Delphi-OpenCV/source/ocv.ml.pas
Laentir Valetov 1aa7d7dda2 Fixed opencv classes
Signed-off-by: Laentir Valetov <laex@bk.ru>
2014-10-05 01:44:14 +04:00

2218 lines
80 KiB
ObjectPascal

// **************************************************************************************************
// Project Delphi-OpenCV
// **************************************************************************************************
// Contributors:
// Laentir Valetov
// email:laex@bk.ru
// Mikhail Grigorev
// Email: sleuthhound@gmail.com
// **************************************************************************************************
// You may retrieve the latest version of this file at the GitHub,
// located at git://github.com/Laex/Delphi-OpenCV.git
// **************************************************************************************************
// License:
// The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License");
// you may not use this file except in compliance with the License. You may obtain a copy of the
// License at http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF
// ANY KIND, either express or implied. See the License for the specific language governing rights
// and limitations under the License.
//
// Alternatively, the contents of this file may be used under the terms of the
// GNU Lesser General Public License (the "LGPL License"), in which case the
// provisions of the LGPL License are applicable instead of those above.
// If you wish to allow use of your version of this file only under the terms
// of the LGPL License and not to allow others to use your version of this file
// under the MPL, indicate your decision by deleting the provisions above and
// replace them with the notice and other provisions required by the LGPL
// License. If you do not delete the provisions above, a recipient may use
// your version of this file under either the MPL or the LGPL License.
//
// For more information about the LGPL: http://www.gnu.org/copyleft/lesser.html
// **************************************************************************************************
// The Initial Developer of the Original Code:
// OpenCV: open source computer vision library
// Homepage: http://ocv.org
// Online docs: http://docs.ocv.org
// Q&A forum: http://answers.ocv.org
// Dev zone: http://code.ocv.org
// **************************************************************************************************
// Original file:
// opencv\modules\ml\include\opencv2\ml.hpp
// *************************************************************************************************
unit ocv.ml;
{$POINTERMATH ON}
interface
Uses
WinApi.Windows,
ocv.core.types_c;
/// ****************************************************************************************\
// * Main struct definitions *
// \****************************************************************************************/
//
/// * log(2*PI) */
// #define CV_LOG2PI (1.8378770664093454835606594728112)
//
/// * columns of <trainData> matrix are training samples */
// #define CV_COL_SAMPLE 0
//
/// * rows of <trainData> matrix are training samples */
// #define CV_ROW_SAMPLE 1
//
// #define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE)
//
// struct CvVectors
// {
// int type;
// int dims, count;
// CvVectors* next;
// union
// {
// uchar** ptr;
// float** fl;
// double** db;
// } data;
// };
//
// #if 0
/// * A structure, representing the lattice range of statmodel parameters.
// It is used for optimizing statmodel parameters by cross-validation method.
// The lattice is logarithmic, so <step> must be greater then 1. */
// typedef struct CvParamLattice
// {
// double min_val;
// double max_val;
// double step;
// }
// CvParamLattice;
//
// CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val,
// double log_step )
// {
// CvParamLattice pl;
// pl.min_val = MIN( min_val, max_val );
// pl.max_val = MAX( min_val, max_val );
// pl.step = MAX( log_step, 1. );
// return pl;
// }
//
// CV_INLINE CvParamLattice cvDefaultParamLattice( void )
// {
// CvParamLattice pl = {0,0,0};
// return pl;
// }
// #endif
const
/// * Variable type */
CV_VAR_NUMERICAL = 0;
CV_VAR_ORDERED = 0;
CV_VAR_CATEGORICAL = 1;
//
// #define CV_TYPE_NAME_ML_SVM "opencv-ml-svm"
// #define CV_TYPE_NAME_ML_KNN "opencv-ml-knn"
// #define CV_TYPE_NAME_ML_NBAYES "opencv-ml-bayesian"
// #define CV_TYPE_NAME_ML_EM "opencv-ml-em"
// #define CV_TYPE_NAME_ML_BOOSTING "opencv-ml-boost-tree"
// #define CV_TYPE_NAME_ML_TREE "opencv-ml-tree"
// #define CV_TYPE_NAME_ML_ANN_MLP "opencv-ml-ann-mlp"
// #define CV_TYPE_NAME_ML_CNN "opencv-ml-cnn"
// #define CV_TYPE_NAME_ML_RTREES "opencv-ml-random-trees"
// #define CV_TYPE_NAME_ML_ERTREES "opencv-ml-extremely-randomized-trees"
// #define CV_TYPE_NAME_ML_GBT "opencv-ml-gradient-boosting-trees"
//
// #define CV_TRAIN_ERROR 0
// #define CV_TEST_ERROR 1
//
// class CV_EXPORTS_W CvStatModel
// {
// public:
// CvStatModel();
// virtual ~CvStatModel();
//
// virtual void clear();
//
// CV_WRAP virtual void save( const char* filename, const char* name=0 ) const;
// CV_WRAP virtual void load( const char* filename, const char* name=0 );
//
// virtual void write( CvFileStorage* storage, const char* name ) const;
// virtual void read( CvFileStorage* storage, CvFileNode* node );
//
// protected:
// const char* default_model_name;
// };
//
/// ****************************************************************************************\
// * Normal Bayes Classifier *
// \****************************************************************************************/
//
/// * The structure, representing the grid range of statmodel parameters.
// It is used for optimizing statmodel accuracy by varying model parameters,
// the accuracy estimate being computed by cross-validation.
// The grid is logarithmic, so <step> must be greater then 1. */
//
// class CvMLData;
//
// struct CV_EXPORTS_W_MAP CvParamGrid
// {
// // SVM params type
// enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 };
//
// CvParamGrid()
// {
// min_val = max_val = step = 0;
// }
//
// CvParamGrid( double min_val, double max_val, double log_step );
// //CvParamGrid( int param_id );
// bool check() const;
//
// CV_PROP_RW double min_val;
// CV_PROP_RW double max_val;
// CV_PROP_RW double step;
// };
//
// inline CvParamGrid::CvParamGrid( double _min_val, double _max_val, double _log_step )
// {
// min_val = _min_val;
// max_val = _max_val;
// step = _log_step;
// }
//
// class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel
// {
// public:
// CV_WRAP CvNormalBayesClassifier();
// virtual ~CvNormalBayesClassifier();
//
// CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses,
// const CvMat* varIdx=0, const CvMat* sampleIdx=0 );
//
// virtual bool train( const CvMat* trainData, const CvMat* responses,
// const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false );
//
// virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0 ) const;
// CV_WRAP virtual void clear();
//
// CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses,
// const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() );
// CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
// const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
// bool update=false );
// CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const;
//
// virtual void write( CvFileStorage* storage, const char* name ) const;
// virtual void read( CvFileStorage* storage, CvFileNode* node );
//
// protected:
// int var_count, var_all;
// CvMat* var_idx;
// CvMat* cls_labels;
// CvMat** count;
// CvMat** sum;
// CvMat** productsum;
// CvMat** avg;
// CvMat** inv_eigen_values;
// CvMat** cov_rotate_mats;
// CvMat* c;
// };
//
//
/// ****************************************************************************************\
// * K-Nearest Neighbour Classifier *
// \****************************************************************************************/
Type
TCvKNearest = class(TObject)
function train(const trainData: pCvMat; const responses: pCvMat; const sampleIdx: pCvMat = nil;
is_regression: bool = false; maxK: Integer = 32; updateBase: bool = false): bool; virtual; stdcall; abstract;
function find_nearest(const samples: pCvMat; k: Integer; results: pCvMat = nil; const neighbors: pSingle = nil;
neighborResponses: pCvMat = nil; dist: pCvMat = nil): float; virtual; stdcall; abstract;
// -----------------------------------
class function Create: TCvKNearest; overload;
class function Create(const trainData: pCvMat; const responses: pCvMat; const sampleIdx: pCvMat = nil;
isRegression: bool = false; max_k: Integer = 32): TCvKNearest; overload;
procedure Free; reintroduce;
end;
// k Nearest Neighbors
// class CV_EXPORTS_W CvKNearest : public CvStatModel
// {
// public:
//
// CV_WRAP CvKNearest();
// virtual ~CvKNearest();
//
// CvKNearest( const CvMat* trainData, const CvMat* responses, const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 );
//
// virtual bool train( const CvMat* trainData, const CvMat* responses,
// const CvMat* sampleIdx=0, bool is_regression=false,
// int maxK=32, bool updateBase=false );
//
// virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0,
// const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const;
//
// CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses,
// const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 );
//
// CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
// const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false,
// int maxK=32, bool updateBase=false );
//
// virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0,
// const float** neighbors=0, cv::Mat* neighborResponses=0,
// cv::Mat* dist=0 ) const;
// CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results,
// CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const;
//
// virtual void clear();
// int get_max_k() const;
// int get_var_count() const;
// int get_sample_count() const;
// bool is_regression() const;
//
// virtual float write_results( int k, int k1, int start, int end,
// const float* neighbor_responses, const float* dist, CvMat* _results,
// CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const;
//
// virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
// float* neighbor_responses, const float** neighbors, float* dist ) const;
//
// protected:
//
// int max_k, var_count;
// int total;
// bool regression;
// CvVectors* samples;
// };
//
/// ****************************************************************************************\
// * Support Vector Machines *
// \****************************************************************************************/
//
/// / SVM training parameters
// struct CV_EXPORTS_W_MAP CvSVMParams
// {
// CvSVMParams();
// CvSVMParams( int svm_type, int kernel_type,
// double degree, double gamma, double coef0,
// double Cvalue, double nu, double p,
// CvMat* class_weights, CvTermCriteria term_crit );
//
// CV_PROP_RW int svm_type;
// CV_PROP_RW int kernel_type;
// CV_PROP_RW double degree; // for poly
// CV_PROP_RW double gamma; // for poly/rbf/sigmoid/chi2
// CV_PROP_RW double coef0; // for poly/sigmoid
//
// CV_PROP_RW double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
// CV_PROP_RW double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
// CV_PROP_RW double p; // for CV_SVM_EPS_SVR
// CvMat* class_weights; // for CV_SVM_C_SVC
// CV_PROP_RW CvTermCriteria term_crit; // termination criteria
// };
//
//
// struct CV_EXPORTS CvSVMKernel
// {
// typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs,
// const float* another, float* results );
// CvSVMKernel();
// CvSVMKernel( const CvSVMParams* params, Calc _calc_func );
// virtual bool create( const CvSVMParams* params, Calc _calc_func );
// virtual ~CvSVMKernel();
//
// virtual void clear();
// virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results );
//
// const CvSVMParams* params;
// Calc calc_func;
//
// virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs,
// const float* another, float* results,
// double alpha, double beta );
// virtual void calc_intersec( int vcount, int var_count, const float** vecs,
// const float* another, float* results );
// virtual void calc_chi2( int vec_count, int vec_size, const float** vecs,
// const float* another, float* results );
// virtual void calc_linear( int vec_count, int vec_size, const float** vecs,
// const float* another, float* results );
// virtual void calc_rbf( int vec_count, int vec_size, const float** vecs,
// const float* another, float* results );
// virtual void calc_poly( int vec_count, int vec_size, const float** vecs,
// const float* another, float* results );
// virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs,
// const float* another, float* results );
// };
//
//
// struct CvSVMKernelRow
// {
// CvSVMKernelRow* prev;
// CvSVMKernelRow* next;
// float* data;
// };
//
//
// struct CvSVMSolutionInfo
// {
// double obj;
// double rho;
// double upper_bound_p;
// double upper_bound_n;
// double r; // for Solver_NU
// };
//
// class CV_EXPORTS CvSVMSolver
// {
// public:
// typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j );
// typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed );
// typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r );
//
// CvSVMSolver();
//
// CvSVMSolver( int count, int var_count, const float** samples, schar* y,
// int alpha_count, double* alpha, double Cp, double Cn,
// CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
// SelectWorkingSet select_working_set, CalcRho calc_rho );
// virtual bool create( int count, int var_count, const float** samples, schar* y,
// int alpha_count, double* alpha, double Cp, double Cn,
// CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
// SelectWorkingSet select_working_set, CalcRho calc_rho );
// virtual ~CvSVMSolver();
//
// virtual void clear();
// virtual bool solve_generic( CvSVMSolutionInfo& si );
//
// virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y,
// double Cp, double Cn, CvMemStorage* storage,
// CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si );
// virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y,
// CvMemStorage* storage, CvSVMKernel* kernel,
// double* alpha, CvSVMSolutionInfo& si );
// virtual bool solve_one_class( int count, int var_count, const float** samples,
// CvMemStorage* storage, CvSVMKernel* kernel,
// double* alpha, CvSVMSolutionInfo& si );
//
// virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y,
// CvMemStorage* storage, CvSVMKernel* kernel,
// double* alpha, CvSVMSolutionInfo& si );
//
// virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y,
// CvMemStorage* storage, CvSVMKernel* kernel,
// double* alpha, CvSVMSolutionInfo& si );
//
// virtual float* get_row_base( int i, bool* _existed );
// virtual float* get_row( int i, float* dst );
//
// int sample_count;
// int var_count;
// int cache_size;
// int cache_line_size;
// const float** samples;
// const CvSVMParams* params;
// CvMemStorage* storage;
// CvSVMKernelRow lru_list;
// CvSVMKernelRow* rows;
//
// int alpha_count;
//
// double* G;
// double* alpha;
//
// // -1 - lower bound, 0 - free, 1 - upper bound
// schar* alpha_status;
//
// schar* y;
// double* b;
// float* buf[2];
// double eps;
// int max_iter;
// double C[2]; // C[0] == Cn, C[1] == Cp
// CvSVMKernel* kernel;
//
// SelectWorkingSet select_working_set_func;
// CalcRho calc_rho_func;
// GetRow get_row_func;
//
// virtual bool select_working_set( int& i, int& j );
// virtual bool select_working_set_nu_svm( int& i, int& j );
// virtual void calc_rho( double& rho, double& r );
// virtual void calc_rho_nu_svm( double& rho, double& r );
//
// virtual float* get_row_svc( int i, float* row, float* dst, bool existed );
// virtual float* get_row_one_class( int i, float* row, float* dst, bool existed );
// virtual float* get_row_svr( int i, float* row, float* dst, bool existed );
// };
//
//
// struct CvSVMDecisionFunc
// {
// double rho;
// int sv_count;
// double* alpha;
// int* sv_index;
// };
//
//
/// / SVM model
// class CV_EXPORTS_W CvSVM : public CvStatModel
// {
// public:
// // SVM type
// enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };
//
// // SVM kernel type
// enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3, CHI2=4, INTER=5 };
//
// // SVM params type
// enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };
//
// CV_WRAP CvSVM();
// virtual ~CvSVM();
//
// CvSVM( const CvMat* trainData, const CvMat* responses,
// const CvMat* varIdx=0, const CvMat* sampleIdx=0,
// CvSVMParams params=CvSVMParams() );
//
// virtual bool train( const CvMat* trainData, const CvMat* responses,
// const CvMat* varIdx=0, const CvMat* sampleIdx=0,
// CvSVMParams params=CvSVMParams() );
//
// virtual bool train_auto( const CvMat* trainData, const CvMat* responses,
// const CvMat* varIdx, const CvMat* sampleIdx, CvSVMParams params,
// int kfold = 10,
// CvParamGrid Cgrid = get_default_grid(CvSVM::C),
// CvParamGrid gammaGrid = get_default_grid(CvSVM::GAMMA),
// CvParamGrid pGrid = get_default_grid(CvSVM::P),
// CvParamGrid nuGrid = get_default_grid(CvSVM::NU),
// CvParamGrid coeffGrid = get_default_grid(CvSVM::COEF),
// CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE),
// bool balanced=false );
//
// virtual float predict( const CvMat* sample, bool returnDFVal=false ) const;
// virtual float predict( const CvMat* samples, CV_OUT CvMat* results ) const;
//
// CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses,
// const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
// CvSVMParams params=CvSVMParams() );
//
// CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
// const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
// CvSVMParams params=CvSVMParams() );
//
// CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses,
// const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params,
// int k_fold = 10,
// CvParamGrid Cgrid = CvSVM::get_default_grid(CvSVM::C),
// CvParamGrid gammaGrid = CvSVM::get_default_grid(CvSVM::GAMMA),
// CvParamGrid pGrid = CvSVM::get_default_grid(CvSVM::P),
// CvParamGrid nuGrid = CvSVM::get_default_grid(CvSVM::NU),
// CvParamGrid coeffGrid = CvSVM::get_default_grid(CvSVM::COEF),
// CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE),
// bool balanced=false);
// CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
// CV_WRAP_AS(predict_all) virtual void predict( cv::InputArray samples, cv::OutputArray results ) const;
//
// CV_WRAP virtual int get_support_vector_count() const;
// virtual const float* get_support_vector(int i) const;
// virtual CvSVMParams get_params() const { return params; };
// CV_WRAP virtual void clear();
//
// static CvParamGrid get_default_grid( int param_id );
//
// virtual void write( CvFileStorage* storage, const char* name ) const;
// virtual void read( CvFileStorage* storage, CvFileNode* node );
// CV_WRAP int get_var_count() const { return var_idx ? var_idx->cols : var_all; }
//
// protected:
//
// virtual bool set_params( const CvSVMParams& params );
// virtual bool train1( int sample_count, int var_count, const float** samples,
// const void* responses, double Cp, double Cn,
// CvMemStorage* _storage, double* alpha, double& rho );
// virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples,
// const CvMat* responses, CvMemStorage* _storage, double* alpha );
// virtual void create_kernel();
// virtual void create_solver();
//
// virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const;
//
// virtual void write_params( CvFileStorage* fs ) const;
// virtual void read_params( CvFileStorage* fs, CvFileNode* node );
//
// void optimize_linear_svm();
//
// CvSVMParams params;
// CvMat* class_labels;
// int var_all;
// float** sv;
// int sv_total;
// CvMat* var_idx;
// CvMat* class_weights;
// CvSVMDecisionFunc* decision_func;
// CvMemStorage* storage;
//
// CvSVMSolver* solver;
// CvSVMKernel* kernel;
// };
//
/// ****************************************************************************************\
// * Expectation - Maximization *
// \****************************************************************************************/
// namespace cv
// {
// class CV_EXPORTS_W EM : public Algorithm
// {
// public:
// // Type of covariation matrices
// enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};
//
// // Default parameters
// enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
//
// // The initial step
// enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
//
// CV_WRAP EM(int nclusters=EM::DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
// const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
// EM::DEFAULT_MAX_ITERS, FLT_EPSILON));
//
// virtual ~EM();
// CV_WRAP virtual void clear();
//
// CV_WRAP virtual bool train(InputArray samples,
// OutputArray logLikelihoods=noArray(),
// OutputArray labels=noArray(),
// OutputArray probs=noArray());
//
// CV_WRAP virtual bool trainE(InputArray samples,
// InputArray means0,
// InputArray covs0=noArray(),
// InputArray weights0=noArray(),
// OutputArray logLikelihoods=noArray(),
// OutputArray labels=noArray(),
// OutputArray probs=noArray());
//
// CV_WRAP virtual bool trainM(InputArray samples,
// InputArray probs0,
// OutputArray logLikelihoods=noArray(),
// OutputArray labels=noArray(),
// OutputArray probs=noArray());
//
// CV_WRAP Vec2d predict(InputArray sample,
// OutputArray probs=noArray()) const;
//
// CV_WRAP bool isTrained() const;
//
// AlgorithmInfo* info() const;
// virtual void read(const FileNode& fn);
//
// protected:
//
// virtual void setTrainData(int startStep, const Mat& samples,
// const Mat* probs0,
// const Mat* means0,
// const std::vector<Mat>* covs0,
// const Mat* weights0);
//
// bool doTrain(int startStep,
// OutputArray logLikelihoods,
// OutputArray labels,
// OutputArray probs);
// virtual void eStep();
// virtual void mStep();
//
// void clusterTrainSamples();
// void decomposeCovs();
// void computeLogWeightDivDet();
//
// Vec2d computeProbabilities(const Mat& sample, Mat* probs) const;
//
// // all inner matrices have type CV_64FC1
// CV_PROP_RW int nclusters;
// CV_PROP_RW int covMatType;
// CV_PROP_RW int maxIters;
// CV_PROP_RW double epsilon;
//
// Mat trainSamples;
// Mat trainProbs;
// Mat trainLogLikelihoods;
// Mat trainLabels;
//
// CV_PROP Mat weights;
// CV_PROP Mat means;
// CV_PROP std::vector<Mat> covs;
//
// std::vector<Mat> covsEigenValues;
// std::vector<Mat> covsRotateMats;
// std::vector<Mat> invCovsEigenValues;
// Mat logWeightDivDet;
// };
// } // namespace cv
//
/// ****************************************************************************************\
// * Decision Tree *
// \****************************************************************************************/\
// struct CvPair16u32s
// {
// unsigned short* u;
// int* i;
// };
//
//
// #define CV_DTREE_CAT_DIR(idx,subset) \
// (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1)
Type
TOrd = record
c: float;
split_point: Integer;
end;
pCvDTreeSplit = ^TCvDTreeSplit;
TCvDTreeSplit = record // struct CvDTreeSplit
var_idx: Integer; // int var_idx;
condensed_idx: Integer; // int condensed_idx;
inversed: Integer; // int inversed;
quality: float; // float quality;
next: pCvDTreeSplit; // CvDTreeSplit* next;
case byte of
// union
// {
// int subset[2];
0:
(subset: array [0 .. 1] of Integer);
1:
(ord: TOrd);
// struct
// {
// float c;
// int split_point;
// }
// ord;
// };
end;
pCvDTreeNode = ^TCvDTreeNode;
TCvDTreeNode = record // struct CvDTreeNode
class_idx: Integer; // int class_idx;
Tn: Integer; // int Tn;
value: Double; // double value;
//
parent: pCvDTreeNode; // CvDTreeNode* parent;
left: pCvDTreeNode; // CvDTreeNode* left;
right: pCvDTreeNode; // CvDTreeNode* right;
//
split: pCvDTreeSplit; // CvDTreeSplit* split;
//
sample_count: Integer; // int sample_count;
depth: Integer; // int depth;
num_valid: pInteger; // int* num_valid;
offset: Integer; // int offset;
buf_idx: Integer; // int buf_idx;
maxlr: Double; // double maxlr;
//
// // global pruning data
complexity: Integer; // int complexity;
alpha: Double; // double alpha;
node_risk, tree_risk, tree_error: Double; // double node_risk, tree_risk, tree_error;
//
// // cross-validation pruning data
cv_Tn: pInteger; // int* cv_Tn;
cv_node_risk: pDouble; // double* cv_node_risk;
cv_node_error: pDouble; // double* cv_node_error;
//
// int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; }
function get_num_valid(vi: Integer): Integer;
// void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; }
procedure set_num_valid(vi: Integer; n: Integer);
end;
TCvDTreeParams = record // struct CV_EXPORTS_W_MAP CvDTreeParams
max_categories: Integer; // CV_PROP_RW int max_categories ;
max_depth: Integer; // CV_PROP_RW int max_depth ;
min_sample_count: Integer; // CV_PROP_RW int min_sample_count ;
cv_folds: Integer; // CV_PROP_RW int cv_folds ;
use_surrogates: ByteBool; // CV_PROP_RW bool use_surrogates ;
use_1se_rule: ByteBool; // CV_PROP_RW bool use_1se_rule ;
truncate_pruned_tree: ByteBool; // CV_PROP_RW bool truncate_pruned_tree ;
regression_accuracy: float; // CV_PROP_RW float regression_accuracy ;
priors: pFloat; // const float* priors;
//
// CvDTreeParams();
{
CvDTreeParams( int max_depth, int min_sample_count, float regression_accuracy,
bool use_surrogates, int max_categories, int cv_folds,
bool use_1se_rule, bool truncate_pruned_tree, const float* priors );
}
end;
// struct CV_EXPORTS CvDTreeTrainData
// {
// CvDTreeTrainData();
// CvDTreeTrainData( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// const CvDTreeParams& params=CvDTreeParams(),
// bool _shared=false, bool _add_labels=false );
// virtual ~CvDTreeTrainData();
//
// virtual void set_data( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// const CvDTreeParams& params=CvDTreeParams(),
// bool _shared=false, bool _add_labels=false,
// bool _update_data=false );
// virtual void do_responses_copy();
//
// virtual void get_vectors( const CvMat* _subsample_idx,
// float* values, uchar* missing, float* responses, bool get_class_idx=false );
//
// virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
//
// virtual void write_params( CvFileStorage* fs ) const;
// virtual void read_params( CvFileStorage* fs, CvFileNode* node );
//
// // release all the data
// virtual void clear();
//
// int get_num_classes() const;
// int get_var_type(int vi) const;
// int get_work_var_count() const {return work_var_count;}
//
// virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf );
// virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf );
// virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
// virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
// virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
// virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf,
// const float** ord_values, const int** sorted_indices, int* sample_indices_buf );
// virtual int get_child_buf_idx( CvDTreeNode* n );
//
// ////////////////////////////////////
//
// virtual bool set_params( const CvDTreeParams& params );
// virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count,
// int storage_idx, int offset );
//
// virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val,
// int split_point, int inversed, float quality );
// virtual CvDTreeSplit* new_split_cat( int vi, float quality );
// virtual void free_node_data( CvDTreeNode* node );
// virtual void free_train_data();
// virtual void free_node( CvDTreeNode* node );
//
// int sample_count, var_all, var_count, max_c_count;
// int ord_var_count, cat_var_count, work_var_count;
// bool have_labels, have_priors;
// bool is_classifier;
// int tflag;
//
// const CvMat* train_data;
// const CvMat* responses;
// CvMat* responses_copy; // used in Boosting
//
// int buf_count, buf_size; // buf_size is obsolete, please do not use it, use expression ((int64)buf->rows * (int64)buf->cols / buf_count) instead
// bool shared;
// int is_buf_16u;
//
// CvMat* cat_count;
// CvMat* cat_ofs;
// CvMat* cat_map;
//
// CvMat* counts;
// CvMat* buf;
// inline size_t get_length_subbuf() const
// {
// size_t res = (size_t)(work_var_count + 1) * (size_t)sample_count;
// return res;
// }
//
// CvMat* direction;
// CvMat* split_buf;
//
// CvMat* var_idx;
// CvMat* var_type; // i-th element =
// // k<0 - ordered
// // k>=0 - categorical, see k-th element of cat_* arrays
// CvMat* priors;
// CvMat* priors_mult;
//
// CvDTreeParams params;
//
// CvMemStorage* tree_storage;
// CvMemStorage* temp_storage;
//
// CvDTreeNode* data_root;
//
// CvSet* node_heap;
// CvSet* split_heap;
// CvSet* cv_heap;
// CvSet* nv_heap;
//
// cv::RNG* rng;
// };
//
// class CvDTree;
// class CvForestTree;
//
// namespace cv
// {
// struct DTreeBestSplitFinder;
// struct ForestTreeBestSplitFinder;
// }
//
// class CV_EXPORTS_W CvDTree : public CvStatModel
// {
// public:
// CV_WRAP CvDTree();
// virtual ~CvDTree();
//
// virtual bool train( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// CvDTreeParams params=CvDTreeParams() );
//
// virtual bool train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() );
//
// // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
// virtual float calc_error( CvMLData* trainData, int type, std::vector<float> *resp = 0 );
//
// virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx );
//
// virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0,
// bool preprocessedInput=false ) const;
//
// CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
// const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
// const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
// const cv::Mat& missingDataMask=cv::Mat(),
// CvDTreeParams params=CvDTreeParams() );
//
// CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(),
// bool preprocessedInput=false ) const;
// CV_WRAP virtual cv::Mat getVarImportance();
//
// virtual const CvMat* get_var_importance();
// CV_WRAP virtual void clear();
//
// virtual void read( CvFileStorage* fs, CvFileNode* node );
// virtual void write( CvFileStorage* fs, const char* name ) const;
//
// // special read & write methods for trees in the tree ensembles
// virtual void read( CvFileStorage* fs, CvFileNode* node,
// CvDTreeTrainData* data );
// virtual void write( CvFileStorage* fs ) const;
//
// const CvDTreeNode* get_root() const;
// int get_pruned_tree_idx() const;
// CvDTreeTrainData* get_data();
//
// protected:
// friend struct cv::DTreeBestSplitFinder;
//
// virtual bool do_train( const CvMat* _subsample_idx );
//
// virtual void try_split_node( CvDTreeNode* n );
// virtual void split_node_data( CvDTreeNode* n );
// virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
// virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
// virtual double calc_node_dir( CvDTreeNode* node );
// virtual void complete_node_dir( CvDTreeNode* node );
// virtual void cluster_categories( const int* vectors, int vector_count,
// int var_count, int* sums, int k, int* cluster_labels );
//
// virtual void calc_node_value( CvDTreeNode* node );
//
// virtual void prune_cv();
// virtual double update_tree_rnc( int T, int fold );
// virtual int cut_tree( int T, int fold, double min_alpha );
// virtual void free_prune_data(bool cut_tree);
// virtual void free_tree();
//
// virtual void write_node( CvFileStorage* fs, CvDTreeNode* node ) const;
// virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split ) const;
// virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent );
// virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node );
// virtual void write_tree_nodes( CvFileStorage* fs ) const;
// virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node );
//
// CvDTreeNode* root;
// CvMat* var_importance;
// CvDTreeTrainData* data;
//
// public:
// int pruned_tree_idx;
// };
//
//
/// ****************************************************************************************\
// * Random Trees Classifier *
// \****************************************************************************************/
//
// class CvRTrees;
//
// class CV_EXPORTS CvForestTree: public CvDTree
// {
// public:
// CvForestTree();
// virtual ~CvForestTree();
//
// virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx, CvRTrees* forest );
//
// virtual int get_var_count() const {return data ? data->var_count : 0;}
// virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data );
//
// /* dummy methods to avoid warnings: BEGIN */
// virtual bool train( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// CvDTreeParams params=CvDTreeParams() );
//
// virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );
// virtual void read( CvFileStorage* fs, CvFileNode* node );
// virtual void read( CvFileStorage* fs, CvFileNode* node,
// CvDTreeTrainData* data );
// /* dummy methods to avoid warnings: END */
//
// protected:
// friend struct cv::ForestTreeBestSplitFinder;
//
// virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
// CvRTrees* forest;
// };
//
//
// struct CV_EXPORTS_W_MAP CvRTParams : public CvDTreeParams
// {
// //Parameters for the forest
// CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance
// CV_PROP_RW int nactive_vars;
// CV_PROP_RW CvTermCriteria term_crit;
//
// CvRTParams();
// CvRTParams( int max_depth, int min_sample_count,
// float regression_accuracy, bool use_surrogates,
// int max_categories, const float* priors, bool calc_var_importance,
// int nactive_vars, int max_num_of_trees_in_the_forest,
// float forest_accuracy, int termcrit_type );
// };
//
//
// class CV_EXPORTS_W CvRTrees : public CvStatModel
// {
// public:
// CV_WRAP CvRTrees();
// virtual ~CvRTrees();
// virtual bool train( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// CvRTParams params=CvRTParams() );
//
// virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
// virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const;
// virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const;
//
// CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
// const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
// const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
// const cv::Mat& missingDataMask=cv::Mat(),
// CvRTParams params=CvRTParams() );
// CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
// CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
// CV_WRAP virtual cv::Mat getVarImportance();
//
// CV_WRAP virtual void clear();
//
// virtual const CvMat* get_var_importance();
// virtual float get_proximity( const CvMat* sample1, const CvMat* sample2,
// const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const;
//
// virtual float calc_error( CvMLData* data, int type , std::vector<float>* resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
//
// virtual float get_train_error();
//
// virtual void read( CvFileStorage* fs, CvFileNode* node );
// virtual void write( CvFileStorage* fs, const char* name ) const;
//
// CvMat* get_active_var_mask();
// CvRNG* get_rng();
//
// int get_tree_count() const;
// CvForestTree* get_tree(int i) const;
//
// protected:
// virtual cv::String getName() const;
//
// virtual bool grow_forest( const CvTermCriteria term_crit );
//
// // array of the trees of the forest
// CvForestTree** trees;
// CvDTreeTrainData* data;
// int ntrees;
// int nclasses;
// double oob_error;
// CvMat* var_importance;
// int nsamples;
//
// cv::RNG* rng;
// CvMat* active_var_mask;
// };
//
/// ****************************************************************************************\
// * Extremely randomized trees Classifier *
// \****************************************************************************************/
// struct CV_EXPORTS CvERTreeTrainData : public CvDTreeTrainData
// {
// virtual void set_data( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// const CvDTreeParams& params=CvDTreeParams(),
// bool _shared=false, bool _add_labels=false,
// bool _update_data=false );
// virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf,
// const float** ord_values, const int** missing, int* sample_buf = 0 );
// virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
// virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
// virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
// virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing,
// float* responses, bool get_class_idx=false );
// virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
// const CvMat* missing_mask;
// };
//
// class CV_EXPORTS CvForestERTree : public CvForestTree
// {
// protected:
// virtual double calc_node_dir( CvDTreeNode* node );
// virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual void split_node_data( CvDTreeNode* n );
// };
//
// class CV_EXPORTS_W CvERTrees : public CvRTrees
// {
// public:
// CV_WRAP CvERTrees();
// virtual ~CvERTrees();
// virtual bool train( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// CvRTParams params=CvRTParams());
// CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
// const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
// const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
// const cv::Mat& missingDataMask=cv::Mat(),
// CvRTParams params=CvRTParams());
// virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
// protected:
// virtual cv::String getName() const;
// virtual bool grow_forest( const CvTermCriteria term_crit );
// };
//
//
/// ****************************************************************************************\
// * Boosted tree classifier *
// \****************************************************************************************/
//
// struct CV_EXPORTS_W_MAP CvBoostParams : public CvDTreeParams
// {
// CV_PROP_RW int boost_type;
// CV_PROP_RW int weak_count;
// CV_PROP_RW int split_criteria;
// CV_PROP_RW double weight_trim_rate;
//
// CvBoostParams();
// CvBoostParams( int boost_type, int weak_count, double weight_trim_rate,
// int max_depth, bool use_surrogates, const float* priors );
// };
//
//
// class CvBoost;
//
// class CV_EXPORTS CvBoostTree: public CvDTree
// {
// public:
// CvBoostTree();
// virtual ~CvBoostTree();
//
// virtual bool train( CvDTreeTrainData* trainData,
// const CvMat* subsample_idx, CvBoost* ensemble );
//
// virtual void scale( double s );
// virtual void read( CvFileStorage* fs, CvFileNode* node,
// CvBoost* ensemble, CvDTreeTrainData* _data );
// virtual void clear();
//
// /* dummy methods to avoid warnings: BEGIN */
// virtual bool train( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// CvDTreeParams params=CvDTreeParams() );
// virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );
//
// virtual void read( CvFileStorage* fs, CvFileNode* node );
// virtual void read( CvFileStorage* fs, CvFileNode* node,
// CvDTreeTrainData* data );
// /* dummy methods to avoid warnings: END */
//
// protected:
//
// virtual void try_split_node( CvDTreeNode* n );
// virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
// float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
// virtual void calc_node_value( CvDTreeNode* n );
// virtual double calc_node_dir( CvDTreeNode* n );
//
// CvBoost* ensemble;
// };
//
//
// class CV_EXPORTS_W CvBoost : public CvStatModel
// {
// public:
// // Boosting type
// enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };
//
// // Splitting criteria
// enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 };
//
// CV_WRAP CvBoost();
// virtual ~CvBoost();
//
// CvBoost( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// CvBoostParams params=CvBoostParams() );
//
// virtual bool train( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// CvBoostParams params=CvBoostParams(),
// bool update=false );
//
// virtual bool train( CvMLData* data,
// CvBoostParams params=CvBoostParams(),
// bool update=false );
//
// virtual float predict( const CvMat* sample, const CvMat* missing=0,
// CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ,
// bool raw_mode=false, bool return_sum=false ) const;
//
// CV_WRAP CvBoost( const cv::Mat& trainData, int tflag,
// const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
// const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
// const cv::Mat& missingDataMask=cv::Mat(),
// CvBoostParams params=CvBoostParams() );
//
// CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
// const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
// const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
// const cv::Mat& missingDataMask=cv::Mat(),
// CvBoostParams params=CvBoostParams(),
// bool update=false );
//
// CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
// const cv::Range& slice=cv::Range::all(), bool rawMode=false,
// bool returnSum=false ) const;
//
// virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
//
// CV_WRAP virtual void prune( CvSlice slice );
//
// CV_WRAP virtual void clear();
//
// virtual void write( CvFileStorage* storage, const char* name ) const;
// virtual void read( CvFileStorage* storage, CvFileNode* node );
// virtual const CvMat* get_active_vars(bool absolute_idx=true);
//
// CvSeq* get_weak_predictors();
//
// CvMat* get_weights();
// CvMat* get_subtree_weights();
// CvMat* get_weak_response();
// const CvBoostParams& get_params() const;
// const CvDTreeTrainData* get_data() const;
//
// protected:
//
// virtual bool set_params( const CvBoostParams& params );
// virtual void update_weights( CvBoostTree* tree );
// virtual void trim_weights();
// virtual void write_params( CvFileStorage* fs ) const;
// virtual void read_params( CvFileStorage* fs, CvFileNode* node );
//
// virtual void initialize_weights(double (&p)[2]);
//
// CvDTreeTrainData* data;
// CvBoostParams params;
// CvSeq* weak;
//
// CvMat* active_vars;
// CvMat* active_vars_abs;
// bool have_active_cat_vars;
//
// CvMat* orig_response;
// CvMat* sum_response;
// CvMat* weak_eval;
// CvMat* subsample_mask;
// CvMat* weights;
// CvMat* subtree_weights;
// bool have_subsample;
// };
//
//
/// ****************************************************************************************\
// * Gradient Boosted Trees *
// \****************************************************************************************/
//
/// / DataType: STRUCT CvGBTreesParams
/// / Parameters of GBT (Gradient Boosted trees model), including single
/// / tree settings and ensemble parameters.
/// /
/// / weak_count - count of trees in the ensemble
/// / loss_function_type - loss function used for ensemble training
/// / subsample_portion - portion of whole training set used for
/// / every single tree training.
/// / subsample_portion value is in (0.0, 1.0].
/// / subsample_portion == 1.0 when whole dataset is
/// / used on each step. Count of sample used on each
/// / step is computed as
/// / int(total_samples_count * subsample_portion).
/// / shrinkage - regularization parameter.
/// / Each tree prediction is multiplied on shrinkage value.
//
//
// struct CV_EXPORTS_W_MAP CvGBTreesParams : public CvDTreeParams
// {
// CV_PROP_RW int weak_count;
// CV_PROP_RW int loss_function_type;
// CV_PROP_RW float subsample_portion;
// CV_PROP_RW float shrinkage;
//
// CvGBTreesParams();
// CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage,
// float subsample_portion, int max_depth, bool use_surrogates );
// };
//
/// / DataType: CLASS CvGBTrees
/// / Gradient Boosting Trees (GBT) algorithm implementation.
/// /
/// / data - training dataset
/// / params - parameters of the CvGBTrees
/// / weak - array[0..(class_count-1)] of CvSeq
/// / for storing tree ensembles
/// / orig_response - original responses of the training set samples
/// / sum_response - predicitons of the current model on the training dataset.
/// / this matrix is updated on every iteration.
/// / sum_response_tmp - predicitons of the model on the training set on the next
/// / step. On every iteration values of sum_responses_tmp are
/// / computed via sum_responses values. When the current
/// / step is complete sum_response values become equal to
/// / sum_responses_tmp.
/// / sampleIdx - indices of samples used for training the ensemble.
/// / CvGBTrees training procedure takes a set of samples
/// / (train_data) and a set of responses (responses).
/// / Only pairs (train_data[i], responses[i]), where i is
/// / in sample_idx are used for training the ensemble.
/// / subsample_train - indices of samples used for training a single decision
/// / tree on the current step. This indices are countered
/// / relatively to the sample_idx, so that pairs
/// / (train_data[sample_idx[i]], responses[sample_idx[i]])
/// / are used for training a decision tree.
/// / Training set is randomly splited
/// / in two parts (subsample_train and subsample_test)
/// / on every iteration accordingly to the portion parameter.
/// / subsample_test - relative indices of samples from the training set,
/// / which are not used for training a tree on the current
/// / step.
/// / missing - mask of the missing values in the training set. This
/// / matrix has the same size as train_data. 1 - missing
/// / value, 0 - not a missing value.
/// / class_labels - output class labels map.
/// / rng - random number generator. Used for spliting the
/// / training set.
/// / class_count - count of output classes.
/// / class_count == 1 in the case of regression,
/// / and > 1 in the case of classification.
/// / delta - Huber loss function parameter.
/// / base_value - start point of the gradient descent procedure.
/// / model prediction is
/// / f(x) = f_0 + sum_{i=1..weak_count-1}(f_i(x)), where
/// / f_0 is the base value.
//
//
//
// class CV_EXPORTS_W CvGBTrees : public CvStatModel
// {
// public:
//
// /*
// // DataType: ENUM
// // Loss functions implemented in CvGBTrees.
// //
// // SQUARED_LOSS
// // problem: regression
// // loss = (x - x')^2
// //
// // ABSOLUTE_LOSS
// // problem: regression
// // loss = abs(x - x')
// //
// // HUBER_LOSS
// // problem: regression
// // loss = delta*( abs(x - x') - delta/2), if abs(x - x') > delta
// // 1/2*(x - x')^2, if abs(x - x') <= delta,
// // where delta is the alpha-quantile of pseudo responses from
// // the training set.
// //
// // DEVIANCE_LOSS
// // problem: classification
// //
// */
// enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};
//
//
// /*
// // Default constructor. Creates a model only (without training).
// // Should be followed by one form of the train(...) function.
// //
// // API
// // CvGBTrees();
//
// // INPUT
// // OUTPUT
// // RESULT
// */
// CV_WRAP CvGBTrees();
//
//
// /*
// // Full form constructor. Creates a gradient boosting model and does the
// // train.
// //
// // API
// // CvGBTrees( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// CvGBTreesParams params=CvGBTreesParams() );
//
// // INPUT
// // trainData - a set of input feature vectors.
// // size of matrix is
// // <count of samples> x <variables count>
// // or <variables count> x <count of samples>
// // depending on the tflag parameter.
// // matrix values are float.
// // tflag - a flag showing how do samples stored in the
// // trainData matrix row by row (tflag=CV_ROW_SAMPLE)
// // or column by column (tflag=CV_COL_SAMPLE).
// // responses - a vector of responses corresponding to the samples
// // in trainData.
// // varIdx - indices of used variables. zero value means that all
// // variables are active.
// // sampleIdx - indices of used samples. zero value means that all
// // samples from trainData are in the training set.
// // varType - vector of <variables count> length. gives every
// // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
// // varType = 0 means all variables are numerical.
// // missingDataMask - a mask of misiing values in trainData.
// // missingDataMask = 0 means that there are no missing
// // values.
// // params - parameters of GTB algorithm.
// // OUTPUT
// // RESULT
// */
// CvGBTrees( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// CvGBTreesParams params=CvGBTreesParams() );
//
//
// /*
// // Destructor.
// */
// virtual ~CvGBTrees();
//
//
// /*
// // Gradient tree boosting model training
// //
// // API
// // virtual bool train( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// CvGBTreesParams params=CvGBTreesParams(),
// bool update=false );
//
// // INPUT
// // trainData - a set of input feature vectors.
// // size of matrix is
// // <count of samples> x <variables count>
// // or <variables count> x <count of samples>
// // depending on the tflag parameter.
// // matrix values are float.
// // tflag - a flag showing how do samples stored in the
// // trainData matrix row by row (tflag=CV_ROW_SAMPLE)
// // or column by column (tflag=CV_COL_SAMPLE).
// // responses - a vector of responses corresponding to the samples
// // in trainData.
// // varIdx - indices of used variables. zero value means that all
// // variables are active.
// // sampleIdx - indices of used samples. zero value means that all
// // samples from trainData are in the training set.
// // varType - vector of <variables count> length. gives every
// // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
// // varType = 0 means all variables are numerical.
// // missingDataMask - a mask of misiing values in trainData.
// // missingDataMask = 0 means that there are no missing
// // values.
// // params - parameters of GTB algorithm.
// // update - is not supported now. (!)
// // OUTPUT
// // RESULT
// // Error state.
// */
// virtual bool train( const CvMat* trainData, int tflag,
// const CvMat* responses, const CvMat* varIdx=0,
// const CvMat* sampleIdx=0, const CvMat* varType=0,
// const CvMat* missingDataMask=0,
// CvGBTreesParams params=CvGBTreesParams(),
// bool update=false );
//
//
// /*
// // Gradient tree boosting model training
// //
// // API
// // virtual bool train( CvMLData* data,
// CvGBTreesParams params=CvGBTreesParams(),
// bool update=false ) {return false;};
//
// // INPUT
// // data - training set.
// // params - parameters of GTB algorithm.
// // update - is not supported now. (!)
// // OUTPUT
// // RESULT
// // Error state.
// */
// virtual bool train( CvMLData* data,
// CvGBTreesParams params=CvGBTreesParams(),
// bool update=false );
//
//
// /*
// // Response value prediction
// //
// // API
// // virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
// CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
// int k=-1 ) const;
//
// // INPUT
// // sample - input sample of the same type as in the training set.
// // missing - missing values mask. missing=0 if there are no
// // missing values in sample vector.
// // weak_responses - predictions of all of the trees.
// // not implemented (!)
// // slice - part of the ensemble used for prediction.
// // slice = CV_WHOLE_SEQ when all trees are used.
// // k - number of ensemble used.
// // k is in {-1,0,1,..,<count of output classes-1>}.
// // in the case of classification problem
// // <count of output classes-1> ensembles are built.
// // If k = -1 ordinary prediction is the result,
// // otherwise function gives the prediction of the
// // k-th ensemble only.
// // OUTPUT
// // RESULT
// // Predicted value.
// */
// virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
// CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
// int k=-1 ) const;
//
// /*
// // Response value prediction.
// // Parallel version (in the case of TBB existence)
// //
// // API
// // virtual float predict( const CvMat* sample, const CvMat* missing=0,
// CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
// int k=-1 ) const;
//
// // INPUT
// // sample - input sample of the same type as in the training set.
// // missing - missing values mask. missing=0 if there are no
// // missing values in sample vector.
// // weak_responses - predictions of all of the trees.
// // not implemented (!)
// // slice - part of the ensemble used for prediction.
// // slice = CV_WHOLE_SEQ when all trees are used.
// // k - number of ensemble used.
// // k is in {-1,0,1,..,<count of output classes-1>}.
// // in the case of classification problem
// // <count of output classes-1> ensembles are built.
// // If k = -1 ordinary prediction is the result,
// // otherwise function gives the prediction of the
// // k-th ensemble only.
// // OUTPUT
// // RESULT
// // Predicted value.
// */
// virtual float predict( const CvMat* sample, const CvMat* missing=0,
// CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
// int k=-1 ) const;
//
// /*
// // Deletes all the data.
// //
// // API
// // virtual void clear();
//
// // INPUT
// // OUTPUT
// // delete data, weak, orig_response, sum_response,
// // weak_eval, subsample_train, subsample_test,
// // sample_idx, missing, lass_labels
// // delta = 0.0
// // RESULT
// */
// CV_WRAP virtual void clear();
//
// /*
// // Compute error on the train/test set.
// //
// // API
// // virtual float calc_error( CvMLData* _data, int type,
// // std::vector<float> *resp = 0 );
// //
// // INPUT
// // data - dataset
// // type - defines which error is to compute: train (CV_TRAIN_ERROR) or
// // test (CV_TEST_ERROR).
// // OUTPUT
// // resp - vector of predicitons
// // RESULT
// // Error value.
// */
// virtual float calc_error( CvMLData* _data, int type,
// std::vector<float> *resp = 0 );
//
// /*
// //
// // Write parameters of the gtb model and data. Write learned model.
// //
// // API
// // virtual void write( CvFileStorage* fs, const char* name ) const;
// //
// // INPUT
// // fs - file storage to read parameters from.
// // name - model name.
// // OUTPUT
// // RESULT
// */
// virtual void write( CvFileStorage* fs, const char* name ) const;
//
//
// /*
// //
// // Read parameters of the gtb model and data. Read learned model.
// //
// // API
// // virtual void read( CvFileStorage* fs, CvFileNode* node );
// //
// // INPUT
// // fs - file storage to read parameters from.
// // node - file node.
// // OUTPUT
// // RESULT
// */
// virtual void read( CvFileStorage* fs, CvFileNode* node );
//
//
// // new-style C++ interface
// CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag,
// const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
// const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
// const cv::Mat& missingDataMask=cv::Mat(),
// CvGBTreesParams params=CvGBTreesParams() );
//
// CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
// const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
// const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
// const cv::Mat& missingDataMask=cv::Mat(),
// CvGBTreesParams params=CvGBTreesParams(),
// bool update=false );
//
// CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
// const cv::Range& slice = cv::Range::all(),
// int k=-1 ) const;
//
// protected:
//
// /*
// // Compute the gradient vector components.
// //
// // API
// // virtual void find_gradient( const int k = 0);
//
// // INPUT
// // k - used for classification problem, determining current
// // tree ensemble.
// // OUTPUT
// // changes components of data->responses
// // which correspond to samples used for training
// // on the current step.
// // RESULT
// */
// virtual void find_gradient( const int k = 0);
//
//
// /*
// //
// // Change values in tree leaves according to the used loss function.
// //
// // API
// // virtual void change_values(CvDTree* tree, const int k = 0);
// //
// // INPUT
// // tree - decision tree to change.
// // k - used for classification problem, determining current
// // tree ensemble.
// // OUTPUT
// // changes 'value' fields of the trees' leaves.
// // changes sum_response_tmp.
// // RESULT
// */
// virtual void change_values(CvDTree* tree, const int k = 0);
//
//
// /*
// //
// // Find optimal constant prediction value according to the used loss
// // function.
// // The goal is to find a constant which gives the minimal summary loss
// // on the _Idx samples.
// //
// // API
// // virtual float find_optimal_value( const CvMat* _Idx );
// //
// // INPUT
// // _Idx - indices of the samples from the training set.
// // OUTPUT
// // RESULT
// // optimal constant value.
// */
// virtual float find_optimal_value( const CvMat* _Idx );
//
//
// /*
// //
// // Randomly split the whole training set in two parts according
// // to params.portion.
// //
// // API
// // virtual void do_subsample();
// //
// // INPUT
// // OUTPUT
// // subsample_train - indices of samples used for training
// // subsample_test - indices of samples used for test
// // RESULT
// */
// virtual void do_subsample();
//
//
// /*
// //
// // Internal recursive function giving an array of subtree tree leaves.
// //
// // API
// // void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );
// //
// // INPUT
// // node - current leaf.
// // OUTPUT
// // count - count of leaves in the subtree.
// // leaves - array of pointers to leaves.
// // RESULT
// */
// void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );
//
//
// /*
// //
// // Get leaves of the tree.
// //
// // API
// // CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );
// //
// // INPUT
// // dtree - decision tree.
// // OUTPUT
// // len - count of the leaves.
// // RESULT
// // CvDTreeNode** - array of pointers to leaves.
// */
// CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );
//
//
// /*
// //
// // Is it a regression or a classification.
// //
// // API
// // bool problem_type();
// //
// // INPUT
// // OUTPUT
// // RESULT
// // false if it is a classification problem,
// // true - if regression.
// */
// virtual bool problem_type() const;
//
//
// /*
// //
// // Write parameters of the gtb model.
// //
// // API
// // virtual void write_params( CvFileStorage* fs ) const;
// //
// // INPUT
// // fs - file storage to write parameters to.
// // OUTPUT
// // RESULT
// */
// virtual void write_params( CvFileStorage* fs ) const;
//
//
// /*
// //
// // Read parameters of the gtb model and data.
// //
// // API
// // virtual void read_params( CvFileStorage* fs );
// //
// // INPUT
// // fs - file storage to read parameters from.
// // OUTPUT
// // params - parameters of the gtb model.
// // data - contains information about the structure
// // of the data set (count of variables,
// // their types, etc.).
// // class_labels - output class labels map.
// // RESULT
// */
// virtual void read_params( CvFileStorage* fs, CvFileNode* fnode );
// int get_len(const CvMat* mat) const;
//
//
// CvDTreeTrainData* data;
// CvGBTreesParams params;
//
// CvSeq** weak;
// CvMat* orig_response;
// CvMat* sum_response;
// CvMat* sum_response_tmp;
// CvMat* sample_idx;
// CvMat* subsample_train;
// CvMat* subsample_test;
// CvMat* missing;
// CvMat* class_labels;
//
// cv::RNG* rng;
//
// int class_count;
// float delta;
// float base_value;
//
// };
//
//
//
/// ****************************************************************************************\
// * Artificial Neural Networks (ANN) *
// \****************************************************************************************/
//
/// ////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
//
// struct CV_EXPORTS_W_MAP CvANN_MLP_TrainParams
// {
// CvANN_MLP_TrainParams();
// CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method,
// double param1, double param2=0 );
// ~CvANN_MLP_TrainParams();
//
// enum { BACKPROP=0, RPROP=1 };
//
// CV_PROP_RW CvTermCriteria term_crit;
// CV_PROP_RW int train_method;
//
// // backpropagation parameters
// CV_PROP_RW double bp_dw_scale, bp_moment_scale;
//
// // rprop parameters
// CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max;
// };
//
//
// class CV_EXPORTS_W CvANN_MLP : public CvStatModel
// {
// public:
// CV_WRAP CvANN_MLP();
// CvANN_MLP( const CvMat* layerSizes,
// int activateFunc=CvANN_MLP::SIGMOID_SYM,
// double fparam1=0, double fparam2=0 );
//
// virtual ~CvANN_MLP();
//
// virtual void create( const CvMat* layerSizes,
// int activateFunc=CvANN_MLP::SIGMOID_SYM,
// double fparam1=0, double fparam2=0 );
//
// virtual int train( const CvMat* inputs, const CvMat* outputs,
// const CvMat* sampleWeights, const CvMat* sampleIdx=0,
// CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
// int flags=0 );
// virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const;
//
// CV_WRAP CvANN_MLP( const cv::Mat& layerSizes,
// int activateFunc=CvANN_MLP::SIGMOID_SYM,
// double fparam1=0, double fparam2=0 );
//
// CV_WRAP virtual void create( const cv::Mat& layerSizes,
// int activateFunc=CvANN_MLP::SIGMOID_SYM,
// double fparam1=0, double fparam2=0 );
//
// CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs,
// const cv::Mat& sampleWeights, const cv::Mat& sampleIdx=cv::Mat(),
// CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
// int flags=0 );
//
// CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const;
//
// CV_WRAP virtual void clear();
//
// // possible activation functions
// enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };
//
// // available training flags
// enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };
//
// virtual void read( CvFileStorage* fs, CvFileNode* node );
// virtual void write( CvFileStorage* storage, const char* name ) const;
//
// int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; }
// const CvMat* get_layer_sizes() { return layer_sizes; }
// double* get_weights(int layer)
// {
// return layer_sizes && weights &&
// (unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0;
// }
//
// virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const;
//
// protected:
//
// virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs,
// const CvMat* _sample_weights, const CvMat* sampleIdx,
// CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags );
//
// // sequential random backpropagation
// virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );
//
// // RPROP algorithm
// virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );
//
// virtual void calc_activ_func( CvMat* xf, const double* bias ) const;
// virtual void set_activ_func( int _activ_func=SIGMOID_SYM,
// double _f_param1=0, double _f_param2=0 );
// virtual void init_weights();
// virtual void scale_input( const CvMat* _src, CvMat* _dst ) const;
// virtual void scale_output( const CvMat* _src, CvMat* _dst ) const;
// virtual void calc_input_scale( const CvVectors* vecs, int flags );
// virtual void calc_output_scale( const CvVectors* vecs, int flags );
//
// virtual void write_params( CvFileStorage* fs ) const;
// virtual void read_params( CvFileStorage* fs, CvFileNode* node );
//
// CvMat* layer_sizes;
// CvMat* wbuf;
// CvMat* sample_weights;
// double** weights;
// double f_param1, f_param2;
// double min_val, max_val, min_val1, max_val1;
// int activ_func;
// int max_count, max_buf_sz;
// CvANN_MLP_TrainParams params;
// cv::RNG* rng;
// };
//
/// ****************************************************************************************\
// * Auxilary functions declarations *
// \****************************************************************************************/
//
/// * Generates <sample> from multivariate normal distribution, where <mean> - is an
// average row vector, <cov> - symmetric covariation matrix */
// CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample,
// CvRNG* rng CV_DEFAULT(0) );
//
/// * Generates sample from gaussian mixture distribution */
// CVAPI(void) cvRandGaussMixture( CvMat* means[],
// CvMat* covs[],
// float weights[],
// int clsnum,
// CvMat* sample,
// CvMat* sampClasses CV_DEFAULT(0) );
//
// #define CV_TS_CONCENTRIC_SPHERES 0
//
/// * creates test set */
// CVAPI(void) cvCreateTestSet( int type, CvMat** samples,
// int num_samples,
// int num_features,
// CvMat** responses,
// int num_classes, ... );
//
/// ****************************************************************************************\
// * Data *
// \****************************************************************************************/
//
// #define CV_COUNT 0
// #define CV_PORTION 1
//
// struct CV_EXPORTS CvTrainTestSplit
// {
// CvTrainTestSplit();
// CvTrainTestSplit( int train_sample_count, bool mix = true);
// CvTrainTestSplit( float train_sample_portion, bool mix = true);
//
// union
// {
// int count;
// float portion;
// } train_sample_part;
// int train_sample_part_mode;
//
// bool mix;
// };
//
// class CV_EXPORTS CvMLData
// {
// public:
// CvMLData();
// virtual ~CvMLData();
//
// // returns:
// // 0 - OK
// // -1 - file can not be opened or is not correct
// int read_csv( const char* filename );
//
// const CvMat* get_values() const;
// const CvMat* get_responses();
// const CvMat* get_missing() const;
//
// void set_header_lines_number( int n );
// int get_header_lines_number() const;
//
// void set_response_idx( int idx ); // old response become predictors, new response_idx = idx
// // if idx < 0 there will be no response
// int get_response_idx() const;
//
// void set_train_test_split( const CvTrainTestSplit * spl );
// const CvMat* get_train_sample_idx() const;
// const CvMat* get_test_sample_idx() const;
// void mix_train_and_test_idx();
//
// const CvMat* get_var_idx();
// void chahge_var_idx( int vi, bool state ); // misspelled (saved for back compitability),
// // use change_var_idx
// void change_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor
//
// const CvMat* get_var_types();
// int get_var_type( int var_idx ) const;
// // following 2 methods enable to change vars type
// // use these methods to assign CV_VAR_CATEGORICAL type for categorical variable
// // with numerical labels; in the other cases var types are correctly determined automatically
// void set_var_types( const char* str ); // str examples:
// // "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]",
// // "cat", "ord" (all vars are categorical/ordered)
// void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL }
//
// void set_delimiter( char ch );
// char get_delimiter() const;
//
// void set_miss_ch( char ch );
// char get_miss_ch() const;
//
// const std::map<cv::String, int>& get_class_labels_map() const;
//
// protected:
// virtual void clear();
//
// void str_to_flt_elem( const char* token, float& flt_elem, int& type);
// void free_train_test_idx();
//
// char delimiter;
// char miss_ch;
// //char flt_separator;
//
// CvMat* values;
// CvMat* missing;
// CvMat* var_types;
// CvMat* var_idx_mask;
//
// CvMat* response_out; // header
// CvMat* var_idx_out; // mat
// CvMat* var_types_out; // mat
//
// int header_lines_number;
//
// int response_idx;
//
// int train_sample_count;
// bool mix;
//
// int total_class_count;
// std::map<cv::String, int> class_map;
//
// CvMat* train_sample_idx;
// CvMat* test_sample_idx;
// int* sample_idx; // data of train_sample_idx and test_sample_idx
//
// cv::RNG* rng;
// };
//
//
// namespace cv
// {
//
// typedef CvStatModel StatModel;
// typedef CvParamGrid ParamGrid;
// typedef CvNormalBayesClassifier NormalBayesClassifier;
// typedef CvKNearest KNearest;
// typedef CvSVMParams SVMParams;
// typedef CvSVMKernel SVMKernel;
// typedef CvSVMSolver SVMSolver;
// typedef CvSVM SVM;
// typedef CvDTreeParams DTreeParams;
// typedef CvMLData TrainData;
// typedef CvDTree DecisionTree;
// typedef CvForestTree ForestTree;
// typedef CvRTParams RandomTreeParams;
// typedef CvRTrees RandomTrees;
// typedef CvERTreeTrainData ERTreeTRainData;
// typedef CvForestERTree ERTree;
// typedef CvERTrees ERTrees;
// typedef CvBoostParams BoostParams;
// typedef CvBoostTree BoostTree;
// typedef CvBoost Boost;
// typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams;
// typedef CvANN_MLP NeuralNet_MLP;
// typedef CvGBTreesParams GradientBoostingTreeParams;
// typedef CvGBTrees GradientBoostingTrees;
//
// template<> CV_EXPORTS void Ptr<CvDTreeSplit>::delete_obj();
//
// CV_EXPORTS bool initModule_ml(void);
// }
// function CreateCvKNearest: TCvKNearest; stdcall; overload;
// function CreateCvKNearest(const trainData: pCvMat; const responses: pCvMat; const sampleIdx: pCvMat = nil;
// isRegression: bool = false; max_k: Integer = 32): TCvKNearest; stdcall; overload;
// procedure ReleaseCvKNearest(ex: TCvKNearest); stdcall;
implementation
uses ocv.lib;
function CreateCvKNearest: TCvKNearest; stdcall; external opencv_classes_lib; overload;
function CreateCvKNearest(const trainData: pCvMat; const responses: pCvMat; const sampleIdx: pCvMat = nil;
isRegression: bool = false; max_k: Integer = 32): TCvKNearest; stdcall; external opencv_classes_lib; overload;
procedure ReleaseCvKNearest(ex: TCvKNearest); stdcall; external opencv_classes_lib;
{ TCvDTreeNode }
function TCvDTreeNode.get_num_valid(vi: Integer): Integer;
begin
if num_valid = nil then
Result := sample_count
else
Result := num_valid[vi];
end;
procedure TCvDTreeNode.set_num_valid(vi, n: Integer);
begin
if num_valid <> nil then
num_valid[vi] := n;
end;
{ TCvKNearest }
class function TCvKNearest.Create: TCvKNearest;
begin
Result := CreateCvKNearest;
end;
class function TCvKNearest.Create(const trainData, responses, sampleIdx: pCvMat; isRegression: bool; max_k: Integer)
: TCvKNearest;
begin
Result := CreateCvKNearest(trainData, responses, sampleIdx, isRegression, max_k);
end;
procedure TCvKNearest.Free;
begin
ReleaseCvKNearest(Self);
end;
end.