshold>
|
|
<left_val>-0.6385278105735779</left_val>
|
|
<right_val>0.3331474065780640</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 1 4 6 -1.</_>
|
|
<_>
|
|
34 1 2 3 2.</_>
|
|
<_>
|
|
32 4 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.2768982239067554e-003</threshold>
|
|
<left_val>-0.4244343042373657</left_val>
|
|
<right_val>0.4304029941558838</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 6 -1.</_>
|
|
<_>
|
|
9 1 2 3 2.</_>
|
|
<_>
|
|
11 4 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.6536661684513092e-003</threshold>
|
|
<left_val>-0.3571257889270783</left_val>
|
|
<right_val>0.3420619964599609</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 12 11 -1.</_>
|
|
<_>
|
|
21 0 4 11 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0899298489093781</threshold>
|
|
<left_val>-0.3081831932067871</left_val>
|
|
<right_val>0.3103627860546112</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 3 11 8 -1.</_>
|
|
<_>
|
|
1 7 11 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0743535533547401</threshold>
|
|
<left_val>-0.4110797047615051</left_val>
|
|
<right_val>0.2735716998577118</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 9 11 2 -1.</_>
|
|
<_>
|
|
25 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.8687270348891616e-003</threshold>
|
|
<left_val>-0.3267816901206970</left_val>
|
|
<right_val>0.1846697926521301</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 4 6 4 -1.</_>
|
|
<_>
|
|
3 4 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.2053278088569641e-003</threshold>
|
|
<left_val>0.3107973039150238</left_val>
|
|
<right_val>-0.2444406002759934</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 1 11 8 -1.</_>
|
|
<_>
|
|
24 3 11 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0163297392427921</threshold>
|
|
<left_val>0.2493868023157120</left_val>
|
|
<right_val>-0.3848733901977539</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 32 7 -1.</_>
|
|
<_>
|
|
12 0 16 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1133780032396317</threshold>
|
|
<left_val>-0.4381052851676941</left_val>
|
|
<right_val>0.1581839025020599</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 30 8 -1.</_>
|
|
<_>
|
|
23 0 15 4 2.</_>
|
|
<_>
|
|
8 4 15 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0748228132724762</threshold>
|
|
<left_val>0.0775939524173737</left_val>
|
|
<right_val>-0.6171107292175293</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 2 6 9 -1.</_>
|
|
<_>
|
|
22 2 3 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0451328605413437</threshold>
|
|
<left_val>0.5962778925895691</left_val>
|
|
<right_val>-0.1065089032053947</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 26 2 -1.</_>
|
|
<_>
|
|
30 0 13 1 2.</_>
|
|
<_>
|
|
17 1 13 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0102611603215337</threshold>
|
|
<left_val>0.3402867019176483</left_val>
|
|
<right_val>-0.0760131329298019</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 1 2 -1.</_>
|
|
<_>
|
|
20 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>1.9562950183171779e-004</threshold>
|
|
<left_val>-0.3224003016948700</left_val>
|
|
<right_val>0.1593022048473358</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
38 9 6 2 -1.</_>
|
|
<_>
|
|
38 10 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0127499103546143</threshold>
|
|
<left_val>0.0342378690838814</left_val>
|
|
<right_val>-0.8233301043510437</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 9 8 2 -1.</_>
|
|
<_>
|
|
1 10 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.0267910547554493e-003</threshold>
|
|
<left_val>-0.3348264992237091</left_val>
|
|
<right_val>0.1486838012933731</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 0 11 4 -1.</_>
|
|
<_>
|
|
31 1 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0118999397382140</threshold>
|
|
<left_val>-0.1110528036952019</left_val>
|
|
<right_val>0.2997865974903107</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 8 6 3 -1.</_>
|
|
<_>
|
|
9 8 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.4404807314276695e-003</threshold>
|
|
<left_val>0.0631437525153160</left_val>
|
|
<right_val>-0.7491412758827210</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 3 4 4 -1.</_>
|
|
<_>
|
|
36 3 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.4033881276845932e-003</threshold>
|
|
<left_val>0.1506906002759934</left_val>
|
|
<right_val>-0.1213440969586372</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 2 3 -1.</_>
|
|
<_>
|
|
17 0 1 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>8.2504339516162872e-003</threshold>
|
|
<left_val>0.0654440671205521</left_val>
|
|
<right_val>-0.7557423114776611</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 1 11 6 -1.</_>
|
|
<_>
|
|
25 3 11 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0119254700839520</threshold>
|
|
<left_val>0.1157917976379395</left_val>
|
|
<right_val>-0.1823156028985977</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 10 12 1 -1.</_>
|
|
<_>
|
|
19 10 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.3744169156998396e-003</threshold>
|
|
<left_val>-0.2389771938323975</left_val>
|
|
<right_val>0.1936241984367371</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 1 32 4 -1.</_>
|
|
<_>
|
|
27 1 16 2 2.</_>
|
|
<_>
|
|
11 3 16 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0189549792557955</threshold>
|
|
<left_val>-0.0739023834466934</left_val>
|
|
<right_val>0.0952069386839867</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 1 11 6 -1.</_>
|
|
<_>
|
|
10 3 11 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.4718048088252544e-003</threshold>
|
|
<left_val>0.1882565021514893</left_val>
|
|
<right_val>-0.2742140889167786</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 2 5 3 -1.</_>
|
|
<_>
|
|
38 3 5 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0118858003988862</threshold>
|
|
<left_val>-0.0793891325592995</left_val>
|
|
<right_val>0.3939763903617859</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 7 11 4 -1.</_>
|
|
<_>
|
|
10 9 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.9641708135604858e-003</threshold>
|
|
<left_val>-0.3141691088676453</left_val>
|
|
<right_val>0.1572221070528030</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 2 5 3 -1.</_>
|
|
<_>
|
|
38 3 5 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0153126502409577</threshold>
|
|
<left_val>0.4346731901168823</left_val>
|
|
<right_val>-0.0800591632723808</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 8 2 1 -1.</_>
|
|
<_>
|
|
4 8 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-4.4087409041821957e-003</threshold>
|
|
<left_val>-0.6935536861419678</left_val>
|
|
<right_val>0.0726607367396355</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 2 5 3 -1.</_>
|
|
<_>
|
|
38 3 5 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0268113501369953</threshold>
|
|
<left_val>-0.0287350993603468</left_val>
|
|
<right_val>0.4305660128593445</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 3 5 -1.</_>
|
|
<_>
|
|
7 3 1 5 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0129167297855020</threshold>
|
|
<left_val>-0.0791131779551506</left_val>
|
|
<right_val>0.5616195797920227</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 9 4 2 -1.</_>
|
|
<_>
|
|
36 9 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.8802119195461273e-003</threshold>
|
|
<left_val>-0.6684604287147522</left_val>
|
|
<right_val>0.0777579322457314</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 1 12 10 -1.</_>
|
|
<_>
|
|
19 1 4 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0775494873523712</threshold>
|
|
<left_val>0.6936337947845459</left_val>
|
|
<right_val>-0.0728587135672569</right_val></_></_></trees>
|
|
<stage_threshold>-1.7386059761047363</stage_threshold>
|
|
<parent>6</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 8 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 3 32 3 -1.</_>
|
|
<_>
|
|
13 3 16 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1141531020402908</threshold>
|
|
<left_val>-0.4638212025165558</left_val>
|
|
<right_val>0.3817670941352844</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 5 6 2 -1.</_>
|
|
<_>
|
|
32 5 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.8969490453600883e-003</threshold>
|
|
<left_val>-0.1898743063211441</left_val>
|
|
<right_val>0.3679777979850769</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 2 6 5 -1.</_>
|
|
<_>
|
|
20 2 3 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0210133306682110</threshold>
|
|
<left_val>-0.3910275101661682</left_val>
|
|
<right_val>0.3052346110343933</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 2 4 3 -1.</_>
|
|
<_>
|
|
36 3 2 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-8.5326731204986572e-003</threshold>
|
|
<left_val>0.4028900861740112</left_val>
|
|
<right_val>-0.3794580996036530</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 6 5 4 -1.</_>
|
|
<_>
|
|
0 8 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.2233189083635807e-003</threshold>
|
|
<left_val>-0.5834115147590637</left_val>
|
|
<right_val>0.2050496041774750</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 4 6 4 -1.</_>
|
|
<_>
|
|
35 4 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.9455489069223404e-003</threshold>
|
|
<left_val>0.1073440015316010</left_val>
|
|
<right_val>-0.1407826989889145</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 5 2 2 -1.</_>
|
|
<_>
|
|
13 5 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.4652701035374776e-005</threshold>
|
|
<left_val>0.3188174068927765</left_val>
|
|
<right_val>-0.2420430034399033</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 1 24 6 -1.</_>
|
|
<_>
|
|
29 3 8 2 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2776621878147125</threshold>
|
|
<left_val>0.3199347853660584</left_val>
|
|
<right_val>-0.2321206033229828</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 3 10 8 -1.</_>
|
|
<_>
|
|
8 7 10 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0299928896129131</threshold>
|
|
<left_val>-0.4863663017749786</left_val>
|
|
<right_val>0.1573397070169449</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 21 1 -1.</_>
|
|
<_>
|
|
20 0 7 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0103846397250891</threshold>
|
|
<left_val>-0.3576160967350006</left_val>
|
|
<right_val>0.1016876995563507</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 2 6 3 -1.</_>
|
|
<_>
|
|
8 3 6 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.9069289863109589e-003</threshold>
|
|
<left_val>0.3474350869655609</left_val>
|
|
<right_val>-0.2061987072229385</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 2 18 8 -1.</_>
|
|
<_>
|
|
22 2 6 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0936803817749023</threshold>
|
|
<left_val>0.5435848832130432</left_val>
|
|
<right_val>-0.0737909674644470</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 9 1 2 -1.</_>
|
|
<_>
|
|
3 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.6968900278443471e-005</threshold>
|
|
<left_val>-0.3651182949542999</left_val>
|
|
<right_val>0.2005686014890671</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 4 2 5 -1.</_>
|
|
<_>
|
|
27 4 1 5 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-8.3182547241449356e-003</threshold>
|
|
<left_val>-0.5208979249000549</left_val>
|
|
<right_val>0.0516868308186531</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 36 10 -1.</_>
|
|
<_>
|
|
2 0 18 5 2.</_>
|
|
<_>
|
|
20 5 18 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1155257001519203</threshold>
|
|
<left_val>-0.6091110110282898</left_val>
|
|
<right_val>0.0922980234026909</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 1 2 1 -1.</_>
|
|
<_>
|
|
26 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.5758039050269872e-005</threshold>
|
|
<left_val>-0.2418815940618515</left_val>
|
|
<right_val>0.1120527014136314</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 12 9 -1.</_>
|
|
<_>
|
|
18 2 6 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0836199671030045</threshold>
|
|
<left_val>-0.1659141927957535</left_val>
|
|
<right_val>0.2994615137577057</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 4 9 6 -1.</_>
|
|
<_>
|
|
34 4 3 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.7055140342563391e-003</threshold>
|
|
<left_val>0.0661006867885590</left_val>
|
|
<right_val>-0.1783421933650971</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 10 6 -1.</_>
|
|
<_>
|
|
5 2 10 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0502557195723057</threshold>
|
|
<left_val>0.5084115266799927</left_val>
|
|
<right_val>-0.1019190996885300</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 2 3 4 -1.</_>
|
|
<_>
|
|
34 3 3 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0144934700801969</threshold>
|
|
<left_val>0.3341130018234253</left_val>
|
|
<right_val>-0.0912953317165375</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 9 6 2 -1.</_>
|
|
<_>
|
|
7 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.6773351281881332e-003</threshold>
|
|
<left_val>0.0707420930266380</left_val>
|
|
<right_val>-0.7194135189056397</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
40 5 4 2 -1.</_>
|
|
<_>
|
|
40 5 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.4902720469981432e-003</threshold>
|
|
<left_val>0.2712225914001465</left_val>
|
|
<right_val>-0.2811850011348724</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 0 3 3 -1.</_>
|
|
<_>
|
|
20 1 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.9668770991265774e-003</threshold>
|
|
<left_val>0.0868900194764137</left_val>
|
|
<right_val>-0.5510246753692627</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 0 11 4 -1.</_>
|
|
<_>
|
|
31 1 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.9923879131674767e-003</threshold>
|
|
<left_val>-0.1115676984190941</left_val>
|
|
<right_val>0.1831274032592773</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 15 1 -1.</_>
|
|
<_>
|
|
10 0 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.8761169631034136e-003</threshold>
|
|
<left_val>0.1658319979906082</left_val>
|
|
<right_val>-0.2982378900051117</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 8 12 2 -1.</_>
|
|
<_>
|
|
23 8 6 1 2.</_>
|
|
<_>
|
|
17 9 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.4691809453070164e-003</threshold>
|
|
<left_val>0.0676259994506836</left_val>
|
|
<right_val>-0.5999578833580017</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 2 6 9 -1.</_>
|
|
<_>
|
|
22 2 3 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0495137684047222</threshold>
|
|
<left_val>-0.1185320988297463</left_val>
|
|
<right_val>0.4067130982875824</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 1 6 10 -1.</_>
|
|
<_>
|
|
34 1 2 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0520960614085197</threshold>
|
|
<left_val>-0.4905096888542175</left_val>
|
|
<right_val>0.0444507598876953</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 9 6 -1.</_>
|
|
<_>
|
|
8 4 3 2 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0575406104326248</threshold>
|
|
<left_val>0.2216338068246841</left_val>
|
|
<right_val>-0.2269773036241531</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
29 0 2 3 -1.</_>
|
|
<_>
|
|
28 1 2 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0120270904153585</threshold>
|
|
<left_val>-0.7831586003303528</left_val>
|
|
<right_val>0.0252257809042931</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 3 2 -1.</_>
|
|
<_>
|
|
17 1 1 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>4.3592308647930622e-003</threshold>
|
|
<left_val>0.0784457623958588</left_val>
|
|
<right_val>-0.5439990162849426</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 8 6 3 -1.</_>
|
|
<_>
|
|
36 8 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0108451396226883</threshold>
|
|
<left_val>0.0435322597622871</left_val>
|
|
<right_val>-0.7530106902122498</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 5 2 1 -1.</_>
|
|
<_>
|
|
3 5 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2464629728347063e-004</threshold>
|
|
<left_val>0.1888168007135391</left_val>
|
|
<right_val>-0.2168412953615189</right_val></_></_></trees>
|
|
<stage_threshold>-1.6643459796905518</stage_threshold>
|
|
<parent>7</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 9 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 3 33 2 -1.</_>
|
|
<_>
|
|
17 3 11 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1516757011413574</threshold>
|
|
<left_val>-0.3124355971813202</left_val>
|
|
<right_val>0.3971425890922546</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 2 4 3 -1.</_>
|
|
<_>
|
|
36 3 2 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.6243538856506348e-003</threshold>
|
|
<left_val>0.2844352126121521</left_val>
|
|
<right_val>-0.4688800871372223</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 5 9 2 -1.</_>
|
|
<_>
|
|
8 5 3 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0133634200319648</threshold>
|
|
<left_val>0.2984715104103088</left_val>
|
|
<right_val>-0.2897408902645111</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 1 12 10 -1.</_>
|
|
<_>
|
|
21 1 4 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1197357997298241</threshold>
|
|
<left_val>-0.2505994141101837</left_val>
|
|
<right_val>0.3698031008243561</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 4 11 6 -1.</_>
|
|
<_>
|
|
0 7 11 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0295380298048258</threshold>
|
|
<left_val>-0.5330228209495544</left_val>
|
|
<right_val>0.1954060941934586</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
29 9 11 2 -1.</_>
|
|
<_>
|
|
29 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.2876099683344364e-003</threshold>
|
|
<left_val>-0.3935618102550507</left_val>
|
|
<right_val>0.2245559990406036</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 1 2 1 -1.</_>
|
|
<_>
|
|
18 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.3369789889547974e-005</threshold>
|
|
<left_val>-0.4254043102264404</left_val>
|
|
<right_val>0.1247470974922180</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 0 11 4 -1.</_>
|
|
<_>
|
|
31 1 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0122035900130868</threshold>
|
|
<left_val>-0.1111750006675720</left_val>
|
|
<right_val>0.3303545117378235</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 32 6 -1.</_>
|
|
<_>
|
|
2 1 16 3 2.</_>
|
|
<_>
|
|
18 4 16 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0288315303623676</threshold>
|
|
<left_val>-0.2619040906429291</left_val>
|
|
<right_val>0.2602139115333557</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 9 6 2 -1.</_>
|
|
<_>
|
|
24 9 3 1 2.</_>
|
|
<_>
|
|
21 10 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.3157240357249975e-003</threshold>
|
|
<left_val>0.0526180006563663</left_val>
|
|
<right_val>-0.6187260746955872</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 9 10 2 -1.</_>
|
|
<_>
|
|
17 9 5 1 2.</_>
|
|
<_>
|
|
22 10 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.3288369886577129e-003</threshold>
|
|
<left_val>0.0794652178883553</left_val>
|
|
<right_val>-0.6154335141181946</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
41 4 4 6 -1.</_>
|
|
<_>
|
|
41 4 2 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.1650598868727684e-003</threshold>
|
|
<left_val>0.2235890030860901</left_val>
|
|
<right_val>-0.2817305028438568</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 10 6 -1.</_>
|
|
<_>
|
|
4 2 10 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0555344186723232</threshold>
|
|
<left_val>0.5337057113647461</left_val>
|
|
<right_val>-0.0978473424911499</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 21 1 -1.</_>
|
|
<_>
|
|
20 0 7 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0104300398379564</threshold>
|
|
<left_val>-0.3193646967411041</left_val>
|
|
<right_val>0.1322222054004669</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 39 9 -1.</_>
|
|
<_>
|
|
16 3 13 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.7373105287551880</threshold>
|
|
<left_val>0.0856522768735886</left_val>
|
|
<right_val>-0.5683274865150452</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 9 11 2 -1.</_>
|
|
<_>
|
|
30 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0211063101887703</threshold>
|
|
<left_val>0.0103507200255990</left_val>
|
|
<right_val>-0.4362475872039795</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 9 11 2 -1.</_>
|
|
<_>
|
|
5 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.8394569633528590e-003</threshold>
|
|
<left_val>-0.3025861084461212</left_val>
|
|
<right_val>0.1825274974107742</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 9 8 2 -1.</_>
|
|
<_>
|
|
24 9 4 1 2.</_>
|
|
<_>
|
|
20 10 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.2626888975501060e-003</threshold>
|
|
<left_val>-0.7030578255653381</left_val>
|
|
<right_val>0.0345668382942677</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 5 6 3 -1.</_>
|
|
<_>
|
|
3 5 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.5872439146041870e-003</threshold>
|
|
<left_val>0.1959318071603775</left_val>
|
|
<right_val>-0.2503960132598877</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
29 0 6 3 -1.</_>
|
|
<_>
|
|
31 0 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.9651866108179092e-003</threshold>
|
|
<left_val>0.0560516789555550</left_val>
|
|
<right_val>-0.4854215979576111</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 39 9 -1.</_>
|
|
<_>
|
|
16 3 13 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.2649461030960083</threshold>
|
|
<left_val>-0.7481368184089661</left_val>
|
|
<right_val>0.0572923310101032</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 1 5 3 -1.</_>
|
|
<_>
|
|
34 2 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.7696090340614319e-003</threshold>
|
|
<left_val>0.5502753257751465</left_val>
|
|
<right_val>-0.0981863886117935</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 6 3 -1.</_>
|
|
<_>
|
|
12 0 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.3607688322663307e-003</threshold>
|
|
<left_val>0.0879649519920349</left_val>
|
|
<right_val>-0.6328374147415161</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 1 8 3 -1.</_>
|
|
<_>
|
|
33 2 8 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.7315441556274891e-003</threshold>
|
|
<left_val>-0.1199072003364563</left_val>
|
|
<right_val>0.2605029046535492</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 9 10 2 -1.</_>
|
|
<_>
|
|
16 9 5 1 2.</_>
|
|
<_>
|
|
21 10 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.8705069348216057e-003</threshold>
|
|
<left_val>-0.6705402135848999</left_val>
|
|
<right_val>0.0683697164058685</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 5 9 6 -1.</_>
|
|
<_>
|
|
22 5 3 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0335185006260872</threshold>
|
|
<left_val>0.4375419020652771</left_val>
|
|
<right_val>-0.0559873282909393</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 9 12 2 -1.</_>
|
|
<_>
|
|
20 9 4 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.6086460612714291e-003</threshold>
|
|
<left_val>-0.2525339126586914</left_val>
|
|
<right_val>0.1985495984554291</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 10 20 1 -1.</_>
|
|
<_>
|
|
24 10 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0183347892016172</threshold>
|
|
<left_val>0.0830836072564125</left_val>
|
|
<right_val>-0.4910973012447357</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 0 2 1 -1.</_>
|
|
<_>
|
|
18 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.7305909898132086e-003</threshold>
|
|
<left_val>-0.4816663861274719</left_val>
|
|
<right_val>0.0870301127433777</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 10 20 1 -1.</_>
|
|
<_>
|
|
24 10 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0253080893307924</threshold>
|
|
<left_val>-0.5137035250663757</left_val>
|
|
<right_val>0.0317759402096272</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 1 8 -1.</_>
|
|
<_>
|
|
0 4 1 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.7148888483643532e-003</threshold>
|
|
<left_val>-0.4641964137554169</left_val>
|
|
<right_val>0.0869181528687477</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 10 20 1 -1.</_>
|
|
<_>
|
|
24 10 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.3796479906886816e-003</threshold>
|
|
<left_val>0.1136436015367508</left_val>
|
|
<right_val>-0.1099784001708031</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 10 20 1 -1.</_>
|
|
<_>
|
|
11 10 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0179886203259230</threshold>
|
|
<left_val>-0.5647330880165100</left_val>
|
|
<right_val>0.0848380699753761</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
42 7 3 4 -1.</_>
|
|
<_>
|
|
42 9 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.2048670032527298e-004</threshold>
|
|
<left_val>-0.3359489142894745</left_val>
|
|
<right_val>0.1181958019733429</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 9 6 2 -1.</_>
|
|
<_>
|
|
8 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.3997122235596180e-003</threshold>
|
|
<left_val>-0.7110918760299683</left_val>
|
|
<right_val>0.0502713508903980</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 1 6 3 -1.</_>
|
|
<_>
|
|
33 2 6 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.4395271688699722e-003</threshold>
|
|
<left_val>0.2403811067342758</left_val>
|
|
<right_val>-0.0848185420036316</right_val></_></_></trees>
|
|
<stage_threshold>-1.5700939893722534</stage_threshold>
|
|
<parent>8</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 10 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 4 3 2 -1.</_>
|
|
<_>
|
|
13 5 1 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>6.7837378010153770e-003</threshold>
|
|
<left_val>-0.2447407990694046</left_val>
|
|
<right_val>0.5237346291542053</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 1 11 8 -1.</_>
|
|
<_>
|
|
26 3 11 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0263042896986008</threshold>
|
|
<left_val>0.2338152974843979</left_val>
|
|
<right_val>-0.4236643910408020</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 30 3 -1.</_>
|
|
<_>
|
|
18 4 15 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0705524832010269</threshold>
|
|
<left_val>-0.4806838035583496</left_val>
|
|
<right_val>0.2167425006628037</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 12 9 -1.</_>
|
|
<_>
|
|
21 0 4 9 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1158863976597786</threshold>
|
|
<left_val>-0.2149966955184937</left_val>
|
|
<right_val>0.2675358057022095</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 9 4 -1.</_>
|
|
<_>
|
|
2 1 9 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0100489500910044</threshold>
|
|
<left_val>-0.2059427052736282</left_val>
|
|
<right_val>0.4048427939414978</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 0 12 1 -1.</_>
|
|
<_>
|
|
22 0 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0146281700581312</threshold>
|
|
<left_val>0.0451952703297138</left_val>
|
|
<right_val>-0.4338223934173584</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 28 5 -1.</_>
|
|
<_>
|
|
14 0 14 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1069151982665062</threshold>
|
|
<left_val>-0.4000534117221832</left_val>
|
|
<right_val>0.1565358936786652</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 5 11 6 -1.</_>
|
|
<_>
|
|
26 8 11 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0215446706861258</threshold>
|
|
<left_val>-0.3836944103240967</left_val>
|
|
<right_val>0.1253671050071716</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 5 4 2 -1.</_>
|
|
<_>
|
|
5 5 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.0607468001544476e-003</threshold>
|
|
<left_val>-0.1373002976179123</left_val>
|
|
<right_val>0.5311831831932068</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
40 7 5 4 -1.</_>
|
|
<_>
|
|
40 9 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.9039809964597225e-003</threshold>
|
|
<left_val>-0.6946039199829102</left_val>
|
|
<right_val>0.0771185681223869</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 5 34 6 -1.</_>
|
|
<_>
|
|
5 5 17 3 2.</_>
|
|
<_>
|
|
22 8 17 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0555920600891113</threshold>
|
|
<left_val>0.0849511027336121</left_val>
|
|
<right_val>-0.6161080002784729</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 2 38 3 -1.</_>
|
|
<_>
|
|
7 2 19 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0539596788585186</threshold>
|
|
<left_val>-0.3782609999179840</left_val>
|
|
<right_val>0.0331038087606430</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 8 1 2 -1.</_>
|
|
<_>
|
|
3 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.6401430406840518e-005</threshold>
|
|
<left_val>-0.3671151995658875</left_val>
|
|
<right_val>0.1344677954912186</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 7 2 2 -1.</_>
|
|
<_>
|
|
31 7 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.5411658249795437e-003</threshold>
|
|
<left_val>-0.5740044116973877</left_val>
|
|
<right_val>0.0742920190095901</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 45 9 -1.</_>
|
|
<_>
|
|
15 3 15 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.7908669114112854</threshold>
|
|
<left_val>0.0774227529764175</left_val>
|
|
<right_val>-0.6365330815315247</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 9 6 2 -1.</_>
|
|
<_>
|
|
37 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.4924449175596237e-003</threshold>
|
|
<left_val>0.0685045272111893</left_val>
|
|
<right_val>-0.5327309966087341</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 9 6 2 -1.</_>
|
|
<_>
|
|
6 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.8721971474587917e-003</threshold>
|
|
<left_val>-0.6515179872512817</left_val>
|
|
<right_val>0.0649006888270378</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 5 9 6 -1.</_>
|
|
<_>
|
|
22 5 3 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0464545413851738</threshold>
|
|
<left_val>-0.1123898029327393</left_val>
|
|
<right_val>0.2074414044618607</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 2 3 3 -1.</_>
|
|
<_>
|
|
7 3 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.0355630703270435e-003</threshold>
|
|
<left_val>-0.0887570977210999</left_val>
|
|
<right_val>0.5474855899810791</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 9 2 2 -1.</_>
|
|
<_>
|
|
23 9 1 1 2.</_>
|
|
<_>
|
|
22 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.9944230229593813e-004</threshold>
|
|
<left_val>0.0866240411996841</left_val>
|
|
<right_val>-0.4693656861782074</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 3 8 2 -1.</_>
|
|
<_>
|
|
5 4 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.5040599331259727e-003</threshold>
|
|
<left_val>-0.0921164527535439</left_val>
|
|
<right_val>0.5366359949111939</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 2 8 9 -1.</_>
|
|
<_>
|
|
22 2 4 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0158401206135750</threshold>
|
|
<left_val>0.3811694979667664</left_val>
|
|
<right_val>-0.0695484727621078</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 9 8 2 -1.</_>
|
|
<_>
|
|
5 9 4 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.7859481312334538e-003</threshold>
|
|
<left_val>0.0808151513338089</left_val>
|
|
<right_val>-0.5512672066688538</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 3 6 7 -1.</_>
|
|
<_>
|
|
34 3 2 7 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.8534379824995995e-003</threshold>
|
|
<left_val>0.2017164975404739</left_val>
|
|
<right_val>-0.2981612980365753</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 8 2 -1.</_>
|
|
<_>
|
|
9 0 4 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.2146628655027598e-005</threshold>
|
|
<left_val>0.1627535969018936</left_val>
|
|
<right_val>-0.2566182911396027</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 22 6 -1.</_>
|
|
<_>
|
|
23 0 11 3 2.</_>
|
|
<_>
|
|
12 3 11 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0483935698866844</threshold>
|
|
<left_val>0.0688307136297226</left_val>
|
|
<right_val>-0.5760238766670227</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 1 16 6 -1.</_>
|
|
<_>
|
|
14 1 8 3 2.</_>
|
|
<_>
|
|
22 4 8 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0459545888006687</threshold>
|
|
<left_val>0.0570243299007416</left_val>
|
|
<right_val>-0.6528798937797546</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 0 6 4 -1.</_>
|
|
<_>
|
|
32 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.1721630580723286e-003</threshold>
|
|
<left_val>0.1044374033808708</left_val>
|
|
<right_val>-0.2383860051631928</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 4 4 2 -1.</_>
|
|
<_>
|
|
4 4 2 1 2.</_>
|
|
<_>
|
|
6 5 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.0837051346898079e-003</threshold>
|
|
<left_val>-0.0812310427427292</left_val>
|
|
<right_val>0.5090131163597107</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 0 6 4 -1.</_>
|
|
<_>
|
|
32 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0164863802492619</threshold>
|
|
<left_val>-0.5516451001167297</left_val>
|
|
<right_val>0.0650377720594406</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 6 4 -1.</_>
|
|
<_>
|
|
11 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0158996805548668</threshold>
|
|
<left_val>-0.6092929840087891</left_val>
|
|
<right_val>0.0601791404187679</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 9 2 2 -1.</_>
|
|
<_>
|
|
23 9 1 1 2.</_>
|
|
<_>
|
|
22 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.7392228841781616e-004</threshold>
|
|
<left_val>-0.4709204137325287</left_val>
|
|
<right_val>0.0943275690078735</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 5 9 6 -1.</_>
|
|
<_>
|
|
20 5 3 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0451714508235455</threshold>
|
|
<left_val>-0.1572314053773880</left_val>
|
|
<right_val>0.2575055062770844</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 5 4 2 -1.</_>
|
|
<_>
|
|
31 5 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.9194729179143906e-003</threshold>
|
|
<left_val>-0.1199349015951157</left_val>
|
|
<right_val>0.4145897924900055</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 2 2 -1.</_>
|
|
<_>
|
|
2 1 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>4.8551987856626511e-003</threshold>
|
|
<left_val>0.0840639695525169</left_val>
|
|
<right_val>-0.5154470205307007</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 7 12 4 -1.</_>
|
|
<_>
|
|
23 7 4 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0497271716594696</threshold>
|
|
<left_val>-0.0806181132793427</left_val>
|
|
<right_val>0.2851048111915588</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 2 10 6 -1.</_>
|
|
<_>
|
|
7 4 10 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0259798001497984</threshold>
|
|
<left_val>0.2087969928979874</left_val>
|
|
<right_val>-0.1992343962192535</right_val></_></_></trees>
|
|
<stage_threshold>-1.5616159439086914</stage_threshold>
|
|
<parent>9</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 11 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 5 3 2 -1.</_>
|
|
<_>
|
|
12 5 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.6881880369037390e-003</threshold>
|
|
<left_val>-0.2008984982967377</left_val>
|
|
<right_val>0.5875923037528992</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 3 30 2 -1.</_>
|
|
<_>
|
|
18 3 10 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1251426041126251</threshold>
|
|
<left_val>-0.3375056087970734</left_val>
|
|
<right_val>0.3042429983615875</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 6 4 -1.</_>
|
|
<_>
|
|
6 1 6 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0107610300183296</threshold>
|
|
<left_val>-0.1700477004051209</left_val>
|
|
<right_val>0.4131394922733307</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 32 8 -1.</_>
|
|
<_>
|
|
23 3 16 4 2.</_>
|
|
<_>
|
|
7 7 16 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0579194091260433</threshold>
|
|
<left_val>0.1178041994571686</left_val>
|
|
<right_val>-0.5837575197219849</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 3 8 -1.</_>
|
|
<_>
|
|
7 7 3 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0142780495807529</threshold>
|
|
<left_val>-0.5259978771209717</left_val>
|
|
<right_val>0.1302458941936493</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 12 11 -1.</_>
|
|
<_>
|
|
21 0 4 11 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0927703380584717</threshold>
|
|
<left_val>-0.2880378067493439</left_val>
|
|
<right_val>0.2091802954673767</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 9 3 2 -1.</_>
|
|
<_>
|
|
0 10 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.2687300331890583e-003</threshold>
|
|
<left_val>-0.6854526996612549</left_val>
|
|
<right_val>0.0679697170853615</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 5 9 6 -1.</_>
|
|
<_>
|
|
34 5 3 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.1586877778172493e-003</threshold>
|
|
<left_val>0.1577699035406113</left_val>
|
|
<right_val>-0.3706142902374268</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 2 6 -1.</_>
|
|
<_>
|
|
4 3 2 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.6486739516258240e-003</threshold>
|
|
<left_val>0.1411574035882950</left_val>
|
|
<right_val>-0.3878993093967438</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 1 2 1 -1.</_>
|
|
<_>
|
|
27 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.3513078960822895e-005</threshold>
|
|
<left_val>-0.1704705953598023</left_val>
|
|
<right_val>0.0914910733699799</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 8 1 -1.</_>
|
|
<_>
|
|
18 0 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.1814000724116340e-005</threshold>
|
|
<left_val>-0.3362986147403717</left_val>
|
|
<right_val>0.1561553031206131</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 2 6 3 -1.</_>
|
|
<_>
|
|
33 3 6 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0105799995362759</threshold>
|
|
<left_val>0.5177596211433411</left_val>
|
|
<right_val>-0.1234643012285233</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 6 3 -1.</_>
|
|
<_>
|
|
6 3 6 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.6945222467184067e-003</threshold>
|
|
<left_val>-0.0931728109717369</left_val>
|
|
<right_val>0.5456228852272034</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 5 9 6 -1.</_>
|
|
<_>
|
|
34 5 3 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0251239091157913</threshold>
|
|
<left_val>0.0292009394615889</left_val>
|
|
<right_val>-0.3956165015697479</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 5 9 6 -1.</_>
|
|
<_>
|
|
8 5 3 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.9009890820598230e-005</threshold>
|
|
<left_val>0.1341307014226914</left_val>
|
|
<right_val>-0.3593293130397797</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 9 4 2 -1.</_>
|
|
<_>
|
|
23 9 2 1 2.</_>
|
|
<_>
|
|
21 10 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.1085460428148508e-003</threshold>
|
|
<left_val>0.0704471766948700</left_val>
|
|
<right_val>-0.5017598271369934</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 5 12 6 -1.</_>
|
|
<_>
|
|
19 5 4 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0846463814377785</threshold>
|
|
<left_val>-0.1407739967107773</left_val>
|
|
<right_val>0.2932718098163605</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 6 11 -1.</_>
|
|
<_>
|
|
20 0 3 11 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0468892790377140</threshold>
|
|
<left_val>0.5417395234107971</left_val>
|
|
<right_val>-0.0728389322757721</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 7 32 2 -1.</_>
|
|
<_>
|
|
9 7 16 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0199442394077778</threshold>
|
|
<left_val>-0.4986597895622253</left_val>
|
|
<right_val>0.0954836234450340</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 7 11 4 -1.</_>
|
|
<_>
|
|
24 9 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.3346049711108208e-003</threshold>
|
|
<left_val>-0.3493682146072388</left_val>
|
|
<right_val>0.0865515023469925</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 7 4 -1.</_>
|
|
<_>
|
|
6 2 7 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0125244697555900</threshold>
|
|
<left_val>0.4231724143028259</left_val>
|
|
<right_val>-0.1062488034367561</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 0 5 3 -1.</_>
|
|
<_>
|
|
34 1 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.4971290305256844e-003</threshold>
|
|
<left_val>-0.0771219208836555</left_val>
|
|
<right_val>0.3311249911785126</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 5 3 -1.</_>
|
|
<_>
|
|
6 1 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.3038600124418736e-003</threshold>
|
|
<left_val>0.4462710022926331</left_val>
|
|
<right_val>-0.0974933505058289</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 9 4 2 -1.</_>
|
|
<_>
|
|
36 9 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.4376739747822285e-003</threshold>
|
|
<left_val>-0.6324635148048401</left_val>
|
|
<right_val>0.0722433328628540</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 1 2 2 -1.</_>
|
|
<_>
|
|
16 1 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>4.0068682283163071e-003</threshold>
|
|
<left_val>0.0745110064744949</left_val>
|
|
<right_val>-0.5288599133491516</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 34 8 -1.</_>
|
|
<_>
|
|
24 0 17 4 2.</_>
|
|
<_>
|
|
7 4 17 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1693582981824875</threshold>
|
|
<left_val>0.0192001909017563</left_val>
|
|
<right_val>-0.9361991286277771</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 2 3 -1.</_>
|
|
<_>
|
|
17 0 1 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.1640910096466541e-003</threshold>
|
|
<left_val>-0.4525282979011536</left_val>
|
|
<right_val>0.0837530866265297</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 9 4 2 -1.</_>
|
|
<_>
|
|
36 9 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.1301470696926117e-003</threshold>
|
|
<left_val>0.0590294115245342</left_val>
|
|
<right_val>-0.5948619246482849</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 9 2 -1.</_>
|
|
<_>
|
|
11 0 3 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.0491809807717800e-003</threshold>
|
|
<left_val>0.1482004970312119</left_val>
|
|
<right_val>-0.2572931051254273</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 6 4 3 -1.</_>
|
|
<_>
|
|
34 7 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.5077878534793854e-003</threshold>
|
|
<left_val>-0.1097851023077965</left_val>
|
|
<right_val>0.4835182130336762</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 9 4 2 -1.</_>
|
|
<_>
|
|
20 9 2 1 2.</_>
|
|
<_>
|
|
22 10 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.0791060049086809e-003</threshold>
|
|
<left_val>0.0858939513564110</left_val>
|
|
<right_val>-0.4989733099937439</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 9 6 2 -1.</_>
|
|
<_>
|
|
36 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0113274296745658</threshold>
|
|
<left_val>-0.8853577971458435</left_val>
|
|
<right_val>0.0125310197472572</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 2 8 9 -1.</_>
|
|
<_>
|
|
22 2 4 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0790901929140091</threshold>
|
|
<left_val>0.5353099703788757</left_val>
|
|
<right_val>-0.0705346763134003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 5 12 6 -1.</_>
|
|
<_>
|
|
25 5 4 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0893929898738861</threshold>
|
|
<left_val>-0.0239771790802479</left_val>
|
|
<right_val>0.5472316741943359</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 7 8 4 -1.</_>
|
|
<_>
|
|
16 7 4 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0116421598941088</threshold>
|
|
<left_val>0.2497332990169525</left_val>
|
|
<right_val>-0.1484736949205399</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 1 6 4 -1.</_>
|
|
<_>
|
|
25 1 3 4 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0781690627336502</threshold>
|
|
<left_val>0.0476356297731400</left_val>
|
|
<right_val>-0.5139645934104919</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 7 2 2 -1.</_>
|
|
<_>
|
|
15 7 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.2542597986757755e-003</threshold>
|
|
<left_val>-0.4859730005264282</left_val>
|
|
<right_val>0.0724953785538673</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 7 11 4 -1.</_>
|
|
<_>
|
|
24 9 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0583055093884468</threshold>
|
|
<left_val>0.0162678994238377</left_val>
|
|
<right_val>-0.5886459946632385</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 7 11 4 -1.</_>
|
|
<_>
|
|
10 9 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.8591919951140881e-003</threshold>
|
|
<left_val>-0.3192627131938934</left_val>
|
|
<right_val>0.1347427070140839</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 5 3 2 -1.</_>
|
|
<_>
|
|
33 5 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.9373338911682367e-003</threshold>
|
|
<left_val>0.4283975958824158</left_val>
|
|
<right_val>-0.0922875404357910</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 9 2 2 -1.</_>
|
|
<_>
|
|
15 9 1 1 2.</_>
|
|
<_>
|
|
16 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.7391098885564134e-005</threshold>
|
|
<left_val>0.2044845968484879</left_val>
|
|
<right_val>-0.1851540058851242</right_val></_></_></trees>
|
|
<stage_threshold>-1.4751789569854736</stage_threshold>
|
|
<parent>10</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 12 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 2 3 4 -1.</_>
|
|
<_>
|
|
12 3 1 4 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-6.1791189946234226e-003</threshold>
|
|
<left_val>0.2858026921749115</left_val>
|
|
<right_val>-0.3700585067272186</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 12 5 -1.</_>
|
|
<_>
|
|
21 0 6 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0418217703700066</threshold>
|
|
<left_val>-0.5357587933540344</left_val>
|
|
<right_val>0.1682717055082321</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 4 3 4 -1.</_>
|
|
<_>
|
|
6 6 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.7136882096529007e-003</threshold>
|
|
<left_val>-0.3200174868106842</left_val>
|
|
<right_val>0.2682298123836517</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
38 7 7 4 -1.</_>
|
|
<_>
|
|
38 9 7 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8650460299104452e-003</threshold>
|
|
<left_val>-0.4246250987052918</left_val>
|
|
<right_val>0.1382745951414108</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 4 3 4 -1.</_>
|
|
<_>
|
|
21 4 3 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>2.9460960067808628e-003</threshold>
|
|
<left_val>-0.3978421986103058</left_val>
|
|
<right_val>0.2065467983484268</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 0 7 4 -1.</_>
|
|
<_>
|
|
35 1 7 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.6483702026307583e-003</threshold>
|
|
<left_val>-0.1907518059015274</left_val>
|
|
<right_val>0.2478605061769486</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 7 6 4 -1.</_>
|
|
<_>
|
|
0 9 6 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.3228039499372244e-003</threshold>
|
|
<left_val>-0.5213400721549988</left_val>
|
|
<right_val>0.1056229025125504</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 3 6 8 -1.</_>
|
|
<_>
|
|
35 3 2 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.4393101967871189e-003</threshold>
|
|
<left_val>0.1678518056869507</left_val>
|
|
<right_val>-0.2156163007020950</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 4 1 -1.</_>
|
|
<_>
|
|
17 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8299659607000649e-004</threshold>
|
|
<left_val>-0.3806549906730652</left_val>
|
|
<right_val>0.1493480950593948</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 2 12 9 -1.</_>
|
|
<_>
|
|
34 2 4 9 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0132823698222637</threshold>
|
|
<left_val>0.0860496163368225</left_val>
|
|
<right_val>-0.2377997934818268</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 3 3 -1.</_>
|
|
<_>
|
|
6 3 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0114170601591468</threshold>
|
|
<left_val>0.4011794030666351</left_val>
|
|
<right_val>-0.1348436027765274</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 3 12 8 -1.</_>
|
|
<_>
|
|
34 3 4 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1476902067661285</threshold>
|
|
<left_val>-0.4884426891803742</left_val>
|
|
<right_val>0.0159332603216171</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 3 12 8 -1.</_>
|
|
<_>
|
|
7 3 4 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.2284119515679777e-004</threshold>
|
|
<left_val>0.1182610020041466</left_val>
|
|
<right_val>-0.3862318992614746</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 8 2 2 -1.</_>
|
|
<_>
|
|
25 8 1 1 2.</_>
|
|
<_>
|
|
24 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.6730729334522039e-005</threshold>
|
|
<left_val>0.1051127016544342</left_val>
|
|
<right_val>-0.1233211010694504</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 8 2 2 -1.</_>
|
|
<_>
|
|
19 8 1 1 2.</_>
|
|
<_>
|
|
20 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.3103349162265658e-004</threshold>
|
|
<left_val>0.0800743401050568</left_val>
|
|
<right_val>-0.5640835165977478</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 8 2 2 -1.</_>
|
|
<_>
|
|
25 8 1 1 2.</_>
|
|
<_>
|
|
24 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.7611482013016939e-004</threshold>
|
|
<left_val>-0.4112376868724823</left_val>
|
|
<right_val>0.0354818105697632</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 8 2 2 -1.</_>
|
|
<_>
|
|
19 8 1 1 2.</_>
|
|
<_>
|
|
20 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.6012110649608076e-004</threshold>
|
|
<left_val>-0.3928872048854828</left_val>
|
|
<right_val>0.1072937995195389</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 22 2 -1.</_>
|
|
<_>
|
|
31 0 11 1 2.</_>
|
|
<_>
|
|
20 1 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0113291796296835</threshold>
|
|
<left_val>-0.0776691213250160</left_val>
|
|
<right_val>0.3063041865825653</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 22 2 -1.</_>
|
|
<_>
|
|
3 0 11 1 2.</_>
|
|
<_>
|
|
14 1 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.5942242294549942e-003</threshold>
|
|
<left_val>0.4026220142841339</left_val>
|
|
<right_val>-0.1134836971759796</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
29 0 3 9 -1.</_>
|
|
<_>
|
|
30 3 1 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0110881095752120</threshold>
|
|
<left_val>0.1311223059892654</left_val>
|
|
<right_val>-0.1658211052417755</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 4 6 3 -1.</_>
|
|
<_>
|
|
14 4 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.3962128907442093e-003</threshold>
|
|
<left_val>0.1844637989997864</left_val>
|
|
<right_val>-0.2124554067850113</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
41 0 4 2 -1.</_>
|
|
<_>
|
|
42 1 2 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>1.4491369947791100e-003</threshold>
|
|
<left_val>0.1329172998666763</left_val>
|
|
<right_val>-0.3422419130802155</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 9 4 2 -1.</_>
|
|
<_>
|
|
7 9 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.3471130989491940e-003</threshold>
|
|
<left_val>-0.5937396883964539</left_val>
|
|
<right_val>0.0526771508157253</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 5 12 4 -1.</_>
|
|
<_>
|
|
25 5 4 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0330210588872433</threshold>
|
|
<left_val>0.2065508961677551</left_val>
|
|
<right_val>-0.1164072006940842</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 11 9 -1.</_>
|
|
<_>
|
|
10 3 11 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0175966992974281</threshold>
|
|
<left_val>0.1161578968167305</left_val>
|
|
<right_val>-0.2877149879932404</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 4 44 6 -1.</_>
|
|
<_>
|
|
23 4 22 3 2.</_>
|
|
<_>
|
|
1 7 22 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0906155630946159</threshold>
|
|
<left_val>0.0494296513497829</left_val>
|
|
<right_val>-0.5959839224815369</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 1 42 9 -1.</_>
|
|
<_>
|
|
15 4 14 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.4197323918342590</threshold>
|
|
<left_val>-0.9176278710365295</left_val>
|
|
<right_val>0.0291445106267929</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 4 3 2 -1.</_>
|
|
<_>
|
|
40 5 1 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-4.5256591401994228e-003</threshold>
|
|
<left_val>0.3092944920063019</left_val>
|
|
<right_val>-0.1158910989761353</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 3 2 6 -1.</_>
|
|
<_>
|
|
2 3 1 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.1792598747415468e-005</threshold>
|
|
<left_val>0.1230070963501930</left_val>
|
|
<right_val>-0.2696146965026856</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 3 3 3 -1.</_>
|
|
<_>
|
|
32 4 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>9.3048512935638428e-003</threshold>
|
|
<left_val>-0.1631172001361847</left_val>
|
|
<right_val>0.4543595910072327</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 12 11 -1.</_>
|
|
<_>
|
|
22 0 6 11 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1818266957998276</threshold>
|
|
<left_val>-0.0654629319906235</left_val>
|
|
<right_val>0.5240393280982971</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 6 11 4 -1.</_>
|
|
<_>
|
|
24 8 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.6404958963394165e-003</threshold>
|
|
<left_val>-0.2845597863197327</left_val>
|
|
<right_val>0.0992625430226326</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 9 12 1 -1.</_>
|
|
<_>
|
|
19 9 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.8155450969934464e-003</threshold>
|
|
<left_val>-0.1807647943496704</left_val>
|
|
<right_val>0.1917788982391357</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 3 3 3 -1.</_>
|
|
<_>
|
|
32 4 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0204726494848728</threshold>
|
|
<left_val>-0.0425470508635044</left_val>
|
|
<right_val>0.4989938139915466</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 3 3 3 -1.</_>
|
|
<_>
|
|
13 4 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.9484594538807869e-003</threshold>
|
|
<left_val>0.4586462974548340</left_val>
|
|
<right_val>-0.0820730701088905</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 0 6 2 -1.</_>
|
|
<_>
|
|
32 0 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.6835189461708069e-003</threshold>
|
|
<left_val>0.0704604163765907</left_val>
|
|
<right_val>-0.4919121861457825</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 9 4 2 -1.</_>
|
|
<_>
|
|
10 10 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.8594329059123993e-004</threshold>
|
|
<left_val>-0.2572205960750580</left_val>
|
|
<right_val>0.1333848983049393</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
42 0 2 3 -1.</_>
|
|
<_>
|
|
42 0 1 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>8.5325147956609726e-003</threshold>
|
|
<left_val>0.0542962700128555</left_val>
|
|
<right_val>-0.4859777092933655</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 3 2 -1.</_>
|
|
<_>
|
|
3 0 3 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.9188990592956543e-003</threshold>
|
|
<left_val>-0.3684445917606354</left_val>
|
|
<right_val>0.0876302868127823</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
37 2 3 4 -1.</_>
|
|
<_>
|
|
37 3 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.1809879951179028e-003</threshold>
|
|
<left_val>0.2687276005744934</left_val>
|
|
<right_val>-0.1306326985359192</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 9 4 -1.</_>
|
|
<_>
|
|
5 1 9 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.3669425696134567e-003</threshold>
|
|
<left_val>0.3798243999481201</left_val>
|
|
<right_val>-0.0849703624844551</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
43 9 2 2 -1.</_>
|
|
<_>
|
|
43 10 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.1493609528988600e-003</threshold>
|
|
<left_val>0.0673641711473465</left_val>
|
|
<right_val>-0.3813815116882324</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 14 2 -1.</_>
|
|
<_>
|
|
14 0 7 1 2.</_>
|
|
<_>
|
|
21 1 7 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.9133054241538048e-003</threshold>
|
|
<left_val>0.0611798018217087</left_val>
|
|
<right_val>-0.4712427854537964</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 6 4 2 -1.</_>
|
|
<_>
|
|
34 7 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.3651650883257389e-003</threshold>
|
|
<left_val>-0.1940695047378540</left_val>
|
|
<right_val>0.1695784926414490</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 0 8 1 -1.</_>
|
|
<_>
|
|
20 0 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.9752619563369080e-005</threshold>
|
|
<left_val>-0.3129621148109436</left_val>
|
|
<right_val>0.0982444435358047</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 6 4 4 -1.</_>
|
|
<_>
|
|
23 6 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.8905829899013042e-003</threshold>
|
|
<left_val>0.2401164025068283</left_val>
|
|
<right_val>-0.0405179113149643</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 9 44 2 -1.</_>
|
|
<_>
|
|
0 9 22 1 2.</_>
|
|
<_>
|
|
22 10 22 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0166922602802515</threshold>
|
|
<left_val>-0.5829721093177795</left_val>
|
|
<right_val>0.0518608801066875</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 32 5 -1.</_>
|
|
<_>
|
|
10 0 16 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2694517970085144</threshold>
|
|
<left_val>0.0212223697453737</left_val>
|
|
<right_val>-0.5065090060234070</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 32 5 -1.</_>
|
|
<_>
|
|
19 0 16 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2598569989204407</threshold>
|
|
<left_val>0.0430213287472725</left_val>
|
|
<right_val>-0.6970685124397278</right_val></_></_></trees>
|
|
<stage_threshold>-1.5896049737930298</stage_threshold>
|
|
<parent>11</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 13 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 4 3 3 -1.</_>
|
|
<_>
|
|
13 5 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>9.6479244530200958e-003</threshold>
|
|
<left_val>-0.2149965018033981</left_val>
|
|
<right_val>0.4506401121616364</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 0 18 7 -1.</_>
|
|
<_>
|
|
19 0 9 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1170708984136581</threshold>
|
|
<left_val>-0.4592719972133637</left_val>
|
|
<right_val>0.1499751061201096</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 2 3 4 -1.</_>
|
|
<_>
|
|
9 3 3 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-7.2843180969357491e-003</threshold>
|
|
<left_val>0.2055986970663071</left_val>
|
|
<right_val>-0.3498862087726593</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 2 2 1 -1.</_>
|
|
<_>
|
|
24 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.3017291318392381e-005</threshold>
|
|
<left_val>-0.2912847995758057</left_val>
|
|
<right_val>0.1447937935590744</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 10 4 -1.</_>
|
|
<_>
|
|
5 3 10 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0163135603070259</threshold>
|
|
<left_val>0.3609958887100220</left_val>
|
|
<right_val>-0.1488208025693893</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 26 9 -1.</_>
|
|
<_>
|
|
12 0 13 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.3846439123153687</threshold>
|
|
<left_val>0.0471165515482426</left_val>
|
|
<right_val>-0.5435642004013062</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 9 6 2 -1.</_>
|
|
<_>
|
|
1 10 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.4735490519087762e-005</threshold>
|
|
<left_val>-0.4715361893177033</left_val>
|
|
<right_val>0.1013057008385658</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 2 2 1 -1.</_>
|
|
<_>
|
|
24 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8128800913691521e-003</threshold>
|
|
<left_val>0.0251902397722006</left_val>
|
|
<right_val>-0.3885841071605682</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 3 9 8 -1.</_>
|
|
<_>
|
|
21 3 3 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0656641125679016</threshold>
|
|
<left_val>-0.1998129934072495</left_val>
|
|
<right_val>0.2782042026519775</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 5 11 6 -1.</_>
|
|
<_>
|
|
26 8 11 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0366914011538029</threshold>
|
|
<left_val>-0.3214158117771149</left_val>
|
|
<right_val>0.0832958593964577</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 5 22 4 -1.</_>
|
|
<_>
|
|
11 5 11 2 2.</_>
|
|
<_>
|
|
22 7 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0199371706694365</threshold>
|
|
<left_val>0.0962692573666573</left_val>
|
|
<right_val>-0.4887213110923767</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 0 20 6 -1.</_>
|
|
<_>
|
|
24 0 10 3 2.</_>
|
|
<_>
|
|
14 3 10 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0481815114617348</threshold>
|
|
<left_val>-0.4369094073772430</left_val>
|
|
<right_val>0.0408011004328728</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 12 3 -1.</_>
|
|
<_>
|
|
11 0 4 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.4909900538623333e-003</threshold>
|
|
<left_val>0.1523717045783997</left_val>
|
|
<right_val>-0.2879317104816437</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
41 7 4 4 -1.</_>
|
|
<_>
|
|
41 8 4 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1715220063924789e-003</threshold>
|
|
<left_val>-0.4562051892280579</left_val>
|
|
<right_val>0.0908001735806465</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 3 6 6 -1.</_>
|
|
<_>
|
|
3 5 2 2 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0190357100218534</threshold>
|
|
<left_val>0.1617525964975357</left_val>
|
|
<right_val>-0.2411530017852783</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
28 0 6 4 -1.</_>
|
|
<_>
|
|
30 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0171191804111004</threshold>
|
|
<left_val>-0.5132644176483154</left_val>
|
|
<right_val>0.0424724705517292</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 6 4 -1.</_>
|
|
<_>
|
|
12 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0182200502604246</threshold>
|
|
<left_val>-0.7032442092895508</left_val>
|
|
<right_val>0.0449626408517361</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
40 2 3 3 -1.</_>
|
|
<_>
|
|
39 3 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-8.9265108108520508e-003</threshold>
|
|
<left_val>0.4314051866531372</left_val>
|
|
<right_val>-0.1915881037712097</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 1 11 8 -1.</_>
|
|
<_>
|
|
10 3 11 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0835192427039146</threshold>
|
|
<left_val>-0.6153619289398193</left_val>
|
|
<right_val>0.0748868286609650</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 8 2 2 -1.</_>
|
|
<_>
|
|
23 8 1 1 2.</_>
|
|
<_>
|
|
22 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.6072250804863870e-004</threshold>
|
|
<left_val>0.0579051412642002</left_val>
|
|
<right_val>-0.4123516082763672</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 3 3 -1.</_>
|
|
<_>
|
|
7 4 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.9997381865978241e-003</threshold>
|
|
<left_val>-0.0698446407914162</left_val>
|
|
<right_val>0.5680745840072632</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 0 8 11 -1.</_>
|
|
<_>
|
|
19 0 4 11 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0846046805381775</threshold>
|
|
<left_val>0.5883864164352417</left_val>
|
|
<right_val>-0.0644385591149330</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 10 22 1 -1.</_>
|
|
<_>
|
|
11 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0257730204612017</threshold>
|
|
<left_val>-0.7448570132255554</left_val>
|
|
<right_val>0.0581265501677990</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 24 6 -1.</_>
|
|
<_>
|
|
24 0 12 3 2.</_>
|
|
<_>
|
|
12 3 12 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0869977995753288</threshold>
|
|
<left_val>8.3158798515796661e-003</left_val>
|
|
<right_val>-0.5005766749382019</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 5 4 2 -1.</_>
|
|
<_>
|
|
19 5 4 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-4.9193361774086952e-003</threshold>
|
|
<left_val>-0.5026851892471314</left_val>
|
|
<right_val>0.0622738115489483</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
40 3 3 3 -1.</_>
|
|
<_>
|
|
39 4 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>7.9372245818376541e-003</threshold>
|
|
<left_val>-0.1065687015652657</left_val>
|
|
<right_val>0.4939740896224976</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 4 6 1 -1.</_>
|
|
<_>
|
|
2 4 3 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>2.3460648953914642e-003</threshold>
|
|
<left_val>0.0781724527478218</left_val>
|
|
<right_val>-0.4353787899017334</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 3 10 6 -1.</_>
|
|
<_>
|
|
35 3 5 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0241736993193626</threshold>
|
|
<left_val>0.1493041962385178</left_val>
|
|
<right_val>-0.1878706067800522</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 6 3 -1.</_>
|
|
<_>
|
|
5 3 6 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.0533721223473549e-003</threshold>
|
|
<left_val>-0.1077732965350151</left_val>
|
|
<right_val>0.3367913067340851</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 2 18 9 -1.</_>
|
|
<_>
|
|
24 2 6 9 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1784784048795700</threshold>
|
|
<left_val>0.3253648877143860</left_val>
|
|
<right_val>-0.0435284599661827</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 1 8 -1.</_>
|
|
<_>
|
|
0 4 1 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.2971222475171089e-003</threshold>
|
|
<left_val>-0.5468376278877258</left_val>
|
|
<right_val>0.0642068088054657</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 0 2 2 -1.</_>
|
|
<_>
|
|
27 0 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-4.5331679284572601e-003</threshold>
|
|
<left_val>-0.2740227878093720</left_val>
|
|
<right_val>0.0696792080998421</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 1 26 4 -1.</_>
|
|
<_>
|
|
7 1 13 2 2.</_>
|
|
<_>
|
|
20 3 13 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.4196969829499722e-003</threshold>
|
|
<left_val>-0.2673664093017578</left_val>
|
|
<right_val>0.1277797967195511</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 8 9 3 -1.</_>
|
|
<_>
|
|
37 8 3 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0242564193904400</threshold>
|
|
<left_val>-0.7333993911743164</left_val>
|
|
<right_val>0.0348337702453136</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 8 9 3 -1.</_>
|
|
<_>
|
|
5 8 3 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0120942499488592</threshold>
|
|
<left_val>0.0672335624694824</left_val>
|
|
<right_val>-0.4419814050197601</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 8 2 2 -1.</_>
|
|
<_>
|
|
23 8 1 1 2.</_>
|
|
<_>
|
|
22 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.1668329029344022e-004</threshold>
|
|
<left_val>-0.3479251861572266</left_val>
|
|
<right_val>0.0869572535157204</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 3 3 3 -1.</_>
|
|
<_>
|
|
6 4 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>6.6463160328567028e-003</threshold>
|
|
<left_val>-0.0748405605554581</left_val>
|
|
<right_val>0.4297528862953186</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 3 10 3 -1.</_>
|
|
<_>
|
|
35 3 5 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.7216906249523163e-003</threshold>
|
|
<left_val>0.0659606382250786</left_val>
|
|
<right_val>-0.1169529035687447</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 2 2 1 -1.</_>
|
|
<_>
|
|
20 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.8271831726888195e-005</threshold>
|
|
<left_val>-0.2632341980934143</left_val>
|
|
<right_val>0.1211720034480095</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 3 12 8 -1.</_>
|
|
<_>
|
|
24 3 6 8 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0279251895844936</threshold>
|
|
<left_val>0.1197874993085861</left_val>
|
|
<right_val>-0.1062619984149933</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 10 3 -1.</_>
|
|
<_>
|
|
5 3 5 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.6273279692977667e-003</threshold>
|
|
<left_val>0.1256345957517624</left_val>
|
|
<right_val>-0.2633624970912933</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 6 9 5 -1.</_>
|
|
<_>
|
|
22 6 3 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0118683502078056</threshold>
|
|
<left_val>0.2715075910091400</left_val>
|
|
<right_val>-0.0586201399564743</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 0 6 11 -1.</_>
|
|
<_>
|
|
22 0 3 11 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0441535599529743</threshold>
|
|
<left_val>-0.1150353029370308</left_val>
|
|
<right_val>0.3142670094966888</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 3 9 -1.</_>
|
|
<_>
|
|
22 3 1 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0240563601255417</threshold>
|
|
<left_val>0.0755757391452789</left_val>
|
|
<right_val>-0.4231755137443543</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 5 2 2 -1.</_>
|
|
<_>
|
|
12 5 1 1 2.</_>
|
|
<_>
|
|
13 6 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.9733301643282175e-004</threshold>
|
|
<left_val>-0.0975871905684471</left_val>
|
|
<right_val>0.3287664055824280</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 9 8 2 -1.</_>
|
|
<_>
|
|
24 9 4 1 2.</_>
|
|
<_>
|
|
20 10 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.4465990290045738e-003</threshold>
|
|
<left_val>-0.7151030898094177</left_val>
|
|
<right_val>0.0252250991761684</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 7 2 2 -1.</_>
|
|
<_>
|
|
13 7 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-8.1870909780263901e-003</threshold>
|
|
<left_val>-0.7668504714965820</left_val>
|
|
<right_val>0.0325768813490868</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 5 3 3 -1.</_>
|
|
<_>
|
|
30 6 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.7694210875779390e-003</threshold>
|
|
<left_val>0.2407584935426712</left_val>
|
|
<right_val>-0.1444685012102127</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 1 3 3 -1.</_>
|
|
<_>
|
|
8 2 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.9827328659594059e-003</threshold>
|
|
<left_val>-0.0796374008059502</left_val>
|
|
<right_val>0.3364818990230560</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 1 4 3 -1.</_>
|
|
<_>
|
|
34 2 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.5759701430797577e-003</threshold>
|
|
<left_val>-0.0772878602147102</left_val>
|
|
<right_val>0.3606812059879303</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 1 5 3 -1.</_>
|
|
<_>
|
|
7 2 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.7349949125200510e-003</threshold>
|
|
<left_val>0.3505760133266449</left_val>
|
|
<right_val>-0.1024150028824806</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 1 1 2 -1.</_>
|
|
<_>
|
|
31 1 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>3.2173299696296453e-003</threshold>
|
|
<left_val>0.0646449029445648</left_val>
|
|
<right_val>-0.5068235993385315</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 8 2 2 -1.</_>
|
|
<_>
|
|
21 8 1 1 2.</_>
|
|
<_>
|
|
22 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.2299688104540110e-004</threshold>
|
|
<left_val>0.0554051995277405</left_val>
|
|
<right_val>-0.4995099008083344</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 9 10 2 -1.</_>
|
|
<_>
|
|
26 10 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.8098989645950496e-004</threshold>
|
|
<left_val>-0.2483759969472885</left_val>
|
|
<right_val>0.0749513134360313</right_val></_></_></trees>
|
|
<stage_threshold>-1.5319960117340088</stage_threshold>
|
|
<parent>12</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 14 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 6 3 -1.</_>
|
|
<_>
|
|
11 2 2 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0325478985905647</threshold>
|
|
<left_val>0.2570826113224030</left_val>
|
|
<right_val>-0.3294408917427063</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 12 4 -1.</_>
|
|
<_>
|
|
21 0 6 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0467822700738907</threshold>
|
|
<left_val>-0.3355267047882080</left_val>
|
|
<right_val>0.1495001018047333</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 5 2 6 -1.</_>
|
|
<_>
|
|
12 5 1 3 2.</_>
|
|
<_>
|
|
13 8 1 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.1599030112847686e-003</threshold>
|
|
<left_val>-0.2149461060762405</left_val>
|
|
<right_val>0.2950156033039093</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 4 30 3 -1.</_>
|
|
<_>
|
|
12 4 15 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0476444214582443</threshold>
|
|
<left_val>-0.1712875068187714</left_val>
|
|
<right_val>0.0994972735643387</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 4 30 3 -1.</_>
|
|
<_>
|
|
19 4 15 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0623017288744450</threshold>
|
|
<left_val>-0.3829692006111145</left_val>
|
|
<right_val>0.1846942007541657</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 5 6 6 -1.</_>
|
|
<_>
|
|
39 8 6 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0163931306451559</threshold>
|
|
<left_val>-0.4879460930824280</left_val>
|
|
<right_val>0.1913191974163055</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 3 6 4 -1.</_>
|
|
<_>
|
|
2 3 3 2 2.</_>
|
|
<_>
|
|
5 5 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.3293199054896832e-003</threshold>
|
|
<left_val>-0.1820959001779556</left_val>
|
|
<right_val>0.2831347882747650</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 0 4 1 -1.</_>
|
|
<_>
|
|
25 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.4573478884994984e-003</threshold>
|
|
<left_val>0.0393458008766174</left_val>
|
|
<right_val>-0.5209634900093079</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 10 12 1 -1.</_>
|
|
<_>
|
|
15 10 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.5518420152366161e-003</threshold>
|
|
<left_val>0.2180961072444916</left_val>
|
|
<right_val>-0.2021456062793732</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 1 2 1 -1.</_>
|
|
<_>
|
|
27 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.6448559947311878e-003</threshold>
|
|
<left_val>-9.7657637670636177e-003</left_val>
|
|
<right_val>-0.5844091773033142</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 1 2 1 -1.</_>
|
|
<_>
|
|
17 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.3177100704051554e-005</threshold>
|
|
<left_val>-0.2912124097347260</left_val>
|
|
<right_val>0.1344538927078247</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 18 2 -1.</_>
|
|
<_>
|
|
29 0 9 1 2.</_>
|
|
<_>
|
|
20 1 9 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.0287282317876816e-003</threshold>
|
|
<left_val>0.2797578871250153</left_val>
|
|
<right_val>-0.1085413992404938</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 9 8 2 -1.</_>
|
|
<_>
|
|
16 9 4 1 2.</_>
|
|
<_>
|
|
20 10 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.7501820111647248e-003</threshold>
|
|
<left_val>0.0802451893687248</left_val>
|
|
<right_val>-0.5104030966758728</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 2 4 5 -1.</_>
|
|
<_>
|
|
36 3 2 5 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.8289866000413895e-003</threshold>
|
|
<left_val>0.2220333963632584</left_val>
|
|
<right_val>-0.2527970969676971</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 6 3 -1.</_>
|
|
<_>
|
|
9 0 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0113553004339337</threshold>
|
|
<left_val>-0.5647733211517334</left_val>
|
|
<right_val>0.0617882199585438</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 3 4 3 -1.</_>
|
|
<_>
|
|
38 4 4 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>6.1084949411451817e-003</threshold>
|
|
<left_val>-0.1297360062599182</left_val>
|
|
<right_val>0.3168272972106934</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 8 1 2 -1.</_>
|
|
<_>
|
|
14 8 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-1.0406709770904854e-004</threshold>
|
|
<left_val>0.1290712952613831</left_val>
|
|
<right_val>-0.2594802975654602</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 7 2 2 -1.</_>
|
|
<_>
|
|
31 7 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>2.6019159704446793e-003</threshold>
|
|
<left_val>0.0484216883778572</left_val>
|
|
<right_val>-0.5464897155761719</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 7 2 2 -1.</_>
|
|
<_>
|
|
14 7 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.9403157792985439e-003</threshold>
|
|
<left_val>-0.5511441230773926</left_val>
|
|
<right_val>0.0597233809530735</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 0 6 9 -1.</_>
|
|
<_>
|
|
34 0 2 9 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.0788599289953709e-003</threshold>
|
|
<left_val>0.0797432884573936</left_val>
|
|
<right_val>-0.1792725026607513</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 3 3 3 -1.</_>
|
|
<_>
|
|
13 4 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-8.8134910911321640e-003</threshold>
|
|
<left_val>0.3801774978637695</left_val>
|
|
<right_val>-0.0863765701651573</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 1 18 4 -1.</_>
|
|
<_>
|
|
23 1 9 2 2.</_>
|
|
<_>
|
|
14 3 9 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0239835903048515</threshold>
|
|
<left_val>-0.4964531064033508</left_val>
|
|
<right_val>0.0542261414229870</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 4 3 -1.</_>
|
|
<_>
|
|
9 0 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.9569390937685966e-003</threshold>
|
|
<left_val>0.0516635812819004</left_val>
|
|
<right_val>-0.5679935812950134</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 3 4 3 -1.</_>
|
|
<_>
|
|
38 4 4 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0133595596998930</threshold>
|
|
<left_val>0.2372480034828186</left_val>
|
|
<right_val>-0.0320837795734406</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 3 3 4 -1.</_>
|
|
<_>
|
|
7 4 1 4 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>8.6046587675809860e-003</threshold>
|
|
<left_val>-0.0824632793664932</left_val>
|
|
<right_val>0.4001151025295258</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
44 0 1 8 -1.</_>
|
|
<_>
|
|
44 4 1 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.4893424063920975e-003</threshold>
|
|
<left_val>-0.5281581878662109</left_val>
|
|
<right_val>0.0683831572532654</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 5 6 6 -1.</_>
|
|
<_>
|
|
0 8 6 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.7398498542606831e-003</threshold>
|
|
<left_val>-0.4350892007350922</left_val>
|
|
<right_val>0.0635677129030228</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 0 2 2 -1.</_>
|
|
<_>
|
|
27 0 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>5.4778340272605419e-003</threshold>
|
|
<left_val>0.0241151805967093</left_val>
|
|
<right_val>-0.4536423087120056</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 0 2 2 -1.</_>
|
|
<_>
|
|
18 0 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.3739761933684349e-003</threshold>
|
|
<left_val>-0.4852677881717682</left_val>
|
|
<right_val>0.0625298321247101</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 12 8 -1.</_>
|
|
<_>
|
|
24 3 4 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0651551634073257</threshold>
|
|
<left_val>0.3358686864376068</left_val>
|
|
<right_val>-0.1196988970041275</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 5 2 -1.</_>
|
|
<_>
|
|
9 1 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.1082800123840570e-003</threshold>
|
|
<left_val>-0.0936680883169174</left_val>
|
|
<right_val>0.3156951069831848</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 0 4 3 -1.</_>
|
|
<_>
|
|
34 1 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.6411409750580788e-003</threshold>
|
|
<left_val>0.4190236032009125</left_val>
|
|
<right_val>-0.0524465292692184</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 5 1 6 -1.</_>
|
|
<_>
|
|
0 8 1 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0100506497547030</threshold>
|
|
<left_val>0.0697155073285103</left_val>
|
|
<right_val>-0.4827950000762940</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 9 2 2 -1.</_>
|
|
<_>
|
|
23 9 1 1 2.</_>
|
|
<_>
|
|
22 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.4478779677301645e-004</threshold>
|
|
<left_val>-0.3920600116252899</left_val>
|
|
<right_val>0.0266355704516172</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 9 1 2 -1.</_>
|
|
<_>
|
|
3 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.2866038711508736e-005</threshold>
|
|
<left_val>-0.2828755080699921</left_val>
|
|
<right_val>0.0988063216209412</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 3 26 6 -1.</_>
|
|
<_>
|
|
23 3 13 3 2.</_>
|
|
<_>
|
|
10 6 13 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0556598007678986</threshold>
|
|
<left_val>0.0345925614237785</left_val>
|
|
<right_val>-0.5793660283088684</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 11 8 -1.</_>
|
|
<_>
|
|
10 2 11 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0190272405743599</threshold>
|
|
<left_val>0.1279810965061188</left_val>
|
|
<right_val>-0.2225265055894852</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
40 2 3 3 -1.</_>
|
|
<_>
|
|
39 3 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.4886029101908207e-003</threshold>
|
|
<left_val>0.2212001979351044</left_val>
|
|
<right_val>-0.1424780935049057</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 20 2 -1.</_>
|
|
<_>
|
|
9 0 10 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.1977212578058243e-003</threshold>
|
|
<left_val>0.1141979023814201</left_val>
|
|
<right_val>-0.2536773085594177</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 3 12 8 -1.</_>
|
|
<_>
|
|
25 3 4 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1561601012945175</threshold>
|
|
<left_val>-0.0246981307864189</left_val>
|
|
<right_val>0.6497715711593628</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 3 12 8 -1.</_>
|
|
<_>
|
|
16 3 4 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1039426997303963</threshold>
|
|
<left_val>-0.0475918203592300</left_val>
|
|
<right_val>0.6708809137344360</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 10 15 1 -1.</_>
|
|
<_>
|
|
20 10 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.3722560144960880e-003</threshold>
|
|
<left_val>-0.2534680068492889</left_val>
|
|
<right_val>0.1275814026594162</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 3 3 -1.</_>
|
|
<_>
|
|
6 3 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>6.3766101375222206e-003</threshold>
|
|
<left_val>-0.0806954428553581</left_val>
|
|
<right_val>0.4279245138168335</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 2 4 3 -1.</_>
|
|
<_>
|
|
36 3 2 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0133687499910593</threshold>
|
|
<left_val>0.1052142009139061</left_val>
|
|
<right_val>-0.0477701015770435</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 3 2 6 -1.</_>
|
|
<_>
|
|
3 3 1 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.6055800087051466e-005</threshold>
|
|
<left_val>0.1201763972640038</left_val>
|
|
<right_val>-0.2598378956317902</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 9 10 2 -1.</_>
|
|
<_>
|
|
23 9 5 1 2.</_>
|
|
<_>
|
|
18 10 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.6153340004384518e-003</threshold>
|
|
<left_val>0.0496119409799576</left_val>
|
|
<right_val>-0.4055382013320923</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 7 2 2 -1.</_>
|
|
<_>
|
|
5 7 1 1 2.</_>
|
|
<_>
|
|
6 8 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.5704872617498040e-004</threshold>
|
|
<left_val>0.3632655143737793</left_val>
|
|
<right_val>-0.0827535986900330</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 8 4 3 -1.</_>
|
|
<_>
|
|
37 8 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.0100780315697193e-003</threshold>
|
|
<left_val>0.0401565693318844</left_val>
|
|
<right_val>-0.5621622204780579</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 3 4 8 -1.</_>
|
|
<_>
|
|
22 3 2 8 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0157218798995018</threshold>
|
|
<left_val>-0.1180450022220612</left_val>
|
|
<right_val>0.2465451955795288</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 9 4 2 -1.</_>
|
|
<_>
|
|
37 9 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6668920181691647e-003</threshold>
|
|
<left_val>-0.5406882166862488</left_val>
|
|
<right_val>0.0436632893979549</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 5 9 6 -1.</_>
|
|
<_>
|
|
18 5 3 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0414145998656750</threshold>
|
|
<left_val>-0.0829768404364586</left_val>
|
|
<right_val>0.3388422131538391</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
28 0 4 4 -1.</_>
|
|
<_>
|
|
29 0 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.8187570646405220e-003</threshold>
|
|
<left_val>0.0434143915772438</left_val>
|
|
<right_val>-0.4072461128234863</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 2 3 3 -1.</_>
|
|
<_>
|
|
7 3 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.4356600157916546e-003</threshold>
|
|
<left_val>0.3383021950721741</left_val>
|
|
<right_val>-0.0903681665658951</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 2 6 1 -1.</_>
|
|
<_>
|
|
35 4 2 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-4.6245800331234932e-003</threshold>
|
|
<left_val>0.0489254184067249</left_val>
|
|
<right_val>-0.1081843972206116</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 6 3 -1.</_>
|
|
<_>
|
|
6 1 6 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.0910529680550098e-003</threshold>
|
|
<left_val>0.3395316898822784</left_val>
|
|
<right_val>-0.0778475031256676</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
28 0 4 4 -1.</_>
|
|
<_>
|
|
29 0 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.9446121342480183e-003</threshold>
|
|
<left_val>-0.3688277900218964</left_val>
|
|
<right_val>0.0341559089720249</right_val></_></_>
|
|
<_>
|
|
<!-- tree 56 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 4 4 -1.</_>
|
|
<_>
|
|
14 0 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.2966130897402763e-003</threshold>
|
|
<left_val>-0.4667122066020966</left_val>
|
|
<right_val>0.0550306998193264</right_val></_></_>
|
|
<_>
|
|
<!-- tree 57 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 2 6 1 -1.</_>
|
|
<_>
|
|
35 4 2 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>8.2239676266908646e-003</threshold>
|
|
<left_val>-0.0194188598543406</left_val>
|
|
<right_val>0.2714818120002747</right_val></_></_>
|
|
<_>
|
|
<!-- tree 58 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 2 1 6 -1.</_>
|
|
<_>
|
|
10 4 1 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-6.9603421725332737e-003</threshold>
|
|
<left_val>0.1386401951313019</left_val>
|
|
<right_val>-0.2123727053403854</right_val></_></_>
|
|
<_>
|
|
<!-- tree 59 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 1 2 3 -1.</_>
|
|
<_>
|
|
35 2 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.5027971025556326e-003</threshold>
|
|
<left_val>0.4821687936782837</left_val>
|
|
<right_val>-0.0895727872848511</right_val></_></_>
|
|
<_>
|
|
<!-- tree 60 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 8 2 2 -1.</_>
|
|
<_>
|
|
19 8 1 1 2.</_>
|
|
<_>
|
|
20 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.3562759199412540e-005</threshold>
|
|
<left_val>0.1775393038988113</left_val>
|
|
<right_val>-0.1539040952920914</right_val></_></_>
|
|
<_>
|
|
<!-- tree 61 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
43 6 1 4 -1.</_>
|
|
<_>
|
|
43 6 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0119058098644018</threshold>
|
|
<left_val>-0.4490548968315125</left_val>
|
|
<right_val>0.0487651899456978</right_val></_></_>
|
|
<_>
|
|
<!-- tree 62 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 6 4 1 -1.</_>
|
|
<_>
|
|
2 6 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>1.0403740452602506e-003</threshold>
|
|
<left_val>0.0691993907094002</left_val>
|
|
<right_val>-0.3906114101409912</right_val></_></_></trees>
|
|
<stage_threshold>-1.5442479848861694</stage_threshold>
|
|
<parent>13</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 15 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 3 32 3 -1.</_>
|
|
<_>
|
|
12 3 16 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1147755011916161</threshold>
|
|
<left_val>-0.3539234101772308</left_val>
|
|
<right_val>0.2468626946210861</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 5 6 2 -1.</_>
|
|
<_>
|
|
34 5 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.3238538354635239e-003</threshold>
|
|
<left_val>0.3580448031425476</left_val>
|
|
<right_val>-0.2909640967845917</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 8 7 -1.</_>
|
|
<_>
|
|
19 0 4 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0330691784620285</threshold>
|
|
<left_val>-0.4501777887344360</left_val>
|
|
<right_val>0.1467828005552292</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 2 4 3 -1.</_>
|
|
<_>
|
|
36 3 2 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.8486011847853661e-003</threshold>
|
|
<left_val>0.1548763066530228</left_val>
|
|
<right_val>-0.1546719074249268</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 2 2 3 -1.</_>
|
|
<_>
|
|
14 3 2 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-3.6737930495291948e-003</threshold>
|
|
<left_val>0.2725059986114502</left_val>
|
|
<right_val>-0.2011754065752029</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
42 5 2 3 -1.</_>
|
|
<_>
|
|
42 5 1 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-3.5203520674258471e-003</threshold>
|
|
<left_val>0.2189404964447022</left_val>
|
|
<right_val>-0.3099618852138519</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 4 6 -1.</_>
|
|
<_>
|
|
0 1 2 3 2.</_>
|
|
<_>
|
|
2 4 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.9107630252838135e-003</threshold>
|
|
<left_val>0.1709515005350113</left_val>
|
|
<right_val>-0.2503634095191956</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 21 1 -1.</_>
|
|
<_>
|
|
20 0 7 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0111071700230241</threshold>
|
|
<left_val>-0.2938312888145447</left_val>
|
|
<right_val>0.0905003175139427</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 4 1 6 -1.</_>
|
|
<_>
|
|
9 7 1 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.5277690514922142e-003</threshold>
|
|
<left_val>-0.3656733036041260</left_val>
|
|
<right_val>0.0718126818537712</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 9 11 2 -1.</_>
|
|
<_>
|
|
25 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.6910480335354805e-003</threshold>
|
|
<left_val>-0.2463562041521072</left_val>
|
|
<right_val>0.1436509042978287</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 26 8 -1.</_>
|
|
<_>
|
|
9 1 13 4 2.</_>
|
|
<_>
|
|
22 5 13 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0528489314019680</threshold>
|
|
<left_val>-0.4898813068866730</left_val>
|
|
<right_val>0.0588662698864937</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 5 8 6 -1.</_>
|
|
<_>
|
|
21 5 4 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0272572692483664</threshold>
|
|
<left_val>-0.1331882029771805</left_val>
|
|
<right_val>0.1779861003160477</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 3 12 8 -1.</_>
|
|
<_>
|
|
21 3 6 8 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1077461019158363</threshold>
|
|
<left_val>0.7573465704917908</left_val>
|
|
<right_val>-0.0457932800054550</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 6 1 -1.</_>
|
|
<_>
|
|
22 0 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.2365201301872730e-003</threshold>
|
|
<left_val>0.0763477906584740</left_val>
|
|
<right_val>-0.4673461914062500</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 12 2 -1.</_>
|
|
<_>
|
|
7 0 6 1 2.</_>
|
|
<_>
|
|
13 1 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.2917850185185671e-003</threshold>
|
|
<left_val>0.2565709054470062</left_val>
|
|
<right_val>-0.1366966962814331</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 9 6 2 -1.</_>
|
|
<_>
|
|
35 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.0988652296364307e-003</threshold>
|
|
<left_val>-0.7358775734901428</left_val>
|
|
<right_val>0.0567887090146542</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 6 5 -1.</_>
|
|
<_>
|
|
13 0 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0205022394657135</threshold>
|
|
<left_val>-0.6133338809013367</left_val>
|
|
<right_val>0.0406611002981663</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 1 6 10 -1.</_>
|
|
<_>
|
|
34 1 2 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0578949898481369</threshold>
|
|
<left_val>-0.4233744144439697</left_val>
|
|
<right_val>0.0162566602230072</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 1 6 10 -1.</_>
|
|
<_>
|
|
9 1 2 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.0625008083879948e-003</threshold>
|
|
<left_val>0.1507007032632828</left_val>
|
|
<right_val>-0.2153072953224182</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 0 9 3 -1.</_>
|
|
<_>
|
|
30 0 3 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.4774609589949250e-003</threshold>
|
|
<left_val>0.0994475930929184</left_val>
|
|
<right_val>-0.1999025046825409</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 3 2 3 -1.</_>
|
|
<_>
|
|
8 4 2 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.9045450761914253e-003</threshold>
|
|
<left_val>0.2344854027032852</left_val>
|
|
<right_val>-0.1323975026607513</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
41 0 3 2 -1.</_>
|
|
<_>
|
|
42 1 1 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>4.9114958383142948e-003</threshold>
|
|
<left_val>0.0553076006472111</left_val>
|
|
<right_val>-0.4102441966533661</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 5 6 -1.</_>
|
|
<_>
|
|
6 2 5 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0403023585677147</threshold>
|
|
<left_val>0.5108960270881653</left_val>
|
|
<right_val>-0.0671787187457085</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 0 9 3 -1.</_>
|
|
<_>
|
|
30 0 3 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0314785093069077</threshold>
|
|
<left_val>-0.3574273884296417</left_val>
|
|
<right_val>0.0346911102533340</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 0 9 3 -1.</_>
|
|
<_>
|
|
12 0 3 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.0419940119609237e-004</threshold>
|
|
<left_val>0.1190790981054306</left_val>
|
|
<right_val>-0.2625693082809448</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 9 6 2 -1.</_>
|
|
<_>
|
|
34 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.1496188864111900e-003</threshold>
|
|
<left_val>0.0383449196815491</left_val>
|
|
<right_val>-0.7075287103652954</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 9 6 2 -1.</_>
|
|
<_>
|
|
9 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.4982818439602852e-003</threshold>
|
|
<left_val>-0.5713528990745544</left_val>
|
|
<right_val>0.0413468889892101</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 10 6 1 -1.</_>
|
|
<_>
|
|
26 10 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.0436770282685757e-003</threshold>
|
|
<left_val>0.2154771983623505</left_val>
|
|
<right_val>-0.0921439230442047</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 3 2 -1.</_>
|
|
<_>
|
|
2 0 3 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>8.4923263639211655e-003</threshold>
|
|
<left_val>0.0570751093327999</left_val>
|
|
<right_val>-0.5348739027976990</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 5 3 3 -1.</_>
|
|
<_>
|
|
31 6 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.2661099210381508e-003</threshold>
|
|
<left_val>0.2737484872341156</left_val>
|
|
<right_val>-0.1890739947557449</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 9 8 2 -1.</_>
|
|
<_>
|
|
16 9 4 1 2.</_>
|
|
<_>
|
|
20 10 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.8180600386112928e-003</threshold>
|
|
<left_val>-0.4999729990959168</left_val>
|
|
<right_val>0.0562875196337700</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 2 12 9 -1.</_>
|
|
<_>
|
|
22 2 4 9 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1983292996883392</threshold>
|
|
<left_val>-0.0492840297520161</left_val>
|
|
<right_val>0.3099189102649689</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 3 2 3 -1.</_>
|
|
<_>
|
|
8 4 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.3573800250887871e-003</threshold>
|
|
<left_val>0.3652536869049072</left_val>
|
|
<right_val>-0.0815863236784935</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
43 5 2 4 -1.</_>
|
|
<_>
|
|
43 7 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.1200658306479454e-003</threshold>
|
|
<left_val>-0.4997940957546234</left_val>
|
|
<right_val>0.0337594412267208</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 3 2 3 -1.</_>
|
|
<_>
|
|
8 4 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.7241830248385668e-003</threshold>
|
|
<left_val>-0.0749610364437103</left_val>
|
|
<right_val>0.4040215909481049</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 4 16 2 -1.</_>
|
|
<_>
|
|
23 4 8 1 2.</_>
|
|
<_>
|
|
15 5 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0112792700529099</threshold>
|
|
<left_val>-0.6254091262817383</left_val>
|
|
<right_val>0.0405392684042454</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 5 16 2 -1.</_>
|
|
<_>
|
|
16 5 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0264386702328920</threshold>
|
|
<left_val>0.6246979832649231</left_val>
|
|
<right_val>-0.0506956689059734</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 2 9 9 -1.</_>
|
|
<_>
|
|
22 2 3 9 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0930858105421066</threshold>
|
|
<left_val>-0.0277362298220396</left_val>
|
|
<right_val>0.1220149993896484</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 9 2 2 -1.</_>
|
|
<_>
|
|
19 9 1 1 2.</_>
|
|
<_>
|
|
20 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.6821569665335119e-004</threshold>
|
|
<left_val>0.0632278695702553</left_val>
|
|
<right_val>-0.4546276032924652</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 1 8 10 -1.</_>
|
|
<_>
|
|
22 1 4 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0261502098292112</threshold>
|
|
<left_val>0.2161553055047989</left_val>
|
|
<right_val>-0.0341892093420029</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 39 9 -1.</_>
|
|
<_>
|
|
13 5 13 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1521912962198257</threshold>
|
|
<left_val>-0.5629113912582398</left_val>
|
|
<right_val>0.0508813895285130</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 5 3 3 -1.</_>
|
|
<_>
|
|
31 6 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.3802412003278732e-003</threshold>
|
|
<left_val>0.1196914985775948</left_val>
|
|
<right_val>-0.0454637706279755</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 9 4 2 -1.</_>
|
|
<_>
|
|
9 9 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.1421401072293520e-003</threshold>
|
|
<left_val>0.0351711288094521</left_val>
|
|
<right_val>-0.7533329725265503</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 5 3 3 -1.</_>
|
|
<_>
|
|
31 6 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.3642999585717916e-003</threshold>
|
|
<left_val>-0.0781453177332878</left_val>
|
|
<right_val>0.0365911610424519</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 5 3 3 -1.</_>
|
|
<_>
|
|
14 6 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-3.4253650810569525e-003</threshold>
|
|
<left_val>0.2796125113964081</left_val>
|
|
<right_val>-0.1028681993484497</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 2 11 6 -1.</_>
|
|
<_>
|
|
24 4 11 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0101263895630836</threshold>
|
|
<left_val>0.1294676959514618</left_val>
|
|
<right_val>-0.2079537063837051</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 3 4 -1.</_>
|
|
<_>
|
|
6 3 1 4 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>9.5109362155199051e-003</threshold>
|
|
<left_val>-0.0644871667027473</left_val>
|
|
<right_val>0.4530493915081024</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 1 3 9 -1.</_>
|
|
<_>
|
|
40 4 1 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0283829905092716</threshold>
|
|
<left_val>0.1810360997915268</left_val>
|
|
<right_val>-0.1264723986387253</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 2 9 9 -1.</_>
|
|
<_>
|
|
20 2 3 9 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0725912004709244</threshold>
|
|
<left_val>-0.1313744932413101</left_val>
|
|
<right_val>0.2162660956382752</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 8 8 2 -1.</_>
|
|
<_>
|
|
22 8 4 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.6936382316052914e-003</threshold>
|
|
<left_val>-0.0738181099295616</left_val>
|
|
<right_val>0.1078862026333809</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 7 8 4 -1.</_>
|
|
<_>
|
|
20 7 4 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.4796910844743252e-003</threshold>
|
|
<left_val>0.4171521961688995</left_val>
|
|
<right_val>-0.0677783191204071</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 5 30 6 -1.</_>
|
|
<_>
|
|
23 5 15 3 2.</_>
|
|
<_>
|
|
8 8 15 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0680012926459312</threshold>
|
|
<left_val>-0.5723094940185547</left_val>
|
|
<right_val>0.0596870183944702</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 7 5 2 -1.</_>
|
|
<_>
|
|
0 8 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.1796491132117808e-005</threshold>
|
|
<left_val>-0.3601624071598053</left_val>
|
|
<right_val>0.0677706226706505</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 6 1 4 -1.</_>
|
|
<_>
|
|
22 7 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-6.0458998195827007e-003</threshold>
|
|
<left_val>-0.6670281291007996</left_val>
|
|
<right_val>0.0206663999706507</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 5 3 2 -1.</_>
|
|
<_>
|
|
4 5 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.9402851881459355e-004</threshold>
|
|
<left_val>0.1852525025606155</left_val>
|
|
<right_val>-0.1336766034364700</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 6 1 -1.</_>
|
|
<_>
|
|
23 0 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.2337357774376869e-003</threshold>
|
|
<left_val>-0.6425905823707581</left_val>
|
|
<right_val>0.0382458008825779</right_val></_></_>
|
|
<_>
|
|
<!-- tree 56 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 3 2 7 -1.</_>
|
|
<_>
|
|
3 3 1 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0108766602352262</threshold>
|
|
<left_val>-0.6561298966407776</left_val>
|
|
<right_val>0.0309162400662899</right_val></_></_>
|
|
<_>
|
|
<!-- tree 57 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 2 24 2 -1.</_>
|
|
<_>
|
|
30 2 12 1 2.</_>
|
|
<_>
|
|
18 3 12 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0107645904645324</threshold>
|
|
<left_val>-0.1220951974391937</left_val>
|
|
<right_val>0.2324434965848923</right_val></_></_>
|
|
<_>
|
|
<!-- tree 58 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 3 4 -1.</_>
|
|
<_>
|
|
0 4 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.2717488035559654e-003</threshold>
|
|
<left_val>0.0366653800010681</left_val>
|
|
<right_val>-0.6426709890365601</right_val></_></_>
|
|
<_>
|
|
<!-- tree 59 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 0 3 3 -1.</_>
|
|
<_>
|
|
34 1 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.9870911277830601e-003</threshold>
|
|
<left_val>-0.1001384034752846</left_val>
|
|
<right_val>0.2668761909008026</right_val></_></_>
|
|
<_>
|
|
<!-- tree 60 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 1 2 2 -1.</_>
|
|
<_>
|
|
17 1 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>5.6966538541018963e-003</threshold>
|
|
<left_val>0.0416801385581493</left_val>
|
|
<right_val>-0.6292551755905151</right_val></_></_>
|
|
<_>
|
|
<!-- tree 61 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 0 3 3 -1.</_>
|
|
<_>
|
|
34 1 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.4660900235176086e-003</threshold>
|
|
<left_val>0.3037576079368591</left_val>
|
|
<right_val>-0.0899545699357986</right_val></_></_>
|
|
<_>
|
|
<!-- tree 62 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 9 2 2 -1.</_>
|
|
<_>
|
|
21 9 1 1 2.</_>
|
|
<_>
|
|
22 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.3577459291554987e-004</threshold>
|
|
<left_val>0.0568453297019005</left_val>
|
|
<right_val>-0.4491609036922455</right_val></_></_>
|
|
<_>
|
|
<!-- tree 63 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 9 2 2 -1.</_>
|
|
<_>
|
|
26 9 1 1 2.</_>
|
|
<_>
|
|
25 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.6022150935605168e-004</threshold>
|
|
<left_val>-0.3133156001567841</left_val>
|
|
<right_val>0.0222319494932890</right_val></_></_>
|
|
<_>
|
|
<!-- tree 64 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 9 2 2 -1.</_>
|
|
<_>
|
|
18 9 1 1 2.</_>
|
|
<_>
|
|
19 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.6151748645352200e-005</threshold>
|
|
<left_val>0.1603706926107407</left_val>
|
|
<right_val>-0.1564521938562393</right_val></_></_>
|
|
<_>
|
|
<!-- tree 65 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 4 2 2 -1.</_>
|
|
<_>
|
|
32 4 1 1 2.</_>
|
|
<_>
|
|
31 5 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.2417449615895748e-003</threshold>
|
|
<left_val>0.3625147044658661</left_val>
|
|
<right_val>-0.0680296868085861</right_val></_></_>
|
|
<_>
|
|
<!-- tree 66 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 1 4 -1.</_>
|
|
<_>
|
|
3 3 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.3716438859701157e-003</threshold>
|
|
<left_val>-0.6566702723503113</left_val>
|
|
<right_val>0.0392969995737076</right_val></_></_>
|
|
<_>
|
|
<!-- tree 67 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 4 2 2 -1.</_>
|
|
<_>
|
|
32 4 1 1 2.</_>
|
|
<_>
|
|
31 5 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.0649640616029501e-004</threshold>
|
|
<left_val>-0.0998978018760681</left_val>
|
|
<right_val>0.2548699080944061</right_val></_></_></trees>
|
|
<stage_threshold>-1.5824840068817139</stage_threshold>
|
|
<parent>14</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 16 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 1 4 6 -1.</_>
|
|
<_>
|
|
9 1 2 3 2.</_>
|
|
<_>
|
|
11 4 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.9536222144961357e-003</threshold>
|
|
<left_val>-0.3007029891014099</left_val>
|
|
<right_val>0.2884491086006165</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 0 20 7 -1.</_>
|
|
<_>
|
|
19 0 10 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1552439928054810</threshold>
|
|
<left_val>-0.2848395109176636</left_val>
|
|
<right_val>0.1254279017448425</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 2 4 3 -1.</_>
|
|
<_>
|
|
5 3 2 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.5990058034658432e-003</threshold>
|
|
<left_val>0.2663621902465820</left_val>
|
|
<right_val>-0.2246758937835693</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 6 4 1 -1.</_>
|
|
<_>
|
|
23 6 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>8.2325551193207502e-004</threshold>
|
|
<left_val>-0.1501412987709045</left_val>
|
|
<right_val>0.1761123985052109</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 2 10 -1.</_>
|
|
<_>
|
|
0 6 2 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.3837850466370583e-003</threshold>
|
|
<left_val>-0.5321183204650879</left_val>
|
|
<right_val>0.0889239236712456</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 10 44 1 -1.</_>
|
|
<_>
|
|
1 10 22 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0181104205548763</threshold>
|
|
<left_val>0.2929402887821198</left_val>
|
|
<right_val>-0.1841827929019928</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 4 4 4 -1.</_>
|
|
<_>
|
|
13 4 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2221719846129417e-003</threshold>
|
|
<left_val>0.2360882014036179</left_val>
|
|
<right_val>-0.1808235943317413</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 2 12 5 -1.</_>
|
|
<_>
|
|
33 2 6 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.2745987884700298e-003</threshold>
|
|
<left_val>0.1137200966477394</left_val>
|
|
<right_val>-0.2823255062103272</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 2 3 4 -1.</_>
|
|
<_>
|
|
13 3 1 4 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0119243403896689</threshold>
|
|
<left_val>0.3017709851264954</left_val>
|
|
<right_val>-0.1306345015764237</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 9 11 2 -1.</_>
|
|
<_>
|
|
25 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.1337319631129503e-003</threshold>
|
|
<left_val>-0.2007887065410614</left_val>
|
|
<right_val>0.1075965017080307</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 1 2 1 -1.</_>
|
|
<_>
|
|
18 1 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.9748410927131772e-005</threshold>
|
|
<left_val>-0.3365252017974854</left_val>
|
|
<right_val>0.0984087735414505</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 2 4 3 -1.</_>
|
|
<_>
|
|
33 3 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.4939359910786152e-003</threshold>
|
|
<left_val>0.4472881853580475</left_val>
|
|
<right_val>-0.1235982030630112</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 0 2 3 -1.</_>
|
|
<_>
|
|
18 0 1 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-5.4673082195222378e-003</threshold>
|
|
<left_val>-0.3799205124378204</left_val>
|
|
<right_val>0.0901674702763557</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
35 0 6 6 -1.</_>
|
|
<_>
|
|
35 0 3 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0464109703898430</threshold>
|
|
<left_val>-0.4790937900543213</left_val>
|
|
<right_val>0.0221620704978704</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 6 6 -1.</_>
|
|
<_>
|
|
7 0 3 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.8335790373384953e-003</threshold>
|
|
<left_val>0.1406226009130478</left_val>
|
|
<right_val>-0.2750051021575928</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 9 2 2 -1.</_>
|
|
<_>
|
|
23 9 1 1 2.</_>
|
|
<_>
|
|
22 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.2272320822812617e-004</threshold>
|
|
<left_val>0.0443302914500237</left_val>
|
|
<right_val>-0.3167147040367127</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 5 3 2 -1.</_>
|
|
<_>
|
|
12 5 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.0776148885488510e-003</threshold>
|
|
<left_val>0.4185835123062134</left_val>
|
|
<right_val>-0.0708758234977722</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 9 11 2 -1.</_>
|
|
<_>
|
|
24 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.9464362934231758e-003</threshold>
|
|
<left_val>-0.7928162813186646</left_val>
|
|
<right_val>0.0197782702744007</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 12 1 -1.</_>
|
|
<_>
|
|
19 0 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.8161779735237360e-003</threshold>
|
|
<left_val>-0.3533557951450348</left_val>
|
|
<right_val>0.0807573124766350</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
29 5 4 2 -1.</_>
|
|
<_>
|
|
29 5 2 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-1.3951859727967530e-004</threshold>
|
|
<left_val>0.0871761962771416</left_val>
|
|
<right_val>-0.2344271987676621</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 10 9 1 -1.</_>
|
|
<_>
|
|
17 10 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.0605921056121588e-003</threshold>
|
|
<left_val>0.1996555030345917</left_val>
|
|
<right_val>-0.1447550952434540</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 7 34 4 -1.</_>
|
|
<_>
|
|
23 7 17 2 2.</_>
|
|
<_>
|
|
6 9 17 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0350441895425320</threshold>
|
|
<left_val>-0.4692314863204956</left_val>
|
|
<right_val>0.0637441277503967</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 2 36 4 -1.</_>
|
|
<_>
|
|
19 2 18 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2234399020671845</threshold>
|
|
<left_val>0.0361883491277695</left_val>
|
|
<right_val>-0.6774014234542847</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
29 0 6 4 -1.</_>
|
|
<_>
|
|
31 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.2643741257488728e-003</threshold>
|
|
<left_val>0.0539225898683071</left_val>
|
|
<right_val>-0.2995721101760864</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 5 4 2 -1.</_>
|
|
<_>
|
|
12 5 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.1456191577017307e-003</threshold>
|
|
<left_val>-0.0856956467032433</left_val>
|
|
<right_val>0.3495860099792481</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 9 2 2 -1.</_>
|
|
<_>
|
|
23 9 1 1 2.</_>
|
|
<_>
|
|
22 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.5792991295456886e-004</threshold>
|
|
<left_val>-0.3727482855319977</left_val>
|
|
<right_val>0.0520981289446354</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 8 6 3 -1.</_>
|
|
<_>
|
|
8 8 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.9521985501050949e-003</threshold>
|
|
<left_val>-0.5594332218170166</left_val>
|
|
<right_val>0.0450372397899628</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 9 6 2 -1.</_>
|
|
<_>
|
|
35 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.8845528662204742e-003</threshold>
|
|
<left_val>-0.8215249180793762</left_val>
|
|
<right_val>0.0190233103930950</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 2 5 -1.</_>
|
|
<_>
|
|
1 3 1 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.3964038640260696e-004</threshold>
|
|
<left_val>0.1355317980051041</left_val>
|
|
<right_val>-0.1943961977958679</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 9 6 2 -1.</_>
|
|
<_>
|
|
35 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.7581579312682152e-003</threshold>
|
|
<left_val>0.0348723717033863</left_val>
|
|
<right_val>-0.6131761074066162</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 16 2 -1.</_>
|
|
<_>
|
|
7 0 8 1 2.</_>
|
|
<_>
|
|
15 1 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.2971119508147240e-003</threshold>
|
|
<left_val>0.2093304991722107</left_val>
|
|
<right_val>-0.1179770976305008</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 1 16 2 -1.</_>
|
|
<_>
|
|
29 1 8 1 2.</_>
|
|
<_>
|
|
21 2 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.6358018666505814e-003</threshold>
|
|
<left_val>-0.1262518018484116</left_val>
|
|
<right_val>0.2315140962600708</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 2 3 -1.</_>
|
|
<_>
|
|
16 0 1 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>9.1771818697452545e-003</threshold>
|
|
<left_val>0.0422563590109348</left_val>
|
|
<right_val>-0.6428142189979553</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
29 0 6 4 -1.</_>
|
|
<_>
|
|
31 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0188983809202909</threshold>
|
|
<left_val>-0.5478479862213135</left_val>
|
|
<right_val>0.0240227598696947</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 2 6 6 -1.</_>
|
|
<_>
|
|
14 4 2 2 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0139614399522543</threshold>
|
|
<left_val>0.1334217935800552</left_val>
|
|
<right_val>-0.1894931048154831</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 10 6 1 -1.</_>
|
|
<_>
|
|
35 10 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.9351810701191425e-003</threshold>
|
|
<left_val>0.0123231001198292</left_val>
|
|
<right_val>-0.4801740050315857</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 3 2 3 -1.</_>
|
|
<_>
|
|
5 4 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8737629763782024e-003</threshold>
|
|
<left_val>-0.0638331696391106</left_val>
|
|
<right_val>0.3845090866088867</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 4 1 4 -1.</_>
|
|
<_>
|
|
39 5 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1502410527318716e-003</threshold>
|
|
<left_val>0.2496782988309860</left_val>
|
|
<right_val>-0.0836938619613647</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 1 6 -1.</_>
|
|
<_>
|
|
16 4 1 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0209453497081995</threshold>
|
|
<left_val>-0.4658147990703583</left_val>
|
|
<right_val>0.0599679499864578</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 4 1 4 -1.</_>
|
|
<_>
|
|
39 5 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.2025360483676195e-003</threshold>
|
|
<left_val>-0.0740314573049545</left_val>
|
|
<right_val>0.2621783912181854</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 8 1 3 -1.</_>
|
|
<_>
|
|
1 9 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.2649910058826208e-003</threshold>
|
|
<left_val>-0.5635809898376465</left_val>
|
|
<right_val>0.0473508313298225</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 8 2 2 -1.</_>
|
|
<_>
|
|
26 8 1 1 2.</_>
|
|
<_>
|
|
25 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.5608751204563305e-005</threshold>
|
|
<left_val>0.0839448198676109</left_val>
|
|
<right_val>-0.0923392772674561</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 4 1 4 -1.</_>
|
|
<_>
|
|
5 5 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.7638429999351501e-003</threshold>
|
|
<left_val>-0.0671062320470810</left_val>
|
|
<right_val>0.3539065122604370</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
42 8 2 3 -1.</_>
|
|
<_>
|
|
42 9 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.6478520594537258e-003</threshold>
|
|
<left_val>0.0497924908995628</left_val>
|
|
<right_val>-0.5610852837562561</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 4 2 2 -1.</_>
|
|
<_>
|
|
5 4 1 1 2.</_>
|
|
<_>
|
|
6 5 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.1421759845688939e-003</threshold>
|
|
<left_val>-0.0805669277906418</left_val>
|
|
<right_val>0.3189930021762848</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
42 2 2 2 -1.</_>
|
|
<_>
|
|
42 2 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-3.7144690286368132e-003</threshold>
|
|
<left_val>-0.2128649055957794</left_val>
|
|
<right_val>0.0669720098376274</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 2 2 2 -1.</_>
|
|
<_>
|
|
3 2 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>4.6520791947841644e-003</threshold>
|
|
<left_val>0.0592891909182072</left_val>
|
|
<right_val>-0.4567444026470184</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 9 6 2 -1.</_>
|
|
<_>
|
|
35 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.7056251205503941e-003</threshold>
|
|
<left_val>-0.2454106956720352</left_val>
|
|
<right_val>0.0245448406785727</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 9 6 2 -1.</_>
|
|
<_>
|
|
8 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.1251969784498215e-003</threshold>
|
|
<left_val>0.0383189283311367</left_val>
|
|
<right_val>-0.6497387290000916</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
28 3 2 6 -1.</_>
|
|
<_>
|
|
28 3 2 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0676583871245384</threshold>
|
|
<left_val>0.4003041088581085</left_val>
|
|
<right_val>-0.0320798717439175</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 4 8 7 -1.</_>
|
|
<_>
|
|
18 4 4 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0357298403978348</threshold>
|
|
<left_val>-0.0704301074147224</left_val>
|
|
<right_val>0.3063311874866486</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 1 6 8 -1.</_>
|
|
<_>
|
|
21 1 3 8 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0338284410536289</threshold>
|
|
<left_val>0.5049129724502564</left_val>
|
|
<right_val>-0.0354564599692822</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 4 6 4 -1.</_>
|
|
<_>
|
|
21 4 3 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0133518604561687</threshold>
|
|
<left_val>-0.1789028048515320</left_val>
|
|
<right_val>0.1476718038320541</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 0 8 3 -1.</_>
|
|
<_>
|
|
24 0 4 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0874881967902184</threshold>
|
|
<left_val>0.0435387790203094</left_val>
|
|
<right_val>-0.4679369926452637</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 9 32 2 -1.</_>
|
|
<_>
|
|
9 9 16 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.6777120549231768e-003</threshold>
|
|
<left_val>-0.2042710036039352</left_val>
|
|
<right_val>0.1514813005924225</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
38 2 1 3 -1.</_>
|
|
<_>
|
|
38 3 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.0766600025817752e-003</threshold>
|
|
<left_val>-0.0963197872042656</left_val>
|
|
<right_val>0.3553023040294647</right_val></_></_>
|
|
<_>
|
|
<!-- tree 56 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 3 2 -1.</_>
|
|
<_>
|
|
16 1 1 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>5.2243531681597233e-003</threshold>
|
|
<left_val>0.0533896684646606</left_val>
|
|
<right_val>-0.4571785926818848</right_val></_></_>
|
|
<_>
|
|
<!-- tree 57 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
32 2 6 1 -1.</_>
|
|
<_>
|
|
34 4 2 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.5345107838511467e-003</threshold>
|
|
<left_val>0.1491248011589050</left_val>
|
|
<right_val>-0.1498575061559677</right_val></_></_>
|
|
<_>
|
|
<!-- tree 58 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 10 2 1 -1.</_>
|
|
<_>
|
|
1 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.2573010432533920e-005</threshold>
|
|
<left_val>-0.1389053016901016</left_val>
|
|
<right_val>0.1546718031167984</right_val></_></_>
|
|
<_>
|
|
<!-- tree 59 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
43 9 2 2 -1.</_>
|
|
<_>
|
|
43 10 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.5596169978380203e-003</threshold>
|
|
<left_val>-0.5472314953804016</left_val>
|
|
<right_val>0.0347671099007130</right_val></_></_>
|
|
<_>
|
|
<!-- tree 60 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 3 2 2 -1.</_>
|
|
<_>
|
|
7 3 1 1 2.</_>
|
|
<_>
|
|
8 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.6222111238166690e-004</threshold>
|
|
<left_val>-0.0789805501699448</left_val>
|
|
<right_val>0.2835516035556793</right_val></_></_>
|
|
<_>
|
|
<!-- tree 61 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 3 9 -1.</_>
|
|
<_>
|
|
22 3 1 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0219077207148075</threshold>
|
|
<left_val>-0.4367178976535797</left_val>
|
|
<right_val>0.0517012402415276</right_val></_></_>
|
|
<_>
|
|
<!-- tree 62 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 8 5 2 -1.</_>
|
|
<_>
|
|
0 9 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.6507688239216805e-005</threshold>
|
|
<left_val>-0.3191409111022949</left_val>
|
|
<right_val>0.0624821111559868</right_val></_></_>
|
|
<_>
|
|
<!-- tree 63 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
42 8 2 3 -1.</_>
|
|
<_>
|
|
42 9 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.9253138927742839e-004</threshold>
|
|
<left_val>-0.2476699054241180</left_val>
|
|
<right_val>0.0840149372816086</right_val></_></_>
|
|
<_>
|
|
<!-- tree 64 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 5 1 4 -1.</_>
|
|
<_>
|
|
8 6 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>3.0009269248694181e-003</threshold>
|
|
<left_val>-0.1104286983609200</left_val>
|
|
<right_val>0.1972046047449112</right_val></_></_>
|
|
<_>
|
|
<!-- tree 65 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
42 8 2 3 -1.</_>
|
|
<_>
|
|
42 9 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.7042397353798151e-004</threshold>
|
|
<left_val>0.0671973675489426</left_val>
|
|
<right_val>-0.1836692988872528</right_val></_></_>
|
|
<_>
|
|
<!-- tree 66 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 7 2 2 -1.</_>
|
|
<_>
|
|
11 7 1 1 2.</_>
|
|
<_>
|
|
12 8 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.6602102490141988e-004</threshold>
|
|
<left_val>-0.0644856765866280</left_val>
|
|
<right_val>0.3246726095676422</right_val></_></_>
|
|
<_>
|
|
<!-- tree 67 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
43 8 1 3 -1.</_>
|
|
<_>
|
|
43 9 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.3248408726649359e-005</threshold>
|
|
<left_val>-0.0983626469969749</left_val>
|
|
<right_val>0.0864629372954369</right_val></_></_>
|
|
<_>
|
|
<!-- tree 68 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 8 1 3 -1.</_>
|
|
<_>
|
|
1 9 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.2568470556288958e-003</threshold>
|
|
<left_val>0.0493546798825264</left_val>
|
|
<right_val>-0.4317789077758789</right_val></_></_>
|
|
<_>
|
|
<!-- tree 69 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 0 6 4 -1.</_>
|
|
<_>
|
|
38 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.7309090197086334e-003</threshold>
|
|
<left_val>-0.2739312052726746</left_val>
|
|
<right_val>0.0396414399147034</right_val></_></_>
|
|
<_>
|
|
<!-- tree 70 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 12 2 -1.</_>
|
|
<_>
|
|
4 0 6 1 2.</_>
|
|
<_>
|
|
10 1 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.8255670592188835e-003</threshold>
|
|
<left_val>-0.0703800767660141</left_val>
|
|
<right_val>0.3054617941379547</right_val></_></_></trees>
|
|
<stage_threshold>-1.4470269680023193</stage_threshold>
|
|
<parent>15</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 17 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 4 6 4 -1.</_>
|
|
<_>
|
|
8 4 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.9308779202401638e-003</threshold>
|
|
<left_val>0.2389768064022064</left_val>
|
|
<right_val>-0.3373557925224304</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 0 10 4 -1.</_>
|
|
<_>
|
|
34 1 10 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.3356258906424046e-003</threshold>
|
|
<left_val>-0.2060621976852417</left_val>
|
|
<right_val>0.2454628944396973</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 12 4 -1.</_>
|
|
<_>
|
|
18 0 6 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0329519286751747</threshold>
|
|
<left_val>-0.4815129935741425</left_val>
|
|
<right_val>0.1353441029787064</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 1 3 9 -1.</_>
|
|
<_>
|
|
40 4 1 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0202942993491888</threshold>
|
|
<left_val>0.2442599982023239</left_val>
|
|
<right_val>-0.3064855039119721</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 8 4 -1.</_>
|
|
<_>
|
|
6 3 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.0935731530189514e-003</threshold>
|
|
<left_val>0.2175426036119461</left_val>
|
|
<right_val>-0.2305133938789368</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 5 3 3 -1.</_>
|
|
<_>
|
|
30 6 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-3.2209409400820732e-003</threshold>
|
|
<left_val>0.2408275008201599</left_val>
|
|
<right_val>-0.1475351005792618</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 5 24 2 -1.</_>
|
|
<_>
|
|
12 5 12 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0369491204619408</threshold>
|
|
<left_val>-0.2875896096229553</left_val>
|
|
<right_val>0.1723792999982834</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 5 2 2 -1.</_>
|
|
<_>
|
|
24 5 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.0001210030168295e-003</threshold>
|
|
<left_val>-0.1848354935646057</left_val>
|
|
<right_val>0.1064966991543770</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 4 3 4 -1.</_>
|
|
<_>
|
|
15 4 3 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-4.9832418881123886e-005</threshold>
|
|
<left_val>0.1008493006229401</left_val>
|
|
<right_val>-0.3728978037834168</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 1 26 8 -1.</_>
|
|
<_>
|
|
23 1 13 4 2.</_>
|
|
<_>
|
|
10 5 13 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0466450713574886</threshold>
|
|
<left_val>0.0713314116001129</left_val>
|
|
<right_val>-0.4217490851879120</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 5 4 6 -1.</_>
|
|
<_>
|
|
0 5 2 3 2.</_>
|
|
<_>
|
|
2 8 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.9729669913649559e-003</threshold>
|
|
<left_val>-0.2338577955961227</left_val>
|
|
<right_val>0.1572815030813217</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 9 11 2 -1.</_>
|
|
<_>
|
|
24 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.1885419953614473e-003</threshold>
|
|
<left_val>-0.2161511927843094</left_val>
|
|
<right_val>0.0854354798793793</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 4 4 3 -1.</_>
|
|
<_>
|
|
10 4 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.5504899676889181e-003</threshold>
|
|
<left_val>0.2445300966501236</left_val>
|
|
<right_val>-0.1364232003688812</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
44 3 1 8 -1.</_>
|
|
<_>
|
|
44 7 1 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0145806903019547</threshold>
|
|
<left_val>0.0630506128072739</left_val>
|
|
<right_val>-0.4380542039871216</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 1 8 -1.</_>
|
|
<_>
|
|
0 7 1 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.7621000006329268e-004</threshold>
|
|
<left_val>-0.3502649068832398</left_val>
|
|
<right_val>0.0979951471090317</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 0 6 3 -1.</_>
|
|
<_>
|
|
35 0 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0107630603015423</threshold>
|
|
<left_val>-0.5561497211456299</left_val>
|
|
<right_val>0.0526131093502045</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 6 3 2 -1.</_>
|
|
<_>
|
|
14 7 1 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-1.7733459826558828e-003</threshold>
|
|
<left_val>0.2124083936214447</left_val>
|
|
<right_val>-0.1288591027259827</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 8 8 2 -1.</_>
|
|
<_>
|
|
24 8 4 1 2.</_>
|
|
<_>
|
|
20 9 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.6170229800045490e-003</threshold>
|
|
<left_val>-0.5789517164230347</left_val>
|
|
<right_val>0.0270562805235386</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 45 9 -1.</_>
|
|
<_>
|
|
15 4 15 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.7813777923583984</threshold>
|
|
<left_val>0.0435121916234493</left_val>
|
|
<right_val>-0.5111237764358521</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 0 6 3 -1.</_>
|
|
<_>
|
|
35 0 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0155215598642826</threshold>
|
|
<left_val>0.0178874898701906</left_val>
|
|
<right_val>-0.4230296909809113</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 8 10 2 -1.</_>
|
|
<_>
|
|
16 8 5 1 2.</_>
|
|
<_>
|
|
21 9 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.0149789787828922e-003</threshold>
|
|
<left_val>-0.6199331879615784</left_val>
|
|
<right_val>0.0414681211113930</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 0 4 9 -1.</_>
|
|
<_>
|
|
22 0 2 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0120329596102238</threshold>
|
|
<left_val>0.3752037882804871</left_val>
|
|
<right_val>-0.0521019399166107</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 6 1 4 -1.</_>
|
|
<_>
|
|
22 6 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>5.7090952759608626e-004</threshold>
|
|
<left_val>-0.2300080060958862</left_val>
|
|
<right_val>0.1380635946989059</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 8 2 2 -1.</_>
|
|
<_>
|
|
24 8 1 1 2.</_>
|
|
<_>
|
|
23 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.5141059925081208e-005</threshold>
|
|
<left_val>0.1361359953880310</left_val>
|
|
<right_val>-0.1363361030817032</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 8 2 2 -1.</_>
|
|
<_>
|
|
20 8 1 1 2.</_>
|
|
<_>
|
|
21 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.8827958633191884e-004</threshold>
|
|
<left_val>0.0620439797639847</left_val>
|
|
<right_val>-0.4099955856800079</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
37 4 4 2 -1.</_>
|
|
<_>
|
|
39 4 2 1 2.</_>
|
|
<_>
|
|
37 5 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.1813879031687975e-003</threshold>
|
|
<left_val>0.4304260909557343</left_val>
|
|
<right_val>-0.0585743896663189</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 2 6 3 -1.</_>
|
|
<_>
|
|
6 3 6 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0123597597703338</threshold>
|
|
<left_val>-0.0534252189099789</left_val>
|
|
<right_val>0.4423576891422272</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
29 1 3 2 -1.</_>
|
|
<_>
|
|
29 1 3 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>5.3630769252777100e-003</threshold>
|
|
<left_val>0.0483457297086716</left_val>
|
|
<right_val>-0.3691985011100769</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 10 2 -1.</_>
|
|
<_>
|
|
0 3 5 1 2.</_>
|
|
<_>
|
|
5 4 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.7529240623116493e-003</threshold>
|
|
<left_val>-0.0677888989448547</left_val>
|
|
<right_val>0.4063256084918976</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 0 6 4 -1.</_>
|
|
<_>
|
|
38 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0115061802789569</threshold>
|
|
<left_val>-0.2494066953659058</left_val>
|
|
<right_val>0.0300437901169062</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 1 1 6 -1.</_>
|
|
<_>
|
|
0 4 1 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.5450267866253853e-003</threshold>
|
|
<left_val>-0.5039336085319519</left_val>
|
|
<right_val>0.0510484091937542</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 10 6 1 -1.</_>
|
|
<_>
|
|
38 10 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.4059509895741940e-003</threshold>
|
|
<left_val>-0.7833560705184937</left_val>
|
|
<right_val>7.0806178264319897e-003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 10 6 1 -1.</_>
|
|
<_>
|
|
5 10 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.7279968857765198e-003</threshold>
|
|
<left_val>-0.6846734881401062</left_val>
|
|
<right_val>0.0338671393692493</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 7 2 2 -1.</_>
|
|
<_>
|
|
34 7 1 1 2.</_>
|
|
<_>
|
|
33 8 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.2285747369751334e-004</threshold>
|
|
<left_val>0.1466076970100403</left_val>
|
|
<right_val>-0.0672899633646011</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 6 4 -1.</_>
|
|
<_>
|
|
5 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.3035101890563965e-003</threshold>
|
|
<left_val>-0.4098907113075256</left_val>
|
|
<right_val>0.0572993196547031</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 0 6 3 -1.</_>
|
|
<_>
|
|
38 0 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.8128891289234161e-003</threshold>
|
|
<left_val>0.0429198816418648</left_val>
|
|
<right_val>-0.2473063021898270</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 7 2 2 -1.</_>
|
|
<_>
|
|
10 7 1 1 2.</_>
|
|
<_>
|
|
11 8 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.6791278873570263e-004</threshold>
|
|
<left_val>-0.0759941563010216</left_val>
|
|
<right_val>0.3077195882797241</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 0 6 3 -1.</_>
|
|
<_>
|
|
38 0 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0234316699206829</threshold>
|
|
<left_val>0.0105453496798873</left_val>
|
|
<right_val>-0.4139497876167297</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 6 3 -1.</_>
|
|
<_>
|
|
5 0 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.2174801975488663e-003</threshold>
|
|
<left_val>0.0580441802740097</left_val>
|
|
<right_val>-0.4003489017486572</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 0 8 2 -1.</_>
|
|
<_>
|
|
33 0 4 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.8371819108724594e-003</threshold>
|
|
<left_val>0.1294589042663574</left_val>
|
|
<right_val>-0.0732556134462357</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 6 4 2 -1.</_>
|
|
<_>
|
|
5 6 2 1 2.</_>
|
|
<_>
|
|
7 7 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.5635009407997131e-003</threshold>
|
|
<left_val>-0.0714029222726822</left_val>
|
|
<right_val>0.3470957875251770</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 0 10 2 -1.</_>
|
|
<_>
|
|
31 0 5 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.3719929419457912e-003</threshold>
|
|
<left_val>0.0697310492396355</left_val>
|
|
<right_val>-0.0616881698369980</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 18 6 -1.</_>
|
|
<_>
|
|
13 0 9 3 2.</_>
|
|
<_>
|
|
22 3 9 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0432901903986931</threshold>
|
|
<left_val>0.0503349713981152</left_val>
|
|
<right_val>-0.4551756978034973</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 0 1 2 -1.</_>
|
|
<_>
|
|
26 0 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-4.6179331839084625e-003</threshold>
|
|
<left_val>-0.4911034107208252</left_val>
|
|
<right_val>0.0359277799725533</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 7 2 2 -1.</_>
|
|
<_>
|
|
15 7 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-7.0018521510064602e-003</threshold>
|
|
<left_val>-0.6063433289527893</left_val>
|
|
<right_val>0.0330439507961273</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
41 0 4 4 -1.</_>
|
|
<_>
|
|
40 1 4 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0205463208258152</threshold>
|
|
<left_val>0.3746722042560577</left_val>
|
|
<right_val>-0.0609663501381874</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 4 4 -1.</_>
|
|
<_>
|
|
5 1 2 4 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>9.0153552591800690e-003</threshold>
|
|
<left_val>-0.0813770294189453</left_val>
|
|
<right_val>0.2844707071781158</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 9 11 2 -1.</_>
|
|
<_>
|
|
25 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0169452708214521</threshold>
|
|
<left_val>0.0199470799416304</left_val>
|
|
<right_val>-0.4222064018249512</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 9 11 2 -1.</_>
|
|
<_>
|
|
9 10 11 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.2118361024186015e-004</threshold>
|
|
<left_val>-0.2720527946949005</left_val>
|
|
<right_val>0.0955905392765999</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 1 2 2 -1.</_>
|
|
<_>
|
|
25 1 1 1 2.</_>
|
|
<_>
|
|
24 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.5344670322956517e-005</threshold>
|
|
<left_val>-0.0796178579330444</left_val>
|
|
<right_val>0.0741857364773750</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 44 6 -1.</_>
|
|
<_>
|
|
0 0 22 3 2.</_>
|
|
<_>
|
|
22 3 22 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0842197909951210</threshold>
|
|
<left_val>-0.4857580065727234</left_val>
|
|
<right_val>0.0422429405152798</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 8 11 -1.</_>
|
|
<_>
|
|
20 0 4 11 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0435173399746418</threshold>
|
|
<left_val>-0.1548252999782562</left_val>
|
|
<right_val>0.1075984016060829</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 4 8 7 -1.</_>
|
|
<_>
|
|
19 4 4 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.3383917808532715e-003</threshold>
|
|
<left_val>0.4024209976196289</left_val>
|
|
<right_val>-0.0837341472506523</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 7 4 3 -1.</_>
|
|
<_>
|
|
34 8 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6848739944398403e-003</threshold>
|
|
<left_val>0.2577607035636902</left_val>
|
|
<right_val>-0.0573123209178448</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 7 4 3 -1.</_>
|
|
<_>
|
|
7 8 4 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.9407201111316681e-003</threshold>
|
|
<left_val>-0.0959949418902397</left_val>
|
|
<right_val>0.2492482066154480</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
29 0 3 7 -1.</_>
|
|
<_>
|
|
30 0 1 7 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.5882800845429301e-004</threshold>
|
|
<left_val>0.1278585940599442</left_val>
|
|
<right_val>-0.1531160026788712</right_val></_></_>
|
|
<_>
|
|
<!-- tree 56 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 3 7 -1.</_>
|
|
<_>
|
|
14 0 1 7 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0118757104501128</threshold>
|
|
<left_val>-0.7070257067680359</left_val>
|
|
<right_val>0.0329137407243252</right_val></_></_>
|
|
<_>
|
|
<!-- tree 57 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 6 18 4 -1.</_>
|
|
<_>
|
|
23 6 9 2 2.</_>
|
|
<_>
|
|
14 8 9 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0239820200949907</threshold>
|
|
<left_val>-0.5082150101661682</left_val>
|
|
<right_val>0.0465518310666084</right_val></_></_>
|
|
<_>
|
|
<!-- tree 58 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 9 4 1 -1.</_>
|
|
<_>
|
|
10 9 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.0041069947183132e-003</threshold>
|
|
<left_val>-0.6869235038757324</left_val>
|
|
<right_val>0.0257601495832205</right_val></_></_>
|
|
<_>
|
|
<!-- tree 59 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 8 6 3 -1.</_>
|
|
<_>
|
|
25 8 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.8222304582595825e-003</threshold>
|
|
<left_val>-0.0481032282114029</left_val>
|
|
<right_val>0.2143296003341675</right_val></_></_>
|
|
<_>
|
|
<!-- tree 60 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 3 6 5 -1.</_>
|
|
<_>
|
|
20 3 2 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0109465699642897</threshold>
|
|
<left_val>-0.1619561016559601</left_val>
|
|
<right_val>0.1688020974397659</right_val></_></_>
|
|
<_>
|
|
<!-- tree 61 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 0 10 1 -1.</_>
|
|
<_>
|
|
23 0 5 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0268028602004051</threshold>
|
|
<left_val>0.0562569610774517</left_val>
|
|
<right_val>-0.2750540077686310</right_val></_></_>
|
|
<_>
|
|
<!-- tree 62 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 2 11 -1.</_>
|
|
<_>
|
|
22 0 1 11 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.9884559810161591e-003</threshold>
|
|
<left_val>-0.1266321986913681</left_val>
|
|
<right_val>0.2162669003009796</right_val></_></_>
|
|
<_>
|
|
<!-- tree 63 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 7 9 3 -1.</_>
|
|
<_>
|
|
25 7 3 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0180086903274059</threshold>
|
|
<left_val>0.1453437954187393</left_val>
|
|
<right_val>-0.0554223097860813</right_val></_></_>
|
|
<_>
|
|
<!-- tree 64 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 7 9 3 -1.</_>
|
|
<_>
|
|
17 7 3 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0171894803643227</threshold>
|
|
<left_val>-0.0676231905817986</left_val>
|
|
<right_val>0.4008189141750336</right_val></_></_>
|
|
<_>
|
|
<!-- tree 65 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 6 2 -1.</_>
|
|
<_>
|
|
22 0 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0122314803302288</threshold>
|
|
<left_val>-0.8207144141197205</left_val>
|
|
<right_val>0.0212977807968855</right_val></_></_>
|
|
<_>
|
|
<!-- tree 66 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 0 6 2 -1.</_>
|
|
<_>
|
|
21 0 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0158304795622826</threshold>
|
|
<left_val>0.0352074205875397</left_val>
|
|
<right_val>-0.6053143143653870</right_val></_></_>
|
|
<_>
|
|
<!-- tree 67 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 0 10 1 -1.</_>
|
|
<_>
|
|
23 0 5 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0152642698958516</threshold>
|
|
<left_val>-0.2745952904224396</left_val>
|
|
<right_val>0.0226070396602154</right_val></_></_>
|
|
<_>
|
|
<!-- tree 68 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 0 1 10 -1.</_>
|
|
<_>
|
|
22 0 1 5 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0388083383440971</threshold>
|
|
<left_val>0.0396233908832073</left_val>
|
|
<right_val>-0.5866526961326599</right_val></_></_>
|
|
<_>
|
|
<!-- tree 69 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 1 4 1 -1.</_>
|
|
<_>
|
|
23 1 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.6585539560765028e-003</threshold>
|
|
<left_val>0.0249276999384165</left_val>
|
|
<right_val>-0.1767925024032593</right_val></_></_>
|
|
<_>
|
|
<!-- tree 70 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 5 3 -1.</_>
|
|
<_>
|
|
7 1 5 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.0774480700492859e-003</threshold>
|
|
<left_val>0.3953635096549988</left_val>
|
|
<right_val>-0.0545681081712246</right_val></_></_>
|
|
<_>
|
|
<!-- tree 71 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 1 4 1 -1.</_>
|
|
<_>
|
|
23 1 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.7583471314283088e-005</threshold>
|
|
<left_val>-0.0907186493277550</left_val>
|
|
<right_val>0.0676982626318932</right_val></_></_>
|
|
<_>
|
|
<!-- tree 72 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 1 6 1 -1.</_>
|
|
<_>
|
|
20 1 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.4619271648116410e-005</threshold>
|
|
<left_val>-0.2377043962478638</left_val>
|
|
<right_val>0.0997626781463623</right_val></_></_>
|
|
<_>
|
|
<!-- tree 73 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 0 16 2 -1.</_>
|
|
<_>
|
|
29 0 8 1 2.</_>
|
|
<_>
|
|
21 1 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0118510304018855</threshold>
|
|
<left_val>0.3235172927379608</left_val>
|
|
<right_val>-0.0395865589380264</right_val></_></_>
|
|
<_>
|
|
<!-- tree 74 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 2 1 -1.</_>
|
|
<_>
|
|
14 2 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-1.6401939792558551e-003</threshold>
|
|
<left_val>-0.2988120913505554</left_val>
|
|
<right_val>0.0734669119119644</right_val></_></_>
|
|
<_>
|
|
<!-- tree 75 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 1 6 3 -1.</_>
|
|
<_>
|
|
33 2 6 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.9199479185044765e-003</threshold>
|
|
<left_val>0.4342077970504761</left_val>
|
|
<right_val>-0.1028432995080948</right_val></_></_>
|
|
<_>
|
|
<!-- tree 76 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 1 4 2 -1.</_>
|
|
<_>
|
|
16 2 2 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0114842597395182</threshold>
|
|
<left_val>-0.4997740983963013</left_val>
|
|
<right_val>0.0500394888222218</right_val></_></_></trees>
|
|
<stage_threshold>-1.4913309812545776</stage_threshold>
|
|
<parent>16</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 18 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 3 3 4 -1.</_>
|
|
<_>
|
|
14 4 1 4 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>5.7978169061243534e-003</threshold>
|
|
<left_val>-0.2547836899757385</left_val>
|
|
<right_val>0.3126254081726074</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 0 8 4 -1.</_>
|
|
<_>
|
|
36 1 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.4410690423101187e-003</threshold>
|
|
<left_val>-0.1442710012197495</left_val>
|
|
<right_val>0.1488212049007416</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 18 7 -1.</_>
|
|
<_>
|
|
16 0 9 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1663805991411209</threshold>
|
|
<left_val>-0.2900100052356720</left_val>
|
|
<right_val>0.1731016933917999</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
38 2 6 1 -1.</_>
|
|
<_>
|
|
40 4 2 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-7.4716238304972649e-003</threshold>
|
|
<left_val>0.2510580122470856</left_val>
|
|
<right_val>-0.2006618976593018</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 5 4 6 -1.</_>
|
|
<_>
|
|
3 5 2 3 2.</_>
|
|
<_>
|
|
5 8 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.6712910514324903e-003</threshold>
|
|
<left_val>0.2561903893947601</left_val>
|
|
<right_val>-0.1986774951219559</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 8 2 1 -1.</_>
|
|
<_>
|
|
24 8 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>1.8908550555352122e-004</threshold>
|
|
<left_val>-0.1263161003589630</left_val>
|
|
<right_val>0.1122589036822319</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 10 12 1 -1.</_>
|
|
<_>
|
|
16 10 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.9562460947781801e-003</threshold>
|
|
<left_val>0.2264412939548492</left_val>
|
|
<right_val>-0.1612952053546906</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 0 10 4 -1.</_>
|
|
<_>
|
|
34 1 10 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.1449178978800774e-003</threshold>
|
|
<left_val>0.2574276030063629</left_val>
|
|
<right_val>-0.0721231773495674</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 0 10 4 -1.</_>
|
|
<_>
|
|
1 1 10 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.4932177774608135e-003</threshold>
|
|
<left_val>-0.1814396977424622</left_val>
|
|
<right_val>0.2257228046655655</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 9 2 2 -1.</_>
|
|
<_>
|
|
23 9 1 1 2.</_>
|
|
<_>
|
|
22 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.5387531281448901e-004</threshold>
|
|
<left_val>0.0236864201724529</left_val>
|
|
<right_val>-0.4052864909172058</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 9 1 2 -1.</_>
|
|
<_>
|
|
4 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.2509411287028342e-005</threshold>
|
|
<left_val>-0.2915067076683044</left_val>
|
|
<right_val>0.1111551970243454</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 0 6 3 -1.</_>
|
|
<_>
|
|
35 0 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0157671198248863</threshold>
|
|
<left_val>-0.7367169857025147</left_val>
|
|
<right_val>0.0103860199451447</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 0 7 3 -1.</_>
|
|
<_>
|
|
6 1 7 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-6.9369110278785229e-003</threshold>
|
|
<left_val>0.1606259047985077</left_val>
|
|
<right_val>-0.1879907995462418</right_val></_></_>
|
|
<_>
|
|
<!-- tree 13 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 0 12 2 -1.</_>
|
|
<_>
|
|
30 0 6 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.2210960052907467e-003</threshold>
|
|
<left_val>0.1164043024182320</left_val>
|
|
<right_val>-0.1825850009918213</right_val></_></_>
|
|
<_>
|
|
<!-- tree 14 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 6 3 -1.</_>
|
|
<_>
|
|
8 0 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0121315596625209</threshold>
|
|
<left_val>-0.6353238224983215</left_val>
|
|
<right_val>0.0353767983615398</right_val></_></_>
|
|
<_>
|
|
<!-- tree 15 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 9 2 2 -1.</_>
|
|
<_>
|
|
23 9 1 1 2.</_>
|
|
<_>
|
|
22 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6418970082886517e-004</threshold>
|
|
<left_val>-0.2493823021650314</left_val>
|
|
<right_val>0.0558976009488106</right_val></_></_>
|
|
<_>
|
|
<!-- tree 16 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 4 34 2 -1.</_>
|
|
<_>
|
|
20 4 17 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1173785999417305</threshold>
|
|
<left_val>0.0312053691595793</left_val>
|
|
<right_val>-0.7401428818702698</right_val></_></_>
|
|
<_>
|
|
<!-- tree 17 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 5 6 6 -1.</_>
|
|
<_>
|
|
25 5 3 3 2.</_>
|
|
<_>
|
|
22 8 3 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.1690290411934257e-003</threshold>
|
|
<left_val>0.0785990729928017</left_val>
|
|
<right_val>-0.1728446930646896</right_val></_></_>
|
|
<_>
|
|
<!-- tree 18 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 4 20 4 -1.</_>
|
|
<_>
|
|
12 4 10 2 2.</_>
|
|
<_>
|
|
22 6 10 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0247644707560539</threshold>
|
|
<left_val>0.0510483793914318</left_val>
|
|
<right_val>-0.5129843950271606</right_val></_></_>
|
|
<_>
|
|
<!-- tree 19 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
37 2 2 3 -1.</_>
|
|
<_>
|
|
37 3 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.2942222207784653e-003</threshold>
|
|
<left_val>0.3229491114616394</left_val>
|
|
<right_val>-0.0915554165840149</right_val></_></_>
|
|
<_>
|
|
<!-- tree 20 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 2 9 3 -1.</_>
|
|
<_>
|
|
5 3 9 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0123548898845911</threshold>
|
|
<left_val>-0.0710467174649239</left_val>
|
|
<right_val>0.3719576895236969</right_val></_></_>
|
|
<_>
|
|
<!-- tree 21 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 0 12 1 -1.</_>
|
|
<_>
|
|
30 0 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0231044609099627</threshold>
|
|
<left_val>-0.5968062877655029</left_val>
|
|
<right_val>0.0121953804045916</right_val></_></_>
|
|
<_>
|
|
<!-- tree 22 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 12 1 -1.</_>
|
|
<_>
|
|
9 0 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.0122020505368710e-003</threshold>
|
|
<left_val>0.1310638934373856</left_val>
|
|
<right_val>-0.2008240967988968</right_val></_></_>
|
|
<_>
|
|
<!-- tree 23 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 0 6 3 -1.</_>
|
|
<_>
|
|
32 0 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0121228098869324</threshold>
|
|
<left_val>-0.3311020135879517</left_val>
|
|
<right_val>0.0324316583573818</right_val></_></_>
|
|
<_>
|
|
<!-- tree 24 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 6 4 -1.</_>
|
|
<_>
|
|
10 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0139670297503471</threshold>
|
|
<left_val>-0.4793112874031067</left_val>
|
|
<right_val>0.0521073900163174</right_val></_></_>
|
|
<_>
|
|
<!-- tree 25 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 3 3 3 -1.</_>
|
|
<_>
|
|
33 4 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>7.5348587706685066e-003</threshold>
|
|
<left_val>-0.0988587886095047</left_val>
|
|
<right_val>0.3616951107978821</right_val></_></_>
|
|
<_>
|
|
<!-- tree 26 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 6 4 -1.</_>
|
|
<_>
|
|
12 0 2 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0168277490884066</threshold>
|
|
<left_val>-0.6132341027259827</left_val>
|
|
<right_val>0.0437193810939789</right_val></_></_>
|
|
<_>
|
|
<!-- tree 27 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 9 6 2 -1.</_>
|
|
<_>
|
|
38 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.4655349813401699e-003</threshold>
|
|
<left_val>0.0292573906481266</left_val>
|
|
<right_val>-0.4150238037109375</right_val></_></_>
|
|
<_>
|
|
<!-- tree 28 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 9 6 2 -1.</_>
|
|
<_>
|
|
5 9 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.7378439232707024e-003</threshold>
|
|
<left_val>-0.4938167035579681</left_val>
|
|
<right_val>0.0447048582136631</right_val></_></_>
|
|
<_>
|
|
<!-- tree 29 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
34 3 3 3 -1.</_>
|
|
<_>
|
|
33 4 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.9511053413152695e-003</threshold>
|
|
<left_val>0.3104512095451355</left_val>
|
|
<right_val>-0.0606985986232758</right_val></_></_>
|
|
<_>
|
|
<!-- tree 30 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 10 12 1 -1.</_>
|
|
<_>
|
|
19 10 6 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8865570202469826e-003</threshold>
|
|
<left_val>-0.1900182962417603</left_val>
|
|
<right_val>0.1256804019212723</right_val></_></_>
|
|
<_>
|
|
<!-- tree 31 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 0 1 10 -1.</_>
|
|
<_>
|
|
23 0 1 5 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0411295108497143</threshold>
|
|
<left_val>0.0305451005697250</left_val>
|
|
<right_val>-0.4200653135776520</right_val></_></_>
|
|
<_>
|
|
<!-- tree 32 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 5 32 4 -1.</_>
|
|
<_>
|
|
9 5 16 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1693155020475388</threshold>
|
|
<left_val>0.0329228602349758</left_val>
|
|
<right_val>-0.7011848092079163</right_val></_></_>
|
|
<_>
|
|
<!-- tree 33 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 1 6 10 -1.</_>
|
|
<_>
|
|
20 1 3 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0391142293810844</threshold>
|
|
<left_val>-0.1238982975482941</left_val>
|
|
<right_val>0.2529956102371216</right_val></_></_>
|
|
<_>
|
|
<!-- tree 34 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 6 44 5 -1.</_>
|
|
<_>
|
|
22 6 22 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1416721045970917</threshold>
|
|
<left_val>-0.1185699999332428</left_val>
|
|
<right_val>0.2671686112880707</right_val></_></_>
|
|
<_>
|
|
<!-- tree 35 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 10 6 1 -1.</_>
|
|
<_>
|
|
35 10 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.3257229477167130e-003</threshold>
|
|
<left_val>0.0279077496379614</left_val>
|
|
<right_val>-0.3400920033454895</right_val></_></_>
|
|
<_>
|
|
<!-- tree 36 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 18 4 -1.</_>
|
|
<_>
|
|
6 3 6 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0262453891336918</threshold>
|
|
<left_val>0.0982663780450821</left_val>
|
|
<right_val>-0.2575640082359314</right_val></_></_>
|
|
<_>
|
|
<!-- tree 37 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 3 4 2 -1.</_>
|
|
<_>
|
|
32 3 2 1 2.</_>
|
|
<_>
|
|
30 4 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.8283349927514791e-003</threshold>
|
|
<left_val>-0.0837034434080124</left_val>
|
|
<right_val>0.2310135066509247</right_val></_></_>
|
|
<_>
|
|
<!-- tree 38 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 3 4 -1.</_>
|
|
<_>
|
|
3 1 3 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>4.7496692277491093e-003</threshold>
|
|
<left_val>0.0613271296024323</left_val>
|
|
<right_val>-0.4359326958656311</right_val></_></_>
|
|
<_>
|
|
<!-- tree 39 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 10 6 1 -1.</_>
|
|
<_>
|
|
35 10 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.3565989471971989e-003</threshold>
|
|
<left_val>-0.4238328039646149</left_val>
|
|
<right_val>9.4382222741842270e-003</right_val></_></_>
|
|
<_>
|
|
<!-- tree 40 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 10 6 1 -1.</_>
|
|
<_>
|
|
8 10 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.8147179875522852e-003</threshold>
|
|
<left_val>-0.6463773250579834</left_val>
|
|
<right_val>0.0372707992792130</right_val></_></_>
|
|
<_>
|
|
<!-- tree 41 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
28 5 4 3 -1.</_>
|
|
<_>
|
|
29 5 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.1859859116375446e-003</threshold>
|
|
<left_val>0.2848627865314484</left_val>
|
|
<right_val>-0.1957722008228302</right_val></_></_>
|
|
<_>
|
|
<!-- tree 42 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 5 4 3 -1.</_>
|
|
<_>
|
|
14 5 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.5153910499066114e-003</threshold>
|
|
<left_val>0.1678110063076019</left_val>
|
|
<right_val>-0.1371386051177979</right_val></_></_>
|
|
<_>
|
|
<!-- tree 43 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 8 2 2 -1.</_>
|
|
<_>
|
|
26 8 1 1 2.</_>
|
|
<_>
|
|
25 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.2454739994136617e-005</threshold>
|
|
<left_val>0.0736324116587639</left_val>
|
|
<right_val>-0.0777876824140549</right_val></_></_>
|
|
<_>
|
|
<!-- tree 44 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 3 3 3 -1.</_>
|
|
<_>
|
|
12 4 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0118858404457569</threshold>
|
|
<left_val>-0.0431110896170139</left_val>
|
|
<right_val>0.5236008763313294</right_val></_></_>
|
|
<_>
|
|
<!-- tree 45 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
28 0 2 3 -1.</_>
|
|
<_>
|
|
27 1 2 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>4.4173169881105423e-003</threshold>
|
|
<left_val>0.0458498001098633</left_val>
|
|
<right_val>-0.3222090899944305</right_val></_></_>
|
|
<_>
|
|
<!-- tree 46 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 3 3 -1.</_>
|
|
<_>
|
|
5 2 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>7.3544741608202457e-003</threshold>
|
|
<left_val>-0.0769947767257690</left_val>
|
|
<right_val>0.2834421992301941</right_val></_></_>
|
|
<_>
|
|
<!-- tree 47 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
43 3 2 6 -1.</_>
|
|
<_>
|
|
43 5 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0141299199312925</threshold>
|
|
<left_val>-0.3948974907398224</left_val>
|
|
<right_val>0.0417619012296200</right_val></_></_>
|
|
<_>
|
|
<!-- tree 48 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 2 6 -1.</_>
|
|
<_>
|
|
0 5 2 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.3752778805792332e-003</threshold>
|
|
<left_val>0.0469008199870586</left_val>
|
|
<right_val>-0.4854032993316650</right_val></_></_>
|
|
<_>
|
|
<!-- tree 49 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
28 6 2 1 -1.</_>
|
|
<_>
|
|
28 6 1 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>2.3776849266141653e-003</threshold>
|
|
<left_val>0.0173678006976843</left_val>
|
|
<right_val>-0.2000454068183899</right_val></_></_>
|
|
<_>
|
|
<!-- tree 50 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 7 9 4 -1.</_>
|
|
<_>
|
|
20 7 3 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.5808254554867744e-003</threshold>
|
|
<left_val>0.3630397021770477</left_val>
|
|
<right_val>-0.0628790184855461</right_val></_></_>
|
|
<_>
|
|
<!-- tree 51 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 1 2 2 -1.</_>
|
|
<_>
|
|
25 1 1 1 2.</_>
|
|
<_>
|
|
24 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.8879989006090909e-005</threshold>
|
|
<left_val>-0.0812498107552528</left_val>
|
|
<right_val>0.0810688734054565</right_val></_></_>
|
|
<_>
|
|
<!-- tree 52 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 2 6 3 -1.</_>
|
|
<_>
|
|
18 2 3 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0880179926753044</threshold>
|
|
<left_val>0.4444068968296051</left_val>
|
|
<right_val>-0.0485203489661217</right_val></_></_>
|
|
<_>
|
|
<!-- tree 53 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
38 4 4 2 -1.</_>
|
|
<_>
|
|
40 4 2 1 2.</_>
|
|
<_>
|
|
38 5 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.4197609852999449e-003</threshold>
|
|
<left_val>-0.1058344990015030</left_val>
|
|
<right_val>0.2380737066268921</right_val></_></_>
|
|
<_>
|
|
<!-- tree 54 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 3 16 2 -1.</_>
|
|
<_>
|
|
14 3 8 1 2.</_>
|
|
<_>
|
|
22 4 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.2073677331209183e-003</threshold>
|
|
<left_val>0.0479943305253983</left_val>
|
|
<right_val>-0.4695349931716919</right_val></_></_>
|
|
<_>
|
|
<!-- tree 55 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
38 4 4 2 -1.</_>
|
|
<_>
|
|
40 4 2 1 2.</_>
|
|
<_>
|
|
38 5 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.9159379191696644e-003</threshold>
|
|
<left_val>0.3783811032772064</left_val>
|
|
<right_val>-0.0608552396297455</right_val></_></_>
|
|
<_>
|
|
<!-- tree 56 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 3 9 -1.</_>
|
|
<_>
|
|
13 3 1 3 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0122875003144145</threshold>
|
|
<left_val>0.1259481012821198</left_val>
|
|
<right_val>-0.1770184040069580</right_val></_></_>
|
|
<_>
|
|
<!-- tree 57 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
33 0 6 3 -1.</_>
|
|
<_>
|
|
33 1 6 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.6836591102182865e-003</threshold>
|
|
<left_val>0.2334197014570236</left_val>
|
|
<right_val>-0.0444960817694664</right_val></_></_>
|
|
<_>
|
|
<!-- tree 58 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 3 3 -1.</_>
|
|
<_>
|
|
16 1 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0139244701713324</threshold>
|
|
<left_val>-0.7287849783897400</left_val>
|
|
<right_val>0.0307584293186665</right_val></_></_>
|
|
<_>
|
|
<!-- tree 59 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
31 2 3 3 -1.</_>
|
|
<_>
|
|
32 3 1 3 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>9.9232727661728859e-003</threshold>
|
|
<left_val>-0.0393612012267113</left_val>
|
|
<right_val>0.3483887016773224</right_val></_></_>
|
|
<_>
|
|
<!-- tree 60 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 2 3 3 -1.</_>
|
|
<_>
|
|
13 3 3 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0106927696615458</threshold>
|
|
<left_val>-0.0442237891256809</left_val>
|
|
<right_val>0.4271566867828369</right_val></_></_>
|
|
<_>
|
|
<!-- tree 61 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 9 2 2 -1.</_>
|
|
<_>
|
|
24 9 1 1 2.</_>
|
|
<_>
|
|
23 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.7554800655925646e-005</threshold>
|
|
<left_val>-0.0644943863153458</left_val>
|
|
<right_val>0.1257233023643494</right_val></_></_>
|
|
<_>
|
|
<!-- tree 62 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 9 2 2 -1.</_>
|
|
<_>
|
|
20 9 1 1 2.</_>
|
|
<_>
|
|
21 10 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.7551440871320665e-004</threshold>
|
|
<left_val>0.0674459934234619</left_val>
|
|
<right_val>-0.3473199903964996</right_val></_></_>
|
|
<_>
|
|
<!-- tree 63 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 8 2 2 -1.</_>
|
|
<_>
|
|
26 8 1 1 2.</_>
|
|
<_>
|
|
25 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.5946661228081211e-005</threshold>
|
|
<left_val>-0.0758708491921425</left_val>
|
|
<right_val>0.1249577999114990</right_val></_></_>
|
|
<_>
|
|
<!-- tree 64 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 8 2 2 -1.</_>
|
|
<_>
|
|
18 8 1 1 2.</_>
|
|
<_>
|
|
19 9 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.1565788706066087e-005</threshold>
|
|
<left_val>0.1432777047157288</left_val>
|
|
<right_val>-0.1577503979206085</right_val></_></_>
|
|
<_>
|
|
<!-- tree 65 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 12 2 -1.</_>
|
|
<_>
|
|
20 0 6 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.9380898922681808e-003</threshold>
|
|
<left_val>-0.2890062928199768</left_val>
|
|
<right_val>0.0645285025238991</right_val></_></_>
|
|
<_>
|
|
<!-- tree 66 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 18 11 -1.</_>
|
|
<_>
|
|
14 0 6 11 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2338066995143890</threshold>
|
|
<left_val>-0.0380702316761017</left_val>
|
|
<right_val>0.6060631275177002</right_val></_></_>
|
|
<_>
|
|
<!-- tree 67 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 1 2 2 -1.</_>
|
|
<_>
|
|
25 1 1 1 2.</_>
|
|
<_>
|
|
24 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.0552138671046123e-005</threshold>
|
|
<left_val>0.1788138002157211</left_val>
|
|
<right_val>-0.0939079597592354</right_val></_></_>
|
|
<_>
|
|
<!-- tree 68 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 1 2 2 -1.</_>
|
|
<_>
|
|
19 1 1 1 2.</_>
|
|
<_>
|
|
20 2 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.6401779652805999e-005</threshold>
|
|
<left_val>-0.1723238974809647</left_val>
|
|
<right_val>0.1459642052650452</right_val></_></_>
|
|
<_>
|
|
<!-- tree 69 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
30 8 6 3 -1.</_>
|
|
<_>
|
|
32 8 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0122575396671891</threshold>
|
|
<left_val>0.0273588206619024</left_val>
|
|
<right_val>-0.5944917798042297</right_val></_></_>
|
|
<_>
|
|
<!-- tree 70 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 3 2 2 -1.</_>
|
|
<_>
|
|
19 3 1 1 2.</_>
|
|
<_>
|
|
20 4 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.4914221032522619e-005</threshold>
|
|
<left_val>-0.1409206986427307</left_val>
|
|
<right_val>0.1411006003618240</right_val></_></_>
|
|
<_>
|
|
<!-- tree 71 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 1 10 2 -1.</_>
|
|
<_>
|
|
31 1 5 1 2.</_>
|
|
<_>
|
|
26 2 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.0704288296401501e-003</threshold>
|
|
<left_val>-0.1195909008383751</left_val>
|
|
<right_val>0.3324908912181854</right_val></_></_>
|
|
<_>
|
|
<!-- tree 72 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 8 6 3 -1.</_>
|
|
<_>
|
|
11 8 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0128887603059411</threshold>
|
|
<left_val>-0.6895632147789002</left_val>
|
|
<right_val>0.0317549891769886</right_val></_></_>
|
|
<_>
|
|
<!-- tree 73 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 1 5 6 -1.</_>
|
|
<_>
|
|
36 3 5 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0167079698294401</threshold>
|
|
<left_val>0.0986552089452744</left_val>
|
|
<right_val>-0.1093738973140717</right_val></_></_>
|
|
<_>
|
|
<!-- tree 74 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 1 5 6 -1.</_>
|
|
<_>
|
|
4 3 5 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0111487796530128</threshold>
|
|
<left_val>-0.0638019666075706</left_val>
|
|
<right_val>0.3460581004619598</right_val></_></_>
|
|
<_>
|
|
<!-- tree 75 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
36 9 8 1 -1.</_>
|
|
<_>
|
|
36 9 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.7799250092357397e-003</threshold>
|
|
<left_val>0.2098781019449234</left_val>
|
|
<right_val>-0.1335940062999725</right_val></_></_>
|
|
<_>
|
|
<!-- tree 76 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 3 6 2 -1.</_>
|
|
<_>
|
|
3 3 3 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.4409759498666972e-004</threshold>
|
|
<left_val>0.0692380964756012</left_val>
|
|
<right_val>-0.3170874118804932</right_val></_></_>
|
|
<_>
|
|
<!-- tree 77 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
39 3 4 8 -1.</_>
|
|
<_>
|
|
39 3 2 8 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0297752991318703</threshold>
|
|
<left_val>-0.4180003106594086</left_val>
|
|
<right_val>0.0322431214153767</right_val></_></_>
|
|
<_>
|
|
<!-- tree 78 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 3 4 8 -1.</_>
|
|
<_>
|
|
4 3 2 8 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.9159660916775465e-003</threshold>
|
|
<left_val>0.1394903957843781</left_val>
|
|
<right_val>-0.1648450940847397</right_val></_></_>
|
|
<_>
|
|
<!-- tree 79 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 7 2 2 -1.</_>
|
|
<_>
|
|
23 7 1 1 2.</_>
|
|
<_>
|
|
22 8 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.3617448934819549e-005</threshold>
|
|
<left_val>0.0994415432214737</left_val>
|
|
<right_val>-0.0869354978203774</right_val></_></_>
|
|
<_>
|
|
<!-- tree 80 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 5 38 6 -1.</_>
|
|
<_>
|
|
0 5 19 3 2.</_>
|
|
<_>
|
|
19 8 19 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.1275593042373657</threshold>
|
|
<left_val>-0.5993226170539856</left_val>
|
|
<right_val>0.0344392508268356</right_val></_></_>
|
|
<_>
|
|
<!-- tree 81 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
43 0 2 4 -1.</_>
|
|
<_>
|
|
43 0 1 4 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0119300801306963</threshold>
|
|
<left_val>0.0343060009181499</left_val>
|
|
<right_val>-0.5462340712547302</right_val></_></_>
|
|
<_>
|
|
<!-- tree 82 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 6 16 4 -1.</_>
|
|
<_>
|
|
14 6 8 2 2.</_>
|
|
<_>
|
|
22 8 8 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0128053296357393</threshold>
|
|
<left_val>0.0547706894576550</left_val>
|
|
<right_val>-0.3324441015720367</right_val></_></_>
|
|
<_>
|
|
<!-- tree 83 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
43 0 2 4 -1.</_>
|
|
<_>
|
|
43 0 1 4 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0110163297504187</threshold>
|
|
<left_val>-0.3388048112392426</left_val>
|
|
<right_val>0.0193178597837687</right_val></_></_>
|
|
<_>
|
|
<!-- tree 84 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 4 3 4 -1.</_>
|
|
<_>
|
|
13 4 1 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.5256899641826749e-003</threshold>
|
|
<left_val>0.1910459995269775</left_val>
|
|
<right_val>-0.1074023991823196</right_val></_></_></trees>
|
|
<stage_threshold>-1.4498629570007324</stage_threshold>
|
|
<parent>17</parent>
|
|
<next>-1</next></_></stages></parojos_7000pos_15000neg_45x11>
|
|
</opencv_storage>
|