Windows-Server-2003/enduser/netmeeting/av/nac/audpackt.cpp

1006 lines
28 KiB
C++
Raw Normal View History

2024-08-04 01:28:15 +02:00
#include "precomp.h"
#define ZONE_AP ZONE_DP
#define _GetState() (m_dwState & DP_MASK_STATE)
#define _SetState(s) (m_dwState = (m_dwState & ~DP_MASK_STATE) | (s & DP_MASK_STATE))
#define _GetPlatform() (m_dwState & DP_MASK_PLATFORM)
#define _SetPlatform(s) (m_dwState = (m_dwState & ~DP_MASK_PLATFORM) | (s & DP_MASK_PLATFORM))
int g_wavein_prepare = 0;
int g_waveout_prepare = 0;
///////////////////////////////////////////////////////
//
// Public methods
//
HRESULT AudioPacket::Initialize ( MEDIAPACKETINIT * p )
{
HRESULT hr = DPR_SUCCESS;
FX_ENTRY ("AdPckt::Init")
if (p == NULL)
{
DEBUGMSG (ZONE_AP, ("%s: invalid parameter (null ptr)\r\n", _fx_));
return DPR_INVALID_PARAMETER;
}
hr = MediaPacket::Initialize( p);
if (hr != DPR_SUCCESS)
goto MyExit;
// allocate conversion header only if m_pWaveData != m_pNetData
if (m_pRawData != m_pNetData)
{
if (m_dwState & DP_FLAG_ACM)
{
m_pStrmConvHdr = MemAlloc (sizeof (ACMSTREAMHEADER));
if (m_pStrmConvHdr == NULL)
{
DEBUGMSG (ZONE_AP, ("%s: MemAlloc4 (%ld) failed\r\n",
_fx_, (ULONG) sizeof (ACMSTREAMHEADER)));
hr = DPR_OUT_OF_MEMORY;
goto MyExit;
}
}
else
{
DEBUGMSG (ZONE_AP, ("%s: invalid platform (acm)\r\n", _fx_));
hr = DPR_INVALID_PLATFORM;
goto MyExit;
}
}
else
{
m_pStrmConvHdr = NULL;
}
// allocate device header
if (m_dwState & DP_FLAG_MMSYSTEM)
{
m_pDevHdr = MemAlloc (sizeof (WAVEHDR));
if (m_pDevHdr == NULL)
{
DEBUGMSG (ZONE_AP, ("%s: MemAlloc5 (%ld) failed\r\n",
_fx_, (ULONG) sizeof (WAVEHDR)));
hr = DPR_OUT_OF_MEMORY;
goto MyExit;
}
}
else
{
DEBUGMSG (ZONE_AP, ("%s: invalid platform (mm)\r\n", _fx_));
hr = DPR_INVALID_PLATFORM;
goto MyExit;
}
MakeSilence ();
MyExit:
if (hr != DPR_SUCCESS)
{
m_fInitialized = FALSE;
Release();
}
return hr;
}
HRESULT AudioPacket::Play ( MMIODEST *pmmioDest, UINT uDataType )
{
HRESULT hr = DPR_SUCCESS;
DWORD dwState = _GetState ();
MMRESULT mmr;
FX_ENTRY ("AdPckt::Play")
if (dwState != MP_STATE_DECODED && dwState != MP_STATE_RESET)
{
DEBUGMSG (ZONE_AP, ("%s: out of seq, state=0x%lX\r\n", _fx_, m_dwState));
return DPR_OUT_OF_SEQUENCE;
}
if (uDataType == MP_DATATYPE_SILENCE)
{
LOG((LOGMSG_PLAY_SILENT,m_index,GetTickCount()));
MakeSilence ();
}
else
{
if (uDataType == MP_DATATYPE_INTERPOLATED)
{
if (dwState == MP_STATE_DECODED)
{
LOG((LOGMSG_PLAY_INTERPOLATED,m_index,GetTickCount()));
}
else
{
LOG((LOGMSG_PLAY_SILENT,m_index,GetTickCount()));
MakeSilence ();
}
}
else
{
LOG((LOGMSG_PLAY,m_index, GetTickCount()));
}
}
if (m_hDev)
{
if (m_dwState & DP_FLAG_MMSYSTEM)
{
((WAVEHDR *) m_pDevHdr)->lpData = (char *) m_pDevData->data;
// ((WAVEHDR *) m_pDevHdr)->dwBufferLength = (dwState == MP_STATE_DECODED ?
// ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLengthUsed :
// m_pDevData->length);
((WAVEHDR *) m_pDevHdr)->dwBufferLength = (dwState == MP_STATE_DECODED ?
m_cbValidRawData : m_pDevData->length);
((WAVEHDR *) m_pDevHdr)->dwUser = (DWORD_PTR) this;
((WAVEHDR *) m_pDevHdr)->dwFlags &= ~(WHDR_DONE|WHDR_INQUEUE);
((WAVEHDR *) m_pDevHdr)->dwLoops = 0L;
// feed this buffer to play
mmr = waveOutWrite ((HWAVEOUT) m_hDev, (WAVEHDR *) m_pDevHdr, sizeof (WAVEHDR));
if (mmr != MMSYSERR_NOERROR)
{
DEBUGMSG (ZONE_AP, ("%s: waveOutWrite failed, mmr=%ld\r\n", _fx_, (ULONG) mmr));
hr = DPR_CANT_WRITE_WAVE_DEV;
// this is an extremely rare error, but we've seen it
// occur on some sound cards
// in this case, just set the "done" bit, mark the
// state to the "playing", but still return an error.
((WAVEHDR *) m_pDevHdr)->dwFlags |= WHDR_DONE;
goto MyExit;
}
}
else
{
DEBUGMSG (ZONE_AP, ("%s: invalid platform (mm)\r\n", _fx_));
hr = DPR_INVALID_PLATFORM;
goto MyExit;
}
if (pmmioDest && pmmioDest->fRecordToFile && pmmioDest->hmmioDst)
{
// write this buffer to disk
WriteToFile(pmmioDest);
}
}
else
{
DEBUGMSG (ZONE_AP, ("%s: invalid handle\r\n", _fx_));
hr = DPR_INVALID_HANDLE;
goto MyExit;
}
MyExit:
if ((hr == DPR_SUCCESS) || (hr == DPR_CANT_WRITE_WAVE_DEV))
{
_SetState (((uDataType == MP_DATATYPE_SILENCE) || (uDataType == MP_DATATYPE_INTERPOLATED))? MP_STATE_PLAYING_SILENCE : MP_STATE_PLAYING_BACK);
}
return hr;
}
HRESULT AudioPacket::Record ( void )
{
HRESULT hr = DPR_SUCCESS;
MMRESULT mmr;
FX_ENTRY ("AdPckt::Record")
LOG((LOGMSG_RECORD,m_index));
if (_GetState () != MP_STATE_RESET)
{
DEBUGMSG (ZONE_AP, ("%s: out of seq, state=0x%lX\r\n", _fx_, m_dwState));
return DPR_OUT_OF_SEQUENCE;
}
if (m_hDev)
{
if (m_dwState & DP_FLAG_MMSYSTEM)
{
((WAVEHDR *) m_pDevHdr)->lpData = (char *) m_pDevData->data;
((WAVEHDR *) m_pDevHdr)->dwBufferLength = m_pDevData->length;
((WAVEHDR *) m_pDevHdr)->dwUser = (DWORD_PTR) this;
((WAVEHDR *) m_pDevHdr)->dwFlags |= WHDR_PREPARED;
((WAVEHDR *) m_pDevHdr)->dwLoops = 0L;
// feed this buffer to record
mmr = waveInAddBuffer ((HWAVEIN)m_hDev, (WAVEHDR *) m_pDevHdr, sizeof (WAVEHDR));
if (mmr != MMSYSERR_NOERROR)
{
DEBUGMSG (ZONE_AP, ("%s: waveInAddBuffer failed, mmr=%ld\r\n", _fx_, (ULONG) mmr));
hr = DPR_CANT_ADD_BUFFER;
goto MyExit;
}
}
else
{
DEBUGMSG (ZONE_AP, ("%s: invalid platform (mm)\r\n", _fx_));
hr = DPR_INVALID_PLATFORM;
goto MyExit;
}
}
else
{
DEBUGMSG (ZONE_AP, ("%s: invalid handle\r\n", _fx_));
hr = DPR_INVALID_HANDLE;
goto MyExit;
}
MyExit:
if (hr == DPR_SUCCESS) _SetState (MP_STATE_RECORDING);
return hr;
}
BOOL AudioPacket::IsBufferDone ( void )
{
FX_ENTRY ("AdPckt::IsBufferDone")
if (m_hDev)
{
if (m_dwState & DP_FLAG_MMSYSTEM)
{
return (((WAVEHDR *) m_pDevHdr)->dwFlags & WHDR_DONE);
}
}
return FALSE;
}
HRESULT AudioPacket::MakeSilence ( void )
{
// create white noise!!!
FX_ENTRY ("AdPckt::MakeSilence")
if (m_pDevFmt)
{
if (m_pDevData)
{
FillSilenceBuf ((WAVEFORMATEX *) m_pDevFmt, (PBYTE) m_pDevData->data,
(ULONG) m_pDevData->length);
}
#if 0
if (m_pRawData != m_pDevData)
{
if (m_pRawData)
ZeroMemory (m_pRawData->data, m_pRawData->length);
}
if (m_pNetData != m_pRawData)
{
if (m_pNetData)
ZeroMemory (m_pNetData->data, m_pNetData->length);
}
#endif
}
_SetState(MP_STATE_RESET);
return DPR_SUCCESS;
}
/*
Returns the max. peak-to-peak signal value scaled to
the range [0,0xffff]
Optional argument returns the peak value as well
*/
HRESULT AudioPacket::GetSignalStrength ( PDWORD pdwMaxStrength)
{
return ComputePower(pdwMaxStrength, NULL);
}
HRESULT AudioPacket::ComputePower(PDWORD pdwMaxStrength, PWORD pwPeakStrength)
{
BYTE bMax, bMin, *pb;
short sMax, sMin, *ps;
UINT cbSize;
FX_ENTRY ("AdPckt::GetSignalStrength")
if (((WAVEFORMATEX *) m_pDevFmt)->wFormatTag != WAVE_FORMAT_PCM) return FALSE;
switch (((WAVEFORMATEX *) m_pDevFmt)->wBitsPerSample)
{
case 8: // unsigned char
pb = (PBYTE) (m_pDevData->data);
cbSize = m_pDevData->length;
bMax = 0;
bMin = 255;
for ( ; cbSize; cbSize--, pb++)
{
if (*pb > bMax) bMax = *pb;
if (*pb < bMin) bMin = *pb;
}
if (pdwMaxStrength)
{
// 2^9 <-- 2^16 / 2^7
*pdwMaxStrength = ((DWORD) (bMax - bMin)) << 8;
}
if (pwPeakStrength)
{
*pwPeakStrength = (bMax > bMin) ? bMax : (WORD)(-bMin);
*pwPeakStrength = (*pwPeakStrength) << 8;
}
break;
case 16: // (signed) short
ps = (short *) (m_pDevData->data);
cbSize = m_pDevData->length;
sMax = sMin = 0;
for (cbSize >>= 1; cbSize; cbSize--, ps++)
{
if (*ps > sMax) sMax = *ps;
if (*ps < sMin) sMin = *ps;
}
if (pdwMaxStrength)
{
*pdwMaxStrength = (DWORD) (sMax - sMin); // drop sign bit
}
if (pwPeakStrength)
{
*pwPeakStrength = ((WORD)(sMax) > (WORD)(-sMin)) ? sMax : (WORD)(-sMin);
}
break;
default:
if (pdwMaxStrength)
*pdwMaxStrength = 0;
if (pwPeakStrength)
*pwPeakStrength = 0;
break;
}
//LOG((LOGMSG_SILENT,m_index,fResult));
return DPR_SUCCESS;
}
HRESULT AudioPacket::Interpolate ( MediaPacket * pPrev, MediaPacket * pNext)
{
HRESULT hr = DPR_SUCCESS;
DPHANDLE hPrevDevAudio;
NETBUF *pPrevDevData;
PVOID pPrevDevHdr;
WAVEFORMATEX *pPrevpwfDevAudio;
WAVEFORMATEX *pNextpwfDevAudio;
NETBUF *pNextDevData;
PVOID pNextDevHdr;
PCMSUB PCMSub;
FX_ENTRY ("AdPckt::Interpolate")
// Make sure this really is an empty packet, that the previous packet is not an
// empty packet and is being played back. It is not that important that we get
// a handle to the next packet. If the next packet is decoded, then it's cool,
// we can do a good job at interpolating between previous and next packet. If it's
// not, well, too bad, we'll just work with the previous packet.
if ((_GetState() != MP_STATE_RESET) || (pPrev->GetState() != MP_STATE_PLAYING_BACK))
{
// DEBUGMSG (ZONE_AP, ("%s: out of seq, state=0x%lX\r\n", _fx_, m_dwState));
hr = DPR_OUT_OF_SEQUENCE;
goto MyExit;
}
// Get pointers to the member variables of interest in the previous and next
// packet. Test the next packet to find out if we can use it in the interpolation
// algorithm.
pPrev->GetProp (MP_PROP_DEV_HANDLE, (PDWORD_PTR)&hPrevDevAudio);
pPrev->GetProp (MP_PROP_DEV_DATA, (PDWORD_PTR)&pPrevDevData);
pPrev->GetProp (MP_PROP_DEV_MEDIA_HDR, (PDWORD_PTR)&pPrevDevHdr);
pPrev->GetProp (MP_PROP_DEV_MEDIA_FORMAT, (PDWORD_PTR)&pPrevpwfDevAudio);
if (hPrevDevAudio && pPrevDevData && pPrevDevHdr && pPrevpwfDevAudio && (pPrevpwfDevAudio->wFormatTag == 1) && (pPrevpwfDevAudio->nSamplesPerSec == 8000) && (pPrevpwfDevAudio->wBitsPerSample == 16))
{
PCMSub.pwWaSuBf = (short *)m_pDevData->data;
PCMSub.dwBfSize = ((WAVEHDR *) pPrevDevHdr)->dwBufferLength >> 1;
PCMSub.dwSaPeSe = (DWORD)pPrevpwfDevAudio->nSamplesPerSec;
PCMSub.dwBiPeSa = (DWORD)pPrevpwfDevAudio->wBitsPerSample;
PCMSub.pwPrBf = (short *)pPrevDevData->data;
pNext->GetProp (MP_PROP_DEV_DATA, (PDWORD_PTR)&pNextDevData);
pNext->GetProp (MP_PROP_DEV_MEDIA_HDR, (PDWORD_PTR)&pNextDevHdr);
pNext->GetProp (MP_PROP_DEV_MEDIA_FORMAT, (PDWORD_PTR)&pNextpwfDevAudio);
// Do a bit of checking
if ((pNext->GetState() == MP_STATE_DECODED) && pNextDevData && pNextDevHdr
&& (PCMSub.dwBfSize == (((WAVEHDR *) pNextDevHdr)->dwBufferLength >> 1))
&& pNextpwfDevAudio && (pNextpwfDevAudio->wFormatTag == 1) && (pNextpwfDevAudio->nSamplesPerSec == 8000)
&& (pNextpwfDevAudio->wBitsPerSample == 16))
{
PCMSub.eTech = techPATT_MATCH_BOTH_SIGN_CC;
//PCMSub.eTech = techDUPLICATE_PREV;
PCMSub.pwNeBf = (short *)pNextDevData->data;
PCMSub.fScal = TRUE;
}
else
{
PCMSub.eTech = techPATT_MATCH_PREV_SIGN_CC;
//PCMSub.eTech = techDUPLICATE_PREV;
PCMSub.pwNeBf = (short *)NULL;
PCMSub.fScal = FALSE;
}
// Do the actual interpolation
hr = PCMSubstitute(&PCMSub);
((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLengthUsed = ((WAVEHDR *) pPrevDevHdr)->dwBufferLength;
}
else
{
DEBUGMSG (ZONE_AP, ("%s: can't interpolate\r\n", _fx_));
hr = DPR_INVALID_HANDLE;
goto MyExit;
}
LOG((LOGMSG_INTERPOLATED,m_index));
MyExit:
if (hr == DPR_SUCCESS)
_SetState (MP_STATE_DECODED);
else
_SetState (MP_STATE_RESET);
return hr;
}
HRESULT AudioPacket::Open ( UINT uType, DPHANDLE hdl )
// called by RxStream or TxStream
{
HRESULT hr = DPR_SUCCESS;
MMRESULT mmr;
FX_ENTRY ("AdPckt::Open")
switch (uType)
{
#ifdef PREP_HDR_PER_CONV
case MP_TYPE_RECVSTRMCONV:
m_hStrmConv = hdl;
break;
#endif
case MP_TYPE_STREAMCONV:
if ((m_hStrmConv = hdl) != NULL)
{
if (m_dwState & DP_FLAG_ACM)
{
// initialize the header
ZeroMemory (m_pStrmConvHdr, sizeof (ACMSTREAMHEADER));
((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbStruct = sizeof (ACMSTREAMHEADER);
((ACMSTREAMHEADER *) m_pStrmConvHdr)->fdwStatus = 0;
((ACMSTREAMHEADER *) m_pStrmConvHdr)->dwUser = 0;
((ACMSTREAMHEADER *) m_pStrmConvHdr)->dwSrcUser = 0;
((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbSrcLengthUsed = 0;
((ACMSTREAMHEADER *) m_pStrmConvHdr)->dwDstUser = 0;
((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLengthUsed = 0;
if (m_dwState & DP_FLAG_SEND)
{
((ACMSTREAMHEADER *) m_pStrmConvHdr)->pbSrc = m_pRawData->data;
((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbSrcLength = m_pRawData->length;
((ACMSTREAMHEADER *) m_pStrmConvHdr)->pbDst = m_pNetData->data;
((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLength = m_pNetData->length;
}
else
if (m_dwState & DP_FLAG_RECV)
{
((ACMSTREAMHEADER *) m_pStrmConvHdr)->pbSrc = m_pNetData->data;
((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbSrcLength = m_pNetData->length;
((ACMSTREAMHEADER *) m_pStrmConvHdr)->pbDst = m_pRawData->data;
((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLength = m_pRawData->length;
}
// prepare the header
mmr = acmStreamPrepareHeader ((HACMSTREAM) m_hStrmConv,
(ACMSTREAMHEADER *) m_pStrmConvHdr, 0);
if (mmr != MMSYSERR_NOERROR)
{
DEBUGMSG (ZONE_AP, ("%s: acmStreamPrepareHeader failed, mmr=%ld\r\n", _fx_, (ULONG) mmr));
hr = DPR_CANT_PREPARE_HEADER;
goto MyExit;
}
m_fStrmPrepared = TRUE;
}
else
{
hr = DPR_INVALID_PLATFORM;
goto MyExit;
}
}
break;
case MP_TYPE_DEV:
if ((m_hDev = hdl) != NULL)
{
if (m_dwState & DP_FLAG_MMSYSTEM)
{
// initialize the header
ZeroMemory (m_pDevHdr, sizeof (WAVEHDR));
((WAVEHDR *) m_pDevHdr)->lpData = (char *) m_pDevData->data;
((WAVEHDR *) m_pDevHdr)->dwBufferLength = m_pDevData->length;
((WAVEHDR *) m_pDevHdr)->dwUser = (DWORD_PTR) this;
((WAVEHDR *) m_pDevHdr)->dwFlags = 0L;
((WAVEHDR *) m_pDevHdr)->dwLoops = 0L;
if (m_dwState & DP_FLAG_SEND)
{
g_wavein_prepare++;
// prepare the header
mmr = waveInPrepareHeader ((HWAVEIN) m_hDev, (WAVEHDR *) m_pDevHdr, sizeof (WAVEHDR));
if (mmr != MMSYSERR_NOERROR)
{
DEBUGMSG (ZONE_AP, ("%s: waveInPrepareHeader failed, mmr=%ld\r\n", _fx_, (ULONG) mmr));
hr = DPR_CANT_PREPARE_HEADER;
goto MyExit;
}
}
else
if (m_dwState & DP_FLAG_RECV)
{
g_waveout_prepare++;
// prepare header
mmr = waveOutPrepareHeader ((HWAVEOUT) m_hDev, (WAVEHDR *) m_pDevHdr, sizeof (WAVEHDR));
if (mmr != MMSYSERR_NOERROR)
{
DEBUGMSG (ZONE_AP, ("%s: waveOutPrepareHeader failed, mmr=%ld\r\n", _fx_, (ULONG) mmr));
hr = DPR_CANT_PREPARE_HEADER;
goto MyExit;
}
}
else
{
hr = DPR_INVALID_PARAMETER;
goto MyExit;
}
m_fDevPrepared = TRUE;
}
else
{
hr = DPR_INVALID_PLATFORM;
goto MyExit;
}
}
else
{
hr = DPR_INVALID_HANDLE;
goto MyExit;
}
break;
default:
hr = DPR_INVALID_PARAMETER;
goto MyExit;
}
MyExit:
return hr;
}
HRESULT AudioPacket::Close ( UINT uType )
// called by RxStream or TxStream
{
HRESULT hr = DPR_SUCCESS;
MMRESULT mmr;
FX_ENTRY ("AdPckt::Close")
switch (uType)
{
#ifdef PREP_HDR_PER_CONV
case MP_TYPE_RECVSTRMCONV:
#endif
case MP_TYPE_STREAMCONV:
if (m_hStrmConv)
{
if (m_dwState & DP_FLAG_ACM)
{
if (m_fStrmPrepared)
{
// unprepare the header
if (m_dwState & DP_FLAG_RECV)
{
// Within acmStreamUnprepareHeader, there is a test that compares ((ACMSTREAMHEADER *)m_pStrmConvHdr)->cbSrcLength
// to ((ACMSTREAMHEADER *)m_pStrmConvHdr)->cbPreparedSrcLength. If there isn't an exact match, MSACM32 will fail
// this call. That test is Ok when the size of the input buffer is constant, but with the variable bit rate codecs,
// we can receive packets with a size smaller than the max size we advertize when we prepare the buffers. In
// order to make this call succeed, we fix up ((ACMSTREAMHEADER *)m_pStrmConvHdr)->cbSrcLength before the call.
((ACMSTREAMHEADER *)m_pStrmConvHdr)->cbSrcLength = ((ACMSTREAMHEADER *)m_pStrmConvHdr)->dwReservedDriver[7];
}
mmr = acmStreamUnprepareHeader ((HACMSTREAM) m_hStrmConv,
(ACMSTREAMHEADER *) m_pStrmConvHdr, 0);
m_fStrmPrepared = FALSE; // don't care about any error
if (mmr != MMSYSERR_NOERROR)
{
DEBUGMSG (ZONE_AP, ("%s: acmStreamUnprepareHeader failed, mmr=%ld\r\n", _fx_, (ULONG) mmr));
hr = DPR_CANT_UNPREPARE_HEADER;
goto MyExit;
}
}
}
if (uType == MP_TYPE_STREAMCONV) m_hStrmConv = NULL;
}
break;
case MP_TYPE_DEV:
if (m_hDev)
{
if (m_fDevPrepared)
{
if (m_dwState & DP_FLAG_SEND)
{
g_wavein_prepare--;
mmr = waveInUnprepareHeader ((HWAVEIN) m_hDev,
(WAVEHDR *) m_pDevHdr,
sizeof (WAVEHDR));
}
else
if (m_dwState & DP_FLAG_RECV)
{
g_waveout_prepare--;
mmr = waveOutUnprepareHeader ((HWAVEOUT) m_hDev,
(WAVEHDR *) m_pDevHdr,
sizeof (WAVEHDR));
}
else
{
hr = DPR_INVALID_PARAMETER;
goto MyExit;
}
m_fDevPrepared = FALSE; // don't care about any error
if (mmr != MMSYSERR_NOERROR)
{
DEBUGMSG (ZONE_AP, ("%s: Unprep hdr failed, mmr=0x%lX\r\n", _fx_, mmr));
hr = DPR_CANT_UNPREPARE_HEADER;
goto MyExit;
}
}
m_hDev = NULL;
}
else
{
hr = DPR_INVALID_HANDLE;
goto MyExit;
}
break;
default:
hr = DPR_INVALID_PARAMETER;
goto MyExit;
}
MyExit:
return hr;
}
void AudioPacket::WriteToFile (MMIODEST *pmmioDest)
{
MMRESULT mmr;
long dwDataLength;
FX_ENTRY ("AdPckt::WriteToFile")
AudioFile::WriteDestFile(pmmioDest, m_pDevData->data, m_pDevData->length);
}
void AudioPacket::ReadFromFile (MMIOSRC *pmmioSrc)
{
AudioFile::ReadSourceFile(pmmioSrc, (BYTE*)(((WAVEHDR*)m_pDevHdr)->lpData), ((WAVEHDR*)m_pDevHdr)->dwBytesRecorded);
}
BOOL AudioPacket::IsSameMediaFormat(PVOID fmt1,PVOID fmt2)
{
return IsSameWaveFormat(fmt1,fmt2);
}
/*************************************************************************
Function: PCMSubstitute(PCMSUB *)
Purpose : Fills up missing buffer with wave data.
Returns : HRESULT. DPR_SUCCESS if everything is cool, some error code
otherwise.
Params : pPCMSub == Pointer to wave substitution structure
Techniques: * Straight replication of the previous packet
* Straight replication of the next packet
* Replication of some part of the previous packet based on pattern matching
* Replication of some part of the next packet based on pattern matching
* Search window size need to be at least twice the size of the pattern!!!
Comments: * The algorithm searches previous packets to find pPCMSub->dwBfSize
samples that resemble the missing packet. To do so it uses as a
template the M speech samples that came just before
the missing packet. The algorithm scans a search window of
duration N samples to find the M samples that best match the
template. It then uses as a replacement packet the L samples
that follow the best match.
* Current code assumes all the packets (current, previous, and
next) have the same size.
* Current code only takes 8kHz data.
* Current code only takes 16bit data.
* Current code requires that the matching pattern be smaller than packet.
History : Date Reason
04/16/95 Created - PhilF
*************************************************************************/
HRESULT AudioPacket::PCMSubstitute(PCMSUB *pPCMSub)
{
DWORD dwPaSize; // Pattern size in samples
DWORD dwSeWiSize; // Search window size in samples
short *pwPa = (short *)NULL; // Pointer to the pattern
short *pwPaSav = (short *)NULL; // Pointer to the pattern (copy)
short *pwPrSeWi = (short *)NULL; // Pointer to the previous buffer (search window)
short *pwPrSeWiSav = (short *)NULL; // Pointer to the previous buffer (search window) (copy)
short *pwNeSeWi = (short *)NULL; // Pointer to the next buffer (search window)
short *pwNeSeWiSav = (short *)NULL; // Pointer to the next buffer (search window) (copy)
DWORD i, j; // Counters
DWORD dwPrCCPosMax; // Sample position of the maximum cross-correlation between pattern and previous buffer
DWORD dwNeCCPosMax; // Sample position of the maximum cross-correlation between pattern and previous buffer
long lPrCCMax; // Max cross-correlation with previous buffer
long lNeCCMax; // Max cross-correlation with next buffer
long lCCNum; // Cross-correlation numerator
DWORD dwNuSaToCopy; // Number of samples to copy in the missing buffer
DWORD dwNuSaCopied; // Number of samples copied in the missing buffer
long alSign[2] = {1,-1}; // Sign array
DWORD dwPaAmp; // Amplitude of the pattern
DWORD dwPaAmpExp; // Expected amplitude of the pattern
DWORD dwNeSeWiAmp; // Amplitude of a segment of the window following the current window
DWORD dwNumPaInSeWin; // Number of patterns in search window
DWORD dwPrSeWiAmp; // Amplitude of a segment of the current window
BOOL fPaInPr; // Pattern is at the end of previous buffer of at the beginning of next buffer
// Test input parameters
if ((!pPCMSub) || (!pPCMSub->pwWaSuBf) || (pPCMSub->dwBiPeSa != 16) || (pPCMSub->dwSaPeSe != 8000))
return DPR_INVALID_PARAMETER;
// Check number of buffer available before and after missing packet
// In case there are no packet before or after the missing packet,
// just return; the packet will be filled with silence data later.
if (!pPCMSub->pwPrBf && !pPCMSub->pwNeBf)
return DPR_CANT_INTERPOLATE;
// Just replicate previous packet
if ((pPCMSub->eTech == techDUPLICATE_PREV) && pPCMSub->pwPrBf)
CopyMemory(pPCMSub->pwWaSuBf, pPCMSub->pwPrBf, pPCMSub->dwBfSize << 1);
else // Just replicate next packet
if ((pPCMSub->eTech == techDUPLICATE_NEXT) && pPCMSub->pwNeBf)
CopyMemory(pPCMSub->pwWaSuBf, pPCMSub->pwNeBf, pPCMSub->dwBfSize << 1);
else
if ((pPCMSub->eTech == techPATT_MATCH_PREV_SIGN_CC) || (pPCMSub->eTech == techPATT_MATCH_NEXT_SIGN_CC) || (pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC))
{
// We use a search window with a size double the size of the matching pattern
// Experimentation will tell if this is a reasonable size or not
// Experimentation will also tell if 4ms size of the matching pattern is Ok
dwPaSize = pPCMSub->dwSaPeSe / 1000 * PATTERN_SIZE;
if (dwPaSize > (pPCMSub->dwBfSize/2))
dwPaSize = pPCMSub->dwBfSize/2;
if (!dwPaSize)
return DPR_CANT_INTERPOLATE;
#if 1
// For now look up the whole previous frame
dwSeWiSize = pPCMSub->dwBfSize;
#else
dwSeWiSize = min(pPCMSub->dwBfSize, pPCMSub->dwSaPeSe / 1000 * SEARCH_SIZE);
#endif
// In order to use pattern matching based techniques we need to have the
// previous buffer when doing a backward search, the next buffer
// when doing a forward search, the previous buffer and the next buffer
// when doing a full search
if (pPCMSub->pwPrBf && (pPCMSub->eTech == techPATT_MATCH_PREV_SIGN_CC))
{
pwPa = pwPaSav = pPCMSub->pwPrBf + pPCMSub->dwBfSize - dwPaSize;
pwPrSeWi = pwPrSeWiSav = pPCMSub->pwPrBf + pPCMSub->dwBfSize - dwSeWiSize;
}
else
if (pPCMSub->pwNeBf && (pPCMSub->eTech == techPATT_MATCH_NEXT_SIGN_CC))
{
pwPa = pwPaSav = pPCMSub->pwNeBf;
pwNeSeWi = pwNeSeWiSav = pPCMSub->pwNeBf;
}
else
if (pPCMSub->pwPrBf && pPCMSub->pwNeBf && (pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC))
{
// Use the pattern with the highest amplitude
pwPa = pwPaSav = pPCMSub->pwPrBf + pPCMSub->dwBfSize - dwPaSize;
pwNeSeWi = pPCMSub->pwNeBf;
pwPrSeWi = pwPrSeWiSav = pPCMSub->pwPrBf + pPCMSub->dwBfSize - dwSeWiSize;
fPaInPr = TRUE;
for (i=0, dwPaAmp = 0, dwNeSeWiAmp = 0; i<dwPaSize; i++, pwPa++, pwNeSeWi++)
{
dwPaAmp += abs(*pwPa);
dwNeSeWiAmp += abs(*pwNeSeWi);
}
if (dwNeSeWiAmp > dwPaAmp)
{
pwPaSav = pPCMSub->pwNeBf;
fPaInPr = FALSE;
}
pwPa = pwPaSav;
pwNeSeWi = pwNeSeWiSav = pPCMSub->pwNeBf + dwPaSize/2;
}
if (pwPa && (pwPrSeWi || pwNeSeWi))
{
// Look for best match in previous packet
dwPrCCPosMax = 0; lPrCCMax = -((long)dwPaSize+1);
if (pwPrSeWi && ((pPCMSub->eTech == techPATT_MATCH_PREV_SIGN_CC) || ((fPaInPr) && (pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC))))
{
// Look for the highest sign correlation between pattern and search window
for (i=0; i<(dwSeWiSize-dwPaSize-dwPaSize/2+1); i++, pwPa = pwPaSav, pwPrSeWi = pwPrSeWiSav + i)
{
// Compute the sign correlation between pattern, and search window
for (j=0, lCCNum = 0; j<dwPaSize; j++, pwPa++, pwPrSeWi++)
lCCNum += alSign[(*pwPa ^ *pwPrSeWi)>> 15 & 1];
// Save position and value of highest sign correlation
if (lCCNum>lPrCCMax)
{
dwPrCCPosMax = i;
lPrCCMax = lCCNum;
}
}
}
// Look for best match in next packet
dwNeCCPosMax = dwPaSize/2; lNeCCMax = -((long)dwPaSize+1);
if (pwNeSeWi && ((pPCMSub->eTech == techPATT_MATCH_NEXT_SIGN_CC) || ((!fPaInPr) && (pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC))))
{
// Look for the highest sign correlation between pattern and search window
for (i=dwPaSize/2; i<(dwSeWiSize-dwPaSize-dwPaSize/2+1); i++, pwPa = pwPaSav, pwNeSeWi = pwNeSeWiSav + i)
{
// Compute the sign correlation between pattern, and search window
for (j=0, lCCNum = 0; j<dwPaSize; j++, pwPa++, pwNeSeWi++)
lCCNum += alSign[(*pwPa ^ *pwNeSeWi)>> 15 & 1];
// Save position and value of highest sign correlation
if (lCCNum>lNeCCMax)
{
dwNeCCPosMax = i;
lNeCCMax = lCCNum;
}
}
}
if ((pPCMSub->eTech == techPATT_MATCH_PREV_SIGN_CC) || (pwPrSeWiSav && fPaInPr && (pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC)))
{
// Copy matching samples from the previous frame in missing frame
dwNuSaToCopy = pPCMSub->dwBfSize-dwPaSize-dwPrCCPosMax;
CopyMemory(pPCMSub->pwWaSuBf, pwPrSeWiSav+dwPaSize+dwPrCCPosMax, dwNuSaToCopy << 1);
// Do it until missing packet is full
for (dwNuSaCopied = dwNuSaToCopy; dwNuSaCopied<pPCMSub->dwBfSize;dwNuSaCopied += dwNuSaToCopy)
{
dwNuSaToCopy = min(pPCMSub->dwBfSize-dwNuSaCopied, dwNuSaToCopy);
CopyMemory(pPCMSub->pwWaSuBf + dwNuSaCopied, pwPrSeWiSav+dwPaSize+dwPrCCPosMax, dwNuSaToCopy << 1);
}
}
else
{
// Copy matching samples from the next frame in missing frame
dwNuSaToCopy = dwNeCCPosMax;
CopyMemory(pPCMSub->pwWaSuBf + pPCMSub->dwBfSize - dwNuSaToCopy, pPCMSub->pwNeBf, dwNuSaToCopy << 1);
// Do it until missing packet is full
for (dwNuSaCopied = dwNuSaToCopy; dwNuSaCopied<pPCMSub->dwBfSize;dwNuSaCopied += dwNuSaToCopy)
{
dwNuSaToCopy = min(pPCMSub->dwBfSize-dwNuSaCopied, dwNuSaToCopy);
CopyMemory(pPCMSub->pwWaSuBf + pPCMSub->dwBfSize - dwNuSaCopied - dwNuSaToCopy, pPCMSub->pwNeBf+dwNeCCPosMax-dwNuSaToCopy, dwNuSaToCopy << 1);
}
}
if ((pPCMSub->eTech == techPATT_MATCH_BOTH_SIGN_CC) && pwNeSeWiSav && pwPrSeWiSav)
{
if (pPCMSub->fScal)
{
// Compute the amplitude of the pattern
for (i=0, dwPrSeWiAmp = 0, dwNeSeWiAmp = 0, pwPrSeWi = pPCMSub->pwPrBf + pPCMSub->dwBfSize - dwPaSize, pwNeSeWi = pPCMSub->pwNeBf; i<dwPaSize; i++, pwPrSeWi++, pwNeSeWi++)
{
dwPrSeWiAmp += abs(*pwPrSeWi);
dwNeSeWiAmp += abs(*pwNeSeWi);
}
// Scale data
dwNumPaInSeWin = pPCMSub->dwBfSize/dwPaSize;
for (i=0, pwPaSav = pPCMSub->pwWaSuBf; i<dwNumPaInSeWin; i++, pwPaSav += dwPaSize)
{
for (j=0, pwPa = pwPaSav, dwPaAmp = 0; j<dwPaSize; j++, pwPa++)
dwPaAmp += abs(*pwPa);
dwPaAmpExp = (dwPrSeWiAmp * (dwNumPaInSeWin - i) + dwNeSeWiAmp * (i + 1)) / (dwNumPaInSeWin + 1);
for (;dwPaAmpExp > 65536; dwPaAmpExp >>= 1, dwPaAmp >>= 1)
;
if (dwPaAmp && (dwPaAmp != dwPaAmpExp))
for (j=0, pwPa = pwPaSav; j<dwPaSize; j++, pwPa++)
*pwPa = (short)((long)*pwPa * (long)dwPaAmpExp / (long)dwPaAmp);
}
}
}
}
}
else
return DPR_CANT_INTERPOLATE;
return DPR_SUCCESS;
}
// returns length of uncompressed PCM data in buffer
DWORD
AudioPacket::GetDevDataSamples()
{
DWORD dwState = _GetState();
DWORD cbData;
if (dwState == MP_STATE_DECODED)
// return actual length
cbData = ((ACMSTREAMHEADER *) m_pStrmConvHdr)->cbDstLengthUsed ;
else if (m_pDevData)
// return size of buffer
cbData = m_pDevData->length;
else
cbData = 0;
return cbData * 8/ ((WAVEFORMATEX *) m_pDevFmt)->wBitsPerSample;
}