dos_compilers/Logitech Modula-2 v1.1/TRANSFER.ASM

1298 lines
35 KiB
NASM
Raw Normal View History

2024-07-01 00:43:04 +02:00
;*****************************************************************
;
; Copyrigth (C) 1984 Logitech. All Rights Reserved.
;
; Permission is hereby granted to registered users to use or
; abstract the following program in the implementation of
; customized versions. This permission does not include the
; right to redistribute the source code of this program.
;
; LOGITECH SA. CH-1143 Apples, Switzerland
;
; Modula-2/86 Run Time Support package
;
; Module: TRANSFER.ASM
; Handles Interrupts and Processes
; Version: 8086, RAM-based, MS-DOS 1.1 and MS-DOS 2.0
; Release: 1.1 - Dec 84
;
;*****************************************************************
CGROUP group code
DGROUP group data
assume CS: CGROUP
assume DS: DGROUP
assume ES: NOTHING
assume SS: NOTHING
include RTS.INC
;*****************************************************************************
; EXPORT QUALIFIED
public GET_INTERRUPT_MASK
public SET_INTERRUPT_MASK
public SEND_EOI
public TRANSFER
public IOTRANSFER
public NEWPROCESS
public MON_ENTRY, MON_EXIT
public LISTEN
public get_device_status
public set_device_status
public REST_I_V
public FREE_INT_VECT
public STOPPED_1B
public STOPPED_23
;
;*****************************************************************************
data segment public 'data'
; FROM RTS IMPORT
extrn cur_proc_addr:dword
extrn device_mask:word
extrn cur_process:word
extrn m2_start_mark:word
extrn m2_end_mark:word
data ends
;*****************************************************************************
;*****************************************************************************
code segment public 'code'
; FROM RTS IMPORT
extrn RTS_DS:word ; part of code segment
extrn DUMMY_ISR:near
extrn NORM_ADDR:near
extrn COMP_STACK:near
extrn TERMINATE:near
; FROM SERVICES IMPORT
extrn SAVE_CPU_INFO:near
extrn STACK_OVF:near
code ends
;*****************************************************************************
;*****************************************************************************
data segment public 'data'
; Here are the definitions related to Interrupts. These original
; values are valid for IBM-PC / IBM-XT. If you run the Modula-2/86
; System on another hardware, it is possible, that the values in the
; declarations below, three routines 'GET_INTERRUPT_MASK, 'SEND_EOI',
; 'SET_INTERRUPT_MASK and as well as some code inside 'TRANSFER' and
; 'COM_ISR' are to be modified.
; The following points should be checked out:
; a) Is there an interrupt controller in your machine (chip number is
; typically 8259)? The declarations and the three routines below
; handle this interrupt controller. If no such chip is present, the
; values of the declarations have no importance and the corresponding
; part in the three routines has to be selected.
; b) Is Input/Output to the interrupt controller done through I/O-ports
; or is it memory-mapped (i.e. the registers of the interrupt controller
; have fixed memory addresses)? Select the corresponding part in the
; three routines.
; c) Which ports are used for the interrupt controller, or which memory
; addresses are used (if memory-mapped)? Change the declarations
; accordingly.
; d) How are the priorities distributed? In the array 'PRIORITY_MASKS'
; below there is the interrupt mask for every priority level.
; A priority is the number that can be given to a Modula-2 module (in
; the module header, e.g: MODULE CriticalRegion [7]; to give priority 7).
; The given priority is used as an index in the array 'PRIORITY_MASKS'
; to select the corresponding interrupt mask.
; NOTE WELL: The Modula-2 Run-Time-Support does read the interrupt mask,
; even if you do not intend to use IOTRANSFER or priority modules.
; If this distributed version does not correspond to the character-
; istics of your machine, the required adaptation must be done.
; Alternatively you can select the part in the three routines that
; has to be used if no interrupt controller is present.
MASK_8259 EQU 21H
; Port address of control word 1 in Interrupt Controller.
; This port is used to read and write the interrupt mask.
; See routines 'GET_INTERRUPT_MASK' and 'SET_INTERRUPT_MASK'
; below.
CTRL_W2_8259 EQU 20H
; Port address of control word 2 in Interrupt Controller.
; This port is used to send the End-Of-Interrupt code.
; See routine SEND_EOI below.
IO_SEGMENT EQU 0H
; Segment-Register value to access memory-mapped I/O ports.
; For machines without memory mapping, this value has no
; meaning.
EOI_8259 EQU 20H
; End-Of-Interrupt code for the Interrupt Controller.
; Used in routine SEND_EOI below.
MAX_PRIO_LEVEL EQU 07H
; Maximum priority handled by the Run-Time-Support.
; Priority levels are: 0..MAX_PRIO_LEVEL.
; If this value is changed, the corresponding parameter
; in the compiler parameter module has to be adapted too
; (compiler module 'COMPPARA').
PRIORITY_MASKS DB 80H,0C0H,0E0H,0F0H,0F8H,0FCH,0FEH,0FFH
; This ARRAY holds for every priority level the
; priority mask, which has to become effective
; during execution of a priority module.
; The values in this mask may be modified, to
; implement any desired priority schema.
; Priority 0 corresponds to the first element in
; this array, priority 7 to the last.
; no priority corresponds to a mask with all bits zero
data ends
;*****************************************************************************
;*****************************************************************************
code segment public 'code'
; Insert statetments of procedure bodies at marked positions
; in TRANSFER and COM_ISR. This positions are marked:
;**** Here the code of GET_INTERRUPT_MASK has been inserted :
;**** Here the code of SET_INTERRUPT_MASK has been inserted :
;**** Here the code of SEND_IO has been inserted :
;**** End of insertion
; This solution has been chosen to avoid procedure call overhead
; in such time critical routines as TRANSFER ,IOTRANSFER, ISR.
;------------------------------------------------------------
; public GET_INTERRUPT_MASK
; This routine returns in AX the currently valid interrupt mask.
; The following registers may be used here: AX, DX, DI, ES.
; If other registers are used, they must be saved and restored.
;; The following code sequence has to be used on a hardware
;; with I/O through port, where the port address is below 100H:
GET_INTERRUPT_MASK proc near
IN AL, MASK_8259
XOR AH, AH
RET
GET_INTERRUPT_MASK endp
; The following code sequence has to be used on a hardware
; with I/O through port, where the port address is above 100H:
;GET_INTERRUPT_MASK proc near
; MOV DX, MASK_8259
; IN AL, DX
; XOR AH, AH
; RET
;GET_INTERRUPT_MASK endp
; The following code sequence has to be used on a hardware
; with memory-mapped Input/Output:
;GET_INTERRUPT_MASK proc near
; MOV AX, IO_SEGMENT
; MOV ES, AX
; MOV DI, MASK_8259
; MOV AL, ES: [DI]
; XOR AH, AH
; RET
;GET_INTERRUPT_MASK endp
; If your application program does not use interrupts nor
; priority modules, or if there is no interrupt controller
; present, this routine may return a dummy constant value.
; In that case, the code here could be:
; GET_INTERRUPT_MASK proc near
; MOV AX, 0
; RET
; GET_INTERRUPT_MASK endp
;------------------------------------------------------------
; public SET_INTERRUPT_MASK
; This routine sends the interrupt mask to the interrupt
; controller.
; the mask sent to the interrupt controller is the logical OR
; of the device_mask and the given priority mask in AL.
; The following registers may be used here: AX, DX, DI, ES.
; If other registers are used, they must be saved and restored.
;; The following code sequence has to be used on a hardware
;; with I/O through port, where the port address is below 100H:
SET_INTERRUPT_MASK proc near
mov es, rts_ds
or ax, es: device_mask
OUT MASK_8259, AL
RET
SET_INTERRUPT_MASK endp
; The following code sequence has to be used on a hardware
; with I/O through port, where the port address is above 100H:
;SET_INTERRUPT_MASK proc near
; mov es, rts_ds
; or ax, es: device_mask
; MOV DX, MASK_8259
; OUT DX, AL
; RET
;SET_INTERRUPT_MASK endp
; The following code sequence has to be used on a hardware
; with memory-mapped Input/Output:
;SET_INTERRUPT_MASK proc near
; mov es, rts_ds
; or ax, es: device_mask
; MOV DI, IO_SEGMENT
; MOV ES, DI
; MOV DI, MASK_8259
; MOV ES: [DI], AL
; RET
;SET_INTERRUPT_MASK endp
; If your application program does not use interrupts nor
; priority modules, or if there is no interrupt controller
; present, this routine may be dummy.
; In that case, the code here could be:
; SET_INTERRUPT_MASK proc near
; RET
; SET_INTERRUPT_MASK endp
;------------------------------------------------------------
; public SEND_EOI
; This routine sends an END-OF-INTERRUPT code (EOI) to the
; interrupt controller.
; The following registers may be used here: AX, DX, DI, ES.
; If other registers are used, they must be saved and restored.
;; The following code sequence has to be used on a hardware
;; with I/O through port, where the port address is below 100H:
SEND_EOI proc near
MOV AL, EOI_8259
OUT CTRL_W2_8259, AL
RET
SEND_EOI endp
; The following code sequence has to be used on a hardware
; with I/O through port, where the port address is above 100H:
;SEND_EOI proc near
; MOV AL, EOI_8259
; MOV DX, CTRL_W2_8259
; OUT DX, AL
; RET
;SEND_EOI endp
; The following code sequence has to be used on a hardware
; with memory-mapped Input/Output:
;SEND_EOI proc near
; MOV DI, IO_SEGMENT
; MOV ES, DI
; MOV DI, CTRL_W2_8259
; MOV ES: BYTE PTR [DI], EOI_8259
; RET
;SEND_EOI endp
; If your application program does not use interrupts nor
; priority modules, or if there is no interrupt controller
; present, this routine may be dummy.
; In that case, the code here could be:
; SEND_EOI proc near
; RET
; SEND_EOI endp
;------------------------------------------------------------
;*********** end of user modifyable part ********************
;------------------------------------------------------------
;*****************************************************************************
data segment public 'data'
WAITING_PROC dd 0FFFFfffFh
rept NBR_ISR-1
dd 0FFFFfffFh
endm
; Room for 8 process descriptors, waiting on an interrupt
INT_VECT_OWNER dw NBR_ISR dup ( NIL_CARD )
; This array holds for every used Interrupt Vector the program id of the owner
new dd ? ; A(proc. desc. new process)
old dd ? ; A(A(proc. desc. old process))
TEMP_P_D ProcessDescriptor <?> ; used by NEWPROCESS
data ends
;*****************************************************************************
; public TRANSFER
TRANSFER:
;========
; save state of current process
mov bx,es ; save rts_ds
mov ax,ES:word ptr cur_proc_addr + 2
mov es,ax
mov ES:cur_process.pd_ds,ds
mov ES:cur_process.pd_bp,bp
mov ES:cur_process.pd_ss,ss
mov bp,sp ; take bp to address stack
mov cx,es ; save base of current process
les di, dword ptr [bp]+6 ; A(A(new process))
mov ax,ES: word ptr [di] + 2 ; A(new process)
mov ds,bx ; rts_ds
mov word ptr new,0
mov word ptr new+2,ax
les di, dword ptr [bp]+10 ; A(A(old process))
mov word ptr old,di
mov word ptr old+2,es
mov ds,cx ; restore base of current process
mov ax,8 ; number of bytes occupied by params
mov es,bx ; restore ES with rts_ds
; jmp transfer_body0
TRANSFER_BODY0: ; common part of TRANSFER and IOTRANSFER
; DS:[SI] points to current process
; get IRET params from stack, save them into P.D.
pop bx
pop cx
pop dx
mov cur_process.pd_flags,dx
mov cur_process.pd_cs,cx
mov cur_process.pd_ip,bx
; manipulate stack: 'remove parameters'
add sp,ax
; restore IRET parameters onto stack and save SP into P.D.
push dx
push cx
push bx
mov cur_process.pd_sp,sp
TRANSFER_BODY:
; This is the part of TRANSFER, that is used for all transfer
; functions: TRANSFER, IOTRANSFER, Interrupt Service Routines.
; Params: new: ADR of process descriptor of process to be activated,
; old: ADR of proc. var. (double indirection!)
; where to save the current one
; DS:0 points to current process
; ES contains RTS_DS
; set address of new process into cur_proc_addr
mov bx,ds ; save base of old (current) process
mov DS, ES:word ptr new + 2
mov ES: word ptr cur_proc_addr +2,DS
mov ES: word ptr cur_proc_addr,0
mov ax,cur_process.pd_prio_mask
;**** Here the code of SET_INTERRUPT_MASK has been inserted:
or ax, es: device_mask
out mask_8259,al
;**** End of insertion
; DS:0 points to new process
; ES contains rts_ds
; BX:0 points to old process
; get A(A(old process)) and store A(old process)
les di,ES: old
mov ES: word ptr [di] +2,bx
mov ES: word ptr [di],0
; ; Now, we restore the machine state:
mov si,ds ; ds still holds base of new process
mov ss,si ; change stack pointers to restore regs
mov sp,0
mov es,si ; needed later to restore from ES:0
pop ax
pop bx
pop cx
pop dx
pop bp ; sp must not be changed
pop bp
pop si
pop di
pop ds
pop ss
MOV SP,ES: word ptr cur_process.PD_SP
MOV ES,ES: word ptr cur_process.PD_ES
IRET ; resume the new process!
; END TRANSFER
;------------------------------------------------------------
; Interrupt service routines:
; ==========================
; There is a fix number of interrupts, that can be treated simultanously.
; Here we allow up to 8 or 16 interrupts at a time, depending on the
; value of 'NBR_ISR'.
; The routines ISRn are the entry points to the common Interrupt
; Service Routine (COM_ISR).
; Every routine is 4 bytes long. This fact is used implicitly in COM_ISR
; and in IOTRANSFER. The Call to COM_ISR allows the identification of the
; Interrupt Vector (return addr of the Call).
ISR0: NOP
CALL COM_ISR
ISR1: NOP
CALL COM_ISR
ISR2: NOP
CALL COM_ISR
ISR3: NOP
CALL COM_ISR
ISR4: NOP
CALL COM_ISR
ISR5: NOP
CALL COM_ISR
ISR6: NOP
CALL COM_ISR
ISR7: NOP
CALL COM_ISR
IF NBR_ISR / 8
; This block of 8 Interrupt Service Routines has to be repeated for
; every additional Interrupt Controller (8259):
ISR8: NOP
CALL COM_ISR
ISR9: NOP
CALL COM_ISR
ISR10: NOP
CALL COM_ISR
ISR11: NOP
CALL COM_ISR
ISR12: NOP
CALL COM_ISR
ISR13: NOP
CALL COM_ISR
ISR14: NOP
CALL COM_ISR
ISR15: NOP
CALL COM_ISR
ENDIF
COM_ISR:
; Common part of the Interrupt Service Routines
; Save all the registers, except SP (has yet to be adjusted)
; and CS, IP, Flags. They are on the stack and will be
; used directly there (in the IRET of the next TRANSFER):
push si
push ds
mov ds,rts_ds
mov si,word ptr cur_proc_addr + 2
mov ds,si
pop cur_process.pd_ds
pop cur_process.pd_si
mov cur_process.pd_ax,ax
MOV CUR_PROCESS.PD_BX, BX
MOV CUR_PROCESS.PD_CX, CX
MOV CUR_PROCESS.PD_DX, DX
MOV CUR_PROCESS.PD_BP, BP
MOV CUR_PROCESS.PD_DI, DI
MOV CUR_PROCESS.PD_SS, SS
MOV CUR_PROCESS.PD_ES, ES
; Find the interrupt vector:
POP BX ; Return addr of ISRn
SUB BX, OFFSET ISR1 ; BX is index in table WAITING_PROC
; Complete the update of process descriptor:
mov cur_process.pd_sp,sp
mov bp,sp
mov ax,[bp]
mov cur_process.pd_ip,ax
mov ax,[bp]+2
mov cur_process.pd_cs,ax
mov ax,[bp]+4
mov cur_process.pd_flags,ax
; "Push" the parameters for the TRANSFER
mov ds,rts_ds
les si,waiting_proc[bx] ; address of old proc var
mov si,ES:word ptr [si] + 2 ; address of new proc descr
mov es,si
mov word ptr new+2,es
mov ax,ES: word ptr cur_process.pd_int_proc
mov word ptr old,ax
mov ax,ES: word ptr cur_process.pd_int_proc+2
mov word ptr old+2,ax
; An IOTRANSFER is valid only for 1 single interruption, so we have to
; free the corresponding Interrupt Vector:
mov cx,ds ; save RTS_DS
mov ax,nil_card
mov word ptr waiting_proc[bx],ax
shr bx,1
mov int_vect_owner[bx],ax
mov dx,es ; A(new process descriptor)
mov ds,dx
mov si,pd_old_isr ; loads offset in structure !!!!
mov di,cur_process.pd_int_vect
SHL di, 1
SHL di, 1
mov ax,0
mov es,ax
movsw
movsw
mov es,cx ; restore RTS_DS
mov ds,ES: word ptr cur_proc_addr + 2 ; restore A(cur_process)
; Send a EOI to the 8259:
;**** Here the code of SEND_EOI has been inserted:
mov al,EOI_8259
out ctrl_w2_8259,al
;**** End of insertion
; at the end of the following TRANSFER we are performing
; an IRET, which enables the interrupts.
; Now, we're ready for a TRANSFER:
JMP TRANSFER_BODY
; END Interrupt Service Routines
;------------------------------------------------------------
; public IOTRANSFER
IOTRANSFER:
;==========
; on entry ES = rts_ds
; Find a unused Interrupt Service Routine (ISRn), represented by
; a free entry in the array INT_VECT_OWNER:
MOV DI, OFFSET INT_VECT_OWNER
MOV AX, NIL_CARD
MOV CX, NBR_ISR
INC CX ; Increment it, so we can test for 0
REPNE SCASW ; Scan the array for a NIL
SUB DI, 2 ; It has already been incremented
mov ax, OFFSET INT_VECT_OWNER
SUB DI,ax ; Get word index
CMP CL, 0
JNE FREE_INT_V
; There is no more free Interrupt Service Routine:
mov ds,cur_process.pd_ds ; restore old ds for save_cpu_info
call save_cpu_info
MOV CUR_PROCESS.PD_STATUS, INT_ERR_CODE
JMP TERMINATE
; DI is the index in INT_VECT_OWNER of
; the first free entry
free_int_v:
mov dx,es ; save rts_ds
mov ax,ES:word ptr cur_proc_addr + 2
mov es,ax
mov ES:cur_process.pd_ds,ds ; save old DS
mov ds,ax
mov cur_process.pd_bp,bp
mov cur_process.pd_ss,ss
; 'pop' interrupt vector id and keep it for later
mov bp,sp ; take bp to address stack
mov bx,[bp]+6
MOV CUR_PROCESS.PD_INT_VECT,BX
SHL BX, 1
SHL BX, 1
; BX is the offset of the Interrupt Vector
; Set in the P.D., where to save the running
; process, when Interrupt will occur. It is
; the 2nd parameter of IOTRANSFER = addr of
; proc. variable:
les si,dword ptr [bp]+8 ; A(A(new process))
mov word ptr cur_process.pd_int_proc,si
mov word ptr cur_process.pd_int_proc+2,es
mov ax,ES:word ptr [si] + 2 ; A(new process)
mov es,ax
mov ax,ds ; save base of current (old) process
mov ds,dx ; set DS to rts_ds
mov word ptr new+2,es
mov ds,ax ; restore base of current (old) process
mov es,dx ; set ES to rts_ds
; Put the program identifier in the array
; INT_VECT_OWNER (used to restore it upon
; termination):
MOV AX, CUR_PROCESS.PD_PROG_ID
MOV ES:INT_VECT_OWNER [di], AX
; Put the current process in the array
; WAITING_PROC (the addr of process var):
SHL di, 1 ; a pointer-index
mov ax,[bp] + 12
mov ES: WORD PTR WAITING_PROC [DI],ax
mov ES: word ptr old,ax
mov ax,[bp] + 14
mov ES: WORD PTR WAITING_PROC + 2 [DI],ax
mov ES: word ptr old+2,ax
; Save the requested Interrupt Vector and
; put the new one:
MOV AX, 0
MOV ES, AX
MOV AX, ES: [BX]
MOV word ptr CUR_PROCESS.PD_OLD_ISR, AX
MOV AX, ES: [BX] + 2
MOV word ptr CUR_PROCESS.PD_OLD_ISR + 2, AX
ADD DI, OFFSET ISR0
; Implicit use of the fact, that the ISRn have a size of 4 Bytes!
; DI is the address of the corresponding Interrupt Service Routine
MOV ES: [BX], DI
MOV ES: [BX] + 2, CS
; Execute a normal TRANSFER:
mov ax,10 ; number of bytes occupied by params
mov es,dx ; restore ES with rts_ds
jmp transfer_body0 ; No return to here
; END IOTRANSFER
;------------------------------------------------------------
; public NEWPROCESS
NEWPROCESS proc near
call save_cpu_info
mov ds,rts_ds
PUSH BP
MOV BP, SP
MOV AX, [BP] + 14 ; Offset of process workspace
MOV BX, [BP] + 16 ; Segment of it
MOV CX, AX
ADD CX, (size ProcessDescriptor) + 10 + 15
; Check, if there is room for process
; descr and 'free list header' for
; heap. 15 is needed to round up.
JNC SIZE_OK
pop bp ; aw oct 9 correct stack if error
JMP STACK_OVF
; Not even enough room for the workspace
SIZE_OK:
ADD AX, 15 ; set P.D. to paragraph boundary
call norm_addr
; Upon return:
; BX = normalised Segment of
; workspace
; AX = Offset, < 16
; aw oct 2
mov dx,15 ; the number of lost bytes is the complement
sub dx,ax ; of AX to 15, DX holds number of lost bytes
xor ax,ax ; paragraph boundary
mov [bp] + 16,bx ; set for later use
mov [bp] + 14,ax
add ax,(size ProcessDescriptor)
; Free space starts at the
; first paragraph after PD.
; 15 is to round up (worst case).
; Set the initial values for the heap managment:
MOV word ptr TEMP_P_D.PD_HEAP_BASE + 2,BX
MOV word ptr TEMP_P_D.PD_HEAP_TOP + 2,BX
MOV word ptr TEMP_P_D.PD_HEAP_BASE,ax
add ax,10 ; size of a 'FreeListElement'
MOV word ptr TEMP_P_D.PD_HEAP_TOP,ax
MOV ES, BX ; segment of heap
mov si,size ProcessDescriptor
; put NILs in the header of Free List:
MOV ES: WORD PTR [si] + 0, NIL_OFF
MOV ES: WORD PTR [si] + 2, NIL_SEG
MOV ES: WORD PTR [si] + 4, NIL_OFF
MOV ES: WORD PTR [si] + 6, NIL_SEG
MOV ES: WORD PTR [si] + 8, 0
; size of free element (redundant)
; See comment under 'Fill in the Default
; Process Descriptor'. For a new process
; however, we must fully install an empty heap,
; since we can not call 'InstallHeap' as
; done in the initialization of the module
; Storage for the MAIN process.
; Compute the initial stack values:
mov cx,[bp] + 12
sub cx,dx ; subtract lost bytes
add ax,sp_ini_size
sub cx,ax
ja enough
pop bp ; aw oct 9 correct stack if error
jmp stack_ovf
enough:
add cx,ax
mov ax,cx
and ax,0fffeH ; even Address for StackBase
; SP has to be set after the return block
; that we're going to put:
SUB AX, SP_INI_SIZE
MOV TEMP_P_D.PD_SP, AX ; Set SP and SS in new descriptor
MOV TEMP_P_D.PD_SS, BX
MOV SI, AX
MOV ES, BX
; Prepare the error return on the new stack:
; (ES,SI) are the initial stack of this new process.
MOV ES:WORD PTR 8[SI], CS
MOV ES:WORD PTR 6[SI], OFFSET PROCESS_END
; A process should never terminate!
MOV AX, SI
ADD AX, 6
MOV TEMP_P_D.PD_dbug_status,0 ;for debugger
push si ; save ES:[SI]
push es
les si,cur_proc_addr
; Copy the Program End Stack:
MOV CX,ES:word ptr CUR_PROCESS.PD_PROG_END
MOV word ptr TEMP_P_D.PD_PROG_END, CX
MOV CX,ES:word ptr CUR_PROCESS.PD_PROG_END+2
MOV word ptr TEMP_P_D.PD_PROG_END+2, CX
; Copy the program IDs from the current process:
MOV AX,ES:CUR_PROCESS.PD_PROG_ID
MOV TEMP_P_D.PD_PROG_ID, AX
MOV AX,ES:CUR_PROCESS.PD_SHARED_ID
MOV TEMP_P_D.PD_SHARED_ID, AX
; Copy the Module Table Header:
MOV AX,ES:word ptr CUR_PROCESS.PD_MOD_TABLE
MOV word ptr TEMP_P_D.PD_MOD_TABLE, AX
MOV AX,ES:word ptr CUR_PROCESS.PD_MOD_TABLE+2
MOV word ptr TEMP_P_D.PD_MOD_TABLE+2, AX
; Copy the father process:
MOV AX,ES:word ptr CUR_PROCESS.PD_FATHER_PROC
MOV word ptr TEMP_P_D.PD_FATHER_PROC, AX
MOV AX,ES:word ptr CUR_PROCESS.PD_FATHER_PROC+2
MOV word ptr TEMP_P_D.PD_FATHER_PROC+2, AX
; Check if the father process is NIL, in which
; case we have to put the addr of the current PD:
CMP AX,NIL_SEG
JNE NOT_FATHER
MOV AX,word ptr cur_proc_addr
MOV word ptr TEMP_P_D.PD_FATHER_PROC, AX
MOV AX,word ptr cur_proc_addr + 2
MOV word ptr TEMP_P_D.PD_FATHER_PROC + 2, AX
NOT_FATHER:
MOV CX,ES:CUR_PROCESS.PD_FLAGS
MOV TEMP_P_D.PD_FLAGS, CX
pop es
pop si
; Set the initial priority mask of the system:
MOV TEMP_P_D.PD_PRIO_MASK, 0 ; no priority
; Set the Continuation Address:
; (We put it on the stack, for a IRET)
MOV AX, [BP] + 18
MOV BX, [BP] + 20
MOV ES: [SI] + 0, AX
MOV ES: [SI] + 2, BX
inc ax ; for PROCESS_END and RTD
MOV ES: [SI] + 10, AX ; for PROCESS_END and RTD
MOV ES: [SI] + 12, BX
; Copy the Flags:
MOV ES: [SI] + 4, CX ; And on stack, for the IRET
MOV ES: [SI] + 14, CX ; for PROCESS_END and RTD
MOV AX, 0
mov es: [si] + 16,ax ; for PROCESS_END and RTD
; Set Status to Normal:
MOV TEMP_P_D.PD_STATUS, AX ; ax still zero
; don't modify AX here!
; Set dynamic link to 0, used by the
; debugger to detect end of calling sequence:
MOV TEMP_P_D.PD_BP, AX
; Set the address of the descriptor in the VAR-PAR:
MOV ES, [BP] + 10 ; addr of varpar
MOV BX, [BP] + 8
MOV DI, [BP] + 14 ; addr of workspace
MOV CX, [BP] + 16
MOV ES: [BX], DI
MOV ES: [BX] + 2, CX
; Copy the new descriptor from the TEMP_P_D
; area into the real workspace:
MOV ES, CX ; (ES,DI) = workspace
MOV SI, OFFSET TEMP_P_D ; (DS,SI) = TEMP_P_D
MOV CX, (size ProcessDescriptor)/2
REP MOVSW
mov ax,word ptr cur_proc_addr + 2
mov ds,ax
MOV DS, CUR_PROCESS.PD_DS
POP BP
IRET
NEWPROCESS endp
;------------------------------------------------------------
PROCESS_END:
;===========
; We arrive here, when the code of a process is executed and a
; return from its code is performed. Since a process is not called
; like a procedure, but started through a TRANSFER, this situation
; is illegal:
mov es,CS:rts_ds
call save_cpu_info
mov bp,sp
add bp,6 ; set bp for debugger
MOV CUR_PROCESS.PD_STATUS, PROCESS_END_CODE
JMP TERMINATE
;------------------------------------------------------------
; public MON_ENTRY, MON_EXIT
MON_ENTRY:
;=========
; Upon entry: BX holds requested priority level.
; The interrupt controller is set to disable all
; interrupts of the requested or lower levels.
; check the parameter:
call save_cpu_info
mov es,rts_ds
CMP BX, MAX_PRIO_LEVEL
JBE LEVEL_OK
MOV BX, MAX_PRIO_LEVEL
LEVEL_OK:
POP SI ; remove return block
POP DX
POP CX
PUSH cur_process.pd_prio_mask ; save old mask
MOV al, es: priority_masks [bx]
; xor ah, ah
MOV CUR_PROCESS.PD_PRIO_MASK, AX
;**** Here the code of SET_INTERRUPT_MASK has been inserted:
or ax, es: device_mask
out mask_8259,al
;**** End of insertion
PUSH CX ; restore return block
PUSH DX
PUSH SI
MOV DS, CUR_PROCESS.PD_DS
IRET
MON_EXIT:
;========
; Restore the mask that has been saved on the stack
; at the entry to that procedure. Note that changes
; in the interrupt mask that occured during execution
; of this 'priority procedure' are not conserved!
; If interrupts are treated with IOTRANSFER, such
; changes should never occur.
call save_cpu_info
POP SI ; remove return block
POP DX
POP CX
POP AX ; old mask
MOV CUR_PROCESS.PD_PRIO_MASK, AX
;**** Here the code of SET_INTERRUPT_MASK has been inserted:
mov es,rts_ds
or ax, es: device_mask
out mask_8259,al
;**** End of insertion
PUSH CX ; restore return block
PUSH DX
PUSH SI
MOV DS, CUR_PROCESS.PD_DS
IRET
; public LISTEN
LISTEN:
;======
; This function lowers the priority and enables interrupts
; temporarily. Note that changes in the interrupt mask that
; occur during the execution of pending interrupts are not
; conserved, the old mask is restored at the end! If
; interrupts are treated with IOTRANSFER, such changes
; should never occur.
call save_cpu_info
PUSH cur_process.pd_prio_mask ; save it
XOR AX, AX
MOV CUR_PROCESS.PD_PRIO_MASK, AX
CALL SET_INTERRUPT_MASK ; unmask all bits
STI ; Allow all interrupts
NOP ; (there is a one-instruction lag)
MOV CX, 20H
LISTEN_AGAIN:
DEC CX ; we have to wait longer, to give
; all pending interrupts a chance
JNZ LISTEN_AGAIN
CLI
POP AX
MOV CUR_PROCESS.PD_PRIO_MASK, AX
CALL SET_INTERRUPT_MASK ; restore old mask
MOV DS, CUR_PROCESS.PD_DS
IRET
;------------------------------------------------------------
get_device_status:
;=================
; this function returns the status (enabled or disabled) of a device
; upon entry: CX holds the device number [0..maxdevice]
; this is the bit number of the device in the
; interrupt controller mask
; upon exit: BX holds the inverse bit value in the device_mask
; BX = 1 (TRUE ) -> enabled
; BX = 0 (FALSE) -> disabled
; IF device IN device_mask THEN
; enabled := FALSE;
; ELSE
; enabled := TRUE;
; END;
call save_cpu_info
mov ds, rts_ds
mov ax, 1
shl ax, cl
test device_mask, ax
jz enabled
xor bx, bx
jmp end_get
enabled:
mov bx, 1
end_get:
iret
set_device_status:
;=================
; this function sets the status (enable or disable) of a device
; upon entry: CX holds the device number [0..maxdevice]
; this is the bit number of the device in the
; interrupt controller mask
; BX holds the inverse bit value to write into the device_mask
; BX = 1 (TRUE ) -> enable
; BX = 0 (FALSE) -> disable
; IF enable THEN
; EXCL(device_mask, device)
; ELSE
; INCL(device_mask, device)
; END;
; SetInterruptMask(cur_process.prio_mask)
call save_cpu_info
mov es, rts_ds
mov ax, 1
shl ax, cl
disable: ; set the bit
or es:device_mask, ax
or bx, bx ; CMP BX, 0
jz end_set
enable: ; clear the bit
not ax
and es:device_mask, ax
end_set:
mov ax, cur_process.pd_prio_mask
call set_interrupt_mask
iret
FREE_1_VECT proc near
; Upon entry: (ES,SI) hold addr of P.D. that owns the vector.
; BX holds number of used ISR (0..NBR_ISR-1) times 4
; Upon exit: BX holds number of used ISR times 2
; We have to do both:
; a) free its entry in WAITING_PROC and in INT_VECT_OWNER
PUSH DS ; save it
MOV AX, 0FFFFH ; used as NIL
MOV word ptr WAITING_PROC [BX], AX
SHR BX, 1
MOV INT_VECT_OWNER [BX], AX
; b) and to restore the interrupt vector
PUSH ES
MOV AX, 0
MOV ES, AX
POP DS ; DS is segment of waiting process
; and SI is its offset
MOV DI, PD_INT_VECT [SI] ; offset of I.V.
SHL di, 1
SHL di, 1
ADD SI, PD_OLD_ISR
MOVSW
MOVSW
POP DS ; restore it
RET
FREE_1_VECT endp
; public REST_I_V
REST_I_V proc near
;=================
mov si,word ptr cur_proc_addr + 2
mov es,si
MOV CX,ES:CUR_PROCESS.PD_PROG_ID
; AX holds the current ID
MOV DI, NBR_ISR
SHL DI, 1 ; WORD index
NEXT_I_V:
DEC DI
DEC DI
MOV BX, INT_VECT_OWNER [DI]
; BX holds the owner
CMP CX, BX
JE FREE_THIS_ONE
CMP CX, 0 ; 0 is used as a joker:
JNE I_V_DONE ; it's not 0
CMP BX, NIL_CARD ; it's 0: free all vectors,
JE I_V_DONE ; if owner not NIL
FREE_THIS_ONE:
; This entry is owned by the current program:
MOV BX, DI
SHL BX, 1
LES SI, WAITING_PROC [BX] ; get addr of PROCESS variable
LES SI, ES:DWORD PTR [SI] ; get addr of process descriptor
PUSH DI ; save it
CALL FREE_1_VECT
POP DI
I_V_DONE:
CMP DI, 0
JNE NEXT_I_V
RET
REST_I_V endp
; public FREE_INT_VECT
FREE_INT_VECT:
;=============
; Restores the old Interrupt Vectors of all entries, used by the
; current program.
call save_cpu_info
CALL REST_I_V
IRET
;************** handling of control break key ********************************
iret_instr equ 0CFH
address struc
off dw ?
base dw ?
address ends
flagtype record fooHigh: 7, trace_flag: 1, fooLow: 8
return_block struc
save_bp dw ?
return_addr dd ? ; address
flags dw ? ; flagtype
old_ret_addr dd ? ; address
old_flags dw ? ; flagtype
return_block ends
;*****************************************************************************
vectors segment at 0
org 1 * 4
single_step_vector address <>
org 1BH * 4
ctrl_break_vector address <>
vectors ends
;*****************************************************************************
;*****************************************************************************
data segment public 'data'
save_single_step_vector address <>
data ends
;*****************************************************************************
stopped_23:
;==========
int 1BH
nop
iret
STOPPED_1B: ; entry for interrupt 1bH
;==========
push bp
mov bp, sp
push ds
push es
push si
push ax
mov ds, rts_ds
xor ax, ax ; es:0 points to interrupt
mov es, ax ; vector table
; set interrupt vector for control break to a dummy ISR
mov si, offset ctrl_break_vector
mov es: [si].off, offset CGROUP: DUMMY_ISR
; we know that ctrl_break_vector.base is already set to CS
; save interrupt vector for single step
mov si, offset single_step_vector
mov ax, es: [si].off
mov save_single_step_vector.off, ax
mov ax, es: [si].base
mov save_single_step_vector.base, ax
; set interrupt vector for single step
mov es: [si].base, cs
mov es: [si].off, offset CGROUP: single_step
or [bp].flags, mask trace_flag ; set trace bit
pop ax
pop si
pop es
pop ds
pop bp
iret ; we single step through the following instructions
; until we are back in modula-2 code
single_step:
; save used registers
push bp
mov bp, sp
push es
push si
push dx
push ds
push ax
les si, [bp].return_addr
mov dx, es ; es holds codesegment of interrupted
; instruction
mov ds, rts_ds ; check if we are in modula-2 code
mov ax, m2_start_mark
cmp dx, ax ; lower limit
jb no
mov ax, m2_end_mark
cmp dx, ax ; upper limit
jbe possible_stop
no: cmp byte ptr es: [si], iret_instr
jne goon
; make sure that we stay in single step mode after an IRET
or [bp].old_flags, mask trace_flag ; set trace bit
goon: ; make sure that we stay in single step mode
; it's possible that somebody has modified our
; return block on the stack
or [bp].flags, mask trace_flag ; set trace bit
pop ax
pop ds
pop dx
pop si
pop es
pop bp
iret
possible_stop:
xor ax, ax ; es:0 points to interrupt
mov es, ax ; vector table
; restore interrupt vector for single step
mov si, offset single_step_vector
mov ax, save_single_step_vector.off
mov es: [si].off, ax
mov ax, save_single_step_vector.base
mov es: [si].base, ax
; reset interrupt vector for control break
mov si, offset ctrl_break_vector
mov es: [si].off, offset CGROUP: stopped_1B
; we know that ctrl_break_vector.base is already set to CS
mov es,rts_ds
lea sp, [bp] ; reset stack,
pop bp ; don't restore saved registers
call save_cpu_info
mov cur_process.pd_status,warned_code
JMP terminate
;************** handling of control break key ********************************
code ends
;*****************************************************************************
end