FastReport_2022_VCL/Source/rc_AlgRef.pas
2024-01-01 16:13:08 +01:00

571 lines
18 KiB
ObjectPascal

{* rijndael-alg-ref.c v2.0 August '99 *}
(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* --------------------------------- *
* DELPHI *
* Rijndael algorithm implementation *
* --------------------------------- *
* December 2000 *
* *
* Authors: Paulo Barreto *
* Vincent Rijmen *
* *
* Delphi translation by Sergey Kirichenko (ksv@cheerful.com) *
* Home Page: http://rcolonel.tripod.com *
* Adapted to FastReport: Alexander Tzyganenko *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *)
unit rc_AlgRef;
{$I frx.inc}
interface
const
MAXBC = (256 div 32);
MAXKC = (256 div 32);
MAXROUNDS = 14;
type
word8 = byte; // unsigned 8-bit
word16 = word; // unsigned 16-bit
word32 = longword; // unsigned 32-bit
TArrayK = array [0..4-1, 0..MAXKC-1] of word8;
PArrayK = ^TArrayK;
TArrayRK = array [0..MAXROUNDS+1-1, 0..4-1, 0..MAXBC-1] of word8;
TArrayBox= array [0..256-1] of word8;
{ Calculate the necessary round keys
The number of calculations depends on keyBits and blockBits }
function rijndaelKeySched(k: TArrayK; keyBits, blockBits: integer;
var W: TArrayRK): integer;
{ Encryption of one block. }
function rijndaelEncrypt(var a: TArrayK; keyBits, blockBits: integer; rk: TArrayRK): integer;
{ Encrypt only a certain number of rounds.
Only used in the Intermediate Value Known Answer Test. }
function rijndaelEncryptRound(var a: TArrayK; keyBits, blockBits: integer;
rk: TArrayRK; var irounds: integer): integer;
{ Decryption of one block. }
function rijndaelDecrypt(var a: TArrayK; keyBits, blockBits: integer; rk: TArrayRK): integer;
{ Decrypt only a certain number of rounds.
Only used in the Intermediate Value Known Answer Test.
Operations rearranged such that the intermediate values
of decryption correspond with the intermediate values
of encryption. }
function rijndaelDecryptRound(var a: TArrayK; keyBits, blockBits: integer;
rk: TArrayRK; var irounds: integer): integer;
implementation
{
Tables that are needed by the reference implementation.
The tables implement the S-box and its inverse, and also
some temporary tables needed for multiplying in the finite field GF(2^8)
}
const
Logtable: array [0..256-1] of word8 = (
0, 0, 25, 1, 50, 2, 26, 198, 75, 199, 27, 104, 51, 238, 223, 3,
100, 4, 224, 14, 52, 141, 129, 239, 76, 113, 8, 200, 248, 105, 28, 193,
125, 194, 29, 181, 249, 185, 39, 106, 77, 228, 166, 114, 154, 201, 9, 120,
101, 47, 138, 5, 33, 15, 225, 36, 18, 240, 130, 69, 53, 147, 218, 142,
150, 143, 219, 189, 54, 208, 206, 148, 19, 92, 210, 241, 64, 70, 131, 56,
102, 221, 253, 48, 191, 6, 139, 98, 179, 37, 226, 152, 34, 136, 145, 16,
126, 110, 72, 195, 163, 182, 30, 66, 58, 107, 40, 84, 250, 133, 61, 186,
43, 121, 10, 21, 155, 159, 94, 202, 78, 212, 172, 229, 243, 115, 167, 87,
175, 88, 168, 80, 244, 234, 214, 116, 79, 174, 233, 213, 231, 230, 173, 232,
44, 215, 117, 122, 235, 22, 11, 245, 89, 203, 95, 176, 156, 169, 81, 160,
127, 12, 246, 111, 23, 196, 73, 236, 216, 67, 31, 45, 164, 118, 123, 183,
204, 187, 62, 90, 251, 96, 177, 134, 59, 82, 161, 108, 170, 85, 41, 157,
151, 178, 135, 144, 97, 190, 220, 252, 188, 149, 207, 205, 55, 63, 91, 209,
83, 57, 132, 60, 65, 162, 109, 71, 20, 42, 158, 93, 86, 242, 211, 171,
68, 17, 146, 217, 35, 32, 46, 137, 180, 124, 184, 38, 119, 153, 227, 165,
103, 74, 237, 222, 197, 49, 254, 24, 13, 99, 140, 128, 192, 247, 112, 7 );
Alogtable: array [0..256-1] of word8 = (
1, 3, 5, 15, 17, 51, 85, 255, 26, 46, 114, 150, 161, 248, 19, 53,
95, 225, 56, 72, 216, 115, 149, 164, 247, 2, 6, 10, 30, 34, 102, 170,
229, 52, 92, 228, 55, 89, 235, 38, 106, 190, 217, 112, 144, 171, 230, 49,
83, 245, 4, 12, 20, 60, 68, 204, 79, 209, 104, 184, 211, 110, 178, 205,
76, 212, 103, 169, 224, 59, 77, 215, 98, 166, 241, 8, 24, 40, 120, 136,
131, 158, 185, 208, 107, 189, 220, 127, 129, 152, 179, 206, 73, 219, 118, 154,
181, 196, 87, 249, 16, 48, 80, 240, 11, 29, 39, 105, 187, 214, 97, 163,
254, 25, 43, 125, 135, 146, 173, 236, 47, 113, 147, 174, 233, 32, 96, 160,
251, 22, 58, 78, 210, 109, 183, 194, 93, 231, 50, 86, 250, 21, 63, 65,
195, 94, 226, 61, 71, 201, 64, 192, 91, 237, 44, 116, 156, 191, 218, 117,
159, 186, 213, 100, 172, 239, 42, 126, 130, 157, 188, 223, 122, 142, 137, 128,
155, 182, 193, 88, 232, 35, 101, 175, 234, 37, 111, 177, 200, 67, 197, 84,
252, 31, 33, 99, 165, 244, 7, 9, 27, 45, 119, 153, 176, 203, 70, 202,
69, 207, 74, 222, 121, 139, 134, 145, 168, 227, 62, 66, 198, 81, 243, 14,
18, 54, 90, 238, 41, 123, 141, 140, 143, 138, 133, 148, 167, 242, 13, 23,
57, 75, 221, 124, 132, 151, 162, 253, 28, 36, 108, 180, 199, 82, 246, 1 );
S: TArrayBox{array [0..256-1] of word8} = (
99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118,
202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192,
183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21,
4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117,
9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132,
83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207,
208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168,
81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210,
205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115,
96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219,
224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121,
231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8,
186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138,
112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158,
225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223,
140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22 );
Si: TArrayBox{array [0..256-1] of word8} = (
82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215, 251,
124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222, 233, 203,
84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66, 250, 195, 78,
8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73, 109, 139, 209, 37,
114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92, 204, 93, 101, 182, 146,
108, 112, 72, 80, 253, 237, 185, 218, 94, 21, 70, 87, 167, 141, 157, 132,
144, 216, 171, 0, 140, 188, 211, 10, 247, 228, 88, 5, 184, 179, 69, 6,
208, 44, 30, 143, 202, 63, 15, 2, 193, 175, 189, 3, 1, 19, 138, 107,
58, 145, 17, 65, 79, 103, 220, 234, 151, 242, 207, 206, 240, 180, 230, 115,
150, 172, 116, 34, 231, 173, 53, 133, 226, 249, 55, 232, 28, 117, 223, 110,
71, 241, 26, 113, 29, 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27,
252, 86, 62, 75, 198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244,
31, 221, 168, 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95,
96, 81, 127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239,
160, 224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97,
23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12, 125 );
rcon: array [0..30-1] of word32 = (
$01,$02, $04, $08, $10, $20, $40, $80, $1b, $36, $6c,
$d8, $ab, $4d, $9a, $2f, $5e, $bc, $63, $c6, $97, $35,
$6a, $d4, $b3, $7d, $fa, $ef, $c5, $91 );
shifts: array [0..3-1, 0..4-1, 0..2-1] of word8 = (
((0, 0),(1, 3),(2, 2),(3, 1)),
((0, 0),(1, 5),(2, 4),(3, 3)),
((0, 0),(1, 7),(3, 5),(4, 4)));
function iif(bExpression: boolean; iResTrue,iResFalse: integer): integer;
begin
if bExpression then
result:= iResTrue
else
result:= iResFalse;
end;
function mul(a, b: word8): word8;
{ multiply two elements of GF(2^m)
needed for MixColumn and InvMixColumn }
begin
if (a<>0) and (b<>0) then
result:= Alogtable[(Logtable[a] + Logtable[b]) mod 255]
else
result:= 0;
end;
procedure KeyAddition(var a: TArrayK; rk: PArrayK; BC:word8);
{ Exor corresponding text input and round key input bytes }
var
i, j: integer;
begin
for i:= 0 to 4-1 do
for j:= 0 to BC-1 do
a[i][j]:= a[i][j] xor rk[i][j];
end;
procedure ShiftRow(var a: TArrayK; d, BC: word8);
{ Row 0 remains unchanged
The other three rows are shifted a variable amount }
var
tmp: array [0..MAXBC-1] of word8;
i, j: integer;
begin
for i:= 1 to 4-1 do
begin
for j:= 0 to BC-1 do
tmp[j]:= a[i][(j + shifts[((BC - 4) shr 1)][i][d]) mod BC];
for j:= 0 to BC-1 do
a[i][j]:= tmp[j];
end;
end;
procedure Substitution(var a: TArrayK; const box: TArrayBox; BC: word8);
{ Replace every byte of the input by the byte at that place
in the nonlinear S-box }
var
i, j: integer;
begin
for i:= 0 to 4-1 do
for j:= 0 to BC-1 do
a[i][j]:= box[a[i][j]];
end;
procedure MixColumn(var a: TArrayK; BC: word8);
{ Mix the four bytes of every column in a linear way }
var
b: TArrayK;
i, j: integer;
begin
for j:= 0 to BC-1 do
for i:= 0 to 4-1 do
b[i][j]:= mul(2,a[i][j])
xor mul(3,a[(i + 1) mod 4][j])
xor a[(i + 2) mod 4][j]
xor a[(i + 3) mod 4][j];
for i:= 0 to 4-1 do
for j:= 0 to BC-1 do
a[i][j]:= b[i][j];
end;
procedure InvMixColumn(var a: TArrayK; BC: word8);
{ Mix the four bytes of every column in a linear way
This is the opposite operation of Mixcolumn }
var
b: TArrayK;
i, j: integer;
begin
for j:= 0 to BC-1 do
for i:= 0 to 4-1 do
b[i][j]:= mul($e,a[i][j])
xor mul($b,a[(i + 1) mod 4][j])
xor mul($d,a[(i + 2) mod 4][j])
xor mul($9,a[(i + 3) mod 4][j]);
for i:= 0 to 4-1 do
for j:= 0 to BC-1 do
a[i][j]:= b[i][j];
end;
function rijndaelKeySched(k: TArrayK; keyBits, blockBits: integer;
var W: TArrayRK): integer;
{ Calculate the necessary round keys
The number of calculations depends on keyBits and blockBits }
var
KC, BC, ROUNDS: integer;
i, j, t, rconpointer: integer;
tk: array [0..4-1, 0..MAXKC-1] of word8;
begin
rconpointer:= 0;
case (keyBits) of
128: KC:= 4;
192: KC:= 6;
256: KC:= 8;
else
begin
result:= -1;
exit;
end;
end;
case (blockBits) of
128: BC:= 4;
192: BC:= 6;
256: BC:= 8;
else
begin
result:= -2;
exit;
end;
end;
case iif(keyBits >= blockBits, keyBits, blockBits) of
128: ROUNDS:= 10;
192: ROUNDS:= 12;
256: ROUNDS:= 14;
else
begin
result:= -3; {* this cannot happen *}
exit;
end;
end;
for j:= 0 to KC-1 do
for i:= 0 to 4-1 do
tk[i][j]:= k[i][j];
{ copy values into round key array }
t:= 0;
j:= 0;
while ((j < KC) and (t < (ROUNDS+1)*BC)) do
begin
for i:= 0 to 4-1 do
W[t div BC][i][t mod BC]:= tk[i][j];
inc(j);
inc(t);
end;
while (t < (ROUNDS+1)*BC) do { while not enough round key material calculated }
begin
{ calculate new values }
for i:= 0 to 4-1 do
tk[i][0]:= tk[i][0] xor S[tk[(i+1) mod 4][KC-1]];
tk[0][0]:= tk[0][0] xor rcon[rconpointer];
inc(rconpointer);
if (KC <> 8) then
begin
for j:= 1 to KC-1 do
for i:= 0 to 4-1 do
tk[i][j]:= tk[i][j] xor tk[i][j-1];
end
else
begin
j:= 1;
while j < KC/2 do
begin
for i:= 0 to 4-1 do
tk[i][j]:= tk[i][j] xor tk[i][j-1];
inc(j);
end;
for i:= 0 to 4-1 do
tk[i][KC div 2]:= tk[i][KC div 2] xor S[tk[i][(KC div 2) - 1]];
j:= (KC div 2) + 1;
while j < KC do
begin
for i:= 0 to 4-1 do
tk[i][j]:= tk[i][j] xor tk[i][j-1];
inc(j);
end;
end;
{ copy values into round key array }
j:= 0;
while ((j < KC) and (t < (ROUNDS+1)*BC)) do
begin
for i:= 0 to 4-1 do
W[t div BC][i][t mod BC]:= tk[i][j];
inc(j);
inc(t);
end;
end;
result:= 0;
end;
function rijndaelEncrypt(var a: TArrayK; keyBits, blockBits: integer; rk: TArrayRK): integer;
{ Encryption of one block. }
var
r, BC, ROUNDS: integer;
begin
case (blockBits) of
128: BC:= 4;
192: BC:= 6;
256: BC:= 8;
else
begin
result:= -2;
exit;
end;
end;
case iif(keyBits >= blockBits, keyBits, blockBits) of
128: ROUNDS:= 10;
192: ROUNDS:= 12;
256: ROUNDS:= 14;
else
begin
result:= -3; { this cannot happen }
exit;
end;
end;
{ begin with a key addition }
KeyAddition(a,addr(rk[0]),BC);
{ ROUNDS-1 ordinary rounds }
for r:= 1 to ROUNDS-1 do
begin
Substitution(a,S,BC);
ShiftRow(a,0,BC);
MixColumn(a,BC);
KeyAddition(a,addr(rk[r]),BC);
end;
{ Last round is special: there is no MixColumn }
Substitution(a,S,BC);
ShiftRow(a,0,BC);
KeyAddition(a,addr(rk[ROUNDS]),BC);
result:= 0;
end;
function rijndaelEncryptRound(var a: TArrayK; keyBits, blockBits: integer;
rk: TArrayRK; var irounds: integer): integer;
{ Encrypt only a certain number of rounds.
Only used in the Intermediate Value Known Answer Test. }
var
r, BC, ROUNDS: integer;
begin
case (blockBits) of
128: BC:= 4;
192: BC:= 6;
256: BC:= 8;
else
begin
result:= -2;
exit;
end;
end;
case iif(keyBits >= blockBits, keyBits, blockBits) of
128: ROUNDS:= 10;
192: ROUNDS:= 12;
256: ROUNDS:= 14;
else
begin
result:= -3; { this cannot happen }
exit;
end;
end;
{ make number of rounds sane }
if (irounds > ROUNDS) then
irounds:= ROUNDS;
{ begin with a key addition }
KeyAddition(a,addr(rk[0]),BC);
{ at most ROUNDS-1 ordinary rounds }
r:= 1;
while (r <= irounds) and (r < ROUNDS) do
begin
Substitution(a,S,BC);
ShiftRow(a,0,BC);
MixColumn(a,BC);
KeyAddition(a,addr(rk[r]),BC);
inc(r);
end;
{ if necessary, do the last, special, round: }
if (irounds = ROUNDS) then
begin
Substitution(a,S,BC);
ShiftRow(a,0,BC);
KeyAddition(a,addr(rk[ROUNDS]),BC);
end;
result:= 0;
end;
function rijndaelDecrypt(var a: TArrayK; keyBits, blockBits: integer; rk: TArrayRK): integer;
var
r, BC, ROUNDS: integer;
begin
case (blockBits) of
128: BC:= 4;
192: BC:= 6;
256: BC:= 8;
else
begin
result:= -2;
exit;
end;
end;
case iif(keyBits >= blockBits, keyBits, blockBits) of
128: ROUNDS:= 10;
192: ROUNDS:= 12;
256: ROUNDS:= 14;
else
begin
result:= -3; { this cannot happen }
exit;
end;
end;
{ To decrypt: apply the inverse operations of the encrypt routine,
in opposite order
(KeyAddition is an involution: it 's equal to its inverse)
(the inverse of Substitution with table S is Substitution with the inverse table of S)
(the inverse of Shiftrow is Shiftrow over a suitable distance) }
{ First the special round:
without InvMixColumn
with extra KeyAddition }
KeyAddition(a,addr(rk[ROUNDS]),BC);
Substitution(a,Si,BC);
ShiftRow(a,1,BC);
{ ROUNDS-1 ordinary rounds }
for r:= ROUNDS-1 downto 0+1 do
begin
KeyAddition(a,addr(rk[r]),BC);
InvMixColumn(a,BC);
Substitution(a,Si,BC);
ShiftRow(a,1,BC);
end;
{ End with the extra key addition }
KeyAddition(a,addr(rk[0]),BC);
result:= 0;
end;
function rijndaelDecryptRound(var a: TArrayK; keyBits, blockBits: integer;
rk: TArrayRK; var irounds: integer): integer;
{ Decrypt only a certain number of rounds.
Only used in the Intermediate Value Known Answer Test.
Operations rearranged such that the intermediate values
of decryption correspond with the intermediate values
of encryption. }
var
r, BC, ROUNDS: integer;
begin
case (blockBits) of
128: BC:= 4;
192: BC:= 6;
256: BC:= 8;
else
begin
result:= -2;
exit;
end;
end;
case iif(keyBits >= blockBits, keyBits, blockBits) of
128: ROUNDS:= 10;
192: ROUNDS:= 12;
256: ROUNDS:= 14;
else
begin
result:= -3; { this cannot happen }
exit;
end;
end;
{ make number of rounds sane }
if (irounds > ROUNDS) then
irounds:= ROUNDS;
{ First the special round:
without InvMixColumn
with extra KeyAddition }
KeyAddition(a,addr(rk[ROUNDS]),BC);
Substitution(a,Si,BC);
ShiftRow(a,1,BC);
{ ROUNDS-1 ordinary rounds }
for r:= ROUNDS-1 downto irounds+1 do
begin
KeyAddition(a,addr(rk[r]),BC);
InvMixColumn(a,BC);
Substitution(a,Si,BC);
ShiftRow(a,1,BC);
end;
if (irounds = 0) then
{ End with the extra key addition }
KeyAddition(a,addr(rk[0]),BC);
result:= 0;
end;
end.