Microsoft.

Macro
A SSEMBLER

FOR THE MS-DOSes OPERATING SYSTEM

~ PROGRAMMER’S GUIDE

Information in this document is subject to change without notice and does not

represent a commitment on the part of Microsoft Corporation. The software

described in this document is furnished under a license agreement or nondisclosure

agreement. The software may be used or copied only in accordance with the terms

of the agreement. The purchaser may make one copy of the software for backup

purposes. No part of this manual may be reproduced or transmitted in any form —
or by any means, electronic or mechanical, including photocopying and recording,

for any purpose other than the purchaser’s personal use without the written per-

mission of Microsoft Corporation.

o Copyright Microsoft Corporation, 1987. All rights reserved.
Simultaneously published in the U.S. and Canada.

Nfﬁcrosoftza, MSe, MS-DOSe, XENIXe, and CodeViewe are registered trademarks
ol

Microsoft Corporation.

IBMe is a registered trademark of International Business Machines Corporation.
Intele is a registered trademark of Intel Corporation.

ProKeye is a registered trademark of RoseSoft Incorporated.

SuperKeye is a registered trademark of Borland International, Inc.

Document No. 410610014-500-R00-0787
Part No. 016-014-039

OF (JONTENTS

Introduction

NeW Features....coeeeeieieeereeeeeereeeeeeeeeeeeeeeeeeeeeeseennnns Xix
System Requirements........coeevveeeeecrveeeeccrnneeeecsnneeenenns XX
About This Manual

and Other Assembler Documentationcceeeeeee... XX

IBMs Compilers and Assemblers........cceeeeueereneenes xxiii

Books on Assembly Languagecccceeeeeeevneeeeeens xxiii

Notational Conventionscccceeeeeeeeeeeeeeeeeeeeeerernnnns XXiV

— Getting Assistance or Reporting Problems.......... Xxviii
Part 1 > Using Assembler Programs

1 Getting Started.......rcenrrnnnne., 5

1.1 Setting Up Your System......cccceeevveeeiererineeeeencnnneeeennns 7

1.1.1 Making Backup Copies ..cceverenreneeeneernecennnennnenns 7

1.1.2 Choosing a Configuration Strategy...ccceeeueeennennn. 7

1.1.3 Copying Files .ceeeieeueeeruiiinrreeerreeeernneneeeesseceennns 9

1.1.4 Setting Environment Variables ...ccceeeevenernnnnnns 10

1.2 Choosing a Program Type......ccccceeeeerrvneeeeeeeecenrnnnene 10

1.3 The Program-Development Cycleceveeeeeeeeennnnne 11

1.4 Developing Programscccccceeeeeeeirineeeeeeecssnneeeeenns 14

- 1.4.1 Writing and Editing

Assembly-Language Source Code....cceeererueernnenne 14

1.4.2 Assembling Source Files ...cccceevuneenceneenncennnnnns 17

1.4.3 Converting Cross-Reference Files .cccceeeuniuinnnnee 17

1.4.4 Creating Library Files ..ccceceeuueeeeeeeenneeenneeennnnenns 18

iii

2.2

2.3
2.4

2.9

iv

1.4.5 Linking Object Files .ccceeurerrerneenienieenerneennennenns
1.4.6 Converting to .COM Format.....cccceeeveenracennenens
1.4.7 DebUgEing...ccccrrereeerrenreerrencereneneeersenceessnnnens 20
Using MASM ..o, 21
Running the Assembler.......cccoeeevvveieeercrnneeeeeennennnnns 23
2.1.1 Assembly Using a Command Line.......cccevueeenen. 23
2.1.2 Assembly Using Promptseeeeeeeeeeeeeenneennceeeenns 25
Using Environment Variables.......ccccceeeevverveeruennene 26
2.2.1 The INCLUDE Environment Variable.............. 26
2.2.2 The MASM Environment Variable ...ccccuceeneenene 27
Controlling Message OQutputccccovveeeeevveeeeereeeennns 28
Using MASM Optionscceveeecrveeecreeeecreeescreesssreesenns 29
2.4.1 Specifying the Segment-Order Method............. 30
2.4.2 Setting the File-Buffer Size .c.ceevuveerenneeennerennnns 31
2.4.3 Creating a Pass 1 LiSting....ceeeeervuenenerernneeeennns 32
2.4.4 Defining Assembler Symbols cceueeereerneeereenneennens 32
2.4.5 Creating Code for a Floating-Point Emulator...33
2.4.6 Getting Command-Line Help «.cevuueereneerenneennnnns 34
2.4.7 Setting a Search Path for Include Files............ 35
2.4.8 Specifying Listing and Cross-Reference Files35
2.4.9 Specifying Case Sensitivity ..cceeeeerneernneereneecenes 36
2.4.10 Suppressing Tables in the Listing File.....ccc...... 37
2.4.11 Checking for Impure Code....ccceeeeeerreeeerennencennns 37
2.4.12 Controlling Display of Assembly Statistics 38
2.4.13 Setting the Warning Level ..ccuueerereecriennecennnns 39
2.4.14 Listing False Conditionals ...c.ccceeeervveeeeeennneeeennns 40
2.4.15 Displaying Error Lines on the Screen............... 41
2.4.16 Writing Symbolic Information

to the Object File cvveervreeerueernneeernneeenneeeenneeens 41
Reading Assembly Listings.......ccccceeeeeveeeeecrvneeeennnnes 42
2.5.1 Reading Code in a LiStingceeeeeveneeeerneenneennn. 42
2.5.2 Reading a Macro Table .ccceuueeeeeeerreennnnceeeeeeeenns 45
2.5.3 Reading a Structure and Record Table............. 45
2.5.4 Reading a Segment and Group Tableccccueeue. 46
2.5.5 Reading a Symbol Table ..cccevueereeneerenieeennnnns 47
2.5.6 Reading Assembly Statistics .ceceeereeerrecerennceenens 49
2.5.7 Reading a Pass 1 Listing..c.c.cceeeeueeuieenieeeneennnnns 49

(CONTENTS

.

(CONTENTS

Using CREF ..., 51

Using CREFuiiiiiiiieriereeeceecenneeecsneeessneeessseeennns 53
3.1.1 Using a Command Line
to Create a Cross-Reference Listing ...cocceveeeneee. 23
3.1.2 Using Prompts
to Create a Cross-Reference Listing ...ccceeeuvenees 04
3.2 Reading Cross-Reference Listingscceeeeveeeeeeeennnnne. %3
Part 2 Using Directives
4 Writing Source Code............. 63
4.1 Writing Assembly-Language Statements.................. 65
4.1.1 Using Mnemonics and Operands......ccceeeeererenene 66
4.1.2 Writing CoOmmentS.euseeeeeeeeeernunreeeereeennnnneeeeeenes 67
4.2 Assigning Names to Symbols.......cccceeeeeeeeeerrrnneeeeeenn. 67
4.3 ConStantS..ccccceeeerrveeeeeeeerrrrrreeeeeeesesrsrsneeeeessssssnsssessssns 69
4.3.1 Integer ConStants c.ccceeeeeeneeeeneernneereneceennecennens 70
4.3.1.1 Specifying Integers with Radix Specifiers...70
4.3.1.2 Setting the Default RadiX.ceceeererececeiennnes 71
4.3.2 Packed Binary Coded Decimal Constants......... 72
4.3.3 Real-Number Constantsc.eeeveeeeeeeevnnueneceenanes 73
4.3.4 String ConstantS.eeeeeseeeeeeereneeerneeerseeersneessnnnns 74
4.4 Defining Default Assembly Behavior........cueeeeeeeeenee. 75
4.5 Ending a Source File.......uueeeeeeeorveeiieecirnneeeeeeeeceenns 78
5 Defining Segment Structure............... 81
5.1 Simplified Segment Definitions.......cccceevuveeeeereeeenannns 83
5.1.1 Understanding Memory Models....ccceeeevvuveennnee 84
5.1.2 Specifying DOS Segment Order......cccevevvveeeeenns 85
5.1.3 Defining the Memory Model.......cccvvurrrrennnnnnee. 87
5.1.4 Defining Simplified Segments.....cceeeereneerenennenns 88
5.1.5 Using Predefined Equates ...cccecevereerenncernneennens 90
5.1.6 Simplified Segment Defaults .ccuueeeerrnneeeeennneennns 92
5.1.7 Default Segment NameS cveueerreeerrereereeerneennnnns 93

9.2

9.3
5.4
9.9

5.6

6.1
6.2

6.3

6.4
6.5

vi

Full Segment Definitions.......cccccevveeeeeeeeeeeeeeereeeeeennnns
5.2.1 Setting the Segment-Order Method
5.2.2 Defining Full Segments....cccecvvveeeeeeeernneneneeeeenns 97

5.2.2.1 Controlling Alignment with Align Type98
5.2.2.2 Setting Segment Word Size

With Use TYPe cevecerercrcarerercrsacecercrsacecess 98
5.2.2.3 Defining Segment Combinations
with Combine Type..ceicrsececercrsasecercrsans 100
5.2.2.4 Controlling Segment Structure
with Class Type ceecececereieieieieeniecececnnns 104
Defining Segment Groups........ccceeeevveeeeecruveeeecruneenns 106
Associating Segments with Registers........cccceeuueee. 109
Initializing Segment Registers....cccceeevvuveeeeeeeccnnnen. 111
5.5.1 Initializing the CS and IP Registers........c...... 111
5.5.2 Initializing the DS Register...ccceeeerrunrerrnnennnns 112
5.5.3 Initializing the SS and SP Registers...ccceceeuuees 114
5.5.4 Initializing the ES RegiSter ..cccveeeerueeenneeennnnns 115
Nesting Segments......cccceeeveeeeecreeeecrreecessrreeeeecsnees 115
Defining Labels and Variables........117
Using Type Specifiers....ccccereeeerrrneeerereccrnnneeereeccnnnnee 119
Defining Code Labels......ceeeeeeevvueeeeiiiicnieneeeeeennnnns 120
6.2.1 Near Code Labels.....ccccevrruunreeeeeeeeenneeeeeeeenens 120
6.2.2 Procedure LabelS.....cccccevvruuueeeeeeeeeneennenceeeenans 121
6.2.3 Code Labels Defined
with the LABEL Directive..ccceeeeeeereeeeeennenennes 122
Defining and Initializing Datacccccceeevvueeeecennnenne 123
6.3.1 Variables....ccccccruneeeeeerereernnnsecereeennnnceseeceeenes 123
6.3.1.1 Integer Variables ...ccoeeererierecerercacacenenes 124
6.3.1.2 Binary Coded Decimal Variables............ 127
6.3.1.3 String Variables cccevecererercrcecercrcecacennnes 127
6.3.1.4 Pointer Variables...oceeereiecerceccacersacncens 128
6.3.1.5 Real-Number Variables..ccoeceieiersecacecenes 130
6.3.2 Arrays and Buffers c...eceveeeeereeeeenieerneernnneennn. 135
6.3.3 Labeling Variables .c.cceeeeerernneeerenneeeeeennneeeenn. 136
Setting the Location Counter........cccceeeveeeecneennnen. 137
ALgnIng Data...ccceeeeeeeieeeeeeeeeeeeeceeeeeereveeeeeeen. 138

CONTENTS

(CONTENTS

7.2

8.1
8.2
8.3
8.4
8.5

9.1
9.2

Using Structures and Records........141
SEIUCTUTES c..eveeeereeereeerreecreeerreeeeeeereeesreeeaeessaeensnenns 143
7.1.1 Declaring Structure TYPeS ceeeeeerreeeenecrenneeennnns 143
7.1.2 Defining Structure Variables ...c.c.ceeerrureernnnen. 145
7.1.3 Using Structure Operands.....ccceeeeveneeeencernennne 146
RECOTAS ..untrttrteteeteeeeeeeeeccccccccccccccrrnreeeeeeeeeee 147
7.2.1 Declaring Record TypPeS..cceeeeererueeererneeerennnnens 148
7.2.2 Defining Record Variables......cccoeeeeeerruneernnnnn. 150
7.2.3 Using Record Operands

and Record Variableseevvueeeeeeeeennnceeeeeenennns 151
7.2.4 Record Operators...ccccseeeeeerseceeerseeeererneeeesennnns 153

7.2.4.1 The MASK Operator .c.cceeerenrerererrnenes 153

7.2.4.2 The WIDTH Operator .c.ccoeeerersecercnsacess 153
7.2.5 Using Record-Field Operands......ccceeeveneerennnne 154

Creating Programs

from Multiple Modules.................... 157
Declaring Symbols Public.......ccccceeeeeeeerrvneeeeereennnnns 160
Declaring Symbols Externalccccoeeeeeeeiinirininnnnnns 161
Using Multiple Modules........ccocveeeeeeeeerrrneeeeeeecsnnnne 164
Declaring Symbols Communal..........ccccevuveeeeeeeennnne 165
Specifying Library Filescccceeeiieeieieieeeeeneeeeeneennnn. 169
Using Operands and Expressions..171
Using Operands with Directivesccceevvuveeeeeeeeennnne 173
USING OPeratorS ..cccceevveeeeeeecerrveeeeeeecesssneeeeessssssnnne 174
9.2.1 Calculation Operators ..c...cceeeereneereeneereneeeanens 174

9.2.1.1 Arithmetic Operators cieeevececercrsacecerones 175

9.2.1.2 Structure-Field-Name Operator .c.cc.eeeeeeee 176

9.2.1.3 Index Operator..cicsececercrsececerorsasacossacs 177

9.2.1.4 Shift Operators .cceececercesecerersacecercasecess 178

9.2.1.5 Bitwise Logical Operators..ccccescecerensacess 179
9.2.2 Relational Operatorsccceeeeeeeerneeeeeeenneeerennens 180
9.2.3 Segment-Override Operatorcceeeeeeneerennecennns 181

vii

9.2.4 Type OpPerators cccececececerecececacscscscsssesecececees
9.2.4.1 PTR Operator.cecececessscecessasececessssacecess
9.2.4.2 SHORT Operator scecececececssssssssscssssssees

9.2.4.3 THIS Operator..cccececeecececrececrsesasseseons 183
9.2.4.4 HIGH and LOW Operators ..cececersasecessns 184
9.2.4.5 SEG Operator..cecescessecenceacsseceancraneces 184
9.2.4.6 OFFSET Operator cecceeeeerererrreresesesees 185
9.2.4.7 .TYPE Operator..ccccececececececececececennnes 136
9.2.4.8 TYPE Operator.cececesercacecescssacecescssacess 187
9.2.4.9 LENGTH Operator cceceeeereeercrnscscesennnes 188
9.2.4.10 SIZE OpPerator cecceceececeeccscscssoscoscesonces 188
9.2.5 Operator Precedencecceeeeereenneeeeenneceeeennenens 189
9.3 Using the Location Countercccceveeeeeeeeeeeeeeenenn. 190
9.4 Using Forward References......cccceevvveereeeerrvnneeeecnenne 191
9.4.1 Forward References to Labels...cccceeeeeerreennnnnn. 192

9.4.2 Forward References to Variablescc.cceueeuneenn. 194

9.5 Strong Typing for Memory Operands..........ccccuueenu. 194
10 Assembling Conditionally................. 197
10.1 Using Conditional-Assembly Directives.................. 199

10.1.1 Testing Expressions
with IF and IFE DirectiveS...ccceesseeeeeeeeeerannnens 200

10.1.2 Testing the Pass
with IF1 and IF2 Directivescccccuvvveeeeeeennnn. 201

10.1.3 Testing Symbol Definition
with IFDEF and IFNDEF Directives 201

10.1.4 Verifying Macro Parameters
with IFB and IFNB Directives..cceeeeeeeeeennneeeess 202

10.1.5 Comparing Macro Arguments
with IFIDN and IFDIF Directives .ccceeeereeeennens 203

10.2 Using Conditional-Error Directivescccccovveeeeeunnen. 204

10.2.1 Generating Unconditional Errors
with .ERR, .ERR1, and .ERR2....ccceeevrvrrennneen 205

10.2.2 Testing Expressions
with .ERRE or .ERRNZ Directives........ccevee... 206

10.2.3 Verifying Symbol Definition
with .ERRDEF and .ERRNDEF Directives.....207

viii

(CONTENTS

(CONTENTS

11

11.1

11.2

- 11.3

114

11.5

—

11.6

10.2.4 Testing for Macro Parameters

with .ERRB and .ERRNB Directives.......eee.... 207
10.2.5 Comparing Macro Arguments
with .ERRIDN and .ERRDIF Directives 208

Using Equates, Macros,

and Repeat Blocks.......rs 211
Using EQUAtes ...cccveeeereeenieeeennneecnneeenieeeesineeessneeens 213
11.1.1 Redefinable Numeric Equates...cccceeeeervencnnenns 213
11.1.2 Nonredefinable Numeric Equates......cccceuveeee.. 214
11.1.3 String EqUateS..ccceeeeeeeerneereeneeeerenneceeeenencerens 216
USING MACTO0S. . eeeeeeerrrrrrreeeeeeeeeeeeeeesessessessrssnssssssens 217
11.2.1 Defining MacroS ..ceecereeereneeeeeneeeenecerseecennecsnnes 218
11.2.2 Calling MacTOS.ccuereeeerrrreceererneeeersnenecsssneccesans 219
11.2.3 Using Local Symbols ..cceeueereneeereneceeneecennecennes 220
11.2.4 Exiting from a Macro ..cceeeeereeernecereeceenneeennns 222
Defining Repeat Blockscccovvueeiecrneeiiccrneeencnnnnen. 223
11.3.1 The REPT Directive...ccevueeeereeerreceereecernecennns 223
11.3.2 The IRP Directive cueeeveeeeeeereereeseeeeeeeeeeeeeeaaens 224
11.3.3 The IRPC Directive...ceeeeeeeeernneeeeeeeernnneeeeeens 225
Using Macro Operatorsceceeeerreeeeeeecessrnnneeeeesaenes 226
11.4.1 Substitute OPerator ...ccceeeeeeeeeeeeererneeceeennceeens 226
11.4.2 Literal-Text Operator.cccceceeeseeeceersecceeenneceeeans 228
11.4.3 Literal-Character Operator ...uee.ceeeeeeveeenneeenens 229
11.4.4 Expression Operator...ccceceeeereeeeerreneereanneeenns 230
11.4.5 Macro COmMENtS .uueeeeerrueeeeeevnececernnecesenncerens 231
Using Recursive, Nested,

and Redefined MacroS.....cccceeeeeeeenrnneeeeenccccnnneeeenees 231
11.5.1 Using RecUrsion cccuuueeeeeerueeeeerneereerreneeersanenes 231
11.5.2 Nesting Macro DefinitionS...cceeeeeernecerneceennnenns 232
11.5.3 Nesting Macro Callsccceereervuneeceeeeeneenneecenens 233
11.5.4 Redefining MacroS....ccceeeuneeeeerneeeernneeceennneeees 234
11.5.5 Avoiding Inadvertent Substitutions.....cccce.... 234
Managing Macros and Equates.......cccoeevvnneeeeiecennnnns 235
11.6.1 Using Include Files....cccceeeeereruneceerrenceeennnneeens 235
11.6.2 Purging Macros from Memoryccccceeeennnenn. 237

ix

(CONTENTS

12 Controlling Assembly Output.........
12.1 Sending Messages
to the Standard Output Device........ccoccvvevvenucnnene. 241
12.2 Controlling Page Format in Listings...........eeveeeeenes 242
12.2.1 Setting the Listing Title c.ceeeeereerreeereeceennnnnnes 242
12.2.2 Setting the Listing Subtitle.ccccceeeerueerennneennns 243
12.2.3 Controlling Page Breakscceeeeeeuerenecreeennnnnns 243
12.3 Controlling the Contents of Listingscccceeevveeenne. 245
12.3.1 Suppressing and Restoring Listing Output245
12.3.2 Controlling Listing of Conditional Blocks....... 246
12.3.3 Controlling Listing of MacroS....cceeeeeeveeeeneenenns 247
12.4 Controlling Cross-Reference Output 249

Part 3 <> Using Instructions
13 Understanding

8086-Family Processors............ 255
13.1 Using the 8086-Family Processors........cccceeevuveeennnns 257
13.1.1 Processor Differences ..c.ceeeeeeeeeneeeneeeneceneeennnns 257
13.1.2 Real and Protected Modescceevveeeenneeennnnnnns 209
13.2 Segmented AdAresses.....cccccveeeeeeeeeevveeeeeeeeeerrnenenens 260
13.3 Using 8086-Family RegiSterscccceevvvuveeeereeerernnnnen. 261
13.3.1 Segment Registers...ccccrrreeererunreerrrecerenenceeenes 263
13.3.2 General-Purpose Registers ...cccveeererueeeeremmaneenes 264
13.3.3 Other Registers..ccceeeererueeererneeneeeenceeeennceeenns 266
13.3.4 The Flags Register ccccceuueeeerenurecereeneeeeennceenans 266
13.3.5 8087-Family Registers .ucceeeerrueeeerreeeeeeeeneennnns 268
13.4 Using the 80386 Processor Under DOS................... 269
14 Using Addressing Modes................... 271
14.1 Using Immediate Operands.......cccceeveeeeeevveeeeennnnen. 273
14.2 Using Register Operands........ccceceeeevveeeeecveeeeecrneenn. 274

CONTENTS

14.3

P

15

15.1

15.2

— 15.3

15.4

15.5
16

16.1

16.2

Using Memory Operands.......ccoveeeeeerveeeeecrvneeeeecennens 276
14.3.1 Direct Memory Operands......cceeueeereenneeeennnnns 276
14.3.2 Indirect Memory Operandsccceeeereveneeernunnens 278
14.3.3 80386 Indirect Memory Operands......eeceeeeeune. 282

Loading, Storing,

and Moving Data.........eecnnnnes 287
Transferring Dataccoveeeeeeeiiiiiieeeeeienriinnneeeeeeeennne 289
15.1.1 Copying Data cceeeeeeererneeeereennecereaneeessnnecsennes 289
15.1.2 Exchanging Data ..c.ccceeeeereenneceerennceeeennecerennens 290
15.1.3 LooKing Up Dabta weeeererneeerrereeceerennecereenneceenne 290
15.1.4 Transferring Flags..cccceeueeeerernncerernncereesecceenns 291
Converting between Data Sizes.....cccceevvuveeeecrnneeenns 292
15.2.1 Extending Signed Values ...ccceeeeerrrneeerenneeenns 292
15.2.2 Extending Unsigned Values.....ccoeeeeennrennnnnnnn. 294
15.2.3 Moving and Extending Values..c...ccceeeeennennnnn. 294
Loading PointerS....cccceeeereeeeeeeecrnneeeeeeeeneenneeeeeeens 295
15.3.1 Loading Near Pointers...ccceeeeeeeeeeeeevnneecceceeenns 295
15.3.2 Loading Far Pointers...ccccceeseeeereeennenececeeeennnns 296
Transferring Data to and from the Stack............... 298
15.4.1 Pushing and Popping ...ceeeeeereveeeerrvececeennneenns 298
15.4.2 Using the Stack ceeeeeeeerreieeeerenseeereeeeeerannceenes 301
15.4.3 Saving Flags on the StacK..cccceeeerrreneeeeenneerens 301
15.4.4 Saving All Registers on the Stack .c...ccceeeenens 302
Transferring Data to and from Portscccee.e...... 303
Doing Arithmetic
and Bit Manipulations......................... 305
2V (6 11 o T PPUPRP 307
16.1.1 Adding Values Directly....ccceeeeerrenneeeeeenneaceenns 307
16.1.2 Adding Values in Multiple Registers 309
SUDBLTACTING «evveereeerrrreeeeeerrrnreeeeeeeerrrnneeeeeesssssnnenens 309
16.2.1 Subtracting Values Directlycccevvveeeeernnnnnnns 310
16.2.2 Subtracting with Values

in Multiple RegiSters .e.euuureerrueererrenrerrennnnenns 311

xi

16.3
16.4
16.5

16.6

16.7
16.8

17
17.1

17.2
17.3
17.4

xii

MUIEIPLYING «.vvvrrrreeeeeieirrreeeeeeeeriereeeeeessesrnneeeeeeesennns
DiVIAING ceeeeeeeerrrrreeeererrrneeeeeeecssrsneeeeesesssssneeeeesssssnnne
Calculating with Binary Coded Decimals............... 316
16.5.1 Unpacked BCD NUmMbeETS..cceuveerrrrueeeeernnceeenes 317
16.5.2 Packed BCD NUmbers....cccceuueeeerereecereanencenene 319
Doing Logical Bit Manipulations.......cccceecveeeeeruneenn. 320
16.6.1 AND Operationsceeeereeeeeeerrueceereranecesnnnneees 321
16.6.2 OR Operations ...cceeeeeerevneeeeerenneeereenneecessnneeees 322
16.6.3 XOR Operations ..cceeeeeerreeeernecerseecerneceeneecesnes 322
16.6.4 NOT Operations..cceeeeeeeeeeeeenneececeeeenenenseeeeeens 323
Scanning for Set BitS.....coceeerureeeeererrneeeeeeecenrnenenee 324
Shifting and Rotating BitScccceevvveeeeeecervnneeeennn. 326
16.8.1 Multiplying and Dividing by Constants.......... 327
16.8.2 Moving Bits
to the Least-Significant Position....ccceeveeerennns 329
16.8.3 Adjusting MaskS eeeeeeeeeerneenneeeeeeennennneeeeeennns 329
16.8.4 Shifting Multiword Values ...cceeeeeeeernnneenceeeenns 329
16.8.5 Shifting Multiple BitS...cceeeeerernneerenneerennceenns 330
Controlling Program Flow................. 331
JUMPING cevvvreieieeerrnreeieeecrrrneeeeeeecsrreeeeesessssnnnseeessns 333
17.1.1 Jumping Unconditionally...ccceceveuereneeeenncennes 333
17.1.2 Jumping Conditionally ..cccceceueeereneeeeneeeennecennes 339
17.1.2.1 Comparing and Jumping..ceeeeecececececacees 330
17.1.2.2 Jumping Based on Flag Status...cccceeueaees 338
17.1.2.3 Testing Bits and Jumping..ceeceeeererneaness 340
17.1.2.4 Testing and Setting Bits ccceeererrrnenene 341
LOOPING .ceeeieernnreeiriierrnnneeeeeecessnnneessesessssnneeessssssnnns 343
Setting Bytes Conditionallycccceeevuveeeeeeieecennnns 345
Using Procedures.......cvvuveeeeeeeeeeeieeeeeeenneseeessssnnnnnens 346
17.4.1 Calling Proceduresccceveeeererneeeerernececernnnneees 347
17.4.2 Defining Procedurescceeeeererneeeerernececennncenes 347
17.4.3 Passing Arguments on the Stack ...ccovuveecennnne 349
17.4.4 Using Local Variables....c.ccceereeerernnceceennceeenns 301
17.4.5 Setting Up Stack Frames...ccceeeeererneeeeennnceeenns 304

(CONTENTS

CONTENTS

17.6

18

18.1
18.2
18.3
18.4
18.5
18.6
18.7

19

19.1

19.2
19.3

19.4

Using INtErrupts....ccceeeeeecevvneeeeeecenreneeeeescecssneeeeenanns 350
17.5.1 Calling INterTUPS ceeevrrrrrereeeeeeerreneeneeeeeeennnnns 356
17.5.2 Defining and Redefining Interrupt Routines ...358
Checking Memory Ranges........cccceeevveeeveeecvneeenne. 361
Processing Strings.........ccoeevveeervvnnneee. 363
Setting Up String Operations.......ccccceeeevvveeeeeeeeennnne 365
MoOVING SErINES.eeeeeeeerrrrreeeeeeerrreeeeesesrrneeeeesessnnnenees 368
Searching StringS .eueeeeeeerveeeeeeeerrieeeeeeressreneeeessennnns 370
Comparing StringS ...cccevvveeeeereerrrrveeeeessersrerenseesessnns 371
Filling Srings c.cccceeeeevveeeeecreeeecnreeeeeccneeescsrneeeessnens 373
Loading Values from Strings.......ccceeevveeeecrneeeernnnen. 374
Transferring Strings to and from Ports.................. 375
Calculating
with a Math Coprocessor................. 377
Coprocessor Architecture.......ccceeeeevueeeeecreeeeenrnnenn. 379
19.1.1 Coprocessor Data RegiSters....cccvuuereeeeernunnecens 380
19.1.2 Coprocessor Control Registers...ccccueeeeeeennnnnn. 381
Emulationccccceeeeiiieeeinnieeennnneeeenneeecesneeeessnens 382
Using Coprocessor Instructionscccceeeeevrveeeeeennn. 382
19.3.1 Using Implied Operands

in the Classical-Stack FOrmcocevvueeeeenennennns 383
19.3.2 Using Memory Operands......ccceveeeeeeereneeceennnes 384
19.3.3 Specifying Operands

in the Register FOrm veeeeeeeeerereeeeeeeeeerenssnnsnnnes 385
19.3.4 Specifying Operands

in the Register-Pop FOrm....cceeeeeeeuneeeeennenaennn. 386
Coordinating Memory ACCESS.....cvvveeeeeeeerrvreeeeeeenens 387

xiii

(CONTENTS

19.5 Transferring Dataccccveeeevveeiniiieiinineeicireeeecneenn.
19.5.1 Transferring Data to and from Registers.........
19.5.2 Loading Constantscccceceeeeeeeeeeeeereeeeeeereenennnns 391
19.5.3 Transferring Control Dataccceeeeeeeevvennnnnn. 392

19.6 Doing Arithmetic Calculations.....cccccvveeeeeenvvennennn. 393

19.7 Controlling Program Flow..........ccceeevvvreeeeeecnnnnennn. 399
19.7.1 Comparing Operands

to Control Program FIoW.....cccceeeevveeeeennneennnn. 401
19.7.2 Testing Control Flags
after Other InstructionsS...cceeevveeerneereeenneennnnns 404

19.8 Using Transcendental Instructions.........cccceeeuvunnens 404

19.9 Controlling the Coprocessor......ccceeevuveeeeeeeerrnveeeenn. 406

20 Controlling the Processor.................. 409

20.1 Controlling Timing and Alignmentcueoeeeen.n. 411

20.2 Controlling the Processor......ccccceevvuveeeeeeeiinveeeeennnnns 411

20.3 Controlling Protected-Mode Processes.................... 412

20.4 Controlling the 80386.......cccceeeeeererrrrvrrereeeeeeeeeeeeenns 413

Appendixes

A New Features....ne. 417
A.l MASM Enhancements.......ccceeeeeiveeeeeveeeeesneeeeennnens 419
A1l 80386 SUPPOTt ceeevrneerernererneeeraneceerecernnaseannnns 419
A.1.2 Segment Simplification ..cccceeeeeeeveeeeeereeneceeennnns 420
A.1.3 Performance Improvements....cccceeeeervvneeeernnnns 420
A.1.4 Enhanced Error Handlingccceveeveuneeeennnnnnnn. 421
A.1L5 New OPLIONS vuveeerrerneeecerrruneeeerenneeessssencesssnns 421
A.1.6 Environment Variables......ccccevrrveieeerereneennnes 422
A17T String EqUateS....cccceeeeeeereeeceeeeneneeeeeenenceeeenes 422
A.1.8 RETF and RETN Instructionseccceeeeeevnnnns 422
A.1.9 Communal Variables ...ccceeeeerneeeneeneeeneeneeeneennns 422
A.1.10 Including Library Files ccccccceveeeeeeenerernieeenennen. 422
A.1.11 Flexible Structure Definitions....c..ccceevvunennnen.. 423

xiv

CONTENTS

A2

Link Enhancements.........cuveeeeeeeerrvveeeeeeenrnneneeeeennn. 423
A.3 The CodeView Debugger.........ccoevvreeerveeeeerveeeennns 423
A4 SETENV ...ieecteecteecreccrreeeteeessaeesssseessneenns 424
AS Corngatibility with Assemblers

ANd COMPIIETS....uveieiieniieriiiieriireeeeeecerrreeeeeeeeeene 424
B Error Messages and Exit Codes.....427
B.1 MASM Messages and Exit Codes........ccceeeeennnnnnnen 429

B.1.1 Assembler Status MeSSages «u.ceeeeerveecerreneneennns 429

B.1.2 Numbered Assembler Messages.......ccvvveeeeennnnn 430

B.1.3 Unnumbered Error Messageseeereveeieernannns 446

B.1.4 MASM EXit CodeS.ccuuuueeerrurneerereeneerenenncerennnns 448
B.2 CREF Error Messages and Exit Codes 449
| (376 [GO 451

Xv

Figures

Figure 1.1
Figure 5.1

Figure 5.2
Figure 6.1

Figure 6.2
Figure 6.3

Figure 13.1
Figure 13.2
Figure 13.3
Figure 15.1
Figure 16.1
Figure 17.1
Figure 17.2
Figure 17.3
Figure 19.1
Figure 19.2
Figure 19.3

Xvi

The Program-Development Cycle................... 12
Segment Structure

with Combine and Align Types......cccceeueene. 103
Segment Structure with Groups............c...... 108
Encoding for Real Numbers

in JEEE Format........ccoeeveenevnieennnieeennnneenn. 132
Encoding for Real Numbers

in Microsoft Binary Format..........cccceeveeennee 133
Encoding for Real Numbers

in Temporary-Real Formatccccuuueeenne. 134
Register for 8088-80286 Processors.............. 262
Extended Registers of 80386 Processor......... 263
Flags for 8088—-80386 Processorscceeeee... 267
Stack Status after Pushes and Pops............. 299
Shifts and Rotates.....cccoveeeeevveeinvveeinninneenne 326
Procedure Arguments on the Stack.............. 351
Local Variables on the Stack........ccceuvveenne. 353
Operation of Interrupts.....c.ccceeevvveeeecveeennnne 357
Coprocessor Data Registers.......cccceeeevueeennnne 380
Coprocessor Control Registers.......cccoevvveeennne 381

Coprocessor and Processor Control Flags.....400

(CONTENTS

N

CONTENTS

Tables

Table 2.1
Table 2.2
Table 4.1
Table 4.2
Table 5.1

Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5
Table 10.1
Table 14.1
Table 14.2
Table 16.1
Table 17.1

Table 18.1
Table 19.1
Table 19.2

Table A.1

Warning Levels.....cooovviiiiiiinniiiiieeeeeieccneneen. 39
Symbols and Abbreviations in Listings.......... 43
Reserved Names......cccoeevvvveeeeieneiiinneeeeeeenennnns 69
Digits Used with Each Radix.........ccccceeeeuennnee 70
Default Segments and Types

for Standard Memory Models.........cccccuuuuuneeee. 93
Arithmetic Operators.....cccccceeeieiieiiiiereennnnne. 175
Logical Operators.....c.ccceevvuveeeeeeccerrrnneeeeeeennn. 179
Relational Operators.....cccceeeeeevveeeeereereenanenne 180
.TYPE Operator and Variable Attributes....186
Operator Precedence..........cceeeeeeeiiervveeeannnn 190
Conditional-Error Directives......cccceevvueeeecnnne 204
Register Operands........cccceeeeeeevvneeeeeeereeeennnns 275
Indirect Addressing Modes........cceeeeeeeeeernnnne 279
Values Returned by Logical Operations....... 320

Conditional-Jump Instructions

Used after Compareccceeeeeeecernrneeeeeeesennns 337
Requirements for String Instructions........... 367
Coprocessor Operand Formscccceevuveeenenne 383
Control-Flag Settings

after Compare or Test....ccccceeeevvueeeecerrneeeencnns 401
80386 and 80387 Instructions..........cceceeeeeenne. 420

xvii

INTRODUCTION

Welcome to the Microsofte Macro Assembler (MASM). This package pro-
vides all the tools you need to create assembly-language programs.

The Macro Assembler provides a logical programming syntax suited to the
segmented architecture of the 8086, 8088, 80186, 80188, 80286, and 80386
microprocessors (8086-family), and the 8087, 80287, and 80387 math
coprocessors (8087-family).

The assembler produces relocatable object modules from assembly-
language source files. These object modules can be linked using LINK, the
Microsoft Overlay Linker, to create executable programs for the MS-DOSe
operating system. Object modules created with MASM are compatible
with many high-level-language object modules, including those created
with the Microsoft BASIC, C, FORTRAN, and Pascal compilers.

MASM has a variety of standard features that make program develop-
ment easier:

e It has a full set of macro directives.

e It allows conditional assembly of portions of a source file.

e It supports a wide range of operators for creating complex
assembly-time expressions.

e It carries out strict syntax checking of all instruction statements,
including strong typing for memory operands.

New Features

This version of the assembler has the following major new features:

e All instructions and addressing modes of the 80386 processor and
80387 coprocessor are now supported.

e The new CodeViewe window-oriented debugger allows source-level
debugging on assembly-language files and has many other powerful
features.

e New segment directives allow simplified segment definitions. These
optional directives implement the segment conventions used in
Microsoft high-level languages.

xix

Microsoft Macro Assembler Programmer’s Guide

e Error messages have been clarified and enhanced.

e The default format for initializing real-number variables has been
changed from Microsoft Binary to the more common IEEE (Insti-
tute of Electrical and Electronic Engineers, Inc.) format.

Note

In addition to these new features, there are numerous minor enhance-
ments. If you are updating from a previous version of the Microsoft
Macro Assembler, you may want to start by reading Appendix A,
“New Features.” This appendix summarizes new features added for
Version 5.0 and discusses compatibility issues.

System Requirements

In addition to a computer with one of the 8086-family processors, you
must have Version 2.0 or later of the MS-DOS or IBMe PC-DOS operating
system. (Since these two operating systems are essentially the same, this
manual uses the term DOS to include both.) To run the assembler itself,
your computer system must have approximately 192K (kilobytes) of
memory. The CodeView debugger requires approximately 320IK. Actual
memory requirements vary depending on the DOS version used, the
memory used by any resident programs, and the size of the files being
assembled or debugged.

About This Manual

and Other Assembler Documentation

This manual is intended as a reference manual for writing applications
programs in assembly language. It is not intended as a tutorial for
beginners, nor does it discuss systems programming or advanced tech-
niques.

This manual is divided into three major parts. Part 1 is called “Using
Assembler Programs,” and it comprises chapters 1-3. Chapters 4-12 make
up Part 2, “Using Directives.” The third part, called “Using Instructions,”
comprises chapters 13-20. Two appendixes follow Part 3.

XX

Information

Introduction

Important topics for the programmer and their references are listed below:

Location

How to set up the
assembler software

An overview of the
program-development
process

How to use the assembler
and the other programs
provided with the
Microsoft Macro
Assembler package

An overview of the format
for assembly-language
source code

How to program in the
version of assembly
language recognized by

MASM

An overview of the
architecture of 8086-
family processors

Chapter 1, “Getting Started,” tells how
to set up the assembler and utility
software.

Chapter 1, “Getting Started,” describes
the program-development process and
gives brief examples of each step.

Part 1, “Using Assembler Programs,”
describes the command lines, options,
and output of MASM and CREF. The
Microsoft CodeView and Utilities
manual describes the command lines,
options, commands, and output of the
CodeView debugger, LINK, LIB,
MAKE, and other utilities. Error mes-
sages are described in Appendix B of the
respective manuals. The command-line
syntax for all assembler programs is
summarized in the Microsoft Macro
Assembler Reference.

Chapter 1, “Getting Started,” shows
examples of assembly-language source
files, and Chapter 4, “Writing Source
Code,” (in Part 2) discusses basic con-
cepts in a reference format.

Part 2, “Using Directives,” explains the
directives, operands, operators, expres-
sions, and other language features under-
stood by MASM. However, the manual
is not designed to teach novice users how
to program in assembly language. If you
are new to assembly language, you will
still need additional books or courses.
Some tutorial books that may be helpful
are listed later in this introduction.

Chapter 13, “Understanding 8086-
Family Processors,” (in Part 3) discusses
segments, memory use, registers, and
other basic features of 8086-family pro-
CesSOrs.

xxi

Microsoft Macro Assembler Programmer’s Guide

How to use the
instruction sets for the
8086, 80186, 80286, or
80386 microprocessor

Reference data
on Instructions

How to use the
instruction sets of the
8087, 80287, or 80387
math coprocessor

Information on DOS
structure and function
calls

How to write assembly-
language routines for
high-level languages

Hardware features of your
computer

xxii

Part 3, “Using Instructions,” describes
each of the instructions. The material is
intended as a reference, not a tutorial.
Beginners may need to study other books
on assembly language.

Another manual in the Macro Assembler
package, the Microsoft Macro Assembler
Reference, lists each instruction alpha-
betically and gives data on encoding and
timing for each. This data is particularly
useful for programmers who wish to
optimize assembly code.

Chapter 19, “Calculating with a Math
Coprocessor,” describes the coprocessor
instructions and tells how you can use
the most important ones.

Although this information may be useful
to many programmers, it is beyond the
scope of the documentation provided
with the Microsoft Macro Assembler
package. You can find information on
DOS in the Microsoft MS-DOS
Programmer’s Reference and in many
other books about DOS. Some of the
books listed later in this introduction
cover these topics.

The Microsoft Mized-Language Program-
ming Guide describes the calling and
naming conventions of Microsoft high-
level languages and tells how to write
assembly modules that can be linked
with modules created with high-level
languages.

For some assembly-language tasks, you
may need to know about the basic input
and output systems (BIOS) or other
hardware features of the computers that
run your programs. Consult the techni-
cal manuals for your computer or one of
the many books that describe hardware
features. Some of the books listed later
in this introduction discuss hardware
features of IBM and IBM-compatible
computers.

A

Introduction

IBM: Compilers and Assemblers

Many IBM languages are produced for IBM by Microsoft. IBM languages
similar to corresponding Microsoft languages include the following:
IBM Personal Computer Macro Assembler, Versions 1.0 and 2.0
IBM Personal Computer FORTRAN, Version 3.z
IBM Personal Computer C, Version 1.0
IBM Personal Computer Pascal, Versions 1.0 to 3.z
IBM Personal Computer BASIC Compiler, Versions 1.0 and 2.0

These languages are compatible with the Microsoft Macro Assembler Ver-
sion 5.0, except as noted in Appendix A, “New Features.”

Books on Assembly Language

The following books may be useful in learning to program in assembly
language:

Duncan, Ray. Advanced MS-DOS. Redmond, Wash.: Microsoft Corpora-
tion, 1986.

An intermediate book on writing C and assembly-language programs
that ;nteract with MS-DOS (includes DOS and BIOS function descrip-
tions

Intel Corporation. tAPX 886 Programmer’s Reference Manual. Santa
Clara, Calif. 1986.

Reference manual for 80386 processor and instruction set (manuals for
previous processors are also available)

Jourdain, Robert. Programmer’s Problem Solver for the IBM PC, XT and
AT. New York: Brady Communications Company, Inc., 1986.

Reference of routines and techniques for interacting with hardware
devices through DOS, BIOS, and ports (high-level routines in BASIC
and low- or medium-level routines in assembler)

Lafore, Robert. Assembly Language Primer for the IBM PC & XT. New
York: Plume/Waite, 1984.

An introduction to assembly language, including some information on
DOS function calls and IBM-type BIOS

xxiii

Microsoft Macro Assembler Programmer’s Guide

Metcalf, Christopher D., and Sugiyama, Marc B. COMPUTE!’s Beginner’s
Guide to Machine Language on the IBM PC & PCjr. Greensboro, N.C.:
COMPUTE! Publications, Inc., 1985.

Beginning discussion of assembly language, including information on
the instruction set and MS-DOS function calls

Microsoft. Microsoft MS-DOS Programmer’s Reference. Redmond, Wash.
1986, 1987.
Reference manual for MS-DOS

Morgan, Christopher, and the Waite Group. Bluebook of Assembly Rou-
tines for the IBM PC. New York: New American Library, 1984.
Sample assembly routines that can be integrated into assembly or
high-level-language programs

Norton, Peter. The Peter Norton Programmer’s Guide to the IBM PC. Red-
mond, Wash.: Microsoft Press, 1985.
Information on using IBM-type BIOS and MS-DOS function calls

Scanlon, Leo J. IBM PC Assembly Language: A Guide for Programmers.
Bovie, Md.: Robert J. Brady Co., 1983.

An introduction to assembly language, including information on DOS
function calls

Schneider, Al. Fundamentals of IBM PC Assembly Language. Blue Ridge
Summit, Pa.: Tab Books Inc., 1984.

An introduction to assembly language, including information on DOS
function calls

These books are listed for your convenience only. Microsoft Corporation
does not endorse these books (with the exception of those published by
Microsoft) or recommend them over others on the same subjects.

Notational Conventions

This manual uses the notation described in the following list.

Example Description
of Convention of Convention
Examples The typeface shown in the left column is used

to simulate the appearance of information
that would be printed on your screen or by
your printer. For example, the following

xxiv

Program

Fragment

KEY TERMS

Introduction

source line is printed in this special typeface:
mov ax,WORD PTR string[3]

When discussing this source line in text, items
appearing on the line, such as string[3],
also appear in the special typeface.

A column of dots in syntax lines and program
examples shows that a portion of the program
has been omitted.

For example, in the following program frag-
ment, only the opening lines and the closing
lines of a macro are shown. The internal lines
are omitted since they are not relevant to the
concept being illustrated.

work MACRO realarg,testarg
.ERRB <realarg> ;. Too few
.ERRNB <testarg> ;; Too many
. ;; Just right

ENDM

Bold letters indicate command line options,
assembly-language keywords or symbols, and
the names of files that come with the Micro-
soft Macro Assembler package.

For instance, the directive ORG, the instruc-
tion MOV, the register AX, the option /ZI,
and the file name MASM are always shown
in bold when they appear in text or in syntax
displays (but not in examples).

In syntax displays, bold type indicates any
words, punctuation, or symbols (such as com-
mas, parentheses, semicolons, hyphens, equal
signs, or operators) that you must type
exactly as shown.

For example, the syntax of the IFDIF direc-
tive is shown as follows:

IFDIF <argumentl>,<<argument2>

The word IFDIF', the angle brackets, and the
comma are all shown in bold. Therefore they
must be typed exactly as shown.

XXv

Microsoft Macro Assembler Programmer’s Guide

placeholders

[optional items]

{ choicel | choice2}

Repeating
elements...

XXvVv1

Words in italics are placeholders for variable
information that you must supply. For exam-
ple, the syntax of the OFFSET operator is
shown below:

OFFSET expression —_—

This indicates that any ezpression may be
supplied following the OFFSET operator.
When writing source code to match this syn-
tax, you might type

OFFSET heret+6

in which here+6 is the expression. The place-
holder is shown in italics both in syntax
displays and in descriptions explaining syntax
displays.

Double brackets surround optional syntax ele-
ments. For example, the syntax of the index
operator is shown as follows:

[ezpressioni][expression?)

This indicates that expressionl is optional,

since it is contained in double brackets, but .
expression? is required and must be enclosed

in brackets.

When writing code to match this syntax, you
might type [bx], leaving off the optional
expressionl, or you might type test [5],
using test as expressionl.

Braces and vertical bars indicate that you
have a choice between two or more items.
Braces enclose the choices, and vertical bars
separate the choices. You must choose one of
the items.

For example, the /W (warning-level) option
has the following syntax:

/Wio| 1|2}

You can type /WO, /W1, or /W2 to indicate .
the desired level of warning. However, typing

/W3 is illegal since 3 is not one of the choices

enclosed in braces.

Three dots following an item indicate that
more items having the same form may be
entered.

Introduction

For example, the syntax of the PUBLIC

directive is shown below:
PUBLIC name [,name]...

The dots following the second name indicate
that you can enter as many names as you like
as long as each is preceded by a comma. How-
ever, since the first name is not in brackets,
you must enter at least one name.

Defined terms and Quotation marks set off terms defined in the

“Prompts” text. For example, the term “indeterminate”
appears in quotation marks the first time it is
defined.

Quotation marks also set off command-line
prompts in text. For example, one LINK
prompt would be described in text as the
“object modules” prompt.

KEY NAMES Small capital letters are used for the names of
keys and key sequences that you must press.
Examples include ENTER and CONTROL~C.

® Example

The following example shows how this manual’s notational conventions
are used to indicate the syntax of the MASM command line:

MASM [options] sourcefile [,[objectfile] [,[listingfile] [,[crossreferencefile]]]] [;]

This syntax shows that you must first type the program name, MASM.
You can then enter any number of options. You must enter a sourcefile.
You can enter an objectfile preceded by a comma. You can enter a
listingfile, but if you do, you must precede it with the commas associated
with the sourcefile and objectfile. Similarly, you can enter a
crossreferencefile, but if you do, you must precede it with the commas
associated with the other files. You can also enter a semicolon at any point
after the sourcefile.

For example, any of the following command lines would be legal:

MASM test.asm;

MASM /ZI test.asm;

MASM test.asm, ,test.lst;

MASM test.asm,,,test.crf

MASM test.asm, test.obj,test.lst,test.crf
MASM test.asm,,, ;

xxvii

Microsoft Macro Assembler Programmer’s Guide

Getting Assistance or Reporting Problems

If you need help or you feel you have discovered a problem in the software,
please provide the following information to help us locate the problem:

e The assembler version number (from the logo that is printed when
you invoke the assembler with MASM)
e The version of DOS you are running (use the DOS VER command)

e Your system configuration (the type of machine you are using, its
total memory, and its total free memory at assembler execution
time, as well as any other information you think might be useful)

e The assembly command line used (or the link command line if the
problem occurred during linking)

e Any object files or libraries you linked with if the problem occurred
at link time.

If your program is very large, please try to reduce its size to the smallest
possible program that still produces the problem.

Use the Product Assistance Request form at the back of this manual to
send this information to Microsoft.

If you have comments or suggestions regarding any of the manuals accom-
panying this product, please indicate them on the Document Feedback
card at the back of this manual.

You should also fill out and return the Registration Card if you wish to be
informed of updates and other information about the assembler.

xxviii

e k’fyiltlhty programs such as LINK L-i, MAKE '
- and the Code\/iew debugger, are described in the
: _f‘l\/hcrosoft C de\ﬁew and Utlhtles m

(.]HAPTER

GETTING STARTED

1.1 Setting Up Your SysteM.....ceeeeeeeeeeeeeeeeeeeeeeeeeerrnnnnns 7

1.1.1 Making Backup Copies ...ccevueernnerrrneeeennrennnnns 7

1.1.2 Choosing a Configuration Strategycccceeeeeees 7

1.1.3 Copying FileS.ccvveeeeerrreeeerreeeeeeeeneeceeeernceeennns 9

1.1.4 Setting Environment Variablesccccceeernne.. 10

1.2 Choosing a Program Typeccccceeevvuveeeeeeeccrnneeenen. 10

1.3 The Program-Development Cycle...........cccccuuee... 11

1.4 Developing Programs........ccccceeeevueeeeeeeecirinneeeeeennn. 14
1.4.1 Writing and Editing

Assembly-Language Source Code 14

1.4.2 Assembling Source Files ..ccceeeeuurerneeereneennnns 17

1.4.3 Converting Cross-Reference Files.......cc.cc...... 17

1.4.4 Creating Library Files....cccceeertuecrrenccreancnnnnn 18

1.4.5 Linking Object Files .ccceeeeueerenncereneeeenneeennnnne 18

1.4.6 Converting to .COM Formatccceeeeevneeennnnne 19

1.4.7 DebUZEINE vvueeerrrrneeerrrrneeeerenennerernneeeessnnneens 20

e

Getting Started

This chapter tells you how to set up Microsoft Macro Assembler files and
to start writing assembly-language programs. It gives an overview of the
development process and shows examples using simple programs. It also
refers you to the chapters where you can learn more about each subject.

1.1 Setting Up Your System

After opening the Microsoft Macro Assembler package, you should take
these four setup steps before you begin developing assembler programs:
Make backup copies of the disks in the assembler package.
Choose a configuration strategy.

Copy the assembler files to the appropriate disks and directories.

W=

Set environment variables.

1.1.1 Making Backup Copies

You should make backup copies of the assembler disks before attempting
to use any of the programs in the package. Put the copies in a safe place
and use them only to restore the originals if they are damaged or des-
troyed.

All the files on the disks are listed in the file PACKING.LST on Disk 1.

The files on the disk are not copy protected. You may make one backup
copy for your own use. You may not distribute any executable, object, or
library files on the disk. The sample programs are in the public domain.

No license is required to distribute executable files that are created with
the assembler.

1.1.2 Choosing a Configuration Strategy

There are several kinds of files on the distribution disk. You can arrange
these files in a variety of ways. The two most important considerations are
whether or not you have a hard disk and whether you want to use environ-
ment variables.

Microsoft Macro Assembler Programmer’s Guide

Program development can be affected by the environment variables

described below:

Variable

Description

PATH

LIB

INCLUDE

MASM

LINK

TMP

INIT

Specifies the directories where DOS looks for exe-
cutable files.

A common setup with language products is to
place executable files in the directory \BIN and
include this directory in the PATH environment
string.

Specifies the directory where LINK looks for
library and object files.

A common setup with language products is to put
library and object files in the directory \ LIB and
include this directory in the LIB environment
string.

Specifies the directory where MASM looks for
include files.

A common setup with language products is to put
macro files and other include files in the directory

INCLUDE and to put this directory in the
INCLUDE environment string.

Specifies default options that MASM uses on
start-up.

Specifies default options that LINK uses on
start-up.

Specifies the directory where LINK places tem-
porary files if it needs to create them.

Specifies the directory where MAKE looks for the
file TOOLS.INI, which may contain inference
rules.

See the documentation of MAKE in the Microsoft
CodeView and Utilities manual for information on
inference rules.

If you have a hard disk, you will probably want to use environment vari-
ables to specify locations for library, macro, and executable files. If you do
not have a hard disk, you may prefer to leave all files in the root directory.

If you already have other language products on a hard disk, you should
consider how your assembler setup interacts with your other languages.

8

Getting Started

Some users may prefer to have separate directories for library and include
files for each language. Others may prefer to have all library and include
files in the same directories. If you want all language files in the same
directories, make sure you do not have any files with the same names as
the ones provided with the Microsoft Macro Assembler.

If you have 5 1/4-inch disks, you will not be able to get all the tools you
need for assembly-language development on one disk. A typical setup is
shown below:

Disk Files

1 Source, object, library, and macro files on Disk 1 with
a) source and working object files in the root directory,
b) library and standard object files in directory \LIB,
and (c) macro files in directory \INCLUDE.

2 Executable files for developing programs on Disk 2. This
could include MASM, LINK, a text editor, and possi-
bly MAKE, LIB, or CREF. These files may not all fit
on a standard 360K disk, so you will have to decide
which are most important for you.

3 The CodeView debugger and any additional utilities on
Disk 3.

With this setup, you could keep Disk 1 in Drive A. Then swap Disks 2 and
3 depending on whether you are developing programs or debugging.

1.1.3 Copying Files

A setup batch file called SETUP.BAT is provided on Disk 1. You can run
it to copy automatically the assembler files to your work disk. The setup
program will ask for information about your system and how you want to
set 1t up. Before copying anything to your system, the setup program tells
you what it is about to do and prompts for your confirmation.

If you prefer, you can ignore the setup program and copy the files yourself.
See the PACKING.LST file for a list of files.

Warning

If you have previous versions of the assembler or other programs such
as LINK, LIB, or MAKE, you may want to make backup copies or
rename the old files so that you do not overwrite them with the new
versions.

Microsoft Macro Assembler Programmer’s Guide

1.1.4 Setting Environment Variables

If you wish to use environment variables to establish default file locations
and options, you will probably want to set the environment variables in
your AUTOEXEC.BAT or other batch files. The setup program does
not attempt to set any environment variables, so you must modify any
batch files yourself.

The following lines could be added for a typical hard-disk setup:

PATH C:\BIN

SET LIB=C:\LIB

SET INCLUDE=C:\INCLUDE
SET MASM=/ZI

SET LINK=/CO

The following lines might be used for the floppy-disk setup described in
Section 1.1.2:

PATH B:\:A:\

SET LIB=A:\LIB

SET INCLUDE=A:\INCLUDE
SET MASM=/ZI

SET LINK=/CO

1.2 Choosing a Program Type

MASM can be used to create different kinds of program files. The source-
code format is different for each kind of program. The primary formats are
described below:

Type Description

EXE The .EXE format is the most common format for programs
that will execute under DOS.

In future versions of DOS, a similar .EXE format will be the
only format available for stand-alone programs that take
advantage of multitasking. Programs in the EXE format
can have multiple segments and can be of any size. Modules
can be created and linked using either the assembler or most
high-level-language compilers, including all the Microsoft
compilers. Modules created in different languages can be

10

.COM

Binary
files

Device
drivers

Code
for
ROMs

Getting Started

combined into a single program. This is the format recom-
mended by Microsoft for programs of significant size and
purpose. The source format for creating this kind of program
1s described and illustrated throughout the rest of the
manual.

The .COM format is sometimes convenient for small pro-
grams.

Programs in this format are limited to one segment. They
can be no larger than 64K (unless they use overlays). They
have no file header and are thus smaller than comparable
EXE files. This makes programs in the .COM format a
good choice for small stand-alone assembler programs of
several thousand bytes or less. One disadvantage of the
.COM format is that executable files cannot contain sym-
bolic and source line information for the CodeView
debugger. You can only debug COM in assembly mode. The
source format for .COM programs is illustrated briefly in
this chapter and described fully in the Microsoft MS-DOS
Programmer’s Reference Guide.

Binary files are used for procedures that will be called by the
Microsoft and IBM BASIC interpreters.

They are also used by some non-Microsoft compilers. See the
manual for the language you are using for details on prepar-
ing source files.

Device drivers that set up and control I/O for hardware dev-
ices can be developed with the assembler.

The source format for device drives is described in the
Microsoft MS-DOS Programmer’s Reference.

The assembler can be used to prepare code that is down-
loaded to programmable ROM chips. The format is usually a
binary format. Methods of translating binary files into a for-
mat that can be used in ROM chips vary.

1.3 The Program-Development Cycle

The program-development cycle for assembly language is illustrated in

Figure 1.1.

11

Microsoft Macro Assembler Programmer’s Guide

Figure 1.1 The Program-Development Cycle

12

P

P

Getting Started

The specific steps for developing a stand-alone assembler program are
listed below:

1.

Use a text editor to create or modify assembly-language source
modules. By convention, source modules are given the extension
.ASM. Source modules can be organized in a variety of ways. For
instance, you can put all the procedures for a program into one
large module, or you can split the procedures between modules. If
your program will be linked with high-level-language modules, the
source code for these modules is also prepared at this point.

Use MASM to assemble each of the modules for the program.
MASM may optionally read in code from include files during
assembly. If assembly errors are encountered in a module, you
must go back to Step 1 and correct the errors before continuing.
For each source (.LASM) file, MASM creates an object file with the
default extension .OBJ. Optional listing (.LST) and cross-
reference (.CRFP files can also be created during assembly. If your
program will be linked with high-level-language modules, the
source modules are compiled to object files at this point.

Optionally use LIB to gather multiple object ﬁle%g.OBJ) into a
single library file having the default extension .LIB. It is generally
used for object files that will be linked with several different pro-
grams. An optional library list file can also be created with LIB.

Use LINK to combine all the object files and library modules that
make up a program into a single executable file (with the default
extension .EXE). An optional .MAP file can also be created.

Use EXE2BIN to convert executable files to a binary format if
necessary. It is necessary for programs in the .COM format and
for binary files that will be read into an interpreter or compiler.
Skip this step for programs in the .EXE format.

Debug your program to discover logical errors. Debugging may
involve several techniques, including the following:

e Running the program and studying its input and output

e Studying source and listing files

e Using CREF to create a cross-reference-listing (.REF) file
e Using CodeView (CV) to debug during execution

If logical errors are discovered, you must return to Step 1 to
correct the source code.

All or part of the program-development cycle can be automated by using
MAKE with make description files. MAKE is most useful for developing
complex programs involving numerous source modules. Ordinary DOS
batch files may be more efficient for developing single-module programs.

13

Microsoft Macro Assembler Programmer’s Guide

1.4 Developing Programs

The text below takes you through the steps involved in developing pro-
grams. Examples are shown for each step. The chapters and manuals that
describe each topic in detail are cross-referenced.

1.4.1 Writing and Editing
Assembly-Language Source Code

Assembly-language programs are created from one or more source files.
Source files are text files that contain statements defining the program’s
data and instructions.

To create assembly-language source files, you need a text editor capable of
producing ASCII (American Standard Code for Information Interchange)
files. Lines must be separated by a carriage-return—line-feed combination.
If your text editor has a programming or nondocument mode for produc-
ing ASCII files, use that mode.

The following examples illustrate source code that produces stand-alone

executable programs. Example 1 creates a program in the .EXE format,

and Example 2 creates the same program in the .COM format. —
If you are a beginner to assembly language, you can start experimenting

by copying these programs. Use the segment shell of the programs, but

insert your own data and code.

B Example 1

TITLE hello

DOSSEG @ ; Use Microsoft segment conventions
.MODEL SMALL H conventions and small model
.STACK 100h(® ; Allocate 256-byte stack
.DATAQ®
message DB "Hello, world.",13,10 ; Message to be written
lmessage EQU § - message ; Length of message
® .CODE
start: mov ax,@ATA ; Load segment location
mov ds, ax @ into DS register
mov bx,1 ; Load 1 - file handle for
; standard output
mov cx, lmessage ; Load length of message
©mov dx,OFFSET message ; Load address of message
mov ah,40h ; Load number for DOS Write function
int 21h ; Call DOS
mov ax,4COO0h ; Load DOS Exit function (4Ch)
@ ; in AH and O errorlevel in AL
int 21h ; Call DOS
END start(@

14

Getting Started

Note the following points about the source file:

1.

The MODEL and DOSSEG directives tell MASM that you
intend to use the Microsoft order and name conventions for seg-
ments. These statements automatically define the segments in the
correct order and specify ASSUME and GROUP statements.
You can then place segments in your source file in whatever order
you find convenient using the .STACK, .DATA, .CODE, and
other segment directives. These simplified segment directives are a
new feature of Version 5.0. They are optional; you can still define
the segments completely by using the directives required by earlier
versions of MASM. The simplified segment directives and the
Microsoft naming conventions are explained in Section 5.1.

A stack of 256 (100 hexadecimal) bytes is defined by using the
STACK directive. This is an adequate size for most small pro-
grams. Programs with many nested procedures may require a
larger stack. See Sections 5.1.4, “Defining Simplified Segments,”
and 5.2.2, “Defining Full Segments,” for more information on
defining a stack.

The .DATA directive marks the start of the data segment. A
string variable and its length are defined in this segment.

The instruction label start in the code segment follows the
.CODE directive and marks the start of the program instructions.
The same label is used after the END statement to define the
point where program execution will start. See Sections 4.5, “End-
ing a Source File,” and 5.5.1, “Initializing the CS and IP Regis-
ters,” for more information on using the END statement and
defining the execution starting point.

The first two code instructions load the address of the data seg-
ment into the DS register. The symbol @DATA is an equate
representing the name of the segment created with the DATA
directive. Predefined segment equates are explained in Section
5.1.5. The DS register must always be initialized for source files in
the .EXE format. Section 5.5 tells how each segment is initialized.

The string variable defined earlier is displayed using DOS function
40h (where “h” stands for hexadecimal). File handle 1 (the
predefined handle for standard output) is specified to display to the
screen. Strings can also be displayed using function 09h. See the
Microsoft MS-DOS Programmer’s Reference or other DOS reference
books for more information on DOS calls.

DOS function 4Ch is used to terminate the program. While there
are other techniques for returning to DOS; this is the one recom-
mended by Microsoft.

15

Microsoft Macro Assembler Programmer’s Guide

The following example shows source code that can be used to create the
same program shown earlier, but in the .COM format:

® Example 2

TITLE hello

_TEXT SEGMENT () ; Define code segment
ASSUME cs:_TEXT,ds:_TEXT,ss:_TEXTQ®
ORG 100hQ®) ; Set location counter to 256
start: Jmp begin(® ; Jump over data
message DB "Hello, world.", 13,10 ; Message to be written
lmessage EQU $ - message ; Length of message
begin: mov bx,1 ; Load 1 - file handle for
; standard output
mov cx, lmessage ; Load length of message
mov dx,OFFSET message ; Load address of message
mov ah,40h ; Load number for DOS Write function
int 21h ; Call DOS
mov ax, 4CO0h ; Load DOS Exit function (4Ch)
H in AH and O errorlevel in AL
int 21h ; Call DOS
; Data could be placed here
_TEXT ENDSQD)

END start

Note the following points in which .COM programs differ from .EXE pro-
grams:

1. The .MODEL directive cannot be used to define default segments
for .COM files. However, segment definition is easy, since only one
segment can be used. The align, combine, and class types need not
be given, since they make no difference for .COM files.

2. All segment registers are initialized to the same segment by using
the ASSUME directive. This tells the assembler which segment to
associate with each segment register. See Section 5.4, “Associating
gegments with Registers,” for more information on the ASSUME

irective.

3. The ORG directive must be used to start assembly at byte 256
(100h). This leaves room for the DOS Program Segment Prefix,
which is automatically loaded into memory at run time. See Sec-
tion 6.4, “Setting the Location Counter,” for information on how
the ORG directive changes the location counter.

4. Although any program data must be included in the single seg-
ment, it must not be executed. You can use the JMP instruction to
skip over data (as shown in the example) or you can put the data
at the end after the program returns to DOS.

18

Getting Started

1.4.2 Assembling Source Files

Source modules are assembled with MASM. The MASM command-line
syntax is shown below:

MASM [options] sourcefile [,[objectfile] [,[listingfile] [,[crossreferencefile]]]] [;]
Assume you had an assembly source file called hello.asm. For the

fastest possible assembly, you could start MASM with the following com-
mand line:

MASM hello;
The output would be an object file called hello.obj. To assemble the

same source file with the maximum amount of debugging information, use
the following command line:

MASM /V /Z /ZI hello,,,:

The /V and /Z options instruct MASM to send additional statistics and
error information to the screen during assembly. The /ZI option instructs
MASM to include the information required by the CodeView debugger in
the object file. The output of this command is three files: the object file
hello.obj, the listing file hello.1lst, and the cross-reference file
hello.crf.

Chapter 2, “Using MASM,” describes the MASM command line, options,
and listing format in more detail.

1.4.3 Converting Cross-Reference Files

Cross-reference files produced by MASM are in a binary format and must
be converted using CREF. The command-line syntax is shown below:

CREF crossreferencefile [,crossreferencelisting] [;]
To convert the cross-reference file hello.cr f into an ASCII file that

cross-references symbols that are used in hello.asm, use the following
command line:

CREF hello:;
The output file is called hello.ref.

The CREF command line and listing format are described in Chapter 3,
“Using CREF.”

17

Microsoft Macro Assembler Programmer’s Guide

1.4.4 Creating Library Files

Object files created with MASM or with Microsoft high-level-language
compilers can be converted to library files by using LIB. The command-
line syntax is shown below:

LIB oldlibrary [/PAGESIZE:number] [commands] [,[listfile] [,[newlibrary]]] [;]

For example, assume you had used MASM to assemble two source files
containing graphics procedures and you want to be able to call the pro-
cedures from several different programs. The object files containing the
procedures are called dots.obj and lines.obj.

You could combine these files into a file called graphics.1lib using the
following command line:

LIB graphics +dots +lines;
If you later wanted to add another object file called circles.obj and

at the same time get a listing of the procedures in the library, you could
use the following command line:

LIB graphics +circles, graphics.lst

The LIB command line, commands, and listing format are explained in
the Microsoft CodeView and Utilities manual.

1.4.5 Linking Object Files

Object files are linked into executable files using LINK. The LINK
command-line syntax is shown below:

LINK [options] objectfiles [,[executablefile] [,[mapfie] [,[lsbraryfiles]]]] [;]

Assume you want to create an executable file from the single module
hello.obj. The source file was written for the .EXE format (see Section
1.4.1, “Writing and Editing Assembly-Language Source Code”) and was
assembled using the /ZI option. You plan to debug the program with the
CodeView debugger. Use the following command line:

LINK /CO hello:
The output file is hello.exe. It contains symbolic and line-number

information for the debugger. The file can now be run from the DOS com-
mand line or from within the CodeView debugger.

18

Getting Started

After you have debugged the program, you will probably want to create a
final version with no symbolic information. To do so, use the following
command line:

LINK hello;

This command line could also be used if the source file had been prepared
in the .COM Format. However, in that case the output file hello.exe
could not be run. Another step is required, as described in Section 1.4.6,
“Converting to .COM Format.”

Now assume that you want to create a large program called
picture.exe that has two object files (picture and picture2)and
calls external procedures from the library file described in Section 1.4.4,
“Creating Library Files.” Use the following command line:

LINK /CO picture picture2,,,graphics:

The library file graphics.1ib would need to be in the current directory
or in the directory described by the LIB environment variable. The pro-
cedure calls would have to be declared external in the source file, as
described in Section 8.2, “Declaring Symbols External.”

The LINK options, command line, and listing format are described in the
Microsoft CodeView and Utilities manual.

1.4.6 Converting to .COM Format

Source files prepared in the .COM format require an additional conver-
sion step after linking. The program that does the conversion is called
EXE2BIN. It is not included in the Macro Assembler package, but it does

come with the MS-DOS and PC-DOS operating systems. The syntax is
shown below:

EXE2BIN ezefie [binaryfile]

To convert a file called hello.exe to an executable file called
hello.com, use the following command line:

EXE2BIN hello hello.com

Note that you must specify the extension .COM, since BIN is the default
extension. The .EXE file must have been prepared from source and object
files in the valid .COM format.

EXE2BIN can also be used to prepare binary files for use with the Micro-

soft or IBM BASIC interpreters. See the BASIC interpreter manual for
more information.

19

Microsoft Macro Assembler Programmer’s Guide

1.4.7 Debugging

The CodeView debugger is usually the most efficient tool for debugging
assembler programs. The command-line syntax is shown below:

CV [options] executablefile [arguments]

To debug a program called hello.exe on an IBM Personal Computer,
use the following command line:

CV hello

Note that in order for the debugger to display symbolic information, the
program should have been assembled with the /ZI option and linked with
the /CO option. Additional CodeView options may be required for other
situations. For instance, graphics programs always require the /S option.
To debug a graphics program called circles.com on an IBM-
compatible computer, use the following command line:

CV /W/1/S circles.com
The /W and /I options tell the debugger to use IBM-compatible features.
Note that the .COM extension must be specified, since the debugger

assumes files without extensions are .EXE files.

For information about CodeView command lines, options, and commands,
see the Microsoft CodeView and Utilities manual.

20

—

(_HAPTER

USING MASM

2.1

2.2

2.3
24

Running the Assembler.........ccceeeieeeeevnneeeeieeeennnnnne 23
2.1.1 Assembly Using a Command Line 23
2.1.2 Assembly Using Prompts...cceeeeeeeeeeennueceeeenens 25
Using Environment Variablescccooevvvuveeeeeiennnne 26
2.2.1 The INCLUDE Environment Variable 26
2.2.2 The MASM Environment Variable 27
Controlling Message Output......ccceeeveeeeerereeeeeenne 28
Using MASM OptionsS.....cceeeeervveeeeeeesesrrneeeeeeessenns 29
2.4.1 Specifying the Segment-Order Method 30
2.4.2 Setting the File-Buffer Size....ccccvuveerreneeceeenes 31
2.4.3 Creating a Pass 1 Listing..ceeeeeerrnneeeereneceennnns 32
2.4.4 Defining Assembler SymbolSccceeeeererenennnne. 32
2.4.5 Creating Code

for a Floating-Point Emulatorcccceeeeevuneennns 33
2.4.6 Getting Command-Line Help ...cccvvueeerrennnnnne. 34
2.4.7 Setting a Search Path for Include Files......... 30
2.4.8 Specifying Listing

and Cross-Reference Files.....ccccvvueeerennnecennn. 39
2.4.9 Specifying Case Sensitivity.ceeeeerrreeeeerneeeeeanns 36
2.4.10 Suppressing Tables in the Listing File 37
2.4.11 Checking for Impure Code......cccvvvreererennnnnne. 37
2.4.12 Controlling Display of Assembly Statistics....38
2.4.13 Setting the Warning Level.....cccevveeerenenncennns 39
2.4.14 Listing False Conditionalsccceeeeevneeennnnene. 40
2.4.15 Displaying Error Lines on the Screen............ 41
2.4.16 Writing Symbolic Information

t0 the Object File ..ccvveeeeerrnieeerenneeereenneeeeennes 41

(CHAPTER

Reading Assembly Listingscccceeeevveeeesvveeeennnen. 42
2.5.1 Reading Code in a Listing ...ccoeeevvvneeennnnnnnne. 42
2.5.2 Reading a Macro Table ..cccceuueeeeneeeencerennnenns 45
2.5.3 Reading a Structure and Record Table......... 45
2.5.4 Reading a Segment and Group Table........... 46
2.5.5 Reading a Symbol Table ...ccceeevureeeenncennnnnnne. 47
2.5.6 Reading Assembly Statistics .c.cceeereeeeeennecerens 49
2.5.7 Reading a Pass 1 Listingccceeeeervvnneeerennnennns 49

22

_——

Using MASM

The Microsoft Macro Assembler (MASM) assembles 8086, 80186, 80286,
and 80386 assembly-language source files and creates relocatable object
files. Object files can then be linked to form an executable file.

This chapter tells you how to run MASM, explains the options and
environment variables that control its behavior, and describes the format
of the assembly listings it generates.

2.1 Running the Assembler

You can assemble source files with MASM by using two different meth-
ods: by giving a command line at the DOS prompt or by responding to a
series of prompts.

Once you have started MASM, it attempts to process the source file you
specified. If errors are encountered, they are output to the screen and
MASM terminates. If no errors are encountered, MASM outputs an
object file. It can also output listing and cross-reference files if they are
specified. You can terminate MASM at any time by pressing CONTROL-C
or CONTROL-BREAK.

2.1.1 Assembly Using a Command Line

You can assemble a program source file by typing the MASM command
name and the names of the files you wish to process. The command line
has the following form:

MASM [options] sourcefile [,[objectfile] [,[listingfie] [,[crossreferencefile]]]] [;]

The options can be any combination of the assembler options described in
Section 2.4. The option letter or letters must be preceded by a forward
slash (/) or a dash (-). Examples in this manual use a forward slash. The
forward slash and dash characters cannot be mixed in the same command
line. Although shown at the beginning of the syntax line above, options
may actually be placed anywhere on the command line. An option affects
a}_l r}ialelvant files in the command line even if the option appears at the end
of the line.

The sourcefile must be the name of the source file to be assembled. If you
do not supply a file-name extension, MASM supplies the extension .ASM.

The optional objectfile is the name of the file to receive the relocatable

object code. If you do not supply a name, MASM uses the source-file
name, but replaces the extension with .OBJ.

23

Microsoft Macro Assembler Programmer’s Guide

The optional listingfile is the name of the file to receive the assembly list-
ing. The assembly listing shows the assembled code for each source state-
ment.and for the names and types of symbols defined in the program. If
you do not supply a file-name extension, the Macro Assembler supplies the
extension .LST.

The optional crossreferencefile is the name of the file to receive the cross-
reference output. The resulting cross-reference file can be processed with
CREF, the Microsoft Cross-Reference Utility, to create a cross-reference
listing of the symbols in the program. The cross-reference listing can be

used for program debugging. If you do not supply a file-name extension,
MASM supplies .CRF by default.

You can use a semicolon (;) anywhere after the sourcefile to select defaults
for the remaining file names. A semicolon after the source-file name selects
a default object-file name and suppresses creation of the assembly-listing
and cross-reference files. A semicolon after the object-file name suppresses
just the listing and cross-reference files. A semicolon after the listing-file
name suppresses only the cross-reference file.

All files created during the assembly are written to the current drive and

directory unless you specify a different drive for each file. You must sepa-

rately specify the alternate drive and path for each file that you do not

want to go on the current directory. -

You can also specify a device name instead of a file name—for example,
NUL for no file or PRN for the printer.

Note

If you want the file name for a given file to be the default (the file
name of the source file), place the commas that would otherwise
separate the file name from the other names side by side (,,). Unless a
semicolon (;) is used, all the commas in the command line are required.

Spaces in a command line are optional. If you make an error entering
any of the file names, MASM displays an error message and prompts
for new file names, using the method described in Section 2.1.2,
“Assembly Using Prompts.”

24

Using MASM

B Examples

MASM file.asm, file.obj, file.lst, file.crf

The example above is equivalent to the command line below:
MASM file,,.:

The source file file.asm is assembled. The generated relocatable code is
copied to the object file file.obj. MASM also creates an assembly list-
ing and a cross-reference file. These are written to file.lst and
file.crf, respectively.

MASM startup, ,stest;

The example above directs MASM to assemble the source file
startup.asm. The assembler then writes the relocatable object code to
the default object file, startup.obj. MASM creates a listing file named
stest.1lst, but the semicolon keeps the assembler from creating a cross-
reference file.

MASM startup, ,stest, ;

The example above is the same as the previous example except that the
semicolon follows a comma that marks the place of the cross-reference file.
The assembler creates a cross-reference file startup.crf.

MASM B:\src\build:;

The example above directs MASM to find and assemble the source file
build.asm in the directory \src on Drive B. The semicolon causes the
assembler to create an object file named build.obj in the current direc-
tory, but prevents MASM from creating an assembly-listing or cross-
reference file. Note that the object file is placed on the current drive, not
the drive specified for the source file.

2.1.2 Assembly Using Prompts

You can direct MASM to prompt you for the files it needs by starting
MASM with just the command name. MASM prompts you for the input
it needs by displaying the following lines, one at a time:

Source filename [.ASM]:
Object filename [source.OBJ]:
Source listing [NUL.LST]:
Cross-reference [NUL.CRF]:

25

Microsoft Macro Assembler Programmer’s Guide

The prompts correspond to the fields of MASM command lines. MASM
waits for you to respond to each prompt before printing the next one. You
must type a source-file name (though the extension is optional) at the first
prompt. For other prompts, you can either type a file name, or press the
ENTER key to accept the default displayed in brackets after the prompt.

File names typed at prompts must follow the command-line rules
described in Section 2.1.1, “Assembly Using a Command Line.” You can
type options after any of the prompts as long as you separate them from
file names with spaces. At any prompt, you can type the rest of the file
names in the command-line format. For example, you can choose the
default responses for all remaining prompts by typing a semicolon (;) after
any prompt (as long as you have supplied a source-file name), or you can
type commas (,) to indicate several files.

After you have answered the last prompt and pressed the ENTER key,
MASM assembles the source file.

2.2 Using Environment Variables

The Macro Assembler recognizes two environment variables: INCLUDE
and MASM. The subsections below describe these environment variables
and their use with the assembler.

Environment variables are described in general in the DOS user’s guide.

2.2.1 The INCLUDE Environment Variable

The INCLUDE environment variable can specify the directory where
include files are stored. This makes maintenance of include files easier,
particularly on a hard disk. All include files can be kept in the same direc-
tory. If you keep source files in different directories, you do not have to
keep copies of include files in each directory.

The INCLUDE environment variable is used by MASM only if you give
a file name as an argument to the INCLUDE directive (see Section 11.6.1,
“Using Include Files”) If you give a complete file specification, including
directory or drive, MASM only looks for the file in the specified directory.

When a file name is specified, MASM looks for the include file first in any
directory specified with the /I option (see Section 2.4.6, “Getting
Command-Line Help”) If the /I option is not used or if the file is not
found, MASM next looks in the current directory. If the file is still not

26

Using MASM

found, MASM looks in the directories specified with the INCLUDE
environment variable in the order specified.

B Examples
SET INCLUDE=C:\INCLUDE

This line defines the INCLUDE environment string to be C:\INCLUDE.
Include files placed in this directory can be found automatically by
MASM. You can put this line in your AUTOEXEC.BAT file to set the

environment string each time you turn on your computer.

2.2.2 The MASM Environment Variable

The MASM environment variable can be used to specify default assembler
options. If you define the options you use most in the environment vari-
able, you do not need to type them on the command line every time you
start the Macro Assembler.

When you start MASM, it reads the options in the environment variable
first. Then it reads the options in the command line. If conflicting options
are encountered, the last one read takes effect. This means that you can
override default options in the environment variable by giving conflicting
options in the command line.

Some options define the default action. If given by themselves, they have
no effect since the default action is taken anyway. However, they are use-
ful for overriding a nondefault action specified by an option in the environ-
ment variable.

Some assembler directives have the same effect as options. They always
override related options.

Note

The equal sign (=) is not allowed in environment variables. Therefore
the /D option when used with the equal sign cannot be put in an
environment variable. For example, the following DOS command line
is illegal and will cause a syntax error:

SET MASM=/Dtest=5

27

Microsoft Macro Assembler Programmer’s Guide

B Examples
SET MASM=/A/Z1/Z

The command line above sets the MASM environment variable so that
the /A, /ZI and /Z options are in effect. The line can be put in an
AUTOEXEC.BAT file to automatically set these options each time you
start your computer.

Assume you have set the MASM environment string using the line shown
above, and you then start MASM with the following command line:

MASM /S test:

The /S option, which specifies sequential segment ordering, conflicts with
the /A option, which specifies alphabetical segment ordering. The
command-line option overrides the environment option, and the source file
has sequential ordering. (See Section 5.2.1, “Setting the Segment-Order
Method,” for information on the significance of segment order.)

However, if the source file contains the .ALPHA directive, it overrides all
options and specifies alphabetical segment order.

2.3 Controlling Message Output

During and immediately after assembly, MASM sends messages to the
standard output device. By default, this device is the screen. However, the
display can be redirected so that instead it goes to a file or to a device
such as a printer.

The messages can include a status message for successful assembly and
error messages for unsuccessful assembly. The message format and the
error and warning messages are described in Appendix B, “Error Messages
and Exit Codes.”

Some text-editing programs can use error information to locate errors in
the source file. Typically, MASM is run as a shell from the editor and the
assembler output is redirected into a file. The editor then opens the file
and uses the data in it to locate errors in the source code. The errors may
be located by line number, or by a search for the text of the error line.

If your text editor does not support this capability directly, you may still
be able to use keystroke macros to set up similar functions. This requires
either an editor that supports keystroke macros or a keyboard enhancer
such as ProKeye or SuperKeye.

28

—_—

Using MASM

B Example
MASM file; > errors

This command line sends to the file errors all messages that would nor-
mally be sent to the screen.

2.4 Using MASM Options

The MASM options control the operation of the assembler and the format
of the output files it generates. Options can be entered with any combina-
tion of uppercase and lowercase letters.

MASM has the following options:

Option Action

/A Writes segments in alphabetical order
/Bnumber Sets buffer size

/C Specifies a cross-reference file

/D Creates Pass 1 listing

/Dsymbol[=value]

Defines assembler symbol

JE Creates code for emulated floating-point instruc-
tions

JH Lists command-line syntax and all assembler
options

[Ipath Sets include-file search path

/L Specifies an assembly-listing file

/ML Makes names case sensitive

/MU Converts names to uppercase letters

/MX Makes public and external names case sensitive

/N Suppresses tables in listing file

/P Checks for impure code

/S Writes segments in source-code order

/T Suppresses messages for successful assembly

A% Displays extra statistics to screen

/W{o|1]|2} Sets error-display level

29

Microsoft Macro Assembler Programmer’s Guide

/X Includes false conditionals in listings

/Z Displays error lines on screen

/ZD Puts line-number information in the object file

/Z1 Puts symbolic and line-number information in -

the object file

Note

Previous versions of the assembler provided a /R option to enable
8087 instructions and real numbers in the IEEE format. Since the
current version of the assembler enables 8087 instructions and IEEE
format by default, the /R option is no longer needed. The option is
still recognized so that old make and batch files will work, but it has
no effect. The previous default format, Microsoft Binary, can be
specified with the MSFLOAT directive, as described in Section 4.4.1,
“Defining Default Assembly Behavior.”

2.4.1 Specifying the Segment-Order Method

B Syntax

/S Default
/A

The /A option directs MASM to place the assembled segments in alpha-
betical order before copying them to the object file. The /S option directs
the assembler to write segments in the order in which they appear in the
source code.

Source-code order is the default. If no option is given, MASM copies the
segments in the order encountered in the source file. The /S option is pro-
vided for compatibility with the XENIXe operating system and for over-
riding a default option in the MASM environment variable.

Note

Some previous versions of the IBM Macro Assembler ordered segments
alphabetically by default. Listings in some books and magazines have
been written with these early versions in mind. If you have trouble
assembling and linking a listing taken from a book or magazine, try
using the /A option.

30

Using MASM

The order in which segments are written to the object file is only one fac-
tor in determining the order in which they will appear in the executable
file. The significance of segment order and ways to control it are discussed
in Sections 5.2.1, “Setting the Segment-Order Method” and 5.2.2.3,
“Defining Segment Combinations with Combine Type.”

B Example
MASM /A file;
The example above creates an object file, FILE.OBJ, whose segments are

arranged in alphabetical order. If the /S option were used instead, or if no
option were specified, the segments would be arranged in sequential order.

2.4.2 Setting the File-Buffer Size

B Syntax

/Bnumber

The /B option directs the assembler to change the size of the file buffer
used for the source file. The number is the number of 1024-byte (1K)
memory blocks allocated for the buffer. You can set the buffer to any size
from 1K to 63K (but not 64K). The default size of the buffer is 32K.

A buffer larger than your source file allows you to do the entire assembly
in memory, greatly increasing assembly speed. However, you may not be
able to use a large buffer if your computer does not have enough memory
or if you have too many resident programs using up memory. If you get an
error message indicating insufficient memory, you can decrease the buffer
size and try again.

B Examples

MASM /B16 file:

The example above decreases the buffer size to 16K.

MASM /B63 file;

The example above increases the buffer size to 63K.

31

Microsoft Macro Assembler Programmer’s Guide

2.4.3 Creating a Pass 1 Listing

B Syntax
/D

The /D option tells MASM to add a Pass 1 listing to the assembly-listing
file, making the assembly listing show the results of both assembler passes.
A Pass 1 listing is typically used to locate phase errors. Phase errors occur
when the assembler makes assumptions about the program in Pass 1 that
are not valid in Pass 2.

The /D option does not create a Pass 1 listing unless you also direct

MASM to create an assembly listing. It does direct the assembler to
display error messages for both Pass 1 and Pass 2 of the assembly, even if
no assembly listing is created. See Section 2.5.7 for more information
about Pass 1 listings.

B Example
MASM /D file,,:
This example directs the assembler to create a Pass 1 listing for the source

file file.asm. Thefile file.1lst will contain both the first and second
pass listings.

2.4.4 Defining Assembler Symbols

B Syntax
/Dsymbol[= value]

The /D option when given with a symbol argument directs MASM to
define a symbol that can be used during the assembly as if it were defined
as a text equate in the source file. Multiple symbols can be defined in a sin-
gle command line.

The value can be any text string that does not include a space, comma, or —
semicolon. If no value is given, the symbol is assigned a null string.

As noted in Section 2.2.2, “The MASM Environment Variable,” the ver-
sion of the option using the equal sign cannot be stored in the MASM
environment variable.

32

Using MASM

B Example
MASM /Dwide /Dmode=3 file,,:

This example defines the symbol wide and gives it a null value. The sym-
bol could then be used in the following conditional-assembly block:

IFDEF wide
PAGE 50,132
ENDIF

When the symbol is defined in the command line, the listing file is format-
ted for a 132-column printer. When the symbol is not defined in the com-

mand line, the listing file is given the default width of 80 (see the descrip-
tion of the PAGE directive in Section 12.2, “Controlling Page Format in
Listings”).

The example also defines the symbol mode and gives it the value 3. The
symbol could then be used in a variety of contexts, as shown below:

IF mode LT 256 ; Use in expression

scrmode DB mode ; Initialize byte variable
ELSE

scrmode DW mode ; Initialize word variable
ENDIF

2.4.5 Creating Code for a Floating-Point Emulator

B Syntax

JE

The /E option directs the assembler to generate data and code in the for-
mat expected by coprocessor emulator libraries. An emulator library uses
8088/8086 instructions to emulate the instructions of the 8087, 80287, or
80387 coprocessors. An emulator library can be used if you want your code
to take advantage of a math coprocessor, or an emulator library can be
used if the machine does not have a coprocessor.

Emulator libraries are only available with high-level-language compilers,
including the Microsoft C, BASIC, FORTRAN, and Pascal compilers. The
option cannot be used in stand-alone assembler programs unless you write
your own emulator library. You cannot simply link with the emulator
library from a high-level language, since these libraries require that the
compiler start-up code be executed.

33

Microsoft Macro Assembler Programmer’s Guide

The Microsoft high-level-language compilers allow you to use options to
specify whether you want to use emulator code. If you link a high-level-
language module prepared with emulator options with an assembler
module that uses coprocessor instructions, you should use the /E option
when assembling.

To the applications programmer, writing code for the emulator is like
writing code for a coprocessor. The instruction sets are the same (except as
noted in Chapter 19, “Calculating with a Math Coprocessor”). However,
at run time the coprocessor instructions are used only if there is a copro-
cessor available on the machine. If there is no coprocessor, the slower code
from the emulator library is used instead.

® Example

MASM /E /MX math.asm:
CL /EPi calc.c math

In the first command line, the source file math.asm is assembled with
MASM by using the /E option. Then the CL program of the C compiler
is used to compile the C source file calc.c with the /FPi option and
finally to link the resulting object file écalc .obj) with math.obj. The

compiler generates emulator code for floating-point instructions. There are
similar options for the FORTRAN, BASIC, and Pascal compilers.

2.4.6 Getting Command-Line Help

B Syntax

/H

The /H displays the command-line syntax and all the MASM options on
the screen. You should not give any file names or other options with the
/H option.

B Example

MASM /H

Using MASM

2.4.7 Setting a Search Path for Include Files

B Syntax
/Ipath

The /I option is used to set search paths for include files. You can set as
many as 10 search paths by using the option for each path. The order of
searching is the order in which the paths are listed in the command line.
The INCLUDE directive and include files are discussed in Section 11.6.1,
“Using Include Files.”

B Example
MASM /Ib:\io /I\macro file;

This command line might be used if the source file contains the following
statement:

INCLUDE dos.inc

In this case, MASM would search for the file dos.inc first in directory
\io on Drive B, and then in directory \macro on the current drive. If the
file was not found in either of these directories, MASM would look next in

the current directory and finally in any directories specified with the
INCLUDE environment variable.

You should not specify a path name with the INCLUDE directive if you
plan to specify search paths from the command line. For example, MASM
would only search path a:\macro and would ignore any search paths
specified in the command line if the source file contained any of the follow-
ing statements:

INCLUDE a:\macro\dos.inc
INCLUDE ..\dos.inc
INCLUDE .\dos.inc

2.4.8 Specifying Listing and Cross-Reference Files

B Syntax

/L
/C

The /L option directs MASM to create a listing file even if one was not
specified in the command line or in response to prompts. The /C option

35

Microsoft Macro Assembler Programmer’s Guide

has the same effect for cross-reference files. Files specified with these
options always have the base name of the source file plus the extension
LST for listing files or .CRF for cross-reference files. You cannot specify
any other file name. Both options are provided for compatibility with the
XENIX operating system.

B Example
MASM /L /C file;

This line creates file.lstand file.crf.Itis equivalent to the fol-
lowing command line:

MASM file,,,;
2.4.9 Specifying Case Sensitivity

B Syntax

/MU Default
/ML
/MX

The /ML option directs the assembler to make all names case sensitive.
The /MX option directs the assembler to make public and external names
case sensitive. The /MU option directs the assembler to convert all names
into uppercase letters.

By default, MASM converts all names into uppercase letters. The /MU
option is provided for compatibility with XENIX (which uses /ML by
default) and to override options given in the environment variable.

If case sensitivity is turned on, all names that have the same spelling, but
use letters of different cases, are considered different. For example, with
the /ML option, DATA and data are different. They would also be dif-
ferent with the /MX option if they were declared external or public. Pub-
lic and external names include any label, variable, or symbol names
defined by using the EXTRN, PUBLIC, or COMM directives (see
Chapter 8, “Creating Programs from Multiple Modules”).

If you use the /ZI or /ZD option (see Section 2.4.14, “Listing False Condi-

tionals”), the /MX, /ML, and /MU options affect the case of the sym-
bolic data that will be available to a symbolic debugger.

36

Using MASM

The /ML and /MX options are typically used when object modules
created with SM are to be linked with object modules created by a
case-sensitive compiler such as the Microsoft C compiler. If case sensitivity
is important, you should also use the linker /NOI option.

B Example

MASM /MX module:
LINK /NOI module;

This example shows how to use the /MX option with MASM to assemble
a file with case-sensitive public symbols.

2.4.10 Suppressing Tables in the Listing File

B Syntax

/N _

The /N option tells the assembler to omit all tables from the end of the
listing file. If this option is not chosen, MASM includes tables of macros,
structures, records, segments and groups, and symbols. The code portion
of the listing file is not changed by the /N option.

B Example

MASM /N file,,;
2.4.11 Checking for Impure Code

B Syntax

/P

The /P option directs MASM to check for impure code in the 80286 or
80386 privileged mode.

Code that moves data into memory with a CS: override is acceptable in
real mode. However, such code may cause problems in protected mode.
When the /P option is in effect, the assembler checks for these situations
and generates an error if it encounters them.

37

Microsoft Macro Assembler Programmer’s Guide

Real and privileged modes are explained in Chapter 13, “Understanding
8086-Family Processors.” Versions of DOS available at release time do not
support privileged mode.

This option is provided for XENIX compatibility and to warn about pro-

gramming practices that will be illegal under OS/2, the planned multi-
tasking operating system.

B Example

.CODE
jmp past ; Don't execute data
addr ? ; Allocate code space for data
past:
s Calculate value of "addr" here
mov cs:addr,si ; Load register address

The example shows a CS override. If assembled with the /P option, an
error is generated.

2.4.12 Controlling Display of Assembly Statistics

B Syntax

/v
/T

The /V and /T options specify the level of information displayed to the
screen at the end of assembly. (V is a mnemonic for verbose; T is a
mnemonic for terse.)

If neither option is given, MASM outputs a line telling the amount of
symbol space free and the number of warnings and errors.

If the /V option is given, MASM also reports the number of lines and
symbols processed.

If the /T option is given, MASM does not output anything to the screen

unless errors are encountered. This option may be useful in batch or make
files if you do not want the output cluttered with unnecessary messages.

38

Using MASM

If errors are encountered, they will be displayed whether these options are
given or not. Appendix B, “Error Messages and Exit Codes,” describes the
messages displayed after assembly.

2.4.13 Setting the Warning Level

B Syntax
/W{0]|1]2}

The /W option sets the assembler warning level. MASM gives warning
messages for assembly statements that are ambiguous or questionable but
not necessarily illegal. Some programmers purposely use practices that
generate warnings. By setting the appropriate warning level, they can turn
off warnings if they are aware of the problem and do not wish to take
action to remedy it.

MASM has three levels of errors, as shown in Table 2.1.

Table 2.1

Warning Levels

Level Type Description

Severe errors Illegal statements

1 Serious warnings Ambiguous
statements or
questionable
programming
practices

2 Advisory warnings Statements that

may produce
inefficient code

The default warning level is 1. A higher warning level includes a lower
level. Level 2 includes severe errors, serious warnings, and advisory warn-
ings. If severe errors are encountered, no object file is produced.

The advisory warnings are listed below:

Number Message

104 Operand size does not match word size

39

Microsoft Macro Assembler Programmer’s Guide

105 Address size does not match word size

106 Jump within short distance

The serious warnings are listed below:

Number Message

1 Extra characters on line

16 Symbol is reserved word

31 Operand types must match

57 Illegal size for item

85 End of file, no END directive
101 Missing data; zero assumed

102 Segment near (or at) 64k limit

All other errors are severe.
2.4.14 Listing False Conditionals

B Syntax
/X

The /X option directs MASM to copy to the assembly listing all state-
ments forming the body of conditional-assembly blocks whose condition is
false. If you do not give the /X option in the command line, MASM
suppresses all such statements. The /X option lets you display condition-
als that do not generate code. Conditional-assembly directives are
explained in Chapter 12, “Controlling Assembly Output.”

The .LFCOND, .SFCOND, and .TFCOND directives can override the
effect of the /X option, as described in Section 12.3.2, “Controlling Listing
of Conditional Blocks.” The /X option does not affect the assembly listing
unless you direct the assembler to create an assembly-listing file.

B Example

MASM /X file,,:
Listing of false conditionals is turned on when file.asm is assembled.

Directives in the source file can override the /X option to change the
status of false-conditional listing.

40

Using MASM

2.4.15 Displaying Error Lines on the Screen

B Syntax

/Z

The /Z option directs MASM to display lines containing errors on the
screen. Normally when the assembler encounters an error, it displays only
an error message describing the problem. When you use the /Z option in
the command line, the assembler displays the source line that produced
the error in addition to the error message. MASM assembles faster
without the /Z option, but you may find the convenience of seeing the
incorrect source lines worth the slight cost in processing speed.

B Example

MASM /Z file:

2.4.16 Writing Symbolic Information
to the Object File

B Syntax

/21
/ZD

The /ZI option directs MASM to write symbolic information to the
object file. There are two types of symbolic information available: line-
number data and symbolic data.

Line-number data relates each instruction to the source line that created
it. The CodeView debugger and SYMDEB (the debugger provided with
some earlier versions of MASM) need this information for source-level
debugging.

Symbolic data specifies a size for each variable or label used in the pro-
gram. This includes both public and nonpublic labels and variable names.
Public symbols are discussed in Chapter 8, “Creating Programs from Mul-
tiple Modules.” The CodeView debugger (but not SYMDEB) uses this
information to specify the correct size for data objects so that they can be
used in expressions.

41

Microsoft Macro Assembler Programmer’s Guide

The /ZI option writes both line-number and symbolic data to the object
file. If you plan to debug your programs with the CodeView debugger, use
the /ZI option when assembling and the /CO option when linking. All
the necessary debugging information is available in executable files pre-
pared in the .EXE format. Debugging information is stripped out of pro-
grams prepared in .COM format.

The /ZD option writes line-number information only to the object file. It
can be used if you plan to debug with SYMDERB or if you want to see line
numbers in map files. The /ZI option can also be used for these purposes,
but it produces larger object files. If you do not have enough memory to
debug a program with the CodeView debugger, you can reduce the pro-
gram size by using /ZD instead of /ZI for all or some modules.

The option names /ZI and /ZD are similar to corresponding option names
for recent versions of Microsoft compilers.

2.5 Reading Assembly Listings

MASM creates an assembly listing of your source file whenever you give
an assembly-listing file name on the MASM command line or in response
to the MASM prompts. The assembly listing contains both the state-
ments in the source file and the object code (if any) generated for each
statement. The listing also shows the names and values of all labels, vari-
ables, and symbols in your source file.

The assembler creates tables for macros, structures, records, segments,
groups, and other symbols. These tables are placed at the end of the
assembly listing (unless you suppress them with the /N option). MASM
lists only the types of symbols encountered in the program. For example, if
your program has no macros, there will be no macro section in the symbol
table. All symbol names will be shown in uppercase letters unless you use
the /ML or /MX option to specify case sensitivity.

2.5.1 Reading Code in a Listing

The assembler lists the code generated from the statements of a source file.
Each line has the syntax shown below:

[linenumber] offset [code] statement

The linenumber is the number of the line starting from the first statement
in the assembly listing. Line numbers are produced only if you request a

42

«\

Using MASM

cross-reference file. Line numbers in the listing do not always correspond
to the same lines in the source file.

The offset is the offset from the beginning of the current segment to the
code. If the statement generates code or data, code shows the numeric
value in hexadecimal if the value is known at assembly time. If the value is
calculated at run time, MASM indicates what action is necessary to com-
pute the value. The statement is the source statement shown exactly as it
appears in the source file, or as expanded by a macro.

If any errors occur during assembly, each error message and error number
will appear directly below the statement where the error occurred. Refer to
Appendix B, “Error Messages and Exit Codes,” for a list of MASM errors
and a discussion of the format in which errors are displayed. An example
of an error line and message is shown below:

71 0012 E8 O01C R call doit
test.ASM(46) : error A2071: Forward needs override or FAR

Note that number 46 in the error message is the source line where the
error occurred. Number 71 on the code line is the listing line where the
error occurred. These lines will seldom be the same.

The assembler uses the symbols and abbreviations in Table 2.2 to indicate
addresses that need to be resolved by the linker or values that were gen-
erated in a special way.

Table 2.2

Symbols and Abbreviations in Listings

Character Meaning
R Relocatable address (linker must resolve)
E External address (linker must resolve)

-—-- Segment/group address (linker must resolve)
= EQU or equal-sign (=) directive

nn: Segment override in statement

nn/ REP or LOCK prefix instruction

nn[za| DUP expression: nn copies of the value zz

n Macro-expansion nesting level (+ if more than nine)
C Line from INCLUDE file

| 80386 size or address prefix

43

Microsoft Macro Assembler Programmer’s Guide

B Example

The sample listing shown in this section is produced by using the /ZI
option. A cross-reference file is specified so that line numbers will appear
in the listing. The command line is as follows:

MASM /Z1 listdemo,,,:

The code portion of the resulting listing is shown below. The tables nor-
mally seen at the end of the listing are explained later, in Sections
2.5.2-2.5.7 below.

Microsoft (R) Macro Assembler Version 5.00 9/22/87 14:44:53
Listing features demo Page 1-1

1 PAGE 65,132

2 TITLE Listing features demo
3 C INCLUDE dos.mac

4 C StrAlloc MACRO name, text

5 C name DB &text

6 C DB 13d,10d

7 C l&name EQU $-name

8 C ENDM

9

10

11 = 0080 larg EQU 80h

12

13 DOSSEG

14 .MODEL small

15

16 0100 .STACK 256

17

18 color RECORD b:1,r:3=1,i:1=1,£:3=7
19

20 date STRUC

21 0000 05 month DB 5

22 0001 07 day DB 7

23 0002 07C3 year DW 1987

24 0004 date ENDS

25

26 0000 .DATA

27 0000 1F text color <

28 0001 09 today date <9,22,1987>

29 0002 16

30 0003 07C3

31

32 0005 0064 [buffer DW 100 DUP(?)

33 ????

34]

35

36

37 StrAlloc ending, "Finished."
38 OOCD 46 69 6E 69 73 68 65 1 ending DB "Finished."
39 O0OD6 OD OA 1 DB 13d, 10d
40

44

Using MASM

41 0000 .CODE

42

43 OO0 B8 ---- R start: mov ax,@ATA

44 0003 8E D8 mov ds,ax

45

46 0005 B8 0063 mov ax, 'c!

47 0008 26: 8B OE 0080 mov cx,es:larg

48 OOOD BF 0052 mov di, 82

49 0010 F2/ AE repne scasb

50 0012 57 push di

51

52 EXTRN work :NEAR

53 0013 E8 0000 E call work

54

55 0016 B8 170C mov ax,4C00
listdemo.ASM(40) : error A2107: Non-digit in number

56 0019 CD 21 int 21h

57

58 001B END start

2.5.2 Reading a Macro Table

A macro table at a listing file’s end gives in alphabetical order the names
and sizes (in lines) of all macros called or defined in the source file.

B Example

Macros:
Name Lines

STRALLOC 3

2.5.3 Reading a Structure and Record Table

All structures and records declared in the source file are given at the end
of the listing file. The names are listed in alphabetical order. Each name is
followed by the fields in the order in which they are declared.

B Example

Structures and Records:

Nanme Width # fields
Shift Width Mask Initial

COLOR . . « v v @« 4 v o v o o . 0008 0004

2 0007 0001 0080 0000

R o o000 0004 0003 0070 0010

) 0003 0001 0008 0008

F . v v v v v e e e e 0000 0003 0007 0007
DATE « « « « .. 0004 0003

MONTH « « « + « « . 0000

DAY 0001

45

Microsoft Macro Assembler Programmer’s Guide

The first row of headings only applies to the record or structure itself. For
a record, the “Width” column shows the width in bits while the
“# fields” column tells the total number of fields.

The second row of headings applies only to fields of the record or struc-
ture. For records, the “Shift” column lists the offset (in bits) from the
low-order bit of the record to the low-order bit in the field. The “Width”
column lists the number of bits in the field. The “Mask” column lists the
maximum value of the field, expressed in hexadecimal. The “Initial”
column lists the initial value of the field, if any. For each field, the table
shows the mask and initial values as if they were placed in the record and
all other fields were set to 0.

For a structure, the “Width” column lists the size of the structure in
bytes. The “# fields” column lists the number of fields in the structure.
Both values are in hexadecimal.

For structure fields, the “Shift” column lists the offset in bytes from the
beginning of the structure to the field. This value is in hexadecimal. The
other columns are not used.

2.5.4 Reading a Segment and Group Table

Segments and groups used in the source file are listed at the end of the
program with their size, align type, combine type, and class. If you used
simplified segment directives in the source file, the actual segment names
generated by MASM will be listed in the table.

B Example

Segments and Groups:

Name Size Align Combine Class
DGROUP « . . « . . GROUP)
_DATA (0,0)0):] WORD PUBLIC 'DATA'
STACK 0800 PARA STACK 'STACK'
_TEXT « .« « .. 0018 BYTE PUBLIC 'CODE'

The “Name” column lists the names of all segments and groups. Segment

and group names are given in alphabetical order, except that the names of

segments belonging to a group are placed under the group name in the
order in which they were added to the group.

46

Using MASM

The “Size” column lists the byte size (in hexadecimal) of each segment.
The size of groups is not shown.

The “Align” column lists the align type of the segment.

The “Combine” column lists the combine type of the segment. If no expli-
cit combine type is defined for the segment, the listing shows NONE, rep-
resenting the private combine type. If the “Align” column contains AT,
the “Combine” column contains the hexadecimal address of the beginning
of the segment.

The “Class” column lists the class name of the segment. For a complete

explanation of the align, combine, and class types, see Section 5.2.2,
“Defining Full Segments.”

2.5.5 Reading a Symbol Table

All symbols (except names for macros, structures, records, and segments)
are listed in a symbol table at the end of the listing.

B Example

Symbols:
Name Type Value Attr
BUEFER L WORD 0005 _DATA Length = 0064
ENDING L BYTE OOCD _DATA
LARG « v v v v v o NUMBER 0080
LENDING NUMBER OOOB
START « « « . . . L NEAR 0000 _TEXT
TEXT « o o « . o .. L BYTE 0000 _DATA
TODAY « + « « « « . . L DWORD 0001 _DATA
WORK « « .« « . . L NEAR 0000 _TEXT External
@ODE « « v o o TEXT _TEXT
@CODESIZE TEXT O
@ATA e TEXT DGROUP
@ATASIZE « +« « « « . TEXT O
@FARDATA « « « « . TEXT FAR_DATA
@FARDATA? « « « .+ . TEXT FAR_BSSk
@FILENAME TEXT listdemo

47

Microsoft Macro Assembler Programmer’s Guide

The “Name” column lists the names in alphabetical order. The “Type”
column lists each symbol’s type. A type is given as one of the following:

Type Definition

L NEAR A near label -
L FAR A far label

N PROC A near procedure label

F PROC A far procedure label

NUMBER An absolute label

ALIAS An alias for another symbol

OPCODE An equate for an instruction opcode

TEXT A text equate

BYTE One byte

WORD One word (two bytes)

DWORD Doubleword (four bytes)

FWORD Farword (six bytes)

QWORD Quadword (eight bytes) -
TBYTE Ten bytes

number Length in bytes of a structure variable

The length of a multiple-element variable such as an array or string is the
length of a single element, not the length of the entire variable. For exam-
ple, string variables are always shown as L BYTE.

If the symbol represents an absolute value defined with an EQU or equal-
sign (=) directive, the “Value” column shows the symbol’s value. The
value may be another symbol, a string, or a constant numeric value (in
hexadecimal), depending on whether the type is ALIAS, TEXT, or
NUMBER. If the type s OPCODE, the “Value” column will be blank.
If the symbol represents a variable, label, or procedure, the “Value”
column shows the symbol’s hexadecimal offset from the beginning of the
segment in which it is defined.

The “Attr” column shows the attributes of the symbol. The attributes —
include the name of the segment (if any) in which the symbol is defined,

the scope of the symbol, and the code length. A symbol’s scope is given

only if the symbol is defined using the EXTRN and PUBLIC directives.

The scope can be EXTERNAL, GLOBAL, or COMMUNAL. The code

length gin hexadecimal) is given only for procedures. The “Attr” column is

blank if the symbol has no attribute.

48

Using MASM

The text equates shown at the end of the sample table are the ones defined
automatically when you use simplified segment directives (see Section
5.1.1, “Understanding Memory Models”).

2.5.6 Reading Assembly Statistics

Data on the assembly, including the number of lines and symbols pro-
cessed and the errors or warnings encountered, are shown at the end of the
listing. See Appendix B, “Error Messages and Exit Codes,” for further
information on this data.

B Example

48 Source Lines
52 Total Lines
53 Symbols

45570 + 310654 Bytes symbol space free

O Warning Errors
1 Severe Errors

2.5.7 Reading a Pass 1 Listing

When you specify the /D option in the MASM command line, the assem-
bler puts a Pass 1 listing in the assembly-listing file. The listing file shows
the results of both assembler passes. Pass 1 listings are useful in analyzing
phase errors.

The following example illustrates a Pass 1 listing for a source file that
assembled without error on the second pass.

0017 7E 00 jle labell
PASS_CMP.ASM(20) : error 9 : Symbol not defined LABEL1l

0019 BB 1000 mov bx, 4096

001C labell:

During Pass 1, the JLE instruction to a forward reference produces an
error message, and the value O is encoded as the operand. MASM displays
this error because it has not yet encountered the symbol labell.

Later in Pass 1, labell is defined. Therefore, the assembler knows about
labell on Pass 2 and can fix the Pass 1 error. The Pass 2 listing is shown
below:

0017 7E 03 jle labell
0019 BB 1000 mov bx, 4096
oo1C labell:

49

Microsoft Macro Assembler Programmer’s Guide

The operand for the JLE instruction is now coded as 3 instead of 0 to
indicate that the distance of the jump to labell is three bytes.

Since MASM generated the same number of bytes for both passes, there
was no error. Phase errors occur if the assembler makes an assumption on
Pass 1 that it cannot change on Pass 2. If you get a phase error, you can
examine the Pass 1 listing to see what assumptions the assembler made.

50

3.1

3.2

Using CREFiiiiiiiiirieeeeeercrreeeeeeeesennneees 93
3.1.1 Using a Command Line

to Create a Cross-Reference Listing....cccee..... 93
3.1.2 Using Prompts

to Create a Cross-Reference Listing.............. 04

Reading Cross-Reference Listings.......ccccceceeeeeennnnee 99

Using CREF

The Microsoft Cross-Reference Utility (CREF') creates a cross-reference
listing of all symbols in an assembly-language program. A cross-reference
listing is an alphabetical list of symbols in which each symbol is followed
by a series of line numbers. The line numbers indicate the lines in the
source program that contain a reference to the symbol.

CREF is intended for use as a debugging aid to speed up the search for
symbols encountered during a debugging session. The cross-reference list-
ing, together with the symbol table created by the assembler, can make
debugging and correcting a program easier.

3.1 Using CREF

CREF creates a cross-reference listing for a program by converting a
binary cross-reference file, produced by the assembler, into a readable
ASCII file. You create the cross-reference file by supplying a cross-
reference-file name when you invoke the assembler. See Section 2.1.1,
“Assembly Using a Command Line,” for more information on creating a
binary cross-reference file. You create the cross-reference listing by invok-
ing CREF and supplying the name of the cross-reference file.

3.1.1 Using a Command Line
to Create a Cross-Reference Listing

To convert a binary cross-reference file created by MASM into an ASCII
cross-reference listing, type CREF followed by the names of the files you
want to process.

B Syntax

CREF crossreferencefile [,crossreferencelisting] [3]

The crossreferencefile is the name of the cross-reference file created by
MASM, and the crossreferencelisting is the name of the readable ASCII
file you wish to create.

If you do not supply file-name extensions when you name the files, CREF
automatically provides .CRF for the cross-reference file and .REF for the
cross-reference-listing file. If you do not want these extensions, you must

supply your own.

You can select a default file name for the listing file by typing a semicolon
(;) immediately after crossreferencefile.

53

Microsoft Macro Assembler Programmer’s Guide

You can specify a directory or disk drive for either of the files. You can
also name output devices such as CON (display console) and PRN
(printer).

When CREF finishes creating the cross-reference-listing file, it displays

the number of symbols processed.

Examples
CREF test.crf,test.ref

The example above converts the cross-reference file test.crf tothe
cross-reference-listing file test.ref. It is equivalent to

CREF test, test
or
CREEF test:

The following example directs the cross-reference listing to the screen. No
file is created.

CREF test,con

3.1.2 Using Prompts
to Create a Cross-Reference Listing

You can direct CREF to prompt you for the files it needs by starting
CREF with just the command name. CREF prompts you for the input it
needs by displaying the following lines, one at a time:

Cross-Reference [.CRF]:
Listing [filename.REF]:

The prompts correspond to the fields of CREF command lines. CREF
waits for you to respond to each prompt before printing the next one. You
must type a cross-reference file name (though the extension is optional) at
the first prompt. For the second prompt, you can either type a file name or
press the ENTER key to accept the default displayed in brackets after the
prompt.

After you have answered the last prompt and pressed the ENTER key,

CRETFT reads the cross-reference file and creates the new listing. It also
displays the number of symbols in the cross-reference file.

54

Using CREF

3.2 Reading Cross-Reference Listings

The cross-reference listing contains the name of each symbol defined in
your program. Each name is followed by a list of line numbers representing
the line or lines in the listing file in which a symbol is defined or used. Line
numbers in which a symbol is defined are marked with a number sign (#).

Each page in the listing begins with the title of the program. The title is
the name or string defined by the TITLE directive 1n the source file (see
Section 12.2.1, “Setting the Listing Title”).

® Example

The next three code samples illustrate source, listings, and cross-reference
files for a program. The source file hello.asm is shown below:

TITLE hello

DOSSEG

.MODEL small

.STACK 100h

.DATA

PUBLIC message, lmessage
message DB "Hello, world."
lmessage EQU $§ - message

.CODE
start: mov ax, DGROUP

mov ds,ax

EXTRN display:NEAR
call display

mov ax,4C0O0h
int 21h
END start

To assemble the program and create a cross-reference file, enter the follow-
ing command line:

MASM hello,,,

The listing file hello.1lst produced by this assembly is shown below:

55

Microsoft Macro Assembler Programmer’s Guide

Microsoft (R) Macro Assembler Version 5.00 9/22/87 15:39:48
hello Page 1-1
1 TITLE hello
2
3 DOSSEG
4 .MODEL small
5
6 0100 .STACK 100h
7
8 0000 .DATA
9 PUBLIC message, lmessage
10 0000 48 65 6C 6C 6F 2C 20 message DB "Hello, world."
11 77 6F 72 6C 64 2E
12 = 000D lmessage EQU $ - message
13
14 0000 .CODE
15
16 0000 B8 ---- R start: mov ax, DGROUP
17 0003 8E D8 mov ds,ax
18
19 EXTRN display:NEAR
20 0005 E8 0000 E call display
21
22 0008 B8 4C00 mov ax,4CO0Oh
23 OO0B CD 21 int 21h
24
25 000D END start
Microsoft (R) Macro Assembler Version 5.00 9/22/87 15:39:48
hello Symbols-1

Segments and Groups:

Name Length Align Combine Class
_DATA 000D WORD PUBLIC 'DATA'
STACK « .« .. 0100 PARA STACK ' STACK'
_TEXT o oo e 000D BYTE PUBLIC 'CODE'
Symbols:
Name Type Value Attr
DISPLAY « + + « « & L NEAR 0000 _TEXT External
LMESSAGE NUMBER OOOD Global
MESSAGE L BYTE 0000 _DATA Global
START « « « + « « + . L NEAR 0000 _TEXT
@ODE+ v e e e e TEXT _text
@CODESIZE « « « « . . TEXT O
@ATA« TEXT dgroup
@ATASIZE « « « « . TEXT O
@FARDATA TEXT far_data
@FARDATA? « « « « . TEXT far_bss
@ILENAME TEXT hellod

24 Source Lines
24 Total Lines
39 Symbols
45994 + 314294 Bytes symbol space free

O Warning Errors
O Severe Errors

56

Using CREF

To create a cross-reference listing of the file hello.cr £, enter the
following command line:

CREF hello:;

The resulting cross-reference-listing file hello.ref is shown below:

Microsoft Cross-Reference Version 5.00 9/22/87 15:39:48
hello
Symbol Cross-Reference (# is definition) Cref-1
CODE o . . 14
DATA« « .« .« .. 8
DGROUP 16
DISPLAY. 194 20
LMESSAGE 9 124
MESSAGE. 9 104 12
STACK. 6% 6
START.« . « . . . 16# 25
_DATA. 8#
_TEXT. o . .. 144
10 Symbols

Notice that line numbers in the listing and cross-reference-listing files may
not identify corresponding lines in the source file.

57

WRITING SOURCE (CODE

4.1 Writing Assembly-Language Statements 65

4.1.1 Using Mnemonics and Operandseee..... 66

4.1.2 Writing COmMmEents ..u.eeeereeeeeerreneeeernneeerennnns 67

4.2 Assigning Names to Symbolsccceeeveeeeecrueeenannne 67

4.3 Constantsccceeeeeeeeeiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeesea———. 69

4.3.1 Integer ConStants..cceeeeeeereeeeeeeneeeeeenneeeeeennnns 70
4.3.1.1 Specifying Integers

with Radix Specifiers c.coeereevniercesacenenes 70

4.3.1.2 Setting the Default Radix cccevececaaenens 71

4.3.2 Packed Binary Coded Decimal Constants72

4.3.3 Real-Number Constants...c...cceveeeeuneerenerennnne 73

4.3.4 String Constantscceeeeeeereeeerereeeeeeenencecennnns 74

4.4 Defining Default Assembly Behavior..................... 75

4.5 Ending a Source File......ccceeeeevvreeiieeeeivineeeeeenennnnns 78

PR

Writing Source Code

Assembly-language programs are written as source files, which can then be
assembled into object files by MASM. Object files can then be processed
and combined with LINK to form executable files.

Source files are made up of assembly-language statements. Statements are
in turn made up of mnemonics, operands, and comments. This chapter
describes how to write assembly-language statements. Symbol names and
constants are explained. It also tells you how to start and end assembly-
language source files.

4.1 Writing Assembly-Language Statements

A statement is a combination of mnemonics, operands, and comments that
defines the object code to be created at assembly time. Each line of source
code consists of a single statement. Multiline statements are not allowed.
Statements must not have more than 128 characters. Statements can have
up to four fields, as shown below:

B Syntax
[name] [operation] [operands] [;comment]

The fields are explained below, starting with the leftmost field:

Field Purpose

name Labels the statement so that the statement can be
accessed by name in other statements

operation Defines the action of the statement

operands Defines the data to be operated on by the statement

comment Describes the statement without having any effect on
assembly :

All fields are optional, although the operand or name fields may be
required if certain directives or instructions are given in the operation
field. A blank line is simply a statement in which all fields are blank. A

comment line is a statement in which all fields except the comment are
blank.

Statements can be entered in uppercase or lowercase letters. Sample code
in this manual uses uppercase letters for directives, hexadecimal letter

65

Microsoft Macro Assembler Programmer’s Guide

digits, and segment definitions. Your code will be clearer if you choose a
case convention and use it consistently.

Each field (except the comment field) must be separated from other fields
by a space or tab character. That is the only limitation on structure
imposed by MASM. For example, the following code is legal:

dosseg;use microsoft segment conventions
.model small;conventions and small model
.stack 100h;allocate 256-byte stack

.data

message db "Hello, world.",13,10;message to be written
lmessage equ § - message;length of message
.code

start: mov ax,@data;load segment location
mov ds,ax; into ds register

mov bx,1l;load 1 - file handle for

;standard output

mov cX, lmessage;load length of message

mov dx,offset message;load address of message
mov ah,40h;load number for dos write function
int 21h;call dos

mov ax, 4cOOh;load dos exit function (4ch)

;in ah and O errorlevel in al

int 21h;call dos

end start

However, the code is much easier to interpret if each field is assigned a

specified tab position and a standard convention is used for capitalization.

The example program in Chapter 1, “Getting Started,” is the same as the
example above except for the conventions used.

4.1.1 Using Mnemonics and Operands

Mnemonics are the names assigned to commands that tell either the
assembler or the processor what to do. There are two types of mnemonics:
directives and instructions.

Directives give directions to the assembler. They specify the manner in
which the assembler is to generate object code at assembly time. Part 2,
“Using Directives,” describes the directives recognized by the assembler.
Directives are also discussed in Part 3, “Using Instructions.”

Instructions give directions to the processor. At assembly time, they are
translated into object code. At run time, the object code controls the
behavior of the processor. Instructions are described in Part 3, “Using
Instructions.”

Operands define the data that is used by directives and instructions. They
can be made up of symbols, constants, expressions, and registers. Sections

66

Writing Source Code

4.2 and 4.3 below discuss symbol names and constants. Operands, expres-
sions, and registers are discussed throughout the manual, but particularly
in Chapter 9, “Using Operands and Expressions,” and Chapter 14, “Using
Addressing Modes.”

4.1.2 Writing Comments

Comments are descriptions of the code. They are for documentation only
and are ignored by the assembler.

Any text following a semicolon is considered a comment. Comments com-
monly start in the column assigned for the comment field, or in the first
column of the source code. The comment must follow all other fields in the
statement.

Multiline comments can either be specified with multiple comment state-
ments or with the COMMENT directive.

B Syntax

COMMENT delimiter [text]
text

delimiter [text]

All text between the first delimiter and the line containing a second delim-
iter is ignored by the assembler. The delimiter character is the first non-
blank character after the COMMENT directive. The texzt includes the
comments up to and including the line containing the next occurrence of
the delimiter.

B Example

COMMENT + The plus
sign is the delimiter. The
assembler ignores the statement
following the last delimiter
+ mov ax,1l (ignored)

4.2 Assigning Names to Symbols

A symbol is a name that represents a value. Symbols are one of the most
important elements of assembly-language programs. Elements that must

67

Microsoft Macro Assembler Programmer’s Guide

be represented symbolically in assembly-language source code include vari-
ables, address labels, macros, segments, procedures, records, and struc-
tures. Constants, expressions, and strings can also be represented symboli-
cally.

Symbol names are combinations of letters (both uppercase and lowercase),
digits, and special characters. The Macro Assembler recognizes the follow-
ing character set:

A-Z a-z 0-9
7@ _ s . []()<>{}+ -/«
&ttt AN =#T L

Letters, digits, and some characters can be used in symbol names, but
some restrictions on how certain characters can be used or combined are
listed below:

e A name can have any combination of uppercase and lowercase
letters. All lowercase letters are converted to uppercase ones by the
assembler, unless the /ML assembly option is used, or unless the
name is declared with a PUBLIC or EXTRN directive and the
/MX option is used.

e Digits may be used within a name, but not as the first character. -

e A name can be given any number of characters, but only the first
31 are used. All other characters are ignored.

e The following characters may be used at the beginning of a name
or within a name: underscore (), question mark (?), dollar sign

($), and at sign (@).

e The period (.) is an operator and cannot be used within a name,
but it can be used as the first character of a name.

e A name may not be the same as any reserved name. Note that two
special characters, the question mark (?) and the dollar sign g$),
are reserved names and therefore can’t stand alone as symbo
names.

A reserved name is any name with a special, predefined meaning to the

assembler. Reserved names include instruction and directive mnemonics,

register names, and operator names. All uppercase and lowercase letter

combinations of these names are treated as the same name. —

Table 4.1 lists names that are always reserved by the assembler. Using any
of these names for a symbol results in an error.

68

Table 4.1

Reserved Names

Writing Source Code

:-g"\o I+*ee

.186

.286
.286P
.287

.386
.386P
.387
.8086
.8087
ALIGN
ALPHA
AND
ASSUME
BYTE
.CODE
COMM
COMMENT
.CONST
.CREF

.DATA
DATA?
DB

DD

DF
DOSSEG
DQ

DS

DT

DW
DWORD
ELSE
END
ENDIF
ENDM
ENDP
ENDS
EQ

EQU
.ERR
.ERR1
.ERR2
ERRB
ERRDEF
.ERRDIF
.ERRE
.ERRIDN
ERRNB

.ERRNDEF
ERRNZ
EVEN
EXITM
EXTRN
FAR
JFARDATA
FARDATA?
FWORD

IFE
IFIDN
IFNB
IFNDEF
INCLUDE

INCLUDELIB

IRP
IRPC
LABEL

.LALL

LENGTH
.LFCOND
.LIST
LOCAL
LOW

LT
MACRO
MASK
MOD
.MODEL
NAME
NE
NEAR
NOT
OFFSET
OR

ORG
%O0UT
PAGE
PROC
PTR
PUBLIC
PURGE
QWORD
RADIX
RECORD

SUBTTL
TBYTE
.TFCOND
THIS
TITLE
TYPE
.TYPE
WIDTH
WORD
XALL
XCREF
XLIST
XOR

In addition to these names in the table above, instruction mnemonics and
register names are considered reserved names. These vary depending on
the processor directives given in the source file. For example, the register
name EAX is a reserved word with the .386 directive but not with the
.286 directive. Section 4.4.1, “Defining Default Assembly Behavior,”
describes processor directives. Instruction mnemonics for each processor
are listed in the Microsoft Macro Assembler Reference. Register names are
listed in Section 14.2, “Using Register Operands.”

4.3 Constants

Constants can be used in source files to specify numbers or strings that are
set or initialized at assembly time. MASM recognizes four types of con-

stant values:

69

Microsoft Macro Assembler Programmer’s Guide

Integers
Packed binary coded decimals

Real numbers

oW o=

Strings

4.3.1 Integer Constants

Integer constants represent integer values. They can be used in a variety of
contexts in assembly-language source code. For example, they can be used
in data declarations and equates, or as immediate operands.

Packed decimal integers are a special kind of integer constant that can
only be used to initialize binary coded decimal (BCD) variables. They are
described in Sections 4.3.2, “Packed Binary Coded Decimal Constants,”
and 6.2.1.2, “Binary Coded Decimal Variables.”

Integer constants can be specified in binary, octal, decimal, or hexadecimal
values. Table 4.2 shows the legal digits for each of these radixes. For hexa-
decimal radix, the digits can be either uppercase or lowercase letters.

Table 4.2

Digits Used with Each Radix

Name Base Digits

Binary 2 01

Octal 8 01234567

Decimal 10 0123456789
Hexadecimal 16 0123456789 ABCDEF

The radix for an integer can be defined for a specific integer by using radix
specifiers; or a default radix can be defined globally with the RADIX
directive.

4.3.1.1 Specifying Integers with Radix Specifiers

The radix for an integer constant can be given by putting one of the fol-
lowing radix specifiers after the last digit of the number:

70

Writing Source Code

Radix Specifier
Binary B

Octal Qor O
Decimal D

Hexadecimal H

Radix specifiers can be given in either uppercase or lowercase letters; sam-
ple code in this manual uses lowercase letters.

Hexadecimal numbers must always start with a decimal digit (0 to 9). If
necessary, put a leading O at the left of the number to distinguish between
symbols and hexadecimal numbers that start with a letter. For example,
OABCh is interpreted as a hexadecimal number, but ABCh is interpreted
as a symbol. The hexadecimal digits A through F can be either uppercase
or lowercase letters. Sample code in this manual uses uppercase letters.

If no radix is given, the assembler interprets the integer by using the
current default radix. The initial default radix is decimal, but you can
change the default with the .RADIX directive.

B Examples

n360 EQU 01011010b + 132q + S5Ah + 90d : 4 * 90
n60 EQU 00001111b + 170 + OFh + 15d ; 4 * 15

4.3.1.2 Setting the Default Radix

The .RADIX directive sets the default radix for integer constants in the
source file.

B Syntax

RADIX expression

The expression must evaluate to a number in the range 2—-16. It defines
whether the numbers are binary, octal, decimal, hexadecimal, or numbers

of some other base.

Numbers given in expression are always considered decimal, regardless of
the current default radix. The initial default radix is decimal.

71

Microsoft Macro Assembler Programmer’s Guide

Note

The .RADIX directive does not affect real numbers initialized as vari-

ables with the DD, DQ, or DT directive. Initial values for variables —
declared with these directives are always evaluated as decimal unless a

radix specifier is appended.

Also, the .RADIX directive does not affect the optional radix
specifiers, B and D, used with integer numbers. When the letters B or
D appear at the end of any integer, they are always considered to be a
radix specifier even if the current radix is 16.

For example, if the input radix is 16, the number OABCD will be inter-
preted as 0OABC decimal, an illegal number, instead of as 0ABCD hexa-
decimal, as intended. Type OABCDh to specify 0OABCD in hexadecimal.
Similarly, the number 11B will be treated as 11 binary, a legal
number, but not as 11B hexadecimal as intended. Type 11Bh to
specify 11B in hexadecimal.

B Examples

.RADIX 16 ; Set default radix to hexadecimal
.RADIX 2 ; Set default radix to binary

4.3.2 Packed Binary Coded Decimal Constants

When an integer constant is used with the DT directive, the number is
interpreted by default as a packed binary coded decimal number. You can
use the D radix specifier to override the default and initialize 10-byte
integers as binary-format integers.

The syntax for specifying binary coded decimals is exactly the same as for
other integers. However, MASM encodes binary coded decimals in a com-
pletely different way. See Section 6.2.1.2, “Defining Binary Coded Decimal
Variables,” for complete information on storage of binary coded decimals.

B Examples

positive DT 1234567890 ; Encoded as 00000000001234567890h
negative DT -1234567890 ; Encoded as 80000000001234567890h

72

Writing Source Code

4.3.3 Real-Number Constants

A real number is a number consisting of an integer part, a fractional part,
and an exponent. Real numbers are usually represented in decimal format.

B Syntax
[+ | =] integer.fraction[E[+ | —] ezponent]

The integer and fraction parts combine to form the value of the number.
This value is stored internally as a unit and is called the mantissa. It may
be signed. The optional ezponent follows the exponent indicator (E). It
represents the magnitude of the value, and is stored internally as a unit. If
no exgonent is given, 1 is assumed. If an exponent is given, it may be
signed.

During assembly, MASM converts real-number constants given in the
decimal format to a binary format. The sign, exponent, and mantissa of
the real number are encoded as bit fields within the number. See Section
6.3.1.5, “Real-Number Variables,” for an explanation of how real numbers
are encoded.

You can specify the encoded format directly using hexadecimal digits (0-9
or A-F). The number must begin with a decimal digit (0-9) and cannot be
signed. It must be followed by the real-number designator (R). This desig-
nator is used the same as a radix designator except 1t specifies that the
given hexadecimal number should be interpreted as a real number.

Real numbers can only be used to initialize variables with the DD, DQ),
and DT directives. They cannot be used in expressions. The maximum
number of digits in the number and the maximum range of exponent
values depend on the directive. The number of digits for encoded numbers
used with DD, DQ, and DT must be 8, 16, and 20 digits, respectively. (If
a leading O is supplied, the number must be 9, 17, or 21 digits.) See Sec-
tion 6.3.1.5, “Real-Number Variables,” for an explanation of how real
numbers are encoded.

Note

Real numbers will be encoded differently depending upon whether you
use the MSFLOAT directive. By default, real numbers are encoded
in the IEEE format. This is a change from previous versions, which
assembled real numbers by default in the Microsoft Binary format. The
MSFLOAT directive overrides the default and specifies Microsoft
Binary format. See Section 6.3.1.5, “Real-Number Variables,” for a
description of these formats.

73

Microsoft Macro Assembler Programmer’s Guide

B Example

; Real numbers

shrt DD 25.23
long DQ 2.523E1
ten_byte DT 2523.0E-2

; Assumes .MSFLOAT
mbshort DD 81000000r ;
mblong DQ 8100000QDOCO000A0r ;

as Microsoft Binary short
as Microsoft Binary long

(S
[oNe]

; Assumes default IEEE format
jeeeshort DD 3F800000r ;
ieeelong DQ 3FEF0000000000000r ;

as IEEE short
as IEEE long

e
[oNe}

. The same regardless of processor directives
temporary DT 3FFF8Q00000ONNMAIDr ; 1.0 as 10-byte temporary real

4.3.4 String Constants

A string constant consists of one or more ASCII characters enclosed in sin-
gle or double quotation marks.

® Syntax

' characters'
“characters™

String constants are case sensitive. A string constant consisting of a single
character is sometimes called a character constant.

Single quotation marks must be encoded twice when used literally within
string constants that are also enclosed by single quotation marks. Simi-
larly, double quotation marks must be encoded twice when used in string
constants that are also enclosed by double quotation marks.

B Examples

char DB 'a’

char2 DB "a"

message DB "This is a message."

warn DB 'Can''t find file.' ; Can't find file.

warn2 DB "Can't find file." ; Can't find file.

string DB "This ""value"" not found." ; This '"value" not found.
string2 DB 'This "value" not found.' ; This "value" not found.

74

Writing Source Code

4.4 Defining Default Assembly Behavior

Since the assembler processes sequentially, any directives that define the
behavior of the assembler for sections of code or for the entire source file
must come before the sections affected by the directive.

There are three types of directives that may define behavior for the assem-
bly:

The .MODEL directive defines the memory model.
Processor directives define the processor and coprocessor.

The MSFLOAT directive and the coprocessor directives define
how floating-point variables are encoded.

These directives are optional. If you do not use them, MASM makes
default assumptions. However, if you do use them, you must put them
before any statements that will be affected by them.

The .MSFLOAT and .MODEL directives affect the entire assembly and
can only occur once in the source file. Normally they should be placed at
the beginning of the source file.

The .MODEL directive is part of the new system of simplified segment
directives implemented in Version 5.0. It is explained in Section
5.1.3.,“Defining the Memory Model.”

The MSFLOAT directive disables all coprocessor instructions and
specifies that initialized real-number variables be encoded in the Microsoft
Binary format. Without this directive, initialized real-number variables
are encoded in the IEEE format. This is a change from previous versions of
the assembler, which used Microsoft Binary format by default and required
a coprocessor directive or the /R option to specify IEEE format.
MSFLOAT must be used for programs that require real-number data in
the Microsoft Binary format. Section 6.3.1.5, “Real-Number Variables,”
describes real-number data formats and the factors to consider in choosing
a format.

Processor and coprocessor directives define the instruction set that is
recognized by MASM. They are listed and explained below:

Directive Description

.8086 The .8086 directive enables assembly of instructions
for the 8086 and 8088 processors and the 8087 copro-
cessor. It disables assembly of the instructions unique
to the 80186, 80286, and 80386 processors.

75

Microsoft Macro Assembler Programmer’s Guide

76

.186

.286

.286P

.386

.386P

This is the default mode and is used if no instruction
set directive is specified. Using the default instruction
set ensures that your program can be used on all
8086-family processors. However, if you choose this
directive, your program will not take advantage of
the more powerful instructions available on more
advanced processors.

The .186 directive enables assembly of the 8086 pro-
cessor instructions, 8087 coprocessor instructions,
and the additional instructions for the 80186 proces-
sor.

The .286 directive enables assembly of the 8086
instructions plus the additional nonprivileged
instructions of the 80286 processor. It also enables
80287 coprocessor instructions. If privileged instruc-
tions were previously enabled, the .286 directive dis-
ables them.

This directive should be used for programs that will
be executed only by an 80186, 80286, or 80386 pro-
cessor. For compatibility with previous versions of
MASM, the .286C directive is also available. It is
equivalent to the .286 directive.

This directive is equivalent to the .286 directive
except that it also enables the privileged instructions
of the 80286 processor. This does not mean that the
directive is required if the program will run in pro-
tected mode; it only means that the directive is
required if the program uses the instructions that ini-
tiate and manage privileged-mode processes. These
instructions (see Section 20.3, “Controlling Protected
Mode Processes”) are normally used only by systems
programmers.

The .386 directive enables assembly of the 8086 and
the nonprivileged instructions of the 80286 and 80386
processors. It also enables 80387 coprocessor instruc-
tions. If privileged instructions were previously
enabled, this directive disables them.

This directive should be used for programs that will
be executed only by an 80386 processor.

This directive is equivalent to the .386 directive
except that it also enables the privileged instructions
of the 80386 processor.

Writing Source Code

.8087 The .8087 directive enables assembly of instructions
for the 8087 math coprocessor and disables assembly
of instructions unique to the 80287 coprocessor. It
also specifies the IEEE format for encoding floating-
point variables.

This is the default mode and is used if no coprocessor
directive is specified. This directive should be used
for programs that must run with either the 8087,
80287, or 80387 coprocessors.

287 The .287 directive enables assembly of instructions
for the 8087 floating-point coprocessor and the addi-
tional instructions for the 80287. It also specifies the
IEEE format for encoding floating-point variables.

Coprocessor instructions are optimized if you use this
directive rather than the .8087 directive. Therefore,
you should use it if you know your program will
never need to run under an 8087 processor. See Sec-
tion 19.3, “Coordinating Memory Access,” for an
explanation.

.387 The .387 directive enables assembly of instructions
- for the 8087 and 80287 floating-point coprocessors
and the additional instructions and addressing modes
for the 80387. It also specifies the IEEE format for
encoding floating-point variables.

If you do not specify any processor directives, MASM uses the following
defaults:

e 8086/8088 processor instruction set

e 8087 coprocessor instruction set

e [EEE format for floating-point variables
Normally the processor and coprocessor directives can be used at the start
of the source file to define the instruction sets for the entire assembly.
However, it is possible to use different processor directives at different
points in the source file to change assumptions for a section of code. For
instance, you might have processor-specific code in different parts of the

same source file. You can also turn privileged instructions on and off or
allow unusual combinations of the processor and coprocessor.

There are two limitations on changing the processor or coprocessor:

1. The directives must be given outside segments. You must end the
current segment, give the processor directive, and then open

77

Microsoft Macro Assembler Programmer’s Guide

another segment. See Section 5.1.5, “Using Predefined Equates,”
for an example of changing the processor directives with simplified
segment directives.

2. You can specify a lower-level coprocessor with a higher-level copro-
cessor, but an error message will be generated if you try to specify —
a lower-level processor with a higher-level coprocessor.

The coprocessor directives have the opposite effect of the MSFLOAT
directive. MSFLOAT turns off coprocessor instruction sets and enables
the Microsoft Binary format for floating-point variables. Any coprocessor
instruction turns on the specified coprocessor instruction set and enables
IEEE format for floating-point variables.

B Examples

: .MSFLOAT affects the whole source file
.MSFLOAT
.8087 ;s Ignored

; Legal - use 80386 and 80287
. 386
. 287
Illegal - can't use 8086 with 80287
.8086
. 287

; Turn privileged mode on and off
.286P

.286

4.5 Ending a Source File

Source files are always terminated with the END directive. This directive
has two purposes: it marks the end of the source file, and it can indicate
the address where execution begins when the program is loaded.

78

‘Writing Source Code

B Syntax
END [startaddress]

Any statements following the END directive are ignored by the assembler.
For instance, you can put comments after the END directive without
using comment specifiers (;) or the COMMENT directive.

The startaddress is a label or expression identifying the address where you
want execution to begin when the program is loaded. Specifying a start
address is discussed in detail in Section 5.5.1, “Initializing the CS and IP
Registers.”

79

DEFINING
QEGMENT STRUCTURE

5.1 Simplified Segment Definitionscccccveveeeevrveeeennnns 83
5.1.1 Understanding Memory ModelS...ccccceeeunrunnee 84
5.1.2 Specifying DOS Segment Ordere....... 85
5.1.3 Defining the Memory Model........cccevvrueennnn. 87
5.1.4 Defining Simplified Segments....ccceeeeeevvnnnnnne. 88
5.1.5 Using Predefined Equates.....ccceeeeereenunnernnnn. 90
5.1.6 Simplified Segment Defaults...ccccoeveruvenranaee. 92
5.1.7 Default Segment Names ..c.ueeeeureeeeeeranececeenns 93
5.2 Full Segment Definitions.......ccovvveeeeeerevineeeeeesannnnne 95
5.2.1 Setting the Segment-Order Method............... 96
5.2.2 Defining Full Segmentsccceeeevueerenneeennnnnnnn. 97
5.2.2.1 Controlling Alignment
with Align Type.cccecerercacecercrcacecenenes 98
5.2.2.2 Setting Segment Word Size
With Use TYPe ceieeeececieinicnceicesecncennnes 98
5.2.2.3 Defining Segment Combinations
with Combine Type cecececerersececerensanes 100
5.2.2.4 Controlling Segment Structure
With Class TYPe cececercrsecercrsasecernsanes 104
5.3 Defining Segment Groups......cccceeeevrvereeeeereernvnnen 106
5.4 Associating Segments with Registers................... 109
5.5 Initializing Segment Registers......ccovvveeeeeeeecnnnnn. 111
5.5.1 Initializing the CS and IP Registers............ 111
5.5.2 Initializing the DS Register..ccccceeerreueeeennnen. 112
5.5.3 Initializing the SS and SP Registers............ 114
5.5.4 Initializing the ES Register...ccccccvvvuveeeennnnn. 115

5.6 Nesting Segments.......ccceeevvvereeeieeerrieneeeeeeeeernnnnen. 115

Defining Segment Structure

Segments are a fundamental part of assembly-language programming for
the 8086-family of processors. They are related to the segmented architec-
ture used by Intele for its 16-bit and 32-bit microprocessors. This architec-
ture is explained in more detail in Chapter 13, “Understanding 8086-
Family Processors.”

A segment is a collection of instructions or data whose addresses are all
relative to the same segment register. Segments can be defined by using
simplified segment directives or full segment definitions.

In most cases, simplified segment definitions are a better choice. They are
easier to use and more consistent, yet you seldom sacrifice any functional-
ity by using them. Simplified segment directives automatically define the
segment structure required when combining assembler modules with mo-
dules prepared with Microsoft high-level languages.

Although more difficult to use, full segment definitions give more complete
control over segments. A few complex programs may require full segment
definitions in order to get unusual segment orders and types. In previous
versions of MASM, full segment definitions are the only way to define seg-
ments, so you may need to use them to maintain existing source code.

This chapter describes both methods. If you choose to use simplified seg-
ment directives, you will probably not need to read about full segment
definitions.

5.1 Simplified Segment Definitions

Version 5.0 of MASM implements a new simplified system for declaring
segments. By default, the simplified segment directives use the segment
names and conventions followed by Microsoft high-level languages. If you
are willing to accept these conventions, the more difficult aspects of seg-
ment definition are handled automatically.

If you are writing stand-alone assembler programs in which segment
names, order, and other definition factors are not crucial, the simplified
segment directives make programming easier. The Microsoft conventions
are flexible enough to work for most kinds of programs. If you are new to
assembly-language programming, you should use the simplified segment
directives for your first programs.

If you are writing assembler routines to be linked with Microsoft high-level
languages, the simplified segment directives ensure against mistakes that
would make your modules incompatible. The names are automatically de-
fined consistently and correctly.

When you use simplified segment directives, ASSUME and GROUP
statements that are consistent with Microsoft conventions are generated

83

Microsoft Macro Assembler Programmer’s Guide

automatically. You can learn more about the ASSUME and GROUP
directives in Sections 5.3 and 5.4. However, for most programs you do not
need to understand these directives. You simply use the simplified segment
directives in the format shown in the examples.

Note

The simplified segment directives cannot be used for programs written
in the .COM format. You must specifically define the single segment
required for this format. See Section 1.4.1, “Writing and Editing
Assembly-Language Source Code,” for more information.

5.1.1 Understanding Memory Models

To use simplified segment directives, you must declare a memory model for
your program. The memory model specifies the default size of data and
code used in a program.

Microsoft high-level languages require that each program have a default

size (or memory model). Any assembly-language routine called from a —
high-level-language program should have the same memory model as the

calling program. See the documentation for your language to find out

what memory models it can use.

The most commonly used memory models are described below:

Model Description

Tiny All data and code fits in a single segment. Tiny model
programs must be written in the .COM format. Micro-
soft languages do not support this model. Some com-
pilers from other companies support tiny model either as
an option or as a requirement. You cannot use simplified
segment directives for tiny-model programs.

Small All data fits within a single 64K segment, and all code
fits within a 64K segment. Therefore, all code and data
can be accessed as near. This is the most common model
for stand-alone assembler programs. C is the only Micro- —
soft language that supports this model.

Medium All data fits within a single 64K segment, but code may
be greater than 64K. Therefore, data is near, but code is
far. Most recent versions of Microsoft languages support
this model.

Compact All code fits within a single 64K segment, but the total
amount of data may be greater than 64K (although no

84

Defining Segment Structure

array can be larger than 64K). Therefore, code is near,
but data is far. C is the only Microsoft language that
supports this model.

Large Both code and data may be greater than 64K (although
no array can be larger than 64K). Therefore, both code
and data are far. All Microsoft languages support this
model.

Huge Both code and data may be greater than 64K. In addi-
tion, data arrays may be larger than 64k. Both code and
data are far, and pointers to elements within an array
must also be far. Most recent versions of Microsoft
languages support this model. Segments are the same for
large and huge models.

Stand-alone assembler programs can have any model. Small model is ade-
quate for most programs written entirely in assembly language. Since near
data or code can be accessed more quickly, the smallest memory model
that can accommodate your code and data is usually the most efficient.

Mixed-model programs use the default size for most code and data but
override the default for particular data items. Stand-alone assembler pro-
grams can be written as mixed-model programs by making specific pro-
cedures or variables near or far. Some Microsoft high-level languages have
NEAR, FAR, and HUGE keywords that enable you to override the de-
fault size of individual data or code items.

5.1.2 Specifying DOS Segment Order

The DOSSEG directive specifies that segments be ordered according to
the DOS segment-order convention. This is the convention used by Micro-
soft high-level-language compilers.

B Syntax
DOSSEG

Using the DOSSEG directive enables you to maintain a consistent, logi-
cal segment order without actually defining segments in that order in your
source file. Without this directive, the final segment order of the execut-
able file depends on a variety of factors, such as segment order, class
name, and order of linking. These factors are described in Section 5.2,
“Full Segment Definitions.”

Since segment order is not crucial to the proper functioning of most stand-

alone assembler programs, you can simply use the DOSSEG directive and
ignore the whole issue of segment order.

85

Microsoft Macro Assembler Programmer’s Guide

Note
Using the DOSSEG directive (or the /DOSSEG linker option) has

two side effects. The linker generates symbols called —end and
—edata. You should not use these names in programs that contain the
DOSSEG directive. Also, the linker increases the offset of the first
byte of the code segment by 16 bytes in small and compact models.
This is to give proper alignment to executable files created with Micro-
soft compilers.

If you want to use the DOS segment-order convention in stand-alone
assembler programs, you should use the DOSSEG argument in the main
module. Modules called from the main module need not use the DOSSEG
directive.

You do not need to use the DOSSEG directive for modules called from
Microsoft high-level languages, since the compiler already defines DOS seg-
ment order.

Under the DOS segment-order convention, segments have the following
order:

1. All segment names having the class name ’‘CODE’

2. Anysegments that do not have class name ’CODE?’ and are not
part of the group DGROUP
3. Segments that are part of DGROUP, in the following order:

a. Any segments of class BEGDATA (this class name is reserved
for Microsoft use)

b. Any segments not of class BEGDATA, BSS, or STACK
c. Segments of class BSS
d. Segments of class STACK

Using the DOSSEG directive has the same effect as using the /DOSSEG

linker option.

The directive works by writing to the comment record of the object file.
The Intel title for this record is COMENT. If the linker detects a certain
sequence of bytes in this record, it automatically puts segments in the
DOS order.

86

Defining Segment Structure

5.1.3 Defining the Memory Model

The .MODEL directive is used to initialize the memory model. This dir-
ective should be used early in the source code before any other segment
directive.

B Syntax
.MODEL memorymodel

The memorymodel can be SMALL, MEDIUM, COMPACT, LARGE,
or HUGE. Segments are defined the same for large and huge models, but
the (@ datasize equate (explained in Section 5.1.5, “Using Predefined
Equates”) is different.

If you are writing an assembler routine for a high-level language, the
memorymodel should match the memory model used by the compiler or
interpreter.

If you are writing a stand-alone assembler program, you can use any
model. Section 5.1.1 describes each memory model. Small model is the best
choice for most stand-alone assembler programs.

Note

You must use the MODEL directive before defining any segment. If
one of the other simplified segment directives (such as .CODE or
DATA) is given before the MODEL directive, an error is generated.

B Example 1

DOSSEG
.MODEL, small

This statement defines default segments for small-model programs and
creates the ASSUME and GROUP statements used by small-model pro-
grams. The segments are automatically ordered according to the Microsoft
convention. The example statements might be used at the start of the
main (or only) module of a stand-alone assembler program.

87

Microsoft Macro Assembler Programmer’s Guide

B Example 2
.MODEL LARGE

This statement defines default segments for large-model programs and
creates the ASSUME and GROUP statements used by large-model pro-
grams. It does not automatically order segments according to the Micro-
soft convention. The example statement might be used at the start of an
assembly module that would be called from a large-model C, BASIC, FOR-
TRAN, or Pascal program.

H 80386 Only

If you use the .386 directive before the MODEL directive, the segment
definitions defines 32-bit segments. If you want to enable the 80386 proces-
sor with 16-bit segments, you should give the .386 directive after the
.MODEL directive.

5.1.4 Defining Simplified Segments

The .CODE, .DATA, .DATA? FARDATA, .FARDATA?,
.CONST, and .STACK directives indicate the start of a segment. They —
also end any open segment definition used earlier in the source code.

B Syntax

.STACK [size] Stack segment

.CODE [name] Code segment

.DATA Initialized near-data segment
.DATA? Uninitialized near-data segment
JFARDATA [name] Initialized far-data segment
JFARDATA? [name] Uninitialized far-data segment
.CONST Constant-data segment

For segments that take an optional name, a default name is used if none is
specified. See Section 5.1.7 for information on default segment names.

Each new segment directive ends the previous segment. The END direc-
tive closes the last open segment in the source file. —

The size argument of the .STACK directive is the number of bytes to be
declared in the stack. If no size is given, the segment is defined with a
default size of one kilobyte.

88

Defining Segment Structure

Stand-alone assembler programs in the .EXE format should define a stack
for the main (or only) module. Stacks are defined by the compiler or inter-
preter for modules linked with a main module from a high-level language.

Code should be placed in a segment initialized with the .CODE directive,
regardless of the memory model. Normally, only one code segment is de-
fined in a source module. If you put multiple code segments in one source
file, you must specify name to distinguish the segments. The name can
only be specified for models allowing multiple code segments (medium and
large). Name will be ignored if given with small or compact models.

Uninitialized data is any variable declared by using the indeterminate
symbol (?) and the DUP operator. When declaring data for modules that
will be used with a Microsoft high-level language, you should follow the
convention of using DATA or FARDATA for initialized data and
.DATA? or FARDATAT? for uninitialized data. For stand-alone assem-

bler programs, using the DATA? and .FARDATAY? directives is op-
tional. You can put uninitialized data in any data segment.

Constant data is data that must be declared in a data segment but is not
subject to change at run time. Use of this segment is optional for stand-
alone assembler programs. If you are writing assembler routines to be
called from a high-level language, you can use the .CONST directive to
declare strings, real numbers, and other constant data that must be allo-
cated as data.

Data in segments defined with the .STACK, .CONST, .DATA or
DATAT? directives is placed in a group called DGROUP. Data in seg-
ments defined with the FARDATA or FARDATAY? directives is not
placed in any group. See Section 5.3 for more information on segment
groups. When initializing the DS register to access data in a group-
associated segment, the value of DGROUP should be loaded into DS. See
Section 5.5.2 for information on initializing data segments.

B Example 1

DOSSEG
.MODEL SMALL
.STACK 100h
.DATA
ivariable DB 5
iarray DW 50 DUP (5)
string DB "This is a string"
uarray DW 50 DUP (?)
EXTRN xvariable:WORD
.CODE
start: mov ax, DGROUP
mov ds, ax
EXTRN xprocedure :NEAR
call xprocedure
END start

89

Microsoft Macro Assembler Programmer’s Guide

This code uses simplified segment directives for a small-model, stand-alone
assembler program. Notice that initialized data, uninitialized data, and a
string constant are all defined in the same data segment. See Section 5.1.7,
“Default Segment Names,” for an equivalent version that uses full segment
definitions.

B Example 2

.MODEL LARGE

.FARDATA?

fuarray DwW 10 DUP (?) ; Far uninitialized data
.CONST

string DB "This is a string" ; String constant
.DATA

niarray DB 100 DUP (5) ; Near initialized data
.FARDATA
EXTR xvariable:FAR

fiarray DW 100 DUP (10) ; Far initialized data

.CODE = ACTION
EXTR xprocedure :PROC

task PROC
;‘et

task ENDP
END

This example uses simplified segment directives to create a module that
might be called from a large-model, high-level-language program. Notice
that different types of data are put in different segments to conform to
Microsoft compiler conventions. See Section 5.1.7, “Default Segment
Names,” for an equivalent version using full segment definitions.

5.1.5 Using Predefined Equates

Several equates are predefined for you. You can use the equate names at
any point in your code to represent the equate values. You should not
assign equates having these names. The predefined equates are listed
below:

Name Value

@curseg This name has the segment name of the current
segment. This value may be convenient for
ASSUME statements, segment overrides, or other
cases in which you need to access the current seg-
ment. It can also be used to end a segment, as
shown below:

90

@filename

@codesize
and
@datasize

Segment
equates

Defining Segment Structure

@curseg ENDS ; End current segment
.286 ; Must be outside segment
.CODE ; Restart segment

This value represents the base name of the current
source file. For example, if the current source file is
task.asm, the value of @filename is task.
This value can be used in any name you would like
to change if the file name changes. For example, it
can be used as a procedure name:

@filename PROC

@filename ﬁNDP

If the MODEL directive has been used, the
@codesize value is O for small and compact
models or 1 for medium, large, and huge models.
The @datasize valueisO for small and medium
models, 1 for compact and large models, and 2 for
huge models. These values can be used in condi-
tional-assembly statements:

IF @datasize
les bx,pointer ; Load far pointer
mov ax,es:WORD PTR [bx]

ELSE

mov bx,WORD PTR pointer ; Load near pointer

mov ax,WORD PTR [bx]
ENDIF

For each of the primary segment directives, there
is a corresponding equate with the same name,
except that the equate starts with an at sign (@)
but the directive starts with a period. For example,
the @code equate represents the segment name
defined by the .CODE directive. Similarly,
@fardata represents the FARDATA segment
name and @fardata? represents the
JFARDATA? segment name. The @data equate
represents the group name shared by all the near
data segments. It can be used to access the seg-
ments created by the DATA, .DATAY?,
.CONST, and .STACK segments.

These equates can be used in ASSUME state-
ments and at any other time a segment must be
referred to by name, for example:

ASSUME es:@fardata ; Assume ES to far data
; (.MODEL handles DS)

mov ax,@data ; Initialize near to DS
mov ds,ax

mov ax,@fardata ; Initialize far to ES
mov es,ax

91

Microsoft Macro Assembler Programmer’s Guide

Note

Although predefined equates are part of the simplified segment system,
the @cursegand @filename equates are also available when using
full segment definitions.

5.1.6 Simplified Segment Defaults

When you use the simplified segment directives, defaults are different in
certain situations than they would be if you gave full segment definitions.
Defaults that change are listed below:

92

If you give full segment definitions, the default size for the PROC
directive is always NEAR. If you use the MODEL directive, the
PROC directive is associated with the specified memory model:
NEAR for small and compact models and F AR for medium, large,
and huge models. See Section 6.1.2, “Procedure Labels,” for further
discussion of the PROC directive.

If you give full segment definitions, the segment address used as
the base when calculating an offset with the OFFSET operator is
the data segment (the segment associated with the DS register).
With the simplified segment directives, the base address is the
DGROUP segment for segments that are associated with a group.
This includes segments declared with the DATA, .DATA?, and
STACK directives, but not segments declared with the .CODE,
JFARDATA, and FARDATA? directives.

For example, assume the variable testl was declared in a seg-
ment defined with the DATA directive and test2 was declared
in a segment defined with the FARDATA directive. The state-
ment

mov ax,OFFSET testl
loads the address of testl relative to DGROUP. The statement
mov ax,OFFSET test2

loads the address of test2 relative to the segment defined by the
JFARDATA directive. See Section 5.3 for more information on
groups.

5.1.7 Default Segment Names

If you use the simplified segment directives by themselves, you do not need
to know the names assigned for each segment. However, it is possible to

mix full segment definitions with simplified segment definitions. Therefore,
some programmers may wish to know the actual names assigned to all seg-

ments.

Defining Segment Structure

Table 5.1 shows the default segment names created by each directive.

Table 5.1
Default Segments and Types for Standard Memory Models

Model Directive Name Align Combine Class Group
Small .CODE _TEXT ‘WORD PUBLIC *CODE’
DATA _DATA ‘WORD PUBLIC '‘DATA’ DGROUP
.CONST CONST ‘WORD PUBLIC *CONST’ DGROUP
DATA? _BSS ‘WORD PUBLIC 'BSS’ DGROUP
STACK STACK PARA STACK 'STACK’ DGROUP
Medium .CODE name_TEXT WORD PUBLIC 'CODE’
DATA _DATA WORD PUBLIC ‘DATA’ DGROUP
.CONST CONST WORD PUBLIC *CONST’ DGROUP
DATA? _BSS ‘WORD PUBLIC 'BSS’ DGROUP
STACK STACK PARA STACK 'STACK’ DGROUP
Compact .CODE _TEXT WORD PUBLIC *CODE’
JFARDATA FAR_DATA PARA private 'FAR_DATA’
JFARDATA? FAR_BSS PARA private 'FAR_BSS’
DATA _DATA WORD PUBLIC 'DATA’ DGROUP
.CONST CONST WORD PUBLIC 'CONST’ DGROUP
DATA? _BSS WORD PUBLIC 'BSS’ DGROUP
STACK STACK PARA STACK 'STACK’ DGROUP
Large .CODE name_ TEXT WORD PUBLIC '*CODE’
or huge JFARDATA FAR_DATA PARA private 'FAR_DATA’
JFARDATA? FAR_BSS PARA private 'FAR_BSS’
DATA _DATA WORD PUBLIC ‘DATA’ DGROUP
.CONST CONST WORD PUBLIC *CONST’ DGROUP
DATA? _BSS ‘WORD PUBLIC 'BSS’ DGROUP
STACK STACK PARA STACK 'STACK’ DGROUP

93

Microsoft Macro Assembler Programmer’s Guide

The name used as part of far-code segment names is the file name of the
module. The default name associated with the .CODE directive can be
overridden in medium and large models. The default names for the

.FARDATA and .FARDATA? directives can always be overridden.

The segment and group table at the end of listings always shows the

actual segment names. However, the group and assume statements gen-

erated by the MODEL directive are not shown in listing files. For a pro-

gram that uses all possible segments, group statements equivalent to the

following would be generated:

DGROUP GROUP _DATA, CONST, _BSS, STACK

For small and compact models, the following would be generated:
ASSUME cs:_TEXT, ds:DGROUP, ss: DGROUP

For medium, large, and huge models the following statement is given:

ASSUME cs:name_TEXT, ds:DGROUP, ss:DGROUP

80386 Only —

If the .386 directive is used, the default align type for all segments is
DWORD.

B Example 1

EXTRN xvariable:WORD
EXTRN xprocedure:NEAR

DGROUP GROUP _DATA, _BSS
ASSUME cs:_TEXT, ds:DGROUP, ss :DGROUP
_TEXT SEGMENT WORD PUBLIC 'CODE'
start: mov ax, DGROUP
mov ds,ax
_TEXT ENDS
_DATA SEGMENT WORD PUBLIC 'DATA'
ivariable DB 5 —
iarray DW 50 DUP (5)
string DB "This is a string”
uarray DW 50 DUP (?)
_DATA ENDS
STACK SEGMENT PARA STACK 'STACK'
DB 100h DUP (?)
STACK ENDS
END start

94

Defining Segment Structure

This example is equivalent to Example 1 in Section 5.1.4, “Defining
Simplified Segments.” Notice that the segment order must be different in
this version to achieve the segment order specified by using the DOSSEG
directive in the first example. The external variables are declared at the
start of the source code in this example. With simplified segment direc-
tives, they can be declared in the segment in which they are used.

B Example 2

DGROUP GROUP _DATA, CONST, STACK
ASSUME cs:TASK_TEXT,ds:FAR_DATA, ss:STACK
EXTRN xprocedure:FAR
EXTR xvariable:FAR

FAR_BSS SEGMENT PARA 'FAR_DATA'

fuarray DW 10 DUP (?) ; Far uninitialized data
FAR_BSS ENDS

CONST SEGMENT WORD PUBLIC 'CONST'

string DB "This is a string" ; String constant

CONST ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'

niarray DB 100 DUP (5) ; Near initialized data
_DATA ENDS

FAR_DATA SEGMENT WORD 'FAR_DATA'

fiarray DW 100 DUP (10)

FAR_DATA ENDS
TASK_TEXT SEGMENT WORD PUBLIC 'CODE

task PROC FAR
;et
task ENDP
TASK_TEXT ENDS
END

This example is equivalent to Example 2 in Section 5.1.4, “Defining
Simplified Segments.” Notice that the segment order is the same in both
versions. The segment order shown here 1s written to the object file, but it
is different in the executable file. The segment order specified by the com-
piler (the DOS segment order) overrides the segment order in the module
object file.

5.2 Full Segment Definitions

If you need complete control over segments, you may want to give com-
plete segment definitions. The section below explains all aspects of seg-
ment definitions, including how to order segments and how to define all
the segment types.

95

Microsoft Macro Assembler Programmer’s Guide

5.2.1 Setting the Segment-Order Method

The order in which MASM writes segments to the object file can be either
sequential or alphabetical. If the sequential method is specified, segments
are written in the order in which they appear in the source code. If the
alphabetical method is specified, segments are written in the alphabetical
order of their segment names.

The default is sequential. If no segment-order directive or option is given,
segments are ordered sequentially. The segment-order method is only one
factor in determining the final order of segments in memory. The DOS-
SEG directive§see Section 5.1.2, “Specifying DOS Segment Order”) and
class type (see Section 5.2.2.4, “Controlling Segment Structure with Class
Type”) can also affect segment order.

The ordering method can be set by using the . ALPHA or .SEQ directive
in the source code. The method can also be set using the /S (sequential) or
A (alphabetical) assembler options (see Section 2.4.1, “Specifying the
egment-Order Method”). The directives have precedence over the op-
tions. For example, if the source code contains the .ALPHA directive, but
the /S option is given on the command line, the segments are ordered
alphabetically.

Changing the segment order is an advanced technique. In most cases you
can simply leave the default sequential order in effect. If you are linking
with high-level-language modules, the compiler automatically sets the seg-
ment order. The DOSSEG directive also overrides any segment-order
directives or options.

Note

Some previous versions of the IBM Macro Assembler ordered segments
alphabetically by default. If you have trouble assembling and linking
source-code listings from books or magazines, try using the /A option.
Listings written for previous IBM versions of the assembler may not
work without this option.

B Example 1

.SEQ
DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS
CODE SEGMENT WORD PUBLIC 'CODE'
CODE ENDS

96

Defining Segment Structure

B Example 2

.ALPHA
DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS
CODE SEGMENT WORD PUBLIC 'CODE'
CODE ENDS

In Example 1, the DATA segment is written to the object file first because
it appears first in the source code. In Example 2, the CODE segment is
written to the object file first because its name comes first alphabetically.

5.2.2 Defining Full Segments

The beginning of a program segment is defined with the SEGMENT
directive, and the end of the segment is defined with the ENDS directive.

B Syntax

name SEGMENT [align] [combine] [use] [’class’]
statements

name ENDS

The name defines the name of the segment. This name can be unique or it
can be the same name given to other segments in the program. Segments
with identical names are treated as the same segment. For example, if it is
convenient to put different portions of a single segment in different source
modules, the segment is given the same name in both modules.

The optional align, combine, use, and ’class’

types give the linker and the assembler instructions on how to set up and
combine segments. Types should be specified in order, but it is not neces-
sary to enter all types, or any type, for a given segment.

Defining segment types is an advanced technique. Beginning assembly-
language programmers might try using the simplified segment directives
discussed in Section 5.1.

Note

Don’t confuse the PAGE align type and the PUBLIC combine type
with the PAGE and PUBLIC directives. The distinction should be
clear from context since the align and combine types are only used on
the same line as the SEGMENT directive.

97

Microsoft Macro Assembler Programmer’s Guide

Segment types have no effect on programs prepared in the .COM for-
mat. Since there is only one segment, there is no need to specify how
segments are combined or ordered.

5.2.2.1 Controlling Alignment with Align Type

The optional align type defines the range of memory addresses from which
a starting address for the segment can be selected. The align type can be
any one of the following:

Align Type Meaning

BYTE Uses the next available byte address.

WORD Uses the next available word address (2 bytes per
word).

DWORD Uses the next available doubleword address (4

bytes per doubleword); the DWORD align type is
normally used in 32-bit segments with the 80386.

PARA Uses the next available paragraph address (16
bytes per paragraph).

PAGE Uses)the next available page address (256 bytes per
page).

If no align type is given, PARA is used by default (except with the 80386).

The linker uses the alignment information to determine the relative start
address for each segment. DOS uses the information to calculate the
actual start address when the program is loaded.

Align types are illustrated in Figure 5.1, in Section 5.2.2.3, “Defining Seg-
ment Combinations with Combine Type.”

5.2.2.2 Setting Segment Word Size with Use Type

® 80386 Only

The use type specifies the segment word size on the 80386 processor. Seg-
ment word size is the default operand and address size of a segment.

The use type can be USE16 or USE32. These types are only relevant if
you have enabled 80386 instructions and addressing modes with the .386
directive. The assembler generates an error if you specify use type when
the 80386 processor is not enabled.

98

Defining Segment Structure

With the 80286 and other 16-bit processors, the segment word size is
always 16 bits. A 16-bit segment can contain up to 65,536 (64K) bytes.
However, the 80386 is capable of using either 16-bit or 32-bit segments.

A 32-bit segment can contain up to 4,294,967,296 bytes (4 gigabytes).
Although MASM permits you to define 4 gigabyte segments in 32-bit seg-
ments, current versions of DOS limit segment size to 64K.

If you do not specify a use type, the segment word size is 32 bits by default
when the .386 directive is used.

The effect of addressing modes is changed by the word size you specify for
the code segment. See Section 14.3.3, “80386 Indirect Memory Operands,”
for more information on 80386 addressing modes. The meaning of the
WORD and DWORD type specifiers is not changed by the use type.
WORD always indicates 16 bits and DWORD always indicates 32 bits
regardless of the current segment word size.

Note

Although the assembler allows you to use 16-bit and 32-bit segments
in the same program, you should normally make all segments the same
size. Mixing segment sizes is an advanced technique that can have
unexpected side effects. For the most part, it is used only by systems
programimers.

n Exa,mplé 1

;5 16-bit segment

.386
_DATA SEGMENT DWORD USE16 PUBLIC 'DATA'
_DATA ENDS

B Example 2

;s 32-bit segment
_TEXT SEGMENT DWORD USE32 PUBLIC 'CODE'

_TEXT ‘r..'NDS

99

Microsoft Macro Assembler Programmer’s Guide

5.2.2.3 Defining Segment Combinations with Combine Type

The optional combine type defines how to combine segments having the
same name. The combine type can be any one of the following:

Combine Type Meaning

PUBLIC Concatenates all segments having the same
name to form a single, contiguous segment.

All instruction and data addresses in the new
segment are relative to a single segment regis-
ter, and all offsets are adjusted to represent the
distance from the beginning of the segment.

STACK Concatenates all segments having the same
name to form a single, contiguous segment.
This combine type is the same as the PUBLIC
combine type, except that all addresses in the
new segment are relative to the SS segment
register.

The stack pointer (SP) register is initialized to

the length of the segment. The stack segment

of your program should normally use the —
STACK type, since this automatically initial-

izes the SS register, as described in Section

5.5.3. If you create a stack segment and do not

use the STACK type, you must give instruc-

tions to initialize the SS and SP registers.

COMMON Creates overlapping segments by placing the
start of all segments having the same name at
the same address.

The length of the resulting area is the length of
the longest segment. All addresses in the seg-
ments are relative to the same base address. If
variables are initialized in more than one seg-
ment having the same name and COMMON
type, the most recently initialized data replace
any previously initialized data.

MEMORY Concatenates all segments having the same —
name to form a single, contiguous segment.

The Microsoft Overlay Linker treats
MEMORY segments exactly the same as
PUBLIC segments. MASM allows you to use
MEMORY type even though LINK does not
recognize a separate MEMORY type. This
feature is compatible with other linkers that

100

Defining Segment Structure

may support a combine type conforming to the
Intel definition of MEMORY type.

AT address Causes all label and variable addresses defined
in the segment to be relative to address.

The address can be any valid expression, but
must not contain a forward reference—that is,
a reference to a symbol defined later in the
source file. An AT segment typically contains
no code or initialized data. Instead, it
represents an address template that can be
placed over code or data already in memory,
such as a screen buffer or other absolute
memory locations defined by hardware. The
linker will not generate any code or data for
AT segments, but existing code or data can be
accessed by name if it is given a label in an AT
segment. Section 6.4, “Setting the Location
Counter,” shows an example of a segment with
AT combine type.

The AT combine type has no meaning in
protected-mode programs, since the segment
represents a movable selector rather than a
physical address. Real-mode programs that use
AT segments must be modified before they can
be used in protected mode. The planned multi-
tasking version of DOS, 0OS/2, will provide
DOS calls for doing tasks that are often done
by manipulating memory directly under
current versions of DOS.

If no combine type is given, the segment has private type. Segments having
the same name are not combined. Instead, each segment receives its own
physical segment when loaded into memory.

Notes

Although a given segment name can be used more than once in a
source file, each segment definition using that name must have either
exactly the same attributes, or attributes that do not conflict. If types
are given for an initial segment definition, then subsequent definitions
for that segment need not specify any types.

Normally you should provide at least one stack segment (having
STACK combine type) in a program. If no stack segment is declared,
LINK displays a warning message. You can ignore this message if you

101

Microsoft Macro Assembler Programmer’s Guide

have a specific reason for not declaring a stack segment. For example,

you would not have a separate stack segment in a program in the
.COM format.

B Example
The following source-code shell illustrates one way in which the combine
and align types can be used. Figure 5.1 shows the way LINK would load

the sample program into memory.

NAME module_1

ASEG SEGMENT WORD PUBLIC 'CODE'
start:
ASEG ENDS
BSEG SEGMENT WORD COMMON 'DATA'
BSEG ENDS —
BSEG SEGMENT PARA STACK 'STACK'
CSEG ENDS
DSEG SEGMENT AT OBS8OOH
DSEG ENDS
END start

NAME module_2

ASEG SEGMENT WORD PUBLIC 'CODE'

ASEG ENDS -
BSEG SEGMENT WORD COMMON 'DATA'

BSEG ENDS

102

Defining Segment Structure

Figure 5.1 Segment Structure with Combine and Align Types

103

Microsoft Macro Assembler Programmer’s Guide

5.2.2.4 Controlling Segment Structure with Class Type

Class type is a means of associating segments that have different names,
but similar purposes. It can be used to control segment order and to iden-
tify the code segment.

The class name must be enclosed in single quotation marks (*). Class
names are not case sensitive unless the /ML or /MX option 1s used dur-
ing assembly.

All segments belong to a class. Segments for which no class name is expli-
citly stated have the null class name. LINK imposes no restriction on the
number or size of segments in a class. The total size of all segments in a
class can exceed 64K.

Note

The names assigned for class types of segments should not be used for
other symbol definitions in the source file. For example, if you give a
segment the class name 'CONSTANT', you should not give the name
constant to variables or labels in the source file.

The linker expects segments having the class name CODE or a class name
with the suffix CODE to contain program code. You should always assign
this class name to segments containing code.

The CodeView debugger also expects code segments to have the class
name CODE. If you fail to assign a class type to a code segment, or if you
give it a class type other than CODE, then labels may not be properly
aligned for symbolic debugging.

Class type is one of two factors that control the final order of segments in
an executable file. The other factor is the order of the segments in the
source file (with the /S option or the .SEQ directive) or the alphabetical
order of segments (with the /A option or the ALPHA directive).

These factors control different internal behavior, but both affect final
order of segments in the executable file. The sequential or alphabetical
order of segments in the source file determines the order in which the
assembler writes segments to the object file. The class type can affect the
order in which the linker writes segments from object files to the execut-

able file.

104

Defining Segment Structure

Segments having the same class type are loaded into memory together,
regardless of their sequential or alphabetical order in the source file.

Note

The DOSSEG directive (see Section 5.1.2, “Specifying DOS Segment
Order”) overrides all other factors in determining segment order.

B Example

A_SEG SEGMENT 'SEG_1'
A_SEG ENDS

B_SEG SEGMENT 'SEG_2'
B_SEG ENDS

C_SEG SEGMENT 'SEG_1'
C_SEG ENDS

When MASM assembles the preceding program fragment, it writes the
segments to the object file in sequential or alphabetical order, depending
on whether the /A option or the . ALPHA directive was used. In the
example above, the sequential and alphabetical order are the same, so the
order will be A_SEG, B_SEG, C_SEG in either case.

When the linker writes the segments to the executable file, it first checks
to see if any segments have the same class type. If they do, it writes them
to the executable file together. Thus A_SEG and C_SEG are placed
together because they both have class type 'SEG_1"'. The final order in
memory is A_SEG, C_SEG, B_SEG.

Since LINK processes modules in the order it receives them on the com-
mand line, you may not always be able to easily specify the order you want
segments to be loaded. For example, assume your program has four seg-
ments that you want loaded in the following order: _TEXT, _DATA,
CONST, and STACK.

The _TEXT, CONST, and STACK segments are defined in the first module
of your program, but the _DATA segment is defined in the second module.
LINK will not put the segments in the proper order because it first loads
the segments encountered in the first module.

You can avoid this problem by starting your program with dummy seg-
ment definitions in the order you wish to load your real segments. The
dummy segments can either go at the start of the first module, or they can
be placed in a separate include file that is called at the start of the first

105

Microsoft Macro Assembler Programmer’s Guide

module. You can then put the actual segment definitions in any order or
any module you find convenient.

For example, you might call the following include file at the start of the
first module of your program:

_TEXT SEGMENT WORD PUBLIC 'CODE'
_TEXT ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

STACK SEGMENT PARA STACK 'STACK'
STACK ENDS

The DOSSEG directive may be more convenient for defining segment
order if you are willing to accept the DOS segment-order conventions.

Once a segment has been defined, you do not need to specify the align,
combine, use, and class types on subsequent definitions. For example, if

your code defined dummy segments as shown above, you could define an
actual data segment with the following statements:

_DATA SEGMENT

_DATA ENDS

5.3 Defining Segment Groups

A group is a collection of segments associated with the same starting
address. You may wish to use a group if you want several types of data to
be organized in separate segments in your source code, but want them all
to be accessible from a single, common segment register at run time.

B Syntax

name GROUP segment [,segment]...

The nameis the symbol assigned to the starting address of the group. All
labels and variables defined within the segments of the group are relative
to the start of the group, rather than to the start of the segments in which
they are defined.

The segment can be any previously defined segment or a SEG expression

(see Section 9.2.4.5).

106

Defining Segment Structure

Segments can be added to a group one at a time. For example, you can
define and add segments to a group one by one. This is a new feature of
Version 5.0. Previous versions required that all segments in a group be
defined at one time.

The GROUP directive does not affect the order in which segments of a
group are loaded. Loading order depends on each segment’s class, or on
the order in which object modules are given to the linker.

Segments in a group need not be contiguous. Segments that do not belong

to the group can be loaded between segments that do. The only restriction

is that the distance (in bytes) between the first byte in the first segment of

f)he group and the last byte in the last segment must not exceed 65,535
ytes.

Note

When the MODEL directive is used, the offset of a group-relative seg-
ment refers to the ending address of the segment, not the beginning.
For example, the expression OFESET STACK evaluates to the end of
the stack segment.

Group names can be used with the ASSUME directive (discussed in Sec-
tion 5.4, “Associating Segments with Registers”) and as an operand prefix
with the segment-override operator (discussed in Section 9.2.3).

B Example

DGROUP GROUP ASEG,CSEG
ASSUME ds :DGROUP
ASEG SEGMENT WORD PUBLIC 'DATA'
asym .
ASEG ENDS
BSEG SEGMENT WORD PUBLIC 'DATA'
bsym .
BSEG ENDS
CSEG SEGMENT WORD PUBLIC 'DATA'
csym '
CSEG ENDS
END

107

Microsoft Macro Assembler Programmer’s Guide

Figure 5.2 shows the order of the example segments in memory. They are
loaded in the order in which they appear in the source code I(1or in alpha-
betical order if the . ALPHA directive or /A option is specified).

Since ASEG and CSEG are declared part of the same group, they have the
same base despite their separation in memory. This means that the sym-
bols asym and csym have offsets from the beginning of the group, which
is also the beginning of ASEG. The offset of bsym is from the beginning
of BSEG, since it is not part of the group. This sample illustrates the way
LINK organizes segments in a group. It is not intended as a typical use of
a group.

Figure 5.2 Segment Structure with Groups

108

ST

Defining Segment Structure

5.4 Associating Segments with Registers

Many instructions assume a default segment. For example, JMP instruc-
tions assume the segment associated with the CS register; PUSH and
POP instructions assume the segment associated with the SS register;
MOV instructions assume the segment associated with the DS register.

When the assembler needs to reference an address, it must know what seg-
ment the address is in. It does this by using default segment or group
addresses assigned with the ASSUME directive.

Note

Using the ASSUME directive to tell the assembler which segment to
associate with a segment register is not the same as telling the proces-
sor. The ASSUME directive only affects assembly-time assumptions.
You may need to use instructions to change run-time assumptions. Ini-
tializing segment registers at run time is discussed in Section 5.5.

B Syntax

ASSUME segmentregistersname [,segmentregistersname]...
ASSUME segmentregistersNOTHING
ASSUME NOTHING

The name must be the name of the segment or group that is to be associ-
ated with the segmentregister. Subsequent instructions that assume a
default register for referencing labels or variables automatically assume
that if the default segment is segmentregister, then the label or variable is
in the name segment or group.

The ASSUME directive can define a segment for each of the segment

registers. The segmentregister can be CS, DS, ES, or SS (FS and GS are
also available on the 80386). The name must be one of the following:

e The name of a segment defined in the source file with the SEG-
MENT directive

e The name of a group defined in the source file with the GROUP
directive

e The keyword NOTHING

109

Microsoft Macro Assembler Programmer’s Guide

e A SEG expression (see Section 9.2.4.5, “SEG Operator”)

e A string equate that evaluates to a segment or group name (but
not a string equate that evaluates to a SEG expression)

The keyword NOTHING cancels the current segment selection. For
example, the statement ASSUME NOTHING cancels all register selec-
tions made by previous ASSUME statements.

Usually a single ASSUME statement defines all four segment registers at
the start of the source file. However, you can use the ASSUME directive
at any point to change segment assumptions.

Using the ASSUME directive to change segment assumptions is often
equivalent to changing assumptions with the segment-override operator (:)
(see Section 9.2.3). The segment-override operator is more convenient for
one-time overrides, whereas the ASSUME directive may be more con-
venient if previous assumptions must be overridden for a sequence of
instructions.

B Example

DOSSEG
.MODEL. large ; DS automatically assumed to @data
.STACK 100h
.DATA

di DW 7
.FARDATA

d2 DW 9
.CODE

start: mov ax,@data ; Initialize near data
mov ds,ax
mov ax,@fardata ; Initialize far data
mov es,ax

; Method 1 for series of instructions that need override
; Use segment override for each statement

mov ax,es:d2

mov es:d2,bx
; Method 2 for series of instructions that need override
Use ASSUME at beginning of series of instructions

ASSUME es:@fardata
mov cx,d2

mov d2,dx

110

Defining Segment Structure

5.5 Initializing Segment Registers

Assembly-language programs must initialize segment values for each seg-
ment register before instructions that reference the segment register can
be used in the source program.

Initializing segment registers is different from assigning default values for
segment registers with the ASSUME statement. The ASSUME directive
tells the assembler what segments to use at assembly time. Initializing seg-
ments gives them an initial value that will be used at run time.

Each of the segment registers is initialized in a different way.

5.5.1 Initializing the CS and IP Registers

The CS and IP registers are initialized by specifying a starting address
with the END directive.

B Syntax
END [startaddress]

The startaddress is a label or expression identifying the address where you
want execution to begin when the program is loaded. Normally a label for
the startaddress should be placed at the address of the first-instruction in
the code segment.

The CS segment is initialized to the value of startaddress. The IP register
is normally initialized to 0. You can change the initial value of the IP
register by using the ORG directive (see Section 6.4, “Setting the Loca-
tion Counter”) just before the startaddress label. For example, programs in
the .COM format use ORG 100h to initialize the IP register to 256 (100
hexadecimal).

If a program consists of a single source module, then the startaddress is
required for that module. If a program has several modules, all modules
must terminate with an END directive, but only one of them can define a
startaddress.

111

Microsoft Macro Assembler Programmer’s Guide

Warning

One, and only one, module must define a startaddress. If you do not
specify a startaddress, none is assumed. Neither MASM nor LINK
will generate an error message, but your program will probably start
execution at the wrong address.

B Example

; Module 1
.CODE
start: . ; First executable instruction
EXTRN task:NEAR
call task
END start ; Starting address defined in main module
; Module 2
PUBLIC task
.CODE
task PROC
task ﬁNDP
END ; No starting address in secondary module

If Module 1 and Module 2 are linked into a single program, it is essen-
tial that only the calling module define a starting address.

5.5.2 Initializing the DS Register

The DS register must be initialized to the address of the segment that will
be used for data.

The address of the segment or group for the initial data segment must be
loaded into the DS register. This is done in two statements because a

112

Defining Segment Structure

memory value cannot be loaded directly into a segment register. The
segment-setup lines typically appear at the start or very near the start of
the code segment.

B Example 1

_DATA

_DATA
_TEXT

start:

_TEXT

SEGMENT WORD PUBLIC 'DATA'

ENDS

SEGMENT BYTE PUBLIC 'CODE'

ASSUME
mov
mov

ENDS
END

cs:_TEXT,ds:_DATA
ax,_DATA
ds, ax

start

; Load start of data segment
; Transfer to DS register

If you are using the Microsoft naming convention and segment order, the
address loaded into the DS register is not a segment address but the
address of DGROUP, as shown in Example 2. With simplified segment
directives, the address of DGROUP is represented by the predefined

equate

@data.

B Example 2

start:

DOSSEG
.MODEL
.DATA

- CODE
mov
mov

END

SMALL

ax,@data
ds, ax

start

; Load start of DGROUP (@data)
; Transfer to DS register

113

Microsoft Macro Assembler Programmer’s Guide

5.5.3 Initializing the SS and SP Registers

The SS register is automatically initialized to the value of the last seg-
ment in the source code having combine type STACK. The SP register is
automatically initialized to the size of the stack segment. Thus SS:SP ini-
tially points to the end of the stack.

If you use a stack ségment with combine type STACK, initialization of
SS and SP is automatic. The stack is automatically set up in this way
with the simplified segment directives.

However, you can initialize or reinitialize the stack segment directly by
changing the values of SS and SP. Since hardware interrupts use the same
stack as the program, you should turn off hardware interrupts while
changing the stack. Most 8086-family processors do this automatically,
but early versions of the 8088 do not.

B Example

.MODEL small

.STACK 100h ; Initialize "STACK"
.DATA
.CODE
start: mov ax,@data ; Load segment location
mov ds, ax ; into DS register
cli ; Turn off interrupts
mov ss,ax ; Load same value as DS into SS
mov sp,OFFSET STACK ; Give SP new stack size
sti ; Turn interrupts back on

This example reinitializes SS so that it has the same value as DS, and
adjusts SP to reflect the new stack offset. Microsoft high-level-language
compilers do this so that stack variables in near procedures can be ac-
cessed relative to either SS or DS.

114

Defining Segment Structure

5.5.4 Initializing the ES Register

The ES register is not automatically initialized. If your program uses the
ES register, you must initialize it by moving the appropriate segment
value into the register.

B Example

ASSUME es:@fardata ; Tell the assembler
mov ax,@fardata ; Tell the processor
mov es,ax

5.6 Nesting Segments

Segments can be nested. When MASM encounters a nested segment, it
temporarily suspends assembly of the enclosing segment and begins assem-
bly of the nested segment. When the nested segment has been assembled,
MASM continues assembly of the enclosing segment.

Nesting of segments makes it possible to mix segment definitions in pro-
grams that use simplified segment directives for most segment definitions.
When a full segment definition is given, the new segment is nested in the
simplified segment in which it is defined.

B Example 1

; Macro to print message on the screen
; Uses full segment definitions - segments nested

message MACRO text
LOCAL symbol
_DATA SEGMENT WORD PUBLIC 'DATA'
symbol DB &text
DB 13,10, "s"
_DATA ENDS
mov ah,09%h
mov dx, OFFSET symbol
int 21h
ENDM

_TEXT SEGMENT BYTE PUBLIC 'CODE'

message "Please insert disk"

115

Microsoft Macro Assembler Programmer’s Guide

In the example above, a macro called from inside of the code segment
(_TEXT) allocates a variable within a nested data segment (_DATA). This
has the effect of allocating more data space on the end of the data segment
each time the macro is called. The macro can be used for messages appear-
ing only once in the source code.

® Example 2

; Macro to print message on the screen
; Uses simplified segment directives - segments not nested

message MACRO text
LOCAL symbol
.DATA
symbol DB &text
DB 13,10,"s"
.CODE
mov ah,O%h
mov dx,OFFSET symbol
int 21h
ENDM

.CODE

message '"Please insert disk"

Although Example 2 has the same practical effect as Example 1, MASM
handles the two macros differently. In Example 1, assembly of the outer
(codel) segment is suspended rather than terminated. In Example 2, assem-
bly of the code segment terminates, assembly of the data segment starts
and terminates, and then assembly of the code segment is restarted.

116

DEFINING [ABELS
AND VARIABLES

6.1 Using Type Specifiers.....cccceeeevrveeeeerreeeeecrineeeeennne 119
6.2 Defining Code Labelscccceevveerrenvneerncrnneernnnnne 120
6.2.1 Near Code Labels cccevvueeereneereneneceeeeeeennnnns 120
6.2.2 Procedure Labels ...cccvvveeeeeereeennnneceeeeeeeennnns 121

6.2.3 Code Labels Defined
with the LABEL Directive...uuuueeeeeeeeernnnnnnnn. 122
6.3 Defining and Initializing Data.....ccccceeeerrvueeenennne. 123
— 6.3.1 Variables ceeeeeeeeenieeeeneeeeneeienieeenneereneceennnns 123
6.3.1.1 Integer Variables...ccccceevevereieienenennnes 124
6.3.1.2 Binary Coded Decimal Variables......... 127
6.3.1.3 String Variables...ceceevecriercesacerersasenes 127
6.3.1.4 Pointer Variables ..cccveeerieciecercacnnenes 128
6.3.1.5 Real-Number Variables....ceceevueereenanas 130
6.3.2 Arrays and Buffers...ccccceeueerenneeeencereneeennnns 135
6.3.3 Labeling Variables ...ccceeeeureeereneernnceennnnennnnns 136
6.4 Setting the Location Counter........ccoceeereevuveeennnne 137
6.0 Aligning Data......ccccceereeervvneeeeerneccrrnneeeeesescsnnneens 138

—

Defining Labels and Variables

This chapter explains how to define labels, variables, and other symbols
that refer to instruction and data locations within segments.

The label- and variable-definition directives described in this chapter are
closely related to the segment-definition directives described in Chapter 5,
“Defining Segment Structure.” Segment directives assign the addresses for
segments. The variable-and label-definition directives assign offset
addresses within segments.

The assembler assigns offset addresses for each segment by keeping track
of a value called the location counter. The location counter is incremented
as each source statement is processed so that it always contains the offset
of the location being assembled. When a label or a variable name is
encountered, the current value of the location counter is assigned to the
symbol.

This chapter tells you how to assign labels and most kinds of variables.
(Multifield variables such as structures and records are discussed in
Chapter 7, “Using Structures and Records.”) The chapter also discusses
related directives, including those that control the location counter
directly.

6.1 Using Type Specifiers

Some statements require type specifiers to give the size or type of an
operand. There are two kinds of type specifiers: those that specify the size
of a variable or other memory operand, and those that specify the distance
of a label.

The type specifiers that give the size of a memory operand are listed below
with the number of bytes specified by each:

Specifier Number of Bytes

BYTE
WORD

DWORD
FWORD
QWORD
TBYTE 10

0 O A~ N =

119

Microsoft Macro Assembler Programmer’s Guide

In some contexts, ABS can also be used as a type specifier that indicates
an operand is a constant rather than a memory operand.

The type specifiers that give the distance of a label are listed below:

Specifier Description —
FAR The label references both the segment and offset of the
label.
NEAR The label references only the offset of the label.
PROC The label has the default type &near or far) of the
current memory model. The default size is always near

if you use full segment definitions. If you use simplified
segment definitions (see Section 5.1) the default type is
near for small and compact models or far for medium,
large, and huge models.

Directives that use type specifiers include LABEL, PROC, EXTRN, and
COMM. Operators that use type specifiers include PTR and THIS.

6.2 Defining Code Labels

Code labels give symbolic names to the addresses of instructions in the
code segment. These labels can be used as the operands to jump, call, and
loop instructions to transfer program control to a new instruction. There
are three types of code labels: near labels, procedure labels, and labels
created with the LABEL directive.

6.2.1 Near Code Labels

Near-label definitions create instruction labels that have NEAR type.
These instruction labels can be used to access the address of the label from
other statements.

B Syntax

name: -
The name must not be previously defined in the module and it must be fol-

lowed by a colon (:). Furthermore, the segment containing the definition

must be the one that the assembler currently associates with the CS regis-

ter. The ASSUME directive is used to associate a segment with a segment
register (see Section 5.4, “Associating Segments with Registers”).

120

Defining Labels and Variables

A near label can appear on a line by itself or on a line with an instruction.
The same label name can be used in different modules as long as each label
is only referenced by instructions in its own module. If a label must be
referenced by instructions in another module, it must be given a unique
name and declared with the PUBLIC and EXTRN directives, as
described in Chapter 8, “Creating Programs from Multiple Modules.”

B Examples

cmp ax,5 ; Compare with 5
ja bigger
jb smaller

; Instructions if A X = 5

jmp done
bigger: . ; Instructions if AX > §

jmp done
smaller: . ; Instructions if AX < 5

done:

6.2.2 Procedure Labels

The start of an assembly-language procedure can be defined with the
PROC directive, and the end of the procedure can be defined with the
ENDP directive.

B Syntax

label PROC [NEAR|FAR]
statements

RET [constant]

label ENDP

The 1abel assigns a symbol to the procedure. The distance can be
NEAR or FAR. Any RET instructions within the procedure automati-
cally have the same distance (NEAR or FAR) as the procedure. Pro-
cedures and the RET instruction are discussed in more detail in Section
17.4, “Using Procedures.”

The ENDP directive labels the address where the procedure ends. Every
procedure label must have a matching ENDP label to mark the end of the
procedure. MASM generates an error message if it does not find an
ENDP directive to match each PROC directive.

121

Microsoft Macro Assembler Programmer’s Guide

When the PROC label definition is encountered, the assembler sets the
label’s value to the current value of the location counter and sets its type
to NEAR or FAR. If the label has FAR type, the assembler also sets its
segment value to that of the enclosing segment. If you have specified full
segment definitions, the default distance is NEAR. If you are using
simplified segment definitions, the default distance is the distance associ-
ated with the declared memory model—that is, NEAR for small and com-
pact models or FAR for medium, large, and huge models.

The procedure label can be used in a CALL instruction to direct execu-
tion control to the first instruction of the procedure. Control can be
transferred to a NEAR procedure label from any address in the same seg-
ment as the label. Control can be transferred to a FAR procedure label
from an address in any segment.

Procedure labels must be declared with the PUBLIC and EXTRN direc-
tives if they are located in one module but called from another module, as
described in Chapter 8, “Creating Programs from Multiple Modules.”

B Examples

call task ; Call procedure
task PROC NEAR ; Start of procedure
ret
task ENDP ; End of procedure

6.2.3 Code Labels Defined with the LABEL Directive

The LABEL directive provides an alternative method of defining code
labels.

B Syntax
name LABEL distance

The name is the symbol name assigned to the label. The distance can be a
type specifier such as NEAR, FAR, or PROC. PROC means NEAR or
FAR, depending on the default memory model, as described in Section
4.4, “Starting and Ending Source Files.” You can use the LABEL direc-
tive to define a second entry point into a procedure. FAR code labels can
also be the destination of far jumps or of far calls that use the RETF
instruction (see Section 17.4.2, “Defining Procedures”).

122

Defining Labels and Variables

B Example

task PROC FAR ; Main entry point

taskl LABEL FAR ; Secondary entry point
ret

task ENDP ; End of procedure

6.3 Defining and Initializing Data

The data-definition directives enable you to allocate memory for data. At
the same time, you can specify the initial values for the allocated data.
Data can be specified as numbers, strings, or expressions that evaluate to
constants. The assembler translates these constant values into binary
bytes, words, or other units of data. The encoded data are written to the
object file at assembly time.

6.3.1 Variables

Variables consist of one or more named data objects of a specified size.

B Syntax

[name] directive initializer [,initializer]...

The name is the symbol name assigned to the variable. If no name is
assigned, the data is allocated; but the starting address of the variable has

no symbolic name.

The size of the variable is determined by directive. The directives that can
be used to define single-item data objects are listed below:

Directive Meaning

DB Defines byte

DWwW Defines word (2 bytes)

DD Defines doubleword (4 bytes)

DF Defines farword (6 bytes); normally used only with

80386 processor

123

Microsoft Macro Assembler Programmer’s Guide

DQ Defines quadword (8 bytes)
DT Defines 10-byte variable

The optional initializer can be a constant, an expression that evaluates to
a constant, or a question mark (?). The question mark is the symbol indi-
cating that the value of the variable is undefined. You can define multiple
values by using multiple initializers separated by commas, or by using the
DUP operator, as explained in Section 6.3.2, “Arrays and Buffers.”

Simple data types can allocate memory for integers, strings, addresses, or
real numbers.

6.3.1.1 Integer Variables

When defining an integer variable, you can specify an initial value as an
integer constant or as a constant expression. MASM generates an error if
you specify an initial value too large for the specified variable.

Integer values for all sizes except 10-byte variables are stored in the com-
plement format of the binary two. They can be interpreted as either signed
or unsigned numbers. For instance, the hexadecimal value OFFCD can be
interpreted either as the signed number -51 or the unsigned number
65,485.

The processor cannot tell the difference between signed and unsigned
numbers. Some instructions are designed specifically for signed numbers. It
is the programmer’s responsibility to decide whether a value is to be inter-
preted as signed or unsigned, and then to use the appropriate instructions
to handle the value correctly.

The directives for defining integer varlables are listed below with the sizes
of integer they can define:

Directive Size

DB (bytes) Allocates unsigned numbers from 0 to 255 or
signed numbers from —-128 to 127.

These values can be used directly in 8086-family
instructions.

DW (words) Allocates unsigned numbers from 0 to 65,535 or
signed numbers from -32,768 to 32,767. The

124

Defining Labels and Variables

bytes of a word integer are stored in the format
shown below:

low byte high byte

T

Note that in assembler listings and in most
debuggers (including the CodeView debugger)
the bytes of a word are shown in the opposite
order—high byte first—since this is the way
most people think of numbers. For instance, the
decimal value 1987 is shown as 07C3h in listings
and with the Dump Words (DW) CodeView
command. Internally, the number is stored as
C307h.

Word values can be used directly in 8086-family
instructions. They can also be loaded, used in
calculations, and stored with 8087-family
instructions.

DD (doublewords) Allocates unsigned numbers from 0 to
4,294,967,295 or signed numbers from
-2,147,483,648 to 2,147,483,647. The words of a
doubleword integer are stored in the format
shown below:

low word high word

These 32-bit values (called long integers) can be
loaded, used in calculations, and stored with

125

Microsoft Macro Assembler Programmer’s Guide

126

DF (farwords)

DQ (quadwords)

8087-family instructions. Some calculations can
be done on these numbers directly with 16-bit
8086-family processors; others involve an
indirect method of doing calculations on each
word separately (see Section 16.1, “Adding”).
These long integers can be used directly in cal-
culations with the 80386 processor.

Allocates 6-byte (48-bit) integers.

These values are normally only used as pointer
variables on the 80386 processor (see Section
6.2.1.4).

Allocates 64-bit integers. The doublewords of a
quadword integer are stored in the format
shown below:

low doubleword high doubleword

DT

These values can be loaded, used in calculations,
and stored with 8087-family instructions. You
must write your own routines to use them with
16-bit 8086-family processors. Some calculations
can be done on these numbers directly with the
80386 processor, but others require an indirect
method of doing calculations on each double-
word separately (see Section 16.1, “Adding”).

Allocates 10-byte (80-bit) integers if the D radix
specifier is used.

By default, DT allocates packed BCD (binary
coded decimal) numbers, as described in Section
6.3.1.2, “Binary Coded Decimal Variables.” If
you define binary 10-byte integers, you must
write your own routines to use routines in calcu-
lations.

Defining Labels and Variables

B Example

integer DB 16 ; Initialize byte to 16
expression DW 4x*3 ; Initialize word to 12
empty DQ ? ; Allocate uninitialized long integer
DB 1,2,3,4,5,6 ; Initialize six unnamed bytes
high_byte DD 4294967295 ; Initialize double word to 4, 294,967,295
tb DT 2345d ; Initialize 10-byte binary integer

6.3.1.2 Binary Coded Decimal Variables

Binary coded decimals (BCD) provide a method of doing calculations on
large numbers without rounding errors. They are sometimes used in finan-
cial applications. There are two kinds: packed and unpacked.

Unpacked BCD numbers are stored one digit to a byte, with the value in
the lower four bits. They can be defined with the DB directive. For exam-
ple, an unpacked BCD number could be defined and initialized as shown
below:

unpackedr DB 1,5,
2

2,5,2,9 ; Initialized to 9,252,851
unpackedf DB 9, 2,8 1

; Initialized to 9, 252,851

1,4,

Whether least-significant digits can come either first or last, depends on
how you write the calculation routines that handle the numbers. Calcula-
tions with unpacked BCD numbers are discussed in Section 16.5.1.

Packed BCD numbers are stored two digits to a byte, with one digit in the
lower four bits and one in the upper four bits. The leftmost bit holds the
sign (0 for positive or 1 for negative).

Packed BCD variables can be defined with the DT directive as shown
below:

packed DT 9252851 . Allocate 9,252,851

The 8087-family processors can do fast calculations with packed BCD
numbers, as described in Chapter 19, “Calculating with a Math Coproces-
sor.” The 8086-family processors can also do some calculations with
packed BCD numbers, but the process is slower and more complicated. See
Section 16.5.2 for details.

6.3.1.3 String Variables

Strings are normally initialized with the DB directive. The initializing
value is specified as a string constant. Strings can also be initialized by
specifying each value in the string. For example, the following definitions
are equivalent:

127

Microsoft Macro Assembler Programmer’s Guide

versionl DB 97,98,99 ; As ASCII values
version2 DB 'a','v', 'c’ ; As characters
version3 DB "abc" ; As a string

One- and two-character strings (four-character strings on the 80386) can

also be initialized with any of the other data-definition directives. The last —
(or only) character in the string is placed in the byte with the lowest

address. Either O or the first character is placed in the next byte. The

unused portion of such variables is filled with zeros.

B Examples

function9 DB 'Hello', 13,10, 's"’ ; Use with DOS INT 21h
; function 9

asciiz DB "\ASM\TEST.ASM", O ; Use as ASCIIZ string

message DB "Enter file name: " ; Use with DOS INT 21h

1_message EQU $-message ; function 40h

a_message EQU OFESET message

strl DB "ab" ; Stored as 61 62

str2 DD "ab" ; Stored as 62 61 00 00

str3 DD "a" ; Stored as 61 00O 00 OO

6.3.1.4 Pointer Variables

Pointer variables (or pointers) are variables that contain the address of a

data or code object rather than the object itself. The address in the vari-

able “points” to another address. Pointers can be either near addresses or
far addresses.

Near pointers consist of the offset portion of the address. They can be ini-
tialized in word variables by using the DW directive. Values in near-
address variables can be used in situations where the segment portion of
the address is known to be the current segment.

Far pointers consist of both the segment and offset portions of the address.

They can be initialized in doubleword variables, using the DD directive.
Values in far-address variables must be used when the segment portion of

128

Defining Labels and Variables

the address may be outside the current segment. The segment and offset of
a far pointer are stored in the format shown below:

B Examples

string DB "Text",0 ; Null-terminated string
npstring DW string : Near pointer to "string"
fpstring DD string ; Far pointer to "string"

B 80386 Only

Pointers are different on the 80386 processor if the USE32 use type has
been specified. In this case the offset portion of an address consists of 32
bits, and the segment portion consists of 16 bits. Therefore a near pointer
is 32 bits (a doubleword), and a far pointer is 48 bits (a farword). The seg-
ment and offset of a 32-bit-mode far pointer are stored in the format
shown below:

segment

® Example

_DATA SEGMENT WORD USE32 PUBLIC 'DATA'

string DB "Text",O ; Null-terminated string

npstring DD string ; Near (32-bit) pointer to '"string"
fpstring DF string ; Far (48-bit) pointer to "string"
_DATA ENDS

129

Microsoft Macro Assembler Programmer’s Guide

6.3.1.5 Real-Number Variables

Real numbers must be stored in binary format. However, when initializing
variables, you can specify decimal or hexadecimal constants and let the
assembler automatically encode them into their binary equivalents.
MASM can use two different binary formats for real numbers: IEEE or

Microsoft Binary. You can specify the format by using directives (IEEE is
the default).

This section tells you how to initialize real-number variables, describes the
two binary formats, and explains real-number encoding.

Initializing and Allocating Real-Number Variables

Real numbers can be defined by initializing them either with real-number
constants or with encoded hexadecimal constants. The real-number desig-

nator (R) must follow numbers specified in encoded format.

The directives for defining real numbers are listed below with the sizes of
the numbers they can allocate:

Directive Size

DD Allocates short (32-bit) real numbers in either the IEEE ”
or Microsoft Binary format.

DQ Allocates long (64-bit) real numbers in either the IEEE

or Microsoft Binary format.

DT Allocates temporary or 10-byte (80-bit) real numbers.
The format of these numbers is similar to the IEEE for-
mat. They are always encoded the same regardless of
the real-number format. Their size is nonstandard and
incompatible with Microsoft high-level languages.
Temporary-real format is provided for those who want
to initialize real numbers in the format used internally
by 8087-family processors.

The 8086-family microprocessors do not have any instructions for handling
real numbers. You must write your own routines, use a library that
includes real-number calculation routines, or use a coprocessor. The 8087-
family coprocessors can load real numbers in the IEEE format; they can
also use the values in calculations and store the results back to memory, as
explained in Chapter 19, “Calculating with a Math Coprocessor.”

130

Defining Labels and Variables

B Examples

shrt DD 98.6 ; MASM automatically encodes
long DQ 5.391E-4 H in current format
ten_byte DT -7.31E7
eshrt DD 87453333r ; 98.6 encoded in Microsoft
; Binary format
elong DQ 3F41AA4C6F445B7Ar ; 5.391E-4 encoded in IEEE format

The real-number designator (R) used to specify encoded numbers is
explained in Section 4.3.2, “Packed Binary Coded Decimal Constants.”

Selecting a Real-Number Format

MASM can encode four- and eight-byte real numbers in two different for-
mats: IEEE and Microsoft Binary. Your choice depends on the type of pro-
gram you are writing. The four primary alternatives are listed below:

1.

If your program requires a coprocessor for calculations, you must
use the IEEE format.

Most high-level languages use the IEEE format. If you are writing
modules that will be called from such a language, your program
should use the IEEE format. All versions of the C, FORTRAN, and

Pascal compilers sold by Microsoft and IBM use the IEEE format.

If you are writing a module that will be called from most previous
versions of Microsoft or IBM BASIC, your program should use the
Microsoft Binary format. Versions that support only the Microsoft
Binary format include:

e Microsoft QuickBASIC through Version 2.01

e Microsoft BASIC Compiler through Version 5.3
e IBM BASIC Compiler through Version 2.0

e Microsoft GW-BASIC interpreter (all versions)
e IBM BASICA interpreter (all versions)

Microsoft QuickBASIC Version 3.0 supports both the Microsoft
Binary and IEEE formats as options.

Future versions of Microsoft QuickBASIC and the BASIC compiler
will support only the IEEE format.

If you are creating a stand-alone program that does not use a
coprocessor, you can choose either format. The IEEE format is
better for overall compatibility with high-level languages. Also, the
CodeView debugger can display only real numbers in the IEEE for-
mat. The Microsoft Binary format may be necessary for compati-
bility with existing source code.

131

Microsoft Macro Assembler Programmer’s Guide

Note

When you interface assembly-language modules with high-level
languages, the real-number format only matters if you initialize real-
number variables in the assembly module. If your assembly module
does not use real numbers, or if all real numbers are initialized in the
high-level-language module, the real-number format does not make
any difference.

By default, MASM assembles real-number data in the IEEE format. This
is a change from previous versions of the assembler, which used the Micro-
soft Binary format by default. If you wish to use the Microsoft Binary for-
mat, you must put the MSFLOAT directive at the start of your source
file before initializing any real-number variables (see Section 4.5.1, “Start-
ing and Ending Source Files”).

Real-Number Encoding

The IEEE format for encoding four- and eight-byte real numbers is illus-
trated in Figure 6.1.

Figure 6.1 Encoding for Real Numbers in IEEE Format

132

Defining Labels and Variables

The parts of the real numbers are described below:

1. Sign bit (0 for positive or 1 for negative) in the upper bit of the
first byte.

2. Exponent in the next bits in sequence (8 bits for short real number
or 11 bits for long real number).

3. All except the first set bit of mantissa in the remaining bits of the
variable. Since the first significant bit is known to be set, it need
not be actually stored. The length is 23 bits for short real numbers
and 52 bits for long real numbers.

The Microsoft Binary format for encoding real numbers is illustrated in
Figure 6.2.

Figure 6.2 Encoding for Real Numbers in Microsoft Binary Format

The three parts of real numbers are described below:

1. Biased exponent (8 bits) in the high-address byte. The bias is 81h
for short real numbers and 401h for long real numbers.

2. Sign bit (0 for positive or 1 for negative) in the upper bit of the
second-highest byte.

133

Microsoft Macro Assembler Programmer’s Guide

3. All except the first set bit of mantissa in the remaining 7 bits of the
'second-highest byte and in the remaining bytes of the variable.
Since the first significant bit is known to be set, it need not be
actually stored. The length is 23 bits for short real numbers and 55
bits for long real numbers.

MASM also supports the 10-byte temporary-real format used internally
by 8087-family coprocessors. This format is similar to IEEE format. The
size is nonstandard and is not used by Microsoft compilers or interpreters.
Since the coprocessors can load and automatically convert numbers in the
more standard 4- and 8-byte formats, the 10-byte format is seldom used in
assembly-language programming.

The temporary-real format for encoding real numbers is illustrated in Fig-
ure 6.3.

Figure 6.3 Encoding for Real Numbers in Temporary-Real Format

The four parts of the real numbers are described below:
1. Sign bit (0 for positive or 1 for negative) in the upper bit of the
first byte.
Exponent in the next bits in sequence (15 bits for 10-byte real).
The integer part of mantissa in the next bit in sequence (bit 63).
Remaining bits of mantissa in the remaining bits of the variable.
The length is 63 bits.

Notice that the 10-byte temporary-real format stores the integer part of
the mantissa. This differs from the 4- and 8-byte formats, in which the
integer part is implicit.

134

Defining Labels and Variables

6.3.2 Arrays and Buffers

Arrays, buffers, and other data structures consisting of multiple data
objects of the same size can be defined with the DUP operator. This
operator can be used with any of the data-definition directives described in
this chapter.

B Syntax
count DUP (initialvalue[,initialvalue]...)
The count sets the number of times to define ¢nitialvalue. The initial value
can be any expression that evaluates to an integer value, a character con-
stant, or another DUP operator. It can also be the undefined symbol (?) if
there is no initial value.
Multiple initial values must be separated by commas. If multiple values
are specified within the parentheses, the sequence of values is allocated
count times. For example, the statement

DB 5 DUP ("Text ")
allocates the string "Text " five times for a total of 20 bytes.
DUP operators can be nested up to 17 levels. The initial value (or values)

must always be placed within parentheses.

B Examples

array DD 10 DUP (1) ; 10 doublewords
; initialized to 1
buffer DB 256 DUP (?) ; 256 byte buffer
masks DB 20 DUP (040Oh,020h,04h,02h) ; 80 byte buffer
: with bit masks
DB 32 DUP ("I am here ") ; 320 byte buffer with
; signature for debugging
three_d DD S DUP (5 DUP (5 DUP (O))) . 125 doublewords

initialized to O

1356

Microsoft Macro Assembler Programmer’s Guide

Note

MASM sometimes generates different object code when the DUP
operator is used rather than when multiple values are given. For exam-
ple, the statement

testl DB ?2,?2,2,?2,?2 ; Indeterminate

is “indeterminate.” It causes MASM to write five zero-value bytes to
the object file. The statement

test2 DB 5 DUP (?) . Undefined

is “undefined.” It causes MASM to increase the offset of the next
record in the object file by five bytes. Therefore an object file created
with the first statement will be larger than one created with the second
statement.

In most cases, the distinction between indeterminate and undefined
definitions is trivial. The linker adjusts the offsets so that the same
executable file is generated in either case. However, the difference is
significant in segments with the COMMON combine type. If COM-
MON segments in two modules contain definitions for the same vari-
able, one with an indeterminate value and one with an explicit value,
the actual value in the executable file varies depending on link order. If
the module with the indeterminate value is linked last, the O initialized
for it overrides the explicit value. You can prevent this by always using
undefined rather than indeterminate values in COMMON segments.
For example, use the first of the following statements:

test3 DB 1 DUP (?) . Undefined - doesn't initialize
test4 DB ? ; Indeterminate - initializes O

If you use the undefined definition, the explicit value is always used in
the executable file regardless of link order.

6.3.3 Labeling Variables

The LABEL directive can be used to define a variable of a given size at a
specified location. It is useful if you want to refer to the same data as vari-
ables of different sizes.

136

—

Defining Labels and Variables

B Syntax

name LABEL type

The name is the symbol assigned to the variable, and type is the variable
size. The type can be any one of the following type specifiers: BY TE,

WORD, DWORD, FWORD, QWORD, or TBYTE. It can also be the
name of a previously defined structure.

® Examples

warray LABEL WORD ; Access array as 50 words
darray LABEL DWORD . Access same array as 25 doublewords
barray DB 100 DUP(?) . Access same array as 100 bytes

6.4 Setting the Location Counter

The location counter is the value MASM maintains to keep track of the
current location in the source file. The location counter is incremented
automatically as each source statement is processed. However, the location
counter can be set specifically using the ORG directive.

B Syntax

ORG expression

Subsequent code and data offsets begin at the new offset specified set by
expression. The expression must resolve to a constant number. In other

words, all symbols used in the expression must be known on the first pass
of the assembler.

Note

The value of the location counter, represented by the dollar sign ($),
can be used in ezpression, as described in Section 9.3, “Using the Loca-
tion Counter.”

137

Microsoft Macro Assembler Programmer’s Guide

B Example 1

; Labeling absolute addresses

STUEF SEGMENT AT O ; Segment has constant value O

ORG 410h ; Offset has constant value 410h
equipment LABEL WORD ; Value at 0000:0410 labeled "equipment"

ORG 417h ; Offset has constant value 417h
keyboard LABEL WORD ; Value at 0000:0417 labeled 'keyboard"
STUFF ENDS

.CODE

ASSUME ds :STUFF ; Tell the assembler

mov ax, STUFF ; Tell the processor

mov ds, ax

mov dx, equipment

mov keyboard, ax

Example 1 illustrates one way of assigning symbolic names to absolute
addresses. This technique is not possible under protected-mode operating
systems.

B Example 2

. Format for .COM files

_TEXT SEGMENT
ASSUME cs:_TEXT,ds:_TEXT,ss:_TEXT, es:_TEXT
ORG 100h ; Skip 100h bytes of DOS header
entry: jmp begin ; Jump over data
variable DW ? ; Put more data here
begin: : ;> First line of code
. ; Put more code here
_TEXT ENDS

END entry

Example 2 illustrates how the ORG directive is used to initialize the
starting execution point in .COM files.

6.5 Aligning Data

Some operations are more efficient when the variable used in the operation
is lined up on a boundary of a particular size. The ALIGN and EVEN
directives can be used to pad the object file so that the next variable is
aligned on a specified boundary.

138

Defining Labels and Variables

B Syntax 1
EVEN
B Syntax 2

ALIGN number

The EVEN directive always aligns on the next even byte. The ALIGN
directive aligns on the next byte that is a multiple of number. The number
must be a power of 2. For example, use ALIGN 2 or EVEN to align on
word boundaries, or use ALIGN 4 to align on doubleword boundaries.

If the value of the location counter is not on the specified boundary when
an ALIGN directive is encountered, the location counter is incremented
to a value on the boundary. NOP Sno operation) instructions are gen-
erated to pad the object file. If the location counter is already on the boun-
dary, the directive has no effect.

The ALIGN and EVEN directives give no efficiency improvements on
processors that have an 8-bit data bus (such as the 8088 or 80188). These
processors always fetch data one byte at a time, regardless of the align-
ment. However, using EVEN can speed certain operation on processors
that have a 16-bit data bus (such as the 8086, 80186, or 80286), since the
processor can fetch a word if the data is word aligned, but must do two
memory fetches if the data is not word aligned. Similarly, using ALIGN 4
can speed some operatlons with a 80386 processor, since the processor can
fetch four bytes at a time if the data is doubleword aligned.

Note

The ALIGN directive is a new feature of Version 5.0 of the Microsoft
Macro Assembler. In previous versions, data could be word aligned by
using the EVEN directive, but other alignments could not be
specified.

The EVEN directive should not be used in segments with BYTE
align type. Similarly, the number specified with the ALIGN directive
should be at least equal to the size of the align type of the segment
where the directive 1s given.

139

Microsoft Macro Assembler Programmer’s Guide

® Example

DOSSEG
.MODEL
.STACK
.DATA

ALIGN
stuff DwW

ALIGN
evenstuff DwW
.CODE
start: mov
mov
mov

mov
mov
mov
ALIGN
mloop: lodsw
inc
and
stosw
loop

small
100h

4
66,124,573,99,75

4
?2,?2,2.2.,7?
2,2,2,2,7

ax,@data
ds,ax
es,ax

cx,5
si,OFFSET stuff

4

ax
ax,NOT 1

mloop

.

For faster data access

. For faster data access

; Load segment location

,

into DS
and ES registers

Load count

; Point to source
di,OFFSET evenstuff;

’

’

and destination
Align for faster loop access

; Load a word

; Make it even by incrementing

and turning off first bit

. Store
; Again

In this example, the words at stuff and evenstuff are forced to dou-
bleword boundaries. This makes access to the data faster with processors
that have either a 32-bit or 16-bit data bus. Without this alignment, the
initial data might start on an odd boundary and the processor would have
to fetch half of each word at a time with a 16-bit data bus or half of each
doubleword with a 32-bit data bus.

Similarly, the alignment in the code segment speeds up repeated access to
the code at the start of the loop. The sample code sacrifices program size

in order to achieve significant speed improvements on the 80386 and more
moderate improvements on the 8086 and 80286. There is no speed advan-

tage on the 8088.

140

USING STRUCTURES
AND RECORDS

7.1 SEIUCLUTES ...evvveeeeeeeeciieeeeeeeeeeieeeeeeeeeerreeeeeeeeeeens 143
7.1.1 Declaring Structure Types...ccceeevurererereennnns 143
7.1.2 Defining Structure Variables......c.cccevurennnns 145
7.1.3 Using Structure Operandsc.cecevvvveeeennnen. 146
7.2 ReCOTdS..ccciiiiiiiiitirirrrtrreeeeeeeeee e 147
7.2.1 Declaring Record Types..cceceeueeeeuneeeneneennnns 148
7.2.2 Defining Record Variablescccevvvereeernnnnens 150
7.2.3 Using Record Operands
and Record Variables....cccceeerervueeeerennnnnenns 151
7.2.4 Record Operators....cceeeeerreeeereceerneeenneneenenns 153
7.2.4.1 The MASK Operator...c.cceeeeeecerersecnnes 153
7.2.4.2 The WIDTH Operator ccceceeveeveencnnnnns 153

7.2.5 Using Record-Field Operands........cccecvvvueen... 154

—_—

Using Structures and Records

The Macro Assembler can define and use two kinds of multifield variables:
structures and records.

Structures are templates for data objects made up of smaller data objects.
A structure can be used to define structure variables, which are made up
of smaller variables called fields. Fields within a structure can be different
sizes, and each can be accessed individually.

Records are templates for data objects whose bits can be described as
groups of bits called fields. A record can be used to define record variables.
Each bit field in a record variable can be used separately in constant
operands or expressions. The processor cannot access bits individually at
run time, but bit fields can be used with logical bit instructions to change
bits indirectly.

This chapter describes structures and records and tells how to use them.

7.1 Structures

A structure variable is a collection of data objects that can be accessed
symbolically as a single data object. Objects within the structure can have
different sizes and can be accessed symbolically.

There are two steps in using structure variables:

1. Declare a structure type. A structure type is a template for data. It
declares the sizes and, optionally, the initial values for objects in
the structure. By itself the structure type does not define any data.
The structure type is used by MASM during assembly but is not
saved as part of the object file.

2. Define one or more variables having the structure type. For each
variable defined, memory is allocated to the object file in the for-
mat declared by the structure type.

The structure variable can then be used as an operand in assembler state-
ments. The structure variable can be accessed as a whole by using the
structure name, or individual fields can be accessed by using structure and
field names.

7.1.1 Declaring Structure Types

The STRUC and ENDS directives mark the beginning and end of a type
declaration for a structure.

143

Microsoft Macro Assembler Programmer’s Guide

B Syntax

name STRUC

fielddeclarations

name ENDS

The name declares the name of the structure type. It must be unique. The
fielddeclarations declare the fields of the structure. Any number of field
declarations may be given. They must follow the form of data definitions
described in Section 6.3, “Defining and Initializing Data.” Default initial
values may be declared individually or with the DUP operator.

The names given to fields must be unique within the source file where they
are declared. When variables are defined, the field names will represent the
offset from the beginning of the structure to the corresponding field.

When declaring strings in a structure type, make sure the initial values are
long enough to accommodate the largest possible string. Strings smaller
than the field size can be placed in the structure variable, but larger
strings will be truncated.

A structure declaration can contain field declarations and comments.
Starting with Version 5.0 of the Macro Assembler, conditional-assembly
statements are allowed in structure declarations. No other kinds of state-
ments are allowed. Since the STRUC directive is not allowed inside struc-
ture declarations, structures cannot be nested.

Note

The ENDS directive that marks the end of a structure has the same
mnemonic as the ENDS directive that marks the end of a segment.
The assembler recognizes the meaning of the directive from context.
Make sure each SEGMENT directive and each STRUC directive has
its own ENDS directive.

B Example

student STRUC ; Structure for student records

id DW ? ; Field for identification # -
sname DB "Last, First Middle "

scores DB 10 DUP (100) ; Field for 10 scores

student ENDS

Within the sample structure student, the fields id, sname, and scores
have the offset values 0, 2, and 24, respectively.

144

Using Structures and Records

7.1.2 Defining Structure Variables

A structure variable is a variable with one or more fields of different sizes.
The sizes and initial values of the fields are determined by the structure
type with which the variable is defined.

B Syntax
[name] structurename <[initialvalue [,initialvalue...]] >

The name is the name assigned to the variable. If no name is given, the
assembler allocates space for the variable, but does not give it a symbolic
name. The structurename is the name of a structure type previously
declared by using the STRUC and ENDS directives.

An imitialvalue can be given for each field in the structure. Its type must
not be incompatible with the type of the corresponding field. The angle
brackets (<< >) are required even if no initial value is given. If initial-
values are given for more than one field, the values must be separated by
commas.

If the DUP operator (see Section 6.3.2, “Arrays and Buffers”) is used to
initialize multiple structure variables, only the angle brackets and initial
values, if given, need to be enclosed in parentheses. For example, you can
define an array of structure variables as shown below:

war date 365 DUP (<,,1940>)

You need not initialize all fields in a structure. If an initial value is left
blank, the assembler automatically uses the default initial value of the
field, which was originally determined by the structure type. If there is no
default value, the field is undefined.

B Examples

The following examples use the student type declared in the first exam-
ple in Section 7.1.1, “Declaring Structure Types”:

sl student <> ; Uses default values of type

s2 student <1467, "White, Robert D.",>
; Override default values of first two
fields--use default value of third

sarray student 100 DUP (<>) : Declare 100 student variables
: with default initial values

145

Microsoft Macro Assembler Programmer’s Guide

Note

You cannot initialize any structure field that has multiple values if this
field was given a default initial value when the structure was declared.
For example, assume the following structure declaration:

stuff STRUC

buffer DB 100 DUP (?) ; Can't override

crlf DB 13,10 ; Can't override

query DB 'Filename: ; String <= can override
endmark DB 36 ; Can override

stuff ENDS

The buffer and crlf fields cannot be overridden by initial values in
the structure definition because they have multiple values. The query
field can be overridden as long as the overriding string is no longer
than query (10 bytes). A longer string would generate an error. The
endmark field can be overridden by any byte value.

7.1.3 Using Structure Operands

Like other variables, structure variables can be accessed by name. Fields
within structure variables can also be accessed by using the syntax shown
below:

B Syntax

variable.freld

The variable must be the name of a structure (or an operand that resolves
to the address of a structure). The field must be the name of a field within
that structure. The variable 1s separated from field by a period. The period
is discussed as a structure field-name operator in Section 9.2.1.2.

The address of a structure operand is the sum of the offsets of variable and

field. The address is relative to the segment or group in which the variable
is declared.

146

Using Structures and Records

B Examples

date STRUC ; Declare structure
month DB ?
day DB ?
year Dw ?
date ENDS
.DATA
yesterday date <9,30,1987> ; Declare structure
today date <10,1,1987> ; variables
tomorrow date <10, 2,1987>
.CODE
mov al,yesterday.day ; Use structure variables
mov ah, today.month N as operands
mov tomorrow.year, dx
mov bx,OFFSET yesterday ; Load structure address
mov ax, [bx] .month ; Use as indirect operand

7.2 Records

A record variable is a byte or word variable in which specific bit fields can
be accessed symbolically. Records can be doubleword variables with the
80386 processor. Bit fields within the record can have different sizes.

There are two steps in declaring record variables:

1. Declare a record type. A record type is a template for data. It
declares the sizes and, optionally, the initial values for bit fields in
the record. By itself the record type does not define any data. The
record type is used by MASM during assembly but is not saved as
part of the object file.

2. Define one or more variables having the record type. For each vari-
able defined, memory is allocated to the object file in the format
declared by the type.

The record variable can then be used as an operand in assembler state-
ments. The record variable can be accessed as a whole by using the record
name, or individual fields can be specified by using the record name and a
field name combined with the field-name operator. A record type can also
be used as a constant (immediate data).

147

Microsoft Macro Assembler Programmer’s Guide

7.2.1 Declaring Record Types

The RECORD directive declares a record type for an 8- or 16-bit record
that contains one or more bit fields. With the 80386, 32-bit records can
also be declared.

B Syntax

recordname RECORD field [,field...]

The recordname is the name of the record type to be used when creating
the record. The field declares the name, width, and initial value for the

field.

The syntax for each field is shown below:

B Syntax
fieldname:width[= expression]

The fieldname is the name of a field in the record, width is the number of
bits in the field, and ezpression is the initial (or default) value for the field.

Any number of field combinations can be given for a record, as long as
each is separated from its predecessor by a comma. The sum of the widths
for all fields must not exceed 16 bits.

The width must be a constant. If the total width of all declared fields is
larger than eight bits, then the assembler uses two bytes. Otherwise, only
one byte is used.

80386 Only

Records can be up to 32 bits in width when the 80386 processor is
enabled with .386. If the total width is 8 bits or less, the assembler
uses 1 byte; if the width is 9 to 16 bytes, the assembler uses 2 bytes;
and if the width is larger than 16 bits, the assembler uses 4 bytes.

If expression is given, it declares the initial value for the field. An error
message Is generated if an initial value is too large for the width of its
field. If the field is at least seven bits wide, you can use an ASCII character
for expression. The expression must not contain a forward reference to any
symbol.

148

Using Structures and Records

In all cases, the first field you declare goes into the most significant bits of
the record. Successively declared fields are placed in the succeeding bits to
the right. If the fields you declare do not total exactly 8 bits or exactly 16

bits, the entire record is shifted right so that the last bit of the last field is
the lowest bit of the record. Unused bits in the high end of the record are

initialized to O.

B Example 1

color RECORD blink:1,back:3,intense:1, fore:3

The example above creates a byte record type color having four fields:
blink, back, intense, and fore. The contents of the record type are
shown below:

Since no initial values are given, all bits are set to 0. Note that this is only
a template maintained by the assembler. No data are created.

B Example 2

Ccw RECORD r1:3=0,ic:1=0,rc:2=0,pc:2=3,r2:2=1,masks:6=63
Example 2 creates a record type cw having six fields. Each record declared

by using this type occupies 16 bits of memory. The bit diagram below
shows the contents of the record type:

149

Microsoft Macro Assembler Programmer’s Guide

Default values are given for each field. They can be used when data is
declared for the record.

7.2.2 Defining Record Variables

A record variable is an 8-bit or 16-bit variable whose bits are divided into
one or more fields. With the 80386, 32-bit variables are also allowed.

® Syntax
[name] recordname < [initialvalue [,initialvalue...]] >

The name is the symbolic name of the variable. If no name is given, the
assembler allocates space for the variable, but does not give it a symbolic

name. The recordname is the name of a record type that was previously
declared by using the RECORD directive.

An initialvalue for each field in the record can be given as an integer, char-
acter constant, or an expression that resolves to a value compatible with
the size of the field. Angle brackets (< >) are required even if no initial
value is given. If initial values for more than one field are given, the values
must be separated by commas.

If the DUP operator (see Section 6.3.2, “Arrays and Buffers”) is used to
initialize multiple record variables, only the angle brackets and initial
values, if given, need to be enclosed in parentheses. For example, you can
define an array of record variables as shown below:

xXmas color 50 DUP (<1,2,0,4>)

You do not have to initialize all fields in a record. If an initial value is left
blank, the assembler automatically uses the default initial value of the
field. This is declared by the record type. If there is no default value, each
bit in the field is cleared.

Sections 7.2.3, “Using Record Operands and Record Variables,” and 7.2.4,
“Record Operators,” illustrate ways to use record data after it has been
declared.

B Examples

color RECORD blink:1,back:3,intense:1, fore:3 ; Record declaration
warning color <1,0,1,4> ; Record definition

The definition above creates a variable named warning whose type is

given by the record type color. The initial values of the fields in the vari-
able are set to the values given in the record definition. The initial values

150

Using Structures and Records

would override the default record values, had any been given in the
declaration. The contents of the record variable are shown below:

® Example 2

color RECORD blink:1,back:3,intense:1, fore:3 ; Record declaration
colors color 16 DUP (<>) ; Record declaration

Example 2 creates an array named colors containing 16 variables of type
color. Since no initial values are given in either the declaration or the
definition, the variables have undefined (0) values.

® Example 3

cw RECORD r1:3=0,1ic:1=0,rc:2=0,pc:2=3,r2:2=1, masks:6=63
newcw cw <,.2,..>

Example 3 creates a variable named newcw with type cw. The default
values set in the type declaration are used for all fields except the pc field.
This field is set to 2. The contents of the variable are shown below:

7.2.3 Using Record Operands and Record Variables

A record operand refers to the value of a record type. It should not be con-
fused with a record variable. A record operand is a constant; a record vari-
able is a value stored in memory. A record operand can be used with the
following syntax:

151

Microsoft Macro Assembler Programmer’s Guide

B Syntax
recordname <[[value][,value...]]>

The recordname must be the name of a record type declared in the source
file. The optional value is the value of a field in the record. If more than
one value 1s given, each value must be separated by a comma. Values can
include expressions or symbols that evaluate to constants. The enclosing
angle brackets (< >) are required, even if no value is given. If no value
for a field is given, the default value for that field is used.

B Example

.DATA
color RECORD blink:1,back:3,intense:1, fore:3 ; Record declaration
window color <0,6,1,6> ; Record definition
.CODE
I;IOV ah,color <O,3,0,2> Load record operand

: (constant value 32h)
mov bh, window ; Load record variable
; (memory value 6Eh)

In this example, the record operand color <O, 3,0, 2> and the record
variable warning are loaded into registers. The contents of the values are
shown below:

152

Using Structures and Records

7.2.4 Record Operators

The WIDTH and MASK operators are used exclusively with records to
return constant values representing different aspects of previously declared
records.

7.2.4.1 The MASK Operator

The MASK operator returns a bit mask for the bit positions in a record
occupied by the given record field. A bit in the mask contains a 1 if that
bit corresponds to a field bit. All other bits contain 0.

B Syntax

MASK {recordfieldname | record}

The recordfieldname may be the name of any field in a previously defined
record. The record may be the name of any previously defined record. The

NOT operator is sometimes used with the MASK operator to reverse the
bits of a mask.

® Example

.DATA
color RECORD blink:1,back:3,intense:1, fore:3
message color <0,5,1,1>
.CODE
mov ah,message ; Load initial 0101 1001
and ah, NOT MASK back ; Turn off AND 1000 1111
: "pback" =00 —--ee——e-
; 0000 1001
or ah,MASK blink ; Turn on OR 1000 0000
: "blink" _________
: 1000 1001
xor ah,MASK intense ; Toggle XOR OO0OO 1000
; "intense" —————————
1000 0001

7.2.4.2 The WIDTH Operator

%‘he WID TH operator returns the width (in bits) of a record or record
eld.

153

Microsoft Macro Assembler Programmer’s Guide

B Syntax
WIDTH { recordfieldname | record}

The recordfieldname may be the name of any field defined in any record.
The record may be the name of any defined record.

Note that the width of a field is the number or bits assigned for that field;
the value of the field is the starting position (from the right) of the field.

B Examples

.DATA
color RECORD blink:1,back:3,intense:1, fore:3
wblink EQU WIDTH blink ; "wblink" =1 "blink" =7
wback EQU WIDTH back ; "wback" =3 '"back" =4
wintense EQU WIDTH intense ; "wintense" = 1 '"intense" = 3
wfore EQU WIDTH fore ; "wfore" =3 "fore" =0
wcolor EQU WIDTH color ; "wcolor" =38
prompt color <1,5,1,1>

.CODE

IF (WIDTH color) GE 8 ; If color is 16 bit, load

mov ax,prompt ; intc 16-bit register

ELSE ; else

mov al,prompt ; load into low 8-bit register

xor ah,ah ; and clear high 8-bit register

ENDIF

7.2.5 Using Record-Field Operands

Record-field operands represent the location of a field in its corresponding
record. The operand evaluates to the bit position of the low-order bit in
the field and can be used as a constant operand. The field name must be
from a previously declared record.

Record-field operands are often used with the WIDTH and MASK opera-
tors, as described in Sections 7.2.4.1 and 7.2.4.2.

B Example

.DATA
color RECORD blink:1,back:3,intense:1, fore:3 ; Record declaration
cursor color <1,5,1,1> ; Record definition

.CODE

154

Using Structures and Records

; Rotate "back" of "cursor'" without changing other values

mov al,cursor

mov ah,al

and al,NOT MASK back
mov cl, back

shr ah,cl

inc ah

shl ah,cl

and ah,MASK back

or ah, al

mov cursor, ah

L N

.
’
’
’
.
.
.

Load value from memory
Save a copy for work
Mask out old bits

to save old cursor

Load bit position
Shift to right
Increment

Shift left again
Mask off extra bits
to get new cursor

; Combine old and new

; Write back to memory

and

and

or

1101 100l1=ah/al
1000 111l1=mask

1000 1001=al

0000 1101=ah
0000 1110=ah

1110 O00O0=ah
0111 OOOO=mask

1110 1001 ah

This example illustrates several ways in which record fields can be used as

operands and in expressions.

1556

CREATING PROGRAMS

FROM MULTIPLE MODULES
8.1 Declaring Symbols Publicccccceeeveeeerveeennennnee. 160
8.2 Declaring Symbols External........cccccveeiiiennnnneen. 161
8.3 Using Multiple Modules.........ccceeeeevrrreeeeeeeecnnnnenn. 164
8.4 Declaring Symbols Communalccccccuuuuneeen. 165

8.5 Specifying Library Files......ccccceeveevuveeiecnreenennnn. 169

P

Creating Programs from Multiple Modules

Most medium and large assembly-language programs are created from
several source files or modules. When several modules are used, the scope
of symbols becomes important. This chapter discusses the scope of sym-
bols and explains how to declare global symbols that can be accessed from
any module. It also tells you how to specify a module that will be accessed
from a library.

Symbols such as labels and variable names can be either local or global in
scope. By default, all symbols are local; they are specific to the source file
in which they are defined. Symbols must be declared global if they must
be accessed from modules other than the one in which they are defined.

To declare symbols global, they must be declared public in the source
module in which they are defined. They must also be declared external in
any module that must access the symbol. If the symbol represents unini-
tialized data, it can be declared communal—meaning that the symbol is
both public and external. The PUBLIC, EXTRN, and COMM direc-
tives are used to declare symbols public, external, and communal, respec-
tively.

Notes

The term “local” has a different meaning in assembly language than in
many high-level languages. Often, local symbols in compiled languages
are symbols that are known only within a procedure (called a function,
routine, subprogram, or subroutine, depending on the language). Local
symbols of this type cannot be declared by MASM, although pro-
cedures can be written to allocate local symbols dynamically at run
time, as described in Section 17.4.4, “Using Local Variables.”

By default, the assembler converts all lowercase letters in names
declared with the PUBLIC, EXTRN, and COMM directives to
uppercase letters before copying the name to the object file. The /ML
and /MX options can be used in the MASM command line to direct
the assembler to preserve lowercase letters when copying public and
external symbols to the object file. This should be done when prepar-
ing assembler modules to be linked with modules from case-sensitive
languages such as C.

159

Microsoft Macro Assembler Programmer’s Guide

8.1 Declaring Symbols Public

The PUBLIC directive is used to declare symbols public so that they can
be accessed from other modules. If a symbol is not declared public, the
symbol name is not written to the object file. The symbol has the value of
its offset address during assembly, but the name and address are not avail-
able to the linker.

If the symbol is declared public, its name is associated with its offset
address in the object file. During linking, symbols in different modules—
but with the same name—are resolved to a single address.

Public symbol names are also used by some symbolic debuggers (such as
SYMDERB) to associate addresses with symbols. However, variables and
labels do not need to be declared public in order to be visible in the Code-
View debugger.

B Syntax
PUBLIC name [,name]...

The name must be the name of a variable, label, or numeric equate defined
within the current source file. PUBLIC declarations can be placed any-
where in the source file. Equate names, if given, can only represent 1- or
2-byte integer or string values. Text macros (or text equates) cannot be
declared public.

Note

Although absolute symbols can be declared public, aliases for public
symbols should be avoided, since they may decrease the efficiency of
the linker. For example, the following statements would increase pro-
cessing time for the linker:

PUBLIC 1lines ; Declare absolute symbol public
lines EQU rows ; Declare alias for lines
rows EQU 25 ; Assign value to alias

160

Creating Programs from Multiple Modules

® Example

PUBLIC true,status, first,clear
.MODEL. small

true EQU -1
.DATA

status DB 1
.CODE

first LABEL FAR

clear PROC

clear Ié:NDP

8.2 Declaring Symbols External

If a symbol undeclared in a module must be accessed by instructions in
that module, it must be declared with the EXTRIN directive.

This directive tells the assembler not to generate an error, even though the
symbol is not in the current module. The assembler assumes that the sym-
bol occurs in another module. However, the symbol must actually exist
and must be declared public in some module. Otherwise, the linker gen-
erates an error.

B Syntax
EXTRN name:type [,name:type]...

The EXTRN directive defines an external variable, label, or symbol of the
specified name and type. The type must match the type given to the item
in its actual definition in some other module. It can be any one of the fol-
lowing:

Description Types

Distance specifier NEAR, FAR, or PROC

Size specifier BYTE, WORD, DWORD, FWORD,
QWORD, or TBYTE

Absolute ABS

161

Microsoft Macro Assembler Programmer’s Guide

The ABS type is for symbols that represent constant numbers, such as
equates declared with the EQU and = directives (see Section 11.1, “Using
Equates”).

The PROC type represents the default type for a procedure. For pro-
grams that use simplified segment directives, the type of an external sym-
bol declared with PROC will be near for small or compact model, or far
for medium, large, or huge model. Section 5.1.3, “Defining the Memory
Model,” tells you how to declare the memory model using the MODEL
directive. If full segment definitions are used, the default type represented
by PROC is always near.

Although the actual address of an external symbol is not determined until
link time, the assembler assumes a default segment for the item, based on
where the EXTRN directive is placed in the source code. Placement of
EXTRN directives should follow these rules.

e NEAR code labels (such as procedures) must be declared in the
code segment from which they-are accessed.

e FAR code labels can be declared anywhere in the source code. It
may be convenient to declare them in the code segment from which
they are accessed if the label may be FAR in one context or
NEAR in another.

e Data must be declared in the segment in which it occurs. This may
require that you define a dummy data segment for the external
declaration.

e Absolute symbols can be declared anywhere in the source code.

u Example 1

EXTRN max:ABS,act:FAR ; Constant or FAR label anywhere

DOSSEG

.MODEL. small

.STACK 100h

.DATA

EXTRN nvar :BYTE ; NEAR variable in near data

.FARDATA

EXTRN fvar :WORD ; FAR variable in far data

.CODE

EXTRN task:PROC ; PROC or NEAR in near code
start: mov ax,@data ; Load segment

mov ds, ax ; into DS

ASSUME es:@fardata ; Tell assembler

mov ax,@fardata ; Tell processor that ES

mov es, ax N has far data segment

162

Creating Programs from Multiple Modules

mov ah,nvar ; Load external NEAR variable
mov bx, fvar ; Load external FAR variable
mov CcX,max ; Load external constant

call task ; Call procedure (NEAR or FAR)
jmp act ; Jump to FAR label

END start

Example 1 shows how each type of external symbol could be declared and
used in a small-model program that uses simplified segment directives.
Notice the use of the PROC type specifier to make the external-procedure
memory model independent. The jump and its external declaration are
written so that they will be FAR regardless of the memory model. Using
these techniques, you can change the memory model without breaking
code.

® Example 2

EXTRN max:ABS,act:FAR ; Constant or FAR label anywhere
DOSSEG
STACK SEGMENT PARA STACK 'STACK'
DB 100h DUP (?)
STACK ENDS
_DATA SEGMENT WORD PUBLIC 'DATA'
EXTRN nvar :BYTE ; NEAR variable in near data
_DATA ENDS
FAR_DATA SEGMENT PARA 'FAR_DATA'
EXTRN fvar :WORD ;. FAR variable in far data
FAR_DATA ENDS
DGROUP GROUP _DATA, STACK
_TEXT SEGMENT BYTE PUBLIC 'CODE'
EXTRN task:NEAR ; NEAR procedure in near code
ASSUME c¢s:_TEXT, ds:DGROUP, ss:DGROUP
start: mov ax, DGROUP ; Load segment
mov ds, ax N into DS
ASSUME es:FAR_DATA ; Tell assembler
mov ax,FAR_DATA ; Tell processor that ES
mov es,ax ; has far data segment
mov ah,nvar ; Load external NEAR variable
mov bx, fvar ; Load external FAR variable
mov CcX,max ;. Load external constant
call task ; Call NEAR procedure
Jmp act ; Jump to FAR label
_TEXT ENDS
END start

Example 2 shows a fragment similar to the one in Example 2, but with full
segment definitions. Notice that the types of code labels must be declared
specifically. If you wanted to change the memory model, you would have
to specifically change each external declaration and each call or jump.

163

Microsoft Macro Assembler Programmer’s Guide

8.3 Using Multiple Modules

The following source files illustrate a program that uses public and exter-
nal declarations to access instruction labels. The program consists of two
modules called hello and display.

The hello module is the program’s initializing module. Execution starts
at the instruction labeled start in the hello module. After initializing
the data segment, the program calls the procedure display in the
display module, where a DOS call is used to display a message on the
screenl. Execution then returns to the address after the call in the hello
module.

The hello module is shown below:

TITLE hello

DOSSEG
.MODEL small
.STACK 256
.DATA
PUBLIC message, lmessage
message DB "Hello, world.",b13,10
lmessage EQU $§ - message
.CODE
EXTRN display:PROC ; Declare in near code segment
start: mov ax,@data ; Load segment location
mov ds,ax ; into DS register
call display ; Call other module
mov ax,04CO0h ; Terminate with exit code O
int 21h ; Call DOsS
END start ; Start address in main module

The display module is shown below:

TITLE display

EXTRN lmessage:ABS ; Declare anywhere
.MODEL small
.DATA
EXTRN message:BYTE ; Declare in near data segment
.CODE
PUBLIC display
display PROC
mov bx,1 ; File handle for standard output
mov cx, lmessage ; Message length
mov dx,OFFSET message ; Message address
mov ah, 40h ; Write function
int 21h ; Call DOS
ret
display ENDP
END ; No start address in second module

164

Creating Programs from Multiple Modules

The sample program is a variation of the hello.asm program used in
examples in Chapter 1, “Getting Started,” except that it uses an external
procedure to display to the screen. Notice that all symbols defined in one
module but used in another are declared PUBLIC in the defining module
and declared EXTRN in the using module.

For instance, message and 1message are declared PUBLIC in hello
and declared EXTRN in display. The procedure display is declared
EXTRN in hello and PUBLIC in display.

To create an executable file for these modules, assemble each module
separately, as in the following command lines:

MASM hello;
MASM display:

Then link the two modules:

LINK hello display:
The result is the executable file hello.exe.

For each source module, MASM writes a module name to the object file.
The module name is used by some debuggers and by the linker when it
displays error messages. Starting with Version 5.0, the module name is
always the base name of the source module file. With previous versions,
the module name could be specified with the NAME or TITLE directive.

For compatibility, MASM recognizes the NAME directive. However,
NAME has no effect. Arguments to the directive are ignored.

8.4 Declaring Symbols Communal

Communal variables are uninitialized variables that are both public and
external. They are often declared in include files.

If a variable must be used by several assembly routines, you can declare
the variable communal in an include file, and then include the file in each
of the assembly routines. Although the variable is declared in each source
module, it exists at only one address. Using a communal variable in an
include file and including it in several source modules is an alternative to
defining the variable and declaring it public in one source module and then
declaring it external in other modules.

165

Microsoft Macro Assembler Programmer’s Guide

If a variable is declared communal in one module and public in another,
the public declaration takes precedence and the communal declaration has
the same effect as an external declaration.

B Syntax

COMM definition[,definition]...

Each definition has the following syntax:
[NEAR | FAR] label:size[:count]

A communal variable can be NEAR or FAR. If neither is specified, the
type will be that of the default memory model. If you use simplified seg-
ment directives, the default type is NEAR for small and medium models,
or FAR for compact, large, and huge models. If you use full segment

definitions the default type is NEAR.

The label is the name of the variable. The size can be BYTE, WORD,
DWORD, QWORD, or TBYTE. The count is the number of elements.
If no count is given, one element is assumed. Multiple variables can be
defined with one COMM statement by separating each variable with a
comma.

Note

C variables declared outside functions (except static variables) are
communal unless explicitly initialized; they are the same as assembly-
language communal variables. If you are writing assembly-language
modules for C, you can declare the same communal variables in C
include files and in MASM include files.

MASM cannot tell whether a communal variable has been used in another
module. Allocation of communal variables is handled by LINK. As a
result, communal variables have the following limitations that other vari-
ables declared in assembly language do not have:

e Communal variables cannot be initialized. Under DOS, initial
values are not guaranteed to be 0 or any other value. The variables
can be used for data, such as file buffers, that are not given a value
until run time.

e Communal variables are not guaranteed to be allocated in the

sequence in which they are declared. Assembly-language techniques
that depend on the sequence and position in which data is defined

166

Creating Programs from Multiple Modules

should not be used with communal variables. For example, the fol-
lowing statements do not work:

COMM buffer:WORD:128
lbuffer EQU $ - buffer ; "lbuffer" won't have desired value

bbuf fer LABEL BYTE ; "bbuffer" won't have desired address
COMM wbuffer:WORD:128

e Placement of communal declarations follows the same rules as
external declarations. They must be declared inside a data seg-
ment. Examples of near and far communal variables are shown
below:

.DATA

COMM NEAR nbuffer:BYTE:30
.FARDATA

COMM FAR fbuffer:WORD:40

e Communal variables are allocated in segments that are part of the
Microsoft segment conventions. You cannot override the default to
place communal variables in other segments.

Near communal variables are placed in a segment called

c_ common, which is part of DGROUP. This group is created

and initialized automatically if you use simplified segment direc-
tives. If you use full segment directives, you must create a group

called DGROUP and use the ASSUME directive to associate it
with the DS register.

Far communal variables are placed in a segment called
FAR_BSS. This segment has combine type private and class type
"FAR_BSS’. This means that multiple segments with the same
name can be created. Such segments cannot be accessed by name.
They must be initialized indirectly using the SEG operator. For
example, if a far communal variable (with word size? is called
fcomvar, its segment can be initialized with the following lines:

ASSUME ds:SEG comvar : Tell the assembler
mov ax, SEG comvar : Tell the processor
mov ds, ax
mov bx, comvar : Use the variable
B Example 1

IF @datasize

.FARDATA

ELSE

.DATA

ENDIF

COMM var :WORD, buffer:BYTE:10

Example 1 creates two communal variables. The first is a word variable
called var. The second is a 10-byte array called buf fer. Both have the

167

Microsoft Macro Assembler Programmer’s Guide

default size associated with the memory model of the program in which

they are used.

B Example 2

.DATA

CcoMM

ASCIIZ
mov
mov
mov
int
mov
xXor
mov
mov
EQU
ENDM

address

MACRO

temp:BYTE:128

address
temp, 128

dx, OFESET temp

ah, OAh

21h

dl, temp[1]
dh, dh

bx, dx

temp [bx+2],0

OFESET temp+2

; Name of address for string
; Insert maximum length

; Address of string buffer

; Get string

: Get length of string

Overwrite CR with null

~e

Example 2 shows an include file that declares a buffer for temporary data.
The buffer is then used in a macro in the same include file. An example of
how the macro could be used in a source file is shown below:

DOSSEG
.MODEL

INCLUDE

.DATA
message DB
.CODE

mov
mov
int

ASCIIZ

mov
mov
mov
int

small
communal. inc

"Enter file name:

dx,OFFSET message
ah,09%h
21h

place

al, 00000010b
dx,place

ah, 3Dh

21h

; Load offset of file prompt
; Display prompt

; Get file name and

return address as ''place"

; Load access code
; Load address of ASCIIZ string
; Open the file

Note that once the macro is written, the user does not need to know the
name of the temporary buffer or how it is used in the macro.

168

Creating Programs from Multiple Modules

8.5 Specifying Library Files

The INCLUDELIB directive instructs the linker to link with a specified
library file. If you are writing a program that calls library routines, you
can use this directive to specify the library file in the assembly source file
rather than in the LINK command line.

B Syntax
INCLUDELIB libraryname

The libraryname is written to the comment record of the object file. The
Intel title for this record is COMENT. At link time, the linker reads this
record and links with the specified library file.

The libraryname must be a file name rather than a complete file
specification. If you do not specify an extension, the default extension
.LIB is assumed. LINK searches for the library file in the following order:

1. In the current directory

2. In any directories given in the library field of the LINK command
line

3. In any directories listed in the LIB environment variable

B Example

INCLUDELIB graphics
This statement passes a message from MASM telling LINK to use library
routines from the file graphics.1ib. If this statement is included in a
source file called draw, then the program might be linked with the follow-
ing command line:

LINK draw;

Without the INCLUDELIB directive, the program would have to be
linked with the following command line:

LINK draw,,,graphics;

169

USING OPERANDS AND
EXPRESSIONS

9.1 Using Operands with Directives........cccceevvveennnnne 173
9.2 Using Operators.....cccceeeeecreeeeeeriveeeeseieeeeesssneeeennns 174
0.2.1 Calculation Operators.....cceeeervvveneeeeeennnnnns 174
9.2.1.1 Arithmetic Operators...coecerersececesseees 175

9.2.1.2 Structure-Field-Name Operator.......... 176

9.2.1.3 Index Operator cccceceeverererecerenecnnanns 177

9.2.1.4 Shift Operators.cececercececessecereresseseses 178

9.2.1.5 Bitwise Logical Operatorsccceueueeeee. 179

9.2.2 Relational Operators...cc.ccceueeeeeeeneeeeenneenns 180

9.2.3 Segment-Override Operator.....ccceeeeeeeevnnnnnns 181

0.2.4 Type OPerators ce.eeeeeueeeeneeeenneeerneceeneeeennnnns 182
9.2.4.1 PTR Operator ceccceeverereerecerernacncennnes 182

9.2.4.2 SHORT Operator coccecereececercscecessnsaes 183

9.2.4.3 THIS Operator.c.cceceeieereceireesacecesnnes 183

9.2.4.4 HIGH and LOW Operatorsccceceueee. 184

9.2.4.5 SEG Operator.cccecessecereressecerersscesenss 184

9.2.4.6 OFFSET Operator..ccceceecececerescaceceses 185

9.2.4.7 .TYPE Operator ..ccoeeeveececerecsasecnsones 186

9.2.4.8 TYPE Operator ccccceeveverieieierienncnnnnns 187

9.2.4.9 LENGTH Operator..ccoceereesacesssacecess 188

9.2.4.10 SIZE Operator ccecereerecerercesacerersacases 188

9.2.5 Operator Precedence....ccoeeeeeneerenneeenneeeennnne 189

9.3 Using the Location Counter.......cccccovueereerruveennnne 190
9.4 Using Forward References.......ccccceeeeevueeeeeeinennne 191
9.4.1 Forward References to Labelscccevru.... 192

9.4.2 Forward References to Variablescccu..... 194

9.5 Strong Typing for Memory Operands.................. 194

—

e

Using Operands and Expressions

Operands are the arguments that define values to be acted on by instruc-
tions or directives. Operands can be constants, variables, expressions, or
keywords, depending on the instruction or directive, and the context of
the statement.

A common type of operand is an expression. An expression consists of
several operands that are combined to describe a value or memory loca-
tion. Operators indicate the operations to be performed when combining
the operands of an expression.

Expressions are evaluated at assembly time. By using expressions, you can
instruct the assembler to calculate values that would be difficult or incon-
venient to calculate when you are writing source code.

This chapter discusses operands, expressions, and operators as they are
evaluated at assembly time. See Chapter 14, “Using Addressing Modes,”
for a discussion of the addressing modes that can be used to calculate
operand values at run time. This chapter also discusses the location-
counter operand, forward references, and strong typing of operands.

9.1 Using Operands with Directives

Each directive requires a specific type of operand. Most directives take
string or numeric constants, or symbols or expressions that evaluate to
such constants.

The type of operand varies for each directive, but the operand must
always evaluate to a value that is known at assembly time. This differs
from instructions, whose operands may not be known at assembly time
and may vary at run time. Operands used with instructions are discussed
in Chapter 14, “Using Addressing Modes.”

Some directives, such as those used in data declarations, accept labels or
variables as operands. When a symbol that refers to a memory location is
used as an operand to a directive, the symbol represents the address of the
symbol rather than its contents. This is because the contents may change
at run time and are therefore not known at assembly time.

B Example 1

ORG 100h . Set address to 100h
var DB 10h ; Address of '"var'" is 100h
; Value of "var" is 10h
pvar DW var ; Address of "pvar'" is 10lh

; Value of "pvar" is
address of '"var'" (100h)

173

Microsoft Macro Assembler Programmer’s Guide

In Example 1, the operand of the DW directive in the third statement
represents the address of var (100h) rather than its contents (10h). The
address is relative to the start of the segment in which var is defined.

B Example 2 -
TITLE doit ; String
_TEXT SEGMENT BYTE PUBLIC 'CODE' ; Key words
INCLUDE \include\bios.inc ; Pathname
.RADIX 16 ; Numeric constant
tst DW a/b ; Numeric expression
PAGE + ; Special character
sum EQU X %Yy ; Numeric expression
here LABEL WORD ; Type specifier

Example 2 illustrates the different kinds of values that can be used as
directive operands.

9.2 Using Operators

The assembler provides a variety of operators for combining, comparing,

changing, or analyzing operands. Some operators work with integer con- —
stants, some with memory values, and some with both. Operators cannot

be used with floating-point constants since MASM does not recognize real

numbers in expressions.

It is important to understand the difference between operators and
instructions. Operators handle calculations of constant values that are
known at assembly time. Instructions handle calculations of values that
may not be known until run time. For example, the addition operator (+)
handles assembly-time addition, while the ADD and ADC instructions
handle run-time addition.

This section describes the different kinds of operators used in assembly-
language statements and gives examples of expressions formed with them.
In addition to the operators described in this chapter, you can use the
DUP operator gSection 6.3.2, “Arrays and Buffers”) the record operators
Section 7.2.5, “Using Record-Field Operands”), and the macro operators
Section 11.4, “Using Macro Operators”).

9.2.1 Calculation Operators
MASM provides the common arithmetic operators as well as several other

operators for adding, shifting, or doing bit manipulations. The sections
below describe operators that can be used for doing numeric calculations.

174

Using Operands and Expressions

Note

Constant values used with calculation operators are extended to 33
bits before the calculations are done. This rule applies regardless of the
processor used. Exceptions are noted to this rule.

9.2.1.1 Arithmetic Operators

MASM recognizes a variety of arithmetic operators for common
mathematical operations. Table 9.1 lists the arithmetic operators.

Table 9.1

Arithmetic Operators

Operator Syntax Meaning

+ + expression Positive (unary)

— —expression Negative (unary)

> expressionl*expression? Multiplication

/ expressionl/expression? Integer division
MOD expressionIMOD eapression?2 Remainder (modulus)
+ expressionl+expression?2 Addition

- expressionl—expression2 Subtraction

For all arithmetic operators except the addition operator (+) and the sub-
traction operator (), the expressions operated on must be integer con-
stants.

The addition and subtraction operators can be used to add or subtract an
integer constant and a memory operand. The result can be used as a
memory operand.

The subtraction operator can also be used to subtract one memory
operand from another, but only if the operands refer to locations within
the same segment. The result will be a constant, not a memory operand.

Note

The unary plus and minus (used to designate positive or negative
numbers) are not the same as the binary plus and minus (used to

175

Microsoft Macro Assembler Programmer’s Guide

designate addition or subtraction). The unary plus and minus have a
higher level of precedence, as described in Section 9.2.5, “Operator

Precedence.”

B Example 1

intgr = 14 + 3 ;
intgr = intgr / 4 ;
intgr = intgr MOD 4 ;
intgr = intgr + 4 ;
intgr = intgr - 3 ;
intgr = -intgr - 8 ;
intgr = -intgr - intgr B

Example 1 illustrates arithmetic operators

B Example 2

ORG 100h
a DB ?
b DB ?
meml EQU a+5 ;
mem2 EQU a->5 ;
const EQU b - a ;

Example 2 illustrates arithmetic operators

; mem2 =
; const = 101h - 100h = 1

= 42

42 / 4 = 10
10 mod 4 = 2
2 +4=6

6 - 3=3

-3 -8=-11

-11 - 11 = 22

used in integer expressions.

; Address is 100h
; Address is 10l1h
; meml = 100h + S

105h
OFBh

100h - 5

used in memory expressions.

9.2.1.2 Structure-Field-Name Operator

The structure-field-name operator (.) indicates addition. It is used to

designate a field within a structure.

B Syntax
variable.field

The variable is a memory operand (usually

a previously declared structure

variable) and field is the name of a field within the structure. See Section

7.1, “Structures,” for more information.

176

Using Operands and Expressions

B Example

.DATA
date STRUC ; Declare structure
month DB ?
day DB ?
year DW ?
date ENDS
yesterday date <12,31,1987> ; Define structure variables
today date <1,1,1988>
.CODE
mov bh, yesterday.day ; Load structure variable
mov bx,OFFSET today ; Load structure variable address
inc [bx] .year ; Use in indirect memory operand

9.2.1.3 Index Operator

The index operator ([]) indicates addition. It is similar to the addition ()
operator.

B Syntax
[ezpressioni][expression?]

In most cases expressionl is simply added to expression2. The limitations
of the addition operator for adding memory operands also apply to the
index operator. For example, two direct memory operands cannot be
added. The expression labell [label2] is illegal if both are memory
operands.

The index operator has an extended function in specifying indirect
memory operands. Section 14.3.2, “Indirect Memory Operands,” explains
the use of indirect memory operands. The index brackets must be outside
the register or registers that specify the indirect displacement. However,
any of the three operators that indicate addition (the addition operator,
the index operator, or the structure-field-name operator) may be used for
multiple additions within the expression.

For example, the following statements are equivalent:

mov ax,table [bx] [di]
mov ax, table [bx+di]
mov ax, [table+bx+di]
mov ax, [table] [bx] [di]

The following statements are illegal because the index operator does not
enclose the registers that specify indirect displacement:

177

Microsoft Macro Assembler Programmer’s Guide

mov ax,table+bx+di ; Illegal - no index operator
mov ax, [table] +bx+di ; Illegal - registers not
inside index operator

The index operator is typically used to index elements of a data object,
such as variables in an array or characters in a string. —

B Example 1

mov al,string[3] ; Get 4th element of string
add ax,array [4] ; Add 5th element of array
mov string[7].,al ; Load into 8th element of string

Example 1 illustrates the index operator used with direct memory
operands.

® Example 2

mov ax, [bx] ; Get element BX points to

add ax,array[si] ; Add element SI points to

mov string[di],al ; Load element DI points to

cmp cx,table [bx] [di] ; Compare to element BX and DI
point to

Example 2 illustrates the index operator used with indirect memory
operands.

9.2.1.4 Shift Operators

The SHR and SHL operators can be used to shift bits in constant values.
Both perform logical shifts. Bits on the right for SHL: and on the left for
SHR are zero-filled as their contents are shifted out of position.

B Syntax

expression SHR count
expression SHL count

The expression is shifted right or left by count number of bits. Bits shifted
off either end of the expression are lost. If count is greater than or equal to —_
16 (32 on the 80386), the result is 0.

Do not confuse the SHR and SHL operators with the processor instruc-
tions having the same names. The operators work on integer constants
only at assembly time. The processor instructions work on register or
memory values at run time. The assembler can tell the difference between
instructions and operands from context.

178

A

B Examples

mov
mov

Using Operands and Expressions

ax,01110111b SHL 3 ; Load 01110111000b
ah,01110111b SHR 3 ; Load 01110b

9.2.1.5 Bitwise Logical Operators

The bitwise operators perform logical operations on each bit of an expres-
sion. The expressions must resolve to constant values. Table 9.2 lists the
logical operators and their meanings.

Table 9.2
Logical Operators

Operator Syntax Meaning

NOT NOT expression Bitwise complement

AND expressionl AND expression?2 Bitwise AND

OR expressionl OR expression?2 Bitwise inclusive OR
XOR expressionl] XOR expression? Bitwise exclusive OR

Do not confuse the NOT, AND, OR, and XOR operators with the pro-
cessor instructions having the same names. The operators work on integer
constants only at assembly time. The processor instructions work on regis-
ter or memory values at run time. The assembler can tell the difference
between instructions and operands from context.

Note

Although calculations on expressions using the AND, OR, and XOR
operators are done using 33-bit numbers, the results are truncated to

32 bits. Calculations on expressions using the NOT operator are trun-
cated to 16 bits (except on the 80386).

B Examples

mov
mov
mov
mov
mov

ax,NOT 11110000b ;
ah,NOT 11110000b

ah,01010101b AND 11110000b
ah,01010101b OR 11110000b
ah,01010101b XOR 11110000b

Load 1111111100001111b

; Load 00001111b
; Load 01010000b
; Load 11110101b
; Load 10100101b

179

Microsoft Macro Assembler Programmer’s Guide

9.2.2 Relational Operators

The relational operators compare two expressions and return true (-1) if
the condition specified by the operator is satisfied, or false (0) if it 1s not.
The expressions must resolve to constant values. Relational operators are

typically used with conditional directives. Table 9.3 lists the operators and

the values they return if the specified condition is satisfied.

Table 9.3

Relational Operators

Operator

Syntax

Returned Value

EQ

NE

LT

LE

GT

GE

expressionl EQ expression?

expressionl NE expression?2

expressionl LT expression?

expressionl LE expression?2

expressionl GT expression?2

expressionl GE expression?2

True if
expressions are
equal

True if
expressions are
not equal

True if left
expression is less
than right

True if left
expression is less
than or equal to
right

True if left

expression is
greater than right

True if left
expression is
greater than or
equal to right

Note

The EQ and NE operators treat their arguments as 32-bit numbers.
Numbers specified with the 32nd bit set are considered negative. For
example, the expression -1 EQ OFFFFFFFFh is true, but the expres-
sion -1 NE OFFFFEFFEFh is false.

The LT, LE,GT, and GE operators treat their arguments as 33-bit
numbers, in which the 33rd bit specifies the sign. For example,
OFFFFFFFFh is 4,294,967,295, not -1. The expression 1 GT -11is
true, but the expression 1 GT OFFFFFFEFFh is false.

180

Using Operands and Expressions

B Examples

mov ax,4 EQ 3 ; Load false (0)
mov ax,4 NE 3 ; Load true (-1)
mov ax,4 LT 3 ; Load false (O)
mov ax,4 LE 3 ; Load false (O)
mov ax,4 GT 3 ; Load true (-1)
mov ax,4 GE 3 : Load true (-1)

9.2.3 Segment-Override Operator

The segment-override operator (:) forces the address of a variable or label
to be computed relative to a specific segment.

B Syntax
segment:expression

The segment can be specified in several ways. It can be one of the segment
registers: CS, DS, SS, or ES (or F'S or GS on the 80386). It can also be a
segment or group name. In this case, the name must have been previously
defined with a SEGMENT or GROUP directive and assigned to a seg-
ment register with an ASSUME directive. The expression can be a con-
stant, expression, or a SEG expression. See Section 9.2.4.5 for more infor-
mation on the SEG operator.

Note

When a segment override is given with an indexed operand, the seg-
ment must be specified outside the index operators. For example,
es: [di] is correct, but [es:di] generates an error.

B Examples

mov ax, ss: [bx+4] ; Override default assume (DS)
mov al,es:082h ; Load from ES

ASSUME ds:FAR_DATA . Tell the assembler and

mov bx,FAR_DATA:count ; load from a far segment

As shown in the last two statements, a segment override with a segment
name is not enough if no segment register is assumed for the segment
name. You must use the ASSUME statement to assign a segment regis-
ter, as explained in Section 5.4, “Associating Segments with Registers.”

181

Microsoft Macro Assembler Programmer’s Guide

9.2.4 Type Operators

This section describes the assembler operators that specify or analyze the
types of memory operands and other expressions.

9.2.4.1 PTR Operator

The PTR operator specifies the type for a variable or label.

B Syntax
type PTR expression

The operator forces ezpression to be treated as having type. The expression
can be any operand. The type can be BYTE, WORD, DWORD,
FWORD, QWORD, or TBYTE for memory operands. It can be
NEAR, FAR, or PROC for labels.

The PTR operator is typically used with forward references to define
explicitly what size or distance a reference has. If it is not used, the assem-
bler assumes a default size or distance for the reference. See Section 9.4 for
more information on forward references.

The PTR operator is also used to enable instructions to access variables
in ways that would otherwise generate errors. For example, you could use
the PTR operator to access the high-order byte of a WORD size vari-
able. The PTR operator is required for FAR calls and jumps to forward-
referenced labels.

B Example 1

.DATA
stuff DD ?
buffer DB 20 DUP (?)
CODE
éall FAR PTR task ; Call a far procedure
jmp FAR PTR place ; Jump far
mov bx,WORD PTR stuff[O] ; Load a word from a
doubleword variable
add ax,WORD PTR buffer[bx] . Add a word from a

byte variable

182

Using Operands and Expressions

9.2.4.2 SHORT Operator

The SHORT operator sets the type of a specified label to SHORT. Short
labels can be used in JMP instructions whenever the distance from the
label to the instruction is less than 128 bytes.

B Syntax

SHORT label

Instructions using short labels are a byte smaller than identical instruc-
tions using the default near labels. See Section 9.4.1, “Forward Reference
to Labels,” for information on using the SHORT operator with jump
instructions.

B Example

jmp again ; Jump 128 bytes or more
jmp SHORT again ; Jump less than 128 bytes

again:

9.2.4.3 THIS Operator

The THIS operator creates an operand whose offset and segment values
are equal to the current location-counter value and whose type is specified
by the operator.

B Syntax

THIS type

The type can be BYTE, WORD, DWORD, FWORD, QWORD, or
TBYTE for memory operands. It can be NEAR, FAR, or PROC for
labels.

The THIS operator is typically used with the EQU or equal-sign (=)

directive to create labels and variables. The result is similar to using the

LABEL directive.

183

Microsoft Macro Assembler Programmer’s Guide

B Examples

tagl EQU THIS BYTE ; Both represent the same variable
tag2 LABEL BYTE

checkl EQU THIS NEAR ; All represent the same address
check2 LABEL NEAR

check3:

check4 PROC NEAR

check4 ENDP

9.2.4.4 HIGH and LOW Operators

The HIGH and LOW operators return the high and low bytes, respec-
tively, of an expression.

B Syntax

HIGH expression
LOW expression

The HIGH operator returns the high-order eight bits of exzpression; the
LOW operator returns the low-order eight bits. The ezxpression must
evaluate to a constant. You cannot use the HIGH and LOW operators
on the contents of a memory operand since the contents may change at
run time.

B Examples

stuff EQU OABCDh
mov ah,HIGH stuff ; Load OABh
mov al,LOW stuff ; Load OCDh

9.2.4.5 SEG Operator

The SEG operator returns the segment address of an expression.

B Syntax
SEG ezpression
The expression can be any label, variable, segment name, group name, or

other memory operand. The SEG operator cannot be used with constant
expressions. The returned value can be used as a memory operand.

184

Using Operands and Expressions

B Examples

.DATA
var DB ?
.CODE
mov ax,SEG var ; Get address of segment
where variable is declared
ASSUME ds:SEG var ; Assume segment of variable

9.2.4.6 OFFSET Operator

The OFFSET operator returns the offset address of an expression.

B Syntax
OFFSET expression

The expression can be any label, variable, or other direct memory operand.
Constant expressions return meaningless values. The value returned by the
OFFSET operand is an immediate %constant) operand.

If simplified segment directives are given, the returned value varies. If the
item is declared in a near data segment, the returned value is the number
of bytes between the item and the beginning of its group (normally
DGROUP). If the item is declared in a far segment, the returned value is
the number of bytes between the item and the beginning of the segment.

If full segment definitions are given, the returned value is a memory
operand equal to the number of bytes between the item and the beginning
of the segment in which it is defined.
The segment-override operator (:) can be used to force OFFSET to
return the number of bytes between the item in expression and the begin-
ning of a named segment or group. This is the method used to generate
valid offsets for items in a group when full segment definitions are used.
For example, the statement

mov bx,OFFSET DGROUP:array
is not the same as

mov bx,OFEFSET array

if array is not the first segment in DGROUP.

185

Microsoft Macro Assembler Programmer’s Guide

B Examples

.DATA
string DB "This is it."
.CODE
N L
mov dx,OFFSET string ; Load offset of variable

9.2.4.7 .TYPE Operator

The . TYPE operator returns a byte that defines the mode and scope of an
expression.

B Syntax

JTYPE expression

If the expression is not valid, .TYPE returns 0. Otherwise . TYPE returns

a byte having the bit setting shown in Table 9.4. Only bits 0, 1, 5, and 7
are affected. Other bits are always 0.

Table 9.4

.TYPE Operator and Variable Attributes

Bit Position IfBit= 0 IfBit=1

0 Not program related Program related
1 Not data related Data related

5 Not defined Defined

7 Local or public scope External scope

The .TYPE operator is typically used in macros in which different kinds
of arguments may need to be handled differently.

B Example

display MACRO string
IF ((.TYPE string) SHL 14) NE 800Ch
IF2
%OUT Argument must be a variable
ENDIF
ENDIF
mov dx,OFFSET string
mov ah,O09%h
int 21h
ENDM

186

——

Using Operands and Expressions

This macro checks to see if the argument passed to it is data related (a
variable). It does this by shifting all bits except the relevant bits (1 and 0)
left so that they can be checked. If the data bit is not set, an error message
is generated.

9.2.4.8 TYPE Operator

The TYPE operator returns a number that represents the type of an ex-
pression.

B Syntax

TYPE ezpression

If expression evaluates to a variable, the operator returns the number of
bytes in each data object in the variable. Each byte in a string is con-
sidered a separate data object, so the TYPE operator returns 1 for
strings.

If expression evaluates to a structure or structure variable, the operator
returns the number of bytes in the structure. If expression is a label, the
operator returns OFFFFh for NEAR labels and OFFFEh for F AR labels.

If expression is a constant, the operator returns 0.

The returned value can be used to specify the type for a PTR operator.

B Examples

.DATA
var DW ?
array DD 10 DUP (?)
str DB "This is a test"
.CODE
mov ax, TYPE var ; Puts 2 in AX
mov bx, TYPE array ; Puts 4 in BX
mov cx, TYPE str ; Puts 1 in CX
jmp (TYPE room) PTR room ; Jump is near or far,
. depending on memory model
room LABEL PROC

187

Microsoft Macro Assembler Programmer’s Guide

9.2.4.9 LENGTH Operator

The LENGTH operator returns the number of data elements in an array
or other variable defined with the DUP operator.

B Syntax

LENGTH variable

The returned value is the number of elements of the declared size in the
variable. If the variable was declared with nested DUP operators, only the

value given for the outer DUP operator is returned. If the variable was
not declared with the DUP operator, the value returned is always 1.

B Examples

array DD 100 DUP (OFFFFFFh)

table DW 100 DUP (1,10 DUP(?))

string DB 'This is a string'

var DT ?

larray EQU LENGTH array ; 100 - number of elements

ltable EQU LENGTH table ; 100 - inner DUP not counted

lstring EQU LENGTH string ; 1 - string is one element

lvar EQU LENGTH var ;1 g
mov cx, LENGTH array ; Load number of elements

again: . ; Perform some operation on

each element

ioop again

9.2.4.10 SIZE Operator

The SIZE operator returns the total number of bytes allocated for an
array or other variable defined with the DUP operator.

188

B Syntax

SIZE variable

Using Operands and Expressions

The returned value is equal to the value of LENGTH variable times the
value of TYPE wvariable. If the variable was declared with nested DUP
operators, only the value given for the outside DUP operator is con-
sidered. If the variable was not declared with the DUP operator, the value
returned is always TYPE variable.

B Example

array DD
table DW
string DB
var DT
sarray EQU
stable EQU
sstring EQU
svar EQU

mov
again:

loop

100 DUP (1)

100 DUP (1,10 DUP (?))
'This is a string'

?

SIZE array ;
SIZE table
SIZE string
SIZE var

cx,SIZE array

400 - elements times size

; 200 - inner DUP ignored
; 1 - string is one element
; 10 - bytes in variable

; Load number of bytes

; Perform some operation on

again

9.2.5 Operator Precedence

each byte

Expressions are evaluated according to the following rules:

e Operations of highest precedence are performed first.

e Operations of equal precedence are performed from left to right.

o The order of evaluation can be overridden by using parentheses.
Operations in parentheses are always performed before any adja-
cent operations.

The order of precedence for all operators is listed in Table 9.5. Operators
on the same line have equal precedence.

189

Microsoft Macro Assembler Programmer’s Guide

Table 9.5

Operator Precedence

Precedence Operators

(Highest)

1 LENGTH, SIZE, WIDTH, MASK, (), [], <>

2 . (structure-field-name operator)

3 :

4 PTR, OFFSET, SEG, TYPE, THIS

5 HIGH, LOW

6 += (llIlaIy)

7 = /,MOD, SHL, SHR

8 +, — (binary)

9 EQ,NE, LT, LE, GT, GE

10 NOT

11 AND

12 OR, XOR

13 SHORT, .TYPE

(Lowest)
B Examples
a EQU 8/ 4 x 2 ; Equals 4
b EQU 8/ (4 x 2) ; Equals 1
c EQU 8 + 4 x 2 ; Equals 16
d EQU (8 + 4) * 2 : Equals 24
e EQU 8 OR 4 AND 2 ; Equals 8
£ EQU (8 OR 4) AND 3 ; Equals O

9.3 Using the Location Counter

The location counter is a special operand that, during assembly, represents
the address of the statement currently being assembled. At assembly time,

the location counter keeps changing, but when used in source code it
resolves to a constant representing an address.

The location counter has the same attributes as a near label. It represents
an offset that is relative to the current segment and is equal to the number

of bytes generated for the segment to that point.

190

Using Operands and Expressions

B Example 1

string DB "Who wants to count every byte in a string, "
DB "especially if you might change it later."
1string EQU $-string ; Let the assembler do it

Example 1 shows one way of using the location-counter operand in expres-
sions relating to data.

8 Example 2

cmp ax, bx

jl shortjump ; If ax < bx, go to '"shortjump"

. ; else if ax >= bx, continue
shortjump:

cmp ax,bx

jge $+5 ; If ax >= bx, continue

jmp longjump ; else if ax < bx, go to "longjump"

. ; This is "$+5"
longjump:

Example 2 illustrates how you can use the location counter to do condi-
tional jumps of more than 128 bytes. The first part shows the normal way
of coding jumps of less than 128 bytes, and the second part shows how to
code the same jump when the label is more than 128 bytes away.

9.4 Using Forward References

The assembler permits you to refer to labels, variable names, segment
names, and other symbols before they are declared in the source code.
Such references are called forward references.

The assembler handles forward references by making assumptions about
them on the first pass and then attempting to correct the assumptions, if
necessary, on the second pass. Checking and correcting assumptions on the
second pass takes processing time, so source code with forward references
assembles more slowly than source code with no forward references.

In addition, the assembler may make incorrect assumptions that it cannot
correct, or corrects at a cost in program efficiency.

191

Microsoft Macro Assembler Programmer’s Guide

9.4.1 Forward References to Labels

Forward references to labels may result in incorrect or inefficient code.

In the statement below, the label target is a forward reference:

jmp target ; Generates 3 bytes
. in 16-bit segment

target:

Since the assembler processes source files sequentially, target is unk-
nown when it is first encountered. Assuming 16-bit segments, it could be
one of three types: short (-128 to 127 bytes from the jump), near (-32,768
to 32,767 bytes from the jump), or far (in a different segment than the
jump}. MASM assumes that target isa near label, and assembles the
number of bytes necessary to specify a near label: one byte for the instruc-
tion and two bytes for the operand.

If on the second pass the assembler learns that target is a short label, it
will need only two bytes: one for the instruction and one for the operand.
However, it will not be able to change its previous assembly and the
three-byte version of the assembly will stand. If the assembler learns that
target is a far label, it will need five bytes. Since it can’t make this
adjustment, it will generate a phase error.

You can override the assembler’s assumptions by specifying the exact size
of the jump. For example, if you know that a JMP instruction refers to a
label less than 128 bytes from the jump, you can use the SHORT opera-
tor, as shown below:

Jjmp SHORT target ; Generates 2 bytes
. in 16-bit segment

target:

Using the SHORT operator makes the code smaller and slightly faster. If
the assembler has to use the three-byte form when the two-byte form
would be acceptable, it will generate a warning message if the warning
level is 2. (The warning level can be set with the /W option, as described
in Section 2.4.13.) You can ignore the warning, or you can go back to the
source code and change the code to eliminate the forward references.

192

Using Operands and Expressions

Note

The SHORT operator in the example above would not be needed if
target were located before the jump. The assembler would have
already processed target and would be able to make adjustments
based on its distance.

If you use the SHORT operator when the label being jumped to is more
than 128 bytes away, MASM generates an error message. You can either
remove the SHORT operator, or try to reorganize your program to
reduce the distance.

If a far jump to a forward-referenced label is required, you must override
the assembler’s assumptions with the FAR and PTR operators, as shown
below:

jmp FAR PTR target ; Generates 5 bytes
. in 16-bit segment

target: ; In different segment

If the type of a label has been established earlier in the source code with
an EXTRN directive, the type does not need to be specified in the jump
statement.

® 80386 Only

If the 80386 processor is enabled, jumps with forward references have
different limitations. One difference is that conditional jumps can be either
short or near. With previous processors, all conditional jumps were short.
For 32-bit segments, the number of bytes generated for near and far jumps
is greater in order to handle the larger addresses in the operand.

B Example 1

.MODEL large ; Model comes first, so use

.386 N 16-bit segments

.CODE

jmp SHORT place ; Short unconditional jump - 2 bytes
jne SHORT place ; Short conditional jump - 2 bytes
jmp place ; Near unconditional jump - 3 bytes
jne place ; Near conditional jump - 4 bytes
jmp FAR PTR place ; Far unconditional jump - 5 bytes

193

Microsoft Macro Assembler Programmer’s Guide

2 Example 2

.386 ; .386 comes first, so use
.MODEL 1large H 32-bit segments
.CODE
_"jmp SHORT place ; Short unconditional jump - 2 bytes
jne SHORT place ; Short conditional jump - 2 bytes
jmp place ; Near unconditional jump - 5 bytes
jne place ; Near conditional jump - 6 bytes
jmp FAR PIR place ; Far unconditional jump - 7 bytes
9.4.2 Forward References to Variables
When MASM encounters code referencing variables that have not yet
been defined in Pass 1, it makes assumptions about the segment where the
variable will be defined. If on Pass 2 the assumptions turn out to be
wrong, an error will occur.
These problems usually occur with complex segment structures that do
not follow the Microsoft segment conventions. The problems never appear
if simplified segment directives are used.
By default, MASM assumes that variables are referenced to the DS regis- —

ter. If a statement must access a variable in a segment not associated with
the DS register, and if the variable has not been defined earlier in the
source code, you must use the segment-override operator to specify the
segment.

The situation is different if neither the variable nor the segment in which
it is defined has been defined earlier in the source code. In this case, you
must assign the segment to a group earlier in the source code. MASM will

then know about the existence of the segment even though it has not yet
been defined.

9.5 Strong Typing for Memory Operands

The assembler carries out strict syntax checks for all instruction state-
ments, including strong typing for operands that refer to memory loca-
tions. This means that when an instruction uses two operands with
implied data types, the operand types must match. Warning messages are
generated for nonmatching types.

For example, in the following fragment, the variable stringis
incorrectly used in a move instruction:

194

Using Operands and Expressions

.DATA

string DB "A message."
.CODE
1;10v ax, string[1]

The AX register has WORD type, but string has BYTE type. There-
fore, the statement generates warning message 37:

Operand types must match

To avoid all ambiguity and prevent the warning error, use the PTR
operator to override the variable’s type, as shown below:

mov ax,WORD PTR string[1]

You can ignore the warnings if you are willing to trust the assembler’s
assumptions. When a register and memory operand are mixed, the assem-
bler assumes that the register operand is always the correct size. For
example, in the statement

mov ax,string[1]

the assembler assumes that the programmer wishes the word size of the
register to override the byte size of the variable. A word starting at
string[1] will be moved into AX. In the statement

mov string[1l].,ax

the assembler assumes that the programmer wishes to move the word
value in AX into the word starting at string[1]. However, the
assembler’s assumptions are not always as clear as in these examples. You
should not ignore warnings about type mismatches unless you are sure you
understand how your code will be assembled.

Note

Some assemblers (including early versions of the IBM Macro Assem-
bler) do not do strict type checking. For compatibility with these
assemblers, type errors are warnings rather than severe errors. Many
assembly-language program listings in books and magazines are writ-
ten for assemblers with weak type checking. Such programs may pro-
duce warning messages, but assemble correctly. You can use the /W
option to turn off type warnings if you are sure the code is correct.

195

ASSEMBLING CONDITIONALLY

10.1 Using Conditional-Assembly Directives............... 199
10.1.1 Testing Expressions
with IF and IFE Directivesccoeeevvnernnnnnnn. 200
10.1.2 Testing the Pass
with IF1 and IF2 Directives ...ccceeeeeevveeneennns 201
10.1.3 Testing Symbol Definition
with IFDEF and IFNDEF Directives........... 201
10.1.4 Verifying Macro Parameters
with IFB and IFNB Directives.....c.ccevveeeenen. 202
10.1.5 Comparing Macro Arguments
with IFIDN and IFDIF Directives...c......ce.... 203
10.2 Using Conditional-Error Directives.........ccceceeee... 204
10.2.1 Generating Unconditional Errors
with .ERR, .ERRI1, and .ERR2 209
10.2.2 Testing Expressions
with .ERRE or .ERRNZ Directives 206

10.2.3 Verifying Symbol Definition

with .ERRDEF and .ERRNDEF Directives..207
10.2.4 Testing for Macro Parameters

with .ERRB and .ERRNB Directives........... 207

10.2.5 Comparing Macro Arguments
with .ERRIDN and .ERRDIF Directives...... 208

Assembling Conditionally

The Macro Assembler provides two types of conditional directives,
conditional-assembly and conditional-error directives. Conditional-
assembly directives test for a specified condition and assemble a block of
statements if the condition is true. Conditional-error directives test for a
specified condition and generate an assembly error if the condition is true.

Both kinds of conditional directives test assembly-time conditions. They
cannot test run-time conditions. Only expressions that evaluate to con-
stants during assembly can be compared or tested.

Since macros and conditional-assembly directives are often used together,
you may need to refer to Chapter 11, “Using Equates, Macros, and Repeat
Blocks,” to understand some of the examples in this chapter. In particular,
conditional directives are frequently used with the special macro operators
described in Section 11.4, “Using Macro Operators.”

10.1 Using Conditional-Assembly Directives

The conditional-assembly directives include the following:

IF IFDEF IFNB
IF1 IFDIF IFNDEF
IF2 IFE ENDIF
IFB IFIDN ELSE

The IF directives and the ENDIF and ELSE directives can be used to
enclose the statements to be considered for conditional assembly.

B Syntax

IF condition
statements
[ELSE

statements]

ENDIF

The statements following the IF directive can be any valid statements,
including other conditional blocks. The ELSE directive and its statements
are optional. ENDIF ends the block.

199

Microsoft Macro Assembler Programmer’s Guide

The statements in the conditional block are assembled only if the condi-
tion specified by the corresponding IF statement is satisfied. If the condi-
tional block contains an ELSE directive, only the statements up to the
ELSE directive are assembled. The statements that follow the ELSE
directive are assembled only if the IF statement is not met. An ENDIF
directive must mark the end of any conditional-assembly block. No more
than one ELSE directive is allowed for each IF statement.

IF statements can be nested up to 255 levels. A nested ELSE directive
always belongs to the nearest preceding IF statement that does not have
its own ELSE.

10.1.1 Testing Expressions
with IF and IFE Directives

The IF and IFE directives test the value of an expression and grant
assembly based on the result.

B Syntax

IF expression
IFE expression

The IF directive grants assembly if the value of expression is true
Snonzero). The IFE directive grants assembly if the value of expression is
alse (0). The expression must resolve to a constant value and must not

contain forward references.

® Example

IF debug GT 20
push debug

call adebug

ELSE

call bdebug
ENDIF

In this example, a different debug routine will be called, depending on the
value of debug.

200

Assembling Conditionally

10.1.2 Testing the Pass
with IF'1 and IF'2 Directives

The IF'1 and IF2 directives test the current assembly pass and grant
assembly only on the pass specified by the directive. Multiple passes of the
assembler are discussed in Section 2.5.7, “Reading a Pass 1 Listing.”

B Syntax

IF1
IF2

The IF1 directive grants assembly only on Pass 1. IF2 grants assembly
only on Pass 2. The directives take no arguments.

Macros usually only need to be processed once. You can enclose blocks of
macros in IF'1 blocks to prevent them from being reprocessed on the
second pass.
B Example

IF1 ; Define on first pass only

dostuff MACRO argument

ENDM
ENDIF

10.1.3 Testing Symbol Definition
with IFDEF and IFNDEF Directives

The IFDEF and IFNDEF directives test whether or not a symbol has
been defined and grant assembly based on the result.
B Syntax

IFDEF name
IFNDEF name

The IFDEF directive grants assembly only if name is a defined label, vari-

able, or symbol. The IFNDEF directive grants assembly if name has not
yet been defined.

201

Microsoft Macro Assembler Programmer’s Guide

The name can be any valid name. Note that if name is a forward reference,
it is considered undefined on Pass 1, but defined on Pass 2.

B Example

IFDEF buffer
buff DB buffer DUP (?)
ENDIF

In this example, buff is allocated only if buffer has been previously

defined.

One way to use this conditional block is to leave buffer undefined in the
source file and define it if needed by using the /Dsymbol option (see Sec-
tion 2.4.4, “Defining Assembler Symbols.”) when you start MASM. For
example, if the conditional block is in test.asm, you could start the
assembler with the following command line:

MASM /Dbuffer=1024 test;
The command line would define the symbol buffer; as a result, the con-

ditional assemble would allocate buff. However, if you didn’t need
buff, you could use the following command line:

MASM test:;

10.1.4 Verifying Macro Parameters
with IFB and IFINB Directives

The IFB and IFINB directives test to see if a specified argument was
passed to a macro and grant assembly based on the result.

B Syntax

IFB <argument>
IFNB <<argument>

These directives are always used inside macros, and they always test
whether a real argument was passed for a specified dummy argument. The
IFB directive grants assembly if argument is blank. The IFNB directive
grants assembly if argument is not blank. The arguments can be any name,
number, or expression. Angle brackets (<< >) are required.

202

Assembling Conditionally

B Example

Write MACRO buffer, bytes, handle
IENB <handle>
mov bx,handle ; (1=stdout, 2=stderr, 3=aux, 4=printer)
ELSE
mov bx,1 ; Default standard out
ENDIF
mov dx,OFFSET buffer; Address of buffer to write to
mov cx,bytes ; Number of bytes to write
mov ah, 40h
int 21h
ENDM

In this example, a default value is used if no value is specified for the third
macro argument.

10.1.5 Comparing Macro Arguments
with IFIDN and IFDIF Directives

The IFIDN and IFDIF' directives compare two macro arguments and
grant assembly based on the result.

B Syntax

IFIDN[I] <argumenti>,<<argument2>
IFDIF[I] <argumentl>,<argument2>

These directives are always used inside macros, and they always test
whether real arguments passed for two specified arguments are the same.
The IFIDN directive grants assembly if argument! and argument?2 are
identical. The IFDIF directive grants assembly if argument1 and
argument? are different. The arguments can be names, numbers, or expres-
sions. They must be enclosed in angle brackets and separated by a comma.

The optional I at the end of the directive name specifies that the directive
is case insensitive. Arguments that are spelled the same will be evaluated
the same, regardless of case. This is a new feature starting with Version
5.0. If the I is not given, the directive is case sensitive.

203

Microsoft Macro Assembler Programmer’s Guide

B Example

divide8 MACRO numerator, denominator
IFDIFI <numerator>,<al> ;: If numerator isn't AL
mov al,numerator 5 make it AL
ENDIF .
xor ah, ah -
div denominator
ENDM

In this example, a macro uses the IFDIFI directive to check one of the
arguments and take a different action, depending on the text of the string.
The sample macro could be enhanced further by checking for other values

that would require adjustment (such as a denominator passed in AL or
passed in AH).

10.2 Using Conditional-Error Directives

Conditional-error directives can be used to debug programs and check for

assembly-time errors. By inserting a conditional-error directive at a key

point in your code, you can test assembly-time conditions at that point.

You can also use conditional-error directives to test for boundary condi-

tions in macros. -

The conditional-error directives and the error messages they produce are
listed in Table 10.1.

Table 10.1

Conditional-Error Directives

Directive Number Message

.ERR1 87 Forced error - passl

.ERR2 88 Forced error - pass2

.ERR 89 Forced error

.ERRE 90 Forced error - expression true (O)
.ERRNZ 91 Forced error - expression false (not O)
.ERRNDEF 92 Forced error - symbol not defined
.ERRDEF 93 Forced error - symbol defined

.ERRB 94 Forced error - string blank

.ERRNB 95 Forced error - string not blank -
ERRIDNJ[I] 96 Forced error - strings identical
.ERRDIF[]] 97 Forced error - strings different

204

Assembling Conditionally

Like other severe errors, those generated by conditional-error directives
cause the assembler to return exit code 7. If a severe error is encountered
during assembly, MASM will delete the object module. All conditional
error directives except ERR1 generate severe errors.

10.2.1 Generating Unconditional Errors
with .ERR, .ERRI1, and .ERR2 Directives

The .ERR, .ERR1, and .ERR2 directives force an error where the direc-
tives occur in the source file. The error is generated unconditionally when
the directive is encountered, but the directives can be placed within
conditional-assembly blocks to limit the errors to certain situations.

B Syntax

.ERR
.ERR1
.ERR2

The .ERR directive forces an error regardless of the pass. The .ERR1
and .ERR2 directives force the error only on their respective passes. The
.ERR1 directive appears only on the screen or in the listing file if you use
the /D option to request a Pass 1 listing.

You can place these directives within conditional-assembly blocks or mac-
ros to see which blocks are being expanded.

® Example

IEDEF dos

ELSE
IFDEF xenix

ELSE
.ERR
%OUT dos or xenix must be defined
ENDIF
ENDIF

205

Microsoft Macro Assembler Programmer’s Guide

This example makes sure that either the symbol dos or the symbol
xenix is defined. If neither is defined, the nested ELSE condition is
assembled and an error message is generated. Since the .ERR directive is
used, an error would be generated on each pass. You could use .ERR1 or
.ERR2 to check if you want the error to be generated only on the
corresponding pass.

10.2.2 Testing Expressions
with .ERRE or .ERRNZ Directives

The .ERRE and .ERRNZ directives test the value of an expression and
conditionally generate an error based on the result.

B Syntax

.ERRE expression
ERRNZ expression

The .ERRE directive generates an error if the ezpression is false (0). The
.ERRNZ directive generates an error if the ezpression is true (nonzerol).
The expression must resolve to a constant value and must not contain for-
ward references.

® Example

buffer MACRO count, bname
.ERRE count LE 128 ;. Allocate memory, but
bname DB count DUP (O) 3 no more than 128 bytes
ENDM
buffer. 128,bufl ; Data allocated - no error
buffer 129,buf2 ; Error generated

In this example, the .ERRE directive is used to check the boundaries of a
parameter passed to the macro buffer. If count is less than or equal
to 128, the expression being tested by the error directive will be true
(nonzero) and no error will be generated. If count is greater than 128,
the expression will be false (0) and the error will be generated.

206

Assembling Conditionally

10.2.3 Verifying Symbol Definition
with .ERRDEF and .ERRNDEF Directives

The .ERRDEF and .ERRNDEF directives test whether or not a symbol
is defined and conditionally generate an error based on the result.
B Syntax

.ERRDEF name
.ERRNDEF name

The .ERRDEF directive produces an error if name is defined as a label,
variable, or symbol. The . ERRNDEF directive produces an error if name

has not yet been defined. If name is a forward reference, it is considered
undefined on Pass 1, but defined on Pass 2.

B Example

.ERRNDEF publevel

IF publevel LE 2
PUBLIC varl, var2

ELSE

PUBLIC varl, var2, var3
ENDIF

In this example, the ERRNDEF directive at the beginning of the condi-
tional block makes sure that a symbol being tested in the block actually
exists.

10.2.4 Testing for Macro Parameters
with .ERRB and .ERRNB Directives

The .ERRB and .ERRNB directives test whether a specified argument
was passed to a macro and conditionally generate an error based on the
result.

H Syntax

.ERRB <argument>
.ERRNB <argument>

These directives are always used inside macros, and they always test
whether a real argument was passed for a specified dummy argument. The

207

Microsoft Macro Assembler Programmer’s Guide

ERRB directive generates an error if argument is blank. The ERRNB
directive generates an error if argument is not blank. The argument can be
any name, number, or expression. Angle brackets (< >) are required.

B Example -
work MACRO realarg, testarg

.ERRB <realarg> ;; Error if no parameters

.ERRNB <testarg> ;; Error if more than one parameter

ENDM

In this example, error directives are used to make sure that one, and only
one, argument is passed to the macro. The ERRB directive generates an
error if no argument is passed to the macro. The .ERRINB directive gen-
erates an error if more than one argument is passed to the macro.

10.2.5 Comparing Macro Arguments
with .ERRIDN and .ERRDIF Directives

The .ERRIDN and .ERRDIF directives compare two macro arguments o
and conditionally generate an error based on the result.

B Syntax

.ERRIDN[I] <argument!>,<argument2>
ERRDIF[I] <argumentl>,<argument2>

These directives are always used inside macros, and they always compare
the real arguments specified for two parameters. The .ERRIDN directive
generates an error if the arguments are identical. The .ERRDIF directive
generates an error if the arguments are different. The arguments can be
names, numbers, or expressions. They must be enclosed 1n angle brackets
and separated by a comma.

The optional I at the end of the directive name specifies that the directive
is case insensitive. Arguments that are spelled the same will be evaluated

208

Assembling Conditionally

the same regardless of case. This is a new feature starting with Version
5.0. If the I1s not given, the directive is case sensitive.

B Example

addem MACRO adl,ad2,sum
.ERRIDNI <ax>,<ad2> ;; Error if ad2 is "ax"
mov ax,adl ;. Would overwrite if ad2 were AX
add ax,ad2
mov sum, ax ;: Sum must be register or memory
ENDM

In this example, the JERRIDNI directive is used to protect against pass-
ing the AX register as the second parameter, since this would cause the
macro to fail.

209

((HAPTER:

USING EQUATES., MACROS,
AND REPEAT BLOCKS

11.1 Using EqQUates....ccccceeevvvreeeeieeccrrnreeeeeeeccsrneeeeeennns 213
11.1.1 Redefinable Numeric Equates.......ccccoeeeennuee. 213
11.1.2 Nonredefinable Numeric Equates................ 214
11.1.3 String EqQuateS..ccccceureeeeniererneereneeeeeneeeennnnes 216

11.2 USING MACTOS ..evvvreeeeereesrnneeeeresecsssneneeessssssssnnenees 217
11.2.1 Defining MacroS..ccuveerereeeerneeerneceenneersneeeenes 218
11.2.2 Calling MACIOS veeeeeeeeerrrenenneeeeeeernnsnnneeeeeens 219
11.2.3 Using Local Symbols .cceueeereeeeerneerencernnnnnnes 220
11.2.4 Exiting from a Macro..cceeeeeeeeereeeereeeeennnnnns 222

11.3 Defining Repeat Blocks........cceeeeuveeerereeeennvnnnenn. 223
11.3.1 The REPT Directive .cccceeeeeneeeeneeeeeneeeenennens 223
11.3.2 The IRP Directive..ccceeeeeeueeeeeeereeernnnceeeenens 224
11.3.3 The IRPC Directive ..ccevuueeeeeererennvenceeeeennnns 225

11.4 Using Macro Operators......cceevveeeeeeeeerrveeeeeeessennne 226
11.4.1 Substitute Operator....ccceeeeeererveeeeerveeeennns 226
11.4.2 Literal-Text Operator....cccceeeeeeueeereneeennennns 228
11.4.3 Literal-Character Operator.....cceeeeeeevvneeenens 229
11.4.4 Expression Operator ...ccceeeeveeeneernneenneennncens 230
11.4.5 Macro CoOmmenNtS...cevrueeeerrreeeeerrvneceeesnnnneens 231

11.5 Using Recursive, Nested,
and Redefined MACTOS...ccvvieeeiiiiiiiiieeeeeireninaennene 231
11.5.1 Using Recursion....ccceeerereeeeeneceenneceeneeenncees 231
11.5.2 Nesting Macro Definitionsccceeeeerevvnnenennes 232
11.5.3 Nesting Macro CallS.....ceeeveeeeereeereeneerennenns 233
11.5.4 Redefining Macroscceeeeeveeeeeeneernneeennneennns 234

11.5.5 Avoiding Inadvertent Substitutions............ 234

(CHAPTER

11.6 Managing Macros and Equates
11.6.1 Using Include Files................

11.6.2 Purging Macros from Memory

212

oooooooooooooooooooo

oooooooooooooooooooo

oooooooooooooooooooo

Using Equates, Macros, and Repeat Blocks

This chapter explains how to use equates, macros, and repeat blocks.
Equates are constant values assigned to symbols so that the symbol can be
used in place of the value. Macros are a series of statements that are
assigned a symbolic name (and optionally parameters) so that the symbol
can be used in place of the statements. Repeat blocks are a special form of
macro used to do repeated statements.

Both equates and macros are processed at assembly time. They can sim-
plify writing source code by allowing the user to substitute mnemonic
names for constants and repetitive code. By changing a macro or equate, a
prggrammer can change the effect of statements throughout the source
code.

In exchange for these conveniences, the programmer loses some assembly-
time efficiency. Assembly may be slightly slower for a program that uses
macros and equates extensively than for the same program written
without them. However, the program without macros and equates usually
takes longer to write and is more difficult to maintain.

11.1 Using Equates

The equate directives enable you to use symbols that represent numeric or
string constants. MASM recognizes three kinds of equates:

1. Redefinable numeric equates

2. Nonredefinable numeric equates

3. String equates (also called text macros)

11.1.1 Redefinable Numeric Equates

Redefinable numeric equates are used to assign a numeric constant to a
symbol. The value of the symbol can be redefined at any point during
assembly time. Although the value of a redefinable equate may be different
at different points in the source code, a constant value will be assigned for
each use, and that value will not change at run time.

Redefinable equates are often used for assembly-time calculations in mac-
ros and repeat blocks.

213

Microsoft Macro Assembler Programmer’s Guide

B Syntax
name= expression

The equal-sign (=) directive creates or redefines a constant symbol by
assigning the numeric value of expression to name. No storage is allocated
for the symbol. The symbol can be used in subsequent statements as an
immediate operand having the assigned value. It can be redefined at any
time.

The expression can be an integer, a constant expression, a one- or two-
character string constant (four-character on the 80386), or an expression
that evaluates to an address. The name must be either a unique name or a
name previously defined by using the equal-sign (=) directive.

Note

Redefinable equates must be assigned numeric values. String constants
longer than two characters cannot be used.

B Example

counter = o ; Initialize counter

array LABEL BYTE ; Label array of increasing numbers
REPT 100 ; Repeat 100 times
DB counter ; Initialize number

counter = counter + 1 ; Increment counter
ENDM

This example redefines equates inside a repeat block to declare an array
initialized to increasing values from 0 to 100. The equal-sign directive 1s
used to increment the counter symbol for each loop. See Section 11.3 for
more information on repeat blocks.

11.1.2 Nonredefinable Numeric Equates

Nonredefinable numeric equates are used to assign a numeric constant to a
symbol. The value of the symbol cannot be redefined.

214

Using Equates, Macros, and Repeat Blocks

Nonredefinable numeric equates are often used for assigning mnemonic
names to constant values. This can make the code more readable and
easier to maintain. If a constant value used in numerous places in the
source code needs to be changed, then the equate can be changed in one
place rather than throughout the source code.

B Syntax

name EQU expression

The EQU directive creates constant symbols by assigning ezpression to
name. The assembler replaces each subsequent occurrence of name with
the value of ezpression. Once a numeric equate has been defined with the
EQU directive, it cannot be redefined. Attempting to do so generates an

eIror.

Note

String constants can also be defined with the EQU directive, but the
syntax is different, as described in Section 11.1.3, “String Equates.”

No storage is allocated for the symbol. Symbols defined with numeric
values can be used in subsequent statements as immediate operands hav-
ing the assigned value.

B Examples

column EQU
row EQU
screenful EQU
line EQU
.DATA
buffer DW
.CODE
mov
mov

80 ;
; Numeric constant 25

; Numeric constant 2000
; Alias for '"row"

25
column * row
row

screenful

cx,column
bx, line

Numeric constant 80

215

Microsoft Macro Assembler Programmer’s Guide

11.1.3 String Equates

String equates (or text macros) are used to assign a string constant to a
symbol. String equates can be used in a variety of contexts, including
defining aliases and string constants.

B Syntax
name EQU [<]string[>]

The EQU directive creates constant symbols by assigning string to name.
The assembler replaces each subsequent occurrence of name with string.
Symbols defined to represent strings with the EQU directive can be
redefined to new strings. Symbols cannot be defined to represent strings
with the equal-sign (=) directive.

An alias is a special kind of string equate. It is a symbol that is equated to
another symbol or keyword.

Note

The use of angle brackets to force string evaluation is a new feature of
Version 5.0 of the Macro Assembler. Previous versions tried to evalu-
ate equates as expressions. If the string did not evaluate to a valid
expression, MASM evaluated it as a string. This behavior sometimes
caused unexpected consequences.

For example, the statement
rt EQU run-time

would be evaluated as run minus time, even though the user might
intend to define the string run-time. If run and time were not
already defined as numeric equates, the statement would generate an
error. Using angle brackets solves this problem. The statement

rt EQU <run-time>

is evaluated as the string run-time.

When maintaining existing source code, you can leave string equates
alone that evaluate correctly, but for new source code that will not be
used with previous versions of MASM, it is a good idea to enclose all
string equates in angle brackets.

216

PN

Using Equates, Macros, and Repeat Blocks

B Examples

; String equate definitions

pi EQU <3.1415> ; String constant "3.1415"
prompt EQU <'Type Name: '> ; String constant "'Type Name:
WPT EQU <WORD PTR> ; String constant for "WORD PTR"
argl EQU < [bp+4]> ; String constant for " [bp+4]"
; Use of string equates
.DATA
message DB prompt ; Allocate string "Type Name: "
pie DQ pi ; Allocate real number 3.1415
.CODE
inc WPT parml ; Increment word value of

; argument passed on stack

11.2 Using Macros

Macros enable you to assign a symbolic name to a block of source state-
ments, and then to use that name in your source file to represent the state-
ments. Parameters can also be defined to represent arguments passed to
the macro.

Macro expansion is a text-processing function that occurs at assembly
time. Each time MASM encounters the text associated with a macro
name, it replaces that text with the text of the statements in the macro
definition. Similarly, the text of parameter names is replaced with the text
of the corresponding actual arguments.

A macro can be defined any place in the source file as long as the definition
precedes the first source line that calls the macro. Macros and equates are
often kept in a separate file and made available to the program through an
INCLUDE directive (see Section 11.6.1, “Using Include Files”) at the
start of the source code.

Note

Since most macros only need to be expanded once, you can increase
efficiency by processing them only during a single pass of the assem-
bler. You can do this by enclosing the macros (%)r an INCLUDE state-
ment that calls them) in a conditional block using the IF1 directive.
Any macros that use the EXTRN or PUBLIC statements should be
processed on Pass 1 rather than Pass 2 to increase linker efficiency.

217

tn

Microsoft Macro Assembler Programmer’s Guide

Often a task can be done by using either a macro or procedure. For exam-
ple, the addup procedure shown in Section 17.4.3, “Passing Arguments
on the Stack,” does the same thing as the addup macro in Section 11.2.1,
“Defining Macros.” Macros are expanded on every occurrence of the macro
name, so they can increase the length of the executable file if called repeat-
edly. Procedures are coded only once in the executable file, but the
increased overhead of saving and restoring addresses and parameters can
make them slower.

The section below tells how to define and call macros. Repeat blocks, a
special form of macro for doing repeated operations, are discussed
separately in Section 11.3.

11.2.1 Defining Macros

The MACRO and ENDM directives are used to define macros. MACRO
designates the beginning of the macro block and ENDM designates the
end of the macro block.

B Syntax

name MACRO [parameter [,parameter]...]
statements

ENDM

The name must be unique and a valid symbol name. It can be used later in
the source file to invoke the macro.

The parameters (sometimes called dummy parameters) are names that act
as placeholders for values to be passed as arguments to the macro when it
is called. Any number of parameters can be specified, but they must all fit
on one line. If you give more than one parameter, you must separate them
with commas, spaces, or tabs. Commas can always be used as separators;

spaces and tabs may cause ambiguity if the arguments are expressions.

Note

This manual uses the term “parameter” to refer to a placeholder for a
value that will be passed to a macro or procedure. Parameters appear
in macro or procedure definitions. The term “argument” is used to

refer to an actual value passed to the macro or procedure when it is
called.

Any valid assembler statement may be placed within a macro, including
statements that call or define other macros. Any number of statements can

218

Using Equates, Macros, and Repeat Blocks

be used. The parameters can be used any number of times in the state-
ments. Macros can be nested, redefined, or used recursively, as explained
in Section 11.5, “Using Recursive, Nested, and Redefined Macros.”

MASM assembles the statements in a macro only if the macro is called,
and only at the point in the source file from which it is called. The macro
definition itself is never assembled.

A macro definition can include the LOCAL directive, which lets you
define labels used only within a macro, or the EXITM directive, which
allows you to exit from a macro before all the statements in the block are
expanded. These directives are discussed in Sections 11.2.3, “Using Local
Symbols,” and 11.2.4, “Exiting from a Macro.” Macro operators can also
be used in macro definitions, as described in Section 11.4, “Using Macro
Operators.”

B Example

addup MACRO adl,ad2,ad3
mov ax,adl ;. First parameter in AX
add ax,ad2 ;. Add next two parameters
add ax,ad3 53 and leave sum in AX
ENDM

The preceding example defines a macro named addup, which uses three
parameters to add three values and leave their sum in the AX register.
The three parameters will be replaced with arguments when the macro is

called.

11.2.2 Calling Macros

A macro call directs MASM to copy the statements of the macro to the
point of the call and to replace any parameters in the macro statements
with the corresponding actual arguments.

B Syntax
name [argument [,argument]...]

The name must be the name of a macro defined earlier in the source file.
The arguments can be any text. For example, symbols, constants, and
registers are often given as arguments. Any number of arguments can be
given, but they must all fit on one line, Multiple arguments must be
separated by commas, spaces, or tabs.

MASM replaces the first parameter with the first argument, the second
parameter with the second argument, and so on. If a macro call has more

219

Microsoft Macro Assembler Programmer’s Guide

arguments than the macro has parameters, the extra arguments are
ignored. If a call has fewer arguments than the macro has parameters, any
remaining parameters are replaced with a null (empty) string.

You can use conditional statements to enable macros to check for null

strings or other types of arguments. The macro can then take appropriate -
action to adjust to different kinds of arguments. See Chapter 10, “Assem-

bling Conditionally,” for more information on using conditional-assembly

and conditional-error directives to test macro arguments.

B Example

addup MACRO adl,ad2,ad3 ; Macro definition
mov ax,adl ;. First parameter in AX
add ax,ad2 ;. Add next two parameters
add ax,ad3 N and leave sum in AX
ENDM
addup bx, 2, count . Macro call

When the addup macro is called, MASM replaces the parameters with
the actual parameters given in the macro call. In the example above, the
assembler would expand the macro call to the following code: o

mov ax,bx
add ax, 2
add ax,count

This code could be shown in an assembler listing, depending on whether
the .LALL, .XALL, or .SALL directive was in effect (see Section 12.3.3,
“Controlling Listing of Macros”).

11.2.3 Using Local Symbols

The LOCAL directive can be used within a macro to define symbols that
are available only within the defined macro.

Note

In this context, the term “local” is not related to the public availabil-
ity of a symbol, as described in Chapter 8, “Creating Programs from
Multiple Modules,” or to variables that are defined to be local to a pro-
cedure, as described in Section 17.4.4, “Using Local Variables.”

“Local” simply means that the symbol is not known outside the macro
where it is defined.

220

Using Equates, Macros, and Repeat Blocks

B Syntax
LOCAL localname [,localname]...

The localnameis a temporary symbol name that is to be replaced by a
unique symbol name when the macro is expanded. At least one localname
is required for each LOCAL directive. If more than one local symbol is
given, the names must be separated with commas. Once declared, local-
name can be used in any statement within the macro definition.

MASM creates a new actual name for localname each time the macro is
expanded. The actual name has the following form:

??number

The number is a hexadecimal number in the range 0000 to OFFFF. You
should not give other symbols names in this format, since doing so may
produce a symbol with multiple definitions. In listings, the local name is
shown in the macro definition, but the actual name is shown in expansions
of macro calls.

Nonlocal labels may be used in a macro; but if the macro is used more
than once, the same label will appear in both expansions, and MASM will
display an error message, indicating that the file contains a symbol with
multiple definitions. To avoid this problem, use only local labels (or
redefinable equates) in macros.

Note

The LOCAL directive can only be used in macro definitions, and it
must precede all other statements in the definition. If you try another
statement (such as a comment instruction) before the LOCAL direc-
tive, an error will be generated.

B Example

power MACRO factor, exponent ;. Use for unsigned only
LOCAL again, gotzero ;. Declare symbols for macro
Xor dx, dx ;. Clear DX
mov cx, exponent ;. Exponent is count for loop
mov ax,1l ;. Multiply by 1 first time
jexz gotzero ;. Get out if exponent is zero
mov bx, factor

again: mul bx ;:; Multiply until done

loop again
gotzero:
ENDM

221

Microsoft Macro Assembler Programmer’s Guide

In this example, the LOCAL directive defines the local names again and
gotzero as labels to be used within the power macro.

These local names will be replaced with unique names each time the macro
is expanded. For example, the first time the macro is called, again will
be assigned the name 2?0000 and gotzero will be assigned ?20001.
The second time through, again will be assigned 220002 and

gotzero will be assigned 2?0003, and so on.

11.2.4 Exiting from a Macro

Normally, MASM processes all the statements in a macro definition and
then continues with the next statement after the macro call. However, you
can use the EXITM directive to tell the assembler to terminate macro
expansion before all the statements in the macro have been assembled.

When the EXITTM directive is encountered, the assembler exits the macro
or repeat block immediately. Any remaining statements in the macro or
repeat block are not processed. If EXITM is encountered in a nested
macro or repeat block, MASM returns to expanding the outer block.

The EXITM directive is typically used with conditional directives to skip

the last statements in a macro under specified conditions. Often macros
using the EXITM directive contain repeat blocks or are called recursively.

B Example

allocate MACRO times ; Macro definition
X = (o]
REPT times ;: Repeat up to 256 times
IF x GT OFFh ;; Is x > 255 yet?
EXITM ;; If so, quit
ELSE
DB X ;; Else allocate x
ENDIF
X = x + 1 ;; Increment x
ENDM
ENDM

This example defines a macro that allocates a variable amount of data,
but no more than 255 bytes. The macro contains an IFE directive that
checks the expression x - OFFh. When the value of this expression is
true (x—255 = 0), the EXITM directive is processed and expansion of the
macro stops.

222

Using Equates, Macros, and Repeat Blocks

11.3 Defining Repeat Blocks

Repeat blocks are a special form of macro that allows you to create blocks
of repeated statements. They differ from macros in that they are not
named, and thus cannot be called. However, like macros, they can have
parameters that are replaced by actual arguments during assembly. Macro
operators, symbols declared with the LOCAL directive, and the EXITM
directive can be used in repeat blocks. Like macros, repeat blocks are
always terminated by an ENDM directive.

Repeat blocks are frequently placed in macros in order to repeat some of
the statements in the macro. They can also be used independently, usually
for declaring arrays with repeated data elements.

Repeat block are processed at assembly time and should not be confused
with the REP instruction, which causes string instructions to be repeated
at run time, as explained in Chapter 18, “Processing Strings.”

Three different kinds of repeat blocks can be defined by using the REPT,
IRP, and IRPC directives. The difference between them is in how the
number of repetitions is specified.

11.3.1 The REPT Directive
The REPT directive is used to create repeat blocks in which the number
of repetitions is specified with a numeric argument.

B Syntax

REPT eaxpression
statements
ENDM

The ezpression must evaluate to a numeric constant (a 16-bit unsigned
number). It specifies the number of repetitions. Any valid assembler state-
ments may be placed within the repeat block.

223

Microsoft Macro Assembler Programmer’s Guide

B Example

alphabet LABEL BYTE
= (0]

X = ;; Initialize

REPT 26 ;. Specify 26 repetitions

DB 'A' + x ;: Allocate ASCII code for letter
X = x + 1 ;. Increment

ENDM
This example repeats the equal-sign (=) and DB directives to initialize
ASCII values for each uppercase letter of the alphabet.

11.3.2 The IRP Directive

The IRP directive is used to create repeat blocks in which the number of
repetitions, as well as parameters for each repetition, are specified in a list
of arguments.

B Syntax

IRP parameter,<argument[,argument]...>
statements

ENDM

The assembler statements inside the block are repeated once for each
argument in the list enclosed by angle brackets (< >). The parameter is a
name for a placeholder to be replaced by the current argument. Each argu-
ment can be text, such as a symbol, string, or numeric constant. Any
number of arguments can be given. If multiple arguments are given, they
must be separated by commas. The angle brackets (< >) around the
argument list are required. The parameter can be used any number of
times in the statements.

When MASM encounters an IRP directive, it makes one copy of the
statements for each argument in the enclosed list. While copying the state-
ments, it substitutes the current argument for all occurrences of parameter
in these statements. If a null argument (<< >) is found in the list, the
dummy name is replaced with a null value. If the argument list is empty,
the IRP directive 1s ignored and no statements are copied.

® Example

numbers LABEL BYTE
IRP x,<0,1,2,3,4,5,6,7,8,9>
DB 10 DUP (x)
ENDM

224

..

Using Equates, Macros, and Repeat Blocks

This example repeats the DB directive 10 times, allocating 10 bytes for
each number in the list. The resulting statements create 100 bytes of data,
starting with 10 zeros, followed by 10 ones, and so on.

11.3.3 The IRPC Directive

The IRPC directive is used to create repeat blocks in which the number of
repetitions, as well as arguments for each repetition, is specified in a
string.

B Syntax

IRPC parameter,string
statements

ENDM

The assembler statements inside the block are repeated as many times as
there are character in string. The parameter is a name for a placeholder to
be replaced by the current character in string. The string can be any com-
bination of letters, digits, and other characters. It should be enclosed with
angle brackets (< >) if 1t contains spaces, commas, or other separating
characters. The parameter can be used any number of times in these state-
ments.

When MASM encounters an IRPC directive, it makes one copy of the
statements for each character in the string. While copying the statements,
it substitutes the current character for all occurrences of parameter in
these statements.

B Example 1

ten LABEL BYTE
IRPC x,0123456789
DB X
ENDM

Example 1 repeats the DB directive 10 times, once for each character in
the string 0123456789. The resulting statements create 10 bytes of data
having the values 0-9.

226

Microsoft Macro Assembler Programmer’s Guide

B Example 2
IRPC letter, ABCDEFGHIJKLMNOPQRSTUVWXYZ
DB '&letter’ ; Allocate uppercase letter
DB '&letter'+20h ; Allocate lowercase letter
DB '&letter'-40h ; Allocate number of letter —
ENDM

Example 2 allocates the ASCII codes for uppercase, lowercase, and
numeric versions of each letter in the string. Notice that the substitute
operator (&) is required so that letter will be treated as an argument
rather than a string. See Section 11.4.1, “Substitute Operator,” for more
information.

11.4 Using Macro Operators

Macro and conditional directives use the following special set of macro
operators:

Operator Definition

& Substitute operator —~
<> Literal-text operator

! Literal-character operator

% Expression operator

35 Macro comment

When used in a macro definition, a macro call, a repeat block, or as the
argument of a conditional-assembly directive, these operators carry out
special control operations, such as text substitution.

11.4.1 Substitute Operator

The substitute operator (&) forces MASM to replace a parameter with its
corresponding actual argument value.

B Syntax

¶meter

The substitute operator can be used when a parameter immediately pre-

cedes or follows other characters, or whenever the parameter appears in a
quoted string.

226

P

Using Equates, Macros, and Repeat Blocks

B Example

errgen MACRO vy.x
PUBLIC err&y

err&y DB 'Error &y: &x'
ENDM

In the example, MASM replaces &x with the value of the argument
passed to the macro errgen. If the macro is called with the statement

errgen 5,<Unreadable disk>

the macro is expanded to

err5 DB 'Error 5: Unreadable disk'

Note

For complex, nested macros, you can use extra ampersands to delay
the replacement of a parameter. In general, you need to supply as
many ampersands as there are levels of nesting.

For example, in the following macro definition, the substitute operator

is used twice with z to make sure its replacement occurs while the
IRP directive is being processed:

alloc MACRO X

IRP z,<1,2,3>
x&&z DB z

ENDM

ENDM

In this example, the dummy parameter x is replaced immediately

when the macro is called. The dummy parameter z, however, is not
replaced until the IRP directive is processed. This means the dummy
parameter is replaced as many times as there are numbers in the IRP
parameter list. If the macro is called with

alloc var

the macro will be expanded as shown below:

varl DB 1
var2 DB 2
var3 DB 3

227

Microsoft Macro Assembler Programmer’s Guide

11.4.2 Literal-Text Operator

The literal-text operator (< >) directs MASM to treat a list as a single
string rather than as separate arguments.

B Syntax
<text>

The text is considered a single literal element even if it contains commas,
spaces, or tabs. The literal-text operator is most often used in macro calls
and with the IRP directive to ensure that values in a parameter list are
treated as a single parameter.

The literal-text operator can also be used to force MASM to treat special
characters, such as the semicolon or the ampersand, literally. For example,
the semicolon inside angle brackets <;> becomes a semicolon, not a com-
ment indicator.

MASM removes one set of angle brackets each time the parameter is used

in a macro. When using nested macros, you will need to supply as many
sets of angle brackets as there are levels of nesting.

B Example

work 1,2,3,4,5 . Passes five parameters
; to "work"
work <1,2,3,4,5> ; Passes one five-element

parameter to 'work"

Note

When the IRP directive is used inside a macro definition and when the
argument list of the IRP directive is also a parameter of the macro,
you must use the literal-text operator (< >) to enclose the macro
parameter.

For example, in the following macro definition, the parameter x is used as
the argument list for the IRP directive:

init MACRO X

IRP Y. <x>
DB Yy
ENDM

ENDM

228

—

Using Equates, Macros, and Repeat Blocks

If this macro is called with
init <0,1,2,3,4,5,6,7,8,9>

the macro removes the angle brackets from the parameter so that it is
expanded as 0,1,2,3,4,5,6,7,8,9. The brackets inside the repeat
block are necessary to put the angle brackets back on. The repeat block is
then expanded as shown below:

IRP y.<0,1,2,3,4,5,6,7,8,9>
DB
ENDM

11.4.3 Literal-Character Operator

The literal-character operator (!) forces the assembler to treat a specified
character literally rather than as a symbol.

B Syntax

Icharacter

The literal-character operator is used with special characters such as the
semicolon or ampersand when meaning of the special character must be

suppressed. Using the literal-character operator is the same as enclosing a
single character in brackets. For example, !! is the same as <!>,

B Example

errgen MACRO vy.x
PUBLIC err&y
err&y DB 'Error &y: &x'

ENDM

errgen 103,<Expression !> 255>

The example macro call is expanded to allocate the string Error 103:
Expression > 255. Without the literal-character operator, the
greater-than symbol would be interpreted as the end of the argument and
an error would result.

229

Microsoft Macro Assembler Programmer’s Guide

11.4.4 Expression Operator

The expression operator (%) causes the assembler to treat the argument
following the operator as an expression.

B Syntax
Potext

MASM computes the expression’s value and replaces text with the result.
The expression can be either a numeric expression or a text equate. Han-
dling text equates with this operator is a new feature in Version 5.0. Previ-
ous versions handled numeric expressions only. If there are additional
arguments after an argument that uses the expression operator, the addi-
tional arguments must be preceded by a comma, not a space or tab.

The expression operator is typically used in macro calls when the program-

mer needs to pass the result of an expression rather than the actual
expression to a macro.

B Example

printe MACRO exp,val
IF2 ;. On pass 2 only
%0UT exp = val ;. Display expression and result
ENDIF ;s to screen
ENDM
syml EQU 100
sym2 EQU 200
msg EQU <"Hello, World.'">

printe <syml + sym2>,¥%(syml + sym2)
printe msg,$msg

In the first macro call, the text literal syml + sym2 =is passed to the
parameter exp, and the result of the expression is passed to the parame-
ter val. In the second macro call, the equate name msgqg is passed to the
parameter exp, and the text of the equate is passed to the parameter
val. As a result, MASM displays the following messages:

syml + sym2 = 300
msg = "Hello, World." —

The %9OUT directive, which sends a message to the screen, is described in
Section 12.1, “Sending Messages to the Standard Output Device”; the IF'2

230

Using Equates, Macros, and Repeat Blocks

directive is described in Section 10.1.2, “Testing the Pass with IF1 and [F2
Directives.”

11.4.5 Macro Comments

A macro comment is any text in a macro definition that does not need to
be copied in the macro expansion. A double semicolon (;;) is used to start a
macro comment.

B Syntax
s3text

All text following the double semicolon (3;) is ignored by the assembler and
will appear only in the macro definition when the source listing is created.

The regular comment operator (;) can also be used in macros. However,
regular comments may appear in listings when the macro is expanded.
Macro comments will appear in the macro definition, but not in macro
expansions. Whether or not regular comments are listed in macro expan-

sions depends on the use of the .LALL, . XALL, and .SALL directives, as
described in Section 12.2.3, “Controlling Page Breaks.”

11.5 Using Recursive, Nested,
and Redefined Macros

The concept of replacing macro names with predefined macro text is sim-
ple, but in practice it has many implications and potentially unexpected

side effects. The following sections discuss advanced macro features (such
as nesting, recursion, and redefinition) and point out some side effects of
macros.

11.5.1 Using Recursion
Macro definitions can be recursive: that is, they can call themselves. Using
recursive macros-is one way of doing repeated operations. The macro does

a task, and then calls itself to do the task again. The recursion is repeated
until a specified condition is met.

231

Microsoft Macro Assembler Programmer’s Guide

B Example

pushall MACRO regl,reg2,reg3,reg4,reg5S,regb
IENB <regl> ;. If parameter not blank
push regl H push one register and repeat
pushall reg2,reg3,reg4,reg5,regb
ENDIF
ENDM
pushall ax,bx,si,ds
pushall cs,es

In this example, the pushall macro repeatedly calls itself to push a
register given in a parameter until no parameters are left to push. A vari-
able number of parameters (up to six) can be given.

11.5.2 Nesting Macro Definitions

One macro can define another. MASM does not process nested definitions
until the outer macro has been called. Therefore, nested macros cannot be
called until the outer macro has been called at least once. Macro
definitions can be nested to any depth. Nesting is limited only by the
amount of memory available when the source file is assembled.

Using a macro to create similar macros can make maintenance easier. If
you want to change all the macros, change the outer macro and it
automatically changes the others.

B Example

shifts MACRO opname ; Define macro that defines macros
opname&s MACRO operand,rotates
IF rotates LE 4
REPT rotates
opname operand,l ;; One at a time is faster
ENDM HH for 4 or less on 8088/8086
ELSE
mov cl,rotates ;:; Using CL is faster
opname operand,cl HH for more than 4 on 8088/8086
ENDIF
ENDM
ENDM

shifts ror ; Call macro
shifts rol ; to new macros
shifts shr

shifts shl

shifts rcl

shifts rcr

shifts sal

shifts sar

éhrs ax,5 ; Call defined macros
rols bx,3

232

Using Equates, Macros, and Repeat Blocks

This macro, when called as shown, creates macros for multiple shifts with
each of the shift and rotate instructions. All the macro names are identical
except for the instruction. For example, the macro for the SHR instruc-
tion is called shrs; the macro for the ROL instruction is called rols. If
you want to enhance the macros by doing more parameter checking, you
can modify the original macro. Doing so will change the created macros
automatically. This macro uses the substitute operator, as described in
Section 11.4.1.

11.5.3 Nesting Macro Calls

Magcro definitions can contain calls to other macros. Nested macro calls are
expanded like any other macro call, but only when the outer macro is
called.

® Example

ex MACRO text,val ; Inner macro definition
IF2
%0UT The expression (&text) has the value: &val
ENDIF
ENDM
express MACRO expression ; Outer macro definition
ex <expression>, % (expression)

ENDM

express <4 + 2 + 7 - 3 MOD 4>

The two sample macros enable you to print the result of a complex expres-
sion to the screen by using the $6OUT directive, even though that direc-
tive expects text rather than an expression (see Section 12.1, “Sending
Messages to the Standard Output Device”). Being able to see the value of
‘an expression is convenient during debugging.

Both macros are necessary. The express macro calls the ex macro,
using operators to pass the expression both as text and as the value of the
expression. With the call in the example, the assembler sends the following
line to the standard output:

The expression (4 + 2 * 7 - 3 MOD 4) has the value: 15

You could get the same output by using only the ex macro, but you ‘
would have to type the expression twice and supply the macro operators in

233

Microsoft Macro Assembler Programmer’s Guide

the correct places yourself. The express macro does this for you
automatically. Notice that expressions containing spaces must still be
enclosed in angle brackets. Section 11.4.2, “Literal-Text Operator,”
explains why.

11.5.4 Redefining Macros

Macros can be redefined. You do not need to purge the macro before
redefining it. The new definition automatically replaces the old definition.
If you redefine a macro from within the macro itself, make sure there are
no statements or comments between the ENDM directive of the nested
redefinition and the ENDM directive of the original macro.

B Example

getasciiz MACRO

.DATA
max DB 80
actual DB ?
tmpstr DB 80 DUP (?)
.CODE
mov ah, OAh
mov dx,OFFSET max
int 21h —~
mov bl,actual
xor bh, bh
mov tmpstr [bx] ,0
getasciiz = MACRO
mov ah, OAh
mov dx,OFFSET max
int 21h
mov bl, actual
xor bh,bh
mov tmpstr [bx],0
ENDM
ENDM

This macro allocates data space the first time it is called, and then
redefines itself so that it doesn’t try to reallocate the data on subsequent
calls.

11.5.5 Avoiding Inadvertent Substitutions

MASM replaces all parameters when they occur with the corresponding —
argument, even if the substitution is inappropriate. For example, if you

234

Using Equates, Macros, and Repeat Blocks

use a register name such as AX or BH as a parameter, MASM replaces
all occurrences of that name when it expands the macro. If the macro
definition contains statements that use the register, not the parameter, the
macro will be incorrectly expanded. MASM will not warn you about using
reserved names as macro parameters.

MASM does give a warning if you use a reserved name as a macro name.
You can ignore the warning, but be aware that the reserved name will no
longer have its original meaning. For example, if you define a macro called
ADD, the ADD instruction will no longer be available. Your ADD macro
takes its place.

11.6 Managing Macros and Equates

Macros and equates are often kept in a separate file and read into the
assembler source file at assembly time. In this way, libraries of related
macros and equates can be used by many different source files.

The INCLUDE directive is used to read an include file into a source file.
Memory can be saved by using the PURGE directive to delete the
unneeded macros from memory.

11.6.1 Using Include Files

The INCLUDE directive inserts source code from a specified file into the
source file from which the directive is given.

® Syntax

INCLUDE filespec

The filespec must specify an existing file containing valid assembler state-
ments. When the assembler encounters an INCLUDE directive, it opens
the specified source file and begins processing its statements. When all
statements have been read, MASM continues with the statement immedi-

ately following the INCLUDE directive.

The filespec can be given either as a file name, or as a complete or relative
file specification including drive or directory name.

235

Microsoft Macro Assembler Programmer’s Guide

If a complete or relative file specification is given, MASM looks for the
include file only in the specified directory. If a file name is given without a
directory or drive name, MASM looks for the file in the following order:

1. If paths are specified with the /I option, MASM looks for the
include file in the specified directory or directories. See Section
2.4.6, “Getting Command-Line Help,” for more information on the

/I option.

MASM looks for the include file in the current directory.

If an INCLUDE environment variable is defined, MASM looks
for the include file in the directory or directories specified in the

environment variable.

Nested INCLUDE directives are allowed. MASM marks included state-
ments with the letter “C” in assembly listings.

Directories can be specified in INCLUDE path names with either the
backslash (\) or the forward slash (/). This is for XENIX compatibility.

Note

Any standard code can be placed in an include file. However, include
files are usually used only for macros, equates, and standard segment
definitions. Standard procedures are usually assembled into separate
object files and linked with the main source modules. The CodeView
debugger can debug code in multiple modules, but it cannot debug

code 1n include files.

B Examples

INCLUDE fileio.mac
INCLUDE b:\include\keybd.inc
INCLUDE /usr/jons/include/stdio.mac

INCLUDE masm_inc\define.inc

236

; File name only; use with

/I or environment

Complete file specification
; Path name in XENIX format

; Partial path name in DOS format

(relative to current directory)

.

Using Equates, Macros, and Repeat Blocks

11.6.2 Purging Macros from Memory

The PURGE directive can be used to delete a currently defined macro
from memory.

B Syntax
PURGE macroname[,macroname]...

Each macroname is deleted from memory when the directive is encoun-
tered at assembly time. Any subsequent call to that macro causes the
assembler to generate an error.

The PURGE directive is intended to clear memory space no longer
needed by a macro. If a macro has been used to redefine a reserved name,
the reserved name is restored to its previous meaning.

The PURGE directive can be used to clear memory if a macro or group of
macros is needed only for part of a source file.

It is not necessary to purge a macro before redefining it. Any redefinition
of a macro automatically purges the previous definition. Also, a macro can
purge itself as long as the PURGE directive is on the last line of the
macro.

The PURGE directive works by redefining the macro to a null string.
Therefore, calling a purged macro does not cause an error. The macro
name is simply ignored.

B Examples

GetStuff
PURGE GetStuff

These examples call a macro and then purge it. You might need to purge

macros in this way if your system does not have enough memory to keep
all the macros needed for a source file in memory at the same time.

237

((HAPTER

CONTROLLING

ASSEMBLY QUTPUT

12.1

12.2

12.3

12.4

Sending Messages

to the Standard Output Device.......... cerrrreeeeeesenes 241
Controlling Page Format in Listings.......ccccceue.... 242
12.2.1 Setting the Listing Title coceeeeeerreneeeernenneneens 242
12.2.2 Setting the Listing Subtitle....cccoveererneerennnnne 243
12.2.3 Controlling Page Breaks...cccceeevueerenneerennnnns 243
Controlling the Contents of Listings.......cccceeeunne 245

12.3.1 Suppressing and Restoring Listing Output..240
12.3.2 Controlling Listing of Conditional Blocks ...246
12.3.3 Controlling Listing of Macros.....cceeeeevvveeene. 247

Controlling Cross-Reference Output................... 249

o

Controlling Assembly Output

MASM has two ways of communicating results of an assembly to the
user. It can write information to a listing, cross-reference, or object file; or
it can)display messages to the standard output device (ordinarily the
screen).

Both kinds of output can be controlled from the command line or from
inside a source file. The command lines and options that affect information
output are described in Chapter 2, “Using MASM.” This chapter explains
the directives that directly control output from inside source files.

12.1 Sending Messages
to the Standard Output Device

The %9OUT directive instructs the assembler to display text to the stan-
dard output device. This device is normally the screen, but you can also
redirect the output to a file or other device (see Section 2.3 ,“Controlling
Message Output”).

B Syntax
%OUT text

The text can be any line of ASCII characters. If you want to display multi-
ple lines, you must use a separate %2OUT directive for each line.

The directive is useful for displaying messages at specific points of a long
assembly. It can be used inside conditional-assembly blocks to dlsplay
messages when certain conditions are met.

The %OUT directive generates output for both assembly passes. The IF1
and IF2 directives can be used for control when the directive is processed.

Macros that enable you to output the value of expressions-are shown in
Section 11.5.3, “Nesting Macros Calls.”

B Example

IF1
%OouT First Pass - OK
ENDIF

This sample block could be placed at the end of a source file so that the

message First Pass - OK would be displayed at the end of the first
pass, but ignored on the second pass.

241

Microsoft Macro Assembler Programmer’s Guide

12.2 Controlling Page Format in Listings

MASM provides several directives for controlling the page format of list-
ings. These directives include the following:

Directive Action

TITLE Sets title for listings

SUBTTL Sets title for sections in listings

PAGE Sets page length and width, and controls page and sec-

tion breaks

12.2.1 Setting the Listing Title

The TITLE directive specifies a title to be used on each page of assembly
listings.

B Syntax

TITLE text

The text can be any combination of characters up to 60 in length. The title
is printed flush left on the second line of each page of the listing.

If no TITLE directive is given, the title will be blank. No more than one
TITLE directive per module is allowed.

B Example
TITLE Graphics Routines

This example sets the listing title. A page heading that reflects this title is
shown below:

Microsoft (R) Macro Assembler Version 5.00 9/25/87 12:00:00
Graphics Routines Page 1-2

242

Controlling Assembly Output

12.2.2 Setting the Listing Subtitle

The SUBTTL directive specifies the subtitle used on each page of assem-
bly listings.

B Syntax

SUBTTL text

The text can be any combination of characters up to 60 in length. The sub-
title is printed flush left on the third line of the listing pages.

If no SUBTTL directive is used, or if no text is given for a SUBTTL
directive, the subtitle line is left blank.

Any number of SUBTTL directives can be given in a program. Each new
directive replaces the current subtitle with the new texzt. SUBTTL direc-
tives are often used just before a PAGE + statement, which creates a
new section (see Section 12.2.3, “Controlling Page Breaks”).

B Example

SUBTTL Point Plotting Procedure
PAGE +

The example above creates a section title and then creates a page break
and a new section. A page heading that reflects this title is shown below:

Microsoft (R) Macro Assembler Version 5.00 9/25/87 12:00:00
Graphics Routines Page 3-1
Point Plotting Procedure

12.2.3 Controlling Page Breaks

The PAGE directive can be used to designate the line length and width
for the program listing, to increment the section and adjust the section
number accordingly, or to generate a page break in the listing.

B Syntax

PAGE [[length],uwidth]
PAGE +

If length and width are specified, the PAGE directive sets the maximum
number of lines per page to length and the maximum number of characters

243

Microsoft Macro Assembler Programmer’s Guide

per line to width. The length must be in the range of 10-255 lines. The
default page length is 50 lines. The width must be in the range of 60-132
characters. The default page width is 80 characters. To specify width
without changing the default length, use a comma before width.

If no argument is given, PAGE starts a new page in the program listing
by copying a form-feed character to the file and generating new title and
subtitle lines.

If a plus sign follows PAGE, a page break occurs, the section number is
incremented, and the page number is reset to 1. Program-listing page
numbers have the following format:

section-page

The section is the section number within the module, and page is the page
number within the section. By default, section and page numbers begin
with 1-1. The SUBTTL directive and the PAGE directive can be used
together to start a new section with a new subtitle. See Section 12.2.2,
“Setting the Listing Subtitle,” for an example.

B Example 1

PAGE

Example 1 creates a page break.

B Example 2

PAGE 58,90

Example 2 sets the maximum page length to 58 lines and the maximum
width to 90 characters.

B Example 3

PAGE ,132

Example 3 sets the maximum width to 132 characters. The current page

length (either the default of 50 or a previously set value) remains
unchanged.

244

Controlling Assembly Output

B Example 4
PAGE +
Example 4 creates a page break, increments the current section number,

and sets the page number to 1. For example, if the preceding page was 3-6,
the new page would be 4-1.

12.3 Controlling the Contents of Listings

MASM provides several directives for controlling what text will be shown
in listings. The directives that control the contents of listings are shown
below:

Directive Action

LIST Lists statements in program listing

XLIST Suppresses listing of statements

.LFCOND Lists false-conditional blocks in program listing
SFCOND Suppresses false-conditional listing

.TFCOND Toggles false-conditional listing

LALL Includes macro expansions in program listing
.SALL Suppresses listing of macro expansions

XALL Excludes comments from macro listing

12.3.1 Suppressing and Restoring Listing Output

The .LIST and .XLIST directives specify which source lines are included
in the program listing.

B Syntax

LIST
XLIST

The .XLIST directive suppresses copying of subsequent source lines to the
program listing. The .LIST directive restores copying. The directives are
typically used in pairs to prevent a particular section of a source file from
being copied to the program listing.

245

Microsoft Macro Assembler Programmer’s Guide

The XLIST directive overrides other listing directives such as
.SFCOND or .LALL.

B Example

XLIST ; Listing suspended here

:LIST ; Listing resumes here

12.3.2 Controlling Listing of Conditional Blocks

The .SFCOND, .LFCOND, and .TFCOND directives control whether
false-conditional blocks should be included in assembly listings.

B Syntax

.SFCOND
.LFCOND
.TFCOND

The .SFCOND directive suppresses the listing of any subsequent condi-
tional blocks whose condition is false. The .LFCOND directive restores
the listing of these blocks. Like .LIST and .XLIST, conditional-listing
directives can be used to suppress listing of conditional blocks in sections
of a program.

The .TFCOND directive toggles the current status of listing of condi-
tional blocks. This directive can be used in conjunction with the /X
option of the assembler. By default, conditional blocks are not listed on

start-up. However, they will be listed on start-up if the /X option is given.

This means that using /X reverses the meaning of the first ,TFCOND
directive in the source file. The /X option is discussed in Section 2.4.14,
“Listing False Conditionals.”

246

Controlling Assembly Output

B Example

testl EQU 0] ; Defined to make all conditionals false
; /X not used /X used

. TECOND

IFNDEF testl ; Listed Not listed
test2 DB 128

ENDIF

. TECOND

IFNDEF testl ., Not listed Listed
test3 DB 128

ENDIF

.SFCOND

IFNDEF testl ; Not listed Not listed
test4 DB 128

ENDIF

.LFCOND

IENDEF testl ;. Listed Listed
test5 DB 128

ENDIF

In the example above, the listing status for the first two conditional blocks
would be different, depending on whether the /X option was used. The
blocks with .SFCOND and .LFCOND would not be affected by the /X

option.

12.3.3 Controlling Listing of Macros
The .LALL, . XALL, and .SALL directives control the listing of the

expanded macros calls. The assembler always lists the full macro
definition. The directives only affect expansion of macro calls.

B Syntax

.LALL
XALL
.SALL

The .LALL directive causes MASM to list all the source statements in a

macro expansion, including normal comments (preceded by a single semi-
colon) but not macro comments (preceded by a double semicolon%.

247

Microsoft Macro Assembler Programmer’s Guide

The .XALL directive causes MASM to list only those source statements
in- a macro expansion that generate code or data. For instance, comments,
equates, and segment definitions are ignored.

The .SALL directive causes MASM to suppress listing of all macro
expansions. The listing shows the macro call, but not the source lines gen-
erated by the call.

The .XALL directive is in effect when MASM first begins execution.

B Example

tryout MACRO param
; ;Macro comment
;> Normal comment
it EQU 3 ; No code or data
ASSUME es:_DATA ; No code or data
Dw param ; Generates data
mov ax, it ; Generates code
ENDM
.XALL
tryout 6 ; Call with .LALL
.XALL
tryout 6 ; Call with .XALL
.SALL
tryout 6 ; Call with .SALL

The macro calls in the example generate the following listing lines:

.LALL

tryout 6 ; Call with .LALL

1 ; Normal comment

= 0003 1 it EQU 3 ; No code or data

1 ASSUME es:_TEXT : No code or data

0015 0006 1 DW 6 ; Generates data

0017 B8 0003 1 mov ax, it ; Generates code
.XALL

tryout 6 ; Call with .XALL

OOl1A 0006 1 Dw 6 ; Generates data

001C B8 0003 1 mov ax, it ., Generates code
.SALL

tryout 6 ; Call with .SALL

Notice that the macro comment is never listed in macro expansions. Nor-
mal comments are listed only with the .LALL directive.

248

Controlling Assembly Output

12.4 Controlling Cross-Reference Output

The .CREF and .XCREF directives control the generation of cross-
references for the macro assembler’s cross-reference file.

B Syntax

.CREF
XCREF [name[,name]...]

The .XCRETF directive suppresses the generation of label, variable, and
symbol cross-references. The .CREF directive restores generation of
cross-references.

If names are specified with XCREF, only the named labels, variables, or
symbols will be suppressed. All other names will be cross-referenced. The

named labels, variables, or symbols will also be omitted from the symbol
table of the program listing.

® Example

.XCREF ; Suppress cross-referencing
; of symbols in this block

.CREF ; Restore cross-referencing
; of symbols in this block

.XCREF testl,test2 ; Don't cross-reference testl or test2
. ; in this block

249

e

i

e . L S fh

el S
- %’;gg T 9*51.&%:*;

o
e

Senenon
e

B

® Part3 > USING INSTRUCTIONS

(.]HAPTER

UNDERSTANDING
8086-FAMILY PROCESSORS
13.1 Using the 8086-Family Processors.....ccccceeeevveeeee. 257
13.1.1 Processor Differences...cceeeeeeuneceeneceenneceennnns 257
13.1.2 Real and Protected Modesccceeeeveeerennnnnnnn. 259
13.2 Segmented Addresses......ccevveeeeeeerrvneeeeeescrrneeeenns 260
13.3 Using 8086-Family Registers.......cccceceeeeeerrrnneeeennn. 261
13.3.1 Segment RegiSterS.cccccereureerereerncarennencereene 263
13.3.2 General-Purpose RegiSters ...cceeveeereerneecennns 264
13.3.3 Other Registers..cceseeeeerruneeeererneccerernnceceenns 266
13.3.4 The Flags Register.cccccceereeereneeeaceraeeernnnnnnes 266
13.3.5 8087-Family Registers .ccceeeerrerneeeererneecerennns 268

13.4 Using the 80386 Processor Under DOS................ 269

Understanding 8088-Family Processors

This chapter introduces the 8086-family of processors. It describes their
segmented-memory structure and their registers. Differences between the
chips in the family are also covered.

13.1 Using the 8086-Family Processors

The Intel Corporation manufactures the group of processors referred to in
this manual as the 8086-family processors. The MS-DOS and PC-DOS
operating systems are designed to work under these processors and to take
advantage of their features. The processors have several features in com-
mon, as follows:

e Memory is organized by using a segmented architecture.

e The instruction set is upwardly compatible—all features available
in the early versions of the processor are also available in the newer
versions, but the new versions contain additional features not sup-
ported in the old versions.

e The register set is also upwardly compatible.

13.1.1 Processor Differences
The main 8086-family processors are discussed below:

Processor Description

8088 and These processors work in real mode. They are designed

8086 to run a single process. No provision is made to protect
one part of memory from actions occurring in another
part of memory. The processor can address up to one
megabyte of memory. Addresses specified in assembly
language correspond to physical memory addresses.

The 8088 uses an 8-bit data bus, and the 8086 uses a
16-bit data bus. This makes the 8086 somewhat faster.
However, from the programming standpoint, the two
processors are identical except that the 8086 will handle
certain data more efficiently if you word-align it by
using the EVEN or ALIGN directives (see Section 6.5,
“Aligning Data”).

257

Microsoft Macro Assembler Programmer’s Guide

258

80186

80286

80386

8087,
80287, and
80387

This processor is identical to the 8086 except that new
instructions have been added and some old instructions
have been optimized. It runs significantly faster than
the 8086. (There is also an enhanced version of the 8088
called the 80188.)

This processor has the added instructions and speed of
the 80186. It can run in the real mode of the 8088 and
8086, but it also has an optional protected mode in
which multiple processes can be run concurrently.
Memory used by each process can be protected from
other processes.

In protected mode, the processor can address up to 16
megabytes of memory. However, when memory is
accessed in protected mode, the addresses do not
correspond to physical memory. Under protected-mode
operating systems, the processor allocates and manages
memory dynamically. Additional privileged instructions
for initializing protected mode and controlling multiple
processes are available.

This is both a 16-bit and a 32-bit processor. It is fully
compatible with the 80286; but at the system level, it
implements many new features, including virtual
memory, multiple 8086 processes, and addressing for up
to four gigabytes of memory. This manual does not
explain how to use these features.

For the applications programmer running in DOS, the
80836 supports all the instructions of the 80286 and
some additional instructions. It also allows limited use
of 32-bit registers and addressing modes. Finally, the
80386 operates significantly faster than the 80286. Con-
siderations for programming the 80386 under DOS are
summarized in Section 13.4.

These are math coprocessors that work concurrently
with the 8086-family processors. They do mathematical
calculations faster and more accurately than can be
done with the 8086-family processors. Although there
are performance and technical differences between the
three coprocessors, the main difference to the applica-
tions programmer is that the 80287 and 80387 can
operate in protected mode. The 80387 also has several
new instructions.

Understanding 8086-Family Processors

13.1.2 Real and Protected Modes

Real mode is the single-process mode used in current versions of DOS. Pro-
tected mode is the multiple-process mode used in Microsoft XENIX. It will
also be used in OS/2, the planned multitasking version of DOS.

To the applications programmer, there is little difference between
assembly-language programming in real or protected mode. Processes are
managed at the system level by the operating system. The applications
programmer does not deal with processes except when interfacing with the
operating system.

This manual does not address issues of interfacing with multitasking
operating systems. If you are using a multitasking system, you must use
the documentation for that operating system. However, applications pro-
grammers should be aware of the following differences between real- and
protected-mode programming:

e In protected mode, up to 16 megabytes of memory can be
addressed (compared to one megabyte in real mode). This distinc-
tion may make a difference in the number and size of data struc-
tures created, but it should make no difference in the assembly-
language syntax, since data is addressed in exactly the same way in
either mode.

e In protected mode, segment registers contain segment selectors
rather than actual segment values. The selectors must come from
the operating system. They cannot be calculated by the program.
Programming techniques that attempt to calculate segment values
or address memory directly will not work.

e The planned multitasking version of DOS, OS/2, will use the
Applications Program Interface (API) to access DOS functions.
This system is different from the current DOS system of using
interrupt 21h.

e Certain instructions that can be used normally in real mode are
privileged instructions in protected-mode operating systems. These
include STI, CLI, IN, and OUT. These instructions are still avail- -
able at privilege levels normally used only by systems program-
mers.

Protected-mode operating systems, such as XENIX and OS/2, provide

extended functions for doing the kinds of tasks that are currently done by
using the restricted practices described above.

259

Microsoft Macro Assembler Programmer’s Guide

13.2 Segmented Addresses

When used with current versions of DOS, 8086-family processors can store
addresses as 16-bit word values. Therefore, the maximum unsigned value
that can be stored as an address is 65,635 (OFFFFh). Yet the processors
are actually capable of accessing much larger addresses. The highest possi-
ble address is one megabyte (OFFFFFh) in real mode or 16 megabytes
(OFFFFFFh) in protected mode.

Addresses larger than 65,535 bytes are specified by combining two seg-
-mented word addresses: a 16-bit segment and a 16-bit offset within the
segment. A common syntax for showing segmented addresses is the
segment:offset format. For example, an address with a segment of 053C2h
and an offset of 0107Ah would be represented as 53C2:107A. This
method of specifying addresses can be used directly in most debuggers, but
it is not legal in assembler source code.

In real mode, the address 53C2:107A represents a physical 20-bit address.
This address can be calculated by multiplying the segment portion of the
address by 16 (10h), and then adding the offset portion, as shown below:

53C20h Segment times 10h
+ 107Ah Offset
54C9Ah Physical address

In protected mode, the address 53C2:107A represents a movable address.
The segment portion of the address is a selector assigned a physical
address by the operating system. The applications programmer has no
colntrol (and needs none% over the physical address represented by the
selector.

80386 Only

The 80386 processor supports 48-bit addresses consisting of a 16-bit
segment selector and a 32-bit offset. This enables the processor to
access addresses of up to four gigabytes per segment in protected
mode. The processor can also run in modes compatible with the 16-bit
real- and protected-mode addressing schemes of the other 8086-family
Processors.

260

Understanding 8086-Family Processors

Addresses cannot be represented directly in the segment:offset format in
assembly language. Instead the segment portion of the address is specified
symbolically, using a name assigned to the segment in the source code.
The address represented by the symbol can then be assigned to one of the
segment registers. Chapter 5, “Defining Segment Structure,” describes the
directives that assign symbols to segment addresses.

The offset portion of addresses can be specified in a number of ways,
depending on the context. Directives that assign symbols to offsets are dis-
cussed in Chapter 4, “Writing Source Code.”

In assembly-language programming, addresses can be near or far. A near
address is simply the offset portion of the address. Any instruction that
accesses a near address will assume that the segment address is the same
as the current segment for the type of address being accessed (usually a
code segment for code or a data segment for data).

A far address consists of both the segment and offset portions of the
address. Far addresses can be accessed from any segment. Both the seg-
ment and offset must be provided for instructions that access far
addresses. Far addresses are more flexible because they can be used for
larger programs and larger data objects. However, near addresses are more
efficient, since they produce smaller code and can be accessed more
quickly.

13.3 Using 8086-Family Registers

Like most microprocessors, the 8086-family processors have special areas
of memory called registers. Some registers control the behavior or status of
the processor. Others are used as temporary storage places where data can
be accessed and processed faster than if data were stored in regular
memory.

All the 8086-family processors share the same set of 16-bit registers. Some
registers can be accessed as two separate 8-bit registers. In the 80386,
most registers can also be accessed as extended 32-bit registers.

Figure 13.1 shows the registers common to all the 8086-family processors.

Each register and group of registers has its own special uses and limita-
tions, as described in this section.

261

Microsoft Macro Assembler Programmer’s Guide

Figure 13.1 Register for 8088—80286 Processors

m 80386 Only

The 80386 processor uses the same registers as the other processors in the
8086 family, but all except the segment registers can be extended to 32
bits. The extended registers begin with the letter E. For example, the 32-
bit version of AX is EAX. The 80386 also has two additional segment
registers, F'S and GS. Figure 13.2 shows the extended registers of the
80386.

262

Understanding 8086-Family Processors

Figure 13.2 Extended Registers of 80386 Processor

13.3.1 Segment Registers

At run time, all addresses are relative to one of four segment registers:
CS, DS, SS, or ES. These registers and the segments they correspond to

are listed below:

Segment Purpose

Code Segment (CS) Addresses in the segment pointed to by this
register contain the encoded instructions and

operands specified by the program.

263

Microsoft Macro Assembler Programmer’s Guide

Data Segment (DS) Addresses in the segment pointed to by this
register normally contain data allocated by the
program.

Stack Segment (SS) Addresses in the segment pointed to by this
register are available for instructions that store .
data on the program stack. A stack is an area
of memory reserved for storing temporary
data. See Section 15.4, “Transferring Data to
and from the Stack,” for information on using
stacks.

Extra Segment (ES) Addresses in the segment pointed to by this
register are available for string instructions.
An additional segment can also be stored in
the ES register. The 80386 has two additional
segments, F'S and GS.

13.3.2 General-Purpose Registers

The AX, DX, CX, BX, BP, SI, and DI registers are 16-bit, general-
purpose registers. They can be used to temporarily store data during pro-
cessing. Data in registers can be accessed much more quickly than data in
memory. Therefore, it is more efficient to keep the most frequently used
values 1n registers.

Memory-to-memory operations are never allowed in 8086-family proces-
sors. As a result, data must often be moved into registers before doing cal-
culations or other operations involving more than one variable.

Four of the general registers, AX, DX, CX, and BX, can be accessed as
two 8-bit registers or as a single 16-bit register. The AH, DH, CH, BH
registers represent the high-order 8 bits of the corresponding registers.
Similarly, AL, DL, CL, and BL represent the low-order 8 bits of the
registers. All the general registers can be extended to 32 bits on the 80386
by appending the letter E—EAX, EDX, ECX, and so on.

In addition to their general use for storing data, each of the general-
purpose registers has special uses in certain situations. Specific uses for
each register are listed below:

Register Description

AX The AX (Accumulator) register is most often used for
storing temporary data. Many instructions are optim-
ized so that they work slightly faster on data in the
accumulator register than on data in other registers.

With division instructions, the accumulator holds all or
part of the dividend before the operation and the

264

DX

CX

BX

BP

SI

DI

Understanding 8086-Family Processors

quotient afterward. With multiplication instructions,
the accumulator holds one of the factors before the
operation and all or part of the result afterward. In I/O
operations to and from ports, the accumulator holds the
data being transferred.

The DX (Data) register is most often used for storing
temporary data.

When dividing a doubleword value, DX holds the upper
word of the dividend before the operation and the
remainder afterward. When multiplying word values,
DX holds the upper word of the doubleword result. In
I/O operations to and from ports, DX holds the
number of the port to be accessed.

The CX (Count) register must be used to hold the
count for instructions that do looping or other repeated
operations. These include the loop instructions, certain
jump instructions, repeated string instructions, and
shifts and rotates. This register can also be used for
temporary data storage.

The BX (Base) register can be used as a pointer. For
instance, it can point to the base of a data object (see
Section 14.3.2, “Indirect Memory Operands”). This
register can also be used for temporary data storage.

The BP (Base Pointer) register can be used for general
data storage. It is more often used as a pointer. For
instance, it is often used to point to the base of a stack
frame. The Microsoft conventions for passing argu-
ments to procedures have a specific use for BP as
described in Section 17.4.3, “Passing Arguments on the
Stack.” The SS register is assumed as the segment
register in operations using BP.

The SI (Source Index) register can be used as a pointer
or for general data storage. It is often used for pointing
to (indexing) an item within a data object. With string
instructions, SI is used to point to bytes or words
within a source string.

The DI (Destination Index) register can be used as a
pointer or for general data storage. It is often used for
pointing to (indexing) an item within a data object.
With string instructions, DI is used to point to bytes or
words within a destination string.

265

Microsoft Macro Assembler Programmer’s Guide

13.3.3 Other Registers

The 8086-family processors have two additional registers whose values are
changed automatically by the processor.

Register Description

SP The SP (Stack Pointer) register points to the current
location within the stack segment. Pushing a value onto
the stack increases the value of SP by two; popping from
the stack decreases the value of SP by two. Call instruc-
tions store the calling address on the stack and decrease
SP accordingly; return instructions get the stored
address and increase SP. With 80386 32-bit segments,
SP is increased or decreased by four instead of two. Sec-
tions 15.4.2, “Using the Stack,” and 17.4.3, “Passing
Arguments on the Stack,” discuss operation of the stack
in more detail.

SP is technically a general-purpose register that could be
used in calculations or for temporary data storage. How-
ever, it should generally be used only for stack opera-
tions.

IP The IP (Instruction Pointerg register always contains the
address of the instruction about to be executed. The pro-
grammer cannot directly access or change the instruction

ointer. However, instructions that control program flow
Fsuch as calls, jumps, loops, and interrupts) automati-
cally change the instruction pointer.

13.3.4 The Flags Register

The flags register is a 16-bit register made up of bits that control various
instructions and reflect the current status of the processor. In the 80386
processor, the flags register is extended to 32 bits. Some bits are
undefined, so there are actually 9 flags for real mode, 11 flags (including a
2-bit flag) for 80286-protected mode, and 13 flags for the 80386. The
extend flags register of the 80386 is sometimes called eflags.

Figure 13.3 shows the bits of the 32-bit flags register for the 808386. Only
the lower word is used for the other 8086-family processors. The unmarked
bits are reserved for processor use and should never be modified by the
programmer.

266

Understanding 8086-Family Processors

Figure 13.3 Flags for 8088—80386 Processors

The nine flags common to all 8086-family processors are summarized
below, starting with the low-order flags. In these descriptions, the term
“set” means the bit value is 1, and “cleared” means the bit value is O.

Flag Description

Carry Is set if an operation generates a carry to or a borrow
from a destination operand.

Parity Is set if the low-order bits of the result of an opera-
tion contain an even number of set bits.

Auxiliary Is set if an operation generates a carry to or a borrow

Carry from the low-order four bits of an operand. This flag
is used for binary-coded decimal arithmetic.

Zero Is set if the result of an operation is 0.

Sign Equal to the high-order bit of the result of an opera-

tion (0 is positive, 1 is negative).

267

Microsoft Macro Assembler Programmer’s Guide

Trap

Interrupt

Enable

Direction

Overflow

I/0
rotection
Level

Nested Task

Resume

Virtual 8086
Mode

If set, the processor generates a single-step interrupt
after each instruction. A debugger program can use

this feature to execute a program one instruction at
a time.

If set, interrupts will be recognized and acted on as
they are received. The bit can be cleared to tem-
porarily turn off interrupt processing.

Can be set to make string operations process down
from high addresses to low addresses, or can be
cleared to make string operations process up from
low addresses to high addresses.

Is set if the result of an operation is too large or
small to fit in the destination operand.

This 2-bit flag indicates the protection level for input
and output. Managing the protection level is a sys-
tems task not described in this manual.

Controls chaining of interrupted and called tasks.
Controlling tasks in protected mode is a systems task
not described in this manual. —

If set, debug exceptions are temporarily disabled.
Using 80386 debug exceptions is a systems task not
described in this manual.

If set, the processor is running an 8086-family real-
mode program in a protected multitasking environ-
ment. If clear, the 80386 processor is in its normal
mode. Running in virtual 8086 mode is a systems
task not described in this manual.

13.3.5 8087-Family Registers

The 8087-family processors use a stack-based architecture to access up to

eight 80-bit registers. See Chapter 19, “Calculating with a Math Coproces-

sor,” for information on using 8087-family registers and instructions. The

format of real numbers used by coprocessors is explained in Section

6.3.1.5, “Real-Number Variables.” —

268

Understanding 8086-Family Processors

13.4 Using the 80386 Processor Under DOS

Many of the added functions of the 80386 are not supported by versions of
DOS available at release time for Version 5.0 of the Microsoft Macro
Assembler. Although DOS runs on 80386 machines, it does not operate
any differently (except faster) than on an 80286 machines. New features of
the 80386, such as protected mode and 8086 virtual mode, are not sup-
ported by 'DOS. Since 32-bit segments are only available in protected
mode, they cannot be used under DOS. Techniques for overcoming these
limitations are beyond the scope of this manual.

Applications programmers can use some 80386 enhancements. The follow-
ing features of the 80386 can be used under current versions of DOS. Note
that using any of these features means your code will not run on machines
that do not have an 80386 processor.

e You can use the new 80386 instructions (except for those that
manage protected mode). New instructions include bit scan (BSF
and BFR); bit test g) T BTC, BTR, and BTS); move with sign
and zero extend M VSX and MOVZ ; set byte on condition
(SETcondition); and double-precision shi t (SHLD and SHRD).

e You can use 80286 instructions that have been enhanced to work
with 32-bit registers. These include the integer-multiply instruction
(IMUL); conversion instructions (CWDE and CDQ); string
instructions CMPSD LODSD, MOVSD, SCASD, STOSD,
INSD, OU ; and '32-bit stack enhancements (PUSHAD
POPAD PUS FD POPFD, and IRETD).

® You can use 32-bit registers for calculations. For instance, you can
add and subtract doubleword integers without using multiple regis-
ters, and you can do some multiplication and division operations
on 64-bit integers.

e You can use 32-bit registers to point into 16-bit segments. In previ-
ous processors, only BX, BP, DI, and SI could be used as pointers
in indirect memory operands. The 80386 has the same limitations
on 16-bit registers, but allows any general-purpose 32-bit register
to be a pointer in an indirect memory operand. If you use this tech-
nique, you must make sure that 32-bit registers used as pointers
actually contain valid 16-bit addresses.

269

Microsoft Macro Assembler Programmer’s Guide

If a program that uses 32-bit registers needs to execute while
another program is running, it should save 32-bit registers at entry
and restore them when finished. Under DOS, this applies only to
device drivers and terminate-and-stay-resident programs that
interrupt other programs. Use PUSHAD to save and POPAD to
restore. Without these instructions, the interrupting program may
change the upper half of 32-bit registers, causing errors when the
interrupted program regains control.

Although significant, these new features fall short of using the full power
that will be available under multiprocessing 80386 operating systems.

270

('HAPTER

USING ADDRESSING MODES
14.1 Using Immediate Operands.........ccceeevvveeeevveeennne 273
14.2 Using Register Operands........cccceeeeevveeeeeeecennnnen. 274
14.3 Using Memory Operands........cccceeeeeevuveeeeeescennnnees 276
14.3.1 Direct Memory Operands...cccceeeeeevveeeeeeennnns 276
14.3.2 Indirect Memory Operandsccceeevenneeeennnns 278

14.3.3 80386 Indirect Memory Operands.......cce...... 282

——

Using Addressing Modes

Instruction operands can be given in different forms called addressing
modes. Addressing modes tell the processor how to calculate the actual
value of an operand at run time.

The three kinds of addressing modes are immediate, register, and memory
operands. Memory operands are further broken into two groups, direct
and indirect memory operands.

The value of operands is calculated at assembly time for immediate
operands, at load time for direct memory operands, and at run time for
register operands and indirect memory operands.

Although two statements may be similar and their instruction mnemonic
the same, MASM may actually assemble different code for an instruction
when it is used with different addressing modes. For example, the state-
ments

mov ax, 1l

and

mov ax,place[bx] [di]

use the same instruction, but have different encoding, timing, and size. See
the Microsoft Macro Assembler Reference for more information on the
encoding, timing, and size of instructions.

Instructions that take two or more operands always work right to left. The
right operand is the source operand. It specifies data that will be used, but
not changed, in the operation. The left operand is the destination operand.
It specifies the data that will be operated on and possibly changed by the
instruction.

14.1 Using Immediate Operands

Immediate operands consist of constant numeric data that are known or
calculated at assembly time. Immediate values are coded into the execut-
able program and processed the same way each time the program is run.

Some instructions have limits on the size of immediate values (usually 8-,
16-, or 32-bit). String constants longer than two characters (four charac-
ters on the 80386) cannot be immediate data. They must be stored in
memory before they can be processed by instructions.

273

Microsoft Macro Assembler Programmer’s Guide

Many instructions permit immediate data in the source (right) operand
and either memory or register data in the destination (left) operand. The
instruction combines or replaces the register or memory data with the
immediate data in some way defined by the instruction. Examples of this

type of instruction include MOV, ADD, CMP, and XOR.

A few instructions, such as RET and INT, take a single immediate
operand.

Immediate data is never permitted in the destination operand. If the
source operand is immediate, the destination operand must be either regis-
ter or direct memory so that there will be a place to store the result of the
operation.

B Examples

.DATA
five DB 5 ; Memory data
nine EQU 9 ; Constant data

.CODE

; Source operand is immediate

mov bx,nine+3
add five, 3
or bx,00100100b
in al,43h
cmp cx, 200
; Only operand is immediate
ret 6
int 21h

14.2 Using Register Operands

Register operands consist of data stored in registers. Register-direct mode
refers to using the actual value inside the register at the time the instruc-

tion is used. Registers can also be used indirectly to point to memory loca-
tions, as described in Section 14.3.2, “Indirect Memory Operands.”

Most instructions allow register values in one or more operands. Some

instructions can only be used with certain registers. Often instructions
have shorter encoding (and faster operation) if the accumulator register

274

Using Addressing Modes

(AX or AL) is specified. Use of segment registers in operands is limited to
a few instructions and special circumstances.

The registers shown in Table 14.1 can be used in register-direct mode.

Table 14.1
Register Operands

Register-Operand Type

Register Name

8-bit high registers

8-bit low registers
16-bit general purpose
32-bit general, pointer, and index!
16-bit pointer and index
32-bit general, pointer, and index!
16-bit segment
Additional 80386 segment,1

AH
AL
AX
EAX
SP
ESP
CS
FS

BH
BL
BX
EBX
BP
EBP
DS
GS

CH
CL
CX

SI
ESI
SS

DH
DL
DX
EDX
DI
EDPI
ES

1 Available only if the 80386 processor is enabled

Registers are discussed in more detail in Section 13.3. Limitations on regis-
ter use for specific instructions are discussed in sections on the specific
instructions throughout Part 3, “Using Instructions.”

8 Examples

; Source and destination operands are register direct

add ax,bx
mov ds,ax
xor eax, ebx
cmp ah,bh
; Source operand is register direct
and stuff,dx
sub array [bx] [si].,ax
; Destination operand is register direct
shl ax,1l
cmp cXx,counter

; Only operand is register direct

mul bx
pop cx
inc ah

; 80386 only

275

Microsoft Macro Assembler Programmer’s Guide

14.3 Using Memory Operands

Many instructions can work on data in memory. When a memory operand

is given, the processor must calculate the address of the data to be pro-

cessed. This address is called the “effective address.” Calculation of the

i:)ﬁ’iective address depends on how the operand is specified, as explained
elow.

Note

Memory-to-memory operations are never allowed. These operations
must be done indirectly by moving one of the memory values into a
register before processing it.

14.3.1 Direct Memory Operands

A direct memory operand is a symbol that represents the address (segment
and offset) of an instruction or data. The offset address represented by a
direct memory operand is calculated at assembly time. The address of each
operand relative to the start of the program is calculated at link time. The
actual (or effective) address is calculated at load time.

Direct memory operands can be any constant or symbol representing an
address. This includes labels, procedure names, variables, structure vari-
ables, record variables, or the value of the location counter.

The effective address is always relative to a segment register. The default
segment register is DS for direct memory operands, but the default seg-
ment can be overridden with the segment-override operator (:), as
explained in Section 9.2.3.

Direct memory operands are often specified as constant expressions by
using the index operator. For example, the operand table[4] refers to
the byte having an offset four bytes from the address of table. This
expression is equivalent to table+4.

276

Using Addressing Modes

B Example

.DATA
stuff DW here
.CODE
mov ax,stuff ; Load value at address '"stuff"

; (address of "here") into AX
mov bx,OFFSET stuff ; Load address of "stuff"

; into BX
jmp stuff ; Jump to value of "stuff"

; (which is address of "here')
jmp here ; Jump to the address of '"here"
jmp ax ; Jump to AX (value of "stuff")
jmp [bx] ; Jump to [BX] (value at address
. of "stuff")

here:

This example illustrates the difference between memory operands that
represent addresses and memory operands that represent the value at an
address. Labels and variable names in the data segment (such as stuff)
represent the value at an address. Code labels (such as here) represent
the address itself. The four jump statements at the end of the example use
different kinds of operands to transfer control to the same address.

Note

If the label is omitted from a direct memory operand used with a con-
stant index, a segment must be specified. The offset of the operand is
assumed to be the start of the specified segment plus the indexed
offset. For example,

mov ax,ds: [100h]

moves the value at address 100h in the data segment into the AX
register. It is equivalent to

mov ax,ds:100h

277

Microsoft Macro Assembler Programmer’s Guide

If the segment override is omitted, the constant (immediate) value of
the operand is used rather than the value it points to. For example,

mov ax, [100h]

moves the value 100h into the AX register. It is equivalent to the
statement

mov ax,100h

14.3.2 Indirect Memory Operands

Indirect memory operands enable you to use registers to point to values in
memory. Since values in the registers can change at run time, you can use
indirect memory operands to operate on data dynamically.

On all processors except the 80386, only four registers can be used in
indirect mode (see Section 14.3.3, “80386 Indirect Memory Operands,” for
information on 80386 enhancements). BX and BP are called base regis-
ters; DI and SI are called index registers. The distinction between base
and index registers is not always important. In many contexts, any of
these registers can be thought of as the base or the index. In any case, an
attempt to use any register other than these four in a statement that
accesses memory indirectly results in an error.

You can use the base and index registers separately or in pairs, with or
without specifying a displacement. A displacement can be either a con-
stant or a direct memory. Several displacements can be given, but they are
all added into a single displacement at assembly time. For example, in the
statement

mov ax,table[bx] [di] +6

both table and 6 are displacements. MASM calculates the actual offset
of table and at 6 to get the total displacement.

The modes in which registers can be used to specify indirect memory
operands are shown in Table 14.2.

278

Table 14.2

Indirect Addressing Modes

Using Addressing Modes

Mode Syntax Description

Register indirect [BX] Effective address
[BP] is contents of
[D1] register

Based or indexed ~ [BX]disp Effective address
displacement[BP) 1s contents of
displacement[DI] I;‘.glﬁter andt
displacement[SI] tspiacemen

Based indexed [BX](DI] Effective address
[BP][DI] is contents of
[BX][S]] base register and
BPI[SI contents of index
[BP][ST) register

Based indexed displacement(BX]|[DI] Effective address

with displacement{BP|[DI| is contents of

displacement displacement[BP][SI] base register and

contents of index
registers and
displacement

Register-indirect operands are typically used to point to a memory address
within a segment. Based and indexed operands are used to point to a
memory address relative to a table, a one-dimensional jarray, or a struc-
ture. Operands with multiple indexes are useful for pointing to memory
locations in complex data structures such as multidimensional arrays.

The choice of which registers to use depends on the context of the state-
ment. String instructions require that specific registers are used in specific
situations, as explained in Chapter 18, “Processing Strings.” With other
instructions, base and index registers can often be used interchangeably,
depending on which registers are available.

When calculating the effective address of an indirect operand, the proces-
sor uses DS as the default segment register if BX is used as a base regis-
ter, or if no base register is specified. If BP is used anywhere in the
operand, the default segment register is SS. The default segment can be
overridden with the segment-override operator (:), as explained in Section
9.2.3 on the segment-override operator.

279

Microsoft Macro Assembler Programmer’s Guide

A common syntax for indirect memory operands is each register put within
index operators ([]). The register or registers must always be within brack-
ets, but a variety of alternate syntaxes is possible. Any operator that indi-
cates addition can be used to combine the displacement and multiple
registers. For example, the following statements are equivalent:

mov ax, table[bx] [di]
mov ax,table [bx+di]
mov ax, [table+bx+di]
mov ax, [bx] [di] .table
mov ax, [bx] [di]+table
mov ax, table[di] [bx]

When using based-indexed modes, one of the registers must be a base
register and the other an index register. The following statements are ille-
gal:

mov ax, table [bx] [bp] ; Illegal - two base registers
mov ax,table[di] [si] ; Illegal - two index registers

Use of the index operator is explained in more detail in Section 9.2.1.3.

When an index or displacement points into an array, it must be scaled for
the size of elements in the array. On all processors except the 80386, scal-
ing must be done in separate statements (see Section 14.3.3, “80386
Indirect Memory Operands,” for information on 80386 scaling). The scal-
ing factor is 1 for bytes (no scaling necessary), 2 for words, 4 for double-
words, and 8 for quadwords. Since scaling factors (other than for bytes)
are multiples of 2, they can usually be calculated quickly with the SHL
instruction, as shown below:

shl di,1 ; Scale DI for words (DI *2)

shl di,1 ; Scale DI for doublewords (DI*4)
shl di,1

shl di,1 ; Scale DI for quadwords (DI#8)
shl di,1

shl di,1

Use of the SHL instruction for multiplication is described in more detail in
Section 16.8.1, “Multiplying and Dividing by Constants.”

280

B Example 1

add
mov
sub
xor
and
dec
cmp
push
call

dx, [bx]

dl, [bp+6]

dx, 12 [bx]

red [bx] , dx
dx,red[si]+3

BYTE PTR [bx] [si]
cx,here[bp] [si]
place[bx] [di]+2

cs:table[bx]

Using Addressing Modes

; Add the word contents of DS:BX

.
‘
’
;
.
.
’
’
‘
.
‘
’
’
‘
’
’
’
.

to the contents of DX

; Load the byte contents

of SS:BP+6 into DL
Subtract the word contents of
DS:12+BX from the contents of DX
XOR the contents of DX with
the contents of DS:red+BX

; AND the contents of DS:red+SI+3

with the contents of DX
Decrement the byte
at DS:BX+SI

; Compare the contents of CX

to the contents of SS:here+BP+SI

; Save the contents of

DS:place+BX+DI+2 on the stack

. Call the routine pointed to

by the contents of CS:table+bx

The statements in Example 1 illustrate how the various instructions can
be used with indirect memory operands.

B Example 2

scrnbuff EQU

mov
mov

mov
push
mov
push
mov
push
call
add

show PROC
push
mov
push

mov
dec
shl
mov
dec
mov
mul
mov

mov
mov

pop

ret
show ENDP

OB8OOh

ax,scrnbuff
es,ax

ax,4
ax
ax,6
ax

ax, nyn
ax
show
sp,6

NEAR
bp
bp, sp
si

si, [bp+8]
si

si,1

bx, [bp+6]
bx

ax, 160
bx

bx, ax

dl,BYTE PTR [bp+4]
es: [bx] [si],dl

si
bp

Newe e s

PP R NN

P P O A Ta Y

‘

CGA screen buffer (actual
value is hardware dependent)

Load address of screen buffer
into ES

Push column 4 as third argument
Push row 6 as second argument
Push "2z" as first argument

Call the procedure
Restore stack

Save BP
and set up stack frame
Save SI (so procedure could
be called from C)

Load column

Adjust for zero

Scale for 2 bytes per character
Load row

; Adjust for zero
; Multiply 160 bytes per line

times current row

;- Put result in index

Load character

. Put character in buffer

Restore SI and BP

Return

281

Microsoft Macro Assembler Programmer’s Guide

Example 2 illustrates two uses of indirect memory operands. Arguments
are pushed onto the stack before calling a procedure. When the procedure
is called, the arguments are removed using indirect memory operands.

The procedure writes a character to a screen buffer (& common technique
with many computers and display adapters). The BX register points to
the column position in the buffer; the SI register points to the row posi-
tion. In this example, the ES register must contain the address of the
screen buffer (this address varies for different hardware).

The procedure follows the calling conventions of Microsoft C and could be
called directly from that language. Note that SIis saved and restored
because the C compiler requires that it not be changed by a procedure.

Example 2 works on any processor. Section 14.3.3, “80386 Indirect
Memory Operands,” shows an enhanced version that uses 80386 instruc-
tions and addressing modes.

14.3.3 80386 Indirect Memory Operands

Instructions for the 80386 can be given in two modes, 16 bit and 32 bit.
Understanding these modes is important, since indirect memory operands
are different in each mode.

The 80386 instruction modes are controlled by the use type of the code
segment in which the instructions are located. The mode 1s 16 bit if the
use type is USE16 or 32 bit if the use type is USE32. In 32-bit mode, an
offset address can be up to four gigabytes. In 16-bit mode, an offset
address can be up to 64K. The 16-bit mode of the 80386 is the same as the
mode used by all the other 8086-family processors.

If the 80386 processor is enabled (with the .386 directive), 32-bit general-
purpose registers are always available. They can be used from 16-bit or
32-bit segments. When 32-bit registers are used, many of the limitations of
16-bit indirect memory modes do not apply. The following extensions are
available when 32-bit registers are used in indirect memory operands:

e There are fewer limitations on the registers that can be used as
base and index registers. With other 8086-family processors, only
BX, BP, DI, and SI registers can be used in indirect memory
operands. With the 80386, any general-purpose 32-bit register can
be used. The same register can even be used as both the base and

the index. Several examples are shown below:
4

add edx, [eax] ; Add double

mov dl, [esp+10] ; Add byte from stack

dec WORD PTR [edx] [eax] : Decrement word

cmp cx, array [eax] [eaX] ; Compare word from array
jmp table [ecx] ; Jump into pointer table

282

Using Addressing Modes

e The index register can have a scaling factor of 1, 2, 4, or 8. Any
register except ESP can be the index register and can have a scal-
ing factor. The scaling factor is specified by using the multiplica-
tion operator (*) adjacent to the register.

Scaling can be used to index into arrays with different sizes of ele-
ments. For example, the scaling factor is 1 for byte arrays (no scal-
ing needed), 2 for word arrays, 4 for doubleword arrays, and 8 for
quadword ‘arrays. There is no performance penalty for using a scal-
ing factor. Scaling is illustrated in the following examples:

mov eax, darray [edx*4] ; Load double of double array
mov eax, [esix8] [edi] . Load double of quad array
mov ax,wtbl [ecx+2] [edx*2] ; Load word of word array

e The default segment register is SS if the base register is EBP or
ESP; it is DS for all other the base registers. If two registers are
used, only one can have a scaling factor and it is defined to be the
index register. The other register is the base. If scaling is not used,
the first register is the base. If one register is used, it is the base,
regardless of scaling. The following examples illustrate how to
determine the base register:

mov eax, [edx] [ebp*4] . EDX base (not scaled) - DS segment
mov eax, [edx#1l] [ebp] ; EBP base (not scaled) - SS segment
mov eax, [edx] [ebp] ; EDX base (first) - DS segment
mov eaXx, [ebp] [edx] ; EBP base (first) - SS segment
mov eax, [ebp#*2] ; EBP base (only) - SS segment

Statements can mix 16- and 32-bit registers. However, it is important to
understand the implications of these statements. For example, the follow-
ing statement is legal for either 16- or 32-bit segments:

mov eax, [bx]
This moves the 32-bit value pointed to by BX into the EAX register.

Although BXis a 16-bit pointer, it may still point into a 32-bit segment.
However, the following statement is never legal:

mov eax, [cx]

The CX register may not be used as a 16-bit pointer (although ECX may
be used as a 32-bit pointer).

The following statement is also legal in either mode:

mov bx, [eax]

This moves the 16-bit value pointed to by EAX into the BX register. This
works fine in 32-bit mode; but in 16-bit mode, a 32-bit pointer moved into
'a 16-bit segment may cause problems. If EAX contains a 16-bit value (the

283

Microsoft Macro Assembler Programmer’s Guide

top half of the 32-bit register is 0), then the statement works. However, if
the top half of the EAX register 1s not 0, the processor may generate an

€rror.

Warning

It is possible to use both 16-bit and 32-bit modes in the same program
by defining separate code segments for the two modes. However, this is
a complex technique that involves special calculations to account for
the differences between the two modes. Combining modes is generally
done only in systems programming and is beyond the scope of this

manual.

B Example

.MODEL
.386

scrnbuff EQU

.CODE

mov
mov
push
push
push

call
add

show PROC

movzx
dec
movzx
dec
imul

mov
mov

ret
show ENDP

284

small

OB80Oh

ax,scrnbuff
es,ax

4
6
l'z
show
sp, 6

NEAR

.

.

ebx,WORD PTR [esp+6];

ebx

eax,WORD PTR [esp+4];
; Adjust for zero

eax
eax, 160

dl, [esp+2]

es: [eax] [ebx*2],dl

.

’

’

.MODEL preceeds .386
to make 16-bit segments

CGA screen buffer (actual
value is hardware dependent)

Load address of screen buffer
into ES

Push column 4 as third argument
Push line 6 as second argument
Push "z" as first argument

Call the procedure

Restore stack

Load column

; Adjust for zero

Load row

; Multiply 160 bytes per line

Load character
Put character in buffer

Return

Using Addressing Modes

This example is the same as the one in Section 14.3.2, “Indirect Memory
Operands,” except that it uses enhanced 80386 instructions and address-
ing modes to make the code shorter and more efficient. Note the following
differences:

Since ESP can be used as a base register, stack registers can be
accessed directly without the stack setup required by previous pro-
cessors. This assumes that ESP does not change inside the pro-
cedure.

Values are loaded and zero-extended in one step by using the
MOVZX instruction (see Section 15.2.3,“Moving and Extending
Values”).

EBX is used with scaling. In the previous example, scaling had to
be done with a separate instruction.

EAX and EBX are used instead of BX and SI. This saves some
register swapping, since EAX can be used both for the result of the
multiplication operation and as a base register.

Immediate operands are used with the PUSH and IMUL instruc-
tions (described in Sections 15.4.1, “Pushing and Popping,” and
16.3, “Multiplying, ” respectively). These enhancements were
implemented with the 80186 processor, but they are rarely used
since most programs have to be able to run on the 8088 and 8086.
Since 80836 programs can never run on the earlier processors, there
is no reason not to use enhanced 80186 instructions.

285

('HAPTER

[LOADING, STORING,

AND MOVING DATA

15.1

15.2

15.3

15.4

15.5

Transferring Data......ccceeeeeeeeeieiiieieiiiiirernrrrnennnnns 289
15.1.1 Copying Data.uuueceeeeeeeeeeeneeeeeereeennnnneeneeeans 289
15.1.2 Exchanging Data ...ccceeeeeeeerneceerennneeeeennnneens 290
15.1.3 LooKing Up Data .cccceereeeerrenneeerennececennncenes 290
15.1.4 Transferring Flags ..cccoeeeeerenneereennceeennnnaees 291
Converting between Data Sizes.......cccovvvveeeeeeeenne 292
15.2.1 Extending Signed Values......... eerreneeeereannnes 292
15.2.2 Extending Unsigned Valuesccceeeeuuenennnnne 294
15.2.3 Moving and Extending Valuescccceeeeunnens 294
Loading Pointers......uuuuueeueeiiceieeeeeeeeeeeeeeeeeeeeeenns 295
15.3.1 Loading Near Pointers ..cc.cceeueeeerneeeenncerenenns 296
15.3.2 Loading Far Pointers c.eeceeerneereenneceeeennences 296
Transferring Data to and from the Stack............ 298
15.4.1 Pushing and Popping.....cccceveeeerevnneceeennenens 298
15.4.2 Using the Stack cocceveeeerrnereeneierenceeeneeeennnnnns 301
15.4.3 Saving Flags on the Stack ..cceeeevueerennereennnnes 301
15.4.4 Saving All Registers on the Stack....ccceeeueens 302

Transferring Data to and from Ports.................. 303

Loading, Storing, and Moving Data

The 8086-family processors provide several instructions for loading, stor-
ing, or moving various kinds of data. Among the types of transferable data
are variables, pointers, and flags. Data can be moved to and from regis-
ters, memory, ports, and the stack. This chapter explains the instructions
for moving data from one location to another.

15.1 Transferring Data

Moving data is one of the most common tasks in assembly-language pro-
gramming. Data can be moved between registers or between memory and
registers. Immediate data can be loaded into registers or into memory.

15.1.1 Copying Data

The MOY instruction is the most common method of moving data. This
instruction can be thought of as a “copy” instruction, since it always
copies the source operand to the destination operand. Immediately after a
MOV instruction, the source and destination operands both contain the
same value. The old value in the destination operand is destroyed.

B Syntax

MOY {register | memory} { register | memory | immediate}

B Example 1
mov ax,7 ; Immediate to register
mov mem, 7 ; Immediate to memory direct
mov mem[bx],7 :; Immediate to memory indirect
mov mem, ds ; Segment register to memory
mov mem, ax ; Register to memory' direct
mov mem[bx],ax ; Register to memory indirect
mov ax,mem ; Memory direct to register
mov ax,mem[bx] ; Memory indirect to register
mov ds,mem ; Memory to segment register
mov ax,bx ; Register to register
mov ds, ax ; General register to segment register
mov ax,ds ; Segment register to general register

The statements in Example 1 illustrate each type of memory move that
can be done with a single instruction. Example 2 illustrates several com-
mon types of moves that require two instructions.

289

Microsoft Macro Assembler Programmer’s Guide

B Example 2

; Move immediate to segment register
mov ax,DGROUP ; Load immediate to general register
mov ds, ax ; Store general register to segment register

; Move memory to memory

mov ax,meml ; Load memory to general register
mov mem2, ax ; Store general register to memory
. Move segment register to segment register
mov ax,ds ; Load segment register to general register
mov es, ax ; Store general register to segment register

15.1.2 Exchanging Data

The XCHG (Exchange) instruction exchanges the data in the source and
destination operands. Data can be exchanged between registers or between
registers and memory.

B Syntax

XCHG ({ register | memory},{ register | memory}

B Examples

xchg ax,bx ; Put AX in BX and BX in AX
xchg memory,ax ; Put "memory" in AX and AX in "memory"

15.1.3 Looking Up Data

The XLAT (Translate) instruction is used to load data from a table in
memory. The instruction is useful for translating bytes from one coding
system to another.

B Syntax

XLAT[B] [[segment:]memory]

The BX register must contain the address of the start of the table. By
default the DS register contains the segment of the table, but a segment

override can be used to specify a different segment. The operand need not
be given except when specifying a segment override.

290

Loading, Storing, and Moving Data

Before the XL AT instruction is called, the AL register should contain a
value that points into the table (the start of the table is considered 0).
After the instruction is called, AL will contain the table value pointed to.
For example, if AL contains 7, the 8th byte of the table will be placed in
AL register.

Note

For compatibility with Intel 80386 mnemonics, MASM recognizes
XILLATB as a synonym for XLAT. In the Intel syntax, XL AT requires
an operand; XLATB does not allow one. MASM never requires an
operand, but always allows one.

B Example

; Table of Hexadecimal digits

hex DB "0123456789ABCDEF
convert DB "You pressed the key with ASCII code "
key DB ?,?,"n",13,10,"s"
.CODE
mov ah,8 ;. Get a key in AL
int 21h ; Call DOS
mov bx,OFFSET hex ; Load table address
mov ah,al ; Save a copy in high byte
and al,00001111b ; Mask out top character
xlat ; Translate
mov key[1],al ; Store the character
mov cl,12 ; Load shift count
shr ax,cl ; Shift high character into position
xlat ; Translate
mov key,al ; Store the character
mov dx,OFFSET convert Load message
mov ah,9 ; Display it
int 21h ; Call DOS

This example looks up hexadecimal characters in a table in order to con-
vert an 8-bit binary number to a string representing a hexadecimal
number.

15.1.4 Transferring Flags

The 8086-family processors provide instructions for loading and storing
flags in the AH register.

291

Microsoft Macro Assembler Programmer’s Guide

B Syntax

LAHF
SAHF

The status of the lower byte of the flags register can be saved to the AH
register with LAHF and then later restored with SAHF'. If you need to
save and restore the entire flags register, use PUSHF and POPF, as
described in Section 15.4.3, “Saving Flags on the Stack.”

SAHF is often used with a coprocessor to transfer coprocessor control
flags to processor control flags. Section 19.6, “Controlling Program Flow,”
explains and illustrates this technique.

15.2 Converting between Data Sizes

Since moving data between registers of different sizes is illegal, you must
take special steps if you need to extend a register value to a larger register
or register pair.

The procedure is different for signed and unsigned values. The processor
cannot tell the difference between signed and unsigned numbers; the pro-
grammer has to understand this difference and program accordingly.

15.2.1 Extending Signed Values

The CBW (Convert Byte to Word) and CWD (Convert Word to Double-
word) instructions are provided to sign-extend values. Sign-extending
means copying the sign bit of the unextended operand to all bits of the
extended operand.

B Syntax

CBW
CWD

The CBW instruction converts an 8-bit signed value in AL to a 16-bit
signed value in AX. The CWD instruction is similar except that it sign-

extends a 16-bit value in AX to a 32-bit value in the DX:AX register pair.

Both instructions work only on values in the accumulator register.

292

B Example 1

.DATA
mem8 DB
meml6é DW

.CODE

mov
cbw

mov
cwd

® 80386 Only

Loading, Storing, and Moving Data

-5
-5
al, mem8 ; Load 8-bit -5 (FBh)
; Convert to 16-bit -5 (FFFBh) in AX
ax,meml6é ; Load 16-bit -5 (FFFBh)
; Convert to 32-bit -5 (FFFF:FFFBh)
: in DX:AX

The 80386 processor provides additional conversion instructions for 32-bit

signed values.

B Syntax

CWDE
CDQ

The CWDE (Convert Word to Doubleword Extended) instruction con-

verts a signed 16-bit value in AX to a signed 32-bit signed value in EAX.
The CDQ (Convert Doubleword to Quadword) instruction converts a 32-
bit signed value in EAX to a signed 64-bit value in the EDX:EAX regis-

ter pair.

B Example 2

.DATA
memlé DW
mem32 DD

.CODE

mov
cwde
mov
cdgq

ax,meml6 Load 16-bit -5 (FFFBh)

Convert to 32-bit -5 (FFFFFFFBh) in EAX
Load 32-bit -5 (FFFFFFFBh)

Convert to 64-bit -5

(FEEFFFEF :FFFFFFFBh) in EDX:EAX

eax,mem32

P

293

Microsoft Macro Assembler Programmer’s Guide

15.2.2 Extending Unsigned Values

To extend unsigned numbers, set the value of the upper register to 0.

B Example

.DATA

mem8 DB 251

meml6é DB 251
.CODE
mov al, mem8 ; Load 251 (FBh) from 8-bit memory
xor ah,ah ; Zero upper half (AH)
mov ax,memlé ; Load 251 (FBh) from 16-bit memory
xor dx, dx ; Zero upper half (DX)

15.2.3 Moving and Extending Values

B 80386 Only

The 80386 processor provides instructions that move and extend a value
to a larger data size in a single step. The same thing can be done in two
steps with earlier processors, but the new 80386 instructions are faster.

B Syntax

MOVSX register,{ register | memory}
MOVZX register,{ register | memory}

MOVSX moves a signed value into a register and sign-extends it.
MOVZX moves an unsigned value into a register and zero-extends it.

294

Loading, Storing, and Moving Data

B Example

; Enhanced 80386 instructions

movzx dx,bl ; Load unsigned 8-bit value into
; 16-bit register and zero extend

; Equivalent to these 80286 instructions

mov dl,bl ; Load 8-bit unsigned value
xor dh,dh ; Clear the top of register

; Enhanced 80386 instructions

movsx dx, bl ; Load unsigned 8-bit value into
: 16-bit register and sign extend

; Equivalent to these 80286 instructions

mov al,bl . Load 8-bit unsigned value to AL
cbw ; Sign extend to AX
mov dx, ax ; Copy to 16-bit register

15.3 Loading Pointers

The 8086-family processors provide several instructions for loading pointer
values into registers or register pairs. They can be used to load either near
or far pointers.

15.3.1 Loading Near Pointers

The LEA instruction loads a near pointer into a specified register.

B Syntax
LEA register,memory
The destination register may be any general-purpose register. The. source

operand may be any memory operand. The effective address of the source
operand is placed in the destination register.

295

Microsoft Macro Assembler Programmer’s Guide

The LEA instruction can be used to calculate the effective address of a
direct memory operand, but this is usually not efficient, since the address
of a direct memory operand is a constant known at assembly time. For
example, the following statements have the same effect, but the second
version is faster:

lea dx, string ; Load effective address - slow
mov dx,OFFSET string ; Load offset - fast

The LEA instruction is more useful for calculating the address of indirect
memory operands:

lea dx,string[si] ; Load effective address

H 80386 Only

Scaling of indirect memory operands gives the LEA instruction some
interesting side effects with the 80386 processor. (Scaling is explained in
Section 14.3.3, “80386 Indirect Memory Operands.” By using a 32-bit
value as both the index and the base register in an indirect memory
operand, you can multiply by the constants 2, 3, 4, 5, 8, and 9 more
quickly than you could by using the MUL instruction.

lea ebx, [eax+2] ; EBX = 2 % EAX -
lea ebx, [eax+2+eax] ; EBX = 3 + EAX
lea ebx, [eax*4] ; EBX = 4 x EAX
lea ebx, [eax*4+eax] ; EBX = 5 + EAX
lea ebx, [eax*8] ; EBX = 8 » EAX
lea ebx, [eax+8+eax] ; EBX = 9 + EAX
Multiplication by constants can also sometimes be made faster by using
shift instructions, as described in Section 16.8.1, “Multiplying and Divid-
ing by Constants.”
15.3.2 Loading Far Pointers
The LDS and LES instructions load far pointers.
B Syntax
LDS register,memory —

LES register,memory
The memory address being pointed to is specified in the source operand,

and the register where the offset will be stored is specified in the destina-
tion operand.

296

Loading, Storing, and Moving Data

The address must be stored in memory with the offset in the upper word
and the segment in the lower word. The segment register where the seg-
ment will be stored is specified in the instruction name. For example, LDS
puts the segment in DS, and LES puts the segment in ES. These instruc-
tions are often used with string instructions, as explained in Chapter 18,
“Processing Strings.”

B Example

.DATA
string DB "This is a string."
fpstring DD string ; Far pointer to string
pointers DD 100 DUP (?)
.CODE
les di, fpstring ; Put address in ES:DI pair
lds si,pointers [bx] ; Put address in DS:SI pair

E 80386 Only

The 80386 processor has additional instructions for loading far pointers.
These instructions are exactly like LDS and LES, except for the segment
register in which they put the segment address.

B Syntax

LSS register,memory
LF'S register,memory
LGS register,memory

The LSS, LF'S, and LGS instructions load the segment address into SS,
F'S, and GS respectively.

B Example

. 386 ; .386 first for 32-bit mode
.MODEL. large
.DATA

string DB "This is a string."

fpstring DF string ; Far pointer to string
.CODE
1gs edi, fpstring ; Put address in GS:EDI pair

297

Microsoft Macro Assembler Programmer’s Guide

15.4 Transferring Data to and from the Stack

A stack is an area of memory for storing temporary data. Unlike other seg-
ments in which data is stored starting from low memory, data on the stack
is stored in reverse order starting from high memory.

Initially, the stack is an uninitialized segment of a finite size. As data is
added to the stack at run time, the stack grows downward from high
memory to low memory. When items are removed from the stack, it
shrinks upward from low memory to high memory.

The stack has several purposes in the 8086-family processors. The CALL,
INT, RET, and IRET instructions automatically use the stack to store
the calling addresses of procedures and interrupts (see Sections 17.4,
“Using Procedures,” and 17.5, “Using Interrupts”). You can also use the
PU?(H and POP instructions and their variations to store values on the
stack.

15.4.1 Pushing and Popping

In 8086-family processors, the SP (stack pointer) register always points to
the current location in the stack. The PUSH and POP instructions use
the SP register to keep track of the current position in the stack.

The values pointed to by the BP and SP registers are relative to the stack
segment (SS register). The BP register is often used to point to the base
of a frame of reference (a stack frame) within the stack.

B Syntax

PUSH { register | memory}
POP { register | memory}
PUSH immediate (80186-80386 only)

The PUSH instruction is used to store a two-byte operand on the stack.
The POP instruction is used to retrieve a previously pushed value. When
a value is pushed onto the stack, the SP register is decreased by two.
When a value is popped off the stack, the SP register is increased by two.
Although the stack always contains word values, the SP register points to
bytes. Thus SP changes in multiples of two. (In 80386 32-bit segments,
four-byte values are pushed and SP changes 1n multiples of four.)

298

Loading, Storing, and Moving Data

Note

The 8088 and 8086 processors differ from later Intel processors in how
they push and pop the SP register. If you give the statement push sp
with the 8088 or 8086, the word pushed will be the word in SP after
the push operation. The same statement under the 80186, 80286, or
80386 processor pushes the word in SP before the push operation.

Figure 15.1 illustrates how pushes and pops change the SP register. Notice
that the value pushed onto the stack remains in stack memory even after
it has been popped. However, since the stack pointer is above it, the value
is now unknown and may be overwritten the next time the stack is used.

word from ax

Figure 15.1 Stack Status after Pushes and Pops

299

Microsoft Macro Assembler Programmer’s Guide

The PUSH and POP instructions are almost always used in pairs. Words
are popped off the stack in reverse order from the order in which they are
pushed onto the stack. You should normally do the same number of pops
as pushes to return the stack to its original status. However, it is possible
to return the stack to its original status by subtracting the correct number
of words from the SP register.

Values on the stack can be accessed by using indirect memory operands
with BP as the base register.

B Example

mov bp. sp ; Set stack frame

push ax ; Push first; SP = BP + 2
push bx ; Push second; SP = BP + 4
push cx ; Push third; SP = BP + 6
mov ax, [bp+6] ; Put third in AX

mov bx, [bp+4] ; Put second in BX

mov cx, [bp+2] ; Put first in CX

sub sp.6 ; Restore stack pointer

two bytes per push

® 80186/286/386 Only
Starting with the 80186, the PUSH instruction can be given with an
immediate operand. For example, the following statement is legal on the
80186, 80286, and 80386 processors:

push 7 ; 3 clocks on 80286

This statement is faster than the following equivalent statements, which
are required on the 8088 or 8086:

mov ax, 7 ; 2 clocks on 80286
push ax ; 3 clocks on 80286

B 80386 Processor Only

When a PUSH or POP instruction is used in a 32-bit code segment (one
with USE32 use type), the value transferred is a four-byte value. A warn-
ing message will be generated if you try to push a 16-bit value in a 32-bit
segment or a 32-bit value in a 16-bit segment.

300

Loading, Storing, and Moving Data

15.4.2 Using the Stack

The stack can be used to store temporary data. For example, in the Micro-
soft calling convention, the stack is used to pass arguments to a pro-
cedure. The arguments are pushed onto the stack before the call. The pro-
cedure retrieves and uses them. Then the stack is restored to its original
position at the end of the procedure. The stack can also be used to store
variables that are local to a procedure. Both these techniques are discussed
in Section 17.4.3, “Passing Arguments on the Stack.”

Another common use of the stack is to store temporary data when there
are no free registers available or when a particular register must hold more
than one value. For example, the CX register usually holds the count for
loops. If two loops are nested, the outer count is loaded into CX at the
start. When the inner loop starts, the outer count is pushed onto the stack
and the inner count loaded into CX. When the inner loop finishes, the ori-
ginally count is popped back into CX.

B Example

mov cx, 10 ; Load outer loop counter
outer:

; Start outer loop task
push cx ; Save outer loop value
mov cx, 20 ; Load inner loop counter

inner:

; Do inner loop task

loop inner

pop cxX ; Restore outer loop counter
; Continue outer loop task

loop outer

15.4.3 Saving Flags on the Stack

Flags can be pushed and popped onto the stack using the PUSHF and
POPF instructions.

B Syntax

PUSHF
POPF

These instructions are sometimes used to save the status of flags before a
procedure call and then to restore the same status after the procedure.
They can also be used within a procedure to save and restore the flag
status of the caller.

301

Microsoft Macro Assembler Programmer’s Guide

B Example

pushf
call systask

popf

m 80386 Only

When used from a 32-bit code segment, the PUSHF and POPF instruc-
tions do not automatically transfer 32-bit values. You must append the
letter D (for doubleword) to the instruction name. Thus the 32-bit ver-
sions of these instructions are PUSHFD and POPFD.

15.4.4 Saving All Registers on the Stack

® 80186/286/386 Only

Starting with the 80186 processor, the PUSHA and POPA instructions
were implemented to push or pop all the general-purpose registers with
one instruction.

H Syntax

PUSHA
POPA

These instructions can be used to save the status of all registers before a
procedure call and then to restore them after the return. Using PUSHA
and POPA instructions is significantly faster and takes fewer bytes of
code than pushing and popping each register individually.

The registers are pushed in the following order: AX, CX, DX, BX, SP,
BP, SI, and DI. The SP word pushed is the value before the first register
is pushed. The registers are popped in the opposite order.

B Example

pusha
call systask

popa

302

Loading, Storing, and Moving Data

m 80386 Only

When used from a 32-bit code segment, the PUSHA and POPA instruc-
tions do not automatically transfer 32-bit values. You must append the
letter D (for doubleword) to the instruction name. Thus the 32-bit ver-
sions of these instructions are PUSHAD and POPAD.

15.5 Transferring Data to and from Ports

Ports are the gateways between hardware devices and the processor. Each
port has a unique number through which it can be accessed. Ports can be
used for low-level communication with devices such as disks, the video
display, or the keyboard. The OUT instruction is used to send data to a
port; the IN instruction receives data from a port.

B Syntax

IN accumulator,{ portnumber | DX}
OUT { portnumber | DX}, accumulator

When using the IN and OUT instructions, the number of the port can
either be an 8-bit immediate value or the DX register. You must use DX
for ports with a number higher than 256. The value to be received from
the port must be in the accumulator register (AX for word values or AL
for byte values).

When using the IN instruction, the number of the port is given as the
source operand and the value to be sent to the port is the destination
operand. When using the OUT instruction, the number of the port is
given as the destination operand and the value to be sent to the port is the
source operand.

In applications programming, most communication with hardware is done
with DOS or BIOS calls. Ports are more often used in systems program-
ming. Since systems programming is beyond the scope of this manual and
since ports differ greatly depending on hardware, the IN and OUT
instructions are not explained in detail here.

Note

Under protected-mode operating systems, IN and OUT are privileged
instructions and can only be used in privileged mode.

303

Microsoft Macro Assembler Programmer’s Guide

B Example

sound
timer
on

sounder:

hold:

EQU 61h

EQU 42h

EQU 00000011b
in al, sound
or al,on

out sound, al
mov al,S0

out timer, al
mov cx, 2000
loop hold

dec al

jnz sounder
in al,sound
and al,NOT on
out sound, al

Actual values are hardware dependent
Port to chip that controls speaker
Port to chip that pulses speaker
Bits O and 1 turn on speaker

; Get current port setting

.

.

Turn on speaker and connect timer
Put value back in port

Start at 50
Send byte to timer port...

Loop 2000 times to delay

Go down one step
Repeat for each step

; Get port value

; Turn it back off
; Put it back in port

This example creates a sound of ascending frequency on the IBM PC and
IBM-compatible computers. The technique of making sound or the port
values used may be different on other hardware.

m 80186/286/386 Only

Starting with the 80186 processor, instructions were implemented to send
strings of data to and from ports. The instructions are INS, INSB,
INSW, OUTS, OUTSB, and OUTSW. The operation of these instruc-
tions is much like the operation of other string instructions. They are dis-
cussed in Section 18.7, “Transferring Strings to and from Ports.”

304

('HAPTER

DOING ARTTHMETIC AND
BIT MANIPULATIONS

16.1 AddINg..cceeeeieeiiieeeiinrireeeeeeeeeeeeeeeeeeeeeeeseenneneenens 307
16.1.1 Adding Values Directly ...cccceueeeeuneereneecennnns 307
16.1.2 Adding Values in Multiple Registers........... 309

16.2 Subtracting....ccceeeeeeenrreeeeeeeeeeeeeeeeneseeseenrrnneeneennns 309
16.2.1 Subtracting Values Directly...ccccevueeeerennnnnns 310
16.2.2 Subtracting with Values

in Multiple Registers...cceveeeeerenuneeeeennenceennes 311

16.3 Multiplyingceeeeeeeeevreeeeeeerrrrneeeeeeecensrneeeeeessennnnns 312

16.4 Dividing...cccvveeereereerrrreeresecenrrnneessceessrnneeessssssnnnes 314

16.5 Calculating with Binary Coded Decimals............ 316
16.5.1 Unpacked BCD NUmMDbeErS..ccveeeerueerennereenennns 317
16.5.2 Packed BCD NUmbers...ccceevneveerenneccernnnnns 319

16.6 Doing Logical Bit Manipulations.........ccccceeeeennnee 320
16.6.1 AND OperationS....cccerseeeerrvneeecernneceersnnnnees 321
16.6.2 OR Operations ..eeeeeeeeeereeseeeeeeeeeesnnnnesseeeans 322
16.6.3 XOR OperationS....ccceeseeeeerrnneeerernnceessnnnnees 322
16.6.4 INOT Operations...ccceeeeeeseeereneceeseeceennacsannnns 323

16.7 Scanning for Set Bitsccccevvvveeeeercerreeeeceeeccnnenen. 324

16.8 Shifting and Botating Bits......cccccceeeeevvneeeeeeenannne 320
16.8.1 Multiplying and Dividing by Constants 327
16.8.2 Moving Bits

to the Least-Significant Positionccc..... 329
16.8.3 Adjusting MasKS.....cceeeeeeeeerneecereenencerennnnnees 329
16.8.4 Shifting Multiword Values......ccccceeeervunnnnnns 329

16.8.5 Shifting Multiple BitS....cccvuueeererueeeeeennnnn ...330

Doing Arithmetic and Bit Manipulations

The 8086-family processors provide instructions for doing calculations on
byte, word, and doubleword values. Operations include addition, subtrac-
tion, multiplication, and division. You can also do calculations at the bit

level. This includes the AND, OR, XOR, and NOT logical operations. Bits
can also be shifted or rotated to the right or left.

This chapter tells you how to use the instructions that do calculations on
numbers and bits.

16.1 Adding

The ADD, ADC, and INC instructions are used for adding and incre-

menting values.

B Syntax

ADD { register | memory} ,{ register | memory | immediate}
ADC {register | memory} ,{ register | memory | immediate}
INC { register | memory}

These instructions can work directly on 8-bit or 16-bit values (32-bit
values on the 80386). They can be also be used in combination to do calcu-
lations on values that are too large to be held in a single register (such as
32-bit values on the 80286 or 64-bit values on the 80386). When used with
AAA and DAA, they can be used to do calculations on BCD numbers, as
described in Section 16.5.

16.1.1 Adding Values Directly

The ADD and INC instructions are used for adding to values in registers
or memory.

The INC instruction takes a single register or memory operand. The value
of the operand is incremented. The value is treated as an unsigned integer,
so the carry flag is not updated for signed carries.

The ADD instruction adds values given in source and destination ope-
rands. The destination can be either a register or a memory operand. Its
contents will be destroyed by the operation. The source operand can be an
immediate, memory, or register operand. Since memory-to-memory opera-
tions are never allowed, the source and destination operands can never
both be memory operands.

307

Microsoft Macro Assembler Programmer’s Guide

The result of the operation is stored in the source operand. The operands
can be either 8 bit or 16 bit (32 bit on the 80386), but both must be the
same size.

An addition operation can be interpreted as addition of either signed
numbers or unsigned numbers. It is the programmer’s responsibility to
decide how the addition should be interpreted and to take appropriate
action if the sum is too large for the destination operand. When an addi-
tion overflows the possible range for signed numbers, the overflow flag is
set. When an addition overflows the range for unsigned numbers, the carry
flag is set.

There are two ways to take action on an overflow: you can use the JO or
JNO instruction to direct program flow to or around instructions that
handle the overflow (see Section 17.1.2.3, “Testing Bits and Jumping”).
You can also use the INTO instruction to trigger the overflow interrupt
(interrupt 4) if the overflow flag is set. This requires writing an interrupt
handler for interrupt 4, since the DOS overflow routine simply returns
without taking any action. Section 17.5.2, “Defining and Redefining Inter-
rupt Routines,” gives a sample of an overflow interrupt handler.

B Examples

.DATA
mem8 DB 39

.CODE
. H unsigned signed
mov al, 26 ; Start with register 26 26
inc al . Increment 1 1
add al,76 ; Add immediate + 76 76

: 103 103
add al,mem8 ; Add memory + 39 39
mov ah,al ; Copy to AH 142 -1ll4+overflow
add al,ah . Add register 142

: 28+carry

This example shows 8-bit addition. When the sum exceeds 127, the
overflow flag is set. A JO (Jump on Overflow) or INTO (Interrupt on
Overflow) instruction at this point could transfer control to error-recovery
statements. When the sum exceeds 255, the carry flag is set. A JC (Jump
on Carry) instruction at this point could transfer control to error-recovery
statements.

308

Doing Arithmetic and Bit Manipulations

16.1.2 Adding Values in Multiple Registers

The ADC (Add with Carry) instruction makes it possible to add numbers
larger than can be held in a single register.

The ADC instruction adds two numbers in the same fashion as the ADD
instruction, except that the value of the carry flag is included in the addi-
tion. If a previous calculation has set the carry flag, then 1 will be added
to the sum of the numbers. If the carry flag is not set, the ADC instruc-
tion has the same effect as the ADD instruction.

When adding numbers in multiple registers, the carry flag should be
ignored for the least-significant portion, but taken into account for the
more-significant portion. This can be done by using the ADD instruction
for the least-significant portion and the ADC instruction for more-
significant portions.

You can add and carry repeatedly inside a loop for calculations that
require more than two registers. Use the ADC instruction in each itera-
tion, but turn off the carry flag with the CLC (Clear Carry Flag) instruc-
tion before entering the loop so that it will not be used for the first itera-
tion. You could also do the first add outside the loop.

B Example

.DATA

mem32 DD 316423
.CODE
mov ax, 43981 ; Load immediate 43981
xor dx, dx ; into DX:AX
add ax,WORD PTR mem32[0] ; Add to both + 316423
adc dx, WORD PTR mem32[2] : memory words = ------

; Result in DX:AX 360404

16.2 Subtracting

The SUB, SBB, DEC, and NEG instructions are used for subtracting
and decrementing values.

309

Microsoft Macro Assembler Programmer’s Guide

B Syntax

SUB { register | memory} ,{ register | memory | immediate}
SBB { register | memory} ,{ register | memory | immediate}
DEC { register | memory}
NEG { register | memory}

These instructions can work directly on 8-bit or 16-bit values (32-bit
values on the 80386). They can be also be used in combination to do calcu-
lations on values too large to be held in a single register (such as 32-bit
values on the 80286 or 64-bit values on the 80386). When used with AAA
and DAA, they can used to do calculations on BCD numbers, as described
in Section 16.5.

16.2.1 Subtracting Values Directly

The SUB and DEC instructions are used for subtracting from.values in
registers or memory. A related instruction, NEG (Negate), reverses the
sign of a number.

The DEC instruction takes a single register or memory operand. The
value of the operand is decremented. The value is treated as an unsigned
integer, so the carry flag is not updated for signed borrows. .

The NEG instruction takes a single register or memory operand. The sign
of the value of the operand is reversed. The NEG instruction should only
be used on signed numbers.

The SUB instruction subtracts the values given in the source operand
from the value of the destination operand. The destination can be either a
register or a memory operand. It will be destroyed by the operation. The
source operand can be an immediate, memory, or register operand. It will
not be destroyed by the operation. Since memory-to-memory operations
are never allowed, the source and destination operands cannot both be
memory operands.

The result of the operation is stored in the source operand. The operands
can be either 8 bit or 16 bit (32 bit on the 80386), but both must be the

same size.

A subtraction operation can be interpreted as subtraction of either signed

numbers or of unsigned numbers. It is the programmer’s responsibility to —
decide how the subtraction should be interpreted and to take appropriate

action if the result is too small for the destination operand. When a sub-

traction overflows the possible range for signed numbers, the carry flag is

set. When a subtraction underflows the range for unsigned numbers

(becomes negative), the sign flag is set.

310

Doing Arithmetic and Bit Manipulations

® Example

.DATA
mem8 DB 122

.CODE
. ; signed unsigned
mov al,95 ; Load register 95 95
dec al . Decrement - 1 - 1
sub al, 23 ; Subtract immediate - 23 - 23

; 71 71
sub al,mem8 ; Subtract memory - 122 - 122

: - 51 205+sign
mov ah,119 . Load register 119
sub al,ah ; and subtract -- 51

86+overflow

This example shows 8-bit subtraction. When the result goes below 0, the
sign flag is set. A JS (Jump on Sign) instruction at this point could
transfer control to error-recovery statements. When the result goes below
-128, the carry flag is set. A JC (Jump on Carry) instruction at this point
could transfer control to error-recovery statements.

16.2.2 Subtracting with Values in Multiple Registers

The SBB (Subtract with Borrow) instruction makes it possible to subtract
from numbers larger than can be held in a single register.

The SBB instruction subtracts two numbers in the same fashion as the
SUB instruction except that the value of the carry flag is included in the
subtraction. If a previous calculation has set the carry flag, then 1 will be
subtracted from the result. If the carry flag is not set, the SBB instruction
has the same effect as the SUB instruction.

When subtracting numbers in multiple registers, the carry flag should be
ignored for the least-significant portion, but taken into account for the
more-significant portion. This can be done by using the SUB instruction
for the least-significant portion and the SBB instruction for more-
significant portions.

You can subtract and borrow repeatedly inside a loop for calculations that
require more than two registers. Use the SBB instruction in each itera-
tion, but turn off the carry flag with the CLC (Clear Carry Flag) instruc-
tion before entering the loop so that it will not be used for the first itera-
tion. You could also do the first subtraction outside the loop.

311

Microsoft Macro Assembler Programmer’s Guide

® Example

.DATA
mem32a DD 316423
mem32b DD 156739
.CODE o
mov ax,WORD PTR mem32a[0] ; Load mem32 316423
mov dx,WORD PTR mem32a[2] into DX:AX
sub ax,WORD PTR mem32b[0O] : Subtract low 156739
sbb dx,WORD PTR mem32b[2] then high ------

; Result in DX:AX 159684

16.3 Multiplying

The MUL and IMUL instructions are used to multiply numbers. The
MUL instruction should be used for unsigned numbers; the IMUL
instruction should be used for signed numbers. This is the only difference
between the two.

B Syntax —

MUL { register | memory}
IMUL { register | memory}

The multiply instructions require that one of the factors be in the accumu-
lator register (AL for 8-bit numbers, AX for 16-bit numbers, or EAX for
32-bit numbers). This register is implied; it should not be specified in the
source code. Its contents will be destroyed by the operation.

The other factor to be multiplied must be specified in a single register or
memory operand. The operand will not be destroyed by the operation,
unless 1t is DX, AH, or AL.

Note that multiplying two 8-bit numbers will produce a 16-bit number in
AX. If the product is a 16-bit number, it will be placed in AX and the
overflow and carry flags will be set.

Similarly, multiplying two 16-bit numbers will produce a 32-bit number in —
the DX:AX register pair. If the product is a 32-bit number, the most-

significant bits will be in AX| the least-significant bits will be in DX, and

the overflow and carry flags will be set. {(The 80386 handles 64-bit pro-

ducts in the same way in the EDX: register pair.)

312

Doing Arithmetic and Bit Manipulations

Note

Multiplication is one of the slower operations on 8086-family proces-
sors (especially the 8086 and 8088). Multiplying by certain common
constants is often faster when done by shifting bits (see Section
16.8.1, “Multiplying and Dividing by Constants”) or by using 80386
scaling (see Section 15.3.1, “Loading Near Pointers”).

B Examples

.DATA
meml6 DW -30000

.CODE

. ; 8-bit unsigned multiply

mov al, 23 ; Load AL 23

mov bl, 24 ; Load BL * 24

mul bl ; Multiply BL. ~~ -----
; Product in AX 552
; overflow and carry set
; 16-bit signed multiply

mov ax, 50 ; Load AX 50
; -30000

imul meml6 ; Multiply memory = = -----
; Product in DX:AX -1500000

overflow and carry set

m 80186/286/386 Only

Starting with the 80186, the IMUL instruction has two additional syn-
taxes that allow for 16-bit multiples that produce a 16-bit product. (These
instructions can be extended to 32 bits on the 80386.)

B Syntax

IMUL register16,smmediate
IMUL register16,memoryl6,smmediate

You can specify a 16-bit immediate value as the source instruction and a
word register as the destination operand. The product appears in the des-
tination operand. The 16-bit result will be placed in the destination
operand. If the product is too large to fit in 16 bits, the carry and overflow
flags will be set. In this context, IMUL can be used for either signed or
unsigned multiplication, since the 16-bit product is the same.

313

Microsoft Macro Assembler Programmer’s Guide

You can also specify three operands for IMUL. The first operand must be
a 16-bit register operand, the second a 16-bit memory operand, and the
third a 16-bit immediate operand. The second and third operands are mul-
tiplied and the product stored in the first operand.

With both these syntaxes, the carry and overflow flags will be set if the
product is too large to fit in 16 bits. The IMUL instruction with multiple
operands can be used for either signed or unsigned multiplication, since

the 16-bit product is the same in either case. If you need to get a 32-bit
result, you must use the single-operand version of MUL or IMUL.

B Examples

imul dx, 456 ; Multiply DX times 456
imul ax, [bx],6 ; Multiply the value pointed to by BX
: times 6 and put the result in AX

H 80386 Only

On the 80386, the IMUL instruction has an additional instruction that
allows multiplication of a register value by a register or memory value.

B Syntax

IMUL register,{ register | memory}

The destination can be any 16-bit or 32-bit register. The source must be
the same size as the destination.

B Examples

imul dx, ax ; Multiply DX times AX
imul ax, [bx] . Multiply AX by the value pointed to by BX

16.4 Dividing

The DIV and IDIV instructions are used to divide integers. Both a quo-
tient and a remainder are returned. The DIV instruction should be used

314

o

Doing Arithmetic and Bit Manipulations

for unsigned integers; the IDIV instruction should be used for signed
integers. This is the only difference between the two.

B Syntax

DIV {register | memory}
IDIV {register | memory}

To divide a 16-bit number by an 8-bit number, put the number to be
divided (the dividend) in the AX register. The contents of this register will
be destroyed by the operation. Specify the dividing number (the diviso? in
any 8-bit memory or register operand (except AL or AH). This operan

will not be changed by the operation. After the multiplication, the result
(quotient) will be in AL and the remainder will be in AH.

To divide a 32-bit number by a 16-bit number, put the dividend in the
DX:AX register pair. The most significant bits go in AX. The contents of
these registers will be destroyed by the operation. Specify the divisor in
any 16-bit memory or register operand (except AX or DXQI. This operand
will not be changed by the operation. After the division, the quotient will
be in AX and the remainder will be in DX. (The 80386 handles 64-bit
division in the same way by using the EDX:EAX register pair.)

To divide a 16-bit number by a 16-bit number, you must first sign-extend
or zero-extend (see Section 15.2, “Converting between Data Sizes”) the
dividend to 32 bits; then divide as described above. You cannot divide a
32-bit number by another 32-bit number (except on the 80386).

If division by zero is specified, or if the quotient exceeds the capacity of its
register (AL or AX), the processor automatically generates an interrupt O.
By default, the program terminates and returns to DOS. This problem can
be handled in two ways: you can check the divisor before division and go
to an error routine if you can determine it to be invalid, or you can write
your own interrupt routine to replace the processor’s interrupt O routine.
See Section 17.5 for more information in interrupts.

Note

Division is one of the slower operations on 8086-family processors
(especially the 8086 and 8088). Dividing by common constants that are
powers of two is often faster when done by shifting bits, as described
in Section 16.8.1, “Multiplying and Dividing by Constants.”

315

Microsoft Macro Assembler Programmer’s Guide

B Examples

Quotient in AX 4
Remainder in DX

.DATA
meml6 DW -2000
mem32 DD 500000 —
.CODE
; Divide 16-bit unsigned by 8-bit
mov ax, 700 ; Load dividend 700
mov bl, 36 ; Load divisor DIV 36
div bl ; Divide BL = -----
; Quotient in AL 19
; Remainder in AH 16
; Divide 32-bit signed by 16-bit
mov ax,WORD PTR mem32[0] : Load into DX:AX
mov dx,WORD PTR mem32[2] 500000
idiv meml6 ; DIV -2000
; Divide memory @ = ------
; Quotient in AX ~250
; Remainder in DX 0
; Divide 16-bit signed by 16-bit
mov ax,WORD PTR meml6 ; Load into AX -2000
cwd ; Extend to DX:AX
mov bx,-421 ; DIV -421 -
idiv bx ; Divide by X -----

16.5 Calculating with Binary Coded Decimals

The 8086-family processors provide several instructions for adjusting BCD
numbers. The BCD format is seldom used for applications programming in
assembly language. Programmers who wish to use BCD numbers usually
use a high-level language. However, BCD instructions are used to develop
compilers, function libraries, and other systems tools.

Since systems programming is beyond the scope of this manual, this sec-
tion provides only a brief overview of calculations on the two kinds of
BCD numbers, unpacked and packed.

Note

Intel mnemonics use the term “ASCII” to refer to unpacked BCD
numbers and “decimal” to refer to packed BCD numbers. Thus AAA

316

Doing Arithmetic and Bit Manipulations

ASCII Adjust for Addition) adjusts unpacked numbers, while DAA
Decimal Adjust for Addition) adjusts packed numbers.

16.5.1 Unpacked BCD Numbers

Unpacked BCD numbers are made up of bytes containing a single decimal
digit in the lower four bits of each byte. The 8086-family processors pro-
vide instructions for adjusting unpacked values with the four arithmetic
operations—addition, subtraction, multiplication, and division.

To do arithmetic on unpacked BCD numbers, you must do the 8-bit arith-
metic calculations on each digit separately. The result should always be in
the AL register. After each operation, use the corresponding BCD instruc-
tion to adjust the result. The ASCII adjust instructions do not take an
operand. They always work on the value in the AL register.

When a calculation using two one-digit values produces a two-digit result,
the ASCII adjust instructions put the first digit in AL and the second in
AH. If the digit in AL needs to carry to or borrow from the digit in AH,
the carry and auxiliary carry flags are set.

The four ASCII adjust instructions are described below:

Instruction Description

AAA Adjusts after an addition operation. For example, to
add 9 and 3, put 9 in AL and 3 in BL. Then use the
following lines to add them:

mov ax, 9 ; Load 9
mov bx, 3 ; and 3 as unpacked BCD
add al,bl ; Add 0O9h and O3h to get OCh
aaa ; Adjust OCh in AL to O2h,
; increment AH to Olh, set carry
; Result 12 unpacked BCD in AX
AAS Adjusts after a subtraction operation. For example,

to subtract 4 from 3, put 3 in AL and 4 in BL. Then
use the following lines to subtract them:

mov
mov

ax,103h ; Load 13
bx,4 H and 4 as unpacked BCD

sub al,bl ; Subtract 4 from 3 to get FFh (-1)
aas ; Adjust OFFh in AL to 9,
H decrement AH to O, set carry
; Result 9 unpacked BCD in AX
AAM Adjusts after a multiplication operation. Always use

MUL, not IMUL. For example, to multiply 9 times

317

Microsoft Macro Assembler Programmer’s Guide

3, put 9 in AL and 3 in BL. Then use the following
lines to multiply them:

mov ax,903h ; Load 9 and 3 as unpacked BCD
mul ah ; Multiply 9 and 3 to get 1Bh
aam ; Adjust 1Bh in AL

; to get 27 unpacked BCD in AX

Adjusts before a division operation. Unlike other
BCD instructions, this one converts a BCD value to a
binary value before the operation. After the opera-
tion, the quotient must still be adjusted by using
AAM. For example, to divide 25 by 2, put 25 in AX
in unpacked BCD format: 2 in AH and 5 in AL. Put
2 in BL. Then use the following lines to divide them:

mov ax,205h ; Load 25
mov bl,2 ; and 2 as unpacked BCD
aad ; Adjust 0205h in AX
H to get 19h in AX
div bl ; Divide by 2 to get
; quotient OCh in AL
; remainder 1 in AH
; Adjust OCh in AL
K to 12 unpacked BCD in AX
; (remainder destroyed)

aam

Notice that the remainder is lost. If you need the
remainder, save it in another register before adjust-
ing the quotient. Then move it back to AL and
adjust if necessary.

Multidigit BCD numbers are usually processed in loops. Each digit is pro-
cessed and adjusted in turn.

In addition to their use for processing unpacked BCD numbers, the ASCII
adjust instructions can be used in routines that convert between different

number bases.

® Example

mov
aam
add
add
mov
xchg
mov
int
mov
int

al,79 ; Load 79 (04Fh)
; Adjust to BCD (070%h)
ah, 48 ; Adjust to ASCII characters
al, 48 : (3739n)
dx, ax : Copy to DX
dl,dh ; Trade for most significant digit
ah, 2 ; DOS display character function
21h ; Call DOS
dl,dh ; Load least significant digit
21h ; Call DOS

The example converts an 8-bit binary number to hexadecimal and displays
it on the screen. The routine could be enhanced to handle large numbers.

318

Doing Arithmetic and Bit Manipulations

16.5.2 Packed BCD Numbers

Packed BCD numbers are made up of bytes containing two decimal digits:
one in the upper four bits and one in the lower four bits. The 8086-family
processors provide instructions for adjusting packed BCD numbers after
addition and subtraction. You must write your own routines to adjust for
multiplication and division.

To do arithmetic on packed BCD numbers, you must do the eight-bit
arithmetic calculations on each byte separately. The result should always
be in the AL register. After each operation, use the corresponding BCD
instruction to adjust the result. The decimal adjust instructions do not
take an operand. They always work on the value in the AL register.

Unlike the ASCII adjust instructions, the decimal adjust instructions
never affect AH. The auxiliary carry flag is set if the digit in the lower
four bits carries to or borrows from the digit in the upper four bits. The
carry flag is set if the digit in the upper four bits needs to carry to or bor-
row from another byte.

The decimal adjust instructions are described below:

Instruction Description

DAA Adjusts after an addition operation. For example, to
add 88 and 33, put 88 in AL and 33 in BL in packed
BCD format. Then use the following lines to add

them:
mov ax,8833h;Load 88 and 33 as packed BCD
add al,ah ; Add 88 and 33 to get OBBh
daa ; Adjust OBBh to 121 packed BCD:
; 1 in carry and 21 in AL
DAS Adjusts after a subtraction operation. For example,

to subtract 38 from 83, put 83 in AL and 38 in BL in
packed BCD format. Then use'the following lines to
subtract them:

mov ax, 3883h;Load 83 and 38 as packed BCD
sub al,ah ; Subtract 38 from 83 to get 0O4Bh
das ; Adjust O4Bh to 45 packed BCD:

O in carry and 45 in AL

Multidigit BCD numbers are usually processed in loops. Each byte is pro-
cessed and adjusted in turn.

319

Microsoft Macro Assembler Programmer’s Guide

16.6 Doing Logical Bit Manipulations

The logical instructions do Boolean operations on individual bits. The
AND, OR, XOR, and NOT operations are supported by the 8086-family
instructions.

AND compares two bits and sets the result if both bits are set. OR com-
pares two bits and sets the result if either bit is set. XOR compares two
bits and sets the result if the bits are different. NOT reverses a single bit.
Table 16.1 shows a truth table for the logical operations.

Table 16.1

Values Returned by Logical Operations
X X X

NOT AND OR XOR

X Y X Y Y Y

1 1 0 1 1 0

1 0 0 0 1 1

0 1 1 0 1 1

0 0 1 0 0 0

The syntax of the AND, OR, and XOR instructions are the same. The
only difference is the operation performed. For all instructions, the target
value to be changed by the operation is placed in one operand. A mask
showing the positions of bits to be changed is placed in the other operand.
The format of the mask differs for each logical instruction. The destina-
tion operand can be register or memory. The source operand can be regis-
ter, memory, or immediate. However, the source and destination operands
cannot both be memory.

Either of the values can be in either operand. However, the source operand
will be unchanged by the operation, while the destination operand will be
destroyed by it. Your choice of operands depends on whether you want to
save a copy of the mask or of the target value.

Note

The logical instructions should not be confused with the logical opera-
tors. They specify completely different behavior. The instructions con-
- trol run-time bit calculations. The operators control assembly-time bit

320

Doing Arithmetic and Bit Manipulations

calculations. Although the instructions and operators have the same
name, the assembler can distinguish them from context.

16.6.1 AND Operations

The AND instruction does an AND operation on the bits of the source
and destination operands. The original destination operand is replaced by
the resulting bits.

® Syntax

AND {register | memory} ,{ register | memory | immediate}

The AND instruction can be used to clear the value of specific bits regard-
less of their current settings. To do this, put the target value in one
operand and a mask of the bits you want to clear in the other. The bits of

the mask should be O for any bit positions you want to clear and 1 for any
bit positions you want to remain unchanged.

B Example 1

mov ax,035h ; Load value 00110101
and ax,OFBh ; Mask off bit 2 AND 11111011

; Value is now 31h 00110001
and ax,OF8h ; Mask off bits 2,1,0 AND 11111000

: Value is now 30h 00110000

B Example 2

mov ah,7 ; Get character without echo
int 21h
and al,11011111b ; Convert to uppercase by clearing bit 5
cmp al,'y' ; Is it Y?

je yes ; If so, do Yes stuff
. else do No stuff

yes:
Example 2 illustrates how to use the AND instruction to convert a char-
acter to uppercase. If the character is already uppercase, the AND

instruction has no effect, since bit 5 is always clear in uppercase letters. If
the character is lowercase, clearing bit 5 converts it to uppercase.

321

Microsoft Macro Assembler Programmer’s Guide

16.6.2 OR Operations

The OR instruction does an OR operation on the bits of the source and
destination operands. The original destination operand is replaced by the
resulting bits.

B Syntax

OR { register | memory} ,{ register | memory | immediate}

The OR instruction can be used to set the value of specific bits regardless
of their current settings. To do this, put the target value in one operand
and a mask of the bits you want to clear in the other. The bits of the mask

should be 1 for any bit positions you want to set and O for any bit posi-
tions you want to remain unchanged.

B Example

mov ax,035h ; Move value to register 00110101
mov ax,035h . Move value to register 00110101
or ax,08h ; Mask on bit 3 OR 00001000
* Value is now 3Dh 00111101
or ax,07h ; Mask on bits 2,1,0 OR 00000111
:' Value is now 3Fh 00111111

Another common use for OR is to compare an operand to 0. For example:

or bx, bx ; Compare to O

; 2 bytes, 2 clocks on 8088
jg positive ; BX is positive
j1 negative ; BX is negative

; BX is zero

The first statement has the same effect as the following statement, but is
faster and smaller:

cmp bx,0 ; 3 bytes, 3 clocks on 8088

16.6.3 XOR Operations
The XOR (Exclusive OR) instruction does an XOR operation on the bits

of the source and destination operands. The original destination operand
is replaced by the resulting bits.

322

Doing Arithmetic and Bit Manipulations

B Syntax
XOR { register | memory} { register | memory | immedvate}

The XOR instruction can be used to toggle the value of specific bits
(reverse them from their current settings). To do this, put the target value
n one operand and a mask of the bits you want to toggle in the other. The
bits of the mask should be 1 for any bit positions you want to toggle and 0
for any bit positions you want to remain unchanged.

B Example

mov ax,035h ; Move value to register 00110101
xor ax,08h ; Mask on bit 3 XOR 00001000
: Value is now 3Dh 00111101
xor ax,07h ; Mask on bits 2,1,0 XOR 00000111
: Value is now 3Ah 00111010

Another common use for the XOR instruction is to set a register to 0. For
example:

xor cX,CcX ; 2 bytes, 3 clocks on 8088

This sets the CX register to 0. When the identical operands are XORed,
each bit cancels itself, producing 0. The statement

mov cx,0 ;> 3 bytes, 4 clocks on 8088
is the obvious way of doing this, but it is larger and slower. The statement
sub cx,cx ; 2 bytes, 3 clocks on 8088

is also smaller than the MOV version. The only advantage of using MOV
is that it does not affect any flags.

16.6.4 NOT Operations

The NOT instruction does a NOT operation on the bits of a single
operand. It is used to toggle the value of all bits at once.

® Syntax

NOT { register | memory}

The NOT instruction is often used to reverse the sense of a bit mask from
masking certain bits on to masking them off. Use the NOT instruction if

323

Microsoft Macro Assembler Programmer’s Guide

the value of the mask is not known until run time; use the NOT operator
(see Section 9.2.1.5, “Bitwise Logical Operators”) if the mask is a con-
stant.

B Example

.DATA
masker DB 00010000b ; Value may change at run time

.CODE

I;IOV ax,0D743h ; Load OD7h to AH; 43h to AL 01000011

or al,masker ; Turn on bit 4 in AL OR 00010000
; Result is 53h 01010011

not masker . Reverse sense of mask 11101111

and ah,masker ; Turn off bit 4 in AH AND 11010111
: Result is OC7h 11000111

16.7 Scanning for Set Bits

H 80386 Only

The 80386 processor has instructions for scanning bits to find the first or
last set bit in a register value. These instructions can be used to find the
position of a set bit in a mask or other value. They can also check to see if
a register value is 0.

B Syntax

BSF register,{ register | memory}
BSR register,{ register | memory}

The bit scan instructions work only on 16-bit or 32-bit registers. They
cannot be used on memory operands or 8-bit registers. The source register
contains the value to be scanned. The destination register should be the
register where you want to store the position of the first or last set bit.

The BSF (Bit Scan Forward) instruction scans the bits of the source regis-
ter starting with the 0 bit and working toward the most-significant bit.
The BSR (Bit Scan Reverse) instruction scans the bits of the source regis-
ter starting with the most-significant bit and working toward the 0 bit.

324

Doing Arithmetic and Bit Manipulations

B Example

.DATA

widfield EQU 200

bitfield DD widfield DUP (?)
.CODE
cld
push ds ; Load segment of bitfield
pop es : into ES
mov cx,widfield ; Load maximum count
xor eax, eax ; Set search value to O
mov di,OFFSET bitfield ; Load bitfield address
repe scasd ; Find first nonzero bit
jecxz none ; If none found, get out
sub di,4 ; Point back to doubleword
mov eax, [di] ; Else load first nonzero

bsr ecx, eax ; Find first set bit
. ; ECX now contains bit position
; DI points to doubleword
none:

This example scans a large bit field. Starting at the beginning of the field,
it finds the first nonzero doubleword. Then it finds the first set bit within
the doubleword. See Chapter 18, “Processing Strings,” for more informa-
tion on the string instructions used in this example.

16.8 Shifting and Rotating Bits

The 8086-family processors provide a complete set of instructions for shift-
ing and rotating bits. Bits can be moved right (toward the most-significant
bits) or left (toward the O bit). Values shifted off the end of the operand go
into the carry flag.

Shift instructions move bits a specified number of places to the right or
left. The last bit in the direction of the shift goes into the carry flag, and
the first bit is filled with 0 or with the previous value of the first bit.

Rotate instructions move bits a specified number of places to the right or
left. For each bit rotated, the last bit in the direction of the rotate 1s
moved into the first bit position at the other end of the operand. With
some variations, the carry bit is used as an additional bit of the operand.

325

Microsoft Macro Assembler Programmer’s Guide

Figure 16.1 illustrates the eight variations of shift and rotate instructions
for 8-bit operands. Notice that SHL and SAL are exactly the same.

Figure 16.1 Shifts and Rotates

326

Doing Arithmetic and Bit Manipulations

B Syntax

SHL { register | memory} ,{ CL | 1}
SHR { register | memory} ,{CL | 1}
SAL { register | memory},{CL | 1}
SAR { register | memory} ,{CL | 1}
ROL { register | memory} ,{ CL | 1}
ROR {register | memory},{CL | 1}
RCL { register | memory},{ CL | 1}
RCR { register | memory} ,{ CL | 1}

The format of all the shift instructions is the same. The destination
operand should contain the value to be shifted. It will contain the shifted
operand after the instruction. The source operand should contain the
number of bits to shift or rotate. It can be the immediate value 1 or the
CL register. No other value or register is accepted on the 8088 and 8086
Processors.

80186,/286,/386 Only

Starting with the 80186 processor, 8-bit immediate values larger than
1 can be given as the source operand for shift or rotate instructions, as
shown below:

shr bx, 4 ;> 9 clocks, 3 bytes on 80286

The following statements are equivalent if the program must run the
8088 or 8086:

mov cl,4 ; 2 clocks, 3 bytes on 80286
shr bx,cl . 9 clocks, 2 bytes on 80286
;11 clocks, 5 bytes

16.8.1 Multiplying and Dividing by Constants

Shifting right by one has the effect of dividing by two; shifting left by one
has the effect of multiplying by two. You can take advantage of this to do
fast multiplication and division by common constants. The easiest con-
stants are the powers of two. Shifting left twice multiplies by four, shifting
left three times multiplies by eight, and so on.

SHR is used to divide unsigned numbers. SAR can be used to divide
signed numbers, but SAR rounds negative numbers down—IDIV always
rounds up. Code that divides by using SAR must adjust for this
difference. Multiplication by shifting is the same for signed and unsigned

327

Microsoft Macro Assembler Programmer’s Guide

numbers, so either SAL or SHL can be used. Both instructions do the
same operation.

Since the multiply and divide instructions are the slowest on the 8088 and
8086 processors, using shifts instead can often speed operations by a factor
of 10 or more. For example, on the 8088 or 8086 processor, the following
statements take 4 clocks:

xor ah,ah ; Clear AH
shl ax, 1l ; Multiply byte in AL by 2

The following statements have the same effect, but take between 74 and 81
clocks on the 8088 or 8086:

mov bl, 2 ; Multiply byte in AL by 2
mul bl

The same statements take 15 clocks on the 80286 or between 11 and 16
clocks on the 80386. See the Microsoft Macro Assembler Reference for com-
plete information on timing of instructions.

Shift instructions can be combined with add or subtract instructions to do
multiplication by common constants. These operations are best put in
macros so that they can be changed if the constants in a program change.

B Example 1

mul_10 MACRO factor ; Factor must be unsigned
mov ax, factor ; Load into AX
shl ax, 1l ; = factor * 2
mov bx, ax ; Save copy in BX
shl ax,1 , AX = factor * 4
shl ax,1 ; AX = factor * 8
add ax, bx ; AX = (factor * 8) + (factor * 2)
ENDM ; AX = factor * 10

B Example 2

div_u512 MACRO dividend ; Dividend must be unsigned
mov ax,dividend; Load into AX
shr ax,1 ; AX = dividend / 2 (unsigned)
xchg al,ah ; xchg is like rotate right 8
; AL = (dividend / 2) / 256
cbw ;
ENDM H

; Clear upper byte
AX = (dividend / 512

328

Doing Arithmetic and Bit Manipulations

16.8.2 Moving Bits to the Least-Significant Position

Sometimes a group of bits within an operand needs to be treated as a sin-
gle unit—for example, to do an arithmetic operation on those bits without
affecting other bits. This can be done by masking off the bits, and then
shifting them into the least-significant positions. After the arithmetic
operation is done, the bits are shifted back to the original position and
merged with the original bits by using OR. See Section 17.2.5.2,
“Defining and Redefining Interrupt Routines,” for an example of this
operation.

16.8.3 Adjusting Masks

Masks for logical instructions can be shifted to new bit positions. For
example, an operand that masks off a bit or group of bits can be shifted to
move the mask to a different position.

B Example

.DATA :
masker DB O0000010b ; Mask that may change at run time

.CODE

mov cl,2 . Rotate two at a time

mov bl,57h ; Load value to be changed 01010111b

rol masker,cl ; Rotate two to left 00001000b

or bl,masker ; Turn on masked values = ---------
; New value is OSFh 01011111b

rol masker,cl ; Rotate two more 00100000b

or bl,masker ; Turn on masked values = ---------
; New value is O7Fh 01111111b

This technique is useful only if the mask value is unknown until runtime.

16.8.4 Shifting Multiword Values

Sometimes it is necessary to shift a value that is too large to fit in a regis-
ter. In this case, you can shift each part separately, passing the shifted
bits through the carry flag. The RCR or RCL instructions must be used
to move the carry value from the first register to the second.

RCR and RCL can also be used to initialize the high or low bit of an
operand. Since the carry flag is treated as part of the operand (like using a
9-bit operand), the flag value before the operation is crucial. The carry flag
may be set by a previous instruction, or you can set it directly using the
CLC (Clear Carry Flag), CMC (Complement Carry Flag), and STC (Set
Carry Flag) instructions.

329

Microsoft Macro Assembler Programmer’s Guide

B Example

.DATA
mem32 DD 500000
.CODE
; Divide 32-bit unsigned by 16
mov cx,4 ; Shift right 4 500000
again: shr WORD PTR mem32([2],1 : Shift into carry DIV 16
rcr WORD PTR mem32([0],1 :; Rotate carry in = ------
loop again ; 31250

16.8.5 Shifting Multiple Bits

H 80386 Only

The 80836 processor has new instructions for shifting multiple bits into an
operand. The SHLD (Double Precision Shift Left) instruction shifts a
specified group of bits left and into an operand. The SHRD (Double Preci-
sion Shift Right) instruction shifts a specified group of bits right and into
an operand.

B Syntax

SHRD { register | memory} ,register,{ CL-| immediate}
SHLD ({ register | memory} ,register,{ CL | immediate}

These instructions take three operands. The first (leftmost) contains the
value to be shifted. It must be a 16-bit or 32-bit register or memory
operand. The second operand contains the bits to be shifted into the
value. It must be a register of the same size as the first operand. The third
operand contains the number of bits to shift. It may be an immediate
operand or the CL register.

® Example

mov ax,3AF2h ; Load AX=00111010 11110010
mov bx,9CO0h ; Load BX= 10011100 00000000

shld ax,bx,7 ; Shift 7 01111001 O <- 7
; 1001110 <- 7

; AX=01111001 01001110 (794Eh)

330

CONTROLILING PROGRAM FLOW

17.1 JUMPING.ceeeeieieeeeeeierrrrrrereeeeeeeeeeeeeeseeeeennnsssesenns 333
17.1.1 Jumping Unconditionally ...ccceeeeuueerennerennens 333
17.1.2 Jumping Conditionally.....ccceeeervunirenneerennnns 335

17.1.2.1 Comparing and JUMPING..eeserereresesnses 339
17.1.2.2 Jumping Based on Flag Status 338
17.1.2.3 Testing Bits and Jumping ...cccceeeveereee. 340
17.1.2.4 Testing and Setting Bits .cccceevucecennnnes 341

17.2 LOOPING.cciiiiiiieirerrrrrnrnneeeeeeeeeeeeeeessasesssssssnnnnnnenes 343

17.3 Setting Bytes Conditionallycccoccvveereeeernnnnen. 345

17.4 Using Proceduresoccceeeeeeeieiiiieieeeeereessecrnnnnnns 346
17.4.1 Calling Procedures...ccceeeeererveeeereeneeceeernnnnns 347
17.4.2 Defining Procedures ..cceeeeevereeeereeeneceeeennnnnns 347
17.4.3 Passing Arguments on the Stack 349
17.4.4 Using Local Variables.....ccccveeeeereeenncerennnnnn. 351
17.4.5 Setting Up Stack Frames....cccceeevvvveeeeennnnnn. 304

17.5 Using Interrupts....ccccceeeeeeeerrveeeeeeccrrnnnneceenccnnnnnee 350
17.5.1 Calling InterruptsS..cceeeeeeeeeneeeeeenneeeeenneecenns 306
17.5.2 Defining and Redefining

Interrupt ROUtines . .uuueeeeeeeeeeeenvneeceeeeeeeennnn 308

17.6 Checking Memory Ranges......ccccceeeevvveeeeeeceunnnnen. 361

Controlling Program Flow

The 8086-family processors provide a variety of instructions for control-
ling the flow of a program. The four major types of program-flow instruc-
tions are jumps, loops, procedure calls, and interrupts.

This chapter tells you how to use these instructions and how to test condi-
tions for the instructions that change program flow conditionally.

17.1 Jumping

Jumps are the most direct method of changing program control from one
location to another. At the internal level, jumps work by changing the
value of the IP (Instruction Pointer) register from the address of the
current instruction to a target address.

Jumps can be short, near, or far. MASM automatically handles near and
short jumps, though it may not always generate the most efficient code if
the label being jumped to is a forward reference. The size and control of
jumps is discussed in Section 9.4.1, “Forward References to Labels.”

17.1.1 Jumping Unconditionally

The JMP instruction is used to jump unconditionally to a specified
address.

B Syntax
JMP { register | memory}

The operand should contain the address to be jumped to. Unlike condi-
tional jumps, whose target address must be short (within 128 bytes), the
target address for unconditional jumps can be short, near, or far. See Sec-
tion 9.4.1, “Forward References to Labels,” for more information on speci-
fying the distance for conditional jumps.

If a conditional jump must be greater than 128 bytes, the construction
must be reorganized (except on the 80386). This can be done by reversing
the sense of the conditional jump and adding an unconditional jump, as
shown in Example 1.

333

Microsoft Macro Assembler Programmer’s Guide

B Example 1

close:

distant:

cmp
je

cmp
jne
Jmp

ax,7
close

ax,6
close
distant

; If AX is 7 and jump is short
then jump close

‘

.

v

.

; If AX is 6 and jump is near

—

then test opposite and skip over

¢ Now Jump
; Less than 128 bytes from jump

; More than 128 bytes from jump

An unconditional jump can be used as a form of conditional jump by
specifying the address in a register or indirect memory operand. The value
of the operand can be calculated at run time, based on user interaction or
other factors. You can use indirect memory operands to construct jump
tables that work like C switch statements, BASIC ON GOTO state-
ments, or Pascal case statements.

B Example 2

ctl_tbl

process:

extended:

ctrla:

ctrlb:

next:

334

.CODE

Jmp
LABEL
DW
DW
DW
mov
int
cbw
mov
shl

Jmp

mov
int

Jmp

jmp

process
WORD
extended
ctrla
ctrlb
ah, 8h
21h

bx,ax
bx,1

ctl_tbl [bx]

ah, 8h
21h

next

next

D A

Jump over data

(required in overlay procedures)
Null key (extended codeg
Address of CONTROL-A key routine
Address of CONTROL-B key routine
Get a key

Convert AL to AX

Copy

Convert to address

Jump to key routine

Get second key of extended

Use another jump table
for extended keys

CONTROL-A routine here

CONTROL-B routine here

Continue

Controlling Program Flow

In Example 2, an indirect memory operand points to addresses of routines
for handling different keystrokes. Notice that the jump table is placed in
the code segment. This technique is optional in stand-alone assembler pro-
grams, but it may be required for procedures called from some languages.

17.1.2 Jumping Conditionally

The most common way of transferring control in assembly language is
with conditional jumps. This is a two-step process: first test the condition,
and then jump if the condition is true or continue if it is false.

B Syntax
Jcondition label

Conditional-jump instructions take a single operand containing the
address to be jumped to. The distance from the jump instruction to the
specified address must be short (less than 128 bytes). If a longer distance is
specified, an error will be generated telling the distance of the jump in
bytes. See Section 17.1.1, “Jumping Unconditionally,” for information on
arranging longer conditional jumps.

80386 Only

Conditional jumps to forward references are near by default under the
80386 processor. But you can use the SHORT operator to specify
short jumps. See Section 9.4.1, “Forward References to Labels,” for
information specifying the size of jumps.

Conditional-jump instructions (except JCXZ) use the status of one or
more flags as their condition. Thus any statement that sets a flag under
specified conditions can be the test statement. The most common test
statements use the CMP or TEST instructions. The jump statement can
be any one of 31 conditional-jump instructions.

17.1.2.1 Comparing and Jumping

The CMP instruction is specifically designed to test for conditional
jumps. It does not change the destination operand, so it can be used to
compare two values without changing either of them. Instructions that
change operands (such as SUB or AND) can also be used to test condi-
tions.

335

Microsoft Macro Assembler Programmer’s Guide

The CMP instruction compares two operands and sets flags based on the
result. It is used to test the following relationships: equal; not equal;
greater than; less than; greater than or equal; or less than or equal.

B Syntax

CMP { register | memory},{ register | memory | immediate}

The destination operand can be memory or register. The source operand
can be immediate, memory, or register. However, they cannot both be
memory operands.

The jump instructions that can be used with CMP are made up of
mnemonic letters combined to indicate the type of jump. The letters are

shown below:

Letter Meaning

Jump

Greater than (for unsigned comparisons)
Less than (for unsigned comparisons)
Above (for signed comparisons)

Below (for signed comparisons)

Equal

Not

Z oW e 0 -

The mnemonic names always refer to the relationship that the first
operand of the CMP instruction has to the second operand of the CMP
instruction. For instance, JG tests whether the first operand is greater
than the second. Several conditional instructions have two names. You can
use whichever name seems more mnemonic in context.

Comparisons and conditional jumps can be thought of as statements in
the following format:

IF (valuel relationship value2) THEN GOTO truelabel

Statements of this type can be coded in assembly language by using the
following syntax:

336

Controlling Program Flow

CMP valuel,value?
Jrelationship truelabel

.truelabel:

Table 17.1 lists conditional-jump instructions for each relationship and
shows the flags that are tested in order to see if relationship is true.

Table 17.1

Conditional-Jump Instructions Used after Compare

Jump Signed Unsigned

Condition Compare Jump if: Compare Jump if:
Equal = JE ZF=1 JE ZF=1
Not equal JNE ZF=1 JNE ZF=1
Greater > JG or ZF=0and JAor CF=0 and
than JNLE SF=OF JNBE ZF=0
Less than < JLE or ZF=1and JBEor CF=1or
or equal JNG SF# OF JNA ZF=1
Less < JLor SF# OF JB or CF=1
than JNGE JNAE

Greater > JGE or SF=OF JAE or CF=0
than JNL JNB

or equal

Internally, the CMP instruction is exactly the same as the SUB instruc-
tion, except that the destination operand is not changed. The flags are set
according to the result that would have been generated by a subtraction.

B Example 1

; If CX is less than -20, then make DX 30, else make DX 20

cmp cx,-20 ; If signed CX is smaller than -20
jl less ; Then do stuff at "less"
mov dx, 20 ; Else set DX to 20
jmp further ; Finished
less: mov dx, 30 ; Then set DX to 30

further:

337

Microsoft Macro Assembler Programmer’s Guide

Example 1 shows the basic form of conditional jumps. Notice that in
assembly language, if-then-else constructions are usually written in the
form if-else-then.

This theme has many variations. For example, you may find it more

mnemonic to code in the if-then-else format. However, you must then use
the opposite jump condition, as shown in Example 2.

B Example 2

; If CX is greater than or equal to -20, then make DX 20, else make DX 30

cmp cx,-20 ; If signed CX is smaller than -20
jnl notless ; else do stuff at "notless"
mov dx, 30 ; Then set DX to 30
jmp continue ; Finished

notless: mov dx, 20 ; Else set DX to 20

continue:
The then-if-else format shown in Example 3 is often more efficient. Do the

work for the most likely case, and then compare for the opposite condi-
tion. If the condition is true, you are finished.

B Example 3

; DX is 20, unless CX is less than -20, then make DX 30

mov dx, 20 ; DX is 20

cmp cx,-20 ; If signed CX is greater than -20
jge greatequ ; Then done

mov dx, 30 ; Else set DX to 30

greatequ:

This example avoids the unconditional jump used in Examples 1 and 2 and
thus is faster even if the less likely condition is true.

17.1.2.2 Jumping Based on Flag Status

The CMP instruction is the most mnemonic way to set the flags for condi-
tional jumps, but any instruction that changes flags can be used as the
test condition. The conditional-jump instructions listed below enable you
to jump based on the condition of flags rather than on relationships of
operands. Some of these instructions have the same effect as instructions
listed in Table 17.1.

338

Controlling Program Flow

Instruction Action

JO Jumps if the overflow flag is set

JNO Jumps if the overflow flag is clear

JC Jumps if the carry flag is set (same as JB)
JNC Jumps if the carry flag is clear (same as JAE)
JZ Jumps if the zero flag is set (same as JE)
JNZ Jumps if the zero flag is clear (same as JNE)
JS Jumps if the sign flag is set

JNS Jumps if the sign flag is clear

JP Jumps if the parity flag is set

JNP Jumps if the parity flag is clear

JPE Jumps if parity is even (parity flag set)

JPO Jumps if parity is odd (parity flag clear)
JCXZ Jumps if CXis 0

Notice that the JCXZ is the only conditional jump based on the condition
of a register (CX) rather than flags. Since JCXZ is usually used with loop
instructions, it is discussed in more detail in Section 17.3, “Setting Bytes

Conditionally.”

B Example 1
add
jo

overflow:

B Example 2

sub

jnz

call
go_on:

ax,bx
overflow

ax,dx
go_on
zhandler

; Add two values
; If value too large, adjust

; Adjustment routine here

; Subtract
; If the result is not zero, continue

else do special case

339

Microsoft Macro Assembler Programmer’s Guide

17.1.2.3 Testing Bits and Jumping

Like the CMP instruction, the TEST instruction is designed to test for
conditional jumps. However, specific bits are compared rather than entire
operands.

B Syntax
TEST { register | memory},{ register | memory | immediate}

The destination operand can be memory or register. The source operand
can be immediate, memory, or register. However, the operands cannot
both be memory.

Normally, one of the operands is a mask in which the bits to be tested are
the only bits set. The other operand contains the value to be tested. If all
the bits set in the mask are clear in the operand being tested, the zero flag
will be set. If any of the flags set in the mask are also set in the operand,
the zero flag will be cleared.

The TEST instruction is actually the same as the AND instruction,
except that neither operand is changed. If the result of the operation is 0,
the zero flag is set, but the 0 is not actually written to the destination
operand.

You can use the JZ and JNZ instructions to jump after the test. JE and
JNE are the same and can be used if you find them more mnemonic.

B Example

.DATA
bits DB ?
.CODE

; If bit 2 ox.' bit 4 is set, then call taska

; Assume "bits" is OD3h 11010011
test bits,10100b; If 2 or 4 is set AND 00010100
jz go_on ; Else continue = s-------
call taska ; Then call taska 00010000
go_on: ; Jump not taken

; If bits 2 énd 4 are clear, then call taskb

; Assume "bits" is OE9h 11101001
test bits,10100b; If 2 and 4 are clear AND 00010100
jnz next ; Else continne @ = ----e---
call taskb : Then call taskb 00000000
next: ; Jump not taken

340

Controlling Program Flow

17.1.2.4 Testing and Setting Bits

m 80386 Only

The 80386 processor has bit test and set instructions. These instructions
have two purposes. They can test the status of a bit to control program
flow; some of them can also change the value of a specified bit.

B Syntax

BT { register | memory},{ register | immediate}

BTC { register | memory} ,{ register | tmmediate}
BTR { register | memory} ,{ register | immediate}
BTS { register | memory} { register | immediate}

For each of the instructions, the memory or register destination operand is
the target value that will be tested. The register or immediate source
operand specifies the number of the bit to be tested in the destination
operand. The four bit-testing instructions are described below:

Instruction Description

BT The Bit Test instruction examines the specified bit
in the target value and puts a copy in the carry
flag. The carry flag can then be used by another
instruction such as a conditional jump. For exam-
ple, assume BX points to a bit field and CX con-
tains 4 in the following statements:

bt [bx] ,cx ; Put bit 4 of bit field
H pointed to by BX in carry
je somewhere ; Jump if carry set

The same thing could be done less efficiently on
other 8086-family processors with the following

statements:
mov ax, [bx] ; Load value pointed to by BX
shr ax,cl ; Shift bit 4 to first position
test ax,1 ; See if bit is set
jnz somewhere ; Jump if it is

This instruction is only useful if the source
operand is not known until run time. If the source
operand is a constant, the TEST instruction (see
Section 17.1.2.3, “Testing Bits and Jumping”) is
more efficient.

341

Microsoft Macro Assembler Programmer’s Guide

BTC

BTR

BTS

®H Example

.DATA
flag RECORD
error flag

.CODE

Btr
je

fixa:

The Bit Test and Complement instruction exam-
ines the specified bit in the target value and puts a
copy in the carry flag. It then reverses the value of
the bit. For example, assume BX points to a bit
field and CX contains 4 in the following state-

ments: -
btc [bx],cx ; Put bit 4 of bit field in carry
; and toggle bit 4
jec somewhere ; Jump if carry set

The Bit Test and Reset instruction examines the
specified bit in the target value and puts a copy in
the carry flag. It then clears the bit. For example,
assume BX points to a bit field and CX contains 4
in the following statements:

btr [bx],cx ; Put bit 4 of bit field in carry
; and clear bit 4
je somevwhere ; Jump if carry set

The Bit Test and Set instruction examines the
specified bit in the target value and puts a copy in
the carry flag. It then sets the bit. For example,
assume BX points to a bit field and CX contains 4

in the following statements: —
bts [bx],cx ; Put bit 4 of bit field in carry
; and set bit 4
je somewhere ; Jump if carry was set

a:3=0,b:2=0,c:1=0,d:2=0,e:1=0, f:1=0

error,cC
fixc

In this example, a bit field made up of error flags is tested. If the bit flag
being tested is set, indicating an error, the flag is turned off and control is
directed to a label where the error is corrected.

342

Controlling Program Flow

17.2 Looping

The 8086-family of processors has several instructions specifically designed
for creating loops of repeated instructions. In addition, you ean create
loops using conditional jumps.

B Syntax

LOOP label
LOOPE label
LOOPZ label
LOOPNE label
LOOPNZ label
JCXZ label

The LOOP instruction is used for loops with a set number of iterations.
For example, it can be used in constructions similar to the “for” loops of
BASIC, C, and Pascal, and the “do” loops of FORTRAN.

A single operand specifies the address to jump to each time through the
loop. The CX register is used as a counter for the number of times to loop.
On each iteration, CX is decremented. When CX reaches 0, control passes
to the instruction after the loop.

The LOOPE, LOOPZ, LOOPNE, and LOOPNZ instructions are used
in loops that check for a condition. For example, they can be used in con-
structions similar to the “while” loops of BASIC, C, and Pascal; the
“repeat” loops of Pascal; and the “do” loops of C.

The LOOPE (also called LOOPZ) instruction can be thought of as
meaning “loop while equal.” Similarly, LOOPNE Salso called LOOPNZ)
instruction can be thought of as meaning “loop while not equal.” A single
short memory operand specifies the address to loop to each time through.
The CX register can specify a maximum number of times to go through
the loop. The CXregister can be set to a number that is out of range if
you do not want a maximum count.

The JCXZ instruction (Fa,nd its 32-bit 80386 extension, JECXZ) are often
used in loop structures. For example, it may be used in loops that check a
condition at the start of the loop rather than at the end. Unlike the loop
instruction, JCXZ does not decrement CX, so the programmer must use
another statement to decrement the count.

343

Microsoft Macro Assembler Programmer’s Guide

® 80386 Only
Unlike conditional-jump instructions, which can jump to either a near or a

short label under the 80386, the loop instructions, JCXZ instruction, and
JECXZ instruction always jump to a short label.

B Example 1

; For O to 200 do task

mov cx, 200 ; Set counter
next: . ; Do the task here
loop next ; Do again

; Continue after loop
This loop has the same effect as the following statements:

; For O to 200, do task
mov cx, 200 ., Set counter
next:
; Do the task here

dec cX

cmp cx,0
jne next ; Do again

; Continue after loop

The first version is more.efficient as well as easier to understand. However,
there are situations in which you must use conditional-jump instructions
rather than loop instructions. For example, conditional jumps are often
required for loops that test several conditions.

If the counter in CX is variable because of previous instructions, you
should use the JCXZ instruction to check for 0, as shown in Example 2.
Otherwise, if CX is 0, it will be decremented to—1 in the first iteration
and will continue through 65,535 iterations before it reaches 0 again.

B Example 2

; For O to CX do task

; CX counter set previously

jexz done ; Check for O

next: . ; Do the task here
loop next ; Do again

done: ; Continue after loop

344

Controlling Program Flow

B Example 3

; While AX is not 128, do task

nov cx, OFFFFh ; Set count too high to interfere
wend: . ; Do the task here

cmp ax, 128 ; Is it 128?

loopne wend ; No? Repeat

; Yes? Continue

17.3 Setting Bytes Conditionally

m 80386 Only

The 80386 processor has a new group of instructions for setting bytes con-
ditionally. These instructions test the condition of specified flags, and
depending on the result, set a memory operand either to 1 or to 0. They
can be used to set byte variables that are used as Boolean flags.

B Syntax
SET condition { register | memory}

Conditional-set instructions test conditions in the same way as
conditional-jump instructions, except that instead of jumping if the condi-
tion is met, they set a specified byte. For example, SETZ is similar to JZ,
SETNE is similar to JNE, and so on. See Section 17.1.1, “Jumping
Unconditionally,” for more information on how flags are tested for condi-
tional jumps.

Conditional-set instructions require one 8-bit operand, which can be either
a register or a memory operand. If the condition tested by the instruction
is true, the operand is set to 1. Otherwise the operand is set to 0.

Conditional-set instructions are usually preceded by a CMP or TEST

instruction, although any instruction that sets flags can be used to test for
the condition.

345

Microsoft Macro Assembler Programmer’s Guide

® Example

.DATA
bigflag DB ? ; Boolean flag
amount DW ? ; Size variable to be set at run time

.CODE -
. : Size is set
; bigflag = émount > 1000

cmp size,1000 ; Is "size" greater than 1000?
setg bigflag ; If greater, "bigflag" =1
; else "bigflag" = O

In the example, the Boolean variable bigflag is set according to a com-
parison of two other values. Some languages (such as BASIC) set the result
of true relational statements to —1 rather than 1. To make the code com-
patible with such compilers, you should negate the value after setting it.
For example, add the following line to the previous example:

neg bigflag ; Negate result

This statement would be necessary for BASIC, since the expression
BIGFLAG=SIZE>1000 evaluates to —1. It would not be necessary for C,
since the expression bigflag=size>1000 evaluates to 1. —

17.4 Using Procedures

Procedures are units of code that do a specific task. They provide a way of
modularizing code so that a task can be accomplished from any point in a
program without using the same code in each place. Assembly-language
procedures are comparable to functions in C; subprograms, functions, and
subroutines in BASIC; procedures and functions in Pascal; or routines and
functions in FORTRAN.

Two instructions and two directives are usually used in combination to
define and use assembly-language procedures. The CALL instruction is
used to call procedures defined elsewhere. The RET instruction is used to
return control from a called procedure to the code that called it. The
PROC and ENDP directives normally mark the beginning and end of a
procedure definition, as described in Section 17.4.2, “Defining Procedures.”

The CALL and RET instructions use the stack to keep track of the loca-

tion of the procedure. The CALL instruction pushes the calling address
onto the stack and then jumps to the starting address of the procedure.

346

Controlling Program Flow

The RET instruction pops the address pushed by the CALL instruction
and returns control to the instruction following the call.

Every CALL must have a RET to restore the stack to its status before
the CALL. Calls may be nested.

17.4.1 Calling Procedures

The CALL instruction saves the address following the instruction on the
stack and passes control to a specified address.

B Syntax
CALL {register | memory}

The address is usually specified as a direct memory operand. However, the
operand can also be a register or indirect memory operand containing a
value calculated at run time. This enables you to write call tables similar
to the jump table illustrated in Section 17.1.2.1, “Comparing and Jump-
ing.”

Calls can be near or far. Near calls push only the offset portion of the cal-
ling address. Far calls push both the segment and offset. You must give
the type of far calls to forward-referenced labels using the FAR type
specifier and the PTR operator. For example, use the following statement
to make a far call to a label that has not been earlier defined or declared
external in the source code:

call FAR PTR task

17.4.2 Defining Procedures

Procedures are defined by labeling the start of the procedure and placing a
RET instruction at the end. There are several variations on this syntax.

B Syntax 1
label PROC [NEAR | FAR]

statements
RET [constant]
label ENDP

347

Microsoft Macro Assembler Programmer’s Guide

Procedures are normally defined by using the PROC directive at the start
of the procedure and the ENDP directive at the end. The RET instruc-
tion is normally placed immediately before the ENDP directive. The size
of the RET instruction automatically matches the size defined by the
PROC directive.

® Syntax 2

label:
statements

RETN [constant]

B Syntax 3

label LABEL FAR
statements
RETF [constant]

Starting with Version 5.0 of the Macro Assembler, the RET instruction
can be extended to RETN (Return Near) to override the default size. This
enables you to define and use procedures without the PROC and ENDP
directives, as shown in Syntax 2 and Syntax 3 above. However, with this

method, the programmer is responsible for making sure the size of the
CALL matches the size of the RET.

The RET instruction (and its RETF and RETN variations) allows a
constant operand that specifies a number of bytes to be added to the value
of the SP register after the return. This operand can be used to adjust for
arguments passed to the procedure before the call, as shown in the exam-
ple in Section 17.4.4, “Using Local Variables.”

B Example 1

call task ; Call is near because procedure is near
; Return comes to here

task PROC NEAR ; Define "task" to be near
. ; Instructions of "task" go here

r."et ; Return to instruction after call
task ENDP : End "task" definition

348

Controlling Program Flow

Example 1 shows the recommended way of making calls with MASM.
Example 2 shows another method that programmers who are used to other
assemblers may find more familiar.

® Example 2

call NEAR PTR task ; Call is declared near
. . Return comes to here
task: ; Procedure begins with near label
; Instructions go here
retn ; Return declared near
This method gives more direct control over procedures, but the program-

mer must make sure that calls have the same size as corresponding re-
turns.

For example, if a call is made with the statement
call NEAR PTR task
the assembler does a near call. This means that one word (the offset fol-

lowing the calling address) is pushed onto the stack. If the return is made
with the statement

retf

two words are popped off the stack. The first will be the offset, but the
second will be whatever happened to be on the stack before the call. Not
only will the popped value be meaningless, but the stack status will be
incorrect, causing the program to fail.

17.4.3 Passing Arguments on the Stack

Procedure arguments can be passed in various ways. For example, values
can be passed to a procedure in registers or in variables. However, the
most common method of passing arguments is to use the stack. Microsoft
languages have a specific convention for doing this.

349

Microsoft Macro Assembler Programmer’s Guide

The arguments are pushed onto the stack before the call. After the call,
the procedure retrieves and processes them. At the end of the procedure,
the stack is adjusted to account for the arguments.

Although the same basic method is used for all Microsoft high-level
languages, the details vary. For instance, in some languages, pointers to
the arguments are passed to the procedure; in others the arguments them-
selves are passed. The order in which arguments are passed (whether the
first argument is pushed first or last) also varies according the language.
Finally, in some languages, the stack is adjusted by the RET instruction
in the called procedure; in others the code immediately following the
CALL instruction adjusts the stack. See the Microsoft Mized-Language
Programming Guide for details on calling conventions for each Microsoft
language.

B Example

; C-style procedure call and definition

mov ax, 10 ; Load and

push ax : push constant as third argument
push arg2 ; Push memory as second argument
push cx ; Push register as first argument
call addup ; Call the procedure

add sp.6 ; Destroy the pushed arguments

. ; (equivalent to three pops)

addup PROC NEAR ; Return address for near call
takes two bytes

push bp ; Save base pointer - takes two bytes
; so arguments start at 4th byte
mov bp, sp ; Load stack into base pointer
mov ax, [bp+4] ; Get first argument from
; 4th byte above pointer
add ax, [bp+6] ; Add second argument from
; 6th byte above pointer
add ax, [bp+8] ; Add third argument from
; 8th byte above pointer
pop bp ; Restore BP
ret ; Return result in AX
addup ENDP

The example shows one method of passing arguments to a procedure. This
method is similar to the way procedures are called in C. Figure 17.1 shows
the stack condition at key points in the process.

350

argument 3
argument 2

argument 1

argument 3
argument 2
argument 1

eturn address

Controlling Program Flow

argument 3
argument 2
argument 1

return address

old value of BP

argument 3 argument 3

argument 2 argument 2

argument 1 argument 1

return address

Figure 17.1 Procedure Arguments on the Stack

Note

Arguments passed on the stack in assembler routines cannot be
accessed by name with the CodeView debugger. They can be accessed
by an expression that specifies their stack position.

17.4.4 Using Local Variables

In high-level languages, local variables are variables known only within a
procedure. In Microsoft languages, these variables are usually stored on

351

Microsoft Macro Assembler Programmer’s Guide

the stack. Assembly-language programs can use the same concept. These
variables should not be confused with labels or variable names that are
local to a module, as described in Chapter 8, “Creating Programs from
Multiple Modules.”

Local variables are created by saving stack space for the variable at the
start of the procedure. The variable can then be accessed by its position in
the stack. At the end of the procedure, the stack pointer is restored to
restore the memory used by local variables.

B Example

push ax ; Push one argument
call task ; Call
arg EQU <[bp+4]> ; Name for argument
loc EQU <[bp-2]> ; Name for local variable
task PROC NEAR
push bp ; Save base pointer
mov bp, sp ; Load stack into base pointer
sub sp, 2 ; Save two bytes for local variable
ﬁov loc, 3 ; Initialize local variable
add ax, loc ; Add local variable to AX

sub arg, ax . Subtract local from argument
. ; Use "loc" and "arg" in other operations

mov sp.bp ; Adjust for stack variable

Pop bp ; Restore base

ret 2 ; Return result in AX and pop
task ENDP ; two bytes to adjust stack

In this example, two bytes are subtracted from the SP register to make
room for a local word variable. This variable can then be accessed as
[bp-2]. In the example, this value is given the name loc with a text
equate. Notice that the instruction mov sp,bp is given at the end to
restore the original value of SP. The statement is only required if the
value of SP is changed inside the procedure (usually by allocating local
variables).

352

Controlling Program Flow

The argument passed to the procedure is returned with the RET instruc-
tion. Contrast this to the example in Section 17.4.3, “Passing Arguments
on the Stack,” in which the calling code adjusts for the argument. Figure
17.2 shows the state of the stack at key points in the process.

argument argument

return address return address

old value of BP

argument argument

eturn address return address

Figure 17.2 Local Variables on the Stack

Note

Local variables created in assembler routines cannot be accessed by

name with the CodeView debugger. They can be accessed by an expres-
sion that specifies their stack position.

353

Microsoft Macro Assembler Programmer’s Guide

17.4.5 Setting Up Stack Frames

® 80186/286/386 Only

Starting with the 80186 processor, the ENTER and LEAVE instructions
are provided for setting up a stack frame. These instructions do the same
thing as the multiple instructions at the start and end of procedures in the
Microsoft calling conventions (see the examples in Section 17.4.3, “Passing
Arguments on the Stack”).

B Syntax

ENTER framesize,nestinglevel
statements

LEAVE

The ENTER instruction takes two constant operands. The framesize (a
16-bit constant) specifies how many bytes to reserve for local variables.
The nestinglevel (an 8-bit constant) specifies the level at which the pro-
cedure is nested. This operand should always be 0 when writing procedures
for BASIC, C, and FORTRAN. The nestinglevel can be greater than 0 with
Pascal and other languages that enable procedures to access the local vari-
ables of calling procedures.

The LEAVE instruction reverses the effect of the last ENTER instruc-
tion by restoring BP and SP to their values before the procedure call.

B Example 1

task PROC NEAR
enter 6,0 ; Set stack frame and reserve 6
; bytes for local variables
; Do task here
leave ; Restore stack frame
ret ; Return
task ENDP

Example 1 has the same effect as the code in Example 2.

354

Controlling Program Flow

B Example 2
task PROC NEAR
push bp ; Save base pointer
mov bp, sp ; Load stack into base pointer
sub sp.,6 ; Reserve 6 bytes for local variables
; Do task here
mov sp,bp ; Restore stack pointer
Pop bp ; Restore base
ret ; Return
task ENDP

The code in Example 1 takes fewer bytes, but is slightly slower. See the
Microsoft Macro Assembler Reference for exact comparisons of size and
timing.

17.5 Using Interrupts

Interrupts are a special form of routines that are called by number instead
of by address. They can be initiated by hardware devices as well as by
software. Hardware interrupts are called automatically whenever certain
events occur in the hardware.

Interrupts can have any number from 0 to 255. Most of the interrupts with
lower numbers are reserved for use by the processor, DOS, or the BIOS.

The programmer can call existing interrupts with the INT instruction.
Interrupt routines can also be defined or redefined to be called later. For
example, an interrupt routine that is called automatically by a hardware
device can be redefined so that its action is different.

DOS defines several interrupt handlers. Two that are sometimes used by
applications programmers are listed below:

Interrupt Description

0 Divides overflow. Called automatically when the
quotient of a divide operation is too large for the
source operand or when a divide by zero is
attempted.

4 Overflows. Called by the INTO instruction if the
overflow flag is set.

355

Microsoft Macro Assembler Programmer’s Guide

Interrupt 21h is the current method of using DOS functions. To call a
function, place the function number in AH, put arguments in registers as
appropriate, then call the interrupt. For complete documentation of DOS
functions, see the Microsoft MS-DOS Programmer’s Reference or one of the
many other books on DOS functions.

DOS has several other interrupts, but they should not normally be called.
Some (such as 20h and 27h) have been replaced by DOS functions. Others
are used internally by DOS.

Note

0OS/2, the planned multitasking versions of DOS, will not use interrupt
21h. The Application Program Interface (API) will be used instead.
This is the method currently used for Microsoft Windows applications.

The BIOS of most computers that use DOS can also be accessed by inter-
rupts. BIOS interrupts are not documented here, since they vary for
different computers. See the technical reference documents for your
hardware.

17.5.1 Calling Interrupts

Interrupts are called with the INT instruction.

B Syntax

INT interruptnumber
INTO

The INT instruction takes an immediate operand with a value between O
and 255.

When calling DOS and BIOS interrupts, a function number is usually
placed in the AH register. Other registers may be used to pass arguments
to functions. Some interrupts and functions return values in certain regis-
ters. Register use varies for each interrupt.

When the instruction is called, the processor takes the following six steps:
1. Looks up the address of the interrupt routine in the interrupt
descriptor table. In real mode, this table starts at the lowest point

in memory (segment 0, offset 0) and consists of four bytes (two seg-
ment and two offset) for each interrupt. Thus the address of an

356

Controlling Program Flow

interrupt routine can be found by multiplying the number of the
interrupt by four.

2. Pushes the flags register, the current code segment (CS), and the
current instruction pointer (IP).

3. Clears the trap (TF) and interrupt enable (IF) flags.

4. Jumps to the address of the interrupt routine, as specified in the
interrupt description table.

5. Executes the code of the interrupt routine until it encounters an
IRET instruction.

6. Pops the instruction pointer, code segment, and flags.

Figure 17.3 shows the status of the stack immediately after the INT
instruction has been executed.

INT segment

INT offset

l 7
program flags pragram flags

program CS newtgtﬁefrom program CS

program IP nev‘{alglérom program IP

previous flags

previous CS

previous P

Figure 17.3 Operation of Interrupts

357

Microsoft Macro Assembler Programmer’s Guide

The INTO (IInterrupt on Overﬁowl) instruction is a variation of the INT
instruction. It calls interrupt 04h if called when the overflow flag is set. By
default, the routine for interrupt 4 simply consists of an IRET so that it
returns without doing anything. However, you can write your own
overflow interrupt routine. Using INTO is an alternative to using JO
Jump on Overflow) to jump to an overflow routine. Section 17.5.2,
‘Defining and Redefining Interrupt Routines,” gives an example of this.

The CLI(Clear Interrupt Flag) and STI (Set Interrupt Flag) instructions

can be used to turn interrupts on or off. You can use CLI to turn interrupt

processing off so that an important routine cannot be stopped by a

hardware interrupt. After the routine has finished, use STI to turn inter-

rupt processing back on. Interrupts received while interrupt processing

\{)vaskturned off by CLI are saved and executed when STI turns interrupts
ack on.

B Example 1

; DOS call (Display String)

mov ah, 0% ; Load function number
mov dx,OFFSET string ; Load argument
int 21h ; Call DOS

B Example 2

; BIOS call (Read Character from Keyboard)

xor ah,ah ; Load function number O in AH
int 16h ; Call BIOS

. Return scan code in AH

; Return ascii code in AL

Example 2 is a BIOS call that works on IBM Personal Computers and
IBM-compatible computers. See the reference manuals for your hardware
for complete information on BIOS calls.

17.5.2 Defining and Redefining Interrupt Routines

You can write your own interrupt routines, either to replace an existing
routine or to use an undefined interrupt number.

358

Controlling Program Flow

B Syntax

label PROC FAR
statements

IRET

label ENDP

An interrupt routine can be written like a procedure by using the PROC
and ENDP directives. The only differences are that the routine should
always be defined as far and the routine should be terminated by an IRET
instruction instead of a RET instruction.

Your program should replace the address in the interrupt descriptor table
with the address of your routine. DOS calls are provided for this task.
Another common technique is to jump to the old interrupt routine and let
it do the IRET instruction. It is usually a good idea to save the old
address and restore it before your program ends.

Interrupt routines you may want to replace include the processor’s divide-
overflow (Oh) and overflow (04h) interrupts. You can also replace DOS
interrupts such as the critical-error (24h 3 and CONTROL-C (23h) handlers.
Interrupt routines can be part of device drivers. Writing interrupt routines
is usually a systems task. The example below illustrates a simple routine.
For complete information see the Microsoft MS-DOS Programmer’s Guide
or one of the other reference books on DOS.

80386 Only

The INT instruction automatically pushes a 32-bit instruction pointer
for 32-bit segments or a 16-bit instruction pointer for 16-bit segments.
However, the IRET instruction always pops a 16-bit instruction
pointer before returning. To pop a 32-bit instruction pointer, you must
append the letter D (for doubleword) to the instruction to form
IRETD.

359

Microsoft Macro Assembler Programmer’s Guide

® Example

.DATA
message DB
vector DD

.CODE
start: mov

mov

mov
int
mov
mov

push
mov
mov
mov
mov
int

pop

add
into

lds
mov
int
mov
int

overflow PROC
sti

mov
mov
int
xor
xor
iret
overflow ENDP

END

"Overflow - result
?

ax,@data
ds,ax

ax, 3504h

21h

WORD PTR vector([2],
WORD PTR vector[O],

ds

ax,cs

ds, ax

dx,OFFSET overflow
ax, 2504h

21h

ds

ax, bx

dx, vector
ax, 2504h
21h
ax, 4CO0h
21h

FAR

ah, O9h

dx,OFFSET message
21h

ax, ax

dx, dx

start

set to 0O",13,10,"s"

; Load segment location
H into DS register

; Load interrupt 4 and call DOS

; get interrupt vector function
es ; Save segment

bx ; and offset

; Save DS
; Load segment of new routine

Load offset of new routine
Load interrupt 4 and call DOS

set interrupt vector function
Restore

Ne ve ve v

; Do addition (or multiplication)
; Call interrupt 4 if overflow

Load original interrupt address
Restore interrupt number 4

with DOS set vector function
Terminate function

PR Y

Enable interrupts
(turned off by INT)
Display string function
Load address

Call DOS
Set AX to O
Set DX to O
Return

Se Ve SeNeneNe N N,

In this example, DOS functions are used to save the address of the initial
interrupt routine in a variable and to put the address of the new interrupt
routine in the interrupt table. Once the new address has been set, the new
routine is called any time the interrupt is called. The sample interrupt
handler sets the result of a calculation that causes an overflow (either in
AX or AX:DX) to 0. It is good practice to restore the original interrupt
address before terminating the program.

360

Controlling Program Flow

17.6 Checking Memory Ranges

m 80186/286/386 Only

Starting with the 80186 processor, the BOUND instruction can check to
see if a value is within a specified range. This instruction is usually used to
check a signed index value to see if it is within the range of an array.
BOUND is a conditional interrupt instruction like INTO. If the condi-
tion is not met (the index is out of range), an interrupt 5 is executed.

H Syntax

BOUND register16,memory32
BOUND register32,memory64 (80386 Only)

To use it for this purpose, the starting and ending values of the array
must be stored as 16-bit values in the low and high words of a doubleword
memory operand. This operand is given as the source operand. The index
value to be checked is given as the destination operand. If the index value
is out of range, the instruction issues interrupt 5. This means that the
operating system or the program must provide an interrupt routine for
interrupt 5. DOS does not provide such a routine, so you must write your
own. See Section 17.5, “Using Interrupts,” for more information.

B Example

.DATA
bottom EQU 0
top EQU 19
dbounds LABEL DWORD ; Allocate boundaries
wbounds DwW bottom, top ; initialized to bounds
array DB top+1l DUP (?) ; Allocate array
.CODE
. ; Assume index in DI
bound di, dbounds ; Check to see if it is in range
; if out of range, interrupt S5
mov dx, array [di] ; If in range, use it

B 80386 Only
The 80386 can optionally check larger arrays. The destination operand can

be a 32-bit register and the source can be a 64-bit memory operand con-
taining 32-bit starting and ending values.

361

T~

PROCESSING STRINGS
18.1 Setting Up String Operations......cccccveeeeeruveeeecnnee 365
18.2 MoVINg StriNgS...ccceevvuveeeeeecerrrveeeeeecesrrneeeeesssnnens 368
18.3 Searching StringS....ccccceeeeeeeeereeeceerrrnneeeeeeeeeeeeeens 370
18.4 Comparing StriNgS.....ccceeeeeeerrereeeeeeeserrneeeesssssnns 371
18.5 Filling StriNgS ...uveeeeerrveeeeeerreeeenrneeeessnneeeserseeeennnns 373
18.6 Loading Values from Strings.......ccceeeveeeeecvveeennne 374

18.7 Transferring Strings to and from Ports............... 375

Processing Strings

The 8086-family processors have a full set of instructions for manipulating
strings. In the discussion of these instructions, the term “string” refers not
only to the common definition of a string—a sequence of bytes containing

chara():ters—but to any sequence of bytes or words (or doublewords on the

80386).

The following instructions are provided for 8086-family string functions:

Instruction Description

MOVS Moves string from one location to another

SCAS Scans string for specified values

CMPS Compares values in one string with values in
another

LODS Loads values from a string to accumulator register

STOS Stores values from accumulator register to a string

INS Transfers values from a port to memory

OouUTS Transfers values from memory to a port

All these instructions use registers in the same way and have a similar syn-
tax. Most are used with the repeat instruction prefixes: REP, REPE,
REPNE, REPZ, and REPNZ.

This chapter first explains the general format for string instructions and
then tells you how to use each instruction.

18.1 Setting Up String Operations

The string instructions all work in a similar way. Once you understand the
general procedure, it is easy to adapt the format for a particular string
operation. The five steps are listed below:

1. Make sure the direction flag indicates the direction in which you
want the string to be processed. If the direction flag (DF) is clear,
the string will be processed up (from low addresses to high
addresses). If the direction flag is set, the string will be processed
down (from high addresses to low addresses). The CLD instruction
clears the flag, while STD sets it. Under DOS, the direction flag
will normally be cleared if your program has not changed it.

2. Load the number of iterations for the string instruction into the
CX register. For instance, if you want to process a 100-byte string,
load 100. If a string instruction will be terminated conditionally,

365

Microsoft Macro Assembler Programmer’s Guide

load the maximum number of iterations that can be done without
an error.

3. Load the starting offset address of the source string into DS:SI and
the starting address of the destination string into ES:DI. Some
string instructions take only a destination or source (shown in —
Table 18.1 below). Normally the segment address of the source
string should be DS, but you can use a segment override with the
string instruction to specify a different segment. You cannot over-
ride the segment address for the destination string. Therefore you
may need to change the value of ES.

4. Choose the appropriate repeat-prefix instruction. Table 18.1 shows
the repeat prefixes that can be used with each instruction.

5. Putthe appropriate string instruction immediately after the repeat
prefix (on the same line).

String instructions have two basic forms, as shown below:

® Syntax 1
[repeatprefia] stringinstruction[ES:[destination,]] [[segmentregister:]source]

The string instruction can be given with the source and/or destination as
operands. The size of the operand or operands indicates the size of the
objects to be processed by the string. Note that the operands only specify
the size. The actual values to be worked on are the ones pointed to by
DS:SI and/or ES:DI. No error is generated if the operand is not the same
as the actual source or destination. One important advantage of this syn-
tax is that the source operand can have a segment override. The destina-
tion operand is always relative to ES and cannot be overridden.

B Syntax 2

[repeatprefia] stringinstructionB
[repeatprefia] stringinstructionW
[repeatprefiz] stringinstructionD (80386 only)

The letter B or W appended to the string instruction indicates bytes or
words; the letter D indicates doublewords on the 80386. With a letter
appended to a string instruction, no operand is allowed. —

For instance, MOV can be given with byte operands to move bytes or
with word operands to move words. As an alternative, MOVSB can be
given with no operands to move bytes or MOV SW can be given with no
operands to move words.

366

Processing Strings

Note

Instructions that specify the size in the name never accept operands.
Therefore, the following statement is illegal:

lodsb es:0 . Illegal - no operand allowed

Instead, the statement must be coded as shown below:

lods BYTE PTR es:O ; Legal - use type specifier

If a repeat prefix is used, it can be one of the following instructions:

Instruction Description

REP Repeats for a specified number of iterations. The
number is given in CX.

REPE or Repeats while equal. The maximum number of

REPZ iterations should be specified in CX.

REPNE or Repeats while not equal. The maximum number of

REPNZ iterations should be specified in CX.

REPE is the same as REPZ, and REPNE is the same as REPNZ. You
can use whichever name you find more mnemonic. The prefixes ending
with E are used in syntax listings and tables in the rest of this chapter.

Table 18.1 lists each string instruction with the type of repeat prefix it
uses and whether the instruction works on a source, a destination, or both.

Table 18.1

Requirements for String Instructions

Instruction Repeat Prefix Source/Destination Register Pair
MOVS REP Both DS:SI, ES:DI
SCAS REPE/REPNE Destination ES:DI

CMPS REPE/REPNE Both ES:DI, DS:SI
LODS None Source DS:SI

STOS REP Destination ES:DI

INS REP Destination ES:DI

ouTs REP Source DS:SI

367

Microsoft Macro Assembler Programmer’s Guide

At run time, a string instruction preceded by a repeat sequence causes the
processor to take the following steps:

1.

6.

Checks the CX registers and exits from the string instruction if

CXis 0.
Performs the string operation once.

Increases SI and/or DIif the direction flag is cleared. Decreases SI
and/or DI if the direction flag is set. The amount of increase or
decrease is one for byte operations, two for word operations, or
four for doubleword operations (80386 only).

Decrements CX (no flags are modified).

If the string instruction is SCAS or CMPS, checks the zero flag
and exits if the repeat condition is false—that is, if the flag is set
with REPE or REPZ or if it is clear with REPNE or REPNZ.

Goes to the next iteration (step 1).

Although string instructions (le)xcept LODS) are most often used with

repeat prefixes, they can also

e used by themselves. In this case, the SI

and/or DI registers are adjusted as specified by the direction flag and the
size of operands. However, you must decrement the CX register and set up
a loop for the repeated action.

Note

Although you can use a segment override on the source operand, a seg-
ment override combined with a repeat prefix can cause problems in cer-
tain situations on all processors except the 80386. If an interrupt
occurs during the string operation, the segment override is lost and the
rest of the string operation processes incorrectly. Segment overrides
can be used safely when interrupts are turned off, when a string
instruction is used without a segment override, or when a 80386 pro-
cessor is used.

18.2 Moving Strings

The MOVS instruction is used to move data from one area of memory to
another.

368

B Syntax

Processing Strings

[REP] MOYVS [ES:] destination,[segmentregister:] source

[REP] MOVSB
[REP] MOVSW
[REP]| MOVSD

(80386 only)

To move the data, load the count and the source and destination

addresses into the appropriate registers, as discussed in Section 18.1, “Set-
ting Up String Operations.” Then use the REP instruction with the
MOYVS instruction.

B Example 1

.MODEL small
.DATA
source DB 10 DUP ('0123456789')
destin DB 100 DUP (?)
.CODE
mov ax,@data ; Load same segment
mov ds,ax ; to both DS
mov es,ax and ES
cld ; Work upward
mov cx, 100 ; Set iteration count to 100
mov si,OFFSET source ; Load address of source
mov di,OFFSET destin ; Load address of destination
rep movsb ; Move 100 bytes

Example 1 shows how to move a string by using string instructions. For
comparison, Example 2 shows a much less efficient way of doing the same
operation without string instructions.

B Example 2

.MODEL small
.DATA
source DB 10 DUP ('0123456789')
destin DB 100 DUP (?)
.CODE
. ; Assume ES = DS
mov cx, 100 ; Set iteration count to 100
mov si, OFFSET source ; Load offset of source
mov di, OFFSET destin ; Load offset of destination
repeat: mov al,es: [si] ; Get a byte from source
mov [di],al ; Put it in destination
inc si . Increment source pointer
inc di ; Increment destination pointer
loop repeat ; Do it again

369

Microsoft Macro Assembler Programmer’s Guide

Both examples illustrate how to move byte strings in a small-model pro-
gram in which DS already points to the segment containing the variables.
In such programs, ES can be set to the same value as DS.

There are several variations on this. If the source string was not in the
current data segment, you could load the starting address of its segment
into ES. Another option would be to use the MOVS instruction with
operands and give a segment override on the source operand. For example,
you could use the following statement if ES pointed to both the source
and the destination strings:

rep movs destin, es:source
It is sometimes faster to move a string of bytes as words (or as double-

words on the 80386). You must adjust for any odd bytes, as shown in
Example 3. Assume the source and destination are already loaded.

B Example 3

mov cx,count ; Load count

shr cx,1l ; Divide by 2 (carry will be set
: if count is odd)

rep movsw ; Move words

rcl cx,1l ; If odd, make CX 1

rep movsb ; Move odd byte if there is one

18.3 Searching Strings
The SCAS instruction is used to scan a string for a specified value.

B Syntax

[REPE | REPNE] SCAS [ES:] destination
[REPE | REPNE] SCASB

[REPE | REPNE] SCASW

[REPE | REPNE] SCASD (80386 only)

SCAS and its variations work only on a destination string, which must be
pointed to by ES:DI. The value to scan for must be in the accumulator
regi(siter—AL for bytes, AX for words, or EAX (80386 only) for double-
words.

The SCAS instruction works by comparing the value pointed to by DI
with the value in the accumulator. If the values are the same, the zero flag
is set. Thus the instruction only makes sense when used with one of the
repeat prefixes that checks the zero flag.

370

.

Processing Strings

If you want to search for the first occurrence of a specified value, use the
REPNE or REPNZ instruction. If the value is found, ES:DI will point
to the value immediately after the first occurrence. You can decrement DI
to make it point to the first matching value.

If you want to search for the first value that does not have a specified
value, use REPE or REPZ. If the value is found, ES:DI will point to the
position after the first nonmatching value. You can decrement DI to make
1t point to the first nonmatching value.

If the value is not found, the CX register will contain 0. You can use the
JCXZ instruction to handle cases where the value is not found.

B Example

.DATA
string DB "The quick brown fox jumps over the lazy dog"
lstring EQU $-string . Length of string
pstring DD string ; Far pointer to string
.CODE
cld ; Work upward
mov cx, lstring ; Load length of string
les di,pstring ; Load address of string
mov al,'z' ; Load character to find
repne scasb ; Search
Jjexz notfound ; CX is O if not found
. ; ES:DI points to character
; after first 'z'
notfound: ; Special case for not found

This example assumes that ES is not the same as DS, but that the address
of the string is stored in a pointer variable. The LES instruction is used to
load the far address of the string into ES:DI.

18.4 Comparing Strings

The CMPS instruction is used to compare two strings and point to the
address where a match or nonmatch occurs.

B Syntax

[REPE | REPNE] CMPS [segment register:|source,[ES:],destination
[REPE | REPNE] CMPSB

[REPE | REPNE] CMPSW

[REPE | REPNE] CMPSD (80386 only)

371

Microsoft Macro Assembler Programmer’s Guide

The count and the addresses of the strings are loaded into registers, as
described in Section 18.1, “Setting Up String Operations.” Either string
can be considered the destination or source string unless a segment over-
ride is used. Notice that unlike other instructions, CMPS requires the
source be on the left.

The CMPS instruction works by comparing in turn each value pointed to
by DI with the value pointed to by SI. If the values are the same, the zero
flag is set. Thus the instruction makes sense only when used with one of
the repeat prefixes that checks the zero flag.

If you want to search for the first match between the strings, use the
REPNE or REPNZ instruction. If a match is found, ES:DI and DS:SI
will point to the position after the first match in the respective strings.
You can decrement DI or SI to point to the match.

If you want to search for a nonmatch, use REPE or REPZ. If a nonmatch
is found, ES:DI and DS:SI will point to the position after the first non-
match in the respective strings. You can decrement DI or SI to point to
the nonmatch.

If the specified condition (match or nonmatch) never occurs, the CX regis-
ter will contain zero. You can use the JCXZ instruction to handle cases in
which the entire string is processed.

B Example

.MODEL 1large

.DATA
stringl DB "The quick brown fox jumps over the lazy dog"
.FARDATA
string2 DB "The quick brown dog jumps over the lazy fox"
lstring EQU $-string2
.CODE
mov ax,@data ; Load data segment
mov ds, ax ; into DS
mov ax,@fardata ; Load far data segment
mov es,ax ; into ES
cld ; Work upward
mov cx, 1string ; Load length of string
mov si,OFFSET stringl . Load offset of stringl
mov di,OFFSET string2 ; Load offset of string2 -
repe cmpsb ; Compare
jeoxz allmatch ; CX is O if no nonmatch
dec si ; Adjust to point to nonmatch
dec di ; in each string
allmatch: . ; Special case for all match

372

Processing Strings

This example assumes that the strings are in different segments. Both seg-
ments must be initialized to the appropriate segment register.

18.5 Filling Strings

The STOS instruction is used to store a specified value in each position of
a string.

B Syntax

[REP] STOS [ES:]destination
[REP] STOSB

[REP] STOSW

[REP] STOSD (80386 only)

The string is considered the destination, so it must be pointed to by
ES:DI. The length and address of the string. must be loaded into registers,
as described in Section 18.1, “Setting Up String Operations.” The value to
store must be in the accumulator register—AL for bytes, AX for words, or
EAX (80386 only) for doublewords.

For each iteration specified by the REP instruction prefix, the value in the
accumulator is loaded into the string.

® Example

.MODEL small

.DATA
destin DB 100 DUP ?
.CODE
. ; Assume ES = DS
cld ; Work upward
mov ax, 'aa' ; Load character to fill
mov cx, 50 ; Load length of string
mov di,OFFSET destin ; Load address of destination
rep stosw ; Store 'a' into array

This example loads 100 bytes containing the character “a.” Notice that
this is done by storing 50 words rather than 100 bytes. This makes the
code faster by reducing the number of iterations. You would have to
adjust for the last byte if you wanted to fill an odd number of bytes.

373

Microsoft Macro Assembler Programmer’s Guide

18.6 Loading Values from Strings

The LODS instruction is used to load a value from a string into a regis-
ter.

B Syntax

LODS [segmentregister:]source
LODSB

LODSW

LODSD (80386 only)

The string is considered the source, so it must be pointed to by DS:SI.
The value is always loaded from the string into the accumulator
register—AL for bytes, AX for words, or EAX (80386 only) for double-
words.

Unlike other string instructions, LODS is not normally used with a repeat

prefix since there is no reason to move a value repeatedly to a register.

However, LODS does adjust the DI register as specified by the direction

flag and the size of operands. The programmer must code the instructions

to use the value after it is loaded. —

B Example 1

.DATA
stuff DB 0,1,2,3,4,5,6,7,8,9

.CODE

cld ; Work upward

mov cx, 10 ; Load length

mov si,OFFSET stuff ; Load offset of source

mov ah, 2 ; Display character function
get: lodsb ; Get a character

add al,48 ; Convert to ASCII

mov dl,al ; Move to DL

int 21h ; Call DOS to display character

loop get ; Repeat

374

-~

Processing Strings

Example 1 loads, processes, and displays each byte in a string of bytes.

B Example 2

.DATA
buffer DB 80 DUP (?) ; Create buffer for argument string
.CODE
start: mov ax,@data . Initialize DS
mov ds, ax
;> On start-up ES points to PSP
cld . Work upward
mov cl,BYTE PTR es: [80h];Load length of arguments
xor ch,ch
mov di,OFFSET buffer ; Load offset of buffer
mov si,82h ; Load position of argument string
mov dx,es ; Exchange ES and DS
mov ax,ds
mov es, ax
mov ds,dx
another: lodsb ; Get a character
cmp al,'a' ; Is it high enough to be upper?
jb noway ; No? Check
cmp al,'z' ; Is it low enough to be letter?
ja noway
sub al, 32 . Yes? Convert to uppercase
noway: stosb
loop another . Repeat
mov dx,es . Restore ES and DS
mov ax,ds
mov es,ax
mov ds,dx

Example 2 copies the command arguments from position 82h in the DOS
Program Segment Prefix (PSP) while converting them to uppercase. See
the Microsoft MS-DOS Programmer’s Reference or one of the many other
books on DOS for information about the PSP. Notice that both LODSB
and STOSB are used without repeat prefixes.

18.7 Transferring Strings to and from Ports
® 80186/286/386 Only

The INS instruction reads a string from a port to memory, and the
OUTS instruction writes a string from memory to a port.

375

Microsoft Macro Assembler Programmer’s Guide

H Syntax

OUTS DX, [segmentregister:]source
OUTSB

OUTSW

OUTSD (80386 only)

INS [ES:] destination,DX
INSB

INSW

INSD (80386 only)

The INS and OUTS instructions require that the number of the port be
in DX The port cannot be specified as an immediate value, as it can be
with IN and OUT.

To move the data, load the count into CX. The string to be transferred by
INS is considered the destination string, so it must be pointed to by
ES:DI. The string to be transferred by OUTS is considered the source
string, so it must be pointed to by DS:SL

If you specify the source or destination as an operand, DX must be
specified. Otherwise DX is assumed and should be omitted.

If you need to process the string as it is transferred (for instance, to check

for the end of a null-terminated string), you must set up the loop yourself
instead of using the REP instruction prefix.

® Example

.DATA
count EQU 100
buffer DB count DUP (?)
inport DW ?
.CODE
. . Assume ES = DS
cld ; Work upward
mov cx,count ; Load length to transfer
mov di,OFFSET buffer ; Load address of destination
mov dx, inport ; Load port number
rep insb ; Transfer the string

from port to buffer ™

376

('HAPTER

CALCULATING WI'TH
A MATH COPROCESSOR

19.1 Coprocessor Architecture......ccceevueeeeeevvveeeevnneenn. 379
19.1.1 Coprocessor Data Registers....cceeeervveeernennnns 380
19.1.2 Coprocessor Control Registers....ccceeeuueeanennn. 381

19.2 Emulation ceee.ceeeeeeeeeeeeueecereeneeeeenneereeeseseseesseseesens 382

19.3 Using Coprocessor Instructions..........ccceeeeuveeenenns 382
19.3.1 Using Implied Operands

in the Classical-Stack FOrm c.ocuveerereeenrecennes 383
19.3.2 Using Memory Operandscceeeveueeeenneeeennnns 384
19.3.3 Specifying Operands in the Register Form ..385
19.3.4 Specifying Operands

in the Register-Pop FOrm ...cceueevveeeeeennnnnn. 386

19.4 Coordinating Memory AcCCesS.....cceeeeerruveeereraacanne 387

19.5 Transferring Datacccoeeveeeerivveeencnnneenccneeencenne 388
19.5.1 Transferring Data to and from Registers..... 388
19.5.2 Loading ConstantsS.....ccceeeeeeeeeeeeenneenneeeeenns 391
19.5.3 Transferring Control Data ...cccceeverneerneennnns 392

19.6 Doing Arithmetic Calculations.........ccceevveeeeeennnne 393

19.7 Controlling Program Flowccccoeeevvveeeeeeiennnen. 399
19.7.1 Comparing Operands

to Control Program FIoW......cccceuueeennerennnnns 401
19.7.2 Testing Control Flags
after Other InStructionS...eeeeveeeererececeesecanses 404
19.8 Using Transcendental Instructions........ccccceunnnueee 404

19.9 Controlling the Coprocessor......cccceeeeeeeeeeeeerernnnns 406

Calculating with a Math Coprocessor

The 8087-family coprocessors are used to do fast mathematical calcula-
tions. When used with real numbers, packed BCD numbers, or long
integers, they do calculations many times faster than the same operations
done with 8086-family processors.

This chapter explains how to use the 8087-family processors to transfer
and process data. The approach taken is from an applications standpoint.
Features that would be used by systems programmers (such the flags used
when writing exception handlers) are not explained. This chapter is
intended as a reference, not a tutorial.

Note

This manual does not attempt to explain the mathematical concepts
involved in using certain coprocessor features. It assumes that you will
not need to use a feature unless you understand the mathematics

involved. For example, you need to understand logarithms to use the
FYL2X and FYL2XP1 instructions.

19.1 Coprocessor Architecture

The math coprocessor works simultaneously with the main processor.
However, since the coprocessor cannot handle device input or output, most
data originates in the main processor.

The main processor and the coprocessor each have their own registers,
which are completely separate and inaccessible to the other. They
exchange data through memory, since memory is available to both.

Ordinarily you follow these three steps when using the coprocessor:

1. Load data from memory to coprocessor registers

2. Process the data

3. Store the data from coprocessor registers back to memory
Step 2, processing the data, can occur while the main processor is handling
other tasks. Steps 1 and 3 must be coordinated with the main processor so

that the processor and coprocessor do not try to access the same memory
at the same time, as is explained in Section 19.4, “Transferring Data.”

379

Microsoft Macro Assembler Programmer’s Guide

19.1.1 Coprocessor Data Registers

The 8087-family coprocessors have eight 80-bit data registers. Unlike
8086-family registers, the coprocessor data registers are organized as a
stack. As data is pushed into the top register, previous data items move
into higher-numbered registers. Register 0 is the top of the stack; register
7 is the bottom. The syntax for specifying registers is shown below:

ST[(number)]

The number must be a digit between O and 7. If number is omitted, register
0 (top of stack) is assumed.

All coprocessor data are stored in registers in the temporary-real format.
This is the 10-byt& IEEE format described in Section 6.3.1.5, “Real-
Number Variables.” The registers and the register format are shown in
Figure 19.1.

Figure 19.1 Coprocessor Data Registers

Internally, all calculations are done on numbers of the same type. Since

temporary-real numbers have the greatest precision, lower-precision

numbers are guaranteed not to lose precision as a result of calculations.

The instructions that transfer values between the main processor and the -
coprocessor automatically convert numbers to and from the temporary-

real format.

380

Calculating with a Math Coprocessor

19.1.2 Coprocessor Control Registers

The 8087-family coprocessors have seven 16-bit control registers. The most
useful control registers are made up of bit fields or flags. Some flags con-
trol coprocessor operations, while others maintain the current status of
the coprocessor. In this sense, they are much like the 8086-family flags
registers.

You do not need to understand these registers to do most coprocessor
operations. Control flags are set by default to the values appropriate for
most programs. Errors and exceptions are reported in the status-word
register. However, the coprocessor already has a default system for han-
dling exceptions. Applications programmers can usually accept the
defaults. Systems programmers may want to use the status-word and
control-word registers when writing exception handlers, but such problems
are beyond the scope of this manual.

Figure 19.2 shows the overall layout of the control registers including the
control word, status word, tag word, instruction pointer, and operand
pointer. The format of each of the registers is not shown, since these
registers are generally of use only to systems programmers. The exception
is the condition-code bits of the status-word register. These bits are
explained in Section 19.7, “Controlling Program Flow.”

Figure 19.2 Coprocessor Control Registers

The control registers are explained in more detail in the Microsoft Macro
Assembler Reference.

381

Microsoft Macro Assembler Programmer’s Guide

19.2 Emulation

If you have a Microsoft high-level language that supports floating-point
emulation, you can write assembly-language procedures that use the emu-
lator library when called from the high-level language. First write the pro-
cedure by using coprocessor instructions, then assemble it using the /E
option, and finally link it with your high-level language modules. When
compiling modules, use the compiler options that specify emulation.

Some coprocessor instructions are not emulated by Microsoft emulation
libraries. How unemulated instructions vary depends on the language and
version. If you use a coprocessor instruction that is not emulated, the pro-
gram will generate a run-time error when it tries to execute the unemu-
lated instruction. You cannot use a Microsoft emulation library with
stand-alone assembler programs, since the library depends on the compiler
start-up code.

See Section 2.4.5, “Creating Code for a Floating-Point Emulator,” for
information on the /E option. See the Microsoft Mized-Language Program-
ming Guide for information on writing assembly-language procedures for
high-level languages.

19.3 Using Coprocessor Instructions

Coprocessor instructions are readily recognizable because, unlike all 8086-
family instruction mnemonics, they start with the letter F'.

Most coprocessor instructions have two operands, but in many cases one
or both operands are implied. Often, one operand can be a memory
operand; in this case, the other operand is always implied as the stack-top
register. Coprocessor instructions can never have immediate operands, and
with the exception of the FSTSW instruction (see Section 19.5.2, “Load-
ing Constants”), they cannot have processor registers as operands. As with
8086-family instructions, memory-to-memory operations are never
allowed. One operand must be a coprocessor register.

Instructions usually have a source and a destination operand. The source
specifies one of the values to be processed. It is never changed by the
operation. The destination specifies the value to be operated on and
replaced with the result of the operation. If operands are specified, the first
is the destination and the second is the source.

The stack organization of registers gives the programmer flexibility to
think of registers either as elements on a stack or as registers much like
8086-family registers. Table 19.1 lists the variations of coprocessor
instructions along with the syntax for each.

382

—

Calculating with a Math Coprocessor

Table 19.1

Coprocessor Operand Forms

Instruction Implied

Form Syntax Operands Example

Classical-stack ~ Faction ST(1),ST fadd

Memory Faction memory ST fadd memloc

Register Faction ST(num),ST fadd st(5),st
Faction ST,ST(num) fadd st,st(3)

Register pop FactionP ST(num),ST faddp st (4),st

Not all instructions accept all operand variations. For example, load and
store instructions always require the memory form. Load-constant instruc-
tions always take the classical-stack form. Arithmetic instructions can
usually take any form.

Some instructions that accept the memory form can have the letter I
(integer) or B (BCD) following the initial F to specify how a memory
operand is to be interpreted. For example, FILD interprets its operand as
an integer and FBLD interprets its operand as a BCD number. If no type
letter is included in the instruction name, the instruction works on real
numbers.

19.3.1 Using Implied Operands
in the Classical-Stack Form

The classical-stack form treats coprocessor registers like items on a stack.
Items are pushed onto or popped off the top elements of the stack. Since
only the top item can be accessed on a traditional stack, there is no need
to specify operands. The first register (and the second if there are two
operands) is always assumed.

In arithmetic operations (see Section 19.6), the top of the stack (ST) is the
source operand, and the second register (ST(1)) is the destination. The
result of the operation goes into the destination operand, and the source is
popped off the stack. The effect is that both of the values used in the
operation are destroyed and the result is left at the top of the stack.

Instructions that load constants always use the stack form (see Section
19.5.1, “Transferring Data to and from Registers”). In this case the con-
stant created by the instruction is the implied source, and the top of the
stack (ST) is the destination. The source is pushed into the destination.

383

Microsoft Macro Assembler Programmer’s Guide

Note

The classical-stack form with its implied operands is similar to the
register-pop form, not to the register form. For example, fadd, with
the implied operands ST(1),ST, is equivalent to faddp st (1), st,
rather than to fadd st(1), st.

B Example

fldl ; Push 1 into first position
fldpi ; Push pi into first position
fadd ; Add pi and 1 and pop

The status of the register stack after each instruction is shown below:

19.3.2 Using Memory Operands

The memory form treats coprocessor registers like items on a stack. Items
are pushed from memory onto the top element of the stack, or popped
from the top element to memory. Since only the top item can be accessed
on a traditional stack, there is no need to specify the stack operand. The
top register (ST) is always assumed. However, the memory operand must
be specified.

Memory operands can be used in load and store instructions (see Section
19.5.1, “Transferring Data to and from Registers”). Load instructions
push source values from memory to an implied destination register (ST%
Store instructions pop source values from an implied source register (ST)
to the destination in memory. Some versions of store instructions pop the
register stack so that the source is destroyed. Others simply copy the
source without changing the stack.

384

o

Calculating with a Math Coprocessor

Memory operands can also be used in calculation instructions that operate
on two values (see Section 19.6, “Doing Arithmetic Calculations”). The
memory operand is always the source. The stack top (ST) is always the
implied destination. The result of the operation replaces the destination
without changing its stack position.

B Example

.DATA

ml DD 1.0

m2 DD 2.0
.CODE
fld ml ; Push ml into first position
fld m2 ; Push m2 into first position
fadd ml ; Add m2 to first position
fstp ml ; Pop first position into ml
fst m2 ; Copy first position to m2

The status of the register stack and the memory locations used in the
instructions is shown below:

19.3.3 Specifying Operands in the Register Form

The register form treats coprocessor registers as traditional registers.
Registers are specified the same as 8086-family instructions with two regis-
ter operands. The only limitation is that one of the two registers must be
the stack top (ST).

In the register form, operands are specified by name. The second operand
is the source; it is not affected by the operation. The first operand is the
destination; its value is replaced with the result of the operation. The
stack position of the operands does not change.

385

Microsoft Macro Assembler Programmer’s Guide

The register form can only be used with the FXCH instruction and with
arithmetic instructions that do calculations on two values. With the
FXCH instruction, the stack top is implied and need not be specified.

® Example -

fadd st(l),st. ; Add second position to first -

; result goes in second position
fadd st,st (2) ; Add first position to second -

; result goes in first position
fxch st(1) ; Exchange first and second positions

The status of the register stack if the registers were previously initialized
to 1.0, 2.0, and 3.0 is shown below:

19.3.4 Specifying Operands in the Register-Pop Form

The register-pop form treats coprocessor registers as a modified stack.
This form has some of the aspects of both a stack and registers. The desti-
nation register can be specified by name, but the source register must
always be the stack top.

The result of the operation will be placed in the destination operand, and
the stack top will be popped off the stack. The effect is that both values
being operated on will be destroyed and the result of the operation will be
saved in the specified destination register. The register-pop form is only
used for instructions that do calculations on two values.

B Example —

faddp st(2),st ; Add first and third positions and pop -
; first position destroyed
third moves to second and holds result

The status of the register stack if the registers were already initialized to
1.0, 2.0, and 3.0 is shown below:

386

Calculating with a Math Coprocessor

19.4 Coordinating Memory Access

Problems of coordinating memory access can occur when the coprocessor

and the main processor both try to access a memory location at the same
time. Since the processor and coprocessor work independently, they may

not finish working on memory in the order in which you give instructions.
There are two separate cases, and they are handled in different ways.

In the first case, if a processor instruction is given and then followed by a
coprocessor instruction, the coprocessor must wait until the processor is
finished before it can start the next instruction. This is handled automati-
cally by MASM for the 8088 and 8086 or by the processor for the 80186,
80286, and 80386.

Coprocessor Differences

To synchronize operations between the 8088 or 8086 processor and the
8087 coprocessor, each 8087 instruction must be preceded by a WAIT
instruction. This is not necessary for the 80287 or 80387. If you use the
.8087 directive, MASM inserts WAIT instructions automatically.
However, if you use the .286 or .386 directive, MASM assumes the
instructions are for the 80287 or 80387 and does not insert the WAIT
instructions. If your code will never need to run on an 8086 or 8088
processor, you can make your programs shorter and more efficient by
using the .286 or .386 directive.

In the second case, if a coprocessor instruction that accesses memory is fol-
lowed by a processor instruction attempting to access the same memory
location, memory access is not automatically synchronized. For instance, if
you store a coprocessor register to a variable and then try to load that
variable into a processor register, the coprocessor may not be finished.
Thus the processor gets the value that was in memory before the coproces-
sor finished rather than the value stored by the coprocessor. Use the

387

Microsoft Macro Assembler Programmer’s Guide

WAIT or FWAIT instruction (they are mnemonics for the same instruc-
tion) to ensure that the coprocessor finishes before the processor begins.

B Example

; Coprocessor instruction first - Wait needed

fist mem32 ; Store to memory
fwait ; Wait until coprocessor is done
mov ax,WORD PTR mem32 ; Move to register
mov dx,WORD PTR mem32[2]
. Processor instruction first - No wait needed
mov WORD PTR mem32,ax ; Load memory
mov WORD PTR mem32[2],dx
fild mem32 ; Load to register

19.5 Transferring Data

The 8087-family coprocessors have separate instructions for each of the
following types of transfers:

e Transferring data between memory and registers, or between
different registers

e Loading certain common constants into registers

e Transferring control data to and from memory

19.5.1 Transferring Data to and from Registers

Data-transfer instructions transfer data between main memory and the
coprocessor registers, or between different coprocessor registers. Two basic
principles govern data transfers:

e The instruction determines whether a value in memory will be con-
sidered an integer, a BCD number, or a real number. The value is
always considered a temporary-real number once it is transferred
to the coprocessor.

e The size of the operand determines the size of a value in memory. —
Values in the coprocessor always take up 10 bytes.

The adjustments between formats are made automatically. Notice that
floating-point numbers must be stored in the IEEE format, not in the
Microsoft Binary format. Data is automatically stored correctly by
default. It is stored incorrectly and the coprocessor instructions disabled if

388

Calculating with a Math Coprocessor

you use the MSFLOAT directive. Data formats for real numbers are
explained in Section 6.3.1.5, “Real-Number Variables.”

Data are transferred to stack registers by using load commands. These
push data onto the stack from memory or coprocessor registers. Data are
removed by using store commands. Some store commands pop data off the
register stack into memory or coprocessor registers, whereas others simply
copy the data without changing 1t on the stack.

Real Transfers

The following instructions are available for transferring real numbers.

Syntax

Description

FLD mem
FLD ST (num)

FST mem

FST ST (num)

FSTP mem

FSTP ST(num)

FXCH [ST(num)]

Pushes a copy of mem into ST. The source must
a 4-, 8-, or 10-byte memory operand. It is
automatically converted to the temporary-real
format.

Pushes a copy of the specified register into ST.

Copies ST to mem without affecting the register
stack. The destination can be a 4- or 8-byte
memory operand. It is automatically converted
from temporary-real format to short real or long
real format, depending on the size of the
operand. It cannot be converted to the 10-byte-
real format.

Copies ST to the specified register. The current
value of the specified register is replaced.

Pops a copy of ST into mem. The destination
can be a 4-, 8-, or 10-byte memory operand. It is
automatically converted from temporary-real
format to the appropriate real-number format,
depending on the size of the operand.

Pops ST into the specified register. The current
value of the specified register is replaced.

Exchanges the value in ST with the value in
ST(num). If no operand is specified, ST(0) and
ST(1) are exchanged.

389

Microsoft Macro Assembler Programmer’s Guide

Integer Transfers

The following instructions are available for transferring binary integers.

Syntax

Description

FILD mem

FIST mem

FISTP mem

Packed BCD Transfers

Pushes a copy of mem into ST. The source must
be a 2-, 4-, or 8-byte integer memory operand. It
is interpreted as an integer and converted to
temporary-real format.

Copies ST to mem. The destination must be a
2- or 4-byte memory operand. It is automatically
converted from temporary-real format to a word
or a doubleword, depending on the size of the
operand. It cannot be converted to a quadword
integer. '

Pops ST into mem. The destination must be a
2-, 4-, or 8-byte memory operand. It is automati-
cally converted from temporary-real format to a
word, doubleword, or quadword integer, depend-
ing on the size of the operand.

The following instructions are available for transferring BCD integers.

Syntax

Description

FBLD mem

FBSTP mem

® Example 1

fld
fld
fst
fxch
fstp

Pushes a copy of mem into ST. The source must
be a 10-byte memory operand. It should contain
a packed BCD value, although no check is made
to see that the data is valid.

Pops ST into mem. The destination must be a
10-byte memory operand. The value is rounded

to an integer if necessary, and converted to a
packed BCD value.

; Push ml into first item

; Push third item into first

; Copy first item to m2

; Exchange first and third items
; Pop first item into ml

With the assumption that registers ST and ST(1) were previously initial-
ized to 3.0 and 4.0, the status of the register stack is shown below:

390

Calculating with a Math Coprocessor

B Example 2

.DATA
shortreal DD 100 DUP (?)
longreal DQ 100 DUP (?)
.CODE
. ; Assume array shortreal has been
: filled by previous code
mov cx, 100 ;> Initialize loop
xor si,si ; Clear pointer into shortreal
xor di,di ; Clear pointer into longreal
again: fld shortreal [si] . Push shortreal
fstp longreal [di] ; Pop longreal
add si.4 ; Increment source pointer
add di,8 ; Increment destination pointer
loop again ; Do it again

Example 2 illustrates one way of doing run-time type conversions.

19.5.2 Loading Constants

Constants cannot be given as operands and loaded directly into coproces-
sor registers. You must allocate memory and initialize the variable to a
constant value. The variable can then be loaded by using one of the load
instructions described in Section 19.5.1, “Transferring Data to and from
Registers.”

391

Microsoft Macro Assembler Programmer’s Guide

However, special instructions are provided for loading certain constants.
You can load 0, 1, pi, and several common logarithmic values directly.
Using these instructions is faster and often more precise than loading the
values from initialized variables.

The instructions that load constants all have the stack top as the implied
destination operand. The constant to be loaded is the implied source
operand. The instructions are listed below.

Syntax Description

FLDZ Pushes 0 into ST

FLD1 Pushes 1 into ST

FLDPI Pushes the value of pi into ST
FLDL2E Pushes the value of logye into ST
FLDL2T Pushes log,10 into ST

FLDLG2 Pushes log,,2 into ST

FLDLN2 Pushes log, 2 ST

19.5.3 Transferring Control Data

The coprocessor data area, or parts of it, can be stored to memory and
later loaded back. One reason for doing this is to save a snapshot of the
coprocessor state before going into a procedure, and restore the same
status after the procedure. Another reason is to modify coprocessor
behavior by storing certain data to main memory, operating on the data
with 8086-family instructions, and then loading 1t back to the coprocessor
data area.

You can choose to transfer the entire coprocessor data area, the control
registers, or just the status or control word. Applications programmers sel-
dom need to load anything other than the status word.

All the control-transfer instructions take a single memory operand. Load
instructions use the memory operand as the destination; store instructions
use it as the source. The coprocessor data area is the implied source for
load instructions and the implied destination for store instructions.

Each store instruction has two forms. The “wait form” checks for
unmasked numeric-error exceptions and waits until they have been han-
dled. The “no-wait” form (which always begins with FIN) ignores
unmasked exceptions. The instructions are listed below.

392

Calculating with a Math Coprocessor

Syntax Description

FLDCW mem2byte Loads control word
F[N]STCW mem2byte Stores control word
F[N]STSW mem2byte Stores status word

FLENYV mem14byte Loads environment
F[N]STENYV meml4byte Stores environment
FRSTOR mem94byte Restores state

F[N]SAVE mem94byte Saves state

m 80287/387 Only

Starting with the 80287, the FSTSW and FNSTSW instructions can
store data directly to the AX register. This is the only case in which data
can be transferred directly between processor and coprocessor registers, as
shown below:

fstsw ax

H 80387 Only

In 32-bit mode, the 80387 stores 32-bit addresses in the instruction and
operand pointers. Therefore, the FSAVE instruction stores 98 bytes
instead of 94, and the FSTENY instruction stores 18 bytes instead of 14.

19.6 Doing Arithmetic Calculations

The math coprocessors offer a rich set of instructions for doing arithmetic.
Most arithmetic instructions accept operands in any of the formats dis-
cussed in Section 19.3, “Using Coprocessor Instructions.”

When using memory operands with an arithmetic instruction, make sure
you indicate in the name whether you want the memory operand to be
treated as a real number or an integer. For example, use FADD to add a
real number to the stack top or FIADD to add an integer to the stack
top. You do not need to specify the operand type in-the instruction if both
operands are stack registers, since register values are always real numbers.

393

Microsoft Macro Assembler Programmer’s Guide

You cannot do arithmetic on BCD numbers in memory. You must use
FBLD to load the numbers into stack registers.

The arithmetic instructions are listed below.

Addition

The following instructions add the source and destination and put the
result in the destination.

Syntax Description

FADD Classical-stack form. Adds ST and ST(1)
and pops the result into ST. Both operands
are destroyed.

FADD ST(num),ST Register form with stack top as source.
Adds the two register values and replaces
ST(num) with the result.

FADD ST,ST(num) Register form with stack top as destina-
tion. Adds the two register values and
replaces ST with the result.

FADD mem Real-memory form. Adds a real number in
mem to ST. The result replaces ST.

FIADD mem Integer-memory form. Adds an integer in
mem to ST. The result replaces ST.

FADDP ST(num),ST Register-pop form. Adds the two register
values and pops the result into ST (num).
Both operands are destroyed.

Normal Subtraction
The following instructions subtract the source from the desfination and
put the difference in the destination. Thus the number being subtracted

from is replaced by the result.

Syntax Description

FSUB Classical-stack form. Subtracts ST from
ST(1) and pops the result into ST. Both
operands are destroyed.

394

FSUB ST(num),ST

FSUB ST,ST(num)

FSUB mem

FISUB mem

FSUBP ST(num),ST

Reversed Subtraction

Calculating with a Math Coprocessor

Register form with stack top as source.
Subtracts ST from ST(num) and replaces
ST(num) with the result.

Register form with stack top as destina-
tion. Subtracts ST(num) from ST and
replaces ST with the result.

Real-memory form. Subtracts the real
number in mem from ST. The result
replaces ST.

Integer-memory form. Subtracts the integer
in mem from ST. The result replaces ST.

Register-pop form. Subtracts ST from
ST(num) and pops the result into
ST{(num). Both operands are destroyed.

The following instructions subtract the destination from the source and
put the difference in the destination. Thus the number subtracted is

replaced by the result.

Syntax

Description

FSUBR

FSUBR ST(num),ST

FSUBR ST,ST(num)

FSUBR mem

FISUBR mem

FSUBRP ST(num),ST

Classical-stack form. Subtracts ST(1) from
ST and pops the result into ST. Both
operands are destroyed.

Register form with stack top as source.
Subtracts ST (num) from ST and replaces
ST(num) with the result.

Register form with stack top as destina-
tion. Subtracts ST from ST(num) and
replaces ST with the result.

Real-memory form. Subtracts ST from the
real number in mem. The result replaces

ST.

Integer-memory form. Subtracts ST from
the integer in mem. The result replaces ST.

Register-pop form. Subtracts ST(num)
from ST and pops the result into
ST(num). Both operands are destroyed.

395

Microsoft Macro Assembler Programmer’s Guide

Multiplication

The following instructions multiply the source and destination and put the
product in the destination.

Syntax Description

FMUL Classical-stack form. Multiplies ST by
ST(1) and pops the result into ST. Both
operands are destroyed.

FMUL ST(num),ST Register form with stack top as source.
Multiplies the two register values and
replaces ST (num) with the result.

FMUL ST,ST(num) Register form with stack top as destina-
tion. Multiplies the two register values and
replaces ST with the result.

FMUL mem Real-memory form. Multiplies a real
number in mem by ST. The result replaces
ST.
FIMUL mem Integer-memory form. Multiplies an integer
in mem by ST. The result replaces ST.
FMULP ST(num),ST Register-pop form. Multiplies the two regis- -

ter values and pops the result into
ST(num). Both operands are destroyed.

Normal Division

The following instructions divide the destination by the source and put
the quotient in the destination. Thus the dividend is replaced by the quo-
tient.

Syntax Description

FDIV Classical-stack form. Divides ST(1) by ST
and pops the result into ST. Both operands
are destroyed.

FDIV ST (num),ST Register form with stack top as source.
Divides ST (num) by ST and replaces
ST(num) with the result. —

FDIV ST,ST(num) Register form with stack top as destina~
tion. Divides ST by ST(num) and replaces
ST with the result.

396

FDIV mem
FIDIV mem

FDIVP ST(num),ST

Reversed Division

Calculating with a Math Coprocessor

Real-memory form. Divides ST by the real
number in mem. The result replaces ST.

Integer-memory form. Divides ST by the
integer in mem. The result replaces ST.

Register-pop form. Divides ST(num) by ST
and pops the result into ST (num). Both
operands are destroyed.

The following instructions divide the source by the destination and put
the quotient in the destination. Thus the divisor is replaced by the quo-

tient.
Syntax Description
FDIVR Classical-stack form. Divides ST by ST(1

FDIVR ST(num),ST

FDIVR ST,ST(num)

FDIVR mem

FIDIVR mem

FDIVRP ST(num),ST

Other Operations

and pops the result into ST. Both operands
are destroyed.

Register form with stack top as source.
Divides ST by ST(num) and replaces
ST(num) with the result.

Register form with stack top as destina-
tion. Divides STﬂnum) by ST and replaces
ST with the result.

Real-memory form. Divides the real
number in mem by ST. The result replaces
ST.

Integer-memory form. Divides the integer
in mem by ST. The result replaces ST.

Register-pop form. Divides ST by ST (num)
and pops the result into ST(num). Both
operands are destroyed.

The following instructions all use the stack top (ST) as an implied desti-
nation operand. The result of the operation replaces the value in the stack
top. No operand should be given.

397

Microsoft Macro Assembler Programmer’s Guide

Syntax

Description

FABS
FCHS
FRNDINT
FSQRT

FSCALE

FPREM

FXTRACT

Sets the sign of ST to positive.
Reverses the sign of ST.
Rounds the ST to an integer.

Replaces the contents of ST with its square
root.

Scales by powers of two by adding the
value of ST(1) to the exponent of the value
in ST. This effectively multiplies the
stack-top value by two to the power con-
tained in ST(1). Since the exponent field is
an integer, the value in 8T(1) should nor-
mally be an integer.

Calculates the partial remainder by per-
forming modulo division on the top two
stack registers. The value in ST is divided
by the value in ST(1). The remainder
replaces the value in ST. The value in
ST(1) is unchanged. Since this instruction
works by repeated subtractions, it can take
a lot of execution time if the operands are
greatly different in magnitude. FPREM is
sometimes used with trigonometric func-
tions.

Breaks a number down into its exponent
and mantissa and pushes the mantissa onto
the register stack. Following the operation,
ST contains the value of the original
mantissa and ST(1) contains the value of
the unbiased exponent.

80387 Only

The 80387 has a new instruction called FPREML. Its effect is similar
to that of FPREM, but it conforms to the IEEE standard. The
difference between the two instructions is explained in the Microsoft
Macro Assembler Reference.

398

Calculating with a Math Coprocessor

B Example

.DATA
a DD 3.0
b DD 7.0
c DD 2.0
posx DD 0.0
negx DD 0.0
CODE

; Solve quadratic equation - no error checking

f1dl ;. Get constants 2 and 4
fadd st,st ; 2 at bottom

fld st ; Copy it

fmul a) = 2a

fmul st(l),st ; = 4a

fxch ; Exchange

fmul [} ; = 4ac

fld b ;: Load b

fmul st,st = Db"2

fsubr = b"2 - 4ac

Negative value here produces error

fsqrt ; = square root(b~2 - 4ac)

fid b ; Load b

fchs ; Make it negative

fxch ; Exchange

fld st ; Copy square root

fadd st,st(2) ; Plus version = -b + root((b~2 - 4ac)
fxch ; Exchange

fsubp st(2),st ; Minus version = -b - root((b~2 - 4ac)

fdiv st,st (2) Divide plus version

fstp posx ; Store it
fdivr ; Divide minus version
fstp negx ; Store it

This example solves quadratic equations. It does no error checking and
fails for some values because it attempts to find the square root of a nega-
tive number. You could enhance the code by using the FTST instruction
gsee Section 19.7.1, “Comparing Operands to Control Program”) to check
or a negative number or O just before the square root is calculated. If b
squared minus 4ac is negative or 0, the code can jump to routines that
handle special cases for no solution or one solution, respectively.

19.7 Controlling Program Flow

The math coprocessors have several instructions that set control flags in
the status word. The 8087-family control flags can be used with condi-
tional jumps to direct program flow in the same way that 8086-family flags
are used.

399

Microsoft Macro Assembler Programmer’s Guide

Since the coprocessor does not have jump instructions, you must transfer
the status word to memory so that the flags can be used by 8086-family
instructions.

An easy way to use the status word with conditional jumps is to move its
upper byte into the lower byte of the processor flags. For example, use the
following statements:

fstsw meml6 ; Store status word in memory
fwait ; Make sure coprocessor is done
mov ax,meml6 ; Move to AX

sahf ; Store upper word in flags

As noted in Section 19.5.3, “Transferring Control Data,” you can save
several steps by loading the status word directly to AX on the 80287 and
80387.

Figure 19.3 shows how the coprocessor control flags line up with the pro-
cessor flags. C3 overwrites the zero flag, C2 overwrites the parity flag, and
CO0 overwrites the carry flag. C1 overwrites an undefined bit, so 1t cannot
be used directly with conditional jumps, although you can use the TEST
instruction to check C1 in memory or in a register. The sign and
auxiliary-carry flags are also overwritten, so you cannot count on them
being unchanged after the operation.

Figure 19.3 Coprocessor and Processor Control Flags

See Section 17.1.2 for more information on using conditional-jump instruc-
tions based on flag status.

400

Calculating with a Math Coprocessor

19.7.1 Comparing Operands to Control Program Flow

The 8087-family coprocessors provide several instructions for comparing
operands. All these instructions compare the stack top (ST) to a source
operand, which may either be specified or implied as ST(1).

The compare instructions affect the C3, C2, and CO control flags. The C1
flag is not affected. Table 19.2 above shows the flags set for each possible
result of a comparison or test.

Table 19.2

Control-Flag Settings
after Compare or Test

After FCOM After FTEST C3 C2 CoO

ST > source ST is positive 0 0 0
ST < source ST is negative 0 0 1
ST = source STis0 1 0 0
Not comparable ST is NAN or 1 1 1
projective
infinity

Variations on the compare instructions allow you to pop the stack once or
twice, and to compare integers and zero. For each instruction, the stack
top is always the implied destination operand. If you do not give an
operand, ST(1) is the implied source. Some compare instructions allow
you to specify the source as a memory or register operand.

The compare instructions are listed below.

Compare

These instructions compare the stack top to the source. The source and
destination are unaffected by the comparison.

Syntax Description
FCOM Compares ST to ST(1).
FCOM ST(num) Compares ST to ST (num).

FCOM mem Compares ST to mem. The memory operand can
, be a four- or eight-byte real number.

401

Microsoft Macro Assembler Programmer’s Guide

FICOM mem

FTST

Compare and Pop

Compares ST to mem. The memory operand can
be a two- or four-byte integer.

Compares the ST to 0. The control registers will
be affected as if ST had been compared to O in
ST(1). Table 19.2 above shows the possible
results.

These instructions compare the stack top to the source, and then pop the
stack. Thus the destination is destroyed by the comparison.

Syntax

Description

FCOMP
FCOMP ST(num)

FCOMP mem

FICOMP mem

FCOMPP

Compares ST to ST(1) and pops ST off
the register stack.

Compares ST to ST(num) and pops ST off
the register stack.

Compares ST to memand pops ST off the
register stack. The operand can be a four-
or eight-byte real number.

Compares ST to mem and pops ST off the
register stack. The operand can be a two-
or four-byte integer.

Compares ST to ST(1), and then pops the
stack twice. Both the source and destina-
tion are destroyed by the comparison.

80387 Only

Unordered compare instructions are available with the 80387. The
FUCOM, FUCOMP, and FUCOMPP instructions are like FCOM,
FCOMP, and FCOMPP except that the unordered versions do not
cause invalid operation exceptions if one of the operands is a quiet
NAN (not a number). Exceptions and NANs are beyond the scope of
this manual and are not explained here. See Intel coprocessor reference
books for more information.

402

B Example

IFDEF
.287
ENDIF
.DATA
down DD
across DD
diameter DD
status DW
.CODE

c287

10.35
13.07
12.93
?

; Get area of rectangle

fld
fmul

; Get area of circle
fldl
fadd
fdivr
fmul
fldpi
fmul

across
down

st,st
diameter
st,st

Calculating with a Math Coprocessor

., Sides of a rectangle

Diameter of a circle

Load one side
Multiply by the other

Load one and

double it to get constant 2
Divide diameter to get radius
Square radius
Load pi
Multiply it

; Compare area of circle and rectangle

fcompp
IFNDEF
fstsw
fwait
mov
ELSE
fstsw
ENDIF
sahf

nocomp :
same:
rectangle:

circle:

c287
status

ax,status
ax
nocomp
same

rectangle
circle

.
’
.

’

N

’

; Compare and throw both away

; Load from coprocessor to memory

Wait for coprocessor

; Memory to register

(for 287+, skip memory)
to flags
If parity set, can't compare
If zero set, they're the same
If carry set, rectangle is bigger
else circle is bigger
Error handler
Both equal
Rectangle bigger

Circle bigger

Notice how conditional blocks are used to enhance 80287 code. If you
define the symbol c287 from the command line by using the /Dsymbol
option (see Section 2.4.4, “Defining Assembler Symbols”) the code is
smaller and faster, but does not run on an 8087.

403

Microsoft Macro Assembler Programmer’s Guide

19.7.2 Testing Control Flags after Other Instructions

In addition to the compare instructions, the FXAM and FPREM instruc-
tions affect coprocessor control flags.

The FXAM instruction sets the value of the control flags based on the
type of the number in the stack top (ST). This instruction is used to iden-
tify and handle special values such as infinity, zero, unnormal numbers,
denormal numbers, and NANSs (not a number). Certain math operations
are capable of producing these special-format numbers. A description of
them is beyond the scope of this manual. The possible settings of the flags
are shown in the Microsoft Macro Assembler Reference.

FPREM also sets control flags. Since this instruction must sometimes be
repeated to get a correct remainder for large operands, it uses the C2 flag
to indicate whether the remainder returned is partial qCZ is set) or com-
plete (C2 is clear). If the bit is set, the operation should be repeated.

FPREM also returns the least-significant three bits of the quotient in CO,
C3, and C1. These bits are useful for reducing operands of periodic tran-
scendental functions, such as sine and cosine, to an acceptable range. The
technique is not explained here. The possible settings for each flag are
shown 1n the Microsoft Macro Assembler Reference.

19.8 Using Transcendental Instructions

The 8087-family coprocessors provide a variety of instructions for doing
transcendental calculations, including exponentiation, logarithmic calcula-
tions, and some trigonometric functions.

Use of these advanced instructions is beyond the scope of this manual.
However, the instructions are listed below for reference. All transcendental
instructions have implied operands—either ST as a single destination
operand, or ST as the destination and ST(1) as the source.

Instruction Description

F2xXM1 Calculates 2°~1, where z is the value of the stack top.
The value 2 must be between 0 and .5, inclusive.
Returning 2%-1 instead of 2% allows the instruction to
return the value with greater accuracy. The program-
mer can adjust the result to get 2”.

FYL2X Calculates Y times log, X, where X'is in ST and Y'is
in ST(1). The stack is‘popped, so both X and Y are
destroyed, leaving the result in ST. The value of X
must be positive.

404

FYL2XP1

FPTAN

FPATAN

B 80387 Only

Calculating with a Math Coprocessor

Calculates Y times log, (X+1), where X'is in ST and
Yis in ST(1). The stack is popped, so both X and Y’
are destroyed, leaving the result in ST. The absolute
value of X must be between 0 and the square root of
2 divided by 2. This instruction is more accurate
than FYL2X when computing the log of a number
close to 1.

Calculates the tangent of the value in ST. The result
is a ratio Y/X) with Y replacing the value in ST and
X pushed onto the stack so that after the instruction,
ST contains Y and ST(1) contains X. The value
being calculated must be a positive number less than
pi/4. The result of the FPTAN instruction can be
used to calculate other trigonometric functions,
including sine and cosine.

Calculates the arctangent of the ratio Y/X, where X
is in ST and Yis in ST(1). The stack is popped, so
both X and Y are destroyed, leaving the result in ST.
Both X'and Y must be positive numbers less than
infinity, and Y must be less than X. The result of the
FPATAN instruction can be used to calculate other
inverse trigonometric functions, including arcsine and
arccosine.

The following additional trigonometric functions are available on the

80387.
Instruction Description
FSIN Calculates the sine of the value in ST. The stack-top
value is replaced by its sine.
FCOS Calculates the cosine of the value in ST. The stack-
top value is replaced by its cosine.
FSINCOS Calculates the sine and cosine of the value in ST.

When the instruction is complete, the value in ST is
the cosine of the original stack-top value. The value
in ST(1) is the sine of the original stack-top value.
One of the values is pushed so that the former value
in ST(1) is in ST(2).

405

Microsoft Macro Assembler Programmer’s Guide

19.9 Controlling the Coprocessor

Additional instructions are available for controlling various aspects of the
coprocessor. With the exception of FINIT, these instructions are generally
used only by systems programmers. They are summarized below, but not
fully explained or illustrated. Some instructions have a wait version and a
no-wait version. The no-wait versions have N as the second letter.

Syntax Description

F[N]INIT Resets the coprocessor and restores all the
default conditions in the control and status
words. It is a good idea to use this instruction
at the start and end of your program. Placing
it at the start ensures that no register values
from previous programs affect your program.
Placing it at the end ensures that register
values from your program will not affect later
programs.

F[N]CLEX Clears all exception flags and the busy flag of
the status word. It also clears the error-status
flag on the 80287 and 80387, or the
interrupt-request flag on the 8087.

FINCSTP Adds one to the stack pointer in the status
word. Do not use to pop the register stack. No
tags or registers are altered.

FDECSTP Subtracts one from the stack pointer in the
status word. No tags or registers are altered.

FREE ST (num) Marks the specified register as empty.

FNOP Copies the stack top to itself, thus padding

the executable file and taking up processing
time without having any effect on registers or
memory.

® 8087 Only

The 8087 has the instructions FDISI, FNDISI, FENI, and FNENL
These instructions can be used to enable or disable interrupts. The 80287
and 80387 coprocessors permit these instructions, but ignore them. Appli-
cations programmers will not normally need these instructions. Systems
programmers should avoid using them so that their programs are portable
to all coprocessors.

406

Calculating with a Math Coprocessor

m 80287/387 Only

Starting with the 80287, the FSETPM (Set Protected Mode) instruction
is available. This instruction enables the coprocessor to run in protected
mode. The primary difference is that the addresses stored in the instruc-
tion and operand pointers have a segment selector instead of an actual
segment address. See Section 13.2, “Segmented Addresses,” for informa-
tion on segment selectors.

Either the .286P or .386P directive must be given before the FSETPM
instruction can be used. Protected-mode operating systems normally set
protected mode automatically. Therefore, you need this instruction only if
you are writing control software.

407

CONTROLLING THE

PROCESSOR
20.1 Controlling Timing and Alignment.........cccceeuu.... 411
20.2 Controlling the Processor....ccccceevuvveeeeeeeirivvneeeene 411
20.3 Controlling Protected-Mode Processes................ 412

20.4 Controlling the 80386ccceeeeerveneeeeerirrrnreeeenennn. 413

Controlling the Processor

The 8086-family processors provide instructions for processor control.
Some of these instructions are available on all processors; others are for
controlling protected-mode operations on the 80286 and 80386.

System-control instructions have limited use in applications programming.
They are primarily used by systems programmers who write operating sys-
tems and other control software. Since systems programming is beyond the
scope of this manual, the systems-control instructions are summarized,

but not explained in detail, in the sections below.

20.1 Controlling Timing and Alignment

The NOP instruction does nothing but take up time and space. It works
by exchanging the AX with itself. The NOP instruction can be used for
delays in timing loops, or to pad executable code for alignment.

Normally, applications programmers should avoid using the NOP instruc-
tion in timing loops, since such loops take different lengths of time on dif-
ferent machines. A better way to control timing is to use the DOS time
function, since it is based on the computer’s internal clock rather than on
the speed of the processor.

MASM automatically inserts NOP instructions for padding when you use
the ALIGN or EVEN directive (see Section 6.5, “Aligning Data”) to

align data or code on a given boundary. The assembler automatically
inserts NOP instructions for alignment.

20.2 Controlling the Processor

The WAIT, ESC, LOCK, and HLT instructions control different as-
pects of the processor.

These instructions can be used to control processes handled by external
coprocessors. The 8087-family coprocessors are the coprocessors most

411

Microsoft Macro Assembler Programmer’s Guide

commonly used with 8086-family processors, but 8086-based machines can
work with other coprocessors if they have the proper hardware and control
software.

These instructions are summarized below:

Instruction Description

LOCK Locks out other processors until a specified instruc-
tion is finished. This is a prefix that precedes the
instruction. It can be used to make sure that a copro-
cessor does not change data being worked on by the
Processor.

WAIT Instructs the processor to do nothing until it receives
a signal that a coprocessor has finished with a task
being performed at the same time. See Section 19.4,
“Coordinating Memory Access,” for information on
using WAIT or its coprocessor equivalent, FWAIT,
with the 8087-family coprocessors.

ESC Provides an instruction and possibly a memory oper-
and for use by a coprocessor. MASM automatically
inserts ESC 1nstructions when required for use with
8087-family coprocessors.

HLT Stops the processor until an interrupt is received. It
can be used in place of an endless loop if a program
needs to wait for an interrupt.

20.3 Controlling Protected-Mode Processes

B 80286/386 Only

Protected mode is available starting with the 80286 processors. This mode
is generally initiated and controlled by an operating system. Current ver-
sions of DOS do not support protected mode.

The instructions that control protected mode are privileged and can only
be used if the .286P or .386P directives have been given. These instruc-
tions are generally needed only for operating systems and other control
software.

Note that, under protected-mode operating systems such as XENIX and

OS/2, applications programmers do not need to use protected-mode in-
structions. Process control is managed through system calls.

412

L

Controlling the Processor

Some privileged-mode instructions use internal registers of the 80286 or
80386 processors. Instructions are provided for loading values from these

registers into memory where the values can be modified. Other instruc-
tions can then be used to store the values back to the special registers.

The privileged-mode instructions are listed below:

Instruction Description

LAR Loads access rights

LSL Loads segment limit

LGDT Loads global descriptor table

SGDT Stores global descriptor table

LIDT Loads 8-byte-interrupt descriptor table
SIDT Stores 8-byte-interrupt descriptor table
LLDT Loads local descriptor table

SLDT Stores local descriptor table

LTR Loads task register

STR Stores task register

LMSW Loads machine-status word

SMCW Stores machine-status word

ARPL Adjusts requested privilege level
CLTS Clears task-switched flag

VERR Verifies read access

VERW Verifies write access

20.4 Controlling the 80386

m 80386 Only

The 80386 processor can use all the privileged-mode instructions of the
80286, but it also allows you to use MOV to transfer data between
general-purpose registers and special registers.

413

Microsoft Macro Assembler Programmer’s Guide

The following special registers can be accessed with move instructions on
the 80386:

Type Registers

Control CRO, CR2, and CR3

Debug DRO, DR1, DR2, DR3, DR6, and DR7
Test TR6 and TR7

These registers can be moved directly to 32-bit registers or from them.
® Examples

mov eax,crO ; Load CRO into EAX
mov crl,ecx ; Store ECX in CR1

414

R T R
APPENDIXES

A New Features ..., 417
B Error Messages and Exit Codes............. 429

Al

A2
A3
A4
Ad

APPENDIX A

NEW FEATURES

MASM Enhancements........ccceuveeeeeeeeerneeeeeeesesnveneeeen. 419
A1l 80386 SUPPOTt cererrrerrrneerreneeeneeersnneesneeessenesnnneees 419
A.1.2 Segment Simplification..ccceeeeeereneeeeeenneeeeeenneenne. 420
A.1.3 Performance Improvements.......ccceeeeeveeeerneneennnnnns 420
A.1.4 Enhanced Error Handlingcccoeevvveeeveneeeneneennnnnns 421
AL5 NeW OPLIONS weeeeererrrnueneeeererernnneeseeeeeeesnnenssseeeens 421
A.1.6 Environment VariableS...ccceevvueerruneernneeerneeennnnnens 422
AL7 String EqUateS..cceeeereeeeereneeeeeeeereneeereneernnnens veeenad22
A.1.8 RETF and RETN Instructionsccceeeveeeveeennnnnnn. 422
A.1.9 Communal Variables...cccvceeeeerrunecerereeeceeennencennnns 422
A.1.10 Including Library FileS ..ccceeeerueeereeeerreeereenennnnnens 422
A.1.11 Flexible Structure DefinitionS....ccceeeevreeeereneennnnes 423
Link Enhancements........cccoeeeeeeerirvnnnnnnneeeeeeeeeeeeenennnnn. 423
The CodeView Debugger.......ccvvveeeeevureeerireeeecsreeeennne 423
SETENV ... ooeieeeeeeeettvtrrrrereeeeeeeeeeessesssssssnssssssseseees 424
Comgatibility with Assemblers

and Compilers.......c.ciicrieeeecieeeiiieeeeeeeeeiireeeeeeeeerreeeen 424

417

New Features

Version 5.0 of the Microsoft Macro Assembler package has many
significant new features. Some of the most important are the new Code-
View debugger, the support for the 80386 processor, and an optional
simplified system of defining segments. This appendix describes these
features and tells you where they are documented.

A.1 MASM Enhancements

MASM, the Macro Assembler program, now has several important
enhancements over Version 4.0 and other previous versions. The sections
below summarize new options, directives, instructions, and other features.

A.1.1 80386 Support

MASM now supports the 80386 instruction set and addressing modes.
The 80386 processor is a superset of other 8086-family processors. Most
new features are simply 32-bit extensions of 16-bit features.

If you understand the features of the 16-bit 8086-family processors, then
using the 32-bit extensions is not difficult. The new 32-bit registers are
used in much the same way as the 16-bit registers. The 80386 registers are
explained in Section 13.3.

However, some features of the 80386 processor are significantly different.
Throughout the manual the heading “80386 Only” is used to flag sections
in which 80386 enhancements are described. Areas of particular impor-
tance include the .386 directive for initializing the 80386 (Section 4.4.1,
“Defining Default Assembly Behavior”), the USE32 and USE16 segment
types for setting the segment word size (Section 5.2.2.2), and indirect
addressing modes (Section 14.3.3, “80386 Indirect Memory Operands”).

The 80386 processor and the 80387 coprocessor also have the new instruc-
tions listed in Table A.1 below.

419

Microsoft Macro Assembler Programmer’s Guide

Table A.1

80386 and 80387 Instructions

Name Mnemonic Reference

Bit Scan Forward BSF Section 16.7
Bit Scan Reverse BSR Section 16.7
Bit Test BT Section 17.1.2.4
Bit Test and Complement BTC Section 17.1.2.4
Bit Test and Reset BTR Section 17.1.2.4
Bit Test and Set BTS Section 17.1.2.4
Move with Sign Extend MOVSX Section 15.2.3
Move with Zero Extend MOVZX Section 15.2.3
Set Byte on Condition - SET condition Section 17.3
Double Precision Shift Left SHLD Section 16.8.5
Double Precision Shift Right SHRD Section 16.8.5
Move to/from Special Registers MOV Section 18.1
Sine FSIN Section 19.8
Cosine FCOS Section 19.8
Sine Cosine FSINCOS Section 19.8
IEEE Partial Remainder FPREM1 Section 19.6
Unordered Compare Real FUCOM Section 19.7.1
Unordered Compare Real and Pop FUCOMP Section 19.7.1
Unordered Compare Real and Pop Twice FUCOMPP Section 19.7.1

A.1.2 Segment Simplification

A new system of defining segments is available in MASM Version 5.0. The
simplified segment directives use the Microsoft naming conventions. If you
are willing to accept these conventions, segments can be defined more
easily and consistently. However, this feature is optional. You can still use
the old system if you need more direct control over segments or if you need
to be consistent with existing code. See Section 5.1, “Simplified Segment
Definitions.”

A new DOSSEG directive enables you to specify DOS segment order in

the source file. This directive is equivalent to the /DOSSEG option of the
linker. See Section 5.1.2, “Specifying DOS Segment Order.”

A.1.3 Performance Improvements

The performance of MASM has been enhanced in two ways: faster assem-
bly and larger symbol space.

Version 5.0 of the assembler is significantly faster for most source files.

The improvement varies depending on the relative amounts of code and
data in the source file, and on the complexity of expressions used.

420

New Features

Symbol space is now limited only by the amount of system memory avail-

able to your machine.

A.1.4 Enhanced Error Handling

Error handling has been enhanced in the following ways:

e Messages have been reworded, enhanced, or reorganized.

e Messages are divided into three levels: severe errors, serious warn-
ings, and advisory warnings. The level of warning can be changed
with the /W option. Type-checking errors are now serious warn-
ings rather than severe errors. See Section 2.4.13, “Setting the

Warning Level.”

e During assembly, messages are output to the standard output dev-
ice (by default, the screen). They can be redirected to a file or dev-
ice. In Version 4.0 they were sent to the standard error device. See
Section 2.3, “Controlling Message Output.”

A.1.5 New Options

The following command-line options have been added:

~

Option

Description

/WIol1]2]

/ZI and /ZD

/H

- /Dsym[=val]

Sets the warning level to determine what type of
messages will be displayed. The three kinds are
severe errors, serious warnings, and advisory
warnings. See Section 2.4.13, “Setting the
Warning Level.”

Sends debugging information for symbolic
debuggers to the object file. The /ZD option
outputs line-number information, whereas the
/ZI option outputs both line-nimber and type
information. See Section 2.4.16, “Writing Sym-
bolic Information to the Object File.”

Displays the MASM command line and options.
See Section 2.4.5, “Creating Code for a
Floating-Point Emulator.”

Allows definition of a symbol from the command
line. This is an enhancement of a current option.
See Section 2.4.4, “Defining Assembler Symbols”
in Part 1.

421

Microsoft Macro Assembler Programmer’s Guide

In addition, the new directives . ALPHA and .SEQ have been added,;
these directives have the same effect as the /A and /S options. See Section
5.2.1, “Setting the Segment-Order Method.”

A.1.6 Environment Variables —

MASM now supports two environment variables: MASM for specifying
default options, and INCLUDE for specifying the search path for include
files. See Section 2.2, “Using Environment Variables.”

A.1.7 String Equates

String equates have been enhanced for easier use. By enclosing the argu-
ment to the EQU directive in angle brackets, you can ensure that the
argument is evaluated as a string equate rather than as an expression. See
Section 11.1.3, “Using String Equates.”

The expression operator (%) can now be used with macro arguments that
are text macros as well as arguments that are expressions. See Section
11.4.4, “Using the Expression Operator.”

A.1.8 RETF and RETN Instructions -

The RETF (Return Far) and RETN (Return Near) instructions are now
available. These instructions enable you to define procedures without the
PROC and ENDP directives. See Section 17.4.2, “Defining Procedures.”

A.1.9 Communal Variables

MASM now allows you to declare communal variables. These uninitial-
ized global data items can be used in include files. They are compatible
with xiariables declared in C include files. See Section 8.3, “Using Multiple
Modules.”

A.1.10 Including Library Files

The INCLUDELIB directive enables you to specify in the assembly
source file any libraries that you want to be linked with your program .
modules. See Section 8.5, “Specifying Library Routines.”

422

New Features

A.1.11 Flexible Structure Definitions

Structure definitions can now include conditional-assembly statements,
thus enabling more flexible structures. See Section 7.1.1, “Declaring Struc-
ture Types.”

A.2 Link Enhancements

LINK has several new features. These enhancements are discussed in
Chapter 12, “Linking Object Files with LINK,” of the Microsoft CodeView
and Utilities manual. They are summarized below:

e The LINK environment specifies default linker options.

e The TMP environment variable specifies a directory in which link
can create temporary files if it runs out of memory.

e The /CODEVIEW option puts debugging information in execut-
able files for the CodeView debugger.

e The /INFORMATION option displays each step of the linking
process including parsing the command line, Pass 1, and so on. The
path and name of each module are displayed as the modules are
linked.

e The /BATCH option disables the linker’s prompting interface so
that make or batch files are not be stopped by link errors.

e The /QUICKLIB option creates a user’s library for a Microsoft
Quick language (such as QuickBASIC).

e The /JFARCALLTRANSLATION and /PACKCODE options
enable two optimizations that may make code faster in certain
situations.

A.3 The CodeView Debugger

In Version 5.0 of the Macro Assembler package, the CodeView debugger
replaces SYMDEB. This source-level symbolic debugger is capable of
working with programs developed with MASM or with Microsoft high-
level-language compilers.

The CodeView debugger features a window-oriented environment with
multiple windows displaying different types of information. Commands
can be executed with a mouse, function keys, or command lines. Variables
can be watched in a separate window as the program executes.

423

Microsoft Macro Assembler Programmer’s Guide

MASM and LINK have been enhanced to support the features of the
CodeView debugger.

A.4 SETENV

Since MASM and LINK now support more environment variables, users
may wish to define environment strings that exceed the default size of the
DOS environment. The SETENYV program in the CodeView and Utilities
manual is provided as a means of modifying the environment size for DOS
Versions 2.0 to 3.1.

A.5 Compatibility with Assemblers
and Compilers

If you are upgrading from a previous version of the Microsoft or IBM
Macro Assembler, you may need to make some adjustments before assem-
bling source code developed with previous versions. The potential compati-
bility problems are listed below:

e All previous versions of the Macro Assembler assembled initialized
real-number variables in the Microsoft Binary format by default.
Version 5.0 assembles initialized real-number variables in the IEEE
format. If you have source modules that depend on the default for-
mat being Microsoft Binary, you must modify them by placing the
MSFLOAT directive at the start of the module before the first
variable is initialized.

In previous versions of the Macro Assembler, the default conditions
were 8086 instructions enabled, coprocessor instructions disabled,
and real numbers assembled in Microsoft Binary format. The /R
option, the .8087 directive, or the .287 directive was required to
enable coprocessor instructions and IEEE format for real numbers.
In Version 5.0, the default conditions are 8086 and 8087 instruc-
tions enabled and real numbers assembled in IEEE format.
Although the /R option is no longer used, it is recognized and
ignored so that existing make and batch files work without
modification.

e Some previous versions of the IBM Macro Assembler wrote seg-
ments to object files in alphabetical order. The current version
writes segments to object files in the order encountered in the
source file. You can use the /A option or the .ALPHA directive to
order segments alphabetically if this segment order is required for

424

New Features

your existing source code. See Section 5.2.1, “Setting the Segment-
Order Method,” for more information.

e Some early versions of the Macro Assembler did not have strict

type checking. Later versions had strict type checking that pro-

~ duced errors on source code that would have run under the earlier
versions. MASM Version 5.0 solves this incompatibility by making
type errors into warning messages. You can set the warning level so
that type warnings will not be displayed, or you can modify the
code so that the type is given specifically. Section 9.5, “Strong
Typing for Memory Operands,” describes strict type checking and
how to modify source code developed without this feature.

The programs in the Microsoft Macro Assembler package are compatible
with Microsoft (and most IBM) high-level languages. An exception occurs
when the current version of LINK is used with IBM COBOL 1.0, IBM
FORTRAN 2.0, or IBM Pascal 2.0. If source code developed with these
compilers has overlays, you must use the linker provided with the com-
piler. Do not use the new version of LINK provided with the assembler.

425

e

o

.

[NDEX

& (ampersand), operator, 226
<> (angle brackets), operator, 202,
216, 228
(asterlsk) operator 175, 283
“at, sign”) , 68
} braces xxv1
brackets , Xxvi
bar , Xxvi
colon operator
deﬁmtlon 181
See also ment-override
opera,tor§
$ gdollar sign)
ocation counter symbol, 137
symbol names, used in, 68
. (dots), xxvi
= (equal sign), directive, 32, 162, 213
! (exclamation point), operator, 229
/ forward slash), operator, 175
minus sign), operator, 175
% (percent SIgn)
expression operator, 230
symbol names, used in, 68
. (period), 68
+ (plus sign), operator, 175
? (question mark), 68
: (segment-override operator)
definition, 181
memory operands, with, 276, 279
OFFSET operator, with, 185
String instructions, with, 366
XLAT 1nstruct10ns w1th 290
;; (semicolons) operator, 231
- (underscores 68

10-byte temporary-real format, 134
16-bit
addressing modes, 282
segments, 88, 98
.186 directive, 76
.286P directive, 76, 412
287 directive, 73, 77, 132, 388
32-bit
addressing modes, 269, 282
segments, 88, 98, 260, 300
.386P directive, 76, 88, 98, 412
.387 directive, 73, 77, 132, 388
80186 processor described, 258
80286 processor described, 258

80287 processor described, 258
80386 processor
32-bit
addressing modes, 269, 282
pointers, 129
registers, 269
segments, 88, 98, 260, 300
.386 directive, 76, 98, 412
bit-scan instructions, 324
bit-test instructions, 323, 341
BSF instruction, 324
BSR instruction, 324
BT instruction, 341
BTC instruction, 341
BTR instruction, 341
BTS instruction, 341
bytes, setting conditionally, 345
CDQ instruction, 293
CWDE instruction, 293
data conversion, 293, 294
described, 258
DOS, using under, 269
double shifts, 330
enhanced instructions, 269
IMUL instruction, 314
LFS instruction, 297
LGS instruction, 297
loading pointers, 297
LSS instruction, 297
MOVSX instruction, 294
MOVZX instruction, 294
new instructions, 269
PUSHAD and POPAD instructions,
303
PUSHD and POPD instructions, 302
registers, 261, 414
scaling, 296
SETcondition instruction, 345
SHLD instruction, 330
SHRD instruction, 330
simplified segment directives, with,
88
special registers, 414
80387 processor, described, 258
.8086 directive, 75
.8087 directive, 73, 77, 132, 388
8087 processor descrlbed 258
8087/) 80287 /80387 instruction set, 30
8087-family registers, 268
8088,/8086 processors described, 257

451

Index

/A option, 30, 96
AAA instruction, 317
AAD instruction, 318
AAM instruction, 317
AAS instruction, 317
ABS type, 161
Absolute segments, 101
Accumulator registers, 264
ADC instruction, 307, 309
ADD instruction, 307, 309
Adding, 307
Addition operator (+), 175
Addresses
assembly listing, 43
effective, 276, 279
Addressing modes
16-bit, 282
32-bit, 269
Adjusting masks, 329
Advisory warnings, 39
Aliases, 216
ALIGN directive, 138, 257
Align type, 98, 102
Alignment, of segments, 98, 138
ALPHA directive, 96
Ampersand (&), operator, 226
AND instruction, 320, 321, 340
AND operator, 179
Angle brackets (< >), operator, 202,
216, 228
Arguments
macros, 218, 219, 234
passing on stack, 349
repeat blocks, 223
Arithmetic operators, 175
Arrays
boundary checking, 361
defining of, 135
ASCII
format for text files, 14
name for unpacked BCD numbers,
316
Assembler. See MASM
Assembly listing
false conditionals, 246
macros, 247
page breaks, 243
page length, 243
page width, 243
Pass 1, 32
reading, 42
subtitle, 243
suppressing, 245
title, 242
ASSUME directive, 15, 107, 109, 181
Asterisk (*), operator, 175, 283

452

AT combine type, 101

“At” sign (@), 68

AUTO C.BAT file, 10, 27, 28
Auxiliary-carry flag, 267

AX register, 264

B option, 31
ackup copies, 7
Bar (|), xxvi
Base registers, 278, 282
Based operands, 278
Based-indexed operands, 278
BASIC compiler, 131
BASIC interpreter, 11, 131
BASIC language, mentioned, 334—354
BCD (binary coded decimal) numbers
calculations with, 316, 394
constants, 72
coprocessor, with, 388
defining of, 127
variables initialized, 70
Binary coded decimals. See BCD
Binary files, 11
Binary radix, 71
Binary to decimal conversion, 318
BIOS (basic input/output system),

xxvi
BIOS interrupts, 356
Bit fields, 143, 148
Bit mask, 319, 340
Bit-scan instructions, 324
Bit-test instructions, 341
Bits, rotating, 325
Bits, shifting, 325
Bitwise operators, 179
Bold type, xxv
Books, on assembly language, xxiii
Boolean bit operations, 320
BOUND instruction, 361
Boundary-checking array, 361
BP registers, 265
Braces ({ }), xxvi
Brackets 5, xxvi
BSF instruction, 324
BSR instruction, 324
BT instruction, 341
BTC instruction, 341
BTR instruction, 341
BTS instruction, 341
Buffers

defining, 135

file, setting size, 31
Bugs, reporting, xxviii
B align type, 98
BYTE type specifier, 119

C compiler, 131
C language, 84
C language, mentioned, 334-354
/C option, 35
Calculation operators, 174
CALL instruction, 122, 298, 347
Call tables, 347
Capital letter
notation, xxv
small, xxvii
See also Case
Carry flag, 267, 308, 309, 311
Case
case sensitivity, 42
Case-sensitive compilers, 37
Case-sensitivity options
for LINK, 37
for MASM, 37
emulating Pascal statement, 334
CBW instruction, 292
CDQ instruction, 293
Character constant, 74
Character set, 68
Class type, 104
Classical-stack operands, coprocessor,
383
CLC instruction, 309, 311
CLD instruction, 365
CLI instruction, 358
CMP instruction, 335, 336, 345
CMPS instruction, 371
Code, assembly listing, 42
CODE class name, 86, 104
.CODE directive, 15, 89
code equate, 91
Code equate, 91
Code segments
defining, 89
developing programs, in, 15, 16
initializing, 111
register, 263
See also Segments
codesize equate, 91
Codesize equate, 91
CodeView debugger
code segments, 104
development cycle, 13
local variables, 351, 353
segmented addresses, 260
summary, 20
symbolic information, 41
.COM format
choosing, 11
converting to, 19
debugging, 42
example, 16

Index

.COM format (continued)

initializing, 111

segment types, effect of, 98

tiny memory model, 84
Combine type, 100, 102
COMENT object record, 86, 169
COMM directive, 159, 166
Command lines

with CREF, 53

with MASM, 23
Command-line help, 34
COMMENT directive, 67
Comments, writing, 67
COMMON combine type, 100
Communal symbols, 159, 165
Compact memory model, 84, 87
Compare instructions, 401
Comparing register to zero, 322
Comparing strings, 371
Compatibility
IBlel languages, xxiii

language compilers, 425

other assemblers, 424

upward, 257
Compilers, using with MASM, xix

See also BASIC compiler, C compiler,

etc

Conditional directives

assembly directives, 40, 199, 220

assembly passes, 201, 205

error directives, 199, 220

macro arguments, 202, 203, 207, 208

nesting, 200

operators, 226

symbol definition, 201, 207

value of true and false, 200, 206
Conditional-error directives, 204
Conditional-jump instructions, 335,

400

Configuration strategy, 7
.CONgST directive, 89
Constants, 69, 273, 327
Control data, coprocessor, 392
CONTROL-BREAK, 23
CONTROL-C, 23
Conventions for manual, xxiv
Conversion, binary to decimal, 318
Converting data sizes, 292
Coprocessor

8086 family, 258

architecture, 379

control data, 392

directives, 75

emulator, 33

loading data, 389

loading pi, 392

453

Index

Coprocessor (continued)
no-wait instructions, 406
operands, 382
/R options, 30
registers, 268
See also 8087, 80386, etc.

Copying data, 289

CREF

command line, 53
cross-reference listing file, 53
described, 53
development cycle, in, 13
directive (.CREF), 249
error messages, 449
exit codes, 450
invoking, 54
prompts, 54
summary, 17
Cross-reference files
comparing with listing, 43
output, 24
specifying, 35
ee also CREF
CS: override, 37
CS Register, 263
@ curseg equate, 90
Curseg equate, 90
Customer support, xxviii
CWD instruction, 292
CWDE instruction, 293
CX Register, 265

D option, 32, 431
AA instruction, 319
DAS instruction, 319
Data bus, 257
Data conversion, 292
DATA directive, 15, 89
DATA? directive, 89
@ data equate, 91
Data equate, 91
Data segments
defining, 89
developing programs, 15, 16
initializing, 15, 112
registers, 264
See also Segments
Data-definition directives, 123
@ datasize equate, 87, 91
Datasize equate, 87, 91
DB directive, 123, 124, 127
DD directive, 123
Debugging. See CodeView Debugger
DEC instruction, 309, 310
Decimal, packed BCD numbers, 316

454

Decimal radix, 71
Decrementing, 309
Defaults
radix, 71
segment names, 88, 93
segment registers, 109
simplified segment, 92
types, 195
Defining symbols from command line,
32

e

Destination string, 366
Development cycle, 11
Device drivers, 11, 270
Devices, 24
DF directive, 123, 126
DGROUP group name

COMM directive, with, 167

DOSSEG, with, 113

simplified segments, with, 86, 89, 92
Direction flag, 268, 365
Directives

.186, 76

.286, 76, 412

.286P, 76

287,173,177, 132, 388

.386, 76, 88, 98, 412

.386P, 76

.387,73,77, 132, 388

.8086, 75

.8087, 73,77, 132, 388

ALIGN, 138, 257

ALPHA, 96

ASSUME, 15, 107, 109, 181

.CODE, 15, 89

COMM , 159, 166

COMMENT, 67

conditional. See Conditional

directives

.CONST, 89

.CREF, 249

DATA, 15, 89

DATA?, 89

data definition, 123

DB, 123, 124, 127

DD, 123

defined, 66

DF, 123, 126

DOSSEG, 15, 85, 96

D%, 124, 126, 130

DT, 124, 126, 130

DW, 123, 124, 128

ELSE, 200

END, 15, 79, 88, 111

ENDIF, 200

ENDM, 218, 223, 224, 225

ENDP, 121, 347, 359

Directives (continued)
ENDS, 95, 97, 143
EQU, 43, 162, 215, 216
equal sign (=), 32, 162, 213
ERR, 205

ERR1, 205

ERR2, 205

ERRB, 207

.ERRDEF, 207
'ERRDIF, 208

ERRE, 206

ERRIDN, 208

'ERRNB, 207
'ERRNDEF, 207
'ERRNZ, 206

EVEN, 138, 257
EXITM, 222, 223
EXTRN, 121, 159, 161
FARDATA, 89
.FARDATA?, 89

full segment, 83

global, 159, 164
GROUP, 15, 83, 106, 181
IF, 40, 200

1F1, 201, 241

IF2, 201, 241

IFB, 202

IFDEF, 201

IFDIF, 203

IFE, 200

IFIDN, 203

IFNB, 202

IFNDEF, 201
INCLUDE, 217, 235, 237
INCLUDELIB, 169
instruction set, 75

IRP, 224

IRPC, 225

LABEL, 122, 136
LALL, 220, 247
LFCOND, 40, 246
LIST, 245

LOCAL, 220, 223
MACRO, 218

MODEL, 15, 75, 87, 162
'MSFLOAT, 75, 13
NAME, 165

ORG, 16, 111, 137
%OUT, 241

PAGE, 243

PROC, 92, 121, 346, 359
PUBLIC, 121, 122, 159, 160
PURGE, 237

RADIX. 71

RECORD 148

REPT, 223

Index

Directives (continued)
SALL, 220, 247
SEGMENT, 95, 97, 181
SEQ, 96
SFCOND, 40, 246
simplified segment, 15, 83
STACK, 15, 88
STRUC, 143
SUBTTL, 243
.TFCOND, 40, 246
TITLE, 165, 242
XALL, 220, 247
XCREF, 249
XLIST, 245
Disk setup, 9
Displacement, 278
DIV instruction, 314
Divide overflow interrupt, 355
Dividing, 314
Dividing by constants, 327
Division operator (/), 175
Do
emulating C statement, 343
emulating FORTRAN statement,
343
Documentation feedback card, xxviii
Dollar sign ($)
location counter symbol, 137
symbol names, used in, 68
DOS
80386 under, 269
devices, 24
functions, 15, 356
interrupts, 356
Program Segment Prefix (PSP), 16
segment-order convention, 85
SET command, 27, 28
DOSSEG directive, 15, 85, 96
DOSSEG linker option, 86
ots 1), xxvi
Double shifts, with 80386 processor,
330
DQ directive, 124, 126, 130
DS registers, 264
Dsymbol option, 32
T directive, 124, 126, 130
DT Register, 265
Dummy parameters
macros, 218, 219, 234
repeat blocks, 223
Dummy segment definitions, 105
DUP operator, 135, 144, 145, 150
DW directive, 123, 124, 128
DWORD align type, 98
DWORD type specifier, 119
DX Registers, 265

455

Index

éE option, 33, 132
flective address, 276, 279
Ellipsis dots (...), xxvi
ELSE directive, 200
Emulator, coprocessor, 33
Encoded real numbers, 73, 132
Encoding of instructions, 273
END directive, 15, 79, 88, 111
ENDIF directive, 200
ENDM directive, 218, 223, 224, 225
ENDP directive, 121, 347, 359
ENDS directive, 95, 97, 143
ENTER instruction, 354
Environment variables

INCLUDE, 8, 26, 236

INIT, 8

LIB, 8

LINK, 8

MASM, 8, 27

PATH, 8

TMP, 8
EQ operator, 180
EQU directive, 43, 162, 215, 216

Equal sign (=), directive, 32, 162, 213

uates

defined, 213

nonredefinable, 214

predefined, 90

redefinable, 213

string, 216
.ERR directive, 205
.ERRI1 directive, 205
ERR2 directive, 205
.ERRB directive, 207
.ERRDEF directive, 207
ERRDIF directive, 208
.ERRE directive, 206
ERRIDN directive, 208
ERRNB directive, 207
.ERRNDEF directive, 207
ERRNZ directive, 206
Error lines, displaying, 41
Error messages

assembly listing, 43

CREF, 451

MASM, 432
ES registers, 264
ESC instruction, 412
EVEN directive, 138, 257
Exclamation point (!), operator, 229
.EXE format, 10, 14, 42
EXE2BIN

development cycle, in, 13

summary, 19
Exit codes

CREF, 450

456

Exit codes (continued)
MASM, 448

EXITM directive, 222, 223

Exponent, part of real-number
constant, 73

Exponentiation, with 8087-family
coprocessors, 404

Expression operator (%), 230

Expressions, defined, 173

External names, 36

External symbols, 161

Extra segment, 264

EXTRN directive, 121, 159, 161

F2XM1 instruction, 404
FABS instruction, 398
FADD instruction, 394
FADDP instruction, 394
False conditionals, listing, 40, 246
Far pointers, 128, 296
F AR type specifier, 120
FARDATA directive, 89
JFARDATA? directive, 89
fardata equate, 91
fardata? equate, 91

Fardata equate, 91
Fardata? equate, 91
Fatal errors, 205
FBLD instruction, 390
FBSTP instruction, 390
FCHS instruction, 398
FCOM instruction, 401
FCOMP instruction, 402
FCOMPP instruction, 402
FCOS instruction, 405
FDIV instruction, 396
FDIVP instruction, 397
FDIVR instruction, 397
FDIVRP instruction, 397
FIADD instruction, 394
FICOM instruction, 402
FICOMP instruction, 402
FIDIV instruction, 397
FIDIVR instruction, 397
Fields

assembler statements, 65

bit, 143, 148

records, 148, 151

structures, 144, 146
FILD instruction, 390
@ filename equate, 91
Filename equate, 91
Files

AUTOEXECBAT, 10, 27, 28

binary, 11

Files {continued
buﬂ(er, 31 4
cross-reference, 24, 35
include, 26, 35, 168, 235
library, 13, 18
listing, 24, 35, 242
object, 13, 18
PACKING.LST, 7, 9
SETUP.BAT, 9
source. See Source files
specifications, 235

Filling strings, 373

FIMUL instruction, 396

FINIT instruction, 406

First-in-first-out (FIFO), 298

FIST instruction, 390

FISTP instruction, 390

FISUB instruction, 395

FISUBR instruction, 395

Flags
loading and storing, 292
register, 266

FLD instruction, 389

FLD1 instruction, 392

FLDCW instruction, 393

FLDL2E instruction, 392

FLDL2T instruction, 392

FLDLG?2 instruction, 392

FLDLNZ2 instruction, 392

FLDPI instruction, 392

FLDZ instruction, 392

Floating-point format
compatibility, 424

Floating-point numbers, 30, 33

See also Real numbers
FMUL instruction, 396
FMULP instruction, 396

For, emulating high-level-language

statement, 343
FORTRAN compiler, 131

FORTRAN language, mentioned,

343-354
Forward references
defined, 191
during a pass, 49
labels, 192
variables, 194

Forward slash (/), operator, 175

FPATAN instruction, 405
FPREM instruction, 398, 404
FPTAN instruction, 405
Fraction, 73

FRNDINT instruction, 398
FS registers, 264

FSCALE instruction, 398
FSIN instruction, 405

Index

FSINCOS instruction, 405
FSQRT instruction, 398
FST instruction, 389
FSTCW instruction, 393
FSTP instruction, 389
FSTSW instruction, 393
FSUB instruction, 394
FSUBP instruction, 395
FSUBR instruction, 395
FSUBRP instruction, 395
FTST instruction, 402
Full segment directives, 83
Functions

C, 346

Pascal, 346
FWAIT instruction, 388
FWORD type specifier, 119
FXAM instruction, 404
FXCH instruction, 389
FXTRACT instruction, 398
FYL2X instruction, 404
FYL2XP1 instruction, 405

GE operator, 180
General-purpose registers, 264
Getting strings from ports, 375
Global directives

defined, 159

illustrated, 164
Global scope, 159
Global symbols, 160, 161
GROUP directive, 15, 83, 106, 181
Group-relative segments, 107
Groups

assembly listing, 46

defined, 106

illustrated, 107

size restriction, 107

See also DGROUP group name
GS Registers, 264
GT operator, 180

option, 34
ard disk setup, 8

Hardware interrupts, 358

Help, 34

Hexadecimal radix, 71

HIGH operator, 184

High-level languages, memory model,
84, 87

High-level-language compilers, xix

HLT instruction, 412

Huge memory model, 85, 87

457

Index

I option, 35, 236
M languages, compatibility, xxiii

IDIV instruction, 314
IEEE format, 73, 131, 132, 388
IF directives, 40, 200
IF'1 directive, 201, 241
IF2 directive, 201, 241
IFB directive, 202
IFDEF directive, 201
IFDIF directive, 203
IFE directive, 200
IFIDN dlrectlve, 203
IFNB directive, 202
IFNDEF directive, 201
Immediate operands, 273
Implied operands, 383
Impure code, checking for, 37
IMUL instruction, 312, 313, 314
IN instruction, 303
INC instruction, 307
INCLUDE directive, 217, 235, 237

INCLUDE environment variable, 8, 26

236
Include files, 235
assembly listings, 43
communal variables, 168
setting search paths, 26, 35
using, 235
INCLUDELIB directive, 169
Incrementing, 307
Indeterminate operand, 136
Index checking, 361
Index operator, 177
Index registers, 278, 282
Indexed operands, 278
INIT environment variable, 8
Initializing
data segments, 15
segment registers, 111
variables, 124
INS instruction, 375

Instruction-pointer register (IP), 266,

333

Instructions

AAA, 317

AAD, 318

AAM, 317

AAS, 317

ADC, 307, 309

ADD, 307, 309

AND, 320, 321, 340

bit scan, 324

bit test, 323, 341

BOUND, 361

BSF, 324

BSR, 324

458

Instructions (continued)
BT, 341
BTC 341
BTR, 341
BTS, 341
CALL, 122, 298, 347
CBW, 292
CDQ, 293
CLC, 309, 311
CLD, 365
CLI, 358
CMP, 335, 336, 345
CMPS, 371
compare, 401
conditional jump, 333, 400
CWD, 292
CWDE, 293
DAA, 319
DAS, 319
DEC, 309, 310
defined, 66
DIV, 314
ENTER 354
ESC, 412
F2XMl, 404
FABS, 398
FADD, 394
FADDP, 394
FBLD, 390
FBSTP, 390
FCHS, 398
FCOM, 401
FCOMP, 402
FCOMPP, 402
FCOS, 405
FDIV, 396
FDIVP, 397
FDIVR, 397
FDIVRP, 397
FIADD, 394
FICOM, 402
FICOMP, 402
FIDIV, 397
FIDIVR, 397
FILD, 390
FIMUL, 396
FINIT, 406
FIST, 390
FISTP, 390
FISUB, 395
FISUBR, 395
FLD, 389
FLD1, 392
FLDCW, 393
FLDL2E, 392
FLDL2T, 392

Instructions (continued)
FLDLG2, 392
FLDLN2, 392
FLDPI, 392
FLDZ, 392
FMUL, 396
FMULP, 396
FPATAN, 405
FPREM, 398, 404
FPTAN, 405
FRNDINT, 398
FSCALE, 398
FSIN, 405
FSINCOS, 405
FSQRT, 398
FST, 389
FSTCW, 393
FSTP, 389
FSTSW, 393
FSUB, 304
FSUBP, 395
FSUBR, 395
FSUBRP, 395
FTST, 402
FWAIT, 388
FXAM, 404
FXCH, 389
FXTRACT, 398
FYL2X, 404
FYL2XP1, 405
HLT, 412
DIV, 314
IMUL, 312, 313, 314
IN, 303
INC, 307
INS, 375
INT, 274, 298, 356, 359
INTO, 356, 358
IRET, 298 357, 359
IRETD, 359
JC, 308, 311
Jcondition, 336, 338, 340, 357
JOXZ, 335, 344, 371, 372
JEXCZ, 343
JMP, 16, 109, 192, 333
LAHF, 292
LDS, 296
LEA, 295
LEAVE, 354
LES, 296, 371
LFS, 297
LGS, 297
LOCK, 412
LODS, 374
logical, 320
LOOP, 343

Index

Instructions (continued)
LOOPE, 343
LOOPNE, 343
LOOPNZ, 343
LOOPZ, 343
LSS, 297
MOV, 109, 289, 413
MOVS, 368
MOVSX, 294
MOVZX, 294
MUL, 312
NEG, 309, 310
NOP, 192, 411
NOT, 323
OR, 320, 322
OUT, 303
OUTS, 375
POP, 109, 298
POPA, 302
POPAD, 303

-POPD, 302
POPF, 301
POPFD, 302
program-flow, 333
Erotected mode, 413

USH, 109, 298

PUSHA, 302
PUSHAD, 303
PUSHD, 302
PUSHF, 301
PUSHFD, 302
RCL, 326
RCR, 326
REP, 367, 373, 376
REPE, 367, 371, 372
REPNE, 367, 371, 372
REPNZ, 367, 371, 372
REPZ, 367, 371, 372
RET, 121, 274, 298, 350
RETF, 348
RETN, 348
ROL, 326
ROR, 326
SAHF, 292
SAL, 326
SAR, 326
SBB, 309, 311
SCAS, 370
SETcondition, 345
SHL, 326
SHLD, 330
SHR, 326
SHRD, 330
STD, 365
STI, 358
STOS, 373

459

Index

Instructions (continued)

SUB, 309, 310, 311, 337

TEST, 335, 340, 345

timing of, 273

WAIT, 387, 412

XCHG, 290

XLAT, 290

XOR, 320, 322
Instruction-set directives, 75
INT instruction, 274, 298, 356, 359
Integers, 70, 393
Integers, with coprocessor, 388
Interrupt-enable flag, 268, 357
Interrupts, 355
INTO instruction, 356, 358
I/O protection level flag, 268

Registers, 266

IRET instruction, 298, 357, 359
IRETD instruction, 359
IRP directive, 224
IRPC directive, 225
Italics, xxcvi

JC instruction, 308, 311, 339
Jcon:;lsii;ion instruction, 336, 338, 340,
JCOXZ instruction, 335, 344, 371, 372
JEXCZ instruction, 343

JMP instruction, 16, 109, 192, 333
JO, 308, 339, 358

Jump tables, 334

Jumping conditionally, 335

Keystroke macros, 28

option, 35
ABEL directive, 122, 136
Labels
defined, 120
macros, in, 221
near code, 120
procedures, 121
instruction, 292
.LALL directive, 220, 247
Language compiler compatibility, 425
Large memory model, 85, 87
LDS instruction, 296
LE operator, 180
LEA instruction, 295
Learning assembly language, xxiii
LEAVE instruction, 354
LENGTH operator, 188
LES instruction, 296, 371

460

.LFCOND directive, 40, 246
LF'S instruction, 297
LGS Instruction, 297
LIB
development cycle, in, 13
environment variable, 8
summary, 18
Library files, 13, 18
License, 7
Line number data, 42
Line numbers in MASM listings, 42
LINK
development cycle, in, 13
environment variable, 8
summary, 18
.LIST directive, 245
Listing
false conditionals, 246
files, 24, 35, 242
format
addresses, 43
code, 42
cross reference, 55
described, 42
EQU directive, 43
errors, 43
groups, 46
include files, 43 —
LOCK directive, 43
macro expansions, 43
macros, 45
Pass 1, reading, 49
records, 45
REP directive, 43
segment override, 43
segments, 46
structures, 45
symbols, 47
macros, 247
Pass 1,creating, 32
subtitles in, 243
suppressing output, 245
suppressing tables, 37
tables, suppressing, 37
Literal-character operator (!), 229
Liter231-text operator (< >), 202, 216,
28
Loading constants to coprocessor, 391
Loading coprocessor data, 389
Loading pointers, 297
Loading values from strings, 374
LOCAL directive, 220, 223
Local scope, 159
Local symbols in macros, 220
Local variables, in procedures, 351
Location counter, 119, 137, 139, 190

Location counter symbol, 137
LOCK directive, assembly listing, 43
LOCK instruction, 412
LODS instruction, 374
Logarithms, 404
Logical bit operations, 320
Logical instructions, 320
Logical operators, 320
LOOP instruction, 343
Loop

while equal, 343

while not equal, 343
LOOPE instruction, 343
LOOPNE instruction, 343
LOOPNZ instruction, 343
LOOPZ instruction, 343
LOW operator, 184
LSS instruction, 297
LT operator, 180

Macro Assembler. See MASM
Macro comment operator (;;), 231
MACRO directive, 218
Macro expansions, assembly listings, 43
Macros
argument testing, 203, 208
arguments, 218, 219, 234
assembly listing, 45
calling, 219
communal variables, 168
compared to procedures, 218
defined, 213, 217
efficiency penalty, 213
exiting early, 222
expansions in listing, 247
keystroke, 28
local symbols, 220
nested, 227, 232
operators, 226
parameters, 218, 219, 234
recursive, 203, 231
redefining, 234, 237
removing from memory, 237
text, 216
MAKE, development cycle, in, 13
MASK operator, 153
Masking bits, 320, 340
MASM
command line, 23
cross-reference file, 53
described, 23
development cycle, in, 13
environment variable, 8, 26, 27
error messages, 430
exit codes, 448

Index

MASM (continued)

invoking, 23

options. See Options

prompts, 25

summary, 17
Math coprocessors, 30, 258, 379
Medium memory model, 84, 87
Memory access, coordinating, 387
MEMORY combine type, 100
Memory models, 84
Memory operands, 276
Memory operands, coprocessor, 384
Memory requirements, xx
Messages

error. See Error messages

output, 28

status, 429

suppressing, 38
Messages to screen, 241
Microsoft Binary format, 131, 132
Microsoft Binary Real format, 73, 388
Minus operator (-), 175
Mixed-languages programs, 83, 96
/ML option, 36, 159

option, MASM, 104
emonics

defined, 66

reserved names, as, 69
MOD operator, 175
MODEL directive, 15, 75, 87, 162
Modes, addressing. See Addressing

modes

Modular programming, 159
Modulo division, 398
Modulo division operator, 175
MOV instruction, 109, 289, 413
Moving strings, 368
MOVS instruction, 368
MOVSX instruction, 294
MOVZX instruction, 294
MS-DOS, version requirements, xx
MSFLOAT directive, 75, 132

K/IUMUL option, 36

instruction, 312

Multiple modules, 164
Multiplication operator (*), 283
Multiplication operators, 175
Multiplying, 312

Multiplying by constants, 327
Multiword values, shifting, 329

/MX option, 36, 159
/MX option, MASM, 104

N option, 37
{\IANBE directive, 242

461

Index

Names

Assigning, 68

external, 36

public, 36

reserved, 68, 235, 237
NE operator, 180
Near pointers, 128, 295
NEAR type specifier, 120
NEG instruction, 309, 310
Negating, 310
Nested-task flag, 268
Nesting

conditionals, 200

DUP operators, 135

include files, 236

macros, 227, 232

procedures for Pascal, 354

segments

115
New features, 419
Nonredefinable equates, 214
NOP instruction, 192, 411
NOT instruction, 323
NOT operator, 179
Notational conventions, xxiv
NOTHING, ASSUME, 109
No-wait coprocessor instructions, 406
Null class type, 105
Null string, 220
Numbers. See Real numbers, signed
numbers, etc.

Object files, 13, 18
Object records, 85, 169
Octal radix; 71
OFFSET operator, 92, 185
OFFSET operator, with group-relative
segments, 107
ON GOSUB, emulating BASIC
statement, 334
Opcode. See Instructions
Operands
based, 278
based indexed, 278
based7indexed with displacement,
278
classical stack, 383
coprocessor, 382, 383
defined, 66, 173, 273
immediate, 273
implied, 383
indeterminate, 136
indexed, 278
indirect memory, 273, 276, 278
location counter, 190

462

Operands (continued)
memory, 273, 276, 278
record field, 154
records, 151
register, 261, 273, 274
register indirect, 278
relocatable, 276
strong typing, 194
structures, 146
undefined, 136

Operators
addition, 175
AND, 179
arithmetic, 175
bitwise, 179
calculation, 174
defined, 173
-division (/), 175
DUP, 135, 144, 145, 150
EQ, 180
expression (%), 230
GE, 180
GT, 180
HIGH, 184
index, 177
LE, 180
LENGTH, 188
literal character (!), 229
literal text (< >), 228
logical, 320
LOW, 184
LT, 180
macro comment (;;), 231
MASK, 153
minus (—7), 175
MOD, 175
multiplication (*), 175
NE, 180
NOT, 179
OFFSET, 92, 185
OR, 179
plus (+), 175
precedence, 189
PTR, 182, 193
relational, 180
SEG, 106, 167, 184
segment override (:). See : (segment-

override operator)
shift, 178
SHL, 178
SHORT, 183, 192
SHR, 178
SIZE, 188
structure-field name, 176
substitute (&), 226
subtraction, 175

——

Operators (continued)
THIS, 183
.TYPE, 186
TYPE, 187
WIDTH, 153
XOR, 179
Options
/A, 30, 96
/B, 31, 96
C, 35
/D, 32, 431
/DOSSEG linker, 86
/Dsymbol, 32
/E, 33, 132

/R, 30, 132
/S, 30, 96
summary, 29
/T, 38,430
using, 23
/V, 38, 429
/W, 39, 195
/X, 40, 246

2

Z1, 41
OR instruction, 320, 322
OR operator, 179
ORG directive, 16, 111, 137
%O0UT directive, 241
OUT instruction, 303
Output messages to screen, 241
OUTS instruction, 375
Overflow flag, 268, 308
Overflow interrupt, 355
Override, CS:, 37

éP option, 37

acked BCD numbers, 127, 316, 319
See also BCD (binary coded decimal)

numbers

Packed decimal integers, 70

Packed decimal numbers, 72

PACKING.LST file, 7, 9

PAGE align type, 98

Page breaks in assembly listings, 243

Index

PAGE directive, 243
Page format of listing files, 242
PARA align type, 98
Parameters
defining in procedures, 349
macros, 218, 219, 234
repeat blocks, 223
Parity flag, 267
Partial remainder, 398
Pascal compiler, 131
Pascal language, mentioned, 334-354
Pass 1 listing, 32, 49
PATH environment variable, 8
PC-DOS. See DOS and MS-DOS
Percent sign (%)
expression operator, 230
symbol names, used in, 68
Period (.), 68
Phase errors, 32, 49
Pi, loading to coprocessor, 392
Placeholders, xxvi
Plus sign (+), operator, 175
Pointers
defining, 128
loading, 295
POP instruction, 109, 298
POPA instruction, 302
POPAD instruction, 303
POPD instruction, 302
POPF instruction, 301
POPFD instruction, 302
Ports
defined, 303
getting strings from, 375
sending strings to, 375
Precedence of operators, 189
Precedence, options, 27
Preserving case sensitivity, 36
PRIVATE combine type, 101
PROC directive, 92, 121, 347, 359
PROC type specifier, 120, 162
Procedures .
compared to macros, 218
defining labels, 121
Pascal, 346
using, 346
Processor directives, 75
Processors. See Coprocessors
Product Assistance Request form,
XXViil
Program Segment Prefix (PSP), 16
Program-development cycle, 11
Program-flow instructions, 333
Prompts, with CREF, 54
Protected mode, 258, 259, 407
Protected-mode instructions, 413

463

Index

Pseudo-op. See Directives
PTR operator, 182, 193
PUBLIC combine type, 100
PUBLIC directive, 121, 159, 160
Public names, 36

Public symbols, 160
PURGE directive, 237
PUSH instruction, 109, 298
PUSHA instruction, 302
PUSHAD instruction, 303
PUSHD instruction, 302
PUSHF' instruction, 301
PUSHFD instruction, 302

Question mark (?), 68
QuickBASIC com 1ler 131
Quotation marks), xxvii
QWORD type specifier, 119

/R option, 30, 132
.RADIX dlrectlve, 71
Radixes
binary, 71
default, 71
specifiers, 71
RCL instruction, 326
RCR instruction, 326
Real mode, 257, 259, 411
Real numbers
arithmetic calculations, 393
coprocessor, 388
designator (R), 130
encoding, 73, 132
format, 30, 33 73
format compatlblhty, 424
RECORD directive, 148
Record type, 148
Records
assembly listing, 45
declarations, 148
defining, 143, 150
field operands, 154
fields, 151
initializing, 148, 150, 151
MASK operator, 153
object, 85
operands, 151
variables, 150
WIDTH operator, 153
Recursive macros, 203, 231
Redefinable equates, 213
Redefining interrupts, 358
Redefining macros, 234
Registers

464

Registers (continued)
80386, 261
80386, special, 414
8087 family, 268
accumulator, 264
AX, 264
base, 278, 282
BP, 265
BX, 265
cogrocessor, 268, 380, 381

63

CX, 265
DI, 265
DS, 264
DX, 265
ES, 264
flags, 266
FS, 264
general purpose, 264
GS, 264
index, 278, 282
IP, 266, 333
mixing 16-bit and 32-bit, 283
operands, 261, 273, 274
operands, coprocessor, 385
register-pop operands, coprocessor,
386
reserved names, as, 69 -
segment, 111, 263
SI, 265
SP, 266
special, 414
SS, 264
Relational operators, 180
Relocatable operands. See Memory
operands
REP directive, assembly listing, 43
REP instruction, 367, 373, 376
REPE instruction, 367 371 372
Repeat blocks
arguments, 223
defined, 213, 223
parameters, 223
repeat for each argument, 224
repeat for each character of string,
225
repeat for specified count, 223
Rep%at, emulating Pascal statement,
43 "“
Repeat, using 8086-family string
functions, 365
REPNE instruction, 367, 371, 372
REPNZ instruction, 367, 371, 372
Reporting problems, xxviii
REPT directive, 223
REPZ instruction, 367, 371, 372

Reserved names, 68, 235, 237
Resident programs, 270
Resume flag, 268

RET instruction, 121, 274, 298, 346
RETF instruction, 348
RETN instruction, 348

ROL instruction, 326
ROMable code, 11

ROR instruction, 326
Rotating bits, 325

Routines, FORTRAN, 346

/S option, 30, 96
SAHF instruction, 292
SAL instruction, 326
SALL directive, 220, 247
SAR instruction, 326
SBB instruction, 309, 311
Scaling, 296
Scaling by powers of two, 398
Scaling factor, 283
SCAS instruction, 370
Search paths
include files, 236
setting, 26, 35
Searching strings, 370
Sections in assembly listings, 243, 244
SEG operator, 106, 167, 184
SEGMENT directive, 95, 97, 181
Segment-order method, 96
Segments
16-bit, 88, 98
32-bit, 88, 98, 260, 300 -
absolute, 101
alignment, 98, 138
assembly listing, 46
combine types, 100
defined, 83
definition, 95
developing programs, 15, 16
extra, 264
group-relative offset, 107
groups, 106
1nitializing, 15
MEMORY, 100
nesting, 115
ordering, 30, 104
ordering, compatibility, 426
override, assembly listings, 43
override operator (:). See
: (segment-override operator)
registers, 263
selectors, 260
size, 98
types, 98

Index

Selectors, segment, 260
Semicolons (;;), operator, 231
Sending strings to ports, 375
SEQ directive, 96
Serious warnings, 39
SET command (DOS), 27, 28
SET condition instruction, 345
Setting file buffer size, 31
Setting register to zero, 323
Setup, disk, 8, 9
SETUP.BAT file, 9
Severe errors, 39, 205
SFCOND directive, 40, 246
Shift operators, 178
Shifting bits, 325
Shifting multiword values, 329
SHL instruction, 326
SHL operator, 178
SHLD instruction, 330
SHORT operator, 183, 192
SHR instruction, 326
SHR operator, 178
SHRD instruction, 330
SI registers, 265
Sign flag, 267, 311
Signed numbers, 124, 292, 308, 310
Sign-extending, 294
Simplified segment defaults, 92
Simplified segment directives, 15, 83
SIZE operator, 188
Small capitals, xxvii
Small memory model, 84, 87
Source files
defined, 14
format, 65
illustrated, 14, 16
include, 235
Source modules, 13, 159
Source string, 366
SP registers, 266
Special registers, 414
Square root, 398
SS registers, 264
STACK combine type, 100
Stack
defined, 298
.STACK directive, 15, 88
Stack
frame, 354
operands, coprocessor, 383
registers, 382
segment, 15, 88, 100, 264
segment, initializing, 114
use of, 301
Standard output device, 28, 241, 431
Statement fields, 65

465

Index

Statements, defined, 65
Statistics, 38, 429
Status messages, 429
STD instruction, 365
STI instruction, 358
Storing coprocessor data, 389
STOS instruction, 373
Strict type checking, 425
Strings

comparing, 371

constants, 74, 273

defined, 365

destination strings, 366

equates, 216

filling, 373

getting from ports, 375

loading values from, 374

moving 368

null, 220

ports, transfer from and to, 375

searching, 370

source, 366

structures, in, 144

variables, 127
Strong typing, xix, 194
STRUC directive, 143
Structure type, 143
Structure-field-name operator, 176
Structures

assembly listing, 45

declarations, 143

definitions, 143, 145

fields, 146

initializing, 143, 145, 146

operands, 146

overview, 143, 147

variables, 145
SUB instruction, 309, 337
Subprograms, BASIC, 346
Subroutines, BASIC, 346
Substitute operator (&), 226
Subtitles in listings, 243
Subtracting values, 309
Subtraction operator, 175
SUBTTL Directive, 243
Summary

CodeView, 20

CREF, 17

CV, 20

EXE2BIN, 19

LIB, 18

LINK, 18

MASM, 17

options, 29
Switch, emulating C statement, 334
Symbol space, 429

466

Symbolic information, 41
Symbols
assembly listing, 47
communal, 159, 165
defined, 67
defining from command line, 32
external, 161
global, 160, 161
location counter, 137
public, 160
relocatable operands, 276
SYMDESB, 41, 160
Syntax conventions, xxiv
System requirements, xx

T option, 38, 430

BYTE type specifier, 119
Temporary real format, 134
Terrr2)i7nate-and-stay-resident programs,

0
TEST instruction, 335, 340, 345
Testing bits, 341
Text egitor, 13, 14, 28
Text equates. See String equates
Text Macros, 216
.TFCOND directive, 40, 246
THIS operator, 183
Timing of instructions, 273
Tiny memory model, 84
TITLE directive, 242
TMP environment variable, 8
Transcendental calculations, 404
Trap flag, 268, 357
Trigonometric functions, 404
Tutorial books, assembly language,
xxiil

Two’s complement, 124
Type

ABS, 161

align, 98, 102

checking, strict, 425

class, 104

combine, 100, 101

data, 42

null class, 105

operand matching, 194
TYPE operator, 186
TYPE operator, 187
Type

operators, 182

PROC, 162

record, 148
Type specifiers, 119
Type

specifiers, 162

Type (continued)
structure, 143
use, 98
USE, 282

Unary minus, 175

Unary plus, 175

Undefined operand, 136

Underscore F_ , 68

Unpacked BCD numbers, 127, 316
See also BCD numbers

Unsigned numbers, 124, 292, 308, 310

Updates, xxviii

Uppercase. See Case

Upward compatibility, 257

Use type, 98

USE type, 282

ariables
communal, 165
defined, 123
external, 161
floating point, 130
initializing, 124
integer, 124
local, 351
pointer, 128
public, 160
real number, 130
record, 150
string, 127
structure, 145
Vertical bar (]), xxvi
Virtual 8086 Mode flag, 268

O’ option, 38, 429

W option, 39, 195
'AIT instruction, 387, 412
Warning levels, 39, 195
Weak typing in other assemblers, 195
While, emulating high-level-language
statement, 343

WIDTH operator, 153
Width, structures, 148
WORD align type, 98
WORD type specifier, 119

/X option, 40, 246
XALL directive, 220, 247
XCHG instruction, 290
XCREF directive, 249
XENIX, 259

Index

XENIX compatibility
/L and b/C, 36
, 3

B3
pathnames, with / (forward slash),
236
SI, 30
AT instruction, 290
XLIST directive, 245
XOR instruction, 320, 322
XOR operator, 179

Z option, 41

ero flag, 267
Zero-extending, 294
/ZI option, 41

467

