FastReport_2022_VCL/Source/frxdelphizxingqrcode.pas
2024-01-01 16:13:08 +01:00

3846 lines
106 KiB
ObjectPascal

unit frxDelphiZXingQRCode;
// ZXing QRCode port to Delphi, by Debenu Pty Ltd
// www.debenu.com
// Original copyright notice
(*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*)
interface
uses frxBarcode2DBase;
{$I frx.inc}
type
TQRCodeEncoding = (qrAuto, qrNumeric, qrAlphanumeric, qrISO88591, qrUTF8NoBOM, qrUTF8BOM, qrShift_JIS);
TQRErrorLevels = (ecL, ecM, ecQ, ecH);
TErrorCorrectionLevel = class
private
FBits: Integer;
FOrdinal: Integer;
public
procedure Assign(Source: TErrorCorrectionLevel);
property Bits: Integer read FBits write FBits;
property Ordinal: Integer read FOrdinal write FOrdinal;
end;
TDelphiZXingQRCode = class
private
procedure SetErrorLevels(const Value: TQRErrorLevels);
procedure SetCodePage(const Value: Longint);
protected
FData: WideString;
FRows: Integer;
FColumns: Integer;
FEncoding: TQRCodeEncoding;
FQuietZone: Integer;
FErrorLevels: TQRErrorLevels;
FLevel: TErrorCorrectionLevel;
FCodePage: Longint;
procedure SetEncoding(NewEncoding: TQRCodeEncoding);
procedure SetData(const NewData: WideString);
procedure SetQuietZone(NewQuietZone: Integer);
function GetIsBlack(Row, Column: Integer): Boolean;
procedure Update;
public
FElements: T2DBooleanArray;
constructor Create;
destructor Destroy; override;
property Data: WideString read FData write SetData;
property Encoding: TQRCodeEncoding read FEncoding write SetEncoding;
property QuietZone: Integer read FQuietZone write SetQuietZone;
property Rows: Integer read FRows;
property Columns: Integer read FColumns;
property IsBlack[Row, Column: Integer]: Boolean read GetIsBlack;
property ErrorLevels: TQRErrorLevels read FErrorLevels write SetErrorLevels;
property CodePage: Longint read FCodePage write SetCodePage;
end;
implementation
uses
{$IFDEF FPC}
LCLType, LMessages, LazHelper, LCLIntf, LConvEncoding, LazUTF8,
{$ELSE}
Windows,
{$ENDIF}
Contnrs, Math, Classes, SysUtils, frxUnicodeUtils;
type
TByteArray = array of Byte;
T2DByteArray = array of array of Byte;
TIntegerArray = array of Integer;
const
NUM_MASK_PATTERNS = 8;
QUIET_ZONE_SIZE = 4;
ALPHANUMERIC_TABLE: array[0..95] of Integer = (
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x00-0x0f
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x10-0x1f
36, -1, -1, -1, 37, 38, -1, -1, -1, -1, 39, 40, -1, 41, 42, 43, // 0x20-0x2f
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 44, -1, -1, -1, -1, -1, // 0x30-0x3f
-1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, // 0x40-0x4f
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, -1 // 0x50-0x5f
);
DEFAULT_BYTE_MODE_ENCODING = 'ISO-8859-1';
DefaultECIValue = 3; // Corresponding 'ISO-8859-1' See https://strokescribe.com/ru/ECI.html
QRErrorLevelsBits: array[0..3] of Integer = (1, 0, 3, 2);
POSITION_DETECTION_PATTERN: array[0..6, 0..6] of Integer = (
(1, 1, 1, 1, 1, 1, 1),
(1, 0, 0, 0, 0, 0, 1),
(1, 0, 1, 1, 1, 0, 1),
(1, 0, 1, 1, 1, 0, 1),
(1, 0, 1, 1, 1, 0, 1),
(1, 0, 0, 0, 0, 0, 1),
(1, 1, 1, 1, 1, 1, 1));
HORIZONTAL_SEPARATION_PATTERN: array[0..0, 0..7] of Integer = (
(0, 0, 0, 0, 0, 0, 0, 0));
VERTICAL_SEPARATION_PATTERN: array[0..6, 0..0] of Integer = (
(0), (0), (0), (0), (0), (0), (0));
POSITION_ADJUSTMENT_PATTERN: array[0..4, 0..4] of Integer = (
(1, 1, 1, 1, 1),
(1, 0, 0, 0, 1),
(1, 0, 1, 0, 1),
(1, 0, 0, 0, 1),
(1, 1, 1, 1, 1));
// From Appendix E. Table 1, JIS0510X:2004 (p 71). The table was double-checked by komatsu.
POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE: array[0..39, 0..6] of Integer = (
(-1, -1, -1, -1, -1, -1, -1), // Version 1
( 6, 18, -1, -1, -1, -1, -1), // Version 2
( 6, 22, -1, -1, -1, -1, -1), // Version 3
( 6, 26, -1, -1, -1, -1, -1), // Version 4
( 6, 30, -1, -1, -1, -1, -1), // Version 5
( 6, 34, -1, -1, -1, -1, -1), // Version 6
( 6, 22, 38, -1, -1, -1, -1), // Version 7
( 6, 24, 42, -1, -1, -1, -1), // Version 8
( 6, 26, 46, -1, -1, -1, -1), // Version 9
( 6, 28, 50, -1, -1, -1, -1), // Version 10
( 6, 30, 54, -1, -1, -1, -1), // Version 11
( 6, 32, 58, -1, -1, -1, -1), // Version 12
( 6, 34, 62, -1, -1, -1, -1), // Version 13
( 6, 26, 46, 66, -1, -1, -1), // Version 14
( 6, 26, 48, 70, -1, -1, -1), // Version 15
( 6, 26, 50, 74, -1, -1, -1), // Version 16
( 6, 30, 54, 78, -1, -1, -1), // Version 17
( 6, 30, 56, 82, -1, -1, -1), // Version 18
( 6, 30, 58, 86, -1, -1, -1), // Version 19
( 6, 34, 62, 90, -1, -1, -1), // Version 20
( 6, 28, 50, 72, 94, -1, -1), // Version 21
( 6, 26, 50, 74, 98, -1, -1), // Version 22
( 6, 30, 54, 78, 102, -1, -1), // Version 23
( 6, 28, 54, 80, 106, -1, -1), // Version 24
( 6, 32, 58, 84, 110, -1, -1), // Version 25
( 6, 30, 58, 86, 114, -1, -1), // Version 26
( 6, 34, 62, 90, 118, -1, -1), // Version 27
( 6, 26, 50, 74, 98, 122, -1), // Version 28
( 6, 30, 54, 78, 102, 126, -1), // Version 29
( 6, 26, 52, 78, 104, 130, -1), // Version 30
( 6, 30, 56, 82, 108, 134, -1), // Version 31
( 6, 34, 60, 86, 112, 138, -1), // Version 32
( 6, 30, 58, 86, 114, 142, -1), // Version 33
( 6, 34, 62, 90, 118, 146, -1), // Version 34
( 6, 30, 54, 78, 102, 126, 150), // Version 35
( 6, 24, 50, 76, 102, 128, 154), // Version 36
( 6, 28, 54, 80, 106, 132, 158), // Version 37
( 6, 32, 58, 84, 110, 136, 162), // Version 38
( 6, 26, 54, 82, 110, 138, 166), // Version 39
( 6, 30, 58, 86, 114, 142, 170) // Version 40
);
// Type info cells at the left top corner.
TYPE_INFO_COORDINATES: array[0..14, 0..1] of Integer = (
(8, 0),
(8, 1),
(8, 2),
(8, 3),
(8, 4),
(8, 5),
(8, 7),
(8, 8),
(7, 8),
(5, 8),
(4, 8),
(3, 8),
(2, 8),
(1, 8),
(0, 8)
);
// From Appendix D in JISX0510:2004 (p. 67)
VERSION_INFO_POLY = $1f25; // 1 1111 0010 0101
// From Appendix C in JISX0510:2004 (p.65).
TYPE_INFO_POLY = $537;
TYPE_INFO_MASK_PATTERN = $5412;
VERSION_DECODE_INFO: array[0..33] of Integer = (
$07C94, $085BC, $09A99, $0A4D3, $0BBF6,
$0C762, $0D847, $0E60D, $0F928, $10B78,
$1145D, $12A17, $13532, $149A6, $15683,
$168C9, $177EC, $18EC4, $191E1, $1AFAB,
$1B08E, $1CC1A, $1D33F, $1ED75, $1F250,
$209D5, $216F0, $228BA, $2379F, $24B0B,
$2542E, $26A64, $27541, $28C69);
type
TMode = (qmTerminator, qmNumeric, qmAlphanumeric, qmStructuredAppend,
qmByte, qmECI, qmKanji, qmFNC1FirstPosition, qmFNC1SecondPosition,
qmHanzi);
const
ModeCharacterCountBits: array[TMode] of array[0..2] of Integer = (
(0, 0, 0), (10, 12, 14), (9, 11, 13), (0, 0, 0), (8, 16, 16),
(0, 0, 0), (8, 10, 12), (0, 0, 0), (0, 0, 0), (8, 10, 12));
ModeBits: array[TMode] of Integer = (0, 1, 2, 3, 4, 7, 8, 5, 9, 13);
type
TECB = class
private
Count: Integer;
DataCodewords: Integer;
public
constructor Create(ACount, ADataCodewords: Integer);
function GetCount: Integer;
function GetDataCodewords: Integer;
end;
TECBArray = array of TECB;
TECBlocks = class
private
ECCodewordsPerBlock: Integer;
ECBlocks: TECBArray;
public
constructor Create(AECCodewordsPerBlock: Integer; AECBlocks: TECB); overload;
constructor Create(AECCodewordsPerBlock: Integer; ECBlocks1, ECBlocks2: TECB); overload;
destructor Destroy; override;
function GetTotalECCodewords: Integer;
function GetNumBlocks: Integer;
function GetECCodewordsPerBlock: Integer;
function GetECBlocks: TECBArray;
end;
TByteMatrix = class
protected
Bytes: T2DByteArray;
FWidth: Integer;
FHeight: Integer;
public
constructor Create(Width, Height: Integer);
function Get(X, Y: Integer): Integer;
procedure SetBoolean(X, Y: Integer; Value: Boolean);
procedure SetInteger(X, Y: Integer; Value: Integer);
function GetArray: T2DByteArray;
procedure Assign(Source: TByteMatrix);
procedure Clear(Value: Byte);
function Hash: AnsiString;
property Width: Integer read FWidth;
property Height: Integer read FHeight;
end;
TBitArray = class
private
Bits: array of Integer;
Size: Integer;
procedure EnsureCapacity(ASize: Integer);
public
constructor Create; overload;
procedure Clear;
function GetSizeInBytes: Integer;
function GetSize: Integer;
function Get(I: Integer): Boolean;
procedure SetBit(Index: Integer);
procedure AppendBit(Bit: Boolean);
procedure AppendBits(Value, NumBits: Integer);
procedure AppendBitArray(NewBitArray: TBitArray);
procedure ToBytes(BitOffset: Integer; Source: TByteArray; Offset,
NumBytes: Integer);
procedure XorOperation(Other: TBitArray);
end;
TCharacterSetECI = class
end;
TVersion = class
private
VersionNumber: Integer;
AlignmentPatternCenters: array of Integer;
ECBlocks: array of TECBlocks;
TotalCodewords: Integer;
ECCodewords: Integer;
public
constructor Create(AVersionNumber: Integer; AAlignmentPatternCenters: array of Integer; ECBlocks1, ECBlocks2, ECBlocks3, ECBlocks4: TECBlocks);
destructor Destroy; override;
class function GetVersionForNumber(VersionNum: Integer): TVersion;
class function ChooseVersion(NumInputBits: Integer; ecLevel: TErrorCorrectionLevel): TVersion;
function GetTotalCodewords: Integer;
function GetECBlocksForLevel(ECLevel: TErrorCorrectionLevel): TECBlocks;
function GetDimensionForVersion: Integer;
end;
TMaskUtil = class
public
function GetDataMaskBit(MaskPattern, X, Y: Integer): Boolean;
end;
TQRCode = class
private
FMode: TMode;
FECLevel: TErrorCorrectionLevel;
FVersion: Integer;
FMatrixWidth: Integer;
FMaskPattern: Integer;
FNumTotalBytes: Integer;
FNumDataBytes: Integer;
FNumECBytes: Integer;
FNumRSBlocks: Integer;
FMatrix: TByteMatrix;
FQRCodeError: Boolean;
public
constructor Create;
destructor Destroy; override;
function At(X, Y: Integer): Integer;
function IsValid: Boolean;
function IsValidMaskPattern(MaskPattern: Integer): Boolean;
procedure SetMatrix(NewMatrix: TByteMatrix);
procedure SetECLevel(NewECLevel: TErrorCorrectionLevel);
procedure SetAll(VersionNum, NumBytes, NumDataBytes, NumRSBlocks, NumECBytes, MatrixWidth: Integer);
property QRCodeError: Boolean read FQRCodeError;
property Mode: TMode read FMode write FMode;
property Version: Integer read FVersion write FVersion;
property NumDataBytes: Integer read FNumDataBytes;
property NumTotalBytes: Integer read FNumTotalBytes;
property NumRSBlocks: Integer read FNumRSBlocks;
property MatrixWidth: Integer read FMatrixWidth;
property MaskPattern: Integer read FMaskPattern write FMaskPattern;
property ECLevel: TErrorCorrectionLevel read FECLevel;
end;
TMatrixUtil = class
private
FMatrixUtilError: Boolean;
procedure ClearMatrix(Matrix: TByteMatrix);
procedure EmbedBasicPatterns(Version: Integer; Matrix: TByteMatrix);
procedure EmbedTypeInfo(ECLevel: TErrorCorrectionLevel; MaskPattern: Integer; Matrix: TByteMatrix);
procedure MaybeEmbedVersionInfo(Version: Integer; Matrix: TByteMatrix);
procedure EmbedDataBits(DataBits: TBitArray; MaskPattern: Integer; Matrix: TByteMatrix);
function FindMSBSet(Value: Integer): Integer;
function CalculateBCHCode(Value, Poly: Integer): Integer;
procedure MakeTypeInfoBits(ECLevel: TErrorCorrectionLevel; MaskPattern: Integer; Bits: TBitArray);
procedure MakeVersionInfoBits(Version: Integer; Bits: TBitArray);
function IsEmpty(Value: Integer): Boolean;
procedure EmbedTimingPatterns(Matrix: TByteMatrix);
procedure EmbedDarkDotAtLeftBottomCorner(Matrix: TByteMatrix);
procedure EmbedHorizontalSeparationPattern(XStart, YStart: Integer; Matrix: TByteMatrix);
procedure EmbedVerticalSeparationPattern(XStart, YStart: Integer; Matrix: TByteMatrix);
procedure EmbedPositionAdjustmentPattern(XStart, YStart: Integer; Matrix: TByteMatrix);
procedure EmbedPositionDetectionPattern(XStart, YStart: Integer; Matrix: TByteMatrix);
procedure EmbedPositionDetectionPatternsAndSeparators(Matrix: TByteMatrix);
procedure MaybeEmbedPositionAdjustmentPatterns(Version: Integer; Matrix: TByteMatrix);
public
constructor Create;
property MatrixUtilError: Boolean read FMatrixUtilError;
procedure BuildMatrix(DataBits: TBitArray; ECLevel: TErrorCorrectionLevel; Version, MaskPattern: Integer; Matrix: TByteMatrix);
end;
function GetModeBits(Mode: TMode): Integer;
begin
Result := ModeBits[Mode];
end;
function GetModeCharacterCountBits(Mode: TMode; Version: TVersion): Integer;
var
Number: Integer;
Offset: Integer;
begin
Number := Version.VersionNumber;
if (Number <= 9) then
begin
Offset := 0;
end else
if (number <= 26) then
begin
Offset := 1;
end else
begin
Offset := 2;
end;
Result := ModeCharacterCountBits[Mode][Offset];
end;
{$IFDEF DELPHI12}
type
StringJIS = type ansistring(932);
{$ENDIF}
{$IFDEF FPC}
type
StringJIS = type ansistring(932);
{$ENDIF}
function KanjiStr(const w: WideString):{$IFDEF FPC}StringJIS{$ELSE}{$IFDEF DELPHI12}StringJIS{$ELSE}string{$ENDIF}{$ENDIF};
begin
{$IFDEF FPC}
Result := w;
{$ELSE}
{$IFDEF DELPHI12}
Result := StringJIS(w);
{$ELSE}
Result := _UnicodeToAnsi(w, SHIFTJIS_CHARSET);
{$ENDIF}
{$ENDIF}
end;
type
TBlockPair = class
private
FDataBytes: TByteArray;
FErrorCorrectionBytes: TByteArray;
public
constructor Create(BA1, BA2: TByteArray);
function GetDataBytes: TByteArray;
function GetErrorCorrectionBytes: TByteArray;
end;
TGenericGFPoly = class;
TGenericGF = class
private
FExpTable: TIntegerArray;
FLogTable: TIntegerArray;
FZero: TGenericGFPoly;
FOne: TGenericGFPoly;
FSize: Integer;
FPrimitive: Integer;
FGeneratorBase: Integer;
FInitialized: Boolean;
FPolyList: array of TGenericGFPoly;
procedure CheckInit;
procedure Initialize;
public
class function CreateQRCodeField256: TGenericGF;
class function AddOrSubtract(A, B: Integer): Integer;
constructor Create(Primitive, Size, B: Integer);
destructor Destroy; override;
function GetZero: TGenericGFPoly;
function Exp(A: Integer): Integer;
function GetGeneratorBase: Integer;
function Inverse(A: Integer): Integer;
function Multiply(A, B: Integer): Integer;
function BuildMonomial(Degree, Coefficient: Integer): TGenericGFPoly;
end;
TGenericGFPolyArray = array of TGenericGFPoly;
TGenericGFPoly = class
private
FField: TGenericGF;
FCoefficients: TIntegerArray;
public
constructor Create(AField: TGenericGF; ACoefficients: TIntegerArray);
destructor Destroy; override;
function Coefficients: TIntegerArray;
function Multiply(Other: TGenericGFPoly): TGenericGFPoly;
function MultiplyByMonomial(Degree, Coefficient: Integer): TGenericGFPoly;
function Divide(Other: TGenericGFPoly): TGenericGFPolyArray;
function GetCoefficients: TIntegerArray;
function IsZero: Boolean;
function GetCoefficient(Degree: Integer): Integer;
function GetDegree: Integer;
function AddOrSubtract(Other: TGenericGFPoly): TGenericGFPoly;
end;
TReedSolomonEncoder = class
private
FField: TGenericGF;
FCachedGenerators: TObjectList;
public
constructor Create(AField: TGenericGF);
destructor Destroy; override;
procedure Encode(ToEncode: TIntegerArray; ECBytes: Integer);
function BuildGenerator(Degree: Integer): TGenericGFPoly;
end;
TEncoder = class
private
FEncoderError: Boolean;
FCodepage: UINT;
FCodeVersion: Integer;
function ApplyMaskPenaltyRule1Internal(Matrix: TByteMatrix; IsHorizontal: Boolean): Integer;
function ChooseMode(const Content: WideString; var EncodeOptions: Integer): TMode; overload;
function PosECI(Content: string): integer;
function IsContainECI(Content: string): boolean;
function IsStartWithECI(Content: string): boolean;
function FilterContent(const Content: WideString; Mode: TMode; EncodeOptions: Integer): WideString;
procedure AppendECIBytes(const Content: WideString; Bits: TBitArray);
procedure Append8BitBytes(const Content: WideString; Bits: TBitArray; EncodeOptions: Integer);
procedure AppendAlphanumericBytes(const Content: WideString; Bits: TBitArray);
procedure AppendBytes(const Content: WideString; Mode: TMode; Bits: TBitArray; EncodeOptions: Integer);
procedure AppendKanjiBytes(const Content: WideString; Bits: TBitArray);
procedure AppendLengthInfo(NumLetters, VersionNum: Integer; Mode: TMode; Bits: TBitArray);
procedure AppendModeInfo(Mode: TMode; Bits: TBitArray);
procedure AppendNumericBytes(const Content: WideString; Bits: TBitArray);
function ChooseMaskPattern(Bits: TBitArray; ECLevel: TErrorCorrectionLevel;
Version: Integer; Matrix: TByteMatrix): Integer;
function GenerateECBytes(DataBytes: TByteArray;
NumECBytesInBlock: Integer): TByteArray;
function GetAlphanumericCode(Code: Integer): Integer;
procedure GetNumDataBytesAndNumECBytesForBlockID(NumTotalBytes,
NumDataBytes, NumRSBlocks, BlockID: Integer; var NumDataBytesInBlock: TIntegerArray;
var NumECBytesInBlock: TIntegerArray);
procedure InterleaveWithECBytes(Bits: TBitArray; NumTotalBytes,
NumDataBytes, NumRSBlocks: Integer; var Result: TBitArray);
function IsOnlyDoubleByteKanji(const Content: WideString): Boolean;
procedure TerminateBits(NumDataBytes: Integer; var Bits: TBitArray);
function CalculateMaskPenalty(Matrix: TByteMatrix): Integer;
function ApplyMaskPenaltyRule1(Matrix: TByteMatrix): Integer;
function ApplyMaskPenaltyRule2(Matrix: TByteMatrix): Integer;
function ApplyMaskPenaltyRule3(Matrix: TByteMatrix): Integer;
function ApplyMaskPenaltyRule4(Matrix: TByteMatrix): Integer;
//procedure Encode(const Content: WideString; ECLevel: TErrorCorrectionLevel; QRCode: TQRCode); overload;
procedure Encode(const Content: WideString; EncodeOptions: Integer; ECLevel: TErrorCorrectionLevel; QRCode: TQRCode);
procedure SetCodepage(const Value: UINT);
public
constructor Create;
property EncoderError: Boolean read FEncoderError;
property Codepage: UINT read FCodepage write SetCodepage;
property CodeVersion: Integer read FCodeVersion write FCodeVersion;
end;
function TEncoder.ApplyMaskPenaltyRule1(Matrix: TByteMatrix): Integer;
begin
Result := ApplyMaskPenaltyRule1Internal(Matrix, True) +
ApplyMaskPenaltyRule1Internal(Matrix, False);
end;
// Apply mask penalty rule 2 and return the penalty. Find 2x2 blocks with the same color and give
// penalty to them.
function TEncoder.ApplyMaskPenaltyRule2(Matrix: TByteMatrix): Integer;
var
Penalty: Integer;
TheArray: T2DByteArray;
Width: Integer;
Height: Integer;
X: Integer;
Y: Integer;
Value: Integer;
begin
Penalty := 0;
TheArray := Matrix.GetArray;
Width := Matrix.Width;
Height := Matrix.Height;
for Y := 0 to Height - 2 do
begin
for X := 0 to Width - 2 do
begin
Value := TheArray[Y][X];
if ((Value = TheArray[Y][X + 1]) and (Value = TheArray[Y + 1][X]) and
(Value = TheArray[Y + 1][X + 1])) then
begin
Inc(Penalty, 3);
end;
end;
end;
Result := Penalty;
end;
// Apply mask penalty rule 3 and return the penalty. Find consecutive cells of 00001011101 or
// 10111010000, and give penalty to them. If we find patterns like 000010111010000, we give
// penalties twice (i.e. 40 * 2).
function TEncoder.ApplyMaskPenaltyRule3(Matrix: TByteMatrix): Integer;
var
Penalty: Integer;
TheArray: T2DByteArray;
Width: Integer;
Height: Integer;
X: Integer;
Y: Integer;
begin
Penalty := 0;
TheArray := Matrix.GetArray;
Width := Matrix.Width;
Height := Matrix.Height;
for Y := 0 to Height - 1 do
begin
for X := 0 to Width - 1 do
begin
if ((X + 6 < Width) and
(TheArray[Y][X] = 1) and
(TheArray[Y][X + 1] = 0) and
(TheArray[Y][X + 2] = 1) and
(TheArray[Y][X + 3] = 1) and
(TheArray[Y][X + 4] = 1) and
(TheArray[Y][X + 5] = 0) and
(TheArray[Y][X + 6] = 1) and
(((X + 10 < Width) and
(TheArray[Y][X + 7] = 0) and
(TheArray[Y][X + 8] = 0) and
(TheArray[Y][X + 9] = 0) and
(TheArray[Y][X + 10] = 0)) or
((x - 4 >= 0) and
(TheArray[Y][X - 1] = 0) and
(TheArray[Y][X - 2] = 0) and
(TheArray[Y][X - 3] = 0) and
(TheArray[Y][X - 4] = 0)))) then
begin
Inc(Penalty, 40);
end;
if ((Y + 6 < Height) and
(TheArray[Y][X] = 1) and
(TheArray[Y + 1][X] = 0) and
(TheArray[Y + 2][X] = 1) and
(TheArray[Y + 3][X] = 1) and
(TheArray[Y + 4][X] = 1) and
(TheArray[Y + 5][X] = 0) and
(TheArray[Y + 6][X] = 1) and
(((Y + 10 < Height) and
(TheArray[Y + 7][X] = 0) and
(TheArray[Y + 8][X] = 0) and
(TheArray[Y + 9][X] = 0) and
(TheArray[Y + 10][X] = 0)) or
((Y - 4 >= 0) and
(TheArray[Y - 1][X] = 0) and
(TheArray[Y - 2][X] = 0) and
(TheArray[Y - 3][X] = 0) and
(TheArray[Y - 4][X] = 0)))) then
begin
Inc(Penalty, 40);
end;
end;
end;
Result := Penalty;
end;
// Apply mask penalty rule 4 and return the penalty. Calculate the ratio of dark cells and give
// penalty if the ratio is far from 50%. It gives 10 penalty for 5% distance. Examples:
// - 0% => 100
// - 40% => 20
// - 45% => 10
// - 50% => 0
// - 55% => 10
// - 55% => 20
// - 100% => 100
function TEncoder.ApplyMaskPenaltyRule4(Matrix: TByteMatrix): Integer;
var
NumDarkCells: Integer;
TheArray: T2DByteArray;
Width: Integer;
Height: Integer;
NumTotalCells: Integer;
DarkRatio: Double;
X: Integer;
Y: Integer;
begin
NumDarkCells := 0;
TheArray := Matrix.GetArray;
Width := Matrix.Width;
Height := matrix.Height;
for Y := 0 to Height - 1 do
begin
for X := 0 to Width - 1 do
begin
if (TheArray[Y][X] = 1) then
begin
Inc(NumDarkCells);
end;
end;
end;
numTotalCells := matrix.Height * Matrix.Width;
DarkRatio := NumDarkCells / NumTotalCells;
Result := Round(Abs((DarkRatio * 100 - 50)) / 50);
end;
// Helper function for applyMaskPenaltyRule1. We need this for doing this calculation in both
// vertical and horizontal orders respectively.
function TEncoder.ApplyMaskPenaltyRule1Internal(Matrix: TByteMatrix; IsHorizontal: Boolean): Integer;
var
Penalty: Integer;
NumSameBitCells: Integer;
PrevBit: Integer;
TheArray: T2DByteArray;
I: Integer;
J: Integer;
Bit: Integer;
ILimit: Integer;
JLimit: Integer;
begin
Penalty := 0;
NumSameBitCells := 0;
PrevBit := -1;
// Horizontal mode:
// for (int i = 0; i < matrix.height(); ++i) {
// for (int j = 0; j < matrix.width(); ++j) {
// int bit = matrix.get(i, j);
// Vertical mode:
// for (int i = 0; i < matrix.width(); ++i) {
// for (int j = 0; j < matrix.height(); ++j) {
// int bit = matrix.get(j, i);
if (IsHorizontal) then
begin
ILimit := Matrix.Height;
JLimit := Matrix.Width;
end else
begin
ILimit := Matrix.Width;
JLimit := Matrix.Height;
end;
TheArray := Matrix.GetArray;
for I := 0 to ILimit - 1 do
begin
for J := 0 to JLimit - 1 do
begin
if (IsHorizontal) then
begin
Bit := TheArray[I][J];
end else
begin
Bit := TheArray[J][I];
end;
if (Bit = PrevBit) then
begin
Inc(NumSameBitCells);
// Found five repetitive cells with the same color (bit).
// We'll give penalty of 3.
if (NumSameBitCells = 5) then
begin
Inc(Penalty, 3);
end else if (NumSameBitCells > 5) then
begin
// After five repetitive cells, we'll add the penalty one
// by one.
Inc(Penalty, 1);;
end;
end else
begin
NumSameBitCells := 1; // Include the cell itself.
PrevBit := bit;
end;
end;
NumSameBitCells := 0; // Clear at each row/column.
end;
Result := Penalty;
end;
{ TQRCode }
constructor TQRCode.Create;
begin
FMode := qmTerminator;
FQRCodeError := False;
FECLevel := nil;
FVersion := -1;
FMatrixWidth := -1;
FMaskPattern := -1;
FNumTotalBytes := -1;
FNumDataBytes := -1;
FNumECBytes := -1;
FNumRSBlocks := -1;
FMatrix := nil;
end;
destructor TQRCode.Destroy;
begin
if (Assigned(FECLevel)) then
begin
FECLevel.Free;
end;
if (Assigned(FMatrix)) then
begin
FMatrix.Free;
end;
inherited;
end;
function TQRCode.At(X, Y: Integer): Integer;
var
Value: Integer;
begin
// The value must be zero or one.
Value := FMatrix.Get(X, Y);
if (not ((Value = 0) or (Value = 1))) then
begin
FQRCodeError := True;
end;
Result := Value;
end;
function TQRCode.IsValid: Boolean;
begin
Result :=
// First check if all version are not uninitialized.
((FECLevel <> nil) and
(FVersion <> -1) and
(FMatrixWidth <> -1) and
(FMaskPattern <> -1) and
(FNumTotalBytes <> -1) and
(FNumDataBytes <> -1) and
(FNumECBytes <> -1) and
(FNumRSBlocks <> -1) and
// Then check them in other ways..
IsValidMaskPattern(FMaskPattern) and
(FNumTotalBytes = FNumDataBytes + FNumECBytes) and
// ByteMatrix stuff.
(Assigned(FMatrix)) and
(FMatrixWidth = FMatrix.Width) and
// See 7.3.1 of JISX0510:2004 (Fp.5).
(FMatrix.Width = FMatrix.Height)); // Must be square.
end;
function TQRCode.IsValidMaskPattern(MaskPattern: Integer): Boolean;
begin
Result := (MaskPattern >= 0) and (MaskPattern < NUM_MASK_PATTERNS);
end;
procedure TQRCode.SetMatrix(NewMatrix: TByteMatrix);
begin
if (Assigned(FMatrix)) then
begin
FMatrix.Free;
FMatrix := nil;
end;
FMatrix := NewMatrix;
end;
procedure TQRCode.SetAll(VersionNum, NumBytes, NumDataBytes, NumRSBlocks,
NumECBytes, MatrixWidth: Integer);
begin
FVersion := VersionNum;
FNumTotalBytes := NumBytes;
FNumDataBytes := NumDataBytes;
FNumRSBlocks := NumRSBlocks;
FNumECBytes := NumECBytes;
FMatrixWidth := MatrixWidth;
end;
procedure TQRCode.SetECLevel(NewECLevel: TErrorCorrectionLevel);
begin
if (Assigned(FECLevel)) then
begin
FECLevel.Free;
end;
FECLevel := TErrorCorrectionLevel.Create;
FECLevel.Assign(NewECLevel);
end;
{ TByteMatrix }
procedure TByteMatrix.Clear(Value: Byte);
var
X, Y: Integer;
begin
for Y := 0 to FHeight - 1 do
begin
for X := 0 to FWidth - 1 do
begin
Bytes[Y][X] := Value;
end;
end;
end;
constructor TByteMatrix.Create(Width, Height: Integer);
var
Y: Integer;
X: Integer;
begin
FWidth := Width;
FHeight := Height;
SetLength(Bytes, Height);
for Y := 0 to Height - 1 do
begin
SetLength(Bytes[Y], Width);
for X := 0 to Width - 1 do
begin
Bytes[Y][X] := 0;
end;
end;
end;
function TByteMatrix.Get(X, Y: Integer): Integer;
begin
if (Bytes[Y][X] = 255) then Result := -1 else Result := Bytes[Y][X];
end;
function TByteMatrix.GetArray: T2DByteArray;
begin
Result := Bytes;
end;
function TByteMatrix.Hash: AnsiString;
var
X, Y: Integer;
Counter: Integer;
CC: Integer;
begin
Result := '';
for Y := 0 to FHeight - 1 do
begin
Counter := 0;
for X := 0 to FWidth - 1 do
begin
CC := Get(X, Y);
if (CC = -1) then CC := 255;
Counter := Counter + CC;
end;
Result := Result + AnsiChar((Counter mod 26) + 65);
end;
end;
procedure TByteMatrix.SetBoolean(X, Y: Integer; Value: Boolean);
begin
Bytes[Y][X] := Byte(Value) and $FF;
end;
procedure TByteMatrix.SetInteger(X, Y, Value: Integer);
begin
Bytes[Y][X] := Value and $FF;
end;
procedure TByteMatrix.Assign(Source: TByteMatrix);
var
SourceLength: Integer;
begin
SourceLength := Length(Source.Bytes);
SetLength(Bytes, SourceLength);
if (SourceLength > 0) then
begin
Move(Source.Bytes[0], Bytes[0], SourceLength);
end;
FWidth := Source.Width;
FHeight := Source.Height;
end;
{ TEncoder }
function TEncoder.CalculateMaskPenalty(Matrix: TByteMatrix): Integer;
var
Penalty: Integer;
begin
Penalty := 0;
Inc(Penalty, ApplyMaskPenaltyRule1(Matrix));
Inc(Penalty, ApplyMaskPenaltyRule2(Matrix));
Inc(Penalty, ApplyMaskPenaltyRule3(Matrix));
Inc(Penalty, ApplyMaskPenaltyRule4(Matrix));
Result := Penalty;
end;
{procedure TEncoder.Encode(const Content: WideString; ECLevel: TErrorCorrectionLevel; QRCode: TQRCode);
begin
Encode(Content, ECLevel, nil, QRCode);
end;}
procedure TEncoder.Encode(const Content: WideString; EncodeOptions: Integer; ECLevel: TErrorCorrectionLevel; QRCode: TQRCode);
var
Mode: TMode;
DataBits: TBitArray;
FinalBits: TBitArray;
HeaderBits: TBitArray;
HeaderAndDataBits: TBitArray;
Matrix: TByteMatrix;
NumLetters: Integer;
MatrixUtil: TMatrixUtil;
BitsNeeded: Integer;
ProvisionalBitsNeeded: Integer;
ProvisionalVersion: TVersion;
Version: TVersion;
ECBlocks: TECBlocks;
NumDataBytes: Integer;
Dimension: Integer;
FilteredContent: WideString;
procedure SelectVersion;
begin
// Hard part: need to know version to know how many bits length takes. But need to know how many
// bits it takes to know version. First we take a guess at version by assuming version will be
// the minimum, 1:
ProvisionalVersion := TVersion.GetVersionForNumber(1);
try
ProvisionalBitsNeeded := HeaderBits.GetSize + GetModeCharacterCountBits
(Mode, ProvisionalVersion) + DataBits.GetSize;
finally
ProvisionalVersion.Free;
end;
ProvisionalVersion := TVersion.ChooseVersion(ProvisionalBitsNeeded,
ecLevel);
try
// Use that guess to calculate the right version. I am still not sure this works in 100% of cases.
BitsNeeded := HeaderBits.GetSize + GetModeCharacterCountBits(Mode,
ProvisionalVersion) + DataBits.GetSize;
if Assigned(Version) then
FreeAndNil(Version);
Version := TVersion.ChooseVersion(BitsNeeded, ecLevel);
finally
ProvisionalVersion.Free;
end;
end;
begin
Version := nil;
DataBits := TBitArray.Create;
HeaderBits := TBitArray.Create;
// Pick an encoding mode appropriate for the content. Note that this will not attempt to use
// multiple modes / segments even if that were more efficient. Twould be nice.
// Collect data within the main segment, separately, to count its size if needed. Don't add it to
// main payload yet.
Mode := ChooseMode(Content, EncodeOptions);
FilteredContent := FilterContent(Content, Mode, EncodeOptions);
AppendBytes(FilteredContent, Mode, DataBits, EncodeOptions);
if Mode <> qmECI then
begin
// (With ECI in place,) Write the mode marker
AppendModeInfo(Mode, HeaderBits);
end;
SelectVersion;
// versions above 9 should write data size as 16 bit's - rebuild data for ECI
if (Mode = qmECI) and (Version.VersionNumber >= 10) then
begin
DataBits.Clear;
CodeVersion := Version.VersionNumber;
AppendBytes(FilteredContent, Mode, DataBits, EncodeOptions);
SelectVersion;
end;
HeaderAndDataBits := TBitArray.Create;
FinalBits := TBitArray.Create;
try
if Mode <> qmECI then
begin
HeaderAndDataBits.AppendBitArray(HeaderBits);
// Find "length" of main segment and write it
if (Mode = qmByte) then
begin
NumLetters := DataBits.GetSizeInBytes;
end else
begin
NumLetters := Length(FilteredContent);
end;
AppendLengthInfo(NumLetters, Version.VersionNumber, Mode, HeaderAndDataBits);
end;
// Put data together into the overall payload
HeaderAndDataBits.AppendBitArray(DataBits);
ECBlocks := Version.GetECBlocksForLevel(ECLevel);
NumDataBytes := Version.GetTotalCodewords - ECBlocks.GetTotalECCodewords;
// Terminate the bits properly.
TerminateBits(NumDataBytes, HeaderAndDataBits);
// Interleave data bits with error correction code.
InterleaveWithECBytes(HeaderAndDataBits, Version.GetTotalCodewords,
NumDataBytes, ECBlocks.GetNumBlocks, FinalBits);
// QRCode qrCode = new QRCode(); // This is passed in
QRCode.SetECLevel(ECLevel);
QRCode.Mode := Mode;
QRCode.Version := Version.VersionNumber;
// Choose the mask pattern and set to "qrCode".
Dimension := Version.GetDimensionForVersion;
Matrix := TByteMatrix.Create(Dimension, Dimension);
QRCode.MaskPattern := ChooseMaskPattern(FinalBits, ECLevel, Version.VersionNumber, Matrix);
Matrix.Free;
Matrix := TByteMatrix.Create(Dimension, Dimension);
// Build the matrix and set it to "qrCode".
MatrixUtil := TMatrixUtil.Create;
try
MatrixUtil.BuildMatrix(FinalBits, QRCode.ECLevel, QRCode.Version,
QRCode.MaskPattern, Matrix);
finally
MatrixUtil.Free;
end;
QRCode.SetMatrix(Matrix); // QRCode will free the matrix
finally
DataBits.Free;
HeaderAndDataBits.Free;
FinalBits.Free;
HeaderBits.Free;
Version.Free;
end;
end;
function TEncoder.FilterContent(const Content: WideString; Mode: TMode;
EncodeOptions: Integer): WideString;
var
X: Integer;
CanAdd: Boolean;
begin
if (Mode in [qmECI, qmKanji]) then
begin
Result := Content;
Exit;
end;
Result := '';
for X := 1 to Length(Content) do
begin
CanAdd := False;
if (Mode = qmNumeric) then
begin
CanAdd := (Content[X] >= '0') and (Content[X] <= '9');
end else
if (Mode = qmAlphanumeric) then
begin
CanAdd := GetAlphanumericCode(Ord(Content[X])) >= 0;
end else
if (Mode = qmByte) then
begin
if (EncodeOptions = 3) then
begin
CanAdd := Ord(Content[X]) <= $FF;
end else
if ((EncodeOptions = 4) or (EncodeOptions = 5) or (EncodeOptions = 6)) then
begin
CanAdd := True;
end;
end;
if (CanAdd) then
begin
Result := Result + Content[X];
end;
end;
end;
// Return the code point of the table used in alphanumeric mode or
// -1 if there is no corresponding code in the table.
function TEncoder.GetAlphanumericCode(Code: Integer): Integer;
begin
if (Code < Length(ALPHANUMERIC_TABLE)) then
begin
Result := ALPHANUMERIC_TABLE[Code];
end else
begin
Result := -1;
end;
end;
// Choose the mode based on the content
function TEncoder.ChooseMode(const Content: WideString; var EncodeOptions: Integer): TMode;
var
AllNumeric: Boolean;
AllAlphanumeric: Boolean;
AllISO: Boolean;
I: Integer;
C: WideChar;
begin
if EncodeOptions = 6 then
begin
if IsOnlyDoubleByteKanji(Content) then
begin
Result := qmKanji;
Exit;
end
else
begin
Result := qmByte;
Exit;
end;
end;
if (EncodeOptions = 0 {qrAuto}) and (IsContainECI(Content) or (FCodepage <> 0)) then
Result := qmECI
else
if (EncodeOptions = 0) then
begin
AllNumeric := Length(Content) > 0;
I := 1;
while (I <= Length(Content)) and (AllNumeric) do
begin
C := Content[I];
if ((C < '0') or (C > '9')) then
begin
AllNumeric := False;
end else
begin
Inc(I);
end;
end;
if (not AllNumeric) then
begin
AllAlphanumeric := Length(Content) > 0;
I := 1;
while (I <= Length(Content)) and (AllAlphanumeric) do
begin
C := Content[I];
if (GetAlphanumericCode(Ord(C)) < 0) then
begin
AllAlphanumeric := False;
end else
begin
Inc(I);
end;
end;
end else
begin
AllAlphanumeric := False;
end;
if (not AllAlphanumeric) then
begin
AllISO := Length(Content) > 0;
I := 1;
while (I <= Length(Content)) and (AllISO) do
begin
C := Content[I];
if (Ord(C) > $FF) then
begin
AllISO := False;
end else
begin
Inc(I);
end;
end;
end else
begin
AllISO := False;
end;
if (AllNumeric) then
begin
Result := qmNumeric;
end else
if (AllAlphanumeric) then
begin
Result := qmAlphanumeric;
end else
if (AllISO) then
begin
Result := qmByte;
EncodeOptions := 3;
end else
begin
Result := qmByte;
EncodeOptions := 4;
end;
end else
if (EncodeOptions = 1) then
begin
Result := qmNumeric;
end else
if (EncodeOptions = 2) then
begin
Result := qmAlphanumeric;
end
else if (EncodeOptions = 6) then
begin
Result := qmKanji;
end else
begin
Result := qmByte;
end;
end;
constructor TEncoder.Create;
begin
FEncoderError := False;
FCodepage := 0;
end;
function TEncoder.IsOnlyDoubleByteKanji(const Content: WideString): Boolean;
var
I: Integer;
//Char1: Integer;
s: {$IFDEF FPC}StringJIS{$ELSE}{$IFDEF DELPHI12}StringJIS{$ELSE}string{$ENDIF}{$ENDIF};
ArB: array of Byte;
b: Byte;
begin
Result := False;
s := KanjiStr(Content);
if Length(s) mod 2 <> 0 then
Exit;
SetLength(ArB, Length(s));
Move(s[1], ArB[0], Length(s));
I := 0;
while I < Length(ArB) do
begin
b := ArB[I] and $FF;
if ((b < $81) or (b > $9F)) and ((b < $E0) or (b > $EB)) then
Exit;
Inc(I,2);
end;
Result := True;
end;
function TEncoder.ChooseMaskPattern(Bits: TBitArray; ECLevel: TErrorCorrectionLevel; Version: Integer; Matrix: TByteMatrix): Integer;
var
MinPenalty: Integer;
BestMaskPattern: Integer;
MaskPattern: Integer;
MatrixUtil: TMatrixUtil;
Penalty: Integer;
begin
MinPenalty := MaxInt;
BestMaskPattern := -1;
// We try all mask patterns to choose the best one.
for MaskPattern := 0 to NUM_MASK_PATTERNS - 1 do
begin
MatrixUtil := TMatrixUtil.Create;
try
MatrixUtil.BuildMatrix(Bits, ECLevel, Version, MaskPattern, Matrix);
finally
MatrixUtil.Free;
end;
Penalty := CalculateMaskPenalty(Matrix);
if (Penalty < MinPenalty) then
begin
MinPenalty := Penalty;
BestMaskPattern := MaskPattern;
end;
end;
Result := BestMaskPattern;
end;
// Terminate bits as described in 8.4.8 and 8.4.9 of JISX0510:2004 (p.24).
procedure TEncoder.TerminateBits(NumDataBytes: Integer; var Bits: TBitArray);
var
Capacity: Integer;
I: Integer;
NumBitsInLastByte: Integer;
NumPaddingBytes: Integer;
begin
Capacity := NumDataBytes shl 3;
if (Bits.GetSize > Capacity) then
begin
FEncoderError := True;
Exit;
end;
I := 0;
while ((I < 4) and (Bits.GetSize < capacity)) do
begin
Bits.AppendBit(False);
Inc(I);
end;
// Append termination bits. See 8.4.8 of JISX0510:2004 (p.24) for details.
// If the last byte isn't 8-bit aligned, we'll add padding bits.
NumBitsInLastByte := Bits.GetSize and $07;
if (NumBitsInLastByte > 0) then
begin
for I := numBitsInLastByte to 7 do
begin
Bits.AppendBit(False);
end;
end;
// If we have more space, we'll fill the space with padding patterns defined in 8.4.9 (p.24).
NumPaddingBytes := NumDataBytes - Bits.GetSizeInBytes;
for I := 0 to NumPaddingBytes - 1 do
begin
if ((I and $01) = 0) then
begin
Bits.AppendBits($EC, 8);
end else
begin
Bits.AppendBits($11, 8);
end;
end;
if (Bits.GetSize <> Capacity) then
begin
FEncoderError := True;
end;
end;
// Get number of data bytes and number of error correction bytes for block id "blockID". Store
// the result in "numDataBytesInBlock", and "numECBytesInBlock". See table 12 in 8.5.1 of
// JISX0510:2004 (p.30)
procedure TEncoder.GetNumDataBytesAndNumECBytesForBlockID(NumTotalBytes, NumDataBytes,
NumRSBlocks, BlockID: Integer; var NumDataBytesInBlock: TIntegerArray;
var NumECBytesInBlock: TIntegerArray);
var
NumRSBlocksInGroup1: Integer;
NumRSBlocksInGroup2: Integer;
NumTotalBytesInGroup1: Integer;
NumTotalBytesInGroup2: Integer;
NumDataBytesInGroup1: Integer;
NumDataBytesInGroup2: Integer;
NumECBytesInGroup1: Integer;
NumECBytesInGroup2: Integer;
begin
if (BlockID >= NumRSBlocks) then
begin
FEncoderError := True;
Exit;
end;
// numRsBlocksInGroup2 = 196 % 5 = 1
NumRSBlocksInGroup2 := NumTotalBytes mod NumRSBlocks;
// numRsBlocksInGroup1 = 5 - 1 = 4
NumRSBlocksInGroup1 := NumRSBlocks - NumRSBlocksInGroup2;
// numTotalBytesInGroup1 = 196 / 5 = 39
NumTotalBytesInGroup1 := NumTotalBytes div NumRSBlocks;
// numTotalBytesInGroup2 = 39 + 1 = 40
NumTotalBytesInGroup2 := NumTotalBytesInGroup1 + 1;
// numDataBytesInGroup1 = 66 / 5 = 13
NumDataBytesInGroup1 := NumDataBytes div NumRSBlocks;
// numDataBytesInGroup2 = 13 + 1 = 14
NumDataBytesInGroup2 := NumDataBytesInGroup1 + 1;
// numEcBytesInGroup1 = 39 - 13 = 26
NumECBytesInGroup1 := NumTotalBytesInGroup1 - NumDataBytesInGroup1;
// numEcBytesInGroup2 = 40 - 14 = 26
NumECBytesInGroup2 := NumTotalBytesInGroup2 - NumDataBytesInGroup2;
// Sanity checks.
// 26 = 26
if (NumECBytesInGroup1 <> NumECBytesInGroup2) then
begin
FEncoderError := True;
Exit;
end;
// 5 = 4 + 1.
if (NumRSBlocks <> (NumRSBlocksInGroup1 + NumRSBlocksInGroup2)) then
begin
FEncoderError := True;
Exit;
end;
// 196 = (13 + 26) * 4 + (14 + 26) * 1
if (NumTotalBytes <>
((NumDataBytesInGroup1 + NumECBytesInGroup1) * NumRsBlocksInGroup1) +
((NumDataBytesInGroup2 + NumECBytesInGroup2) * NumRsBlocksInGroup2)) then
begin
FEncoderError := True;
Exit;
end;
if (BlockID < NumRSBlocksInGroup1) then
begin
NumDataBytesInBlock[0] := NumDataBytesInGroup1;
NumECBytesInBlock[0] := numECBytesInGroup1;
end else
begin
NumDataBytesInBlock[0] := NumDataBytesInGroup2;
NumECBytesInBlock[0] := numEcBytesInGroup2;
end;
end;
// Interleave "bits" with corresponding error correction bytes. On success, store the result in
// "result". The interleave rule is complicated. See 8.6 of JISX0510:2004 (p.37) for details.
procedure TEncoder.InterleaveWithECBytes(Bits: TBitArray; NumTotalBytes,
NumDataBytes, NumRSBlocks: Integer; var Result: TBitArray);
var
DataBytesOffset: Integer;
MaxNumDataBytes: Integer;
MaxNumECBytes: Integer;
Blocks: TObjectList;
NumDataBytesInBlock: TIntegerArray;
NumECBytesInBlock: TIntegerArray;
Size: Integer;
DataBytes: TByteArray;
ECBytes: TByteArray;
I, J: Integer;
BlockPair: TBlockPair;
begin
SetLength(ECBytes, 0);
// "bits" must have "getNumDataBytes" bytes of data.
if (Bits.GetSizeInBytes <> NumDataBytes) then
begin
FEncoderError := True;
Exit;
end;
// Step 1. Divide data bytes into blocks and generate error correction bytes for them. We'll
// store the divided data bytes blocks and error correction bytes blocks into "blocks".
DataBytesOffset := 0;
MaxNumDataBytes := 0;
MaxNumEcBytes := 0;
// Since, we know the number of reedsolmon blocks, we can initialize the vector with the number.
Blocks := TObjectList.Create(True);
try
Blocks.Capacity := NumRSBlocks;
for I := 0 to NumRSBlocks - 1 do
begin
SetLength(NumDataBytesInBlock, 1);
SetLength(NumECBytesInBlock, 1);
GetNumDataBytesAndNumECBytesForBlockID(
NumTotalBytes, NumDataBytes, NumRSBlocks, I,
NumDataBytesInBlock, NumEcBytesInBlock);
Size := NumDataBytesInBlock[0];
SetLength(DataBytes, Size);
Bits.ToBytes(8 * DataBytesOffset, DataBytes, 0, Size);
ECBytes := GenerateECBytes(DataBytes, NumEcBytesInBlock[0]);
BlockPair := TBlockPair.Create(DataBytes, ECBytes);
Blocks.Add(BlockPair);
MaxNumDataBytes := Max(MaxNumDataBytes, Size);
MaxNumECBytes := Max(MaxNumECBytes, Length(ECBytes));
Inc(DataBytesOffset, NumDataBytesInBlock[0]);
end;
if (NumDataBytes <> DataBytesOffset) then
begin
FEncoderError := True;
Exit;
end;
// First, place data blocks.
for I := 0 to MaxNumDataBytes - 1 do
begin
for J := 0 to Blocks.Count - 1 do
begin
DataBytes := TBlockPair(Blocks.Items[J]).GetDataBytes;
if (I < Length(DataBytes)) then
begin
Result.AppendBits(DataBytes[I], 8);
end;
end;
end;
// Then, place error correction blocks.
for I := 0 to MaxNumECBytes - 1 do
begin
for J := 0 to Blocks.Count - 1 do
begin
ECBytes := TBlockPair(Blocks.Items[J]).GetErrorCorrectionBytes;
if (I < Length(ECBytes)) then
begin
Result.AppendBits(ECBytes[I], 8);
end;
end;
end;
finally
Blocks.Free;
end;
if (numTotalBytes <> Result.GetSizeInBytes) then // Should be same.
begin
FEncoderError := True;
Exit;
end;
end;
function TEncoder.IsContainECI(Content: string): boolean;
begin
Result := PosECI(Content) > 0;
end;
function TEncoder.IsStartWithECI(Content: string): boolean;
begin
Result := PosECI(Content) = 1;
end;
function TEncoder.PosECI(Content: string): integer;
const
LenECI = Length('&ECIXX;');
var
i: integer;
begin
Result := 0;
for i := LenECI to Length(Content) do
if (Content[i] = ';') and (Copy(Content, i - LenECI + 1, 4) = '&ECI') then
begin
Result := i - LenECI + 1;
Break;
end;
end;
procedure TEncoder.SetCodepage(const Value: UINT);
begin
FCodepage := Value;
end;
function TEncoder.GenerateECBytes(DataBytes: TByteArray; NumECBytesInBlock: Integer): TByteArray;
var
NumDataBytes: Integer;
ToEncode: TIntegerArray;
ReedSolomonEncoder: TReedSolomonEncoder;
I: Integer;
ECBytes: TByteArray;
GenericGF: TGenericGF;
begin
NumDataBytes := Length(DataBytes);
SetLength(ToEncode, NumDataBytes + NumECBytesInBlock);
for I := 0 to NumDataBytes - 1 do
begin
ToEncode[I] := DataBytes[I] and $FF;
end;
GenericGF := TGenericGF.CreateQRCodeField256;
try
ReedSolomonEncoder := TReedSolomonEncoder.Create(GenericGF);
try
ReedSolomonEncoder.Encode(ToEncode, NumECBytesInBlock);
finally
ReedSolomonEncoder.Free;
end;
finally
GenericGF.Free;
end;
SetLength(ECBytes, NumECBytesInBlock);
for I := 0 to NumECBytesInBlock - 1 do
begin
ECBytes[I] := ToEncode[NumDataBytes + I];
end;
Result := ECBytes;
end;
// Append mode info. On success, store the result in "bits".
procedure TEncoder.AppendModeInfo(Mode: TMode; Bits: TBitArray);
begin
Bits.AppendBits(GetModeBits(Mode), 4);
end;
// Append length info. On success, store the result in "bits".
procedure TEncoder.AppendLengthInfo(NumLetters, VersionNum: Integer; Mode: TMode; Bits: TBitArray);
var
NumBits: Integer;
Version: TVersion;
begin
Version := TVersion.GetVersionForNumber(VersionNum);
try
NumBits := GetModeCharacterCountBits(Mode, Version);
finally
Version.Free;
end;
if (NumLetters > ((1 shl NumBits) - 1)) then
begin
FEncoderError := True;
Exit;
end;
Bits.AppendBits(NumLetters, NumBits);
end;
// Append "bytes" in "mode" mode (encoding) into "bits". On success, store the result in "bits".
procedure TEncoder.AppendBytes(const Content: WideString; Mode: TMode; Bits: TBitArray; EncodeOptions: Integer);
begin
case Mode of
// qmTerminator: ;
qmNumeric: AppendNumericBytes(Content, Bits);
qmAlphanumeric: AppendAlphanumericBytes(Content, Bits);
// qmStructuredAppend: ;
qmByte: Append8BitBytes(Content, Bits, EncodeOptions);
qmECI: AppendECIBytes(Content, Bits);
qmKanji: AppendKanjiBytes(Content, Bits);
// qmFNC1FirstPosition: ;
// qmFNC1SecondPosition: ;
// qmHanzi: ;
else
FEncoderError := True;
end;
end;
procedure TEncoder.AppendECIBytes(const Content: WideString; Bits: TBitArray);
var
AnsiSt: AnsiString;
ECIValue: integer;
B: Byte;
WideText: WideString;
function CodePageFromECI(aECI: Integer): Integer;
begin
Result := 0;
case aECI of
3: Result := 28591;
4: Result := 28592;
5: Result := 28593;
6: Result := 28594;
7: Result := 28595;
8: Result := 28596;
9: Result := 28597;
10: Result := 28598;
11: Result := 28599;
12: Result := 28600;
13: Result := 874;
15: Result := 28603;
16: Result := 28604;
17: Result := 28605;
18: Result := 28606;
20: Result := 932;
21: Result := 1250;
22: Result := 1251;
23: Result := 1252;
24: Result := 1256;
25: Result := 1200;// this one maybe wrong
26: Result := 65001;
27: Result := 20127;// and this too
28: Result := 950;
29: Result := 936;
30: Result := 949;
end;
end;
function ECIFromCodePage(aCodePage: Longint): Longint;
begin
Result := DefaultECIValue;
case aCodePage of
28591: Result := 3;
28592: Result := 4;
28593: Result := 5;
28594: Result := 6;
28595: Result := 7;
28596: Result := 8;
28597: Result := 9;
28598: Result := 10;
28599: Result := 11;
28600: Result := 12;
874: Result := 13;
28603: Result := 15;
28604: Result := 16;
28605: Result := 17;
28606: Result := 18;
932: Result := 20;
1250: Result := 21;
1251: Result := 22;
1252: Result := 23;
1256: Result := 24;
1200: Result := 25;// this one maybe wrong
65001: Result := 26;
20127: Result := 27;// and this too
950: Result := 28;
936: Result := 29;
949: Result := 30;
end;
end;
procedure AppendEciFragment(Len: integer);
var
i: integer;
begin
AnsiSt := _UnicodeToAnsi(WideText, DEFAULT_CHARSET, CodePageFromECI(ECIValue));
Bits.AppendBits(7, 4); // ECI Mode Indicator = b0111
Bits.AppendBits(ECIValue, 8); // ECI Assignment number = 00..30
Bits.AppendBits(4, 4); // Mode indicator (8-bit byte) = b0100
if CodeVersion >= 10 then
Bits.AppendBits(Len, 16)
else
Bits.AppendBits(Len, 8); // Character count indicator up to 255 (?)
for i := 1 to Len do
begin
B := Ord(AnsiSt[i]);
Bits.AppendBits(B, 8);
end;
Delete(WideText, 1, Len);
end;
begin
WideText := Content;
ECIValue := ECIFromCodePage(FCodepage);
while WideText <> '' do
if not IsContainECI(String(WideText)) then
AppendEciFragment(Length(WideText))
else if IsStartWithECI(String(WideText)) then
begin
if not TryStrToInt(String(Copy(WideText, 5, 2)), ECIValue) then
ECIValue := DefaultECIValue;
Delete(WideText, 1, Length('&ECIXX;'));
end
else // ECI in the middle
AppendEciFragment(PosECI(string(WideText)) - 1);
end;
procedure TEncoder.AppendNumericBytes(const Content: WideString; Bits: TBitArray);
var
ContentLength: Integer;
I: Integer;
Num1: Integer;
Num2: Integer;
Num3: Integer;
begin
ContentLength := Length(Content);
I := 0;
while (I < ContentLength) do
begin
Num1 := Ord(Content[I + 0 + 1]) - Ord('0');
if (I + 2 < ContentLength) then
begin
// Encode three numeric letters in ten bits.
Num2 := Ord(Content[I + 1 + 1]) - Ord('0');
Num3 := Ord(Content[I + 2 + 1]) - Ord('0');
Bits.AppendBits(Num1 * 100 + Num2 * 10 + Num3, 10);
Inc(I, 3);
end else
if (I + 1 < ContentLength) then
begin
// Encode two numeric letters in seven bits.
Num2 := Ord(Content[I + 1 + 1]) - Ord('0');
Bits.AppendBits(Num1 * 10 + Num2, 7);
Inc(I, 2);
end else
begin
// Encode one numeric letter in four bits.
Bits.AppendBits(Num1, 4);
Inc(I);
end;
end;
end;
procedure TEncoder.AppendAlphanumericBytes(const Content: WideString; Bits: TBitArray);
var
ContentLength: Integer;
I: Integer;
Code1: Integer;
Code2: Integer;
begin
ContentLength := Length(Content);
I := 0;
while (I < ContentLength) do
begin
Code1 := GetAlphanumericCode(Ord(Content[I + 0 + 1]));
if (Code1 = -1) then
begin
FEncoderError := True;
Exit;
end;
if (I + 1 < ContentLength) then
begin
Code2 := GetAlphanumericCode(Ord(Content[I + 1 + 1]));
if (Code2 = -1) then
begin
FEncoderError := True;
Exit;
end;
// Encode two alphanumeric letters in 11 bits.
Bits.AppendBits(Code1 * 45 + Code2, 11);
Inc(I, 2);
end else
begin
// Encode one alphanumeric letter in six bits.
Bits.AppendBits(Code1, 6);
Inc(I);
end;
end;
end;
procedure TEncoder.Append8BitBytes(const Content: WideString; Bits: TBitArray; EncodeOptions: Integer);
var
Bytes: TByteArray;
I: Integer;
UTF8Version: AnsiString;
s: {$IFDEF FPC}StringJIS{$ELSE}{$IFDEF DELPHI12}StringJIS{$ELSE}string{$ENDIF}{$ENDIF};
begin
SetLength(Bytes, 0);
if (EncodeOptions = 3) then
begin
SetLength(Bytes, Length(Content));
for I := 1 to Length(Content) do
begin
Bytes[I - 1] := Ord(Content[I]) and $FF;
end;
end else
if (EncodeOptions = 5) then
begin
// Add the UTF-8 BOM
UTF8Version := #$EF#$BB#$BF + UTF8Encode(Content);
SetLength(Bytes, Length(UTF8Version));
if (Length(UTF8Version) > 0) then
begin
Move(UTF8Version[1], Bytes[0], Length(UTF8Version));
end;
end else
if (EncodeOptions = 4) then
begin
// No BOM
UTF8Version := UTF8Encode(Content);
SetLength(Bytes, Length(UTF8Version));
if (Length(UTF8Version) > 0) then
begin
Move(UTF8Version[1], Bytes[0], Length(UTF8Version));
end;
end else
if (EncodeOptions = 6) then
begin
s := KanjiStr(Content);
SetLength(Bytes, Length(s));
if Length(s) > 0 then
Move(s[1], Bytes[0], Length(s));
end;
for I := 0 to Length(Bytes) - 1 do
begin
Bits.AppendBits(Bytes[I], 8);
end;
end;
procedure TEncoder.AppendKanjiBytes(const Content: WideString; Bits: TBitArray);
var
Bytes: TByteArray;
ByteLength: Integer;
I: Integer;
Byte1: Integer;
Byte2: Integer;
Code: Integer;
Encoded: Integer;
Subtracted: Integer;
s: {$IFDEF FPC}StringJIS{$ELSE}{$IFDEF DELPHI12}StringJIS{$ELSE}string{$ENDIF}{$ENDIF};
begin
s := KanjiStr(Content);
SetLength(Bytes, Length(s));
Move(s[1], Bytes[0], Length(s));
ByteLength := Length(Bytes);
I := 0;
while (I < ByteLength) do
begin
Byte1 := Bytes[I] and $FF;
Byte2 := Bytes[I + 1] and $FF;
Code := (Byte1 shl 8) or Byte2;
Subtracted := -1;
if ((Code >= $8140) and (Code <= $9ffc)) then
begin
Subtracted := Code - $8140;
end else
if ((Code >= $e040) and (Code <= $ebbf)) then
begin
Subtracted := Code - $c140;
end;
if (Subtracted = -1) then
begin
FEncoderError := True;
Exit;
end;
Encoded := ((Subtracted shr 8) * $c0) + (Subtracted and $ff);
Bits.AppendBits(Encoded, 13);
Inc(I, 2);
end;
end;
procedure TMatrixUtil.ClearMatrix(Matrix: TByteMatrix);
begin
Matrix.Clear(Byte(-1));
end;
constructor TMatrixUtil.Create;
begin
FMatrixUtilError := False;
end;
// Build 2D matrix of QR Code from "dataBits" with "ecLevel", "version" and "getMaskPattern". On
// success, store the result in "matrix" and return true.
procedure TMatrixUtil.BuildMatrix(DataBits: TBitArray; ECLevel: TErrorCorrectionLevel;
Version, MaskPattern: Integer; Matrix: TByteMatrix);
begin
ClearMatrix(Matrix);
EmbedBasicPatterns(Version, Matrix);
// Type information appear with any version.
EmbedTypeInfo(ECLevel, MaskPattern, Matrix);
// Version info appear if version >= 7.
MaybeEmbedVersionInfo(Version, Matrix);
// Data should be embedded at end.
EmbedDataBits(DataBits, MaskPattern, Matrix);
end;
// Embed basic patterns. On success, modify the matrix and return true.
// The basic patterns are:
// - Position detection patterns
// - Timing patterns
// - Dark dot at the left bottom corner
// - Position adjustment patterns, if need be
procedure TMatrixUtil.EmbedBasicPatterns(Version: Integer; Matrix: TByteMatrix);
begin
// Let's get started with embedding big squares at corners.
EmbedPositionDetectionPatternsAndSeparators(Matrix);
// Then, embed the dark dot at the left bottom corner.
EmbedDarkDotAtLeftBottomCorner(Matrix);
// Position adjustment patterns appear if version >= 2.
MaybeEmbedPositionAdjustmentPatterns(Version, Matrix);
// Timing patterns should be embedded after position adj. patterns.
EmbedTimingPatterns(Matrix);
end;
// Embed type information. On success, modify the matrix.
procedure TMatrixUtil.EmbedTypeInfo(ECLevel: TErrorCorrectionLevel; MaskPattern: Integer; Matrix: TByteMatrix);
var
TypeInfoBits: TBitArray;
I: Integer;
Bit: Boolean;
X1, Y1: Integer;
X2, Y2: Integer;
begin
TypeInfoBits := TBitArray.Create;
try
MakeTypeInfoBits(ECLevel, MaskPattern, TypeInfoBits);
for I := 0 to TypeInfoBits.GetSize - 1 do
begin
// Place bits in LSB to MSB order. LSB (least significant bit) is the last value in
// "typeInfoBits".
Bit := TypeInfoBits.Get(TypeInfoBits.GetSize - 1 - I);
// Type info bits at the left top corner. See 8.9 of JISX0510:2004 (p.46).
X1 := TYPE_INFO_COORDINATES[I][0];
Y1 := TYPE_INFO_COORDINATES[I][1];
Matrix.SetBoolean(X1, Y1, Bit);
if (I < 8) then
begin
// Right top corner.
X2 := Matrix.Width - I - 1;
Y2 := 8;
Matrix.SetBoolean(X2, Y2, Bit);
end else
begin
// Left bottom corner.
X2 := 8;
Y2 := Matrix.Height - 7 + (I - 8);
Matrix.SetBoolean(X2, Y2, Bit);
end;
end;
finally
TypeInfoBits.Free;
end;
end;
// Embed version information if need be. On success, modify the matrix and return true.
// See 8.10 of JISX0510:2004 (p.47) for how to embed version information.
procedure TMatrixUtil.MaybeEmbedVersionInfo(Version: Integer; Matrix: TByteMatrix);
var
VersionInfoBits: TBitArray;
I, J: Integer;
BitIndex: Integer;
Bit: Boolean;
begin
if (Version < 7) then
begin
Exit; // Don't need version info.
end;
VersionInfoBits := TBitArray.Create;
try
MakeVersionInfoBits(Version, VersionInfoBits);
BitIndex := 6 * 3 - 1; // It will decrease from 17 to 0.
for I := 0 to 5 do
begin
for J := 0 to 2 do
begin
// Place bits in LSB (least significant bit) to MSB order.
Bit := VersionInfoBits.Get(BitIndex);
Dec(BitIndex);
// Left bottom corner.
Matrix.SetBoolean(I, Matrix.Height - 11 + J, Bit);
// Right bottom corner.
Matrix.SetBoolean(Matrix.Height - 11 + J, I, bit);
end;
end;
finally
VersionInfoBits.Free;
end;
end;
// Embed "dataBits" using "getMaskPattern". On success, modify the matrix and return true.
// For debugging purposes, it skips masking process if "getMaskPattern" is -1.
// See 8.7 of JISX0510:2004 (p.38) for how to embed data bits.
procedure TMatrixUtil.EmbedDataBits(DataBits: TBitArray; MaskPattern: Integer; Matrix: TByteMatrix);
var
BitIndex: Integer;
Direction: Integer;
X, Y, I, XX: Integer;
Bit: Boolean;
MaskUtil: TMaskUtil;
begin
MaskUtil := TMaskUtil.Create;
try
bitIndex := 0;
direction := -1;
// Start from the right bottom cell.
X := Matrix.Width - 1;
Y := Matrix.Height - 1;
while (X > 0) do
begin
// Skip the vertical timing pattern.
if (X = 6) then
begin
Dec(X, 1);
end;
while ((Y >= 0) and (y < Matrix.Height)) do
begin
for I := 0 to 1 do
begin
XX := X - I;
// Skip the cell if it's not empty.
if (not IsEmpty(Matrix.Get(XX, Y))) then
begin
Continue;
end;
if (BitIndex < DataBits.GetSize) then
begin
Bit := DataBits.Get(BitIndex);
Inc(BitIndex);
end else
begin
// Padding bit. If there is no bit left, we'll fill the left cells with 0, as described
// in 8.4.9 of JISX0510:2004 (p. 24).
Bit := False;
end;
// Skip masking if mask_pattern is -1.
if (MaskPattern <> -1) then
begin
if (MaskUtil.GetDataMaskBit(MaskPattern, XX, Y)) then
begin
Bit := not Bit;
end;
end;
Matrix.SetBoolean(XX, Y, Bit);
end;
Inc(Y, Direction);
end;
Direction := -Direction; // Reverse the direction.
Inc(Y, Direction);
Dec(X, 2); // Move to the left.
end;
finally
MaskUtil.Free;
end;
// All bits should be consumed.
if (BitIndex <> DataBits.GetSize()) then
begin
FMatrixUtilError := True;
Exit;
end;
end;
// Return the position of the most significant bit set (to one) in the "value". The most
// significant bit is position 32. If there is no bit set, return 0. Examples:
// - findMSBSet(0) => 0
// - findMSBSet(1) => 1
// - findMSBSet(255) => 8
function TMatrixUtil.FindMSBSet(Value: Integer): Integer;
var
NumDigits: Integer;
begin
NumDigits := 0;
while (Value <> 0) do
begin
Value := Value shr 1;
Inc(NumDigits);
end;
Result := NumDigits;
end;
// Calculate BCH (Bose-Chaudhuri-Hocquenghem) code for "value" using polynomial "poly". The BCH
// code is used for encoding type information and version information.
// Example: Calculation of version information of 7.
// f(x) is created from 7.
// - 7 = 000111 in 6 bits
// - f(x) = x^2 + x^1 + x^0
// g(x) is given by the standard (p. 67)
// - g(x) = x^12 + x^11 + x^10 + x^9 + x^8 + x^5 + x^2 + 1
// Multiply f(x) by x^(18 - 6)
// - f'(x) = f(x) * x^(18 - 6)
// - f'(x) = x^14 + x^13 + x^12
// Calculate the remainder of f'(x) / g(x)
// x^2
// __________________________________________________
// g(x) )x^14 + x^13 + x^12
// x^14 + x^13 + x^12 + x^11 + x^10 + x^7 + x^4 + x^2
// --------------------------------------------------
// x^11 + x^10 + x^7 + x^4 + x^2
//
// The remainder is x^11 + x^10 + x^7 + x^4 + x^2
// Encode it in binary: 110010010100
// The return value is 0xc94 (1100 1001 0100)
//
// Since all coefficients in the polynomials are 1 or 0, we can do the calculation by bit
// operations. We don't care if cofficients are positive or negative.
function TMatrixUtil.CalculateBCHCode(Value, Poly: Integer): Integer;
var
MSBSetInPoly: Integer;
begin
// If poly is "1 1111 0010 0101" (version info poly), msbSetInPoly is 13. We'll subtract 1
// from 13 to make it 12.
MSBSetInPoly := FindMSBSet(Poly);
Value := Value shl (MSBSetInPoly - 1);
// Do the division business using exclusive-or operations.
while (FindMSBSet(Value) >= MSBSetInPoly) do
begin
Value := Value xor (Poly shl (FindMSBSet(Value) - MSBSetInPoly));
end;
// Now the "value" is the remainder (i.e. the BCH code)
Result := Value;
end;
// Make bit vector of type information. On success, store the result in "bits" and return true.
// Encode error correction level and mask pattern. See 8.9 of
// JISX0510:2004 (p.45) for details.
procedure TMatrixUtil.MakeTypeInfoBits(ECLevel: TErrorCorrectionLevel; MaskPattern: Integer; Bits: TBitArray);
var
TypeInfo: Integer;
BCHCode: Integer;
MaskBits: TBitArray;
begin
if ((MaskPattern >= 0) and (MaskPattern < NUM_MASK_PATTERNS)) then
begin
TypeInfo := (ECLevel.Bits shl 3) or MaskPattern;
Bits.AppendBits(TypeInfo, 5);
BCHCode := CalculateBCHCode(TypeInfo, TYPE_INFO_POLY);
Bits.AppendBits(BCHCode, 10);
MaskBits := TBitArray.Create;
try
MaskBits.AppendBits(TYPE_INFO_MASK_PATTERN, 15);
Bits.XorOperation(MaskBits);
finally
MaskBits.Free;
end;
if (Bits.GetSize <> 15) then // Just in case.
begin
FMatrixUtilError := True;
Exit;
end;
end;
end;
// Make bit vector of version information. On success, store the result in "bits" and return true.
// See 8.10 of JISX0510:2004 (p.45) for details.
procedure TMatrixUtil.MakeVersionInfoBits(Version: Integer; Bits: TBitArray);
var
BCHCode: Integer;
begin
Bits.AppendBits(Version, 6);
BCHCode := CalculateBCHCode(Version, VERSION_INFO_POLY);
Bits.AppendBits(BCHCode, 12);
if (Bits.GetSize() <> 18) then
begin
FMatrixUtilError := True;
Exit;
end;
end;
// Check if "value" is empty.
function TMatrixUtil.IsEmpty(Value: Integer): Boolean;
begin
Result := (Value = -1);
end;
procedure TMatrixUtil.EmbedTimingPatterns(Matrix: TByteMatrix);
var
I: Integer;
Bit: Integer;
begin
// -8 is for skipping position detection patterns (size 7), and two horizontal/vertical
// separation patterns (size 1). Thus, 8 = 7 + 1.
for I := 8 to Matrix.Width - 9 do
begin
Bit := (I + 1) mod 2;
// Horizontal line.
if (IsEmpty(Matrix.Get(I, 6))) then
begin
Matrix.SetInteger(I, 6, Bit);
end;
// Vertical line.
if (IsEmpty(Matrix.Get(6, I))) then
begin
Matrix.SetInteger(6, I, Bit);
end;
end;
end;
// Embed the lonely dark dot at left bottom corner. JISX0510:2004 (p.46)
procedure TMatrixUtil.EmbedDarkDotAtLeftBottomCorner(Matrix: TByteMatrix);
begin
if (Matrix.Get(8, Matrix.Height - 8) = 0) then
begin
FMatrixUtilError := True;
Exit;
end;
Matrix.SetInteger(8, Matrix.Height - 8, 1);
end;
procedure TMatrixUtil.EmbedHorizontalSeparationPattern(XStart, YStart: Integer; Matrix: TByteMatrix);
var
X: Integer;
begin
// We know the width and height.
for X := 0 to 7 do
begin
if (not IsEmpty(Matrix.Get(XStart + X, YStart))) then
begin
FMatrixUtilError := True;
Exit;
end;
Matrix.SetInteger(XStart + X, YStart, HORIZONTAL_SEPARATION_PATTERN[0][X]);
end;
end;
procedure TMatrixUtil.EmbedVerticalSeparationPattern(XStart, YStart: Integer; Matrix: TByteMatrix);
var
Y: Integer;
begin
// We know the width and height.
for Y := 0 to 6 do
begin
if (not IsEmpty(Matrix.Get(XStart, YStart + Y))) then
begin
FMatrixUtilError := True;
Exit;
end;
Matrix.SetInteger(XStart, YStart + Y, VERTICAL_SEPARATION_PATTERN[Y][0]);
end;
end;
// Note that we cannot unify the function with embedPositionDetectionPattern() despite they are
// almost identical, since we cannot write a function that takes 2D arrays in different sizes in
// C/C++. We should live with the fact.
procedure TMatrixUtil.EmbedPositionAdjustmentPattern(XStart, YStart: Integer; Matrix: TByteMatrix);
var
X, Y: Integer;
begin
// We know the width and height.
for Y := 0 to 4 do
begin
for X := 0 to 4 do
begin
if (not IsEmpty(Matrix.Get(XStart + X, YStart + Y))) then
begin
FMatrixUtilError := True;
Exit;
end;
Matrix.SetInteger(XStart + X, YStart + Y, POSITION_ADJUSTMENT_PATTERN[Y][X]);
end;
end;
end;
procedure TMatrixUtil.EmbedPositionDetectionPattern(XStart, YStart: Integer; Matrix: TByteMatrix);
var
X, Y: Integer;
begin
// We know the width and height.
for Y := 0 to 6 do
begin
for X := 0 to 6 do
begin
if (not IsEmpty(Matrix.Get(XStart + X, YStart + Y))) then
begin
FMatrixUtilError := True;
Exit;
end;
Matrix.SetInteger(XStart + X, YStart + Y, POSITION_DETECTION_PATTERN[Y][X]);
end;
end;
end;
// Embed position detection patterns and surrounding vertical/horizontal separators.
procedure TMatrixUtil.EmbedPositionDetectionPatternsAndSeparators(Matrix: TByteMatrix);
var
PDPWidth: Integer;
HSPWidth: Integer;
VSPSize: Integer;
begin
// Embed three big squares at corners.
PDPWidth := Length(POSITION_DETECTION_PATTERN[0]);
// Left top corner.
EmbedPositionDetectionPattern(0, 0, Matrix);
// Right top corner.
EmbedPositionDetectionPattern(Matrix.Width - PDPWidth, 0, Matrix);
// Left bottom corner.
EmbedPositionDetectionPattern(0, Matrix.Width- PDPWidth, Matrix);
// Embed horizontal separation patterns around the squares.
HSPWidth := Length(HORIZONTAL_SEPARATION_PATTERN[0]);
// Left top corner.
EmbedHorizontalSeparationPattern(0, HSPWidth - 1, Matrix);
// Right top corner.
EmbedHorizontalSeparationPattern(Matrix.Width - HSPWidth,
HSPWidth - 1, Matrix);
// Left bottom corner.
EmbedHorizontalSeparationPattern(0, Matrix.Width - HSPWidth, Matrix);
// Embed vertical separation patterns around the squares.
VSPSize := Length(VERTICAL_SEPARATION_PATTERN);
// Left top corner.
EmbedVerticalSeparationPattern(VSPSize, 0, Matrix);
// Right top corner.
EmbedVerticalSeparationPattern(Matrix.Height - VSPSize - 1, 0, Matrix);
// Left bottom corner.
EmbedVerticalSeparationPattern(VSPSize, Matrix.Height - VSPSize, Matrix);
end;
// Embed position adjustment patterns if need be.
procedure TMatrixUtil.MaybeEmbedPositionAdjustmentPatterns(Version: Integer; Matrix: TByteMatrix);
var
Index: Integer;
Coordinates: array of Integer;
NumCoordinates: Integer;
X, Y, I, J: Integer;
begin
if (Version >= 2) then
begin
Index := Version - 1;
NumCoordinates := Length(POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE[Index]);
SetLength(Coordinates, NumCoordinates);
Move(POSITION_ADJUSTMENT_PATTERN_COORDINATE_TABLE[Index][0], Coordinates[0], NumCoordinates * SizeOf(Integer));
for I := 0 to NumCoordinates - 1 do
begin
for J := 0 to NumCoordinates - 1 do
begin
Y := Coordinates[I];
X := Coordinates[J];
if ((X = -1) or (Y = -1)) then
begin
Continue;
end;
// If the cell is unset, we embed the position adjustment pattern here.
if (IsEmpty(Matrix.Get(X, Y))) then
begin
// -2 is necessary since the x/y coordinates point to the center of the pattern, not the
// left top corner.
EmbedPositionAdjustmentPattern(X - 2, Y - 2, Matrix);
end;
end;
end;
end;
end;
{ TBitArray }
procedure TBitArray.AppendBits(Value, NumBits: Integer);
var
NumBitsLeft: Integer;
begin
if ((NumBits < 0) or (NumBits > 32)) then
begin
end;
EnsureCapacity(Size + NumBits);
for NumBitsLeft := NumBits downto 1 do
begin
AppendBit(((Value shr (NumBitsLeft - 1)) and $01) = 1);
end;
end;
procedure TBitArray.Clear;
begin
Size := 0;
SetLength(Bits, 1);
Bits[0] := 0;
end;
constructor TBitArray.Create;
begin
Size := 0;
SetLength(Bits, 1);
end;
function TBitArray.Get(I: Integer): Boolean;
begin
Result := (Bits[I shr 5] and (1 shl (I and $1F))) <> 0;
end;
function TBitArray.GetSize: Integer;
begin
Result := Size;
end;
function TBitArray.GetSizeInBytes: Integer;
begin
Result := (Size + 7) shr 3;
end;
procedure TBitArray.SetBit(Index: Integer);
begin
Bits[Index shr 5] := Bits[Index shr 5] or (1 shl (Index and $1F));
end;
procedure TBitArray.AppendBit(Bit: Boolean);
begin
EnsureCapacity(Size + 1);
if (Bit) then
begin
Bits[Size shr 5] := Bits[Size shr 5] or (1 shl (Size and $1F));
end;
Inc(Size);
end;
procedure TBitArray.ToBytes(BitOffset: Integer; Source: TByteArray; Offset,
NumBytes: Integer);
var
I: Integer;
J: Integer;
TheByte: Integer;
begin
for I := 0 to NumBytes - 1 do
begin
TheByte := 0;
for J := 0 to 7 do
begin
if (Get(BitOffset)) then
begin
TheByte := TheByte or (1 shl (7 - J));
end;
Inc(BitOffset);
end;
Source[Offset + I] := TheByte;
end;
end;
procedure TBitArray.XorOperation(Other: TBitArray);
var
I: Integer;
begin
if (Length(Bits) = Length(Other.Bits)) then
begin
for I := 0 to Length(Bits) - 1 do
begin
// The last byte could be incomplete (i.e. not have 8 bits in
// it) but there is no problem since 0 XOR 0 == 0.
Bits[I] := Bits[I] xor Other.Bits[I];
end;
end;
end;
procedure TBitArray.AppendBitArray(NewBitArray: TBitArray);
var
OtherSize: Integer;
I: Integer;
begin
OtherSize := NewBitArray.GetSize;
EnsureCapacity(Size + OtherSize);
for I := 0 to OtherSize - 1 do
begin
AppendBit(NewBitArray.Get(I));
end;
end;
procedure TBitArray.EnsureCapacity(ASize: Integer);
begin
if (ASize > (Length(Bits) shl 5)) then
begin
SetLength(Bits, ASize);
end;
end;
{ TErrorCorrectionLevel }
procedure TErrorCorrectionLevel.Assign(Source: TErrorCorrectionLevel);
begin
Self.FBits := Source.FBits;
end;
{ TVersion }
class function TVersion.ChooseVersion(NumInputBits: Integer;
ECLevel: TErrorCorrectionLevel): TVersion;
var
VersionNum: Integer;
Version: TVersion;
NumBytes: Integer;
bufECBlocks: TECBlocks;
NumECBytes: Integer;
NumDataBytes: Integer;
TotalInputBytes: Integer;
begin
Result := nil;
// In the following comments, we use numbers of Version 7-H.
for VersionNum := 1 to 40 do
begin
Version := TVersion.GetVersionForNumber(VersionNum);
// numBytes = 196
NumBytes := Version.GetTotalCodewords;
// getNumECBytes = 130
bufECBlocks := Version.GetECBlocksForLevel(ECLevel);
NumECBytes := bufECBlocks.GetTotalECCodewords;
// getNumDataBytes = 196 - 130 = 66
NumDataBytes := NumBytes - NumECBytes;
TotalInputBytes := (NumInputBits + 7) div 8;
if (numDataBytes >= totalInputBytes) then
begin
Result := Version;
Exit;
end else
begin
Version.Free;
end;
end;
end;
constructor TVersion.Create(AVersionNumber: Integer;
AAlignmentPatternCenters: array of Integer; ECBlocks1, ECBlocks2, ECBlocks3,
ECBlocks4: TECBlocks);
var
Total: Integer;
ECBlock: TECB;
ECBArray: TECBArray;
I: Integer;
begin
VersionNumber := AVersionNumber;
SetLength(AlignmentPatternCenters, Length(AAlignmentPatternCenters));
if (Length(AlignmentPatternCenters) > 0) then
begin
Move(AAlignmentPatternCenters[0], AlignmentPatternCenters[0],
Length(AAlignmentPatternCenters) * SizeOf(Integer));
end;
SetLength(ECBlocks, 4);
ECBlocks[0] := ECBlocks1;
ECBlocks[1] := ECBlocks2;
ECBlocks[2] := ECBlocks3;
ECBlocks[3] := ECBlocks4;
Total := 0;
ECCodewords := ECBlocks1.GetECCodewordsPerBlock;
ECBArray := ECBlocks1.GetECBlocks;
for I := 0 to Length(ECBArray) - 1 do
begin
ECBlock := ECBArray[I];
Inc(Total, ECBlock.GetCount * (ECBlock.GetDataCodewords + ECCodewords));
end;
TotalCodewords := Total;
end;
destructor TVersion.Destroy;
var
X: Integer;
begin
for X := 0 to Length(ECBlocks) - 1 do
begin
ECBlocks[X].Free;
end;
inherited;
end;
function TVersion.GetDimensionForVersion: Integer;
begin
Result := 17 + 4 * VersionNumber;
end;
function TVersion.GetECBlocksForLevel(ECLevel: TErrorCorrectionLevel): TECBlocks;
begin
Result := ECBlocks[ECLevel.Ordinal];
end;
function TVersion.GetTotalCodewords: Integer;
begin
Result := TotalCodewords;
end;
class function TVersion.GetVersionForNumber(VersionNum: Integer): TVersion;
begin
if (VersionNum = 1) then
begin
Result := TVersion.Create(1, [],
TECBlocks.Create(7, TECB.Create(1, 19)),
TECBlocks.Create(10, TECB.Create(1, 16)),
TECBlocks.Create(13, TECB.Create(1, 13)),
TECBlocks.Create(17, TECB.Create(1, 9)));
end else
if (VersionNum = 2) then
begin
Result := TVersion.Create(2, [6, 18],
TECBlocks.Create(10, TECB.Create(1, 34)),
TECBlocks.Create(16, TECB.Create(1, 28)),
TECBlocks.Create(22, TECB.Create(1, 22)),
TECBlocks.Create(28, TECB.Create(1, 16)));
end else
if (VersionNum = 3) then
begin
Result := TVersion.Create(3, [6, 22],
TECBlocks.Create(15, TECB.Create(1, 55)),
TECBlocks.Create(26, TECB.Create(1, 44)),
TECBlocks.Create(18, TECB.Create(2, 17)),
TECBlocks.Create(22, TECB.Create(2, 13)));
end else
if (VersionNum = 4) then
begin
Result := TVersion.Create(4, [6, 26],
TECBlocks.Create(20, TECB.Create(1, 80)),
TECBlocks.Create(18, TECB.Create(2, 32)),
TECBlocks.Create(26, TECB.Create(2, 24)),
TECBlocks.Create(16, TECB.Create(4, 9)));
end else
if (VersionNum = 5) then
begin
Result := TVersion.Create(5, [6, 30],
TECBlocks.Create(26, TECB.Create(1, 108)),
TECBlocks.Create(24, TECB.Create(2, 43)),
TECBlocks.Create(18, TECB.Create(2, 15),
TECB.Create(2, 16)),
TECBlocks.Create(22, TECB.Create(2, 11),
TECB.Create(2, 12)));
end else
if (VersionNum = 6) then
begin
Result := TVersion.Create(6, [6, 34],
TECBlocks.Create(18, TECB.Create(2, 68)),
TECBlocks.Create(16, TECB.Create(4, 27)),
TECBlocks.Create(24, TECB.Create(4, 19)),
TECBlocks.Create(28, TECB.Create(4, 15)));
end else
if (VersionNum = 7) then
begin
Result := TVersion.Create(7, [6, 22, 38],
TECBlocks.Create(20, TECB.Create(2, 78)),
TECBlocks.Create(18, TECB.Create(4, 31)),
TECBlocks.Create(18, TECB.Create(2, 14),
TECB.Create(4, 15)),
TECBlocks.Create(26, TECB.Create(4, 13),
TECB.Create(1, 14)));
end else
if (VersionNum = 8) then
begin
Result := TVersion.Create(8, [6, 24, 42],
TECBlocks.Create(24, TECB.Create(2, 97)),
TECBlocks.Create(22, TECB.Create(2, 38),
TECB.Create(2, 39)),
TECBlocks.Create(22, TECB.Create(4, 18),
TECB.Create(2, 19)),
TECBlocks.Create(26, TECB.Create(4, 14),
TECB.Create(2, 15)));
end else
if (VersionNum = 9) then
begin
Result := TVersion.Create(9, [6, 26, 46],
TECBlocks.Create(30, TECB.Create(2, 116)),
TECBlocks.Create(22, TECB.Create(3, 36),
TECB.Create(2, 37)),
TECBlocks.Create(20, TECB.Create(4, 16),
TECB.Create(4, 17)),
TECBlocks.Create(24, TECB.Create(4, 12),
TECB.Create(4, 13)));
end else
if (VersionNum = 10) then
begin
Result := TVersion.Create(10, [6, 28, 50],
TECBlocks.Create(18, TECB.Create(2, 68),
TECB.Create(2, 69)),
TECBlocks.Create(26, TECB.Create(4, 43),
TECB.Create(1, 44)),
TECBlocks.Create(24, TECB.Create(6, 19),
TECB.Create(2, 20)),
TECBlocks.Create(28, TECB.Create(6, 15),
TECB.Create(2, 16)));
end else
if (VersionNum = 11) then
begin
Result := TVersion.Create(11, [6, 30, 54],
TECBlocks.Create(20, TECB.Create(4, 81)),
TECBlocks.Create(30, TECB.Create(1, 50),
TECB.Create(4, 51)),
TECBlocks.Create(28, TECB.Create(4, 22),
TECB.Create(4, 23)),
TECBlocks.Create(24, TECB.Create(3, 12),
TECB.Create(8, 13)));
end else
if (VersionNum = 12) then
begin
Result := TVersion.Create(12, [6, 32, 58],
TECBlocks.Create(24, TECB.Create(2, 92),
TECB.Create(2, 93)),
TECBlocks.Create(22, TECB.Create(6, 36),
TECB.Create(2, 37)),
TECBlocks.Create(26, TECB.Create(4, 20),
TECB.Create(6, 21)),
TECBlocks.Create(28, TECB.Create(7, 14),
TECB.Create(4, 15)));
end else
if (VersionNum = 13) then
begin
Result := TVersion.Create(13, [6, 34, 62],
TECBlocks.Create(26, TECB.Create(4, 107)),
TECBlocks.Create(22, TECB.Create(8, 37),
TECB.Create(1, 38)),
TECBlocks.Create(24, TECB.Create(8, 20),
TECB.Create(4, 21)),
TECBlocks.Create(22, TECB.Create(12, 11),
TECB.Create(4, 12)));
end else
if (VersionNum = 14) then
begin
Result := TVersion.Create(14, [6, 26, 46, 66],
TECBlocks.Create(30, TECB.Create(3, 115),
TECB.Create(1, 116)),
TECBlocks.Create(24, TECB.Create(4, 40),
TECB.Create(5, 41)),
TECBlocks.Create(20, TECB.Create(11, 16),
TECB.Create(5, 17)),
TECBlocks.Create(24, TECB.Create(11, 12),
TECB.Create(5, 13)));
end else
if (VersionNum = 15) then
begin
Result := TVersion.Create(15, [6, 26, 48, 70],
TECBlocks.Create(22, TECB.Create(5, 87),
TECB.Create(1, 88)),
TECBlocks.Create(24, TECB.Create(5, 41),
TECB.Create(5, 42)),
TECBlocks.Create(30, TECB.Create(5, 24),
TECB.Create(7, 25)),
TECBlocks.Create(24, TECB.Create(11, 12),
TECB.Create(7, 13)));
end else
if (VersionNum = 16) then
begin
Result := TVersion.Create(16, [6, 26, 50, 74],
TECBlocks.Create(24, TECB.Create(5, 98),
TECB.Create(1, 99)),
TECBlocks.Create(28, TECB.Create(7, 45),
TECB.Create(3, 46)),
TECBlocks.Create(24, TECB.Create(15, 19),
TECB.Create(2, 20)),
TECBlocks.Create(30, TECB.Create(3, 15),
TECB.Create(13, 16)));
end else
if (VersionNum = 17) then
begin
Result := TVersion.Create(17, [6, 30, 54, 78],
TECBlocks.Create(28, TECB.Create(1, 107),
TECB.Create(5, 108)),
TECBlocks.Create(28, TECB.Create(10, 46),
TECB.Create(1, 47)),
TECBlocks.Create(28, TECB.Create(1, 22),
TECB.Create(15, 23)),
TECBlocks.Create(28, TECB.Create(2, 14),
TECB.Create(17, 15)));
end else
if (VersionNum = 18) then
begin
Result := TVersion.Create(18, [6, 30, 56, 82],
TECBlocks.Create(30, TECB.Create(5, 120),
TECB.Create(1, 121)),
TECBlocks.Create(26, TECB.Create(9, 43),
TECB.Create(4, 44)),
TECBlocks.Create(28, TECB.Create(17, 22),
TECB.Create(1, 23)),
TECBlocks.Create(28, TECB.Create(2, 14),
TECB.Create(19, 15)));
end else
if (VersionNum = 19) then
begin
Result := TVersion.Create(19, [6, 30, 58, 86],
TECBlocks.Create(28, TECB.Create(3, 113),
TECB.Create(4, 114)),
TECBlocks.Create(26, TECB.Create(3, 44),
TECB.Create(11, 45)),
TECBlocks.Create(26, TECB.Create(17, 21),
TECB.Create(4, 22)),
TECBlocks.Create(26, TECB.Create(9, 13),
TECB.Create(16, 14)));
end else
if (VersionNum = 20) then
begin
Result := TVersion.Create(20, [6, 34, 62, 90],
TECBlocks.Create(28, TECB.Create(3, 107),
TECB.Create(5, 108)),
TECBlocks.Create(26, TECB.Create(3, 41),
TECB.Create(13, 42)),
TECBlocks.Create(30, TECB.Create(15, 24),
TECB.Create(5, 25)),
TECBlocks.Create(28, TECB.Create(15, 15),
TECB.Create(10, 16)));
end else
if (VersionNum = 21) then
begin
Result := TVersion.Create(21, [6, 28, 50, 72, 94],
TECBlocks.Create(28, TECB.Create(4, 116),
TECB.Create(4, 117)),
TECBlocks.Create(26, TECB.Create(17, 42)),
TECBlocks.Create(28, TECB.Create(17, 22),
TECB.Create(6, 23)),
TECBlocks.Create(30, TECB.Create(19, 16),
TECB.Create(6, 17)));
end else
if (VersionNum = 22) then
begin
Result := TVersion.Create(22, [6, 26, 50, 74, 98],
TECBlocks.Create(28, TECB.Create(2, 111),
TECB.Create(7, 112)),
TECBlocks.Create(28, TECB.Create(17, 46)),
TECBlocks.Create(30, TECB.Create(7, 24),
TECB.Create(16, 25)),
TECBlocks.Create(24, TECB.Create(34, 13)));
end else
if (VersionNum = 23) then
begin
Result := TVersion.Create(23, [6, 30, 54, 78, 102],
TECBlocks.Create(30, TECB.Create(4, 121),
TECB.Create(5, 122)),
TECBlocks.Create(28, TECB.Create(4, 47),
TECB.Create(14, 48)),
TECBlocks.Create(30, TECB.Create(11, 24),
TECB.Create(14, 25)),
TECBlocks.Create(30, TECB.Create(16, 15),
TECB.Create(14, 16)));
end else
if (VersionNum = 24) then
begin
Result := TVersion.Create(24, [6, 28, 54, 80, 106],
TECBlocks.Create(30, TECB.Create(6, 117),
TECB.Create(4, 118)),
TECBlocks.Create(28, TECB.Create(6, 45),
TECB.Create(14, 46)),
TECBlocks.Create(30, TECB.Create(11, 24),
TECB.Create(16, 25)),
TECBlocks.Create(30, TECB.Create(30, 16),
TECB.Create(2, 17)));
end else
if (VersionNum = 25) then
begin
Result := TVersion.Create(25, [6, 32, 58, 84, 110],
TECBlocks.Create(26, TECB.Create(8, 106),
TECB.Create(4, 107)),
TECBlocks.Create(28, TECB.Create(8, 47),
TECB.Create(13, 48)),
TECBlocks.Create(30, TECB.Create(7, 24),
TECB.Create(22, 25)),
TECBlocks.Create(30, TECB.Create(22, 15),
TECB.Create(13, 16)));
end else
if (VersionNum = 26) then
begin
Result := TVersion.Create(26, [6, 30, 58, 86, 114],
TECBlocks.Create(28, TECB.Create(10, 114),
TECB.Create(2, 115)),
TECBlocks.Create(28, TECB.Create(19, 46),
TECB.Create(4, 47)),
TECBlocks.Create(28, TECB.Create(28, 22),
TECB.Create(6, 23)),
TECBlocks.Create(30, TECB.Create(33, 16),
TECB.Create(4, 17)));
end else
if (VersionNum = 27) then
begin
Result := TVersion.Create(27, [6, 34, 62, 90, 118],
TECBlocks.Create(30, TECB.Create(8, 122),
TECB.Create(4, 123)),
TECBlocks.Create(28, TECB.Create(22, 45),
TECB.Create(3, 46)),
TECBlocks.Create(30, TECB.Create(8, 23),
TECB.Create(26, 24)),
TECBlocks.Create(30, TECB.Create(12, 15),
TECB.Create(28, 16)));
end else
if (VersionNum = 28) then
begin
Result := TVersion.Create(28, [6, 26, 50, 74, 98, 122],
TECBlocks.Create(30, TECB.Create(3, 117),
TECB.Create(10, 118)),
TECBlocks.Create(28, TECB.Create(3, 45),
TECB.Create(23, 46)),
TECBlocks.Create(30, TECB.Create(4, 24),
TECB.Create(31, 25)),
TECBlocks.Create(30, TECB.Create(11, 15),
TECB.Create(31, 16)));
end else
if (VersionNum = 29) then
begin
Result := TVersion.Create(29, [6, 30, 54, 78, 102, 126],
TECBlocks.Create(30, TECB.Create(7, 116),
TECB.Create(7, 117)),
TECBlocks.Create(28, TECB.Create(21, 45),
TECB.Create(7, 46)),
TECBlocks.Create(30, TECB.Create(1, 23),
TECB.Create(37, 24)),
TECBlocks.Create(30, TECB.Create(19, 15),
TECB.Create(26, 16)));
end else
if (VersionNum = 30) then
begin
Result := TVersion.Create(30, [6, 26, 52, 78, 104, 130],
TECBlocks.Create(30, TECB.Create(5, 115),
TECB.Create(10, 116)),
TECBlocks.Create(28, TECB.Create(19, 47),
TECB.Create(10, 48)),
TECBlocks.Create(30, TECB.Create(15, 24),
TECB.Create(25, 25)),
TECBlocks.Create(30, TECB.Create(23, 15),
TECB.Create(25, 16)));
end else
if (VersionNum = 31) then
begin
Result := TVersion.Create(31, [6, 30, 56, 82, 108, 134],
TECBlocks.Create(30, TECB.Create(13, 115),
TECB.Create(3, 116)),
TECBlocks.Create(28, TECB.Create(2, 46),
TECB.Create(29, 47)),
TECBlocks.Create(30, TECB.Create(42, 24),
TECB.Create(1, 25)),
TECBlocks.Create(30, TECB.Create(23, 15),
TECB.Create(28, 16)));
end else
if (VersionNum = 32) then
begin
Result := TVersion.Create(32, [6, 34, 60, 86, 112, 138],
TECBlocks.Create(30, TECB.Create(17, 115)),
TECBlocks.Create(28, TECB.Create(10, 46),
TECB.Create(23, 47)),
TECBlocks.Create(30, TECB.Create(10, 24),
TECB.Create(35, 25)),
TECBlocks.Create(30, TECB.Create(19, 15),
TECB.Create(35, 16)));
end else
if (VersionNum = 33) then
begin
Result := TVersion.Create(33, [6, 30, 58, 86, 114, 142],
TECBlocks.Create(30, TECB.Create(17, 115),
TECB.Create(1, 116)),
TECBlocks.Create(28, TECB.Create(14, 46),
TECB.Create(21, 47)),
TECBlocks.Create(30, TECB.Create(29, 24),
TECB.Create(19, 25)),
TECBlocks.Create(30, TECB.Create(11, 15),
TECB.Create(46, 16)));
end else
if (VersionNum = 34) then
begin
Result := TVersion.Create(34, [6, 34, 62, 90, 118, 146],
TECBlocks.Create(30, TECB.Create(13, 115),
TECB.Create(6, 116)),
TECBlocks.Create(28, TECB.Create(14, 46),
TECB.Create(23, 47)),
TECBlocks.Create(30, TECB.Create(44, 24),
TECB.Create(7, 25)),
TECBlocks.Create(30, TECB.Create(59, 16),
TECB.Create(1, 17)));
end else
if (VersionNum = 35) then
begin
Result := TVersion.Create(35, [6, 30, 54, 78, 102, 126, 150],
TECBlocks.Create(30, TECB.Create(12, 121),
TECB.Create(7, 122)),
TECBlocks.Create(28, TECB.Create(12, 47),
TECB.Create(26, 48)),
TECBlocks.Create(30, TECB.Create(39, 24),
TECB.Create(14, 25)),
TECBlocks.Create(30, TECB.Create(22, 15),
TECB.Create(41, 16)));
end else
if (VersionNum = 36) then
begin
Result := TVersion.Create(36, [6, 24, 50, 76, 102, 128, 154],
TECBlocks.Create(30, TECB.Create(6, 121),
TECB.Create(14, 122)),
TECBlocks.Create(28, TECB.Create(6, 47),
TECB.Create(34, 48)),
TECBlocks.Create(30, TECB.Create(46, 24),
TECB.Create(10, 25)),
TECBlocks.Create(30, TECB.Create(2, 15),
TECB.Create(64, 16)));
end else
if (VersionNum = 37) then
begin
Result := TVersion.Create(37, [6, 28, 54, 80, 106, 132, 158],
TECBlocks.Create(30, TECB.Create(17, 122),
TECB.Create(4, 123)),
TECBlocks.Create(28, TECB.Create(29, 46),
TECB.Create(14, 47)),
TECBlocks.Create(30, TECB.Create(49, 24),
TECB.Create(10, 25)),
TECBlocks.Create(30, TECB.Create(24, 15),
TECB.Create(46, 16)));
end else
if (VersionNum = 38) then
begin
Result := TVersion.Create(38, [6, 32, 58, 84, 110, 136, 162],
TECBlocks.Create(30, TECB.Create(4, 122),
TECB.Create(18, 123)),
TECBlocks.Create(28, TECB.Create(13, 46),
TECB.Create(32, 47)),
TECBlocks.Create(30, TECB.Create(48, 24),
TECB.Create(14, 25)),
TECBlocks.Create(30, TECB.Create(42, 15),
TECB.Create(32, 16)));
end else
if (VersionNum = 39) then
begin
Result := TVersion.Create(39, [6, 26, 54, 82, 110, 138, 166],
TECBlocks.Create(30, TECB.Create(20, 117),
TECB.Create(4, 118)),
TECBlocks.Create(28, TECB.Create(40, 47),
TECB.Create(7, 48)),
TECBlocks.Create(30, TECB.Create(43, 24),
TECB.Create(22, 25)),
TECBlocks.Create(30, TECB.Create(10, 15),
TECB.Create(67, 16)));
end else
if (VersionNum = 40) then
begin
Result := TVersion.Create(40, [6, 30, 58, 86, 114, 142, 170],
TECBlocks.Create(30, TECB.Create(19, 118),
TECB.Create(6, 119)),
TECBlocks.Create(28, TECB.Create(18, 47),
TECB.Create(31, 48)),
TECBlocks.Create(30, TECB.Create(34, 24),
TECB.Create(34, 25)),
TECBlocks.Create(30, TECB.Create(20, 15),
TECB.Create(61, 16)));
end else
begin
Result := nil;
end;
end;
{ TMaskUtil }
// Return the mask bit for "getMaskPattern" at "x" and "y". See 8.8 of JISX0510:2004 for mask
// pattern conditions.
function TMaskUtil.GetDataMaskBit(MaskPattern, X, Y: Integer): Boolean;
var
Intermediate: Integer;
Temp: Integer;
begin
Intermediate := 0;
if ((MaskPattern >= 0) and (MaskPattern < NUM_MASK_PATTERNS)) then
begin
case (maskPattern) of
0: Intermediate := (Y + X) and 1;
1: Intermediate := Y and 1;
2: Intermediate := X mod 3;
3: Intermediate := (Y + X) mod 3;
4: Intermediate := ((y shr 1) + (X div 3)) and 1;
5:
begin
Temp := Y * X;
Intermediate := (Temp and 1) + (Temp mod 3);
end;
6:
begin
Temp := Y * X;
Intermediate := ((Temp and 1) + (Temp mod 3)) and 1;
end;
7:
begin
Temp := Y * X;
Intermediate := ((temp mod 3) + ((Y + X) and 1)) and 1;
end;
end;
end;
Result := Intermediate = 0;
end;
{ TECBlocks }
constructor TECBlocks.Create(AECCodewordsPerBlock: Integer; AECBlocks: TECB);
begin
ECCodewordsPerBlock := AECCodewordsPerBlock;
SetLength(ECBlocks, 1);
ECBlocks[0] := AECBlocks;
end;
constructor TECBlocks.Create(AECCodewordsPerBlock: Integer; ECBlocks1,
ECBlocks2: TECB);
begin
ECCodewordsPerBlock := AECCodewordsPerBlock;
SetLength(ECBlocks, 2);
ECBlocks[0] := ECBlocks1;
ECBlocks[1] := ECBlocks2;
end;
destructor TECBlocks.Destroy;
var
X: Integer;
begin
for X := 0 to Length(ECBlocks) - 1 do
begin
ECBlocks[X].Free;
end;
inherited;
end;
function TECBlocks.GetECBlocks: TECBArray;
begin
Result := ECBlocks;
end;
function TECBlocks.GetECCodewordsPerBlock: Integer;
begin
Result := ECCodewordsPerBlock;
end;
function TECBlocks.GetNumBlocks: Integer;
var
Total: Integer;
I: Integer;
begin
Total := 0;
for I := 0 to Length(ECBlocks) - 1 do
begin
Inc(Total, ECBlocks[I].GetCount);
end;
Result := Total;
end;
function TECBlocks.GetTotalECCodewords: Integer;
begin
Result := ECCodewordsPerBlock * GetNumBlocks;
end;
{ TBlockPair }
constructor TBlockPair.Create(BA1, BA2: TByteArray);
begin
FDataBytes := BA1;
FErrorCorrectionBytes := BA2;
end;
function TBlockPair.GetDataBytes: TByteArray;
begin
Result := FDataBytes;
end;
function TBlockPair.GetErrorCorrectionBytes: TByteArray;
begin
Result := FErrorCorrectionBytes;
end;
{ TReedSolomonEncoder }
function TReedSolomonEncoder.BuildGenerator(Degree: Integer): TGenericGFPoly;
var
LastGenerator: TGenericGFPoly;
NextGenerator: TGenericGFPoly;
Poly: TGenericGFPoly;
D: Integer;
CA: TIntegerArray;
begin
if (Degree >= FCachedGenerators.Count) then
begin
LastGenerator := TGenericGFPoly(FCachedGenerators[FCachedGenerators.Count - 1]);
for D := FCachedGenerators.Count to Degree do
begin
SetLength(CA, 2);
CA[0] := 1;
CA[1] := FField.Exp(D - 1 + FField.GetGeneratorBase);
Poly := TGenericGFPoly.Create(FField, CA);
NextGenerator := LastGenerator.Multiply(Poly);
FCachedGenerators.Add(NextGenerator);
LastGenerator := NextGenerator;
end;
end;
Result := TGenericGFPoly(FCachedGenerators[Degree]);
end;
constructor TReedSolomonEncoder.Create(AField: TGenericGF);
var
GenericGFPoly: TGenericGFPoly;
IntArray: TIntegerArray;
begin
FField := AField;
// Contents of FCachedGenerators will be freed by FGenericGF.Destroy
FCachedGenerators := TObjectList.Create(False);
SetLength(IntArray, 1);
IntArray[0] := 1;
GenericGFPoly := TGenericGFPoly.Create(AField, IntArray);
FCachedGenerators.Add(GenericGFPoly);
end;
destructor TReedSolomonEncoder.Destroy;
begin
FCachedGenerators.Free;
inherited;
end;
procedure TReedSolomonEncoder.Encode(ToEncode: TIntegerArray; ECBytes: Integer);
var
DataBytes: Integer;
Generator: TGenericGFPoly;
InfoCoefficients: TIntegerArray;
Info: TGenericGFPoly;
Remainder: TGenericGFPoly;
Coefficients: TIntegerArray;
NumZeroCoefficients: Integer;
I: Integer;
begin
SetLength(Coefficients, 0);
if (ECBytes > 0) then
begin
DataBytes := Length(ToEncode) - ECBytes;
if (DataBytes > 0) then
begin
Generator := BuildGenerator(ECBytes);
SetLength(InfoCoefficients, DataBytes);
InfoCoefficients := Copy(ToEncode, 0, DataBytes);
Info := TGenericGFPoly.Create(FField, InfoCoefficients);
Info := Info.MultiplyByMonomial(ECBytes, 1);
Remainder := Info.Divide(Generator)[1];
Coefficients := Remainder.GetCoefficients;
NumZeroCoefficients := ECBytes - Length(Coefficients);
for I := 0 to NumZeroCoefficients - 1 do
begin
ToEncode[DataBytes + I] := 0;
end;
Move(Coefficients[0], ToEncode[DataBytes + NumZeroCoefficients], Length(Coefficients) * SizeOf(Integer));
end;
end;
end;
{ TECB }
constructor TECB.Create(ACount, ADataCodewords: Integer);
begin
Count := ACount;
DataCodewords := ADataCodewords;
end;
function TECB.GetCount: Integer;
begin
Result := Count;
end;
function TECB.GetDataCodewords: Integer;
begin
Result := DataCodewords;
end;
{ TGenericGFPoly }
function TGenericGFPoly.AddOrSubtract(Other: TGenericGFPoly): TGenericGFPoly;
var
SmallerCoefficients: TIntegerArray;
LargerCoefficients: TIntegerArray;
Temp: TIntegerArray;
SumDiff: TIntegerArray;
LengthDiff: Integer;
I: Integer;
begin
SetLength(SmallerCoefficients, 0);
SetLength(LargerCoefficients, 0);
SetLength(Temp, 0);
SetLength(SumDiff, 0);
Result := nil;
if (Assigned(Other)) then
begin
if (FField = Other.FField) then
begin
if (IsZero) then
begin
Result := Other;
Exit;
end;
if (Other.IsZero) then
begin
Result := Self;
Exit;
end;
SmallerCoefficients := FCoefficients;
LargerCoefficients := Other.Coefficients;
if (Length(SmallerCoefficients) > Length(LargerCoefficients)) then
begin
Temp := smallerCoefficients;
SmallerCoefficients := LargerCoefficients;
LargerCoefficients := temp;
end;
SetLength(SumDiff, Length(LargerCoefficients));
LengthDiff := Length(LargerCoefficients) - Length(SmallerCoefficients);
// Copy high-order terms only found in higher-degree polynomial's coefficients
if (LengthDiff > 0) then
begin
//SumDiff := Copy(LargerCoefficients, 0, LengthDiff);
Move(LargerCoefficients[0], SumDiff[0], LengthDiff * SizeOf(Integer));
end;
for I := LengthDiff to Length(LargerCoefficients) - 1 do
begin
SumDiff[I] := TGenericGF.AddOrSubtract(SmallerCoefficients[I - LengthDiff], LargerCoefficients[I]);
end;
Result := TGenericGFPoly.Create(FField, SumDiff);
end;
end;
end;
function TGenericGFPoly.Coefficients: TIntegerArray;
begin
Result := FCoefficients;
end;
constructor TGenericGFPoly.Create(AField: TGenericGF;
ACoefficients: TIntegerArray);
var
CoefficientsLength: Integer;
FirstNonZero: Integer;
begin
FField := AField;
SetLength(FField.FPolyList, Length(FField.FPolyList) + 1);
FField.FPolyList[Length(FField.FPolyList) - 1] := Self;
CoefficientsLength := Length(ACoefficients);
if ((CoefficientsLength > 1) and (ACoefficients[0] = 0)) then
begin
// Leading term must be non-zero for anything except the constant polynomial "0"
FirstNonZero := 1;
while ((FirstNonZero < CoefficientsLength) and (ACoefficients[FirstNonZero] = 0)) do
begin
Inc(FirstNonZero);
end;
if (FirstNonZero = CoefficientsLength) then
begin
FCoefficients := AField.GetZero.Coefficients;
end else
begin
SetLength(FCoefficients, CoefficientsLength - FirstNonZero);
FCoefficients := Copy(ACoefficients, FirstNonZero, Length(FCoefficients));
end;
end else
begin
FCoefficients := ACoefficients;
end;
end;
destructor TGenericGFPoly.Destroy;
begin
Self.FField := FField;
inherited;
end;
function TGenericGFPoly.Divide(Other: TGenericGFPoly): TGenericGFPolyArray;
var
Quotient: TGenericGFPoly;
Remainder: TGenericGFPoly;
DenominatorLeadingTerm: Integer;
InverseDenominatorLeadingTerm: integer;
DegreeDifference: Integer;
Scale: Integer;
Term: TGenericGFPoly;
IterationQuotient: TGenericGFPoly;
begin
SetLength(Result, 0);
if ((FField = Other.FField) and (not Other.IsZero)) then
begin
Quotient := FField.GetZero;
Remainder := Self;
DenominatorLeadingTerm := Other.GetCoefficient(Other.GetDegree);
InverseDenominatorLeadingTerm := FField.Inverse(DenominatorLeadingTerm);
while ((Remainder.GetDegree >= Other.GetDegree) and (not Remainder.IsZero)) do
begin
DegreeDifference := Remainder.GetDegree - Other.GetDegree;
Scale := FField.Multiply(Remainder.GetCoefficient(Remainder.GetDegree), InverseDenominatorLeadingTerm);
Term := Other.MultiplyByMonomial(DegreeDifference, Scale);
IterationQuotient := FField.BuildMonomial(degreeDifference, scale);
Quotient := Quotient.AddOrSubtract(IterationQuotient);
Remainder := Remainder.AddOrSubtract(Term);
end;
SetLength(Result, 2);
Result[0] := Quotient;
Result[1] := Remainder;
end;
end;
function TGenericGFPoly.GetCoefficient(Degree: Integer): Integer;
begin
Result := FCoefficients[Length(FCoefficients) - 1 - Degree];
end;
function TGenericGFPoly.GetCoefficients: TIntegerArray;
begin
Result := FCoefficients;
end;
function TGenericGFPoly.GetDegree: Integer;
begin
Result := Length(FCoefficients) - 1;
end;
function TGenericGFPoly.IsZero: Boolean;
begin
Result := FCoefficients[0] = 0;
end;
function TGenericGFPoly.Multiply(Other: TGenericGFPoly): TGenericGFPoly;
var
ACoefficients: TIntegerArray;
BCoefficients: TIntegerArray;
Product: TIntegerArray;
ALength: Integer;
BLength: Integer;
I: Integer;
J: Integer;
ACoeff: Integer;
begin
SetLength(ACoefficients, 0);
SetLength(BCoefficients, 0);
Result := nil;
if (FField = Other.FField) then
begin
if (IsZero or Other.IsZero) then
begin
Result := FField.GetZero;
Exit;
end;
ACoefficients := FCoefficients;
ALength := Length(ACoefficients);
BCoefficients := Other.Coefficients;
BLength := Length(BCoefficients);
SetLength(Product, aLength + bLength - 1);
for I := 0 to ALength - 1 do
begin
ACoeff := ACoefficients[I];
for J := 0 to BLength - 1 do
begin
Product[I + J] := TGenericGF.AddOrSubtract(Product[I + J],
FField.Multiply(ACoeff, BCoefficients[J]));
end;
end;
Result := TGenericGFPoly.Create(FField, Product);
end;
end;
function TGenericGFPoly.MultiplyByMonomial(Degree,
Coefficient: Integer): TGenericGFPoly;
var
I: Integer;
Size: Integer;
Product: TIntegerArray;
begin
Result := nil;
if (Degree >= 0) then
begin
if (Coefficient = 0) then
begin
Result := FField.GetZero;
Exit;
end;
Size := Length(Coefficients);
SetLength(Product, Size + Degree);
for I := 0 to Size - 1 do
begin
Product[I] := FField.Multiply(FCoefficients[I], Coefficient);
end;
Result := TGenericGFPoly.Create(FField, Product);
end;
end;
{ TGenericGF }
class function TGenericGF.AddOrSubtract(A, B: Integer): Integer;
begin
Result := A xor B;
end;
function TGenericGF.BuildMonomial(Degree, Coefficient: Integer): TGenericGFPoly;
var
Coefficients: TIntegerArray;
begin
CheckInit();
if (Degree >= 0) then
begin
if (Coefficient = 0) then
begin
Result := FZero;
Exit;
end;
SetLength(Coefficients, Degree + 1);
Coefficients[0] := Coefficient;
Result := TGenericGFPoly.Create(Self, Coefficients);
end else
begin
Result := nil;
end;
end;
procedure TGenericGF.CheckInit;
begin
if (not FInitialized) then
begin
Initialize;
end;
end;
constructor TGenericGF.Create(Primitive, Size, B: Integer);
begin
FInitialized := False;
FPrimitive := Primitive;
FSize := Size;
FGeneratorBase := B;
if (FSize < 0) then
begin
Initialize;
end;
end;
class function TGenericGF.CreateQRCodeField256: TGenericGF;
begin
Result := TGenericGF.Create($011D, 256, 0);
end;
destructor TGenericGF.Destroy;
var
X: Integer;
Y: Integer;
begin
for X := 0 to Length(FPolyList) - 1 do
begin
if (Assigned(FPolyList[X])) then
begin
for Y := X + 1 to Length(FPolyList) - 1 do
begin
if (FPolyList[Y] = FPolyList[X]) then
begin
FPolyList[Y] := nil;
end;
end;
FPolyList[X].Free;
end;
end;
inherited;
end;
function TGenericGF.Exp(A: Integer): Integer;
begin
CheckInit;
Result := FExpTable[A];
end;
function TGenericGF.GetGeneratorBase: Integer;
begin
Result := FGeneratorBase;
end;
function TGenericGF.GetZero: TGenericGFPoly;
begin
CheckInit;
Result := FZero;
end;
procedure TGenericGF.Initialize;
var
X: Integer;
I: Integer;
CA: TIntegerArray;
begin
SetLength(FExpTable, FSize);
SetLength(FLogTable, FSize);
X := 1;
for I := 0 to FSize - 1 do
begin
FExpTable[I] := x;
X := X shl 1; // x = x * 2; we're assuming the generator alpha is 2
if (X >= FSize) then
begin
X := X xor FPrimitive;
X := X and (FSize - 1);
end;
end;
for I := 0 to FSize - 2 do
begin
FLogTable[FExpTable[I]] := I;
end;
// logTable[0] == 0 but this should never be used
SetLength(CA, 1);
CA[0] := 0;
FZero := TGenericGFPoly.Create(Self, CA);
SetLength(CA, 1);
CA[0] := 1;
FOne := TGenericGFPoly.Create(Self, CA);
FInitialized := True;
end;
function TGenericGF.Inverse(A: Integer): Integer;
begin
CheckInit;
if (a <> 0) then
begin
Result := FExpTable[FSize - FLogTable[A] - 1];
end else
begin
Result := 0;
end;
end;
function TGenericGF.Multiply(A, B: Integer): Integer;
begin
CheckInit;
if ((A <> 0) and (B <> 0)) then
begin
Result := FExpTable[(FLogTable[A] + FLogTable[B]) mod (FSize - 1)];
end else
begin
Result := 0;
end;
end;
function GenerateQRCode(const Input: WideString; EncodeOptions: Integer; Level: TErrorCorrectionLevel; aCodePage: Longint): T2DBooleanArray;
var
Encoder: TEncoder;
//Level: TErrorCorrectionLevel;
QRCode: TQRCode;
X: Integer;
Y: Integer;
begin
//Level := TErrorCorrectionLevel.Create;
//Level.FBits := 1;
Encoder := TEncoder.Create;
Encoder.Codepage := aCodePage;
QRCode := TQRCode.Create;
try
Encoder.Encode(Input, EncodeOptions, Level, QRCode);
if (Assigned(QRCode.FMatrix)) then
begin
SetLength(Result, QRCode.FMatrix.FHeight);
for Y := 0 to QRCode.FMatrix.FHeight - 1 do
begin
SetLength(Result[Y], QRCode.FMatrix.FWidth);
for X := 0 to QRCode.FMatrix.FWidth - 1 do
begin
Result[Y][X] := QRCode.FMatrix.Get(Y, X) = 1;
end;
end;
end;
finally
QRCode.Free;
Encoder.Free;
//Level.Free;
end;
end;
{ TDelphiZXingQRCode }
constructor TDelphiZXingQRCode.Create;
begin
FData := '';
FEncoding := qrAuto;
FQuietZone := 4;
FRows := 0;
FColumns := 0;
FErrorLevels := ecL;
FCodePage := 0;
FLevel := TErrorCorrectionLevel.Create;
end;
destructor TDelphiZXingQRCode.Destroy;
begin
FLevel.Free;
end;
function TDelphiZXingQRCode.GetIsBlack(Row, Column: Integer): Boolean;
begin
Dec(Row, FQuietZone);
Dec(Column, FQuietZone);
if ((Row >= 0) and (Column >= 0) and (Row < (FRows - FQuietZone * 2)) and (Column < (FColumns - FQuietZone * 2))) then
begin
Result := FElements[Column, Row];
end else
begin
Result := False;
end;
end;
procedure TDelphiZXingQRCode.SetCodePage(const Value: Longint);
begin
if (FCodePage <> Value) then
begin
FCodePage := Value;
Update;
end;
end;
procedure TDelphiZXingQRCode.SetData(const NewData: WideString);
begin
if (FData <> NewData) then
begin
FData := NewData;
Update;
end;
end;
procedure TDelphiZXingQRCode.SetEncoding(NewEncoding: TQRCodeEncoding);
begin
if (FEncoding <> NewEncoding) then
begin
FEncoding := NewEncoding;
Update;
end;
end;
procedure TDelphiZXingQRCode.SetErrorLevels(const Value: TQRErrorLevels);
begin
FErrorLevels := Value;
Update;
end;
procedure TDelphiZXingQRCode.SetQuietZone(NewQuietZone: Integer);
begin
if ((FQuietZone <> NewQuietZone) and (NewQuietZone >= 0) and (NewQuietZone <= 100)) then
begin
FQuietZone := NewQuietZone;
Update;
end;
end;
procedure TDelphiZXingQRCode.Update;
begin
FLevel.FBits := QRErrorLevelsBits[Ord(FErrorLevels)];
FLevel.Ordinal := Ord(FErrorLevels);
FElements := GenerateQRCode(FData, Ord(FEncoding), FLevel, FCodePage);
FRows := Length(FElements) + FQuietZone * 2;
FColumns := FRows;
end;
end.