delphimvcframework/lib/dmustache/SynDoubleToText.inc

951 lines
28 KiB
PHP
Raw Normal View History

/// efficient double to text conversion using the GRISU-1 algorithm
// - as a complement to SynCommons, which tended to increase too much
// - licensed under a MPL/GPL/LGPL tri-license; version 1.18
{
Implement 64-bit floating point (double) to ASCII conversion using the
GRISU-1 efficient algorithm.
Original Code in flt_core.inc flt_conv.inc flt_pack.inc from FPC RTL.
Copyright (C) 2013 by Max Nazhalov
Licenced with LGPL 2 with the linking exception.
If you don't agree with these License terms, disable this feature
by undefining DOUBLETOSHORT_USEGRISU in Synopse.inc
GRISU Original Algorithm
Copyright (c) 2009 Florian Loitsch
We extracted a double-to-ascii only cut-down version of those files,
and made a huge refactoring to reach the best performance, especially
tuning the Intel target with some dedicated asm and code rewrite.
With Delphi 10.3 on Win32: (no benefit)
100000 FloatToText in 38.11ms i.e. 2,623,570/s, aver. 0us, 47.5 MB/s
100000 str in 43.19ms i.e. 2,315,082/s, aver. 0us, 50.7 MB/s
100000 DoubleToShort in 45.50ms i.e. 2,197,367/s, aver. 0us, 43.8 MB/s
100000 DoubleToAscii in 42.44ms i.e. 2,356,045/s, aver. 0us, 47.8 MB/s
With Delphi 10.3 on Win64:
100000 FloatToText in 61.83ms i.e. 1,617,233/s, aver. 0us, 29.3 MB/s
100000 str in 53.20ms i.e. 1,879,663/s, aver. 0us, 41.2 MB/s
100000 DoubleToShort in 18.45ms i.e. 5,417,998/s, aver. 0us, 108 MB/s
100000 DoubleToAscii in 18.19ms i.e. 5,496,921/s, aver. 0us, 111.5 MB/s
With FPC on Win32:
100000 FloatToText in 115.62ms i.e. 864,842/s, aver. 1us, 15.6 MB/s
100000 str in 57.30ms i.e. 1,745,109/s, aver. 0us, 39.9 MB/s
100000 DoubleToShort in 23.88ms i.e. 4,187,078/s, aver. 0us, 83.5 MB/s
100000 DoubleToAscii in 23.34ms i.e. 4,284,490/s, aver. 0us, 86.9 MB/s
With FPC on Win64:
100000 FloatToText in 76.92ms i.e. 1,300,052/s, aver. 0us, 23.5 MB/s
100000 str in 27.70ms i.e. 3,609,456/s, aver. 0us, 82.6 MB/s
100000 DoubleToShort in 14.73ms i.e. 6,787,944/s, aver. 0us, 135.4 MB/s
100000 DoubleToAscii in 13.78ms i.e. 7,253,735/s, aver. 0us, 147.2 MB/s
With FPC on Linux x86_64:
100000 FloatToText in 81.48ms i.e. 1,227,249/s, aver. 0us, 22.2 MB/s
100000 str in 36.98ms i.e. 2,703,871/s, aver. 0us, 61.8 MB/s
100000 DoubleToShort in 13.11ms i.e. 7,626,601/s, aver. 0us, 152.1 MB/s
100000 DoubleToAscii in 12.59ms i.e. 7,942,180/s, aver. 0us, 161.2 MB/s
- Our rewrite is twice faster than original flt_conv.inc from FPC RTL (str)
- Delphi Win32 has trouble making 64-bit computation - no benefit since it
has good optimized i87 asm (but slower than our code with FPC/Win32)
- FPC is more efficient when compiling integer arithmetic; we avoided slow
division by calling our Div100(), but Delphi Win64 is still far behind
- Delphi Win64 has very slow FloatToText and str()
}
// Controls printing of NaN-sign.
// Undefine to print NaN sign during float->ASCII conversion.
// IEEE does not interpret the sign of a NaN, so leave it defined.
{$define GRISU1_F2A_NAN_SIGNLESS}
// Controls rounding of generated digits when formatting with narrowed
// width (either fixed or exponential notation).
// Traditionally, FPC and BP7/Delphi use "roundTiesToAway" mode.
// Undefine to use "roundTiesToEven" approach.
{$define GRISU1_F2A_HALF_ROUNDUP}
// This one is a hack against Grusu sub-optimality.
// It may be used only strictly together with GRISU1_F2A_HALF_ROUNDUP.
// It does not violate most general rules due to the fact that it is
// applicable only when formatting with narrowed width, where the fine
// view is more desirable, and the precision is already lost, so it can
// be used in general-purpose applications.
// Refer to its implementation.
{$define GRISU1_F2A_AGRESSIVE_ROUNDUP} // Defining this fixes several tests.
// Undefine to enable SNaN support.
// Note: IEEE [754-2008, page 31] requires (1) to recognize "SNaN" during
// ASCII->float, and (2) to generate the "invalid FP operation" exception
// either when SNaN is printed as "NaN", or "SNaN" is evaluated to QNaN,
// so it would be preferable to undefine these settings,
// but the FPC RTL is not ready for this right now..
{$define GRISU1_F2A_NO_SNAN}
/// If Value=0 would just store '0', whatever frac_digits is supplied.
{$define GRISU1_F2A_ZERONOFRACT}
{$ifndef FPC}
// those functions are intrinsics with FPC :)
function BSRdword(c: cardinal): cardinal;
asm
{$ifdef CPU64}
.noframe
mov eax, c
{$endif}
bsr eax, eax
end; // in our code below, we are sure that c<>0
function BSRqword(const q: qword): cardinal;
asm
{$ifdef CPU32}
bsr eax, [esp + 8]
jz @1
add eax, 32
ret
@1: bsr eax, [esp + 4]
@2: {$else}
.noframe
mov rax, q
bsr rax, rax
{$endif}
end; // in our code below, we are sure that q<>0
{$endif FPC}
const
// TFloatFormatProfile for double
nDig_mantissa = 17;
nDig_exp10 = 3;
type
// "Do-It-Yourself Floating Point" structures
TDIY_FP = record
f: qword;
e: integer;
end;
TDIY_FP_Power_of_10 = record
c: TDIY_FP;
e10: integer;
end;
PDIY_FP_Power_of_10 = ^TDIY_FP_Power_of_10;
const
ROUNDER = $80000000;
{$ifdef CPUINTEL} // our faster version using 128-bit x86_64 multiplication
procedure d2a_diy_fp_multiply(var x, y: TDIY_FP; normalize: boolean;
out result: TDIY_FP); {$ifdef HASINLINE} inline; {$endif}
var
p: THash128Rec;
begin
mul64x64(x.f, y.f, p); // fast x86_64 / i386 asm
if (p.c1 and ROUNDER) <> 0 then
inc(p.h);
result.f := p.h;
result.e := PtrInt(x.e) + PtrInt(y.e) + 64;
if normalize then
if (PQWordRec(@result.f)^.h and ROUNDER) = 0 then
begin
result.f := result.f * 2;
dec(result.e);
end;
end;
{$else} // regular Grisu method - optimized for 32-bit CPUs
procedure d2a_diy_fp_multiply(var x, y: TDIY_FP; normalize: boolean; out result: TDIY_FP);
var
_x: TQWordRec absolute x;
_y: TQWordRec absolute y;
r: TQWordRec absolute result;
ac, bc, ad, bd, t1: TQWordRec;
begin
ac.v := qword(_x.h) * _y.h;
bc.v := qword(_x.l) * _y.h;
ad.v := qword(_x.h) * _y.l;
bd.v := qword(_x.l) * _y.l;
t1.v := qword(ROUNDER) + bd.h + bc.l + ad.l;
result.f := ac.v + ad.h + bc.h + t1.h;
result.e := x.e + y.e + 64;
if normalize then
if (r.h and ROUNDER) = 0 then
begin
inc(result.f, result.f);
dec(result.e);
end;
end;
{$endif CPUINTEL}
const
// alpha =-61; gamma = 0
// full cache: 1E-450 .. 1E+432, step = 1E+18
// sparse = 1/10
C_PWR10_DELTA = 18;
C_PWR10_COUNT = 50;
type
TDIY_FP_Cached_Power10 = record
base: array [ 0 .. 9 ] of TDIY_FP_Power_of_10;
factor_plus: array [ 0 .. 1 ] of TDIY_FP_Power_of_10;
factor_minus: array [ 0 .. 1 ] of TDIY_FP_Power_of_10;
// extra mantissa correction [ulp; signed]
corrector: array [ 0 .. C_PWR10_COUNT - 1 ] of shortint;
end;
const
CACHED_POWER10: TDIY_FP_Cached_Power10 = (
base: (
( c: ( f: qword($825ECC24C8737830); e: -362 ); e10: -90 ),
( c: ( f: qword($E2280B6C20DD5232); e: -303 ); e10: -72 ),
( c: ( f: qword($C428D05AA4751E4D); e: -243 ); e10: -54 ),
( c: ( f: qword($AA242499697392D3); e: -183 ); e10: -36 ),
( c: ( f: qword($9392EE8E921D5D07); e: -123 ); e10: -18 ),
( c: ( f: qword($8000000000000000); e: -63 ); e10: 0 ),
( c: ( f: qword($DE0B6B3A76400000); e: -4 ); e10: 18 ),
( c: ( f: qword($C097CE7BC90715B3); e: 56 ); e10: 36 ),
( c: ( f: qword($A70C3C40A64E6C52); e: 116 ); e10: 54 ),
( c: ( f: qword($90E40FBEEA1D3A4B); e: 176 ); e10: 72 )
);
factor_plus: (
( c: ( f: qword($F6C69A72A3989F5C); e: 534 ); e10: 180 ),
( c: ( f: qword($EDE24AE798EC8284); e: 1132 ); e10: 360 )
);
factor_minus: (
( c: ( f: qword($84C8D4DFD2C63F3B); e: -661 ); e10: -180 ),
( c: ( f: qword($89BF722840327F82); e: -1259 ); e10: -360 )
);
corrector: (
0, 0, 0, 0, 1, 0, 0, 0, 1, -1,
0, 1, 1, 1, -1, 0, 0, 1, 0, -1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-1, 0, 0, -1, 0, 0, 0, 0, 0, -1,
0, 0, 0, 0, 1, 0, 0, 0, -1, 0
));
CACHED_POWER10_MIN10 = -90 -360;
// = ref.base[low(ref.base)].e10 + ref.factor_minus[high(ref.factor_minus)].e10
// return normalized correctly rounded approximation of the power of 10
// scaling factor, intended to shift a binary exponent of the original number
// into selected [ alpha .. gamma ] range
procedure d2a_diy_fp_cached_power10(exp10: integer; out factor: TDIY_FP_Power_of_10);
var
i, xmul: integer;
A, B: PDIY_FP_Power_of_10;
cx: PtrInt;
ref: ^TDIY_FP_Cached_Power10;
begin
ref := @CACHED_POWER10; // much better code generation on PIC/x86_64
// find non-sparse index
if exp10 <= CACHED_POWER10_MIN10 then
i := 0
else
begin
i := (exp10 - CACHED_POWER10_MIN10) div C_PWR10_DELTA;
if i * C_PWR10_DELTA + CACHED_POWER10_MIN10 <> exp10 then
inc(i); // round-up
if i > C_PWR10_COUNT - 1 then
i := C_PWR10_COUNT - 1;
end;
// generate result
xmul := i div length(ref.base);
A := @ref.base[i - (xmul * length(ref.base))]; // fast mod
dec(xmul, length(ref.factor_minus));
if xmul = 0 then
begin
// base
factor := A^;
exit;
end;
// surrogate
if xmul > 0 then
begin
dec(xmul);
B := @ref.factor_plus[xmul];
end
else
begin
xmul := -(xmul + 1);
B := @ref.factor_minus[xmul];
end;
factor.e10 := A.e10 + B.e10;
if A.e10 <> 0 then
begin
d2a_diy_fp_multiply(A.c, B.c, true, factor.c);
// adjust mantissa
cx := ref.corrector[i];
if cx <> 0 then
inc(int64(factor.c.f), int64(cx));
end
else
// exact
factor.c := B^.c;
end;
procedure d2a_unpack_float(const f: double; out minus: boolean; out result: TDIY_FP);
{$ifdef HASINLINE} inline;{$endif}
type
TSplitFloat = packed record
case byte of
0: (f: double);
1: (b: array[0..7] of byte);
2: (w: array[0..3] of word);
3: (d: array[0..1] of cardinal);
4: (l: qword);
end;
var
doublebits: TSplitFloat;
begin
{$ifdef FPC_DOUBLE_HILO_SWAPPED}
// high and low cardinal are swapped when using the arm fpa
doublebits.d[0] := TSplitFloat(f).d[1];
doublebits.d[1] := TSplitFloat(f).d[0];
{$else not FPC_DOUBLE_HILO_SWAPPED}
doublebits.f := f;
{$endif FPC_DOUBLE_HILO_SWAPPED}
{$ifdef endian_big}
minus := (doublebits.b[0] and $80 <> 0);
result.e := (doublebits.w[0] shr 4) and $7FF;
{$else endian_little}
minus := (doublebits.b[7] and $80 <> 0);
result.e := (doublebits.w[3] shr 4) and $7FF;
{$endif endian}
result.f := doublebits.l and $000FFFFFFFFFFFFF;
end;
const
C_FRAC2_BITS = 52;
C_EXP2_BIAS = 1023;
C_DIY_FP_Q = 64;
C_GRISU_ALPHA = -61;
C_GRISU_GAMMA = 0;
C_EXP2_SPECIAL = C_EXP2_BIAS * 2 + 1;
C_MANT2_INTEGER = qword(1) shl C_FRAC2_BITS;
type
TAsciiDigits = array[0..47] of byte;
PAsciiDigits = ^TAsciiDigits;
// convert unsigned integers into decimal digits
{$ifdef FPC_64} // leverage efficient FPC 64-bit division as mul reciprocal
function d2a_gen_digits_64(buf: PAsciiDigits; x: qword): PtrInt;
var
tab: PWordArray;
P: PAnsiChar;
c100: qword;
begin
tab := @TwoDigitByteLookupW; // 0..99 value -> two byte digits (0..9)
P := PAnsiChar(@buf[24]); // append backwards
repeat
if x >= 100 then
begin
dec(P, 2);
c100 := x div 100;
dec(x, c100 * 100);
PWord(P)^ := tab[x];
if c100 = 0 then
break;
x := c100;
continue;
end;
if x < 10 then
begin
dec(P);
P^ := AnsiChar(x);
break;
end;
dec(P, 2);
PWord(P)^ := tab[x];
break;
until false;
PQWordArray(buf)[0] := PQWordArray(P)[0]; // faster than MoveSmall(P,buf,result)
PQWordArray(buf)[1] := PQWordArray(P)[1];
PQWordArray(buf)[2] := PQWordArray(P)[2];
result := PAnsiChar(@buf[24]) - P;
end;
{$else not FPC_64} // use three 32-bit groups of digit
function d2a_gen_digits_32(buf: PAsciiDigits; x: dword; pad_9zero: boolean): PtrInt;
const
digits: array[0..9] of cardinal = (
0, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000);
var
n: PtrInt;
m: cardinal;
{$ifdef FPC}
z: cardinal;
{$else}
d100: TDiv100Rec;
{$endif FPC}
tab: PWordArray;
begin
// Calculate amount of digits
if x = 0 then
n := 0 // emit nothing if padding is not required
else
begin
n := integer((BSRdword(x) + 1) * 1233) shr 12;
if x >= digits[n] then
inc(n);
end;
if pad_9zero and (n < 9) then
n := 9;
result := n;
if n = 0 then
exit;
// Emit digits
dec(PByte(buf));
tab := @TwoDigitByteLookupW;
m := x;
while (n >= 2) and (m <> 0) do
begin
dec(n);
{$ifdef FPC} // FPC will use fast mul reciprocal
z := m div 100; // compute two 0..9 digits
PWord(@buf[n])^ := tab^[m - z * 100];
m := z;
{$else}
Div100(m, d100); // our asm is faster than Delphi div operation
PWord(@buf[n])^ := tab^[d100.M];
m := d100.D;
{$endif FPC}
dec(n);
end;
if n = 0 then
exit;
if m <> 0 then
begin
if m > 9 then
m := m mod 10; // compute last 0..9 digit
buf[n] := m;
dec(n);
if n = 0 then
exit;
end;
repeat
buf[n] := 0; // padding with 0
dec(n);
until n = 0;
end;
function d2a_gen_digits_64(buf: PAsciiDigits; const x: qword): PtrInt;
var
n_digits: PtrInt;
temp: qword;
splitl, splitm, splith: cardinal;
begin
// Split X into 3 unsigned 32-bit integers; lower two should be < 10 digits long
n_digits := 0;
if x < 1000000000 then
splitl := x
else
begin
temp := x div 1000000000;
splitl := x - temp * 1000000000;
if temp < 1000000000 then
splitm := temp
else
begin
splith := temp div 1000000000;
splitm := cardinal(temp) - splith * 1000000000;
n_digits := d2a_gen_digits_32(buf, splith, false); // Generate hi digits
end;
inc(n_digits, d2a_gen_digits_32(@buf[n_digits], splitm, n_digits <> 0));
end;
// Generate digits
inc(n_digits, d2a_gen_digits_32(@buf[n_digits], splitl, n_digits <> 0));
result := n_digits;
end;
{$endif FPC_64}
// Performs digit sequence rounding, returns decimal point correction
function d2a_round_digits(var buf: TAsciiDigits; var n_current: integer;
n_max: PtrInt; half_round_to_even: boolean = true): PtrInt;
var
n: PtrInt;
dig_round, dig_sticky: byte;
{$ifdef GRISU1_F2A_AGRESSIVE_ROUNDUP}
i: PtrInt;
{$endif}
begin
result := 0;
n := n_current;
n_current := n_max;
// Get round digit
dig_round := buf[n_max];
{$ifdef GRISU1_F2A_AGRESSIVE_ROUNDUP}
// Detect if rounding-up the second last digit turns the "dig_round"
// into "5"; also make sure we have at least 1 digit between "dig_round"
// and the second last.
if not half_round_to_even then
if (dig_round = 4) and (n_max < n - 3) then
if buf[n - 2] >= 8 then // somewhat arbitrary...
begin
// check for only "9" are in between
i := n - 2;
repeat
dec(i);
until (i = n_max) or (buf[i] <> 9);
if i = n_max then
// force round-up
dig_round := 9; // any value ">=5"
end;
{$endif GRISU1_F2A_AGRESSIVE_ROUNDUP}
if dig_round < 5 then
exit;
// Handle "round half to even" case
if (dig_round = 5) and half_round_to_even and
((n_max = 0) or (buf[n_max - 1] and 1 = 0)) then
begin
// even and a half: check if exactly the half
dig_sticky := 0;
while (n > n_max + 1) and (dig_sticky = 0) do
begin
dec(n);
dig_sticky := buf[n];
end;
if dig_sticky = 0 then
exit; // exactly a half -> no rounding is required
end;
// Round-up
while n_max > 0 do
begin
dec(n_max);
inc(buf[n_max]);
if buf[n_max] < 10 then
begin
// no more overflow: stop now
n_current := n_max + 1;
exit;
end;
// continue rounding
end;
// Overflow out of the 1st digit, all n_max digits became 0
buf[0] := 1;
n_current := 1;
result := 1;
end;
// format the number in the fixed-point representation
procedure d2a_return_fixed(str: PAnsiChar; minus: boolean; var digits: TAsciiDigits;
n_digits_have, fixed_dot_pos, frac_digits: integer);
var
p: PAnsiChar;
d: PByte;
cut_digits_at, n_before_dot, n_before_dot_pad0, n_after_dot_pad0,
n_after_dot, n_tail_pad0: integer;
begin
// Round digits if necessary
cut_digits_at := fixed_dot_pos + frac_digits;
if cut_digits_at < 0 then
// zero
n_digits_have := 0
else if cut_digits_at < n_digits_have then
// round digits
inc(fixed_dot_pos, d2a_round_digits(digits, n_digits_have, cut_digits_at
{$ifdef GRISU1_F2A_HALF_ROUNDUP}, false {$endif} ));
// Before dot: digits, pad0
if (fixed_dot_pos <= 0) or (n_digits_have = 0) then
begin
n_before_dot := 0;
n_before_dot_pad0 := 1;
end
else if fixed_dot_pos > n_digits_have then
begin
n_before_dot := n_digits_have;
n_before_dot_pad0 := fixed_dot_pos - n_digits_have;
end
else
begin
n_before_dot := fixed_dot_pos;
n_before_dot_pad0 := 0;
end;
// After dot: pad0, digits, pad0
if fixed_dot_pos < 0 then
n_after_dot_pad0 := -fixed_dot_pos
else
n_after_dot_pad0 := 0;
if n_after_dot_pad0 > frac_digits then
n_after_dot_pad0 := frac_digits;
n_after_dot := n_digits_have - n_before_dot;
n_tail_pad0 := frac_digits - n_after_dot - n_after_dot_pad0;
p := str + 1;
// Sign
if minus then
begin
p^ := '-';
inc(p);
end;
// Integer significant digits
d := @digits;
if n_before_dot > 0 then
repeat
p^ := AnsiChar(d^ + ord('0'));
inc(p);
inc(d);
dec(n_before_dot);
until n_before_dot = 0;
// Integer 0-padding
if n_before_dot_pad0 > 0 then
repeat
p^ := '0';
inc(p);
dec(n_before_dot_pad0);
until n_before_dot_pad0 = 0;
//
if frac_digits <> 0 then
begin
// Dot
p^ := '.';
inc(p);
// Pre-fraction 0-padding
if n_after_dot_pad0 > 0 then
repeat
p^ := '0';
inc(p);
dec(n_after_dot_pad0);
until n_after_dot_pad0 = 0;
// Fraction significant digits
if n_after_dot > 0 then
repeat
p^ := AnsiChar(d^ + ord('0'));
inc(p);
inc(d);
dec(n_after_dot);
until n_after_dot = 0;
// Tail 0-padding
if n_tail_pad0 > 0 then
repeat
p^ := '0';
inc(p);
dec(n_tail_pad0);
until n_tail_pad0 = 0;
end;
// Store length
str[0] := AnsiChar(p - str - 1);
end;
// formats the number as exponential representation
procedure d2a_return_exponential(str: PAnsiChar; minus: boolean;
digits: PByte; n_digits_have, n_digits_req, d_exp: PtrInt);
var
p, exp: PAnsiChar;
begin
p := str + 1;
// Sign
if minus then
begin
p^ := '-';
inc(p);
end;
// Integer part
if n_digits_have > 0 then
begin
p^ := AnsiChar(digits^ + ord('0'));
dec(n_digits_have);
end
else
p^ := '0';
inc(p);
// Dot
if n_digits_req > 1 then
begin
p^ := '.';
inc(p);
end;
// Fraction significant digits
if n_digits_req < n_digits_have then
n_digits_have := n_digits_req;
if n_digits_have > 0 then
begin
repeat
inc(digits);
p^ := AnsiChar(digits^ + ord('0'));
inc(p);
dec(n_digits_have);
until n_digits_have = 0;
while p[-1] = '0' do
dec(p); // trim #.###00000 -> #.###
if p[-1] = '.' then
dec(p); // #.0 -> #
end;
// Exponent designator
p^ := 'E';
inc(p);
// Exponent sign (+ is not stored, as in Delphi)
if d_exp < 0 then
begin
p^ := '-';
d_exp := -d_exp;
inc(p);
end;
// Exponent digits
exp := pointer(SmallUInt32UTF8[d_exp]); // 0..999 range is fine
PCardinal(p)^ := PCardinal(exp)^;
inc(p, PStrLen(exp - _STRLEN)^);
// Store length
str[0] := AnsiChar(p - str - 1);
end;
/// set one of special results with proper sign
procedure d2a_return_special(str: PAnsiChar; sign: integer; const spec: shortstring);
begin
// Compute length
str[0] := spec[0];
if sign <> 0 then
inc(str[0]);
inc(str);
// Sign
if sign <> 0 then
begin
if sign > 0 then
str^ := '+'
else
str^ := '-';
inc(str);
end;
// Special text (3 chars)
PCardinal(str)^ := PCardinal(@spec[1])^;
end;
// Calculates the exp10 of a factor required to bring the binary exponent
// of the original number into selected [ alpha .. gamma ] range:
// result := ceiling[ ( alpha - e ) * log10(2) ]
function d2a_k_comp(e, alpha{, gamma}: integer): integer;
var
dexp: double;
const
D_LOG10_2: double = 0.301029995663981195213738894724493027; // log10(2)
var
x, n: integer;
begin
x := alpha - e;
dexp := x * D_LOG10_2;
// ceil( dexp )
n := trunc(dexp);
if x > 0 then
if dexp <> n then
inc(n); // round-up
result := n;
end;
/// raw function to convert a 64-bit double into a shortstring, stored in str
// - implements Fabian Loitsch's Grisu algorithm dedicated to double values
// - currently, SynCommnons only set min_width=0 (for DoubleToShortNoExp to avoid
// any scientific notation ) or min_width=C_NO_MIN_WIDTH (for DoubleToShort to
// force the scientific notation when the double cannot be represented as
// a simple fractinal number)
procedure DoubleToAscii(min_width, frac_digits: integer; const v: double; str: PAnsiChar);
var
w, D: TDIY_FP;
c_mk: TDIY_FP_Power_of_10;
n, mk, dot_pos, n_digits_need, n_digits_have: integer;
n_digits_req, n_digits_sci: integer;
minus: boolean;
fl, one_maskl: qword;
one_e: integer;
{$ifdef CPU32}
one_mask, f: cardinal; // run a 2nd loop with 32-bit range
{$endif CPU32}
buf: TAsciiDigits;
begin
// Limit parameters
if frac_digits > 216 then
frac_digits := 216; // Delphi compatible
if min_width <= C_NO_MIN_WIDTH then
min_width := -1 // no minimal width
else if min_width < 0 then
min_width := 0; // minimal width is as short as possible
// Format profile: select "n_digits_need" (and "n_digits_exp")
n_digits_req := nDig_mantissa;
// number of digits to be calculated by Grisu
n_digits_need := nDig_mantissa;
if n_digits_req < n_digits_need then
n_digits_need := n_digits_req;
// number of mantissa digits to be printed in exponential notation
if min_width < 0 then
n_digits_sci := n_digits_req
else
begin
n_digits_sci := min_width -1 {sign} -1 {dot} -1 {E} -1 {E-sign} - nDig_exp10;
if n_digits_sci < 2 then
n_digits_sci := 2; // at least 2 digits
if n_digits_sci > n_digits_req then
n_digits_sci := n_digits_req; // at most requested by real_type
end;
// Float -> DIY_FP
d2a_unpack_float(v, minus, w);
// Handle Zero
if (w.e = 0) and (w.f = 0) then
begin
{$ifdef GRISU1_F2A_ZERONOFRACT}
PWord(str)^ := 1 + ord('0') shl 8; // just return '0'
{$else}
if frac_digits >= 0 then
d2a_return_fixed(str, minus, buf, 0, 1, frac_digits)
else
d2a_return_exponential(str, minus, @buf, 0, n_digits_sci, 0);
{$endif GRISU1_F2A_ZERONOFRACT}
exit;
end;
// Handle specials
if w.e = C_EXP2_SPECIAL then
begin
n := 1 - ord(minus) * 2; // default special sign [-1|+1]
if w.f = 0 then
d2a_return_special(str, n, C_STR_INF)
else
begin
// NaN [also pseudo-NaN, pseudo-Inf, non-normal for floatx80]
{$ifdef GRISU1_F2A_NAN_SIGNLESS}
n := 0;
{$endif}
{$ifndef GRISU1_F2A_NO_SNAN}
if (w.f and (C_MANT2_INTEGER shr 1)) = 0 then
return_special(str, n, C_STR_SNAN)
else
{$endif GRISU1_F2A_NO_SNAN}
d2a_return_special(str, n, C_STR_QNAN);
end;
exit;
end;
// Handle denormals
if w.e <> 0 then
begin
// normal
w.f := w.f or C_MANT2_INTEGER;
n := C_DIY_FP_Q - C_FRAC2_BITS - 1;
end
else
begin
// denormal (w.e=0)
n := 63 - BSRqword(w.f); // we are sure that w.f<>0 - see Handle Zero above
inc(w.e);
end;
// Final normalization
w.f := w.f shl n;
dec(w.e, C_EXP2_BIAS + n + C_FRAC2_BITS);
// 1. Find the normalized "c_mk = f_c * 2^e_c" such that
// "alpha <= e_c + e_w + q <= gamma"
// 2. Define "V = D * 10^k": multiply the input number by "c_mk", do not
// normalize to land into [ alpha .. gamma ]
// 3. Generate digits ( n_digits_need + "round" )
if (C_GRISU_ALPHA <= w.e) and (w.e <= C_GRISU_GAMMA) then
begin
// no scaling required
D := w;
c_mk.e10 := 0;
end
else
begin
mk := d2a_k_comp(w.e, C_GRISU_ALPHA{, C_GRISU_GAMMA} );
d2a_diy_fp_cached_power10(mk, c_mk);
// Let "D = f_D * 2^e_D := w (*) c_mk"
if c_mk.e10 = 0 then
D := w
else
d2a_diy_fp_multiply(w, c_mk.c, false, D);
end;
// Generate digits: integer part
n_digits_have := d2a_gen_digits_64(@buf, D.f shr (-D.e));
dot_pos := n_digits_have;
// Generate digits: fractional part
{$ifdef CPU32}
f := 0; // "sticky" digit
{$endif CPU32}
if D.e < 0 then
repeat
// MOD by ONE
one_e := D.e;
one_maskl := qword(1) shl (-D.e) - 1;
fl := D.f and one_maskl;
// 64-bit loop (very efficient on x86_64, slower on i386)
while {$ifdef CPU32} (one_e < -29) and {$endif}
(n_digits_have < n_digits_need + 1) and (fl <> 0) do
begin
// f := f * 5;
inc(fl, fl shl 2);
// one := one / 2
one_maskl := one_maskl shr 1;
inc(one_e);
// DIV by one
buf[n_digits_have] := fl shr (-one_e);
// MOD by one
fl := fl and one_maskl;
// next
inc(n_digits_have);
end;
{$ifdef CPU32}
if n_digits_have >= n_digits_need + 1 then
begin
// only "sticky" digit remains
f := ord(fl <> 0);
break;
end;
one_mask := cardinal(one_maskl);
f := cardinal(fl);
// 32-bit loop
while (n_digits_have < n_digits_need + 1) and (f <> 0) do
begin
// f := f * 5;
inc(f, f shl 2);
// one := one / 2
one_mask := one_mask shr 1;
inc(one_e);
// DIV by one
buf[n_digits_have] := f shr (-one_e);
// MOD by one
f := f and one_mask;
// next
inc(n_digits_have);
end;
{$endif CPU32}
until true;
{$ifdef CPU32}
// Append "sticky" digit if any
if (f <> 0) and (n_digits_have >= n_digits_need + 1) then
begin
// single "<>0" digit is enough
n_digits_have := n_digits_need + 2;
buf[n_digits_need + 1] := 1;
end;
{$endif CPU32}
// Round to n_digits_need using "roundTiesToEven"
if n_digits_have > n_digits_need then
inc(dot_pos, d2a_round_digits(buf, n_digits_have, n_digits_need));
// Generate output
if frac_digits >= 0 then
begin
d2a_return_fixed(str, minus, buf, n_digits_have, dot_pos - c_mk.e10,
frac_digits);
exit;
end;
if n_digits_have > n_digits_sci then
inc(dot_pos, d2a_round_digits(buf, n_digits_have, n_digits_sci
{$ifdef GRISU1_F2A_HALF_ROUNDUP}, false {$endif} ));
d2a_return_exponential(str, minus, @buf, n_digits_have, n_digits_sci,
dot_pos - c_mk.e10 - 1);
end;