mirror of
https://github.com/Laex/Delphi-OpenCV.git
synced 2024-11-15 07:45:53 +01:00
e546cdae09
Signed-off-by: Laentir Valetov <laex@bk.ru>
373 lines
14 KiB
ObjectPascal
373 lines
14 KiB
ObjectPascal
(*
|
|
**************************************************************************************************
|
|
Project Delphi-OpenCV
|
|
**************************************************************************************************
|
|
Contributor:
|
|
Laentir Valetov
|
|
email:laex@bk.ru
|
|
Mikhail Grigorev
|
|
email:sleuthhound@gmail.com
|
|
**************************************************************************************************
|
|
You may retrieve the latest version of this file at the GitHub,
|
|
located at git://github.com/Laex/Delphi-OpenCV.git
|
|
**************************************************************************************************
|
|
License:
|
|
The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License");
|
|
you may not use this file except in compliance with the License. You may obtain a copy of the
|
|
License at http://www.mozilla.org/MPL/
|
|
|
|
Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF
|
|
ANY KIND, either express or implied. See the License for the specific language governing rights
|
|
and limitations under the License.
|
|
|
|
Alternatively, the contents of this file may be used under the terms of the
|
|
GNU Lesser General Public License (the "LGPL License"), in which case the
|
|
provisions of the LGPL License are applicable instead of those above.
|
|
If you wish to allow use of your version of this file only under the terms
|
|
of the LGPL License and not to allow others to use your version of this file
|
|
under the MPL, indicate your decision by deleting the provisions above and
|
|
replace them with the notice and other provisions required by the LGPL
|
|
License. If you do not delete the provisions above, a recipient may use
|
|
your version of this file under either the MPL or the LGPL License.
|
|
|
|
For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html
|
|
**************************************************************************************************
|
|
Warning: Using Delphi XE3 syntax!
|
|
**************************************************************************************************
|
|
The Initial Developer of the Original Code:
|
|
OpenCV: open source computer vision library
|
|
Homepage: http://ocv.org
|
|
Online docs: http://docs.ocv.org
|
|
Q&A forum: http://answers.ocv.org
|
|
Dev zone: http://code.ocv.org
|
|
**************************************************************************************************
|
|
Original file:
|
|
opencv\modules\objdetect\include\opencv2\objdetect_c.h
|
|
*************************************************************************************************
|
|
*)
|
|
|
|
//
|
|
{$I OpenCV.inc}
|
|
//
|
|
unit ocv.objdetect_c;
|
|
|
|
interface
|
|
|
|
uses ocv.core_c, ocv.core.types_c;
|
|
|
|
/// ****************************************************************************************\
|
|
// * Haar-like Object Detection functions *
|
|
// \****************************************************************************************/
|
|
const
|
|
// #define CV_HAAR_MAGIC_VAL 0x42500000
|
|
CV_HAAR_MAGIC_VAL = $42500000;
|
|
// #define CV_TYPE_NAME_HAAR "opencv-haar-classifier"
|
|
CV_TYPE_NAME_HAAR = 'opencv-haar-classifier';
|
|
|
|
// #define CV_IS_HAAR_CLASSIFIER( haar ) \
|
|
// ((haar) != NULL && \
|
|
// (((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
|
|
// #define CV_HAAR_FEATURE_MAX 3
|
|
CV_HAAR_FEATURE_MAX = 3;
|
|
|
|
Type
|
|
pCvHaarFeature = ^TCvHaarFeature;
|
|
|
|
TCvHaarFeatureRect = record
|
|
r: TCvRect;
|
|
weight: Float;
|
|
end;
|
|
|
|
TCvHaarFeature = record
|
|
tilted: Integer; // int tilted;
|
|
// struct
|
|
// {
|
|
// CvRect r;
|
|
// float weight;
|
|
// } rect[CV_HAAR_FEATURE_MAX];
|
|
rect: array [0 .. CV_HAAR_FEATURE_MAX - 1] of TCvHaarFeatureRect;
|
|
end;
|
|
|
|
pCvHaarClassifier = ^TCvHaarClassifier;
|
|
|
|
TCvHaarClassifier = record
|
|
count: Integer; // int count;
|
|
haar_feature: pCvHaarFeature; // CvHaarFeature* haar_feature;
|
|
threshold: pFloat; // float* threshold;
|
|
left: pInteger; // int* left;
|
|
right: pInteger; // int* right;
|
|
alpha: pFloat; // float* alpha;
|
|
end;
|
|
|
|
pCvHaarStageClassifier = ^TCvHaarStageClassifier;
|
|
|
|
TCvHaarStageClassifier = record
|
|
count: Integer; // int count;
|
|
threshold: Float; // float threshold;
|
|
classifier: pCvHaarClassifier; // CvHaarClassifier* classifier;
|
|
next: Integer; // int next;
|
|
child: Integer; // int child;
|
|
parent: Integer; // int parent;
|
|
end;
|
|
|
|
// typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
|
|
TCvHidHaarClassifierCascade = record
|
|
|
|
end;
|
|
|
|
pCvHidHaarClassifierCascade = ^TCvHidHaarClassifierCascade;
|
|
|
|
pCvHaarClassifierCascade = ^TCvHaarClassifierCascade;
|
|
|
|
// typedef struct CvHaarClassifierCascade
|
|
TCvHaarClassifierCascade = record
|
|
flags: Integer; // int flags;
|
|
count: Integer; // int count;
|
|
orig_window_size: TCvSize; // CvSize orig_window_size;
|
|
real_window_size: TCvSize; // CvSize real_window_size;
|
|
scale: Double; // double scale;
|
|
stage_classifier: pCvHaarStageClassifier; // CvHaarStageClassifier* stage_classifier;
|
|
hid_cascade: pCvHidHaarClassifierCascade; // CvHidHaarClassifierCascade* hid_cascade;
|
|
end;
|
|
|
|
// typedef struct CvAvgComp
|
|
// {
|
|
// CvRect rect;
|
|
// int neighbors;
|
|
// } CvAvgComp;
|
|
TCvAvgComp = record
|
|
rect: TCvRect;
|
|
neighbors: Integer;
|
|
end;
|
|
|
|
// Loads haar classifier cascade from a directory.
|
|
// It is obsolete: convert your cascade to xml and use cvLoad instead
|
|
// CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
|
|
// const char* directory, CvSize orig_window_size);
|
|
|
|
function cvLoadHaarClassifierCascade(const directory: PAnsiChar; orig_window_size: TCvSize): pCvHaarClassifierCascade; cdecl;
|
|
|
|
// CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );
|
|
|
|
procedure cvReleaseHaarClassifierCascade(Var cascade: pCvHaarClassifierCascade); cdecl;
|
|
|
|
|
|
Const
|
|
CV_HAAR_DO_CANNY_PRUNING = 1;
|
|
CV_HAAR_SCALE_IMAGE = 2;
|
|
CV_HAAR_FIND_BIGGEST_OBJECT = 4;
|
|
CV_HAAR_DO_ROUGH_SEARCH = 8;
|
|
|
|
// CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
|
|
// CvHaarClassifierCascade* cascade, CvMemStorage* storage,
|
|
// double scale_factor CV_DEFAULT(1.1),
|
|
// int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
|
|
// CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)));
|
|
|
|
|
|
function cvHaarDetectObjects(const image: pCvArr; cascade: pCvHaarClassifierCascade; storage: pCvMemStorage; scale_factor: Double { 1.1 };
|
|
min_neighbors: Integer { 3 }; flags: Integer { 0 }; min_size: TCvSize { CV_DEFAULT(cvSize(0,0)) }; max_size: TCvSize { CV_DEFAULT(cvSize(0,0)) } )
|
|
: pCvSeq; cdecl;
|
|
|
|
(*
|
|
sets images for haar classifier cascade
|
|
|
|
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
|
|
const CvArr* sum, const CvArr* sqsum,
|
|
const CvArr* tilted_sum, double scale );
|
|
*)
|
|
|
|
procedure cvSetImagesForHaarClassifierCascade(cascade: pCvHaarClassifierCascade; const sum: pCvArr; const sqsum: pCvArr; const tilted_sum: pCvArr;
|
|
scale: Double); cdecl;
|
|
|
|
(*
|
|
runs the cascade on the specified window
|
|
|
|
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
|
|
CvPoint pt, int start_stage CV_DEFAULT(0));
|
|
*)
|
|
|
|
function cvRunHaarClassifierCascade(const cascade: pCvHaarClassifierCascade; pt: TCvPoint; start_stage: Integer = 0): Integer; cdecl;
|
|
|
|
// ****************************************************************************************
|
|
// * Latent SVM Object Detection functions *
|
|
// ****************************************************************************************
|
|
|
|
// DataType: STRUCT position
|
|
/// / Structure describes the position of the filter in the feature pyramid
|
|
/// / l - level in the feature pyramid
|
|
/// / (x, y) - coordinate in level l
|
|
type
|
|
pCvLSVMFilterPosition = ^TCvLSVMFilterPosition;
|
|
|
|
TCvLSVMFilterPosition = record
|
|
x: Integer;
|
|
y: Integer;
|
|
l: Integer;
|
|
end;
|
|
|
|
// DataType: STRUCT filterObject
|
|
// Description of the filter, which corresponds to the part of the object
|
|
// V - ideal (penalty = 0) position of the partial filter
|
|
// from the root filter position (V_i in the paper)
|
|
// penaltyFunction - vector describes penalty function (d_i in the paper)
|
|
// pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2
|
|
// FILTER DESCRIPTION
|
|
// Rectangular map (sizeX x sizeY),
|
|
// every cell stores feature vector (dimension = p)
|
|
// H - matrix of feature vectors
|
|
// to set and get feature vectors (i,j)
|
|
// used formula H[(j * sizeX + i) * p + k], where
|
|
// k - component of feature vector in cell (i, j)
|
|
// END OF FILTER DESCRIPTION
|
|
Type
|
|
pCvLSVMFilterObject = ^TCvLSVMFilterObject;
|
|
|
|
TpCvLSVMFilterObject = array [0 .. 1] of pCvLSVMFilterObject;
|
|
ppCvLSVMFilterObject = ^TpCvLSVMFilterObject;
|
|
|
|
TCvLSVMFilterObject = record
|
|
V: TCvLSVMFilterPosition;
|
|
fineFunction: array [0 .. 3] of single;
|
|
sizeX: Integer;
|
|
sizeY: Integer;
|
|
numFeatures: Integer;
|
|
H: pSingle;
|
|
end;
|
|
|
|
// data type: STRUCT CvLatentSvmDetector
|
|
// structure contains internal representation of trained Latent SVM detector
|
|
// num_filters - total number of filters (root plus part) in model
|
|
// num_components - number of components in model
|
|
// num_part_filters - array containing number of part filters for each component
|
|
// filters - root and part filters for all model components
|
|
// b - biases for all model components
|
|
// score_threshold - confidence level threshold
|
|
Type
|
|
pCvLatentSvmDetector = ^TCvLatentSvmDetector;
|
|
|
|
TCvLatentSvmDetector = record
|
|
num_filters: Integer;
|
|
num_components: Integer;
|
|
num_part_filters: pInteger;
|
|
filters: ppCvLSVMFilterObject;
|
|
b: pSingle;
|
|
score_threshold: single;
|
|
end;
|
|
|
|
// data type: STRUCT CvObjectDetection
|
|
// structure contains the bounding box and confidence level for detected object
|
|
// rect - bounding box for a detected object
|
|
// score - confidence level
|
|
pCvObjectDetection = ^TCvObjectDetection;
|
|
|
|
TCvObjectDetection = record
|
|
rect: TCvRect;
|
|
score: single;
|
|
end;
|
|
|
|
/// /////////////// Object Detection using Latent SVM //////////////
|
|
// load trained detector from a file
|
|
//
|
|
// API
|
|
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
|
|
// INPUT
|
|
// filename - path to the file containing the parameters of
|
|
// - trained Latent SVM detector
|
|
// OUTPUT
|
|
// trained Latent SVM detector in internal representation
|
|
|
|
// CVAPI(CvLatentSvmDetector*) cvLoadLatentSvmDetector(const char* filename);
|
|
|
|
function cvLoadLatentSvmDetector(const filename: pCVChar): pCvLatentSvmDetector; cdecl;
|
|
|
|
(*
|
|
release memory allocated for CvLatentSvmDetector structure
|
|
|
|
API
|
|
void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
|
|
INPUT
|
|
detector - CvLatentSvmDetector structure to be released
|
|
OUTPUT
|
|
|
|
CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
|
|
*)
|
|
|
|
procedure cvReleaseLatentSvmDetector(Var detector: pCvLatentSvmDetector); cdecl;
|
|
|
|
(*
|
|
find rectangular regions in the given image that are likely
|
|
to contain objects and corresponding confidence levels
|
|
|
|
CvSeq* cvLatentSvmDetectObjects(const IplImage* image,
|
|
CvLatentSvmDetector* detector,
|
|
CvMemStorage* storage,
|
|
float overlap_threshold = 0.5f,
|
|
int numThreads = -1);
|
|
INPUT
|
|
image - image to detect objects in
|
|
detector - Latent SVM detector in internal representation
|
|
storage - memory storage to store the resultant sequence
|
|
of the object candidate rectangles
|
|
overlap_threshold - threshold for the non-maximum suppression algorithm
|
|
= 0.5f [here will be the reference to original paper]
|
|
OUTPUT
|
|
sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
|
|
|
|
CVAPI(CvSeq* ) cvLatentSvmDetectObjects(IplImage* image,
|
|
CvLatentSvmDetector* detector,
|
|
CvMemStorage* storage,
|
|
float overlap_threshold CV_DEFAULT(0.5f),
|
|
int numThreads CV_DEFAULT(-1));
|
|
*)
|
|
|
|
function cvLatentSvmDetectObjects(image: pIplImage; detector: pCvLatentSvmDetector; storage: pCvMemStorage; overlap_threshold: single = 0.5;
|
|
numThreads: Integer = -1): pCvSeq; cdecl;
|
|
|
|
(*
|
|
CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image,
|
|
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
|
|
std::vector<int>& rejectLevels, std::vector<double>& levelWeightds,
|
|
double scale_factor = 1.1,
|
|
int min_neighbors = 3, int flags = 0,
|
|
CvSize min_size = cvSize(0, 0), CvSize max_size = cvSize(0, 0),
|
|
bool outputRejectLevels = false );
|
|
*)
|
|
|
|
(*
|
|
struct CvDataMatrixCode
|
|
{
|
|
char msg[4];
|
|
CvMat* original;
|
|
CvMat* corners;
|
|
};
|
|
|
|
// CV_EXPORTS std::deque<CvDataMatrixCode> cvFindDataMatrix(CvMat *im);
|
|
*)
|
|
type
|
|
TCvDataMatrixCode = record
|
|
msg: array [0 .. 3] of cvChar;
|
|
original: PCvMat;
|
|
corners: PCvMat;
|
|
end;
|
|
|
|
implementation
|
|
|
|
uses ocv.lib;
|
|
|
|
|
|
function cvLatentSvmDetectObjects(image: pIplImage; detector: pCvLatentSvmDetector; storage: pCvMemStorage; overlap_threshold: single = 0.5;
|
|
numThreads: Integer = -1): pCvSeq; cdecl; external objdetect_lib{$IFDEF DELAYEDLOADLIB} delayed{$ENDIF};
|
|
function cvLoadLatentSvmDetector(const filename: pCVChar): pCvLatentSvmDetector; cdecl; external objdetect_lib{$IFDEF DELAYEDLOADLIB} delayed{$ENDIF};
|
|
procedure cvReleaseLatentSvmDetector(Var detector: pCvLatentSvmDetector); cdecl; external objdetect_lib{$IFDEF DELAYEDLOADLIB} delayed{$ENDIF};
|
|
function cvHaarDetectObjects(const image: pCvArr; cascade: pCvHaarClassifierCascade; storage: pCvMemStorage; scale_factor: Double { 1.1 };
|
|
min_neighbors: Integer { 3 }; flags: Integer { 0 }; min_size: TCvSize { CV_DEFAULT(cvSize(0,0)) }; max_size: TCvSize { CV_DEFAULT(cvSize(0,0)) } )
|
|
: pCvSeq; cdecl; external objdetect_lib{$IFDEF DELAYEDLOADLIB} delayed{$ENDIF};
|
|
function cvLoadHaarClassifierCascade(const directory: PAnsiChar; orig_window_size: TCvSize): pCvHaarClassifierCascade; cdecl; external objdetect_lib{$IFDEF DELAYEDLOADLIB} delayed{$ENDIF};
|
|
procedure cvReleaseHaarClassifierCascade(Var cascade: pCvHaarClassifierCascade); cdecl; external objdetect_lib{$IFDEF DELAYEDLOADLIB} delayed{$ENDIF};
|
|
procedure cvSetImagesForHaarClassifierCascade(cascade: pCvHaarClassifierCascade; const sum: pCvArr; const sqsum: pCvArr; const tilted_sum: pCvArr;
|
|
scale: Double); cdecl; external objdetect_lib{$IFDEF DELAYEDLOADLIB} delayed{$ENDIF};
|
|
function cvRunHaarClassifierCascade(const cascade: pCvHaarClassifierCascade; pt: TCvPoint; start_stage: Integer = 0): Integer; cdecl; external objdetect_lib{$IFDEF DELAYEDLOADLIB} delayed{$ENDIF};
|
|
|
|
end.
|