Delphi-OpenCV/include/legacy/enteringblobdetection.pas
Laex 42c52f1619 Merged branches
Signed-off-by: Laex <laex@bk.ru>
2013-09-12 14:50:55 +04:00

1999 lines
59 KiB
ObjectPascal

// --------------------------------- OpenCV license.txt ---------------------------
(* // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage. *)
(* / **************************************************************************************************
// Project Delphi-OpenCV
// **************************************************************************************************
// Contributor:
// laentir Valetov
// email:laex@bk.ru
// **************************************************************************************************
// You may retrieve the latest version of this file at the GitHub,
// located at git://github.com/Laex/Delphi-OpenCV.git
// **************************************************************************************************
// License:
// The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License");
// you may not use this file except in compliance with the License. You may obtain a copy of the
// License at http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF
// ANY KIND, either express or implied. See the License for the specific language governing rights
// and limitations under the License.
//
// Alternatively, the contents of this file may be used under the terms of the
// GNU Lesser General Public License (the "LGPL License"), in which case the
// provisions of the LGPL License are applicable instead of those above.
// If you wish to allow use of your version of this file only under the terms
// of the LGPL License and not to allow others to use your version of this file
// under the MPL, indicate your decision by deleting the provisions above and
// replace them with the notice and other provisions required by the LGPL
// License. If you do not delete the provisions above, a recipient may use
// your version of this file under either the MPL or the LGPL License.
//
// For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html
// **************************************************************************************************
// Warning: Using Delphi XE3 syntax!
// **************************************************************************************************
// The Initial Developer of the Original Code:
// OpenCV: open source computer vision library
// Homepage: http://opencv.org
// Online docs: http://docs.opencv.org
// Q&A forum: http://answers.opencv.org
// Dev zone: http://code.opencv.org
// **************************************************************************************************
// Original file:
// opencv\modules\legacy\src\enteringblobdetection.cpp
// ************************************************************************************************* *)
{$IFDEF DEBUG}
{$A8,B-,C+,D+,E-,F-,G+,H+,I+,J-,K-,L+,M-,N+,O-,P+,Q+,R+,S-,T-,U-,V+,W+,X+,Y+,Z1}
{$ELSE}
{$A8,B-,C-,D-,E-,F-,G+,H+,I+,J-,K-,L-,M-,N+,O+,P+,Q-,R-,S-,T-,U-,V+,W-,X+,Y-,Z1}
{$ENDIF}
{$WARN SYMBOL_DEPRECATED OFF}
{$WARN SYMBOL_PLATFORM OFF}
{$WARN UNIT_PLATFORM OFF}
{$WARN UNSAFE_TYPE OFF}
{$WARN UNSAFE_CODE OFF}
{$WARN UNSAFE_CAST OFF}
{$POINTERMATH ON}
{$TYPEDADDRESS ON}
unit enteringblobdetection;
interface
Uses Windows, core_c, core.types_c, imgproc_c, blobtrack;
// static int CompareContour(const void* a, const void* b, void* )
// {
// float dx,dy;
// float h,w,ht,wt;
// CvPoint2D32f pa,pb;
// CvRect ra,rb;
// CvSeq* pCA = *(CvSeq**)a;
// CvSeq* pCB = *(CvSeq**)b;
// ra = ((CvContour*)pCA)->rect;
// rb = ((CvContour*)pCB)->rect;
// pa.x = ra.x + ra.width*0.5f;
// pa.y = ra.y + ra.height*0.5f;
// pb.x = rb.x + rb.width*0.5f;
// pb.y = rb.y + rb.height*0.5f;
// w = (ra.width+rb.width)*0.5f;
// h = (ra.height+rb.height)*0.5f;
//
// dx = (float)(fabs(pa.x - pb.x)-w);
// dy = (float)(fabs(pa.y - pb.y)-h);
//
// //wt = MAX(ra.width,rb.width)*0.1f;
// wt = 0;
// ht = MAX(ra.height,rb.height)*0.3f;
// return (dx < wt && dy < ht);
// }
//
procedure cvFindBlobsByCCClasters(pFG: pIplImage; pBlobs: TCvBlobSeq; storage: pCvMemStorage);
const
/// * Simple blob detector. */
/// * Number of successive frame to analyse: */
EBD_FRAME_NUM = 5;
type
TCvBlobDetectorSimple = class(TCvBlobDetector)
public
constructor Create;
destructor Destroy; override;
function DetectNewBlob(pImg: pIplImage; pFGMask: pIplImage; pNewBlobList: TCvBlobSeq; pOldBlobList: TCvBlobSeq)
: Integer; override;
procedure Release(); override;
{ delete this; }
protected
m_pMaskBlobNew: pIplImage;
m_pMaskBlobExist: pIplImage;
// * Lists of connected components detected on previous frames: */
m_pBlobLists: array [0 .. EBD_FRAME_NUM - 1] of TCvBlobSeq;
end;
/// * Constructor of BlobDetector: */
// CvBlobDetectorSimple::CvBlobDetectorSimple()
// {
// int i = 0;
// m_pMaskBlobNew = NULL;
// m_pMaskBlobExist = NULL;
// for(i=0;i<EBD_FRAME_NUM;++i)m_pBlobLists[i] = NULL;
//
// SetModuleName("Simple");
// }
//
/// * Destructor of BlobDetector: */
// CvBlobDetectorSimple::~CvBlobDetectorSimple()
// {
// int i;
// if(m_pMaskBlobExist) cvReleaseImage(&m_pMaskBlobExist);
// if(m_pMaskBlobNew) cvReleaseImage(&m_pMaskBlobNew);
// for(i=0; i<EBD_FRAME_NUM; ++i) delete m_pBlobLists[i];
// } /* cvReleaseBlobDetector */
//
/// * cvDetectNewBlobs
// * return 1 and fill blob pNewBlob by blob parameters
// * if new blob is detected:
// */
// int CvBlobDetectorSimple::DetectNewBlob(IplImage* /*pImg*/, IplImage* pFGMask, CvBlobSeq* pNewBlobList, CvBlobSeq* pOldBlobList)
// {
// int result = 0;
// CvSize S = cvSize(pFGMask->width,pFGMask->height);
// if(m_pMaskBlobNew == NULL ) m_pMaskBlobNew = cvCreateImage(S,IPL_DEPTH_8U,1);
// if(m_pMaskBlobExist == NULL ) m_pMaskBlobExist = cvCreateImage(S,IPL_DEPTH_8U,1);
//
// /* Shift blob list: */
// {
// int i;
// if(m_pBlobLists[0]) delete m_pBlobLists[0];
// for(i=1;i<EBD_FRAME_NUM;++i)m_pBlobLists[i-1]=m_pBlobLists[i];
// m_pBlobLists[EBD_FRAME_NUM-1] = new CvBlobSeq;
// } /* Shift blob list. */
//
// /* Create exist blob mask: */
// cvCopy(pFGMask, m_pMaskBlobNew);
//
// /* Create contours and add new blobs to blob list: */
// { /* Create blobs: */
// CvBlobSeq Blobs;
// CvMemStorage* storage = cvCreateMemStorage();
//
// #if 1
// { /* Glue contours: */
// cvFindBlobsByCCClasters(m_pMaskBlobNew, &Blobs, storage );
// } /* Glue contours. */
// #else
// { /**/
// IplImage* pIB = cvCloneImage(m_pMaskBlobNew);
// CvSeq* cnts = NULL;
// CvSeq* cnt = NULL;
// cvThreshold(pIB,pIB,128,255,CV_THRESH_BINARY);
// cvFindContours(pIB,storage, &cnts, sizeof(CvContour), CV_RETR_EXTERNAL);
//
// /* Process each contour: */
// for(cnt = cnts; cnt; cnt=cnt->h_next)
// {
// CvBlob NewBlob;
//
// /* Image moments: */
// double M00,X,Y,XX,YY;
// CvMoments m;
// CvRect r = ((CvContour*)cnt)->rect;
// CvMat mat;
//
// if(r.height < S.height*0.02 || r.width < S.width*0.02) continue;
//
// cvMoments( cvGetSubRect(m_pMaskBlobNew,&mat,r), &m, 0 );
// M00 = cvGetSpatialMoment( &m, 0, 0 );
//
// if(M00 <= 0 ) continue;
//
// X = cvGetSpatialMoment( &m, 1, 0 )/M00;
// Y = cvGetSpatialMoment( &m, 0, 1 )/M00;
//
// XX = (cvGetSpatialMoment( &m, 2, 0 )/M00) - X*X;
// YY = (cvGetSpatialMoment( &m, 0, 2 )/M00) - Y*Y;
//
// NewBlob = cvBlob(r.x+(float)X,r.y+(float)Y,(float)(4*sqrt(XX)),(float)(4*sqrt(YY)));
//
// Blobs.AddBlob(&NewBlob);
//
// } /* Next contour. */
//
// cvReleaseImage(&pIB);
//
// } /* One contour - one blob. */
// #endif
//
// { /* Delete small and intersected blobs: */
// int i;
// for(i=Blobs.GetBlobNum(); i>0; i--)
// {
// CvBlob* pB = Blobs.GetBlob(i-1);
//
// if(pB->h < S.height*0.02 || pB->w < S.width*0.02)
// {
// Blobs.DelBlob(i-1);
// continue;
// }
// if(pOldBlobList)
// {
// int j;
// for(j=pOldBlobList->GetBlobNum(); j>0; j--)
// {
// CvBlob* pBOld = pOldBlobList->GetBlob(j-1);
// if((fabs(pBOld->x-pB->x) < (CV_BLOB_RX(pBOld)+CV_BLOB_RX(pB))) &&
// (fabs(pBOld->y-pB->y) < (CV_BLOB_RY(pBOld)+CV_BLOB_RY(pB))))
// { /* Intersection is present, so delete blob from list: */
// Blobs.DelBlob(i-1);
// break;
// }
// } /* Check next old blob. */
// } /* if pOldBlobList */
// } /* Check next blob. */
// } /* Delete small and intersected blobs. */
//
// { /* Bubble-sort blobs by size: */
// int N = Blobs.GetBlobNum();
// int i,j;
// for(i=1; i<N; ++i)
// {
// for(j=i; j>0; --j)
// {
// CvBlob temp;
// float AreaP, AreaN;
// CvBlob* pP = Blobs.GetBlob(j-1);
// CvBlob* pN = Blobs.GetBlob(j);
// AreaP = CV_BLOB_WX(pP)*CV_BLOB_WY(pP);
// AreaN = CV_BLOB_WX(pN)*CV_BLOB_WY(pN);
// if(AreaN < AreaP)break;
// temp = pN[0];
// pN[0] = pP[0];
// pP[0] = temp;
// }
// }
//
// /* Copy only first 10 blobs: */
// for(i=0; i<MIN(N,10); ++i)
// {
// m_pBlobLists[EBD_FRAME_NUM-1]->AddBlob(Blobs.GetBlob(i));
// }
//
// } /* Sort blobs by size. */
//
// cvReleaseMemStorage(&storage);
//
// } /* Create blobs. */
//
// /* Analyze blob list to find best blob trajectory: */
// {
// int Count = 0;
// int pBLIndex[EBD_FRAME_NUM];
// int pBL_BEST[EBD_FRAME_NUM];
// int i;
// int finish = 0;
// double BestError = -1;
// int Good = 1;
//
// for(i=0; i<EBD_FRAME_NUM; ++i)
// {
// pBLIndex[i] = 0;
// pBL_BEST[i] = 0;
// }
//
// /* Check configuration exist: */
// for(i=0; Good && (i<EBD_FRAME_NUM); ++i)
// if(m_pBlobLists[i] == NULL || m_pBlobLists[i]->GetBlobNum() == 0)
// Good = 0;
//
// if(Good)
// do{ /* For each configuration: */
// CvBlob* pBL[EBD_FRAME_NUM];
// int good = 1;
// double Error = 0;
// CvBlob* pBNew = m_pBlobLists[EBD_FRAME_NUM-1]->GetBlob(pBLIndex[EBD_FRAME_NUM-1]);
//
// for(i=0; i<EBD_FRAME_NUM; ++i) pBL[i] = m_pBlobLists[i]->GetBlob(pBLIndex[i]);
//
// Count++;
//
// /* Check intersection last blob with existed: */
// if(good && pOldBlobList)
// { /* Check intersection last blob with existed: */
// int k;
// for(k=pOldBlobList->GetBlobNum(); k>0; --k)
// {
// CvBlob* pBOld = pOldBlobList->GetBlob(k-1);
// if((fabs(pBOld->x-pBNew->x) < (CV_BLOB_RX(pBOld)+CV_BLOB_RX(pBNew))) &&
// (fabs(pBOld->y-pBNew->y) < (CV_BLOB_RY(pBOld)+CV_BLOB_RY(pBNew))))
// good = 0;
// }
// } /* Check intersection last blob with existed. */
//
// /* Check distance to image border: */
// if(good)
// { /* Check distance to image border: */
// CvBlob* pB = pBNew;
// float dx = MIN(pB->x,S.width-pB->x)/CV_BLOB_RX(pB);
// float dy = MIN(pB->y,S.height-pB->y)/CV_BLOB_RY(pB);
//
// if(dx < 1.1 || dy < 1.1) good = 0;
// } /* Check distance to image border. */
//
// /* Check uniform motion: */
// if(good)
// {
// int N = EBD_FRAME_NUM;
// float sum[2] = {0,0};
// float jsum[2] = {0,0};
// float a[2],b[2]; /* estimated parameters of moving x(t) = a*t+b*/
//
// int j;
// for(j=0; j<N; ++j)
// {
// float x = pBL[j]->x;
// float y = pBL[j]->y;
// sum[0] += x;
// jsum[0] += j*x;
// sum[1] += y;
// jsum[1] += j*y;
// }
//
// a[0] = 6*((1-N)*sum[0]+2*jsum[0])/(N*(N*N-1));
// b[0] = -2*((1-2*N)*sum[0]+3*jsum[0])/(N*(N+1));
// a[1] = 6*((1-N)*sum[1]+2*jsum[1])/(N*(N*N-1));
// b[1] = -2*((1-2*N)*sum[1]+3*jsum[1])/(N*(N+1));
//
// for(j=0; j<N; ++j)
// {
// Error +=
// pow(a[0]*j+b[0]-pBL[j]->x,2)+
// pow(a[1]*j+b[1]-pBL[j]->y,2);
// }
//
// Error = sqrt(Error/N);
//
// if( Error > S.width*0.01 ||
// fabs(a[0])>S.width*0.1 ||
// fabs(a[1])>S.height*0.1)
// good = 0;
//
// } /* Check configuration. */
//
//
// /* New best trajectory: */
// if(good && (BestError == -1 || BestError > Error))
// {
// for(i=0; i<EBD_FRAME_NUM; ++i)
// {
// pBL_BEST[i] = pBLIndex[i];
// }
// BestError = Error;
// } /* New best trajectory. */
//
// /* Set next configuration: */
// for(i=0; i<EBD_FRAME_NUM; ++i)
// {
// pBLIndex[i]++;
// if(pBLIndex[i] != m_pBlobLists[i]->GetBlobNum()) break;
// pBLIndex[i]=0;
// } /* Next time shift. */
//
// if(i==EBD_FRAME_NUM)finish=1;
//
// } while(!finish); /* Check next time configuration of connected components. */
//
// #if 0
// {/**/
// printf("BlobDetector configurations = %d [",Count);
// int i;
// for(i=0; i<EBD_FRAME_NUM; ++i)
// {
// printf("%d,",m_pBlobLists[i]?m_pBlobLists[i]->GetBlobNum():0);
// }
// printf("]\n");
//
// }
// #endif
//
// if(BestError != -1)
// { /* Write new blob to output and delete from blob list: */
// CvBlob* pNewBlob = m_pBlobLists[EBD_FRAME_NUM-1]->GetBlob(pBL_BEST[EBD_FRAME_NUM-1]);
// pNewBlobList->AddBlob(pNewBlob);
//
// for(i=0; i<EBD_FRAME_NUM; ++i)
// { /* Remove blob from each list: */
// m_pBlobLists[i]->DelBlob(pBL_BEST[i]);
// } /* Remove blob from each list. */
//
// result = 1;
//
// } /* Write new blob to output and delete from blob list. */
// } /* Analyze blob list to find best blob trajectory. */
//
// return result;
//
// } /* cvDetectNewBlob */
const
/// * Simple blob detector2. */
/// * Number of successive frames to analyse: */
SEQ_SIZE_MAX = 30;
SEQ_NUM = 1000;
Type
pDefSeq = ^TDefSeq;
TDefSeq = packed record
size: Integer;
pBlobs: array [0 .. SEQ_SIZE_MAX - 1] of pCvBlob;
end;
Type
TCvBlobDetectorCC = class(TCvBlobDetector)
public
constructor Create;
destructor Destroy; override;
function DetectNewBlob(pImg: pIplImage; pFGMask: pIplImage; pNewBlobList: TCvBlobSeq; pOldBlobList: TCvBlobSeq)
: Integer; override;
procedure Release(); override;
{ delete this; }
procedure ParamUpdate(); override;
// {
// if(SEQ_SIZE<1)SEQ_SIZE=1;
// if(SEQ_SIZE>SEQ_SIZE_MAX)SEQ_SIZE=SEQ_SIZE_MAX;
//
// #ifdef USE_OBJECT_DETECTOR
// if( m_param_split_detector_file_name )
// {
// m_split_detector = new CvObjectDetector();
// if( !m_split_detector->Load( m_param_split_detector_file_name ) )
// {
// delete m_split_detector;
// m_split_detector = 0;
// }
// else
// {
// m_min_window_size = m_split_detector->GetMinWindowSize();
// m_max_border = m_split_detector->GetMaxBorderSize();
// }
// }
// #endif
// }
private
// * Lists of connected components detected on previous frames: */
m_pBlobLists: array [0 .. SEQ_SIZE_MAX - 1] of TCvBlobSeq;
m_TrackSeq: array [0 .. SEQ_NUM - 1] of TDefSeq;
m_TrackNum: Integer;
m_HMin: Single;
m_WMin: Single;
m_MinDistToBorder: Single;
m_Clastering: Integer;
SEQ_SIZE: Integer;
// /* If not 0 then the detector is loaded from the specified file
// * and it is applied for splitting blobs which actually correspond
// * to groups of objects:
// */
m_param_split_detector_file_name: pCvChar;
m_param_roi_scale: Single;
m_param_only_roi: Integer;
m_split_detector: TCvObjectDetector;
m_min_window_size: TCvSize;
m_max_border: Integer;
m_detected_blob_seq: TCvBlobSeq;
m_roi_seq: pCvSeq;
m_debug_blob_seq: TCvBlobSeq;
end;
/// * Constructor for BlobDetector: */
// CvBlobDetectorCC::CvBlobDetectorCC() :
// m_split_detector(0),
// m_detected_blob_seq(sizeof(CvDetectedBlob)),
// m_roi_seq(0),
// m_debug_blob_seq(sizeof(CvDetectedBlob))
// {
// /*CvDrawShape shapes[] =
// {
// { CvDrawShape::RECT, {{255,255,255}} },
// { CvDrawShape::RECT, {{0,0,255}} },
// { CvDrawShape::ELLIPSE, {{0,255,0}} }
// };
// int num_shapes = sizeof(shapes) / sizeof(shapes[0]);*/
//
// int i = 0;
// SEQ_SIZE = 10;
// AddParam("Latency",&SEQ_SIZE);
// for(i=0;i<SEQ_SIZE_MAX;++i)m_pBlobLists[i] = NULL;
// for(i=0;i<SEQ_NUM;++i)m_TrackSeq[i].size = 0;
// m_TrackNum = 0;
//
// m_HMin = 0.02f;
// m_WMin = 0.01f;
// AddParam("HMin",&m_HMin);
// AddParam("WMin",&m_WMin);
// m_MinDistToBorder = 1.1f;
// AddParam("MinDistToBorder",&m_MinDistToBorder);
// CommentParam("MinDistToBorder","Minimal allowed distance from blob center to image border in blob sizes");
//
// m_Clastering=1;
// AddParam("Clastering",&m_Clastering);
// CommentParam("Clastering","Minimal allowed distance from blob center to image border in blob sizes");
//
// m_param_split_detector_file_name = 0;
// #ifdef USE_OBJECT_DETECTOR
// AddParam("Detector", &m_param_split_detector_file_name);
// CommentParam("Detector", "Detector file name");
// #endif
//
// m_param_roi_scale = 1.5F;
// AddParam("ROIScale", &m_param_roi_scale);
// CommentParam("ROIScale", "Determines the size of search window around a blob");
//
// m_param_only_roi = 1;
// AddParam("OnlyROI", &m_param_only_roi);
// CommentParam("OnlyROI", "Shows the whole debug image (0) or only ROIs where the detector was applied (1)");
//
// m_min_window_size = cvSize(0,0);
// m_max_border = 0;
// m_roi_seq = cvCreateSeq( 0, sizeof(*m_roi_seq), sizeof(CvRect), cvCreateMemStorage() );
//
// SetModuleName("CC");
// }
//
/// * Destructor for BlobDetector: */
// CvBlobDetectorCC::~CvBlobDetectorCC()
// {
// int i;
// for(i=0; i<SEQ_SIZE_MAX; ++i)
// {
// if(m_pBlobLists[i])
// delete m_pBlobLists[i];
// }
//
// if( m_roi_seq )
// {
// cvReleaseMemStorage( &m_roi_seq->storage );
// m_roi_seq = 0;
// }
// //cvDestroyWindow( "EnteringBlobDetectionDebug" );
// } /* cvReleaseBlobDetector */
//
//
/// * cvDetectNewBlobs
// * Return 1 and fill blob pNewBlob with
// * blob parameters if new blob is detected:
// */
// int CvBlobDetectorCC::DetectNewBlob(IplImage* /*pImg*/, IplImage* pFGMask, CvBlobSeq* pNewBlobList, CvBlobSeq* pOldBlobList)
// {
// int result = 0;
// CvSize S = cvSize(pFGMask->width,pFGMask->height);
//
// /* Shift blob list: */
// {
// int i;
// if(m_pBlobLists[SEQ_SIZE-1]) delete m_pBlobLists[SEQ_SIZE-1];
//
// for(i=SEQ_SIZE-1; i>0; --i) m_pBlobLists[i] = m_pBlobLists[i-1];
//
// m_pBlobLists[0] = new CvBlobSeq;
//
// } /* Shift blob list. */
//
// /* Create contours and add new blobs to blob list: */
// { /* Create blobs: */
// CvBlobSeq Blobs;
// CvMemStorage* storage = cvCreateMemStorage();
//
// if(m_Clastering)
// { /* Glue contours: */
// cvFindBlobsByCCClasters(pFGMask, &Blobs, storage );
// } /* Glue contours. */
// else
// { /**/
// IplImage* pIB = cvCloneImage(pFGMask);
// CvSeq* cnts = NULL;
// CvSeq* cnt = NULL;
// cvThreshold(pIB,pIB,128,255,CV_THRESH_BINARY);
// cvFindContours(pIB,storage, &cnts, sizeof(CvContour), CV_RETR_EXTERNAL);
//
// /* Process each contour: */
// for(cnt = cnts; cnt; cnt=cnt->h_next)
// {
// CvBlob NewBlob;
// /* Image moments: */
// double M00,X,Y,XX,YY;
// CvMoments m;
// CvRect r = ((CvContour*)cnt)->rect;
// CvMat mat;
// if(r.height < S.height*m_HMin || r.width < S.width*m_WMin) continue;
// cvMoments( cvGetSubRect(pFGMask,&mat,r), &m, 0 );
// M00 = cvGetSpatialMoment( &m, 0, 0 );
// if(M00 <= 0 ) continue;
// X = cvGetSpatialMoment( &m, 1, 0 )/M00;
// Y = cvGetSpatialMoment( &m, 0, 1 )/M00;
// XX = (cvGetSpatialMoment( &m, 2, 0 )/M00) - X*X;
// YY = (cvGetSpatialMoment( &m, 0, 2 )/M00) - Y*Y;
// NewBlob = cvBlob(r.x+(float)X,r.y+(float)Y,(float)(4*sqrt(XX)),(float)(4*sqrt(YY)));
// Blobs.AddBlob(&NewBlob);
//
// } /* Next contour. */
//
// cvReleaseImage(&pIB);
//
// } /* One contour - one blob. */
//
// { /* Delete small and intersected blobs: */
// int i;
// for(i=Blobs.GetBlobNum(); i>0; i--)
// {
// CvBlob* pB = Blobs.GetBlob(i-1);
//
// if(pB->h < S.height*m_HMin || pB->w < S.width*m_WMin)
// {
// Blobs.DelBlob(i-1);
// continue;
// }
//
// if(pOldBlobList)
// {
// int j;
// for(j=pOldBlobList->GetBlobNum(); j>0; j--)
// {
// CvBlob* pBOld = pOldBlobList->GetBlob(j-1);
// if((fabs(pBOld->x-pB->x) < (CV_BLOB_RX(pBOld)+CV_BLOB_RX(pB))) &&
// (fabs(pBOld->y-pB->y) < (CV_BLOB_RY(pBOld)+CV_BLOB_RY(pB))))
// { /* Intersection detected, delete blob from list: */
// Blobs.DelBlob(i-1);
// break;
// }
// } /* Check next old blob. */
// } /* if pOldBlobList. */
// } /* Check next blob. */
// } /* Delete small and intersected blobs. */
//
// { /* Bubble-sort blobs by size: */
// int N = Blobs.GetBlobNum();
// int i,j;
// for(i=1; i<N; ++i)
// {
// for(j=i; j>0; --j)
// {
// CvBlob temp;
// float AreaP, AreaN;
// CvBlob* pP = Blobs.GetBlob(j-1);
// CvBlob* pN = Blobs.GetBlob(j);
// AreaP = CV_BLOB_WX(pP)*CV_BLOB_WY(pP);
// AreaN = CV_BLOB_WX(pN)*CV_BLOB_WY(pN);
// if(AreaN < AreaP)break;
// temp = pN[0];
// pN[0] = pP[0];
// pP[0] = temp;
// }
// }
//
// /* Copy only first 10 blobs: */
// for(i=0; i<MIN(N,10); ++i)
// {
// m_pBlobLists[0]->AddBlob(Blobs.GetBlob(i));
// }
//
// } /* Sort blobs by size. */
//
// cvReleaseMemStorage(&storage);
//
// } /* Create blobs. */
//
// { /* Shift each track: */
// int j;
// for(j=0; j<m_TrackNum; ++j)
// {
// int i;
// DefSeq* pTrack = m_TrackSeq+j;
//
// for(i=SEQ_SIZE-1; i>0; --i)
// pTrack->pBlobs[i] = pTrack->pBlobs[i-1];
//
// pTrack->pBlobs[0] = NULL;
// if(pTrack->size == SEQ_SIZE)pTrack->size--;
// }
// } /* Shift each track. */
//
// /* Analyze blob list to find best blob trajectory: */
// {
// double BestError = -1;
// int BestTrack = -1;;
// CvBlobSeq* pNewBlobs = m_pBlobLists[0];
// int i;
// int NewTrackNum = 0;
// for(i=pNewBlobs->GetBlobNum(); i>0; --i)
// {
// CvBlob* pBNew = pNewBlobs->GetBlob(i-1);
// int j;
// int AsignedTrack = 0;
// for(j=0; j<m_TrackNum; ++j)
// {
// double dx,dy;
// DefSeq* pTrack = m_TrackSeq+j;
// CvBlob* pLastBlob = pTrack->size>0?pTrack->pBlobs[1]:NULL;
// if(pLastBlob == NULL) continue;
// dx = fabs(CV_BLOB_X(pLastBlob)-CV_BLOB_X(pBNew));
// dy = fabs(CV_BLOB_Y(pLastBlob)-CV_BLOB_Y(pBNew));
// if(dx > 2*CV_BLOB_WX(pLastBlob) || dy > 2*CV_BLOB_WY(pLastBlob)) continue;
// AsignedTrack++;
//
// if(pTrack->pBlobs[0]==NULL)
// { /* Fill existed track: */
// pTrack->pBlobs[0] = pBNew;
// pTrack->size++;
// }
// else if((m_TrackNum+NewTrackNum)<SEQ_NUM)
// { /* Duplicate existed track: */
// m_TrackSeq[m_TrackNum+NewTrackNum] = pTrack[0];
// m_TrackSeq[m_TrackNum+NewTrackNum].pBlobs[0] = pBNew;
// NewTrackNum++;
// }
// } /* Next track. */
//
// if(AsignedTrack==0 && (m_TrackNum+NewTrackNum)<SEQ_NUM )
// { /* Initialize new track: */
// m_TrackSeq[m_TrackNum+NewTrackNum].size = 1;
// m_TrackSeq[m_TrackNum+NewTrackNum].pBlobs[0] = pBNew;
// NewTrackNum++;
// }
// } /* Next new blob. */
//
// m_TrackNum += NewTrackNum;
//
// /* Check each track: */
// for(i=0; i<m_TrackNum; ++i)
// {
// int Good = 1;
// DefSeq* pTrack = m_TrackSeq+i;
// CvBlob* pBNew = pTrack->pBlobs[0];
// if(pTrack->size != SEQ_SIZE) continue;
// if(pBNew == NULL ) continue;
//
// /* Check intersection last blob with existed: */
// if(Good && pOldBlobList)
// {
// int k;
// for(k=pOldBlobList->GetBlobNum(); k>0; --k)
// {
// CvBlob* pBOld = pOldBlobList->GetBlob(k-1);
// if((fabs(pBOld->x-pBNew->x) < (CV_BLOB_RX(pBOld)+CV_BLOB_RX(pBNew))) &&
// (fabs(pBOld->y-pBNew->y) < (CV_BLOB_RY(pBOld)+CV_BLOB_RY(pBNew))))
// Good = 0;
// }
// } /* Check intersection last blob with existed. */
//
// /* Check distance to image border: */
// if(Good)
// { /* Check distance to image border: */
// float dx = MIN(pBNew->x,S.width-pBNew->x)/CV_BLOB_RX(pBNew);
// float dy = MIN(pBNew->y,S.height-pBNew->y)/CV_BLOB_RY(pBNew);
// if(dx < m_MinDistToBorder || dy < m_MinDistToBorder) Good = 0;
// } /* Check distance to image border. */
//
// /* Check uniform motion: */
// if(Good)
// { /* Check uniform motion: */
// double Error = 0;
// int N = pTrack->size;
// CvBlob** pBL = pTrack->pBlobs;
// float sum[2] = {0,0};
// float jsum[2] = {0,0};
// float a[2],b[2]; /* estimated parameters of moving x(t) = a*t+b*/
// int j;
//
// for(j=0; j<N; ++j)
// {
// float x = pBL[j]->x;
// float y = pBL[j]->y;
// sum[0] += x;
// jsum[0] += j*x;
// sum[1] += y;
// jsum[1] += j*y;
// }
//
// a[0] = 6*((1-N)*sum[0]+2*jsum[0])/(N*(N*N-1));
// b[0] = -2*((1-2*N)*sum[0]+3*jsum[0])/(N*(N+1));
// a[1] = 6*((1-N)*sum[1]+2*jsum[1])/(N*(N*N-1));
// b[1] = -2*((1-2*N)*sum[1]+3*jsum[1])/(N*(N+1));
//
// for(j=0; j<N; ++j)
// {
// Error +=
// pow(a[0]*j+b[0]-pBL[j]->x,2)+
// pow(a[1]*j+b[1]-pBL[j]->y,2);
// }
//
// Error = sqrt(Error/N);
//
// if( Error > S.width*0.01 ||
// fabs(a[0])>S.width*0.1 ||
// fabs(a[1])>S.height*0.1)
// Good = 0;
//
// /* New best trajectory: */
// if(Good && (BestError == -1 || BestError > Error))
// { /* New best trajectory: */
// BestTrack = i;
// BestError = Error;
// } /* New best trajectory. */
// } /* Check uniform motion. */
// } /* Next track. */
//
// #if 0
// { /**/
// printf("BlobDetector configurations = %d [",m_TrackNum);
// int i;
// for(i=0; i<SEQ_SIZE; ++i)
// {
// printf("%d,",m_pBlobLists[i]?m_pBlobLists[i]->GetBlobNum():0);
// }
// printf("]\n");
// }
// #endif
//
// if(BestTrack >= 0)
// { /* Put new blob to output and delete from blob list: */
// assert(m_TrackSeq[BestTrack].size == SEQ_SIZE);
// assert(m_TrackSeq[BestTrack].pBlobs[0]);
// pNewBlobList->AddBlob(m_TrackSeq[BestTrack].pBlobs[0]);
// m_TrackSeq[BestTrack].pBlobs[0] = NULL;
// m_TrackSeq[BestTrack].size--;
// result = 1;
// } /* Put new blob to output and mark in blob list to delete. */
// } /* Analyze blod list to find best blob trajectory. */
//
// { /* Delete bad tracks: */
// int i;
// for(i=m_TrackNum-1; i>=0; --i)
// { /* Delete bad tracks: */
// if(m_TrackSeq[i].pBlobs[0]) continue;
// if(m_TrackNum>0)
// m_TrackSeq[i] = m_TrackSeq[--m_TrackNum];
// } /* Delete bad tracks: */
// }
//
// #ifdef USE_OBJECT_DETECTOR
// if( m_split_detector && pNewBlobList->GetBlobNum() > 0 )
// {
// int num_new_blobs = pNewBlobList->GetBlobNum();
// int i = 0;
//
// if( m_roi_seq ) cvClearSeq( m_roi_seq );
// m_debug_blob_seq.Clear();
// for( i = 0; i < num_new_blobs; ++i )
// {
// CvBlob* b = pNewBlobList->GetBlob(i);
// CvMat roi_stub;
// CvMat* roi_mat = 0;
// CvMat* scaled_roi_mat = 0;
//
// CvDetectedBlob d_b = cvDetectedBlob( CV_BLOB_X(b), CV_BLOB_Y(b), CV_BLOB_WX(b), CV_BLOB_WY(b), 0 );
// m_debug_blob_seq.AddBlob(&d_b);
//
// float scale = m_param_roi_scale * m_min_window_size.height / CV_BLOB_WY(b);
//
// float b_width = MAX(CV_BLOB_WX(b), m_min_window_size.width / scale)
// + (m_param_roi_scale - 1.0F) * (m_min_window_size.width / scale)
// + 2.0F * m_max_border / scale;
// float b_height = CV_BLOB_WY(b) * m_param_roi_scale + 2.0F * m_max_border / scale;
//
// CvRect roi = cvRectIntersection( cvRect( cvFloor(CV_BLOB_X(b) - 0.5F*b_width),
// cvFloor(CV_BLOB_Y(b) - 0.5F*b_height),
// cvCeil(b_width), cvCeil(b_height) ),
// cvRect( 0, 0, pImg->width, pImg->height ) );
// if( roi.width <= 0 || roi.height <= 0 )
// continue;
//
// if( m_roi_seq ) cvSeqPush( m_roi_seq, &roi );
//
// roi_mat = cvGetSubRect( pImg, &roi_stub, roi );
// scaled_roi_mat = cvCreateMat( cvCeil(scale*roi.height), cvCeil(scale*roi.width), CV_8UC3 );
// cvResize( roi_mat, scaled_roi_mat );
//
// m_detected_blob_seq.Clear();
// m_split_detector->Detect( scaled_roi_mat, &m_detected_blob_seq );
// cvReleaseMat( &scaled_roi_mat );
//
// for( int k = 0; k < m_detected_blob_seq.GetBlobNum(); ++k )
// {
// CvDetectedBlob* b = (CvDetectedBlob*) m_detected_blob_seq.GetBlob(k);
//
// /* scale and shift each detected blob back to the original image coordinates */
// CV_BLOB_X(b) = CV_BLOB_X(b) / scale + roi.x;
// CV_BLOB_Y(b) = CV_BLOB_Y(b) / scale + roi.y;
// CV_BLOB_WX(b) /= scale;
// CV_BLOB_WY(b) /= scale;
//
// CvDetectedBlob d_b = cvDetectedBlob( CV_BLOB_X(b), CV_BLOB_Y(b), CV_BLOB_WX(b), CV_BLOB_WY(b), 1,
// b->response );
// m_debug_blob_seq.AddBlob(&d_b);
// }
//
// if( m_detected_blob_seq.GetBlobNum() > 1 )
// {
// /*
// * Split blob.
// * The original blob is replaced by the first detected blob,
// * remaining detected blobs are added to the end of the sequence:
// */
// CvBlob* first_b = m_detected_blob_seq.GetBlob(0);
// CV_BLOB_X(b) = CV_BLOB_X(first_b); CV_BLOB_Y(b) = CV_BLOB_Y(first_b);
// CV_BLOB_WX(b) = CV_BLOB_WX(first_b); CV_BLOB_WY(b) = CV_BLOB_WY(first_b);
//
// for( int j = 1; j < m_detected_blob_seq.GetBlobNum(); ++j )
// {
// CvBlob* detected_b = m_detected_blob_seq.GetBlob(j);
// pNewBlobList->AddBlob(detected_b);
// }
// }
// } /* For each new blob. */
//
// for( i = 0; i < pNewBlobList->GetBlobNum(); ++i )
// {
// CvBlob* b = pNewBlobList->GetBlob(i);
// CvDetectedBlob d_b = cvDetectedBlob( CV_BLOB_X(b), CV_BLOB_Y(b), CV_BLOB_WX(b), CV_BLOB_WY(b), 2 );
// m_debug_blob_seq.AddBlob(&d_b);
// }
// } // if( m_split_detector )
// #endif
//
// return result;
//
// } /* cvDetectNewBlob */
implementation
Uses imgproc.types_c, Math;
{ TCvBlobDetectorSimple }
constructor TCvBlobDetectorSimple.Create;
var
i: Integer;
begin
m_pMaskBlobNew := NiL;
m_pMaskBlobExist := NiL;
for i := 0 to EBD_FRAME_NUM - 1 do
m_pBlobLists[i] := NiL;
SetModuleName('Simple');
end;
destructor TCvBlobDetectorSimple.Destroy;
var
i: Integer;
begin
if Assigned(m_pMaskBlobExist) then
cvReleaseImage(m_pMaskBlobExist);
if Assigned(m_pMaskBlobNew) then
cvReleaseImage(m_pMaskBlobNew);
for i := 0 to EBD_FRAME_NUM - 1 do
m_pBlobLists[i].Free;
inherited;
end;
function TCvBlobDetectorSimple.DetectNewBlob(pImg, pFGMask: pIplImage; pNewBlobList, pOldBlobList: TCvBlobSeq): Integer;
Var
S: TCvSize;
i: Integer;
Blobs: TCvBlobSeq;
storage: pCvMemStorage;
pIB: pIplImage;
cnts: pCvSeq;
cnt: pCvSeq;
NewBlob: TCvBlob;
M00, X, Y, XX, YY: double;
m: TCvMoments;
r: TCvRect;
mat: TCvMat;
pB: pCvBlob;
j: Integer;
pBOld: pCvBlob;
N: Integer;
temp: TCvBlob;
AreaP, AreaN: Single;
pP: pCvBlob;
pN: pCvBlob;
Count: Integer;
pBLIndex: array [0 .. EBD_FRAME_NUM - 1] of Integer;
pBL_BEST: array [0 .. EBD_FRAME_NUM - 1] of Integer;
finish: Integer;
BestError: double;
Good: Integer;
pBL: array [0 .. EBD_FRAME_NUM - 1] of pCvBlob;
Error: double;
pBNew: pCvBlob;
k: Integer;
dx, dy: Single;
sum, jsum,
// estimated parameters of moving x(t) := a*t+b*/
a, b: array [0 .. 1] of Single;
pNewBlob: pCvBlob;
begin
Result := 0;
S := cvSize(pFGMask^.width, pFGMask^.height);
if (m_pMaskBlobNew = nil) then
m_pMaskBlobNew := cvCreateImage(S, IPL_DEPTH_8U, 1);
if (m_pMaskBlobExist = nil) then
m_pMaskBlobExist := cvCreateImage(S, IPL_DEPTH_8U, 1);
// Shift blob list: */
if Assigned(m_pBlobLists[0]) then
m_pBlobLists[0].Free;
for i := 1 to EBD_FRAME_NUM - 1 do
m_pBlobLists[i - 1] := m_pBlobLists[i];
m_pBlobLists[EBD_FRAME_NUM - 1] := TCvBlobSeq.Create;
// Shift blob list. */
// Create exist blob mask: */
cvCopy(pFGMask, m_pMaskBlobNew);
// Create contours and add new blobs to blob list: */
begin // Create blobs: */
storage := cvCreateMemStorage();
{$IFDEF 1}
// Glue contours: */
cvFindBlobsByCCClasters(m_pMaskBlobNew, &Blobs, storage);
// Glue contours. */
{$ELSE}
// */
pIB := cvCloneImage(m_pMaskBlobNew);
cnts := nil;
cnt := nil;
cvThreshold(pIB, pIB, 128, 255, CV_THRESH_BINARY);
cvFindContours(pIB, storage, cnts, sizeof(TCvContour), CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, cvPoint(0, 0));
// Process each contour: */
cnt := cnts;
while Assigned(cnt) do
// cnt = cnt.h_next)
begin
// Image moments: */
r := pCvContour(cnt).rect;
if (r.height < S.height * 0.02) or (r.width < S.width * 0.02) then
continue;
CvMoments(cvGetSubRect(m_pMaskBlobNew, @mat, r), @m, 0);
M00 := cvGetSpatialMoment(@m, 0, 0);
if (M00 <= 0) then
continue;
X := cvGetSpatialMoment(@m, 1, 0) / M00;
Y := cvGetSpatialMoment(@m, 0, 1) / M00;
XX := (cvGetSpatialMoment(@m, 2, 0) / M00) - X * X;
YY := (cvGetSpatialMoment(@m, 0, 2) / M00) - Y * Y;
NewBlob := CvBlob(r.X + X, r.Y + Y, (4 * sqrt(XX)), (4 * sqrt(YY)));
Blobs.AddBlob(@NewBlob);
cnt := cnt.h_next
end; // Next contour. */
cvReleaseImage(&pIB);
// One contour - one blob. */
{$ENDIF}
begin // Delete small and intersected blobs: */
for i := Blobs.GetBlobNum() downto 1 do
begin
pB := Blobs.GetBlob(i - 1);
if (pB.h < S.height * 0.02) or (pB.w < S.width * 0.02) then
begin
Blobs.DelBlob(i - 1);
continue;
end;
if Assigned(pOldBlobList) then
begin
for j := pOldBlobList.GetBlobNum() downto 1 do
begin
pBOld := pOldBlobList.GetBlob(j - 1);
if ((abs(pBOld.X - pB.X) < (CV_BLOB_RX(pBOld) + CV_BLOB_RX(pB)))) and
((abs(pBOld.Y - pB.Y) < (CV_BLOB_RY(pBOld) + CV_BLOB_RY(pB)))) then
begin
// Intersection is present, so delete blob from list: */
Blobs.DelBlob(i - 1);
break;
end;
end; // Check next old blob. */
end; // if pOldBlobList */
end; // Check next blob. */
end; // Delete small and intersected blobs. */
begin // Bubble-sort blobs by size: */
N := Blobs.GetBlobNum();
for i := 1 to N - 1 do
begin
for j := i downto 1 do
begin
pP := Blobs.GetBlob(j - 1);
pN := Blobs.GetBlob(j);
AreaP := CV_BLOB_WX(pP) * CV_BLOB_WY(pP);
AreaN := CV_BLOB_WX(pN) * CV_BLOB_WY(pN);
if (AreaN < AreaP) then
break;
temp := pN[0];
pN[0] := pP[0];
pP[0] := temp;
end;
end;
// Copy only first 10 blobs: */
for i := 0 to MIN(N, 10) - 1 do
begin
m_pBlobLists[EBD_FRAME_NUM - 1].AddBlob(Blobs.GetBlob(i));
end;
end; // Sort blobs by size. */
cvReleaseMemStorage(storage);
end; // Create blobs. */
// Analyze blob list to find best blob trajectory: */
begin
Count := 0;
finish := 0;
BestError := -1;
Good := 1;
for i := 0 to EBD_FRAME_NUM - 1 do
begin
pBLIndex[i] := 0;
pBL_BEST[i] := 0;
end;
// Check configuration exist: */
i := 0;
while (Good <> 0) and (i < EBD_FRAME_NUM) do
begin
if (m_pBlobLists[i] = nil) or (m_pBlobLists[i].GetBlobNum() = 0) then
Good := 0;
Inc(i);
end;
if (Good <> 0) then
repeat
begin // For each configuration: */
Good := 1;
Error := 0;
pBNew := m_pBlobLists[EBD_FRAME_NUM - 1].GetBlob(pBLIndex[EBD_FRAME_NUM - 1]);
for i := 0 to EBD_FRAME_NUM - 1 do
pBL[i] := m_pBlobLists[i].GetBlob(pBLIndex[i]);
Inc(Count);
// Check intersection last blob with existed: */
if (Good <> 0) and Assigned(pOldBlobList) then
begin // Check intersection last blob with existed: */
for k := pOldBlobList.GetBlobNum() downto 1 do
begin
pBOld := pOldBlobList.GetBlob(k - 1);
if ((abs(pBOld.X - pBNew.X) < (CV_BLOB_RX(pBOld) + CV_BLOB_RX(pBNew)))) and
((abs(pBOld.Y - pBNew.Y) < (CV_BLOB_RY(pBOld) + CV_BLOB_RY(pBNew)))) then
Good := 0;
end;
end; // Check intersection last blob with existed. */
// Check distance to image border: */
if (Good <> 0) then
begin // Check distance to image border: */
pB := pBNew;
dx := MIN(pB.X, S.width - pB.X) / CV_BLOB_RX(pB);
dy := MIN(pB.Y, S.height - pB.Y) / CV_BLOB_RY(pB);
if (dx < 1.1) or (dy < 1.1) then
Good := 0;
end; // Check distance to image border. */
// Check uniform motion: */
if (Good <> 0) then
begin
N := EBD_FRAME_NUM;
sum[0] := 0;
sum[1] := 0;
jsum := sum;
for j := 0 to N - 1 do
begin
X := pBL[j].X;
Y := pBL[j].Y;
sum[0] := sum[0] + X;
jsum[0] := jsum[0] + j * X;
sum[1] := sum[1] + Y;
jsum[1] := jsum[1] + j * Y;
end;
a[0] := 6 * ((1 - N) * sum[0] + 2 * jsum[0]) / (N * (N * N - 1));
b[0] := -2 * ((1 - 2 * N) * sum[0] + 3 * jsum[0]) / (N * (N + 1));
a[1] := 6 * ((1 - N) * sum[1] + 2 * jsum[1]) / (N * (N * N - 1));
b[1] := -2 * ((1 - 2 * N) * sum[1] + 3 * jsum[1]) / (N * (N + 1));
for j := 0 to N - 1 do
begin
Error := Error + power(a[0] * j + b[0] - pBL[j].X, 2) + power(a[1] * j + b[1] - pBL[j].Y, 2);
end;
Error := sqrt(Error / N);
if (Error > S.width * 0.01) or (abs(a[0]) > S.width * 0.1) or (abs(a[1]) > S.height * 0.1) then
Good := 0;
end; // Check configuration. */
// New best trajectory: */
if (Good <> 0) and ((BestError = -1) or (BestError > Error)) then
begin
for i := 0 to EBD_FRAME_NUM - 1 do
begin
pBL_BEST[i] := pBLIndex[i];
end;
BestError := Error;
end; // New best trajectory. */
// Set next configuration: */
for i := 0 to EBD_FRAME_NUM - 1 do
begin
Inc(pBLIndex[i]);
if (pBLIndex[i] <> m_pBlobLists[i].GetBlobNum()) then
break;
pBLIndex[i] := 0;
end; // Next time shift. */
if (i = EBD_FRAME_NUM) then
finish := 1;
end;
until finish = 1; // Check next time configuration of connected components. */
{$IFDEF 0}
begin // */
WriteLn('BlobDetector configurations = ', Count);
for i := 0 to EBD_FRAME_NUM - 1 do
begin
WriteLn(iif(Assigned(m_pBlobLists[i]), m_pBlobLists[i].GetBlobNum(), 0));
end;
WriteLn;
end;
{$ENDIF}
if (BestError <> -1) then
begin // Write new blob to output and delete from blob list: */
pNewBlob := m_pBlobLists[EBD_FRAME_NUM - 1].GetBlob(pBL_BEST[EBD_FRAME_NUM - 1]);
pNewBlobList.AddBlob(pNewBlob);
for i := 0 to EBD_FRAME_NUM - 1 do
begin // Remove blob from each list: */
m_pBlobLists[i].DelBlob(pBL_BEST[i]);
end; // Remove blob from each list. */
Result := 1;
end; // Write new blob to output and delete from blob list. */
end; // Analyze blob list to find best blob trajectory. */
end;
procedure TCvBlobDetectorSimple.Release;
begin
inherited;
end;
{ TCvBlobDetectorCC }
constructor TCvBlobDetectorCC.Create;
var
i: Integer;
begin
inherited;
// /*CvDrawShape shapes[] =
// {
// { CvDrawShape::RECT, {{255,255,255}} },
// { CvDrawShape::RECT, {{0,0,255}} },
// { CvDrawShape::ELLIPSE, {{0,255,0}} }
// };
// int num_shapes = sizeof(shapes) / sizeof(shapes[0]);*/
i := 0;
SEQ_SIZE := 10;
AddParam('Latency', @SEQ_SIZE);
for i := 0 to SEQ_SIZE_MAX - 1 do
m_pBlobLists[i] := NiL;
for i := 0 to SEQ_NUM - 1 do
m_TrackSeq[i].size := 0;
m_TrackNum := 0;
m_HMin := 0.02;
m_WMin := 0.01;
AddParam('HMin', @m_HMin);
AddParam('WMin', @m_WMin);
m_MinDistToBorder := 1.1;
AddParam('MinDistToBorder', @m_MinDistToBorder);
CommentParam('MinDistToBorder', 'Minimal allowed distance from blob center to image border in blob sizes');
m_Clastering := 1;
AddParam('Clastering', @m_Clastering);
CommentParam('Clastering', 'Minimal allowed distance from blob center to image border in blob sizes');
m_param_split_detector_file_name := 0;
{$IFDEF USE_OBJECT_DETECTOR}
AddParam('Detector', @m_param_split_detector_file_name);
CommentParam('Detector', 'Detector file name');
{$ENDIF}
m_param_roi_scale := 1.5;
AddParam('ROIScale', @m_param_roi_scale);
CommentParam('ROIScale', 'Determines the size of search window around a blob');
m_param_only_roi := 1;
AddParam('OnlyROI', @m_param_only_roi);
CommentParam('OnlyROI', 'Shows the whole debug image (0) or only ROIs where the detector was applied (1)');
m_min_window_size := cvSize(0, 0);
m_max_border := 0;
m_roi_seq := cvCreateSeq(0, sizeof(m_roi_seq^), sizeof(TCvRect), cvCreateMemStorage());
SetModuleName('CC');
end;
destructor TCvBlobDetectorCC.Destroy;
Var
i: Integer;
begin
for i := 0 to SEQ_SIZE_MAX - 1 do
if Assigned(m_pBlobLists[i]) then
m_pBlobLists[i].Free;
if Assigned(m_roi_seq) then
begin
cvReleaseMemStorage(m_roi_seq^.storage);
m_roi_seq := 0;
end;
// cvDestroyWindow( "EnteringBlobDetectionDebug" );
inherited;
end;
function CompareContour(const a: Pointer; const b: Pointer; userdata: Pointer): Integer; cdecl;
Var
dx, dy, h, w, ht, wt: Single;
pa, pB: TCvPoint2D32f;
ra, rb: TCvRect;
pCA: pCvSeq;
pCB: pCvSeq;
begin
pCA := pCvSeq(a);
pCB := pCvSeq(b);
ra := pCvContour(pCA).rect;
rb := pCvContour(pCB).rect;
pa.X := ra.X + ra.width * 0.5;
pa.Y := ra.Y + ra.height * 0.5;
pB.X := rb.X + rb.width * 0.5;
pB.Y := rb.Y + rb.height * 0.5;
w := (ra.width + rb.width) * 0.5;
h := (ra.height + rb.height) * 0.5;
dx := abs(pa.X - pB.X) - w;
dy := abs(pa.Y - pB.Y) - h;
// wt = MAX(ra.width,rb.width)*0.1f;
wt := 0;
ht := MAX(ra.height, rb.height) * 0.3;
Result := Integer((dx < wt) and (dy < ht));
end;
function TCvBlobDetectorCC.DetectNewBlob(pImg, pFGMask: pIplImage; pNewBlobList, pOldBlobList: TCvBlobSeq): Integer;
Var
S: TCvSize;
i: Integer;
Blobs: TCvBlobSeq;
storage: pCvMemStorage;
pIB: pIplImage;
cnts: pCvSeq;
cnt: pCvSeq;
NewBlob: TCvBlob;
M00, X, Y, XX, YY: double;
m: TCvMoments;
r: TCvRect;
mat: TCvMat;
pB: pCvBlob;
j: Integer;
pBOld: pCvBlob;
N: Integer;
temp: TCvBlob;
AreaP, AreaN: Single;
pP: pCvBlob;
pN: pCvBlob;
pTrack: pDefSeq;
BestError: double;
BestTrack: Integer;
pNewBlobs: TCvBlobSeq;
NewTrackNum: Integer;
pBNew: pCvBlob;
AsignedTrack: Integer;
dx, dy: double;
pLastBlob: pCvBlob;
Good: Integer;
k: Integer;
Error: double;
pBL: pCvBlob;
sum, jsum,
// estimated parameters of moving x(t) := a*t+b*/
a, b: array [0 .. 1] of Single;
num_new_blobs: Integer;
bb: pCvBlob;
roi_stub: TCvMat;
roi_mat: TCvMat;
scaled_roi_mat: TCvMat;
d_b: TCvDetectedBlob;
pI: pIplImage;
cnt_cur: Integer;
color: TCvScalar;
begin
Result := 0;
S := cvSize(pFGMask.width, pFGMask.height);
// Shift blob list: */
begin
if Assigned(m_pBlobLists[SEQ_SIZE - 1]) then
m_pBlobLists[SEQ_SIZE - 1].Free;
for i := SEQ_SIZE - 1 downto 1 do
m_pBlobLists[i] := m_pBlobLists[i - 1];
m_pBlobLists[0] := TCvBlobSeq.Create;
end; // Shift blob list. */
// Create contours and add new blobs to blob list: */
begin // Create blobs: */
storage := cvCreateMemStorage();
if (m_Clastering <> 0) then
begin // Glue contours: */
cvFindBlobsByCCClasters(pFGMask, &Blobs, storage);
end // Glue contours. */
else
begin // */
pIB := cvCloneImage(pFGMask);
cnts := nil;
cnt := nil;
cvThreshold(pIB, pIB, 128, 255, CV_THRESH_BINARY);
cvFindContours(pIB, storage, cnts, sizeof(TCvContour), CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, cvPoint(0, 0));
// Process each contour: */
cnt := cnts;
while Assigned(cnt) do
// cnt := cnt.h_next)
begin
// Image moments: */
r := pCvContour(cnt).rect;
if (r.height < S.height * m_HMin) or (r.width < S.width * m_WMin) then
continue;
CvMoments(cvGetSubRect(pFGMask, @mat, r), @m, 0);
M00 := cvGetSpatialMoment(@m, 0, 0);
if (M00 <= 0) then
continue;
X := cvGetSpatialMoment(@m, 1, 0) / M00;
Y := cvGetSpatialMoment(@m, 0, 1) / M00;
XX := (cvGetSpatialMoment(@m, 2, 0) / M00) - X * X;
YY := (cvGetSpatialMoment(@m, 0, 2) / M00) - Y * Y;
NewBlob := CvBlob(r.X + X, r.Y + Y, (4 * sqrt(XX)), (4 * sqrt(YY)));
Blobs.AddBlob(@NewBlob);
end; // Next contour. */
cvReleaseImage(pIB);
end; // One contour - one blob. */
begin // Delete small and intersected blobs: */
for i := Blobs.GetBlobNum() downto 1 do
begin
pB := Blobs.GetBlob(i - 1);
if (pB.h < S.height * m_HMin) or (pB.w < S.width * m_WMin) then
begin
Blobs.DelBlob(i - 1);
continue;
end;
if Assigned(pOldBlobList) then
begin
for j := pOldBlobList.GetBlobNum() downto 1 do
begin
pBOld := pOldBlobList.GetBlob(j - 1);
if ((abs(pBOld.X - pB.X) < (CV_BLOB_RX(pBOld) + CV_BLOB_RX(pB)))) and
((abs(pBOld.Y - pB.Y) < (CV_BLOB_RY(pBOld) + CV_BLOB_RY(pB)))) then
begin
// Intersection detected, delete blob from list: */
Blobs.DelBlob(i - 1);
break;
end;
end; // Check next old blob. */
end; // if pOldBlobList. */
end; // Check next blob. */
end; // Delete small and intersected blobs. */
begin // Bubble-sort blobs by size: */
N := Blobs.GetBlobNum();
for i := 1 to N - 1 do
begin
for j := i downto 1 do
begin
pP := Blobs.GetBlob(j - 1);
pN := Blobs.GetBlob(j);
AreaP := CV_BLOB_WX(pP) * CV_BLOB_WY(pP);
AreaN := CV_BLOB_WX(pN) * CV_BLOB_WY(pN);
if (AreaN < AreaP) then
break;
temp := pN[0];
pN[0] := pP[0];
pP[0] := temp;
end;
end;
// Copy only first 10 blobs: */
for i := 0 to MIN(N, 10) - 1 do
begin
m_pBlobLists[0].AddBlob(Blobs.GetBlob(i));
end;
end; // Sort blobs by size. */
cvReleaseMemStorage(storage);
end; // Create blobs. */
begin // Shift each track: */
for j := 0 to m_TrackNum - 1 do
begin
pTrack := @m_TrackSeq[j];
for i := SEQ_SIZE - 1 downto 1 do
pTrack.pBlobs[i] := pTrack.pBlobs[i - 1];
pTrack.pBlobs[0] := nil;
if (pTrack.size = SEQ_SIZE) then
Dec(pTrack.size);
end;
end; // Shift each track. */
// Analyze blob list to find best blob trajectory: */
begin
BestError := -1;
BestTrack := -1;;
pNewBlobs := m_pBlobLists[0];
NewTrackNum := 0;
for i := pNewBlobs.GetBlobNum() downto 1 do
begin
pBNew := pNewBlobs.GetBlob(i - 1);
AsignedTrack := 0;
for j := 0 to m_TrackNum - 1 do
begin
pTrack := @m_TrackSeq[j];
pLastBlob := iif(pTrack.size > 0, pTrack.pBlobs[1], nil);
if (pLastBlob = nil) then
continue;
dx := abs(CV_BLOB_X(pLastBlob) - CV_BLOB_X(pBNew));
dy := abs(CV_BLOB_Y(pLastBlob) - CV_BLOB_Y(pBNew));
if (dx > 2 * CV_BLOB_WX(pLastBlob)) or (dy > 2 * CV_BLOB_WY(pLastBlob)) then
continue;
Inc(AsignedTrack);
if (pTrack.pBlobs[0] = nil) then
begin // Fill existed track: */
pTrack.pBlobs[0] := pBNew;
Inc(pTrack.size);
end
else if ((m_TrackNum + NewTrackNum) < SEQ_NUM) then
begin // Duplicate existed track: */
m_TrackSeq[m_TrackNum + NewTrackNum] := pTrack[0];
m_TrackSeq[m_TrackNum + NewTrackNum].pBlobs[0] := pBNew;
Inc(NewTrackNum);
end;
end; // Next track. */
if (AsignedTrack = 0) and ((m_TrackNum + NewTrackNum) < SEQ_NUM) then
begin // Initialize new track: */
m_TrackSeq[m_TrackNum + NewTrackNum].size := 1;
m_TrackSeq[m_TrackNum + NewTrackNum].pBlobs[0] := pBNew;
Inc(NewTrackNum);
end;
end; // Next new blob. */
m_TrackNum := m_TrackNum + NewTrackNum;
// Check each track: */
for i := 0 to m_TrackNum - 1 do
begin
Good := 1;
pTrack := @m_TrackSeq[i];
pBNew := pTrack.pBlobs[0];
if (pTrack.size <> SEQ_SIZE) then
continue;
if (pBNew = nil) then
continue;
// Check intersection last blob with existed: */
if (Good <> 0) and Assigned(pOldBlobList) then
begin
for k := pOldBlobList.GetBlobNum() downto 1 do
begin
pBOld := pOldBlobList.GetBlob(k - 1);
if ((abs(pBOld.X - pBNew.X) < (CV_BLOB_RX(pBOld) + CV_BLOB_RX(pBNew)))) and
((abs(pBOld.Y - pBNew.Y) < (CV_BLOB_RY(pBOld) + CV_BLOB_RY(pBNew)))) then
Good := 0;
end;
end; // Check intersection last blob with existed. */
// Check distance to image border: */
if (Good <> 0) then
begin // Check distance to image border: */
dx := MIN(pBNew.X, S.width - pBNew.X) / CV_BLOB_RX(pBNew);
dy := MIN(pBNew.Y, S.height - pBNew.Y) / CV_BLOB_RY(pBNew);
if (dx < m_MinDistToBorder) or (dy < m_MinDistToBorder) then
Good := 0;
end; // Check distance to image border. */
// Check uniform motion: */
if (Good <> 0) then
begin // Check uniform motion: */
Error := 0;
N := pTrack.size;
pBL := pTrack.pBlobs[0];
sum[0] := 0;
sum[1] := 0;
jsum := sum;
for j := 0 to N - 1 do
begin
X := pBL[j].X;
Y := pBL[j].Y;
sum[0] := sum[0] + X;
jsum[0] := jsum[0] + j * X;
sum[1] := sum[1] + Y;
jsum[1] := jsum[1] + j * Y;
end;
a[0] := 6 * ((1 - N) * sum[0] + 2 * jsum[0]) / (N * (N * N - 1));
b[0] := -2 * ((1 - 2 * N) * sum[0] + 3 * jsum[0]) / (N * (N + 1));
a[1] := 6 * ((1 - N) * sum[1] + 2 * jsum[1]) / (N * (N * N - 1));
b[1] := -2 * ((1 - 2 * N) * sum[1] + 3 * jsum[1]) / (N * (N + 1));
for j := 0 to N - 1 do
begin
Error := Error + power(a[0] * j + b[0] - pBL[j].X, 2) + power(a[1] * j + b[1] - pBL[j].Y, 2);
end;
Error := sqrt(Error / N);
if (Error > S.width * 0.01) or (abs(a[0]) > S.width * 0.1) or (abs(a[1]) > S.height * 0.1) then
Good := 0;
// New best trajectory: */
if (Good <> 0) and ((BestError = -1) or (BestError > Error)) then
begin // New best trajectory: */
BestTrack := i;
BestError := Error;
end; // New best trajectory. */
end; // Check uniform motion. */
end; // Next track. */
{$IFDEF 0}
begin // */
WriteLn('BlobDetector configurations := ', m_TrackNum);
for i := 0 to SEQ_SIZE - 1 do
begin
WriteLn(iif(Assigned(m_pBlobLists[i]), m_pBlobLists[i].GetBlobNum(), 0));
end;
WriteLn;
end;
{$ENDIF}
if (BestTrack >= 0) then
begin // Put new blob to output and delete from blob list: */
assert(m_TrackSeq[BestTrack].size = SEQ_SIZE);
assert(Assigned(m_TrackSeq[BestTrack].pBlobs[0]));
pNewBlobList.AddBlob(m_TrackSeq[BestTrack].pBlobs[0]);
m_TrackSeq[BestTrack].pBlobs[0] := nil;
Dec(m_TrackSeq[BestTrack].size);
Result := 1;
end; // Put new blob to output and mark in blob list to delete. */
end; // Analyze blod list to find best blob trajectory. */
begin // Delete bad tracks: */
for i := m_TrackNum - 1 downto 0 do
begin // Delete bad tracks: */
if Assigned(m_TrackSeq[i].pBlobs[0]) then
continue;
if (m_TrackNum > 0) then
begin
Dec(m_TrackNum);
m_TrackSeq[i] := m_TrackSeq[m_TrackNum];
end;
end;
// Delete bad tracks: */
end;
{$IFDEF USE_OBJECT_DETECTOR}
if (m_split_detector) and (pNewBlobList.GetBlobNum() > 0) then
begin
num_new_blobs := pNewBlobList.GetBlobNum();
if Assigned(m_roi_seq) then
cvClearSeq(m_roi_seq)m_debug_blob_seq.Clear();
for i := 0 to num_new_blobs - 1 do
begin
b := pNewBlobList.GetBlob(i);
roi_mat := nil;
scaled_roi_mat := nil;
d_b := CvDetectedBlob(CV_BLOB_X(b), CV_BLOB_Y(b), CV_BLOB_WX(b), CV_BLOB_WY(b), 0);
m_debug_blob_seq.AddBlob(&d_b);
float scale := m_param_roi_scale * m_min_window_size.height / CV_BLOB_WY(b);
float b_width := MAX(CV_BLOB_WX(b), m_min_window_size.width / scale) + (m_param_roi_scale - 1.0) *
(m_min_window_size.width / scale) + 2.0 F * m_max_border / scale;
float b_height := CV_BLOB_WY(b) * m_param_roi_scale + 2.0 F * m_max_border / scale;
CvRect roi := cvRectIntersection(CvRect(cvFloor(CV_BLOB_X(b) - 0.5 F * b_width),
cvFloor(CV_BLOB_Y(b) - 0.5 F * b_height), cvCeil(b_width), cvCeil(b_height)),
CvRect(0, 0, pImg.width, pImg.height));
if (roi.width < := 0) or (roi.height < := 0) then
continue;
if (m_roi_seq) then
cvSeqPush(m_roi_seq, &roi);
roi_mat := cvGetSubRect(pImg, &roi_stub, roi);
scaled_roi_mat := cvCreateMat(cvCeil(scale * roi.height), cvCeil(scale * roi.width), CV_8UC3);
cvResize(roi_mat, scaled_roi_mat);
m_detected_blob_seq.Clear();
m_split_detector.Detect(scaled_roi_mat, &m_detected_blob_seq);
cvReleaseMat(&scaled_roi_mat);
for (int k := 0; k < m_detected_blob_seq.GetBlobNum(); + + k) do
begin
CvDetectedBlob * b := (CvDetectedBlob * )m_detected_blob_seq.GetBlob(k);
// scale and shift each detected blob back to the original image coordinates */
CV_BLOB_X(b) := CV_BLOB_X(b) / scale + roi.X;
CV_BLOB_Y(b) := CV_BLOB_Y(b) / scale + roi.Y;
CV_BLOB_WX(b) / := scale;
CV_BLOB_WY(b) / := scale;
CvDetectedBlob d_b := CvDetectedBlob(CV_BLOB_X(b), CV_BLOB_Y(b), CV_BLOB_WX(b), CV_BLOB_WY(b), 1, b.response);
m_debug_blob_seq.AddBlob(&d_b);
end;
if (m_detected_blob_seq.GetBlobNum() > 1) then
begin
// * Split blob.
// * The original blob is replaced by the first detected blob,
// * remaining detected blobs are added to the end of the sequence:
// */
CvBlob * first_b := m_detected_blob_seq.GetBlob(0);
CV_BLOB_X(b) := CV_BLOB_X(first_b);
CV_BLOB_Y(b) := CV_BLOB_Y(first_b);
CV_BLOB_WX(b) := CV_BLOB_WX(first_b);
CV_BLOB_WY(b) := CV_BLOB_WY(first_b);
for (int j := 1; j < m_detected_blob_seq.GetBlobNum(); + + j) do
begin
CvBlob * detected_b := m_detected_blob_seq.GetBlob(j);
pNewBlobList.AddBlob(detected_b);
end;
end;
end;
// For each new blob. */
for (i := 0; i < pNewBlobList.GetBlobNum(); + + i) do
begin
CvBlob * b := pNewBlobList.GetBlob(i);
CvDetectedBlob d_b := CvDetectedBlob(CV_BLOB_X(b), CV_BLOB_Y(b), CV_BLOB_WX(b), CV_BLOB_WY(b), 2);
m_debug_blob_seq.AddBlob(&d_b);
end;
end; // if( m_split_detector )
{$ENDIF}
end;
procedure TCvBlobDetectorCC.ParamUpdate;
begin
inherited;
end;
procedure TCvBlobDetectorCC.Release;
begin
inherited;
end;
procedure cvFindBlobsByCCClasters(pFG: pIplImage; pBlobs: TCvBlobSeq; storage: pCvMemStorage);
Var
pIB: pIplImage;
cnt: pCvSeq;
cnt_list: pCvSeq;
clasters: pCvSeq;
claster_cur, claster_num: Integer;
cnt_cur: Integer;
NewBlob: TCvBlob;
M00, X, Y, XX, YY: double; // image moments */
m: TCvMoments;
rect_res: TCvRect;
mat: TCvMat;
rect: TCvRect;
cont: pCvSeq;
k: Integer;
x0, x1, y0, y1: Integer;
begin // Create contours: */
pIB := nil;
cnt := nil;
cnt_list := cvCreateSeq(0, sizeof(TCvSeq), sizeof(TCvSeq), storage);
clasters := nil;
pIB := cvCloneImage(pFG);
cvThreshold(pIB, pIB, 128, 255, CV_THRESH_BINARY);
cvFindContours(pIB, storage, cnt, sizeof(TCvContour), CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, cvPoint(0, 0));
cvReleaseImage(pIB);
// Create cnt_list. */
// Process each contour: */
while Assigned(cnt) do
begin
cvSeqPush(cnt_list, cnt);
cnt := cnt^.h_next;
end;
claster_num := cvSeqPartition(cnt_list, storage, clasters, CompareContour, nil);
for claster_cur := 0 to claster_num - 1 do
begin
rect_res := CvRect(-1, -1, -1, -1);
for cnt_cur := 0 to clasters.total - 1 do
begin
k := pInteger(cvGetSeqElem(clasters, cnt_cur))^;
if (k <> claster_cur) then
continue;
cont := pCvSeq(cvGetSeqElem(cnt_list, cnt_cur));
rect := pCvContour(cont).rect;
if (rect_res.height < 0) then
begin
rect_res := rect;
end
else
begin // Unite rects: */
x0 := MIN(rect_res.X, rect.X);
y0 := MIN(rect_res.Y, rect.Y);
x1 := MAX(rect_res.X + rect_res.width, rect.X + rect.width);
y1 := MAX(rect_res.Y + rect_res.height, rect.Y + rect.height);
rect_res.X := x0;
rect_res.Y := y0;
rect_res.width := x1 - x0;
rect_res.height := y1 - y0;
end;
end;
if (rect_res.height < 1) or (rect_res.width < 1) then
begin
X := 0;
Y := 0;
XX := 0;
YY := 0;
end
else
begin
CvMoments(cvGetSubRect(pFG, @mat, rect_res), @m, 0);
M00 := cvGetSpatialMoment(@m, 0, 0);
if (M00 <= 0) then
continue;
X := cvGetSpatialMoment(@m, 1, 0) / M00;
Y := cvGetSpatialMoment(@m, 0, 1) / M00;
XX := (cvGetSpatialMoment(@m, 2, 0) / M00) - X * X;
YY := (cvGetSpatialMoment(@m, 0, 2) / M00) - Y * Y;
end;
NewBlob := CvBlob(rect_res.X + X, rect_res.Y + Y, (4 * sqrt(XX)), (4 * sqrt(YY)));
pBlobs.AddBlob(@NewBlob);
end; // Next cluster. */
{$IFDEF 0}
begin // Debug info:
pI := cvCreateImage(cvSize(pFG.width, pFG.height), IPL_DEPTH_8U, 3);
cvZero(pI);
for claster_cur := 0 to claster_num - 1 do
begin
color := CV_RGB(random(256), random(256), random(256));
for cnt_cur := 0 to clasters.total - 1 do
begin
k := pInteger(cvGetSeqElem(clasters, cnt_cur))^;
if (k <> claster_cur) then
continue;
cnt := pCvSeq(cvGetSeqElem(cnt_list, cnt_cur));
cvDrawContours(pI, cnt, color, color, 0, 1, 8);
end;
pB := pBlobs.GetBlob(claster_cur);
X := cvRound(CV_BLOB_RX(pB));
Y := cvRound(CV_BLOB_RY(pB));
cvEllipse(pI, cvPointFrom32f(CV_BLOB_CENTER(pB)), cvSize(MAX(1, X), MAX(1, Y)), 0, 0, 360, color, 1);
end;
cvNamedWindow('Clusters', 0);
cvShowImage('Clusters', pI);
cvReleaseImage(pI);
end; // Debug info. */
{$ENDIF}
end; // cvFindBlobsByCCClasters */
end.