321 lines
9.4 KiB
Plaintext
321 lines
9.4 KiB
Plaintext
|
|
|||
|
;================; Bill Forseth
|
|||
|
; TRIG FUNCTIONS ; 817 1/2 N. 10 ave E.
|
|||
|
; 11.27.89 ; Duluth, MN 55805
|
|||
|
;================; (218) 724-8910
|
|||
|
|
|||
|
|
|||
|
|
|||
|
; NOTES: All function inputs evaluating to 'undefined' are returned as '0'.
|
|||
|
; BUGS: PC-LISP's sin and cos functions evaluate pi at 3.141. In increasing
|
|||
|
; the the length of the fractional part of pi cos and sin had to be
|
|||
|
; semi-redefined (via functions chkman and round, mostly). Thus the
|
|||
|
; angle functions return 0, -.5, .5, 1, -1, 2 etc. when they should -
|
|||
|
; BUT for very small angle differences (i +/- 0.00001 radians where
|
|||
|
; i is any integer) the result becomes rounded.
|
|||
|
; As far as I know the equations are accurate - they were checked with
|
|||
|
; formulas found in any standard algebra/trig/calc textbook.
|
|||
|
; FUTURE: Elaboration of differentials, perhaps symbolic routines for
|
|||
|
; factoring standard and differential combinations.
|
|||
|
|
|||
|
|
|||
|
;-------------------------------------------------
|
|||
|
; PPOWER
|
|||
|
; Returns x to the n-th (where x and n may be
|
|||
|
; positive or negative, whole numbers or fractions).
|
|||
|
; Attmepts at taking the root of a negative are headed
|
|||
|
; off and the function returns the abs value.
|
|||
|
; Syntax: (ppower <constant> <exponent>)
|
|||
|
; ie: (ppower 25 -0.5)
|
|||
|
;--------------------------------------------------
|
|||
|
(defun ppower (x n)
|
|||
|
(cond
|
|||
|
((zerop x) 0) ((= 1 n) x)
|
|||
|
((or (zerop n) (= 1 x)) 1)
|
|||
|
((minusp n) (invert (ppower x (abs n))))
|
|||
|
((> 1 n) (expt (abs x) n))
|
|||
|
(t
|
|||
|
(** x (ppower x (diff n 1))))))
|
|||
|
|
|||
|
;---------------------------------------
|
|||
|
; LLOG
|
|||
|
; Returns log(a) / log(b)
|
|||
|
; Syntax: (llog <argument1> <argument2>)
|
|||
|
; ie: (llog 2 16)
|
|||
|
;---------------------------------------
|
|||
|
(defun llog (a b)
|
|||
|
(cond
|
|||
|
((or (= 1 b) (= 1 a) (zerop a)
|
|||
|
(zerop b) (minusp a) (minusp b)) 0)
|
|||
|
(t (// (log b) (log a)))))
|
|||
|
|
|||
|
;----------------------------------------
|
|||
|
; ADJRAD
|
|||
|
; Puts x in the range of 0 <= x < 2pi,
|
|||
|
; x in radians.
|
|||
|
; Syntax: (adjrad <argument>)
|
|||
|
; ie: (adjrad 31.41)
|
|||
|
;----------------------------------------
|
|||
|
(defun adjrad (x)
|
|||
|
(cond
|
|||
|
((= (abs x) (2pi)) 0)
|
|||
|
((< x 0) (adjrad (add x (2pi))))
|
|||
|
((> x (2pi)) (adjrad (diff x (2pi))))
|
|||
|
(t x)))
|
|||
|
|
|||
|
;----------------------------------------
|
|||
|
; ADJDEG
|
|||
|
; Puts d in the range of 0 <= d < 360,
|
|||
|
; d in degrees.
|
|||
|
; Syntax: (adjdeg <argument>)
|
|||
|
; ie: (adjdeg -780)
|
|||
|
;----------------------------------------
|
|||
|
(defun adjdeg (d)
|
|||
|
(cond
|
|||
|
((or (zerop d) (= (abs d) 360)) 0)
|
|||
|
((> d 360) (adjdeg (diff d 360)))
|
|||
|
((< d 0) (adjdeg (add d 360)))
|
|||
|
(t d)))
|
|||
|
|
|||
|
;-------------------------------
|
|||
|
; D2R
|
|||
|
; Converts degrees to radians.
|
|||
|
; Syntax: (d2r <argument>)
|
|||
|
; ie: (d2r 180)
|
|||
|
;-------------------------------
|
|||
|
(defun d2r (x)
|
|||
|
(// (** (adjdeg x) (pi)) 180))
|
|||
|
|
|||
|
;-------------------------------
|
|||
|
; R2D
|
|||
|
; Converts radians to degrees.
|
|||
|
; Syntax: (r2d <argument>)
|
|||
|
; ie: (r2d 3.14)
|
|||
|
;-------------------------------
|
|||
|
(defun r2d (x)
|
|||
|
(// (** (adjrad x) 180) (pi)))
|
|||
|
|
|||
|
;---------------------------------------
|
|||
|
; PI functions
|
|||
|
; All arguments in positive or negative,
|
|||
|
; whole numbers or fractions.
|
|||
|
;---------------------------------------
|
|||
|
|
|||
|
(defun pi () 3.141592) ;Returns the value of pi to 6th place
|
|||
|
;(not rounded)
|
|||
|
;Syntax: (pi)
|
|||
|
|
|||
|
(defun pi/ (x) (// (pi) x)) ;Returns pi divided by x
|
|||
|
;Syntax: (pi/ <argument>)
|
|||
|
|
|||
|
(defun pi* (x) (** (pi) x)) ;Returns pi times x
|
|||
|
;Syntax: (pi* <argument>)
|
|||
|
|
|||
|
(defun pi*/ (n d) ;Returns pi times n/d
|
|||
|
(** (pi) (// n d))) ;Syntax: (pi*/ <argument1> <argument2>)
|
|||
|
(defun pi/* (n d) ;<-- forgiving function
|
|||
|
(** (pi) (// n d)))
|
|||
|
|
|||
|
|
|||
|
;Shorthand pi functions for frequently used angles - -
|
|||
|
|
|||
|
(defun 2pi () (pi* 2)) ;360 deg.
|
|||
|
(defun pi2 () (pi/ 2)) ;90 "
|
|||
|
(defun pi3 () (pi/ 3)) ;60 "
|
|||
|
(defun pi4 () (pi/ 4)) ;45 "
|
|||
|
(defun pi6 () (pi/ 6)) ;30 "
|
|||
|
|
|||
|
;-----------------------------------------
|
|||
|
; SINr
|
|||
|
; Modified sin for the current value of pi
|
|||
|
; Syntax: (sinr <argument>)
|
|||
|
;-----------------------------------------
|
|||
|
(defun sinr (x) (chkman (sin (adjrad x))))
|
|||
|
|
|||
|
;-----------------------------------------
|
|||
|
; COSr
|
|||
|
; Modified cos for the current value of pi
|
|||
|
; Syntax: (cosr <argument>)
|
|||
|
;-----------------------------------------
|
|||
|
(defun cosr (x) (chkman (cos (adjrad x))))
|
|||
|
|
|||
|
;--------------------------------------
|
|||
|
; TANr
|
|||
|
; Returns the tangent of x, where x is
|
|||
|
; in radians.
|
|||
|
; Syntax: (tanr <argument>)
|
|||
|
;--------------------------------------
|
|||
|
(defun tanr (x)
|
|||
|
(cond
|
|||
|
((or (zerop (cosr x)) (zerop (sinr x))) 0)
|
|||
|
(t (chkman (adjrad (// (sinr x) (cosr x)))))))
|
|||
|
|
|||
|
;-------------------------------
|
|||
|
; SINd
|
|||
|
; Returns sin of DEGREE argument
|
|||
|
; Syntax: (sind <argument>)
|
|||
|
;-------------------------------
|
|||
|
(defun sind (d) (chkman (adjrad (sinr (d2r d)))))
|
|||
|
|
|||
|
;-------------------------------
|
|||
|
; COSd
|
|||
|
; Returns cos of DEGREE argument
|
|||
|
; Syntax: (cosd <argument>)
|
|||
|
;-------------------------------
|
|||
|
(defun cosd (d) (chkman (adjrad (cosr (d2r d)))))
|
|||
|
|
|||
|
;---------------------------------------
|
|||
|
; TANd
|
|||
|
; Returns the tangent of DEGREE argument
|
|||
|
; Syntax: (tand <argument>)
|
|||
|
;---------------------------------------
|
|||
|
(defun tand (d)
|
|||
|
(cond
|
|||
|
((or (zerop (cosd d)) (zerop (sind d))) 0)
|
|||
|
(t (chkman (adjrad (// (sind d) (cosd d)))))))
|
|||
|
|
|||
|
;-----------------------------
|
|||
|
; INVERSE functions
|
|||
|
; Arguments (___r) in radians,
|
|||
|
; (___d) in degrees.
|
|||
|
;-----------------------------
|
|||
|
(defun secr (x) (adjrad (invert (cosr x))))
|
|||
|
|
|||
|
(defun cscr (x) (adjrad (invert (sinr x))))
|
|||
|
|
|||
|
(defun cotr (x) (adjrad (invert (tanr x))))
|
|||
|
|
|||
|
(defun secd (d) (adjdeg (invert (cosd d))))
|
|||
|
|
|||
|
(defun cscd (d) (adjdeg (invert (sind d))))
|
|||
|
|
|||
|
(defun cotd (d) (adjdeg (invert (tand d))))
|
|||
|
|
|||
|
|
|||
|
;--------------------------
|
|||
|
; DERIVITIVE functions
|
|||
|
; All arguments in radians.
|
|||
|
;--------------------------
|
|||
|
(defun sin_prime (x) (cosr x))
|
|||
|
|
|||
|
(defun cos_prime (x) (neg (sinr x)))
|
|||
|
|
|||
|
(defun tan_prime (x) (chkman (adjrad (ppower (secr x) 2))))
|
|||
|
|
|||
|
(defun sec_prime (x) (chkman (adjrad (** (secr x) (tanr x)))))
|
|||
|
|
|||
|
(defun csc_prime (x) (chkman (adjrad (neg (** (cscr x) (cotr x))))))
|
|||
|
|
|||
|
(defun cot_prime (x) (chkman (adjrad (ppower (cscr x) 2))))
|
|||
|
|
|||
|
|
|||
|
;------------------------------------------------
|
|||
|
; DOUBLE and HALF angles formulas.
|
|||
|
; All arguments in radians.
|
|||
|
; To use degrees use (d2r d) as the arguments.
|
|||
|
; To have the return in degrees nest the function
|
|||
|
; inside (r2d (<. . .>))
|
|||
|
;-------------------------------------------------
|
|||
|
(defun sinA+B (a b)
|
|||
|
(chkman (adjrad (add (** (sinr a) (cosr b)) (** (cosr a) (sinr b))))))
|
|||
|
|
|||
|
(defun sinA-B (a b)
|
|||
|
(chkman (adjrad (diff (** (sinr a) (cosr b)) (** (cosr a) (sinr b))))))
|
|||
|
|
|||
|
(defun cosA+B (a b)
|
|||
|
(chkman (adjrad (diff (** (cosr a) (cosr b)) (** (sinr a) (sinr b))))))
|
|||
|
|
|||
|
(defun cosA-B (a b)
|
|||
|
(chkman (adjrad (add (** (cosr a) (cosr b)) (** (sinr a) (sinr b))))))
|
|||
|
|
|||
|
(defun tanA+B (a b)
|
|||
|
(cond
|
|||
|
((zerop (cosA+B a b)) 0)
|
|||
|
(t (chkman (adjrad (// (sinA+B a b) (cosA+B a b)))))))
|
|||
|
|
|||
|
(defun tanA-B (a b)
|
|||
|
(cond
|
|||
|
((zerop (cosA-B a b)) 0)
|
|||
|
(t (chkman (adjrad (// (sinA-B a b) (cosA-B a b)))))))
|
|||
|
|
|||
|
|
|||
|
|
|||
|
(defun sin2A (a)
|
|||
|
(chkman (adjrad (** 2 (sinr a) (cosr a)))))
|
|||
|
|
|||
|
(defun cos2A (a)
|
|||
|
(chkman (adjrad (diff (ppower (cosr a) 2) (ppower (sinr a) 2)))))
|
|||
|
|
|||
|
(defun tan2A (a)
|
|||
|
(cond
|
|||
|
((zerop (cos2A a)) 0)
|
|||
|
(t (chkman (adjrad (// (sin2A a) (cos2A a)))))))
|
|||
|
|
|||
|
|
|||
|
|
|||
|
(defun sinhalfA (a)
|
|||
|
(chkman (adjrad (sqrt (abs (// (diff 1 (cosr a)) 2))))))
|
|||
|
|
|||
|
(defun coshalfA (a)
|
|||
|
(chkman (adjrad (sqrt (abs (// (add 1 (cosr a)) 2))))))
|
|||
|
|
|||
|
(defun tanhalfA (a)
|
|||
|
(cond
|
|||
|
((zerop (coshalfA a)) 0)
|
|||
|
(t (chkman (adjrad (// (sinhalfA a) (coshalfA a)))))))
|
|||
|
|
|||
|
|
|||
|
;-------------------------
|
|||
|
; MISC functions
|
|||
|
;-------------------------
|
|||
|
|
|||
|
(defun invert (x) ;returns 1/x
|
|||
|
(cond ((zerop x) 0) (t (chkman (// 1 x)))))
|
|||
|
|
|||
|
|
|||
|
(defun neg (x) (** -1 x)) ;returns -x
|
|||
|
|
|||
|
|
|||
|
(defun // fexpr(l) (eval (cons 'quotient l))) ;shorthand div. of floats
|
|||
|
|
|||
|
|
|||
|
(defun ** fexpr(l) (eval (cons 'times l))) ;shorthand mult. of floats
|
|||
|
|
|||
|
|
|||
|
(defun chkman (x) ;returns nearest whole number if
|
|||
|
(cond ;fraction is very small or large
|
|||
|
((< (abs (diff (abs x) (abs (round x)))) 0.00001)
|
|||
|
(round x))
|
|||
|
(t x)))
|
|||
|
|
|||
|
|
|||
|
(defun round (x) ;rounding function
|
|||
|
(cond
|
|||
|
((zerop x) 0)
|
|||
|
((plusp x)
|
|||
|
(cond
|
|||
|
((< (diff x (fix x)) .5) (fix x))
|
|||
|
(t (add 1 (fix x)))))
|
|||
|
(t (cond
|
|||
|
((< (diff (abs x) (fix (abs x))) .5) (fix x))
|
|||
|
(t (neg (diff 1 (fix x))))))))
|
|||
|
|
|||
|
|
|||
|
|
|||
|
(defun gint (x) ;greatest integer function
|
|||
|
(cond
|
|||
|
((zerop x) 0)
|
|||
|
((plusp x) (fix x))
|
|||
|
((minusp x)
|
|||
|
(cond
|
|||
|
((= x (fix x)) x)
|
|||
|
(t (diff (fix x) 1))))
|
|||
|
(t x)))
|
|||
|
|
|||
|
|
|||
|
(defun rangep (a x b) ;true if a <= x <= b
|
|||
|
(cond
|
|||
|
((and (not (< x a)) (not (> x b))) t)
|
|||
|
(t nil)))
|
|||
|
|
|||
|
|