246 lines
6.1 KiB
Plaintext
246 lines
6.1 KiB
Plaintext
|
{$N-}
|
|||
|
program Hilb;
|
|||
|
{
|
|||
|
|
|||
|
The program performs simultaneous solution by Gauss-Jordan
|
|||
|
elimination.
|
|||
|
|
|||
|
--------------------------------------------------
|
|||
|
From: Pascal Programs for Scientists and Engineers
|
|||
|
|
|||
|
Alan R. Miller, Sybex
|
|||
|
n x n inverse hilbert matrix
|
|||
|
solution is 1 1 1 1 1
|
|||
|
double precision version
|
|||
|
--------------------------------------------------
|
|||
|
|
|||
|
INSTRUCTIONS
|
|||
|
1. Compile and run the program using the $N- (Numeric Processing :
|
|||
|
Software) compiler directive.
|
|||
|
2. if you have a math coprocessor in your computer, compile and run the
|
|||
|
program using the $N+ (Numeric Processing : Hardware) compiler
|
|||
|
directive. Compare the speed and precision of the results to those
|
|||
|
of example 1.
|
|||
|
}
|
|||
|
|
|||
|
const
|
|||
|
maxr = 10;
|
|||
|
maxc = 10;
|
|||
|
|
|||
|
type
|
|||
|
{$IFOPT N+} { use extended type if using 80x87 }
|
|||
|
real = extended;
|
|||
|
{$ENDIF}
|
|||
|
ary = array[1..maxr] of real;
|
|||
|
arys = array[1..maxc] of real;
|
|||
|
ary2s = array[1..maxr, 1..maxc] of real;
|
|||
|
|
|||
|
var
|
|||
|
y : arys;
|
|||
|
coef : arys;
|
|||
|
a, b : ary2s;
|
|||
|
n, m, i, j : integer;
|
|||
|
error : boolean;
|
|||
|
|
|||
|
procedure gaussj
|
|||
|
(var b : ary2s; (* square matrix of coefficients *)
|
|||
|
y : arys; (* constant vector *)
|
|||
|
var coef : arys; (* solution vector *)
|
|||
|
ncol : integer; (* order of matrix *)
|
|||
|
var error: boolean); (* true if matrix singular *)
|
|||
|
|
|||
|
(* Gauss Jordan matrix inversion and solution *)
|
|||
|
(* Adapted from McCormick *)
|
|||
|
(* Feb 8, 81 *)
|
|||
|
(* B(N,N) coefficient matrix, becomes inverse *)
|
|||
|
(* Y(N) original constant vector *)
|
|||
|
(* W(N,M) constant vector(s) become solution vector *)
|
|||
|
(* DETERM is the determinant *)
|
|||
|
(* ERROR = 1 if singular *)
|
|||
|
(* INDEX(N,3) *)
|
|||
|
(* NV is number of constant vectors *)
|
|||
|
|
|||
|
var
|
|||
|
w : array[1..maxc, 1..maxc] of real;
|
|||
|
index: array[1..maxc, 1..3] of integer;
|
|||
|
i, j, k, l, nv, irow, icol, n, l1 : integer;
|
|||
|
determ, pivot, hold, sum, t, ab, big: real;
|
|||
|
|
|||
|
procedure swap(var a, b: real);
|
|||
|
|
|||
|
var
|
|||
|
hold: real;
|
|||
|
|
|||
|
begin (* swap *)
|
|||
|
hold := a;
|
|||
|
a := b;
|
|||
|
b := hold
|
|||
|
end (* procedure swap *);
|
|||
|
|
|||
|
|
|||
|
begin (* Gauss-Jordan main program *)
|
|||
|
error := false;
|
|||
|
nv := 1 (* single constant vector *);
|
|||
|
n := ncol;
|
|||
|
for i := 1 to n do
|
|||
|
begin
|
|||
|
w[i, 1] := y[i] (* copy constant vector *);
|
|||
|
index[i, 3] := 0
|
|||
|
end;
|
|||
|
determ := 1.0;
|
|||
|
for i := 1 to n do
|
|||
|
begin
|
|||
|
(* search for largest element *)
|
|||
|
big := 0.0;
|
|||
|
for j := 1 to n do
|
|||
|
begin
|
|||
|
if index[j, 3] <> 1 then
|
|||
|
begin
|
|||
|
for k := 1 to n do
|
|||
|
begin
|
|||
|
if index[k, 3] > 1 then
|
|||
|
begin
|
|||
|
writeln(' ERROR: matrix singular');
|
|||
|
error := true;
|
|||
|
exit; (* abort *)
|
|||
|
end;
|
|||
|
if index[k, 3] < 1 then
|
|||
|
if abs(b[j, k]) > big then
|
|||
|
begin
|
|||
|
irow := j;
|
|||
|
icol := k;
|
|||
|
big := abs(b[j, k])
|
|||
|
end
|
|||
|
end (* k loop *)
|
|||
|
end
|
|||
|
end (* j loop *);
|
|||
|
index[icol, 3] := index[icol, 3] + 1;
|
|||
|
index[i, 1] := irow;
|
|||
|
index[i, 2] := icol;
|
|||
|
|
|||
|
(* interchange rows to put pivot on diagonal *)
|
|||
|
if irow <> icol then
|
|||
|
begin
|
|||
|
determ := - determ;
|
|||
|
for l := 1 to n do
|
|||
|
swap(b[irow, l], b[icol, l]);
|
|||
|
if nv > 0 then
|
|||
|
for l := 1 to nv do
|
|||
|
swap(w[irow, l], w[icol, l])
|
|||
|
end; (* if irow <> icol *)
|
|||
|
|
|||
|
(* divide pivot row by pivot column *)
|
|||
|
pivot := b[icol, icol];
|
|||
|
determ := determ * pivot;
|
|||
|
b[icol, icol] := 1.0;
|
|||
|
for l := 1 to n do
|
|||
|
b[icol, l] := b[icol, l] / pivot;
|
|||
|
if nv > 0 then
|
|||
|
for l := 1 to nv do
|
|||
|
w[icol, l] := w[icol, l] / pivot;
|
|||
|
(* reduce nonpivot rows *)
|
|||
|
for l1 := 1 to n do
|
|||
|
begin
|
|||
|
if l1 <> icol then
|
|||
|
begin
|
|||
|
t := b[l1, icol];
|
|||
|
b[l1, icol] := 0.0;
|
|||
|
for l := 1 to n do
|
|||
|
b[l1, l] := b[l1, l] - b[icol, l] * t;
|
|||
|
if nv > 0 then
|
|||
|
for l := 1 to nv do
|
|||
|
w[l1, l] := w[l1, l] - w[icol, l] * t;
|
|||
|
end (* if l1 <> icol *)
|
|||
|
end
|
|||
|
end (* i loop *);
|
|||
|
|
|||
|
if error then exit;
|
|||
|
(* interchange columns *)
|
|||
|
for i := 1 to n do
|
|||
|
begin
|
|||
|
l := n - i + 1;
|
|||
|
if index[l, 1] <> index[l, 2] then
|
|||
|
begin
|
|||
|
irow := index[l, 1];
|
|||
|
icol := index[l, 2];
|
|||
|
for k := 1 to n do
|
|||
|
swap(b[k, irow], b[k, icol])
|
|||
|
end (* if index *)
|
|||
|
end (* i loop *);
|
|||
|
for k := 1 to n do
|
|||
|
if index[k, 3] <> 1 then
|
|||
|
begin
|
|||
|
writeln(' ERROR: matrix singular');
|
|||
|
error := true;
|
|||
|
exit; (* abort *)
|
|||
|
end;
|
|||
|
for i := 1 to n do
|
|||
|
coef[i] := w[i, 1];
|
|||
|
end (* procedure gaussj *);
|
|||
|
|
|||
|
|
|||
|
procedure get_data(var a : ary2s;
|
|||
|
var y : arys;
|
|||
|
var n, m : integer);
|
|||
|
|
|||
|
(* setup n-by-n hilbert matrix *)
|
|||
|
|
|||
|
var
|
|||
|
i, j : integer;
|
|||
|
|
|||
|
begin
|
|||
|
for i := 1 to n do
|
|||
|
begin
|
|||
|
a[n,i] := 1.0/(n + i - 1);
|
|||
|
a[i,n] := a[n,i]
|
|||
|
end;
|
|||
|
a[n,n] := 1.0/(2*n -1);
|
|||
|
for i := 1 to n do
|
|||
|
begin
|
|||
|
y[i] := 0.0;
|
|||
|
for j := 1 to n do
|
|||
|
y[i] := y[i] + a[i,j]
|
|||
|
end;
|
|||
|
writeln;
|
|||
|
if n < 7 then
|
|||
|
begin
|
|||
|
for i:= 1 to n do
|
|||
|
begin
|
|||
|
for j:= 1 to m do
|
|||
|
write( a[i,j] :7:5, ' ');
|
|||
|
writeln( ' : ', y[i] :7:5)
|
|||
|
end;
|
|||
|
writeln
|
|||
|
end (* if n<7 *)
|
|||
|
end (* procedure get_data *);
|
|||
|
|
|||
|
procedure write_data;
|
|||
|
|
|||
|
(* print out the answers *)
|
|||
|
|
|||
|
var
|
|||
|
i : integer;
|
|||
|
|
|||
|
begin
|
|||
|
for i := 1 to m do
|
|||
|
write( coef[i] :13:9);
|
|||
|
writeln;
|
|||
|
end (* write_data *);
|
|||
|
|
|||
|
|
|||
|
begin (* main program *)
|
|||
|
a[1,1] := 1.0;
|
|||
|
n := 2;
|
|||
|
m := n;
|
|||
|
repeat
|
|||
|
get_data (a, y, n, m);
|
|||
|
for i := 1 to n do
|
|||
|
for j := 1 to n do
|
|||
|
b[i,j] := a[i,j] (* setup work array *);
|
|||
|
gaussj (b, y, coef, n, error);
|
|||
|
if not error then write_data;
|
|||
|
n := n+1;
|
|||
|
m := n
|
|||
|
until n > maxr;
|
|||
|
end.
|
|||
|
|