Delphi-OpenCV/samples/MultiDemo/Squares/Squares.dpr
Mikhail Grigorev 9cf4f80746 Fixed samples MultiDemo
Signed-off-by: Mikhail Grigorev <sleuthhound@gmail.com>
2014-05-20 11:58:18 +06:00

255 lines
7.5 KiB
ObjectPascal

(* /*****************************************************************
// Delphi-OpenCV Demo
// Copyright (C) 2013 Project Delphi-OpenCV
// ****************************************************************
// Contributor:
// laentir Valetov
// email:laex@bk.ru
// ****************************************************************
// You may retrieve the latest version of this file at the GitHub,
// located at git://github.com/Laex/Delphi-OpenCV.git
// ****************************************************************
// The contents of this file are used with permission, subject to
// the Mozilla Public License Version 1.1 (the "License"); you may
// not use this file except in compliance with the License. You may
// obtain a copy of the License at
// http://www.mozilla.org/MPL/MPL-1_1Final.html
//
// Software distributed under the License is distributed on an
// "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
// implied. See the License for the specific language governing
// rights and limitations under the License.
******************************************************************* *)
// JCL_DEBUG_EXPERT_GENERATEJDBG OFF
// JCL_DEBUG_EXPERT_INSERTJDBG OFF
// JCL_DEBUG_EXPERT_DELETEMAPFILE OFF
program Squares;
{$APPTYPE CONSOLE}
{$R *.res}
uses
System.SysUtils,
highgui_c,
core_c,
Core.types_c,
imgproc_c,
imgproc.types_c,
uResourcePaths;
const
filename = cResourceMedia + 'matchshapes.jpg';
// pic1.bmp...pic6.bmp
wndname = 'Squares';
function angle(pt1, pt2, pt0: PCvPoint): double;
var
dx1, dy1, dx2, dy2: double;
begin
dx1 := pt1^.x - pt0^.x;
dy1 := pt1^.y - pt0^.y;
dx2 := pt2^.x - pt0^.x;
dy2 := pt2^.y - pt0^.y;
result := (dx1 * dx2 + dy1 * dy2) / sqrt((dx1 * dx1 + dy1 * dy1) * (dx2 * dx2 + dy2 * dy2) + 1E-10);
end;
function findSquares4(img: PIplImage; storage: PCvMemStorage): PCvSeq;
var
thresh: integer;
CC: TCvSeq;
contours: PCvSeq;
PP: PCvSeq;
i, c, l, N: integer;
sz: TCvSize;
timg: PIplImage;
gray: PIplImage;
pyr: PIplImage;
tgray: PIplImage;
s, t: double;
Squares: PCvSeq;
result_: PCvSeq;
rr: integer;
yy: pointer;
a: AnsiString;
begin
contours := @CC;
PP := @contours;
N := 11;
thresh := 50;
// cvSaveImage('ee1.bmp', PCvArr(img));
sz := cvSize((img^.width AND -2), (img^.height AND -2));
timg := cvCloneImage(img); // make a copy of input image
gray := cvCreateImage(sz, 8, 1);
pyr := cvCreateImage(cvSize(sz.width div 2, sz.height div 2), 8, 3);
// create empty sequence that will contain points -
// 4 points per square (the square's vertices)
Squares := cvCreateSeq(0, sizeof(TCvSeq), sizeof(TCvPoint), storage);
// select the maximum ROI in the image
// with the width and height divisible by 2
cvSetImageROI(timg, cvRect(0, 0, sz.width, sz.height));
// down-scale and upscale the image to filter out the noise
cvPyrDown(timg, pyr, 7);
cvPyrUp(pyr, timg, 7);
tgray := cvCreateImage(sz, 8, 1);
// find squares in every color plane of the image
for c := 0 to 2 do
begin
// extract the c-th color plane
cvSetImageCOI(timg, c + 1);
cvCopy(timg, tgray);
// cvSaveImage('ee11.bmp', PCvArr(tgray));
for l := 0 to N - 1 do
begin
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if (l = 0) then
begin
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
cvCanny(tgray, gray, 0, thresh, 5);
// dilate canny output to remove potential
// holes between edge segments
cvDilate(gray, gray);
// a := inttostr(l) + 'ee1.bmp';
// cvSaveImage(pCVChar(@a[1]), PCvArr(gray));
end
else
begin
// apply threshold if l!=0:
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
cvThreshold(tgray, gray, (l + 1) * 255 / N, 255, CV_THRESH_BINARY);
// a := inttostr(l) + 'ee1.bmp';
// cvSaveImage(pCVChar(@a[1]), PCvArr(gray));
end;
// try
// find contours and store them all as a list
rr := cvFindContours(gray, storage, @contours, sizeof(TCvContour), CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE,
CvPoint(0, 0));
// test each contour
while contours <> nil do
begin
// approximate contour with accuracy proportional
// to the contour perimeter
result_ := cvApproxPoly(contours, sizeof(TCvContour), storage, CV_POLY_APPROX_DP,
cvContourPerimeter(contours) * 0.02, 0);
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if (result_^.total = 4) AND (abs(cvContourArea(result_, CV_WHOLE_SEQ, 0)) > 1000) AND
(cvCheckContourConvexity(result_) > 0) then
begin
s := 0;
//
for i := 0 to 5 - 1 do
begin
// find minimum angle between joint
// edges (maximum of cosine)
if (i >= 2) then
begin
t := abs(angle(PCvPoint(cvGetSeqElem(result_, i)), PCvPoint(cvGetSeqElem(result_, i - 2)),
PCvPoint(cvGetSeqElem(result_, i - 1))));
if s <= t then
s := t; // s = s > t ? s : t;
end;
end;
//
// // if cosines of all angles are small
// // (all angles are ~90 degree) then write quandrange
// // vertices to resultant sequence
if (s < 0.3) then
for i := 0 to 3 do
cvSeqPush(Squares, cvGetSeqElem(result_, i));
end;
// take the next contour
contours := contours^.h_next;
end;
end;
end;
// release all the temporary images
cvReleaseImage(gray);
cvReleaseImage(pyr);
cvReleaseImage(tgray);
cvReleaseImage(timg);
result := Squares;
end;
// the function draws all the squares in the image
procedure drawSquares(img: PIplImage; Squares: PCvSeq);
var
reader: TCvSeqReader;
cpy: PIplImage;
i: integer;
count: integer;
pt: array [0 .. 3] of TCvPoint;
rect: PCvPoint;
begin
rect := @pt;
cpy := cvCloneImage(img);
// initialize reader of the sequence
cvStartReadSeq(Squares, @reader, 0);
// read 4 sequence elements at a time (all vertices of a square)
for i := 0 to Squares^.total - 1 do // ; i += 4
begin
// CvPoint pt[4], *rect = pt;
count := 4;
// read 4 vertices
CV_READ_SEQ_ELEM(@pt[0], reader, sizeof(TCvPoint));
CV_READ_SEQ_ELEM(@pt[1], reader, sizeof(TCvPoint));
CV_READ_SEQ_ELEM(@pt[2], reader, sizeof(TCvPoint));
CV_READ_SEQ_ELEM(@pt[3], reader, sizeof(TCvPoint));
// draw the square as a closed polyline
cvPolyLine(cpy, @rect, @count, 1, 1, CV_RGB(255, 0, 0), 3, CV_AA, 0);
// cvSaveImage('ee2.bmp', PCvArr(cpy));
end;
// show the resultant image
cvShowImage(wndname, cpy);
cvReleaseImage(cpy);
end;
var
storage: PCvMemStorage;
img, img0: PIplImage;
begin
try
storage := cvCreateMemStorage(0);
img0 := cvLoadImage(filename);
img := cvCloneImage(img0);
cvNamedWindow(wndname, 1);
// find and draw the squares
drawSquares(img, findSquares4(img, storage));
cvWaitKey;
cvReleaseImage(img);
cvReleaseImage(img0);
cvClearMemStorage(storage);
except
on E: Exception do
Writeln(E.ClassName, ': ', E.Message);
end;
end.