Windows-Server-2003/base/win32/lz32/winlza/lzcomp.c

183 lines
5.5 KiB
C

/*
** lzcomp.c - Routines used in Lempel-Ziv compression (a la 1977 article).
**
** Author: DavidDi
*/
// Headers
///////////
#include "lz_common.h"
#include "lz_buffers.h"
#include "lz_header.h"
#include "lzcommon.h"
/*
** int LZEncode(int doshSource, int doshDest);
**
** Compress input file into output file.
**
** Arguments: doshSource - open DOS file handle of input file
** doshDest - open DOS file handle of output file
**
** Returns: int - TRUE if compression was successful. One of the LZERROR_
** codes if the compression failed.
**
** Globals:
*/
INT LZEncode(INT doshSource, INT doshDest, PLZINFO pLZI)
{
INT i, len, f,
iCurChar, // current ring buffer position
iCurString, // start of current string in ring buffer
iCodeBuf, // index of next open buffer position
cbLastMatch; // length of last match
BYTE byte, // temporary storage for next byte to write
byteMask, // bit mask (and counter) for eight code units
codeBuf[1 + 8 * MAX_LITERAL_LEN]; // temporary storage for encoded data
#if 0
pLZI->cbMaxMatchLen = LZ_MAX_MATCH_LEN;
#else
pLZI->cbMaxMatchLen = FIRST_MAX_MATCH_LEN;
#endif
ResetBuffers();
pLZI->cblOutSize += HEADER_LEN;
// Initialize encoding trees.
if (!LZInitTree(pLZI)) {
return( LZERROR_GLOBALLOC );
}
// CodeBuf[1..16] saves eight units of code, and CodeBuf[0] works as eight
// flags. '1' representing that the unit is an unencoded letter (1 byte),
// '0' a position-and-length pair (2 bytes). Thus, eight units require at
// most 16 bytes of code, plus the one byte of flags.
codeBuf[0] = (BYTE)0;
byteMask = (BYTE)1;
iCodeBuf = 1;
iCurString = 0;
iCurChar = RING_BUF_LEN - pLZI->cbMaxMatchLen;
for (i = 0; i < RING_BUF_LEN - pLZI->cbMaxMatchLen; i++)
pLZI->rgbyteRingBuf[i] = BUF_CLEAR_BYTE;
// Read bytes into the last cbMaxMatchLen bytes of the buffer.
for (len = 0; len < pLZI->cbMaxMatchLen && ((f = ReadByte(byte)) != END_OF_INPUT);
len++)
{
if (f != TRUE) {
return( f );
}
pLZI->rgbyteRingBuf[iCurChar + len] = byte;
}
// Insert the cbMaxMatchLen strings, each of which begins with one or more
// 'space' characters. Note the order in which these strings are inserted.
// This way, degenerate trees will be less likely to occur.
for (i = 1; i <= pLZI->cbMaxMatchLen; i++)
LZInsertNode(iCurChar - i, FALSE, pLZI);
// Finally, insert the whole string just read. The global variables
// cbCurMatch and iCurMatch are set.
LZInsertNode(iCurChar, FALSE, pLZI);
do // while (len > 0)
{
// cbCurMatch may be spuriously long near the end of text.
if (pLZI->cbCurMatch > len)
pLZI->cbCurMatch = len;
if (pLZI->cbCurMatch <= MAX_LITERAL_LEN)
{
// This match isn't long enough to encode, so copy it directly.
pLZI->cbCurMatch = 1;
// Set 'one uncoded byte' bit flag.
codeBuf[0] |= byteMask;
// Write literal byte.
codeBuf[iCodeBuf++] = pLZI->rgbyteRingBuf[iCurChar];
}
else
{
// This match is long enough to encode. Send its position and
// length pair. N.b., pLZI->cbCurMatch > MAX_LITERAL_LEN.
codeBuf[iCodeBuf++] = (BYTE)pLZI->iCurMatch;
codeBuf[iCodeBuf++] = (BYTE)((pLZI->iCurMatch >> 4 & 0xf0) |
(pLZI->cbCurMatch - (MAX_LITERAL_LEN + 1)));
}
// Shift mask left one bit.
if ((byteMask <<= 1) == (BYTE)0)
{
// Send at most 8 units of code together.
for (i = 0; i < iCodeBuf; i++)
if ((f = WriteByte(codeBuf[i])) != TRUE) {
return( f );
}
// Reset flags and mask.
codeBuf[0] = (BYTE)0;
byteMask = (BYTE)1;
iCodeBuf = 1;
}
cbLastMatch = pLZI->cbCurMatch;
for (i = 0; i < cbLastMatch && ((f = ReadByte(byte)) != END_OF_INPUT);
i++)
{
if (f != TRUE) {
return( f );
}
// Delete old string.
LZDeleteNode(iCurString, pLZI);
pLZI->rgbyteRingBuf[iCurString] = byte;
// If the start position is near the end of buffer, extend the
// buffer to make string comparison easier.
if (iCurString < pLZI->cbMaxMatchLen - 1)
pLZI->rgbyteRingBuf[iCurString + RING_BUF_LEN] = byte;
// Increment position in ring buffer modulo RING_BUF_LEN.
iCurString = (iCurString + 1) & (RING_BUF_LEN - 1);
iCurChar = (iCurChar + 1) & (RING_BUF_LEN - 1);
// Register the string in rgbyteRingBuf[r..r + cbMaxMatchLen - 1].
LZInsertNode(iCurChar, FALSE, pLZI);
}
while (i++ < cbLastMatch)
{
// No need to read after the end of the input, but the buffer may
// not be empty.
LZDeleteNode(iCurString, pLZI);
iCurString = (iCurString + 1) & (RING_BUF_LEN - 1);
iCurChar = (iCurChar + 1) & (RING_BUF_LEN - 1);
if (--len)
LZInsertNode(iCurChar, FALSE, pLZI);
}
} while (len > 0); // until there is no input to process
if (iCodeBuf > 1)
// Send remaining code.
for (i = 0; i < iCodeBuf; i++)
if ((f = WriteByte(codeBuf[i])) != TRUE) {
return( f );
}
// Flush output buffer to file.
if ((f = FlushOutputBuffer(doshDest, pLZI)) != TRUE) {
return( f );
}
LZFreeTree(pLZI);
return(TRUE);
}