Windows-Server-2003/enduser/troubleshoot/bn/vrmatrx.h

285 lines
6.9 KiB
C
Raw Normal View History

2024-08-04 01:28:15 +02:00
//+-------------------------------------------------------------------------
//
// Microsoft Windows
//
// Copyright (C) Microsoft Corporation, 1997 - 1997
//
// File: vrmatrx.h
//
//--------------------------------------------------------------------------
#ifndef _MATRIX_H_
#define _MATRIX_H_
#include <memory.h>
#include "basics.h"
#include "mdvect.h"
//
// VRMATRIXSQ.H: Matrix handling
//
template<class T>
void fastMemMove(const T * ptfrom, T * ptto, int ct)
{
::memmove( (void*) ptto, (void*) ptfrom, ct * sizeof(T) );
}
class VRMATRIX : public TMDVDENSE<REAL>
{
public:
VRMATRIX ( int cRow, int cCol = 0 )
{
Init( cRow, cCol );
}
VRMATRIX () {}
void Init ( int cRow, int cCol = 0 )
{
second.Init( 2, cRow, cCol != 0 ? cCol : cRow );
first.resize( second._Totlen() );
}
void Init ( const VRMATRIX & vrmat )
{
Init( vrmat.CRow(), vrmat.CCol() );
}
bool BCanMultiply( const VRMATRIX & mat ) const
{
return CCol() == mat.CRow();
}
bool BSameDimension( const VRMATRIX & mat ) const
{
return CRow() == mat.CRow() && CCol() == mat.CCol() ;
}
int CDim ( int iDim ) const
{
return second.size().size() > iDim
? second.size()[iDim]
: 0 ;
}
int CRow () const
{ return CDim(0); }
int CCol () const
{ return CDim(1); }
bool BSquare() const
{ return CRow() == CCol() ; }
int IOffset ( int irow, int icol ) const
{
int cRow = CRow();
int cCol = CCol();
if ( irow >= CRow()
|| icol >= CCol() )
throw GMException(EC_MDVECT_MISUSE,"subscript error on matrix");
return second.stride()[0] * irow
+ second.stride()[1] * icol;
}
REAL & operator () ( int irow, int icol )
{ return first[ IOffset(irow,icol) ]; }
const REAL & operator () ( int irow, int icol ) const
{
VRMATRIX & vrmx = const_cast<VRMATRIX&>(self);
return vrmx.first[ IOffset(irow,icol) ];
}
void InterchangeRows ( int irow1, int irow2 )
{
if ( irow1 >= CRow()
&& irow2 >= CRow() )
throw GMException(EC_MDVECT_MISUSE,"subscript error on matrix");
if ( irow1 == irow2 )
return;
REAL * pr1 = & self(irow1,0);
REAL * pr2 = & self(irow2,0);
assert( & self(irow1,1) - pr1 == 1 );
for ( int icol = 0; icol < CCol(); icol++ )
{
REAL r = *pr1;
*pr1++ = *pr2;
*pr2++ = r;
}
}
void InterchangeCols ( int icol1, int icol2 )
{
if ( icol1 >= CCol()
&& icol2 >= CCol() )
throw GMException(EC_MDVECT_MISUSE,"subscript error on matrix");
if ( icol1 == icol2 )
return;
REAL * pr1 = & self(0,icol1);
REAL * pr2 = & self(0,icol2);
int icolInc = CCol();
for ( int irow = 0; irow < CRow(); irow++ )
{
REAL r = *pr1;
*pr1 = *pr2;
*pr2 = r;
pr1 += icolInc;
pr2 += icolInc;
}
}
// Return the transpose of the matrix
VRMATRIX VrmatrixTranspose () const;
// Return a row vector
VLREAL VectorRow ( int irow ) const;
// Return a column vector
VLREAL VectorColumn ( int icol ) const;
// Project a view of the matrix (see documentation below).
VRMATRIX VrmatrixProject ( const VIMD & vimdRowColumnRetain ) const;
VRMATRIX operator * ( const VRMATRIX & matrix ) const;
VRMATRIX operator * ( const VLREAL & vreal ) const;
VRMATRIX & operator += ( const VRMATRIX & matrix );
VRMATRIX & operator -= ( const VRMATRIX & matrix );
VRMATRIX & operator *= ( REAL rScalar );
VRMATRIX & operator += ( REAL rScalar );
VRMATRIX & operator -= ( REAL rScalar );
VRMATRIX & operator /= ( REAL rScalar );
};
class VRMATRIXSQ : public VRMATRIX
{
public:
VRMATRIXSQ(int cdim)
: VRMATRIX(cdim,cdim),
_iSign(1)
{}
VRMATRIXSQ () {}
// Construct a square matrix as the product of a column
// and a row vector.
VRMATRIXSQ ( const VLREAL & vrColumn, const VLREAL & vrRow );
~ VRMATRIXSQ() {}
// Return true if matrix is in L-U decomposition form
bool BIsLUDecomposed () const
{ return _vimdRow.size() > 0 ; }
// Destructive computation routines
VRMATRIXSQ & operator *= ( REAL rScalar )
{
VRMATRIX::operator*=(rScalar);
return self;
}
VRMATRIXSQ & operator /= ( REAL rScalar )
{
VRMATRIX::operator/=(rScalar);
return self;
}
VRMATRIXSQ & operator += ( REAL rScalar )
{
VRMATRIX::operator+=(rScalar);
return self;
}
VRMATRIXSQ & operator -= ( REAL rScalar )
{
VRMATRIX::operator-=(rScalar);
return self;
}
VRMATRIXSQ & operator += ( const VRMATRIXSQ & matrix )
{
VRMATRIX::operator+=(matrix);
return self;
}
VRMATRIXSQ & operator -= ( const VRMATRIXSQ & matrix )
{
VRMATRIX::operator-=(matrix);
return self;
}
VRMATRIXSQ & operator *= ( const VRMATRIXSQ & matrix );
// Perform L-U decomposition; throw exception if singular
// If "use tiny" is set, pivots at zero are replaced with
// RTINY value (1.0e-20)
void LUDecompose( bool bUseTinyIfSingular = false );
// Invert; throw exception singular. If not in L-U form,
// L-U Decomp is called.
void Invert( bool bUseTinyIfSingular = false );
// Return the determinant. If not in L-U form,
// L-U Decomp is called.
DBL DblDeterminant();
// Return the log of the determinant. If not in L-U form,
// L-U Decomp is called. Throws exception if negative.
DBL DblLogDeterminant();
// ------------------------------------
// Non-destructive computation routines
// ------------------------------------
// Adds the log of each element in the diagonal and returns the sum.
DBL DblAddLogDiagonal() const;
// Set vrmatResult to be the result of performing an L-U
// decomposition on the matrix. Will throw exception if
// the matrix is singular
// If "use tiny" is set, pivots at zero are replaced with
// RTINY value (1.0e-20)
void GetLUDecompose( VRMATRIXSQ & vrmatResult, bool bUseTinyIfSingular = false ) const;
// Set vrmatResult to the inverse of the matrix.
// Will throw an exception if the matrix is singular.
void GetInverse( VRMATRIXSQ & vrmatResult, bool bUseTinyIfSingular = false ) const;
// Get the determinant without modifying (LU decomposing) the matrix.
// vrmatResult will contain the LU decomposed version of the matrix.
void GetDblDeterminant( DBL& dblDeterm, VRMATRIXSQ & vrmatResult ) const;
// Get the log of determinant without modifying (LU decomposing) the matrix.
// vrmatResult will contain the LU decomposed version of the matrix.
void GetDblLogDeterminant( DBL& dblLogDeterm, VRMATRIXSQ & vrmatResult) const;
// Project a view of the matrix (see documentation below).
VRMATRIXSQ VrmatrixProject ( const VIMD & vimdRowColumnRetain ) const;
protected:
int _iSign;
VIMD _vimdRow;
void LUDBackSub(const VRMATRIXSQ & matrix);
};
/*
How to use the VRMATRIX::Project() function.
Original matrix:
1 2 3
4 5 6
7 8 9
The (0,2) projection is obtained by deleting the 2nd row and 2nd column:
1 3
7 9
The (0,1) projection is obtained by deleting the 3rd row (and third column):
1 2
4 5
The (1,2) projeciton is obtained by deleting the 1st row and 1st column:
5 6
8 9
The (0) projection is obtained by deleting the 2nd and 3rd rows and columns:
1
*/
#endif