WindowsXP/Source/XPSP1/NT/base/ntos/config/hiveinit.c
2024-08-03 16:30:48 +02:00

689 lines
20 KiB
C

/*++
Copyright (c) 1991 Microsoft Corporation
Module Name:
hiveinit.c
Abstract:
Hive initialization code.
Author:
Bryan M. Willman (bryanwi) 12-Sep-91
Environment:
Revision History:
Dragos C. Sambotin (dragoss) 25-Jan-99
Implementation of bin-size chunk loading of hives.
--*/
#include "cmp.h"
VOID
HvpFillFileName(
PHBASE_BLOCK BaseBlock,
PUNICODE_STRING FileName
);
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE,HvInitializeHive)
#pragma alloc_text(PAGE,HvpFillFileName)
#pragma alloc_text(PAGE,HvpFreeAllocatedBins)
#endif
// Dragos: Modified functions
VOID
HvpFreeAllocatedBins(
PHHIVE Hive
)
/*++
Routine Description:
Free all the bins allocated for the specified hive.
It applies only to stable storage. Not all bins are allocated.
Those that are not allocated have BinAddress set to 0
Arguments:
Hive - supplies a pointer to hive control structure for hive who's bin to free.
Return Value:
NONE.
--*/
{
ULONG Length;
PHBIN Bin;
ULONG MapSlots;
ULONG Tables;
PHMAP_ENTRY Me;
PHMAP_TABLE Tab;
ULONG i;
ULONG j;
//
// calculate the number of tables in the map
//
Length = Hive->Storage[Stable].Length;
MapSlots = Length / HBLOCK_SIZE;
if( MapSlots > 0 ) {
Tables = (MapSlots-1) / HTABLE_SLOTS;
} else {
Tables = 0;
}
if( Hive->Storage[Stable].Map ) {
//
// iterate through the directory
//
for (i = 0; i <= Tables; i++) {
Tab = Hive->Storage[Stable].Map->Directory[i];
ASSERT(Tab);
//
// iterate through the slots in the directory
//
for(j=0;j<HTABLE_SLOTS;j++) {
Me = &(Tab->Table[j]);
//
// BinAddress non-zero means allocated bin
//
if( Me->BinAddress ) {
//
// a bin is freed if it is a new alloc AND it resides in paged pool
//
if( (Me->BinAddress & HMAP_NEWALLOC) && (Me->BinAddress & HMAP_INPAGEDPOOL) ) {
Bin = (PHBIN)HBIN_BASE(Me->BinAddress);
(Hive->Free)(Bin, HvpGetBinMemAlloc(Hive,Bin,Stable));
}
Me->BinAddress = 0;
}
}
}
}
}
NTSTATUS
HvInitializeHive(
PHHIVE Hive,
ULONG OperationType,
ULONG HiveFlags,
ULONG FileType,
PVOID HiveData OPTIONAL,
PALLOCATE_ROUTINE AllocateRoutine,
PFREE_ROUTINE FreeRoutine,
PFILE_SET_SIZE_ROUTINE FileSetSizeRoutine,
PFILE_WRITE_ROUTINE FileWriteRoutine,
PFILE_READ_ROUTINE FileReadRoutine,
PFILE_FLUSH_ROUTINE FileFlushRoutine,
ULONG Cluster,
PUNICODE_STRING FileName OPTIONAL
)
/*++
Routine Description:
Initialize a hive.
Core HHive fields are always inited.
File calls WILL be made BEFORE this call returns.
Caller is expected to create/open files and store file handles
in a way that can be derived from the hive pointer.
Three kinds of initialization can be done, selected by OperationType:
HINIT_CREATE
Create a new hive from scratch. Will have 0 storage.
[Used to do things like create HARDWARE hive and for parts
of SaveKey and RestoreKey]
HINIT_MEMORY_INPLACE
Build a hive control structure which allows read only
access to a contiguous in-memory image of a hive.
No part of the image will be copied, but a map will
be made.
[Used by osloader.]
HINIT_FLAT
Support very limited (read-only, no checking code) operation
against a hive image.
HINIT_MEMORY
Create a new hive, using a hive image already in memory,
at address supplied by pointer HiveData. The data will
be copied. Caller is expected to free HiveData.
[Used for SYSTEM hive]
HINIT_FILE
Create a hive, reading its data from a file. Recovery processing
via log file will be done if a log is available. If a log
is recovered, flush and clear operation will proceed.
HINIT_MAPFILE
Create a hive, reading its data from a file. Data reading is
done by mapping views of the file in the system cache.
NOTE: The HHive is not a completely opaque structure, because it
is really only used by a limited set of code. Do not assume
that only this routine sets all of these values.
Arguments:
Hive - supplies a pointer to hive control structure to be initialized
to describe this hive.
OperationType - specifies whether to create a new hive from scratch,
from a memory image, or by reading a file from disk.
HiveFlags - HIVE_VOLATILE - Entire hive is to be volatile, regardless
of the types of cells allocated
HIVE_NO_LAZY_FLUSH - Data in this hive is never written
to disk except by an explicit FlushKey
FileType - HFILE_TYPE_*, HFILE_TYPE_LOG set up for logging support respectively.
HiveData - if present, supplies a pointer to an in memory image of
from which to init the hive. Only useful when OperationType
is set to HINIT_MEMORY.
AllocateRoutine - supplies a pointer to routine called to allocate
memory. WILL be called before this routine returns.
FreeRoutine - supplies a pointer to routine called to free memory.
CAN be called before this routine returns.
FileSetSizeRoutine - supplies a pointer to a routine used to set the
size of a file. CAN be called before this
routine returns.
FileWriteRoutine - supplies a pointer to routine called to write memory
to a file.
FileReadRoutine - supplies a pointer to routine called to read from
a file into memory. CAN be called before this
routine returns.
FileFlushRoutine - supplies a pointer to routine called to flush a file.
Cluster - clustering factor in HSECTOR_SIZE units. (i.e. Size of
physical sector in media / HSECTOR_SIZE. 1 for 512 byte
physical sectors (or smaller), 2 for 1024, 4 for 2048, etc.
(Numbers greater than 8 won't work.)
FileName - some path like "...\system32\config\system", last
32 or so characters will be copied into baseblock
(and thus to disk) as a debugging aid. May be null.
Return Value:
NTSTATUS code.
--*/
{
BOOLEAN UseForIo;
PHBASE_BLOCK BaseBlock = NULL;
NTSTATUS Status;
ULONG i;
ULONG Alignment;
CmKdPrintEx((DPFLTR_CONFIG_ID,CML_INIT,"HvInitializeHive:\n"));
CmKdPrintEx((DPFLTR_CONFIG_ID,CML_INIT,"\tHive=%p\n", Hive));
//
// reject invalid parameter combinations
//
if ( (! ARGUMENT_PRESENT(HiveData)) &&
((OperationType == HINIT_MEMORY) ||
(OperationType == HINIT_FLAT) ||
(OperationType == HINIT_MEMORY_INPLACE))
)
{
return STATUS_INVALID_PARAMETER;
}
if ( ! ((OperationType == HINIT_CREATE) ||
(OperationType == HINIT_MEMORY) ||
(OperationType == HINIT_MEMORY_INPLACE) ||
(OperationType == HINIT_FLAT) ||
(OperationType == HINIT_FILE) ||
(OperationType == HINIT_MAPFILE))
)
{
return STATUS_INVALID_PARAMETER;
}
//
// static and global control values
//
Hive->Signature = HHIVE_SIGNATURE;
Hive->Allocate = AllocateRoutine;
Hive->Free = FreeRoutine;
Hive->FileSetSize = FileSetSizeRoutine;
Hive->FileWrite = FileWriteRoutine;
Hive->FileRead = FileReadRoutine;
Hive->FileFlush = FileFlushRoutine;
Hive->Log = (BOOLEAN)((FileType == HFILE_TYPE_LOG) ? TRUE : FALSE);
if (Hive->Log && (HiveFlags & HIVE_VOLATILE)) {
return STATUS_INVALID_PARAMETER;
}
Hive->HiveFlags = HiveFlags;
if ((Cluster == 0) || (Cluster > HSECTOR_COUNT)) {
return STATUS_INVALID_PARAMETER;
}
Hive->Cluster = Cluster;
Hive->RefreshCount = 0;
Hive->StorageTypeCount = HTYPE_COUNT;
Hive->Storage[Volatile].Length = 0;
#ifdef HV_TRACK_FREE_SPACE
Hive->Storage[Volatile].FreeStorage = 0;
#endif
Hive->Storage[Volatile].Map = NULL;
Hive->Storage[Volatile].SmallDir = NULL;
Hive->Storage[Volatile].Guard = (ULONG)-1;
Hive->Storage[Volatile].FreeSummary = 0;
InitializeListHead(&Hive->Storage[Volatile].FreeBins);
for (i = 0; i < HHIVE_FREE_DISPLAY_SIZE; i++) {
RtlInitializeBitMap(&(Hive->Storage[Volatile].FreeDisplay[i]), NULL, 0);
}
Hive->Storage[Stable].Length = 0;
#ifdef HV_TRACK_FREE_SPACE
Hive->Storage[Stable].FreeStorage = 0;
#endif
Hive->Storage[Stable].Map = NULL;
Hive->Storage[Stable].SmallDir = NULL;
Hive->Storage[Stable].Guard = (ULONG)-1;
Hive->Storage[Stable].FreeSummary = 0;
InitializeListHead(&Hive->Storage[Stable].FreeBins);
for (i = 0; i < HHIVE_FREE_DISPLAY_SIZE; i++) {
RtlInitializeBitMap(&(Hive->Storage[Stable].FreeDisplay[i]), NULL, 0);
}
RtlInitializeBitMap(&(Hive->DirtyVector), NULL, 0);
Hive->DirtyCount = 0;
Hive->DirtyAlloc = 0;
Hive->LogSize = 0;
Hive->GetCellRoutine = HvpGetCellPaged;
Hive->ReleaseCellRoutine = NULL;
Hive->Flat = FALSE;
Hive->ReadOnly = FALSE;
UseForIo = (BOOLEAN)!(Hive->HiveFlags & HIVE_VOLATILE);
//
// new create case
//
if (OperationType == HINIT_CREATE) {
BaseBlock = (PHBASE_BLOCK)((Hive->Allocate)(sizeof(HBASE_BLOCK), UseForIo,CM_FIND_LEAK_TAG11));
if (BaseBlock == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Make sure the buffer we got back is cluster-aligned. If not, try
// harder to get an aligned buffer.
//
Alignment = Cluster * HSECTOR_SIZE - 1;
if (((ULONG_PTR)BaseBlock & Alignment) != 0) {
(Hive->Free)(BaseBlock, sizeof(HBASE_BLOCK));
BaseBlock = (PHBASE_BLOCK)((Hive->Allocate)(PAGE_SIZE, TRUE,CM_FIND_LEAK_TAG12));
if (BaseBlock == NULL) {
return STATUS_INSUFFICIENT_RESOURCES;
}
//
// Return the quota for the extra allocation, as we are not really using
// it and it will not be accounted for later when we free it.
//
CmpReleaseGlobalQuota(PAGE_SIZE - sizeof(HBASE_BLOCK));
}
BaseBlock->Signature = HBASE_BLOCK_SIGNATURE;
BaseBlock->Sequence1 = 1;
BaseBlock->Sequence2 = 1;
BaseBlock->TimeStamp.HighPart = 0;
BaseBlock->TimeStamp.LowPart = 0;
BaseBlock->Major = HSYS_MAJOR;
BaseBlock->Minor = HSYS_MINOR;
BaseBlock->Type = HFILE_TYPE_PRIMARY;
BaseBlock->Format = HBASE_FORMAT_MEMORY;
BaseBlock->RootCell = HCELL_NIL;
BaseBlock->Length = 0;
BaseBlock->Cluster = Cluster;
BaseBlock->CheckSum = 0;
HvpFillFileName(BaseBlock, FileName);
Hive->BaseBlock = BaseBlock;
Hive->Version = HSYS_MINOR;
Hive->BaseBlock->BootType = 0;
return STATUS_SUCCESS;
}
//
// flat image case
//
if (OperationType == HINIT_FLAT) {
Hive->BaseBlock = (PHBASE_BLOCK)HiveData;
Hive->Version = Hive->BaseBlock->Minor;
Hive->Flat = TRUE;
Hive->ReadOnly = TRUE;
Hive->GetCellRoutine = HvpGetCellFlat;
Hive->Storage[Stable].Length = Hive->BaseBlock->Length;
Hive->StorageTypeCount = 1;
Hive->BaseBlock->BootType = 0;
// don't init this as we don't need it!!!
//Status = HvpAdjustHiveFreeDisplay(Hive,Hive->Storage[Stable].Length,Stable);
return STATUS_SUCCESS;
}
//
// readonly image case
//
if (OperationType == HINIT_MEMORY_INPLACE) {
BaseBlock = (PHBASE_BLOCK)HiveData;
if ( (BaseBlock->Signature != HBASE_BLOCK_SIGNATURE) ||
(BaseBlock->Type != HFILE_TYPE_PRIMARY) ||
(BaseBlock->Major != HSYS_MAJOR) ||
(BaseBlock->Minor > HSYS_MINOR_SUPPORTED) ||
(BaseBlock->Format != HBASE_FORMAT_MEMORY) ||
(BaseBlock->Sequence1 != BaseBlock->Sequence2) ||
(HvpHeaderCheckSum(BaseBlock) !=
(BaseBlock->CheckSum))
)
{
return STATUS_REGISTRY_CORRUPT;
}
Hive->BaseBlock = BaseBlock;
Hive->Version = BaseBlock->Minor;
Hive->ReadOnly = TRUE;
Hive->StorageTypeCount = 1;
Hive->BaseBlock->BootType = 0;
Status = HvpAdjustHiveFreeDisplay(Hive,BaseBlock->Length,Stable);
if( !NT_SUCCESS(Status) ) {
return Status;
}
if ( !NT_SUCCESS(HvpBuildMap(
Hive,
(PUCHAR)HiveData + HBLOCK_SIZE
)))
{
return STATUS_REGISTRY_CORRUPT;
}
return(STATUS_SUCCESS);
}
//
// memory copy case
//
if (OperationType == HINIT_MEMORY) {
BaseBlock = (PHBASE_BLOCK)HiveData;
if ( (BaseBlock->Signature != HBASE_BLOCK_SIGNATURE) ||
(BaseBlock->Type != HFILE_TYPE_PRIMARY) ||
(BaseBlock->Format != HBASE_FORMAT_MEMORY) ||
(BaseBlock->Major != HSYS_MAJOR) ||
(BaseBlock->Minor > HSYS_MINOR_SUPPORTED) ||
(HvpHeaderCheckSum(BaseBlock) !=
(BaseBlock->CheckSum))
)
{
return STATUS_REGISTRY_CORRUPT;
}
Hive->BaseBlock = (PHBASE_BLOCK)((Hive->Allocate)(sizeof(HBASE_BLOCK), UseForIo,CM_FIND_LEAK_TAG13));
if (Hive->BaseBlock==NULL) {
return(STATUS_INSUFFICIENT_RESOURCES);
}
//
// Make sure the buffer we got back is cluster-aligned. If not, try
// harder to get an aligned buffer.
//
Alignment = Cluster * HSECTOR_SIZE - 1;
if (((ULONG_PTR)Hive->BaseBlock & Alignment) != 0) {
(Hive->Free)(Hive->BaseBlock, sizeof(HBASE_BLOCK));
Hive->BaseBlock = (PHBASE_BLOCK)((Hive->Allocate)(PAGE_SIZE, TRUE,CM_FIND_LEAK_TAG14));
if (Hive->BaseBlock == NULL) {
return (STATUS_INSUFFICIENT_RESOURCES);
}
}
RtlCopyMemory(Hive->BaseBlock, BaseBlock, HSECTOR_SIZE);
Hive->BaseBlock->BootRecover = BaseBlock->BootRecover;
Hive->BaseBlock->BootType = BaseBlock->BootType;
Hive->Version = Hive->BaseBlock->Minor;
Status = HvpAdjustHiveFreeDisplay(Hive,BaseBlock->Length,Stable);
if( !NT_SUCCESS(Status) ) {
(Hive->Free)(Hive->BaseBlock, sizeof(HBASE_BLOCK));
Hive->BaseBlock = NULL;
return Status;
}
if ( !NT_SUCCESS(HvpBuildMapAndCopy(Hive,
(PUCHAR)HiveData + HBLOCK_SIZE))) {
(Hive->Free)(Hive->BaseBlock, sizeof(HBASE_BLOCK));
Hive->BaseBlock = NULL;
return STATUS_REGISTRY_CORRUPT;
}
HvpFillFileName(Hive->BaseBlock, FileName);
return(STATUS_SUCCESS);
}
#ifndef CM_ENABLE_MAPPED_VIEWS
if( OperationType == HINIT_MAPFILE ) {
OperationType = HINIT_FILE;
}
#endif //CM_ENABLE_MAPPED_VIEWS
//
// file read case
//
if (OperationType == HINIT_FILE) {
CmKdPrintEx((DPFLTR_CONFIG_ID,CML_BIN_MAP,"HvInitializeHive(%wZ,HINIT_FILE) :\n", FileName));
//
// get the file image (possible recovered via log) into memory
//
Status = HvLoadHive(Hive);
if ((Status != STATUS_SUCCESS) && (Status != STATUS_REGISTRY_RECOVERED)) {
return Status;
}
CmKdPrintEx((DPFLTR_CONFIG_ID,CML_BIN_MAP,"\n"));
if (Status == STATUS_REGISTRY_RECOVERED) {
//
// We have a good hive, with a log, and a dirty map,
// all set up. Only problem is that we need to flush
// the file so the log can be cleared and new writes
// posted against the hive. Since we know we have
// a good log in hand, we just write the hive image.
//
if ( ! HvpDoWriteHive(Hive, HFILE_TYPE_PRIMARY)) {
//
// DRAGOS: Here we need cleanup
// Clean up the bins already allocated
//
HvpFreeAllocatedBins( Hive );
return STATUS_REGISTRY_IO_FAILED;
}
//
// If we get here, we have recovered the hive, and
// written it out to disk correctly. So we clear
// the log here.
//
RtlClearAllBits(&(Hive->DirtyVector));
Hive->DirtyCount = 0;
(Hive->FileSetSize)(Hive, HFILE_TYPE_LOG, 0,0);
Hive->LogSize = 0;
}
//
// slam debug name data into base block
//
HvpFillFileName(Hive->BaseBlock, FileName);
return STATUS_SUCCESS;
}
//
// file map case
//
if (OperationType == HINIT_MAPFILE) {
Hive->GetCellRoutine = HvpGetCellMapped;
Hive->ReleaseCellRoutine = HvpReleaseCellMapped;
CmKdPrintEx((DPFLTR_CONFIG_ID,CML_BIN_MAP,"HvInitializeHive(%wZ,HINIT_MAPFILE) :\n", FileName));
Status = HvMapHive(Hive);
if ((Status != STATUS_SUCCESS) && (Status != STATUS_REGISTRY_RECOVERED)) {
return Status;
}
CmKdPrintEx((DPFLTR_CONFIG_ID,CML_BIN_MAP,"\n"));
if (Status == STATUS_REGISTRY_RECOVERED) {
//
// We have a good hive, with a log, and a dirty map,
// all set up. Only problem is that we need to flush
// the file so the log can be cleared and new writes
// posted against the hive. Since we know we have
// a good log in hand, we just write the hive image.
//
if ( ! HvpDoWriteHive(Hive, HFILE_TYPE_PRIMARY)) {
//
// DRAGOS: Here we need cleanup
// Clean up the bins already allocated
//
HvpFreeAllocatedBins( Hive );
return STATUS_REGISTRY_IO_FAILED;
}
//
// If we get here, we have recovered the hive, and
// written it out to disk correctly. So we clear
// the log here.
//
RtlClearAllBits(&(Hive->DirtyVector));
Hive->DirtyCount = 0;
(Hive->FileSetSize)(Hive, HFILE_TYPE_LOG, 0,0);
Hive->LogSize = 0;
}
//
// slam debug name data into base block
//
HvpFillFileName(Hive->BaseBlock, FileName);
return STATUS_SUCCESS;
}
return STATUS_INVALID_PARAMETER;
}
VOID
HvpFillFileName(
PHBASE_BLOCK BaseBlock,
PUNICODE_STRING FileName
)
/*++
Routine Description:
Zero out the filename portion of the base block.
If FileName is not NULL, copy last 64 bytes into name tail
field of base block
Arguments:
BaseBlock - supplies pointer to a base block
FileName - supplies pointer to a unicode STRING
Return Value:
None.
--*/
{
ULONG offset;
ULONG length;
PUCHAR sptr;
CmKdPrintEx((DPFLTR_CONFIG_ID,CML_HIVE,"HvpFillFileName: %wZ\n", FileName));
RtlZeroMemory((PVOID)&(BaseBlock->FileName[0]), HBASE_NAME_ALLOC);
if (FileName == NULL) {
return;
}
//
// Account for 0 at the end, so we have nice debug spews
//
if (FileName->Length < HBASE_NAME_ALLOC) {
offset = 0;
length = FileName->Length;
} else {
offset = FileName->Length - HBASE_NAME_ALLOC + sizeof(WCHAR);
length = HBASE_NAME_ALLOC - sizeof(WCHAR);
}
sptr = (PUCHAR)&(FileName->Buffer[0]);
RtlCopyMemory(
(PVOID)&(BaseBlock->FileName[0]),
(PVOID)&(sptr[offset]),
length
);
}