iAPX 86,88 FAMILY UTILITIES
USER’S GUIDE
FOR DOS SYSTEMS

Order Number: 122395-001

Copyright © 1985 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051

In the United States, additional copies of this manual or other Intel literature may be obtained from:
Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local Intel sales office. For
your convenience, international sales office addresses are printed on the back cover of this document.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this
document. Intel Corporation makes no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other
circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is subject
to restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to the government, in accordance with
the software license agreement as defined in FAR 52.227-7013.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel Corporation.
Intel Corporation retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

Above iDBP intgligent Programming MAPNET QueX
BITBUS iDIS Intellec MCS QUEST
COMMputer iLBX Intellink Megachassis Quick-Erase
CREDIT im iOSP MICROMAINFRAME Quick-Pulse Programming
Data Pipeline iMDDX iPDS MULTIBUS Ripplemode
ETOX iMMX iPSC MULTICHANNEL RMX/80
FASTPATH Inboard iRMK MULTIMODULE RUPI
GENIUS Insite iRMX ONCE Seamless

A Intel iSBC OpenNET SLD

i intel iSBX orP SugarCube
2ICE inteIBOS iSDM PC BUBBLE UPI

ICE Intel Certified iSXM Plug-A-Bubble VLSIiCEL
iCEL Intelevision KEPROM PROMPT 4-SITE

ics inteligent Identifier Library Manager Promware

Copyright © 1988, Intel Corporation, All Rights Reserved

REV.

REVISION HISTORY

DATE

APPD.

-001

Original issue.

6/85

B.N.

Preface

This manual describes how to use the iAPX 86,88 Family utilities:
. LINK86

. CREF86
. LIB86

. LOC86
. OH86

These products run under the DOS operating system. They are used by programmers
developing programs with ASM86, ASM89, PL/M-86, Pascal-86, Fortran-86, or any
other language translator that produces object code compatible with the iAPX 86,88
Family of processors. The iAPX 86,88 Family of processors includes 8086, 8088, 8087,
and 8089 processor chips. Because the 8086 is the first member of this family, this
manual uses 8086 generically to represent the entire family.

This manual presumes familiarity with the conventions of the operating system under
which the iIAPX 86,88 utilities are being executed. It also presumes familiarity with
the basic requirements of individual languages and translators.

This manual is divided into the following chapters:

. Chapter 1, Introduction: a summary of the relationship among the utilities and
basic concepts governing their use

. Chapter 2, LINK86: how to invoke, use the controls for, and read the printed
listing from LINK86

. Chapter 3, CREF86: how to invoke, use the controls for, and read the output
listing from CREF86

. Chapter 4, LIB86: how to invoke and use the commands for LIB86

. Chapter 5, LOC86: how to invoke, use the controls for, and read the printed
listing from LOC86

. Chapter 6, OH86: how to invoke OH86
. Chapter 7, how to use the utilities under the DOS operating system

This manual also contains several appendixes, meant for quick access to the following
information:

. iAPX 86,88 absolute object file format definitions (Appendix A)
. Hexadecimal-decimal conversion information (Appendix B)

. The effect of available memory on the performance of LINK86, CREF86, L1B86,
and LOC86 (Appendix C)

. Summaries of iAPX 86,88 Family utility controls and error messages:
. LINK&6 (Appendix D)
. CREF86 (Appendix E)
. LIB86 (Appendix F)
. LOC86 (Appendix G)
. OHB86 (Appendix H)

Vi iAPX 86,88 Family Utilities

Once you have gained sufficient familiarity with the basic principles of iAPX 86,88
Family utilities operation, you will find the following publication convenient for quick

syntax reference:

. iAPX 86,88 Family Utilities Pocket Reference for DOS Systems, order number

122397.

Before reading this manual, ensure that you are familiar with the following terms and

conventions.

Notational Conventions

punctuation

UPPERCASE

italic

pathname

directory-name

filename

minimum-size
maximum-size
paragraph
offset

address

other than the following must be entered if required by
the control syntax.

indicates that one and only one of the syntactic items
contained within the braces is required.

indicates that the syntactic item or items contained within
the brackets are optional.

indicates that the preceding syntactic item may be
repeated an indefinite number of times (the ellipsis is often
used within brackets and with a comma “[,...]” to indicate
that preceding item may be repeated, but each repetition
must be separated by a comma)

vertical bar separates various options within the brackets
[]orbraces { }.

indicates that these characters must be entered exactly
as shown.

indicates a meta symbol which may be replaced with an
item that fulfills the rules for that symbol. The actual
symbol may be any of the following:

is a valid designation for a file; in its entirety, it consists
of a directory-name and a filename.

is that portion of a pathname which acts as a file locator
by identifying the device and/or directory containing the
filename.

is a valid name for the part of a pathname which names a
file.

are numbers and must follow Intel standards for number
representation (see PL/M-86 or ASM86). Use the H
suffix for hexadecimal, B suffix for binary, O or Q suffix
for octal and D or nothing for decimal.

Preface Vii

segment name are defined by the 8086 object file formats described in

module-name Appendix A. They may be up to forty characters long

class name and may contain any of the following characters in any

group name order:

overlay name

public symbol A,B,C,D,E,F,G,H, LJ,K,L,M,N,0,P, Q,R, S,

variable name T, UV, X,X,Y,2,0,1,2,3,456,7,89" @,
black black background is used in examples to indicate the

user’s entries.

system-id is a generic label placed on sample listings where an
operating system-dependent name would actually be
printed.
pathname1 are generic labels placed on sample listings where one or
pathname2, ... more user-specified pathnames would actually be printed.
Vx. is a generic label placed on sample listings where the
y p 8

version number of the product that produced the listing
would actually be printed.

Related Publications

The following list provides the manual title and order number for all Intel software
development tools that run on DOS systems. Note that each manual has two formats
and two order numbers. One version of the manual is provided in a binder. This version
is not sold separately; it can only be purchased when purchasing a software product.
The second version, which has a soft cover, is sold separately. Use the soft cover
number when ordering a manual separately.

Manual Title Binder | Soft Cover

ASM86 Assembly Language Reference Manual 122385 122386
ASMB86 Macro Assembler Operating Instructions for | 122390 122391
DOS Systems

ASMB86 Pocket Reference for DOS Systems 122387

Operating System Interface Libraries Manual 122400 122401
8087 Support Library Reference Manual 122405 122406
ic-86 Compiler User’s Guide for DOS Systems 122415 122416
The C Programming Language 122008

PL/M-86 User's Guide for DOS Systems 122410 122411
PL/M-86 Pocket Reference for DOS Systems 122412

Pascal-86 User’s Guide for DOS Systems 122425 122426
Pascal-86 Pocket Reference for DOS Systems 122427

Fortran-86 User’s Guide for DOS Systems 122430 122431
Fortran-86 Pocket Reference for DOS Systems 122432

Table of Contents

Chapter 1 Page
Introduction
Program DeveIOPIMENTcccccvviieiirrieiit ettt e st taesee b e et e e s e e enenensseensaenaen 1-1
Overview Of the UHIEIEScocoiieiiiiiiiee ettt b e e ae b e 1-2
External References and Public Symbolscccoooeieiiiniciiiiececieecev s 1-2
USE O LIDTATIES ..eeiviiteiiierieceieeeceete ettt a e e b et 1-3
Relative AdAIessingcoivieceiiiiiieiececiereenie ettt te st se e e rt et e e e e st e sseeveenseeaeas 1-4
The LINK86/LOC86 Process 1-4
AN BOBO OVEIVIEW ..ottt sttt ettt h et e et e s st enbesareneasaans 1-5
MEIMIOTY oot bbb e st 1-5
8086 Addressing Techniques 1-5
SEEIMENTS .evieiiiieiieieeet ettt ettt st a bt e et et b et ete et et e s e seshe s et ebenbeneesenrenaenean 1-6
Segment ALIZNMENTc.oevieeiiiiieeieeie et erte et e sree e e e taesseesseeeseesseesersseensaesssenes 1-7
Segment COMDBININGoooiiiiiieiie ettt e e e b s 1-8
Segment LOCALING ..cc.ooeeiiiiiiiiiiieienenese ettt et eb e e 1-8
CLASSES ..euiereieuierteetie et ettt sttt et sttt et et e et st eae et e bt s at et e et e et ebeeaben b e et e antenaeentsteantanbesaeenranns 1-9
GTOUPS ettt ettt ettt ettt e h e e b e e et et s bt et et e ebeeb e e at e st sbe e e e bt sbeabeeneenbesaeemeenee 1-9
OVETLAYS ettt ettt ettt e b ettt ek et et ne s bt et e st teene 1-10
Position-Independent Code and Load-Time-Locatable Codec.ccccoovveirenicnenincneniens 1-10
Chapter 2
LINK86
LINKS86 INvoCation LINEcccceiiceiiiiiireiciiieeniieniies ittt sace et sb et et e s s 2-1
LINKSBE CONLIOIS ...eviuriiieiestieieeiereeiesteeteeieste st ete et e e tesesbe et eneaeeentessaneeseassenseeeeneensanenan 2-2
ASSIGN ettt e b etttk ettt s e b et e te et et enterenseaes 2-4
ASSUMEROOT ..ottt ettt sttt b etttk e see st e e e enesbenrene 2-5
BIND/NOBIND ..ottt et 2-6
COMMENTS/NOCOMMENTS ...ttt e 2-7
FASTLOAD/NOFASTLOAD ...ttt 2-8
GROUPOVERLAYS/NOGROUPOVERLAYS ..ot 29
INITCODE ...ttt st s a ettt n et e e
LINES/NOLINES ..ot
MAP/NOMAP ..ottt
MEMPOOL ..ottt sttt ettt sttt b et et
NAME oottt ettt ettt a ettt e st seeae et e aene st eneeaan
OBJECTCONTROLS ..ottt ettt et saa s
ORDER ...ttt ettt ettt a e et n et bene et et et entene bt eaeenebensenn
OVERLAY/NOOVERLAY

PRINT/NOPRINT ..ottt

X iAPX 86,88 Family Utilities

Page

PRINTCONTROLS ..ottt sttt s a b a b eab e sssresbennene 2-19
PUBLICS/NOPUBLCIS ..ottt 2-20
PUBLICSONLY ittt sttt ettt e b e ae b b e e e e st entesbeeseeneeneee 2-21
PURGE/NOPURGEoiiiiiiiiciecn s 2-22
RENAMEGROUPS .ottt et e eeeans 2-23
SEGSIZE ..ot ettt b et n e bt ne st aane e 2-24
SYMBOLS /NOSYMBOLS ...ttt et 2-25
SYMBOLCOLUMNS ettt ettt eae s an et enenee 2-26
TYPE/NOTYPE ..ottt sttt 2-27

LINKSGE'S Print FIle ...voovioiiiieiiieee ettt a st e aveens 2-28
THE HEAAET ..ottt ettt st b e e e s b esttaanbeeseeeaseenseereaannnaans 2-28
The LinK MaD oottt st 2-28
The Group Map oo e s 2-29
The Symbol TaADIE ...cooiiiiiiiii ettt ettt ese e ebe s e 2-30
ErTOr MESSALES .viiveerieiiieiiieii ettt ettt sttt b et b ettt e sbr e e saeesseanbaesseebeesraenneeeeaae e 2-31

Chapter 3

CREF86

CREF86 InvoCation LINEcccooiiiriiiiiieiieiitiieitsie sttt ene ettt essesaesesaeaenrene 3-2

CREF86 CONLIOIS .vviiiiiitieeiiesiteiie et vies ettt st s ettt e basea e et e e s baesseeerseessanssesnbeeseesseens 3-2
PAGELENGTH .ottt ettt et na e nes 3-3
PAGEWIDTH ottt ettt et sbe et ane e sneeneenee 34
PRINT oottt ettt e e bbbt ae e st ebeete s e e eteneeneeseebesbaneens 3-5
TITLE oottt ettt ettt h e et ettt e b e bkt e ke saae st eeaeabaense b asbesae et ebesteenae e 3-6

CREFB67S Print FIlecooioiiiiieiieee ettt 3-7
HEAGET .ottt ettt ees 3-7
WATTHIES .ottt et s bbbt et e bt et et ebeen e e b e ane 3-7
MOAUIE LISE ..ottt sttt a et an e s e 3-8
Symbol Cross-Reference INformationcccooeieiiirieniiiccencseeeeee e 3-8

Chapter 4

LIB86

LIB86 INVOCALIONiiiiiiiiiiiiieii ettt ettt ettt sttt be et e bt e e et aren 4-1

LIB86 COMMANGAS ...cuiiiiiiniiiieiiitieiieie ittt et sttt ae e e b sae st esaesaesseensesanns 4-1
ADD ettt ket r ettt e sttt eaentene e te s enes 4-2
CREATE .ottt et s b e aa b e b e ttesb et ee s e staessensens 4-3
DELETE e et ettt st ata e et et e te b et abeaesteettentenas 4-4
B X ettt ettt et ne ket et teeb e e e st etaate st etaeaeenrenne 4-5

Table of Contents Xi

Page

Chapter 5

LOC86

LOC86 INvocation LINEcccoooeiiiiiieiiiiieiese ettt e 5-1

LOCBO CONLIOLS ...ueeviiiiiieiieieett ettt ettt sttt be sttt eee et aesensenesaesaens 5-1
ADDRESSES ettt a e e eb e ene e ebaaaens 5-3
BOOTSTRAP ..ottt s b e e et b e seab et e b seeseesesaassans 5-4
COMMENTS/NOCOMMENTS ..ottt et 5-5
INITCODE/NOINITCODE ..ottt 5-6
LINES/NOLINES ..ottt ettt ettt et e sae s 5-7
MAP/NOMAP ..ottt ettt bttt be s 5-8
NAME ettt ettt eb ettt b bbbt aea 59
OBJECTCONTROLS ..ottt ettt a s beseesnee 5-10
ORDER .ottt ettt ettt b et e h ettt a et b b enteat et et eneeneeteneeneas 5-11
PRINT/NOPRINT .ottt 5-12
PRINTCONTROLS oottt ee e 5-13
PUBLICS/NOPUBLICS ..ottt st 5-14
PURGE/NOPURGE ..ottt 5-15
RESERVE .ottt sttt st b et b st ntenee 5-16
SEGSIZE ...ttt bbbt et b e ae e nt e eseesen 5-17
ST ART ettt e ettt e e et e et e e bt e arn e e be e et e e nr e e treeatbeeearaeeean 5-18
SYMBOLS/NOSYMBOLS ..ottt sbenene 5-19
SYMBOLCOLUMNS Lottt st be bt nse e 5-20

LOCBE’S Print FilE ...ccociiiiiiiiiiiiiinireneeeteter ettt ettt e s 5-21
The Symbol TaDIEocoiiiiiiiiii ettt b e 5-21
The MemOTy Map ..ottt st eb e ettt sae e 5-23
Error and Warning MESSAZEScuvereeiviaiieeriienieeniaeieeitseiieeseereeiaessaessaeesessseessnesseseseens 5-24

LOCB86’s Algorithm for Locating SeZmentscccceveririiieiiiiniisiesie e 5-24
ADSOIULE SEBIMENLS .ooviiieiiiciiieii ettt e sbe e s e e saeenbeaas e sraesseessaesaaeeane 5-24
Segment Orderingocooooiiiiiiiii e et 5-24
Assigning Addresses to Relocatable Segmentscocoooveiiiiiniiiiiiiic e 5-25

LOC86’s Algorithm for Locating Modules Containing Overlaysc.cccooeccveeenineccnncnn. 5-25

Chapter 6

OH86

Chapter 7

Using the iAPX 86,88 Utilities under DOS

Hardware/Software EnVITONMENtcoooeiiiiiiiiiiiciiee s e 7-1
Operating System Considerations 7-1
Command LINEcoooiiiiiiiiiiee e et et e 7-1

Automating Program Invocation and EXeCUtiOnc..ccocerviimiieiiiiiiiieeiee e 7-2

DOS BatCh FIlES ..oeoiiiiiiiieieee ettt ettt ettt e e et e e e eraeeenneeeanee 7-2

Xil iAPX 86,88 Family Utilities

Page
Command FIles ..ot 7-4
WOTK FALES oottt ettt be bt enean 7-5
Generating Code to Run on an iRMX™ 86-Based Systemcccccceevnieiinnnnnnveeecennenns 7-5
Program Development EXamplescccooovoveriieiiiiiineeecce e 7-6
Example 1: Using CREFB6c.ccooioiririiiiiiei et 7-6
Example 2: Building and Using Library Filesc.cccocoiiiiniciiniene e, 7-6
Example 3: Linking and Locating Programs with Overlays Using
OVERLAY CONIOL ..ottt sttt ebe e nees 7-7
Example 4: Linking and Locating Programs with Overlays without
OVERLAY CONIOl oottt sttt re st ese e easenis 7-9
Invocation EXAMPIES ...cccovioieiiiiiiicccieieiiec et b 7-14
LINKS86 EXAMPIES ..ottt ettt sttt s e 7-15
CREF86 EXAMPIES ..ottt etttk ettt era st ees 7-20
LIB86 EXAMPIES ..covooiiiiiiiiiiiiciiiiccic e s 7-21
LOCBEO EXAMPIESoeeneeiieiiieiiecei sttt ettt ettt et s et nn s 7-22

Appendix A
iAPX 86,88 Absolute Object File Formats

Appendix B
Hexadecimal-Decimal Conversion

Appendix C
The Effect of Available Memory on LINK86, CREF86, LIB86, and LOC86

Appendix D
LINK86 Controls and Error Messages

Appendix E
CREF86 Controls and Error Messages

Appendix F
LIB86 Commands and Error Messages

Appendix G
LOC86 Controls and Error Messages

Appendix H
OH86 Error Messages

Index

Table of Contents Xiii

Figures

1-1 The iAPX 86,88 Family Development Processccocoovenecenienincennsneccencan,
1-2 Library Linkage by LINKBGcoooiiiiiiieeret et
1-3 The LINK86/LOCB86 Process ... s
1-4 8086 Addressingccocceveeeriveernenne
1-5 Segment Physical Relationships

1-6 Segment Alignment Boundaries

1-7 Memory Configuration of Program with Overlays

2-1 LINKS86 Input and Output Files

2-2 LINKS6 Print File Header
2-3 LINKS6 Link Map .occieiiiiieiitieniccn ettt eb st
2-4 LINKS86 Group Mapcccoviviiiiiiiiiniiii e
2-5 LINK86 Symbol Table .
3-1 CREF86 Input and Output Files ..o
3-2 Header of Cross-Reference LiStINgcccccvviveeiriiiiiiiniieciccee e esvesre e
3-3 Warning Messages on CREF86 Listing

34 Module List on CREF86 Listing

3-5 Symbol Cross-Reference Information ...

5-1 LOC86 Input and OQutput Filesccoccevieieiiiiieeiieii et
5-2 LOCB86 Symbol Tablecccecveiiimirieeeinieneinceetere ettt
5-3 LOC86 Memory Map

5-4 LOC86’s Address Assignments for Overlayscc.coeovviveciiieninincveneneccnennen
6-1 OHB86 Input and Output Filesccoccorieeiiiieiiniiiiieeeeeeeie e

7-1 CREF86 Cross-Reference Listing

7-2 LINKS86 Listing for Program with Overlays

7-3 LOCS86 Listing for Program with Overlays

7-4 LINKS86 Map for Root Filecccccciiiiiiiiiiiicce e
7-5 Module Information for OVerlaysccccomiriiriiiciiiiiniirn et
7-6 Memory Organization for EXample 4cocccooviiiniininnieniiecreenceeee

Tables

2-1
3-1
4-1
5-1
D-1
E-1
F-1
G-1

Summary of LINK86 Controls 2-2
Summary of CREF86 Controls 32
Summary of LIB86 Commands 4-1
Summary of LOC86 Controls 5-2
Summary of LINK86 Controls ... D-1
Summary of CREF86 Controls E-1
Summary of LIB86 Commands F-1
Summary of LOC86 Controls G-1

Introduction

Program Development

Program development is a process of varying complexity. The complexity depends
on the language used to develop code, the complexity of the end product, and the
tools chosen.

Figure 1-1 shows the development process and the tools available for development of
an iAPX 86,88 Family-based product.

The tools described in this manual are:

o LINKS86, which is a linkage and binding tool
e CREF86, which provides a cross-reference of information on symbols in several
modules
e LIB86, which is the librarian function for 8086 object modules
e LOCS86, which is the relocation tool
® OHB86, which converts 8086 absolute object information to the hexadecimal
format
------- .
OPERATING |
STE
LOADER
T oesuccen H
T
WITH BIND OBLJTELCT : DEBUGGER :
MODULE 1 MONITOR
‘ --------
— r-- b ponedene 1 re=ese=- b poemm=—- 1
ACE H ' 0BJECT H i 5‘;‘;‘53 ! H ABSOLUTE [
S‘F)H.ES *:rnnusumni* uggghgs i LINKB6 ?—» MODULE —»: LoC86 =—> 386‘.&2 :Isvjuurln‘)n:
Lomomemm J I.---?---J LNK [] [, 3
LIBRARY |—
FILE
r"'&-'-'! poom==== 1
H H H H
——! creFas ! b} oOHee |}
l---r--.: i.---T__J
CROSS- ABSOLUTE
REFERENCE HEX FILE
LISTING HEX"
pemce=-- L - r---}---1
H ' Tomex
1 LB8s i LOADER 1
A i R H
121616-1

Figure 1-1. The iAPX 86,88 Family Development Process

1-2 iAPX 86,88 Family Utilities

Overview of the Utilities

ASM86, ASM89, PL/M-86, PASCAL-86, FORTRAN-86, and other translators as
well as LINK86 and LOC86 produce 8086 object modules. The language translators
produce 8086 relocatable object modules that must usually be processed by utilities
before execution. (Under certain circumstances the translators can produce absolute
object modules, but this is rare and does not contribute to modular design.) LINK86
combines 8086 object modules, and LOC86 converts relocatable object modules into
absolute object modules. OH86 converts 8086 absolute object modules to 8086 hexa-
decimal format.

LINK86 combines a list of 8086 object modules into a single object module and
attempts to match all external symbol declarations with their public symbol defini-
tions in library modules. (LIB86 is the utility used to create and maintain program
libraries.) The output of LINK86 is a relocatable object module. However, when
specified in the controls, LINK86 produces a load-time-locatable (LTL) object
module; an LTL module can be executed on an 8086-based system. (See the descrip-
tion of LTL modules later in this chapter.) Whether the LINK86 eutput isan LTL or
arelocatable object module, it can serve as input to LOC86.

CREF86 provides a means for producing a cross-reference listing of public and
external symbols in multiple 8086 object modules. The object modules may include
library modules. The output produced by CREF86 should help the programmer to
identify how symbols will be resolved by LINK86, given the same input files.

LOC86 converts relocatable (or LTL) object modules to absolute object modules.
Absolute object modules contain references that require the module segments to be
placed at particular places in 8086 memory.

The sequence in which the segments in the input modules are combined and absolute
addresses assigned to segments is determined by the controls supplied and the order
in which the modules are listed in the LINK86 and LOC86 invocations.

External References and Public Symbols

An address field that refers to a location in a different object module is called an
external reference. An external reference differs from a relative address because the
translator that generates the modules knows nothing about the location of the
referenced symbol. You must declare these references as external when coding a pro-
gram. This tells the translator, and subsequently the relocation and linkage (R&L)
utilities, that the target of the reference is in a different module.

A module that contains external references is called an unsatisfied module. To
satisfy the module, a module with a public symbol that matches the external symbol
must be found. Associated with a public symbol in a module is an address that
allows other modules, with the appropriate external reference, to reference the
module with the public symbol. You must define these symbols as public when
coding the program. This tells the source translator and the R&L utilities that other
modaules can reference the symbol.

If there are external references that are not satisfied by public symbols, warning
messages are issued and the resulting module remains unsatisfied.

Introduction 1-3

Use of Libraries

Libraries aid in the job of building programs. The library manager program, LIB86,
creates and maintains files containing object modules.

LINKS86 and CREF86 treat library files in a special manner. If you specify a library
file in the input to these utilities, they search the library for modules that satisfy
unresolved external references in the input modules already read. This means that
libraries should be specified after the input modules that contain external references.
If a module included from the library has an external reference, the library is
searched again to try to satisfy the reference. This process continues until all external
references have been the subject of a search of all public symbols in the library
modules.

When LINK86 and CREF86 search a library, they normally include only library
modules that satisfy external references in the output. If no external references are
satisfied by a library, no modules from the library are included in the LINK86 out-
put module or the CREF86 output listing. However, LINK86 and CREF86 provide
the means to unconditionally include a library module even if there is no external
reference to it. Figure 1-2 shows LINK86 handling of a library file.

INPUTS
MOD1
EXT. REF. C
EXT. REF. G
MOD2
EXT. REF. C OUTPUT
MODULE
MOD3 EXT. REF. C
EXT. REF. G
EXT. REF. X
EXT. REF. C
LIBRARY RL96 —
MOD A PUBLIC A EXT. REF. X
MOD B PUBLIC B (UNRESOLVED)
MoDC PUBLIC C MODC PUBLICC
MOD D PUBLIC D MO0 G PUBLIC G
MODE PUBLICE
MODF PUBLICF
MOD G PUBLIC G
MODH PUBLICH
MOD I PUBLIC)
MODJ PUBLICJ
MODK PUBLIC K

121616-2

Figure 1-2. Library Linkage by LINK86

1-4 iAPX 86,88 Family Utilities

Relative Addressing

The relative addresses of instructions and data in program modules are assigned by
the source translator. The addresses are relative to the beginning of the segment in
which they reside. The relative address is actually the number of bytes from the
beginning of the segment.

After LINK86 combines all the input segments, LOC86 can be used to assign
absolute memory addresses to all relative addresses. The resulting output module
can only be executed when its segments are loaded at the absolute addresses assigned
by the command. If LINK86 is used (o create a bound object module, LOCS86 is not
needed to execute the program.

The LINK86/LOCB86 Process

Although controls are not required for LINK86 and LOC86 execution, the com-
mands invoking them may contain controls that affect their output. The controls
make it possible to change the defaults for module combination, address assign-
ment, and output information.

The inputs are object modules in disk files. The input modules can contain relative
addresses, absolute addresses, external references, and public symbols. The input
modules must be in the 8086 object module format such as is generated by 8086
translators and LINK86 and LOC86 themselves.

LINK86 combines segments from the input modules, and for LTL object modules
LINKB86 orders segments in groups and assigns offsets. LOC86 orders the segments
and assigns absolute addresses according to the controls specified with the command
and/or the default algorithms. Both commands output the module when processing
is completed along with any error messages and diagnostic information. Figure 1-3
shows the LINK86/LOC86 process.

LINK86 / LOCBE
INPUTS ouTPUTS/ INPUT
LINK86 LOC86
COMMAND COMMAND
AND AND
ABSOLUTE CONTROLS LTL CONTROLS
MODULES LOCATED
oR ABSOLUTE
LINKED OBJECT
! 0BJECT v MODULE
MODULE
RELOCATABLE
MODULES LINK86

N

LoC86
ERROR \ ERROR
MESSAGES MESSAGES

PUBLIC SYMBOL
EXTERNAL |

— V\
REFERENCES ON
8086-BASED
SYSTEM
DIAGNOSTIC DIAGNOSTIC
INFORMATION INFORMATION
LIBRARIES | ——— /—\

121616-3

Figure 1-3. The LINK86/LOC86 Process

Introduction 1=5

An 8086 Overview

To use the R&L commands you must have an understanding of the following
concepts:

* Addresses, given as offsets into segments, which must be translated into
absolute memory addresses, or base offsets

* Segment definitions, which identify contiguous pieces of information, usually
code or data

® (lass definitions, which identify segments that share common attributes and
should be kept together

* Group definitions, which identify segments that must be kept within a 64K byte
range of memory

e Overlay definitions, which identify modules that will be loaded in memory at
different times during execution.

e [oad-time-locatable object modules

Memory

The 8086 can address up to a maximum of a megabyte of memory. In decimal a
megabyte is 1,048,576 bytes. Memory addresses are always shown in hexadecimal. A
megabyte of memory has the addresses: OH through OFFFFFH.

Not all 8086-based systems will have a full megabyte of memory. Many systems will
have gaps in the memory that is available. The different portions of memory will
probably be implemented with different types of memory chips. The system monitor
or supervisor is usually stored in ROM or PROM chips. Because it is not modified
by execution it can be a permanent part of the system. This prevents the need to load
it each time the system is turned on. The data that is referenced often is kept in high-
speed RAM because it is modified frequently. It may be practical to keep data that is
referenced less often in slower-speed memory. The size and composition of a
system’s memory is totally dependent on the application the system serves.

Linkage and relocation is designed to handle the linking and locating of your pro-
gram, no matter how your 8086-based system memory is implemented. It provides
very flexible segment placement within any given memory configuration.

8086 Addressing Techniques

The 8086 addresses memory with a 20-bit address that is constructed from a segment
address and a 16-bit offset from that segment address. This means that with a single
segment address, 64K bytes of memory is directly addressable by changing only the
offset.

A hardware segment address is a 20-bit address. But the segment address is con-
strained such that the segment is placed on a boundary that is a multiple of 16 (10H).
The segment address can be set to any hexadecimal address ending in 0:

OH

010H
020H

OFFFFOH

1-6 iAPX 86,88 Family Utilities

Because the low four bits of the 20-bit segment address are always zero, the segment
address can be represented with only 16 bits.

The segment address is kept in one of four 16-bit segment registers. Because there
are four segment registers, the 8086 can, at any moment, access 256K (4 x 64K) bytes
of memory. The full megabyte of memory is accessed by changing the values in the
segment registers. Figure 1-4 shows the 8086 addressing concept.

SEGMENT
REGISTER OFFSET

12340H

+8003H -

EFFECTIVE 20-BIT ADDRESS

MEMORY

FFFFFH

64K BYTES CANBE | |— — — . _ . _ __ _ _|
ADDRESSED BY |
CHANGING THE |
OFESET ONLY

oH

639-4

Figure 1-4. 8086 Addressing

Segments

Programs comprise pieces called segments, which are the fundamental units of
linkage and relocation. The basic divisions have functional purposes related to the
hardware configuration of memory. The portions of programs that are to be kept in
ROM or PROM can be put in separate segments from the portions that will be kept
in RAM.

The 8086 Assembler allows the programmer to name the segments of the program
being developed. The PL/M-86 compiler may generate predefined names for
segments.

A segment is a contiguous area of memory that is defined at translation time
(assemble or compile). When defined, a segment does not necessarily have a fixed
address or size. A fixed address is assigned to a segment during the locate function.
The size can be changed by combining segments and by a control that specifies a
specific size. Some translations may produce absolute object information, with
absolute addresses and a specific segment size.

N

Introduction 1-7

LINK86 combines all segments with the same complete (segment, class and overlay)
name and combination type (memory, stack, etc.) from all input modules. The
ordering of segments is done on the basis of these combined segments. The manner
in which segments are combined depends on the alignment of the segments (which is
described in the next topic) and a combining attribute associated with the segment.

When we refer to combining segments, we are talking about how the segments will
be loaded in memory, not how they will be stored in the output module. The
segments in the LOC86 output module contain addresses that determine where they
will be loaded in memory. The segments reside in the output module in the same
order as they were in the input modules. Figure 1-5 shows the physical relationships
between the input modules, output module, and loaded program.

OuTPUT OUTPUT MODULE
INPUT MODULE LOADED IN
MODULES ON DISKETTE MEMORY

SEG A SEG A
sEG B SEG B

SEG B
SEG C
SEG D

SEG E
SEG E

SEG E

SEG F SEG F

639-5

Figure 1-5. Segment Physical Relationships

Segment Alignment

A segment can have one (and in the case of the inpage attribute, two) of five align-
ment attributes:

® Byte, which means a segment can be located at any address

e Word, which means a segment can be located only at an address that is a
multiple of two, starting from address OH

e Paragraph, which means a segment can be located only at an address that is a
multiple of 16, starting from address 0

® Page, which means a segment can be located only at an address that is a multiple
of 256, starting from address 0

e Inpage, which means a segment can be located at whichever of the preceding
attributes apply, plus must be located so that it does not cross a page boundary

Figure 1-6 shows the segment alignment boundaries.

Any alignment attribute except byte can result in a gap between combined segments.
For example, when two page-aligned segments are combined, there will always be a
gap, unless the first happens to be an exact multiple of 256 bytes in length.

1-8 iAPX 86,88 Family Utilities

InANOOnEDRNNEnGaE
) _I- B;T’E’L

PARAGRAPH = 16 BYTES

60

70
[— PAGE = 256 BYTES

80

90

AQ

80

Co

]

I O I A B B O
R

EO0

FO|F

!
rz]n

639-6

Figure 1-6. Segment Alignment Boundaries

Segment Combining

Segments containing data and code are combined end to end. There may be a gap
between the segments if the alignment characteristics require it. The relative
addresses in the segments are adjusted for the new longer segment.

There are two special cases of segment combination: stack segments and memory
segments. Such translators as PL/M-86 define these segments with the names
STACK and MEMORY. With ASM86 you must define them by adding the STACK
or MEMORY parameter to the SEGMENT directive.

When stack segments are combined, they are overlaid but their lengths are added
together.

When memory segments are combined, they are overlaid with their low addresses at
a common address. The length of the combined memory segment is the length of the
largest segment that was combined. No relative address adjusting is necessary. Nor-
mally the memory segment is located above (at a higher memory address) the rest of
the program segments if no controls are used to override this.

To make sure that stack segments are combined correctly, you should always give
them the same segment name in each module. The same is true of memory segments.
If you are going to link assembly language routines to PL/M-86 routines you shouid
give them the names STACK and MEMORY to be compatible with PL/M-86.

Segment Locating

Segments are located in the order in which they are encountered in the input
modules. If classes (described in the next section) are defined, the segments from a
class are located together. The locating algorithm can be changed by using LOC86
locating controls.

j——

Introduction 1-9

One variation to the sequential locating of segments is how the MEMORY segment
is located. When the first segment with the memory attribute is encountered, it is
placed last in the list of segments. This means that after all other segments are
located, the MEMORY segment will be assigned the highest address in the output
module.

NOTE

The MEMORY segment may not get located at the top of the module if its
name or class name appears in any LOC86 control (other than SEGSIZE) or
it has the absolute attribute.

Classes

A class is a collection of segments. When segments are defined in assembly
language, a class name can be specified. The segments generated by such translators
as PL/M-86 are generated with predefined class names. Any number of segments
can be given the same class name. Class names can extend beyond module bound-
aries; the same class name can be used in different modules that are to be combined.

The primary purpose of classes is to collect together (in an arbitrary order) segments
that share a common attribute and to manipulate this collection at locate-time by
specifying only the class name.

All segments with the same class name are located together in the memory address
space of the output module. (You can override class collection by specifying the
location of segments with the LOC86 ORDER control or LOC86 ADDRESSES

control.)

Classes give you a second means of collecting like segments in the output module.
The first is giving segments the same name. If you are developing several modules
that are to be combined, you may want to give the segment containing executable
code the name CODE in each module. If there are several differently named
segments within a module that contain executable code, you may want to give these
segments the class name of CODE that causes them to be located together but not
combined. (The same name can be used for segments and classes.)

Groups

A group is also a collection of segments. Groups define addressing range limitations
in 8086 object modules. A group specifies a collection of segments that must be
located within a 64K byte range. This means that the entire group of segments can be
addressed with offsets from a single segment register. Or, to put it another way, the
segment register need not be changed when addressing any segment in a group. This
permits efficient addressing within the module.

Group addressing always begins at an address that is a multiple of 16 (i.e., a
paragraph boundary). R&L does not manipulate segments of a group to make sure
they fall within a 64K byte range. However, if they do not fit in the range, a warning
message is issued.

The segments included in a group do not have to be contiguous in the output
module. The only requirement is that all the segments defined in the group must
totally fall within 64K bytes of the beginning address of the group.

1-10 iAPX 86,88 Family Utilities

Overlays

Sometimes your 8086 program is too large to fit into the memory available on the
system. Overlays permit programs to be larger than the available memory.

Typically, an overlay is composed of code and data that is executed in one phase of a
program’s execution, but not used at any other time. Once executed the memory
used by this code can be overwritten with code and data used in an other phase.
Sections of code that occupy the same part of memory at different times during
execution are called overlays.

Part of an overlaid program is always resident in memory; it usually comprises the
main program module, frequently used routines, and the overlay loader. This part
of the program is called the root. Figure 1-7 itlustrates the memory configuration of
one program that uses overlays.

—_————
7/
/ SPACE OVERLAY 4
/
L7 _
/ RESERVED / OVERLAY 3 {
g——- .
/ FORROOT OVERLAY 2
/ MODULE OVERLAY 1
ROOT OvERLAY sPACE 4
MODULE
4
________ -
639-7

Figure 1-7. Memory Configuration of Program with Overlays

Position-Independent Code and Load-Time-
Locatable Code

An LTL (load-time-locatable) program can be loaded anywhere in memory (assum-
ing alignment attributes are honored). Code and data addresses are assigned by the
system loader. References to segment bases (segment registers) are permitted. The
loader, when it determines where to locate each segment, must resolve these
references to the segment bases. Before executing the LTL program, the loader must
also initialize the segment registers.

A PIC (position-independent-code) program is an LTL program, but it contains no
references to segment bases. To execute these programs the loader need only place
the program in memory (recognizing alignment attributes) and initialize the segment
registers and go. No fixup of segment bases is required.

AN

LINK86

LINK86 combines 8086 object modules and resolves references between
independently translated modules. LINK86 takes a list of files and controls as input
and produces two output files: a print file and an object file.

Figure 2-1 illustrates the linkage process. The input files may be any object module
(output from a translator, LINK86, LOC86 or an 8086 library file). The print file
contains diagnostic information. The output object file is a bound load-time-
locatable module or simply a relocatable module.

This chapter provides details concerning the LINK86 invocation, controls, and print
file. For definition of file-naming and syntax notation conventions used in this
chapter, refer to Notational Conventions following the Preface. For a summary of
the LINK86 controls and information on error and warning messages that may be
produced, refer to Appendix D. For details concerning symbol table space limita-
tions, refer to Appendix C.

CONSOLE
MESSAGES
BOUND
OBJECT
MODULE

INVOCATION
LINE CONTROLS

PRINT FILE

_—— WITH SYMBOL
TABLE '*.MP1™

BIND
osgect | - _ 8w
MODULE : LINKE6 NO BIND

L LINKED
OBJECT
MODULE
LNK®
CONSOLE
MESSAGES PRINT
~| FiLE
“MP1"

121616-4

Figure 2-1. LINK86 Input and Output Files

LINK86 Invocation Line

The general syntax for the invocation line is:
[directory-name] LINK86 input list[T 0 output fite][controls]

The input list is one or more modules to be linked together into a single object
module:

pathname[(module namel,...) [, ...]

Unless a module name is specified, all modules in a pathname are included. If the
pathname is a library file, any modules named in parentheses are included in the out-
put file even if they do not contain public symbol definitions for external symbols
declared elsewhere in the input list.

2-2 iAPX 86,88 Family Utilities

The input list may also contain the control PUBLICSONLY before selected
pathnames. If you wish to include a file called PO or PUBLICSONLY, ensure that
the filename is preceded by a directory-name in order to distinguish it from the con-
trol or its abbreviation.

The order of modules in the input list affects the order of segments in the output file.

TO output file designates the file to receive the linked object module. If output file is
not specified, then output is directed to a file that has the same pathname as the first
element in the input list, but its extension is .LNK. If the first element in the list is a
PUBLICSONLY control, then the first pathname in its argument is used for the
default name.

If the BIND control is specified, then the default name for the output file has no
extension, and the object module can be executed without locating.

The controls can be any subset of the controls specified in the next section.

LINK86 Controls

The controls are described in table 2-1.
Table 2-1. Summary of LINK86 Controls

Control Abbrev. Default

ASSIGN({ variable(address) } [....]) AS Not applicable
ASSUMEROOT(pathname) AR Not applicable
BIND Bl NOBIND
NOBIND NOBI
COMMENTS CM COMMENTS
NOCOMMENTS NOCM
FASTLOAD FL NOFASTLOAD
NOFASTLOAD NOFL
GROUPOVERLAYS GO GROUPOVERLAYS
NOGROUPOVERLAYS NOGO
INITCODE IC Not applicable
LINES L LINES
NOLINES NOLI
MAP MA MAP
NOMAP NOMA
MEMPOOL(min-size [, max-size]) MP Not applicable
NAME(module name) NA Not applicable
OBJECTCONTROLS(oC Not applicable

{ LINES | NOLINES |

COMMENTS | NOCOMMENTS |

SYMBOLS|NOSYMBOLS |

PUBLICS [EXCEPT(symbol[,...))] |

NOPUBLICS [EXCEPT (symbol ,...))]|

TYPE|NOTYPE|

PURGENOPURGE } [,...])

LINK86 2-3

Table 2-1. Summary of LINK86 Controls (Cont’d .)

Control Abbrev. Default

ORDER({ group({ segment | \ class | \ overlay © OD Not applicable

n

D}

[.--D

OVERLAY/[(overlay)] ov NOOVERLAY
NOOVERLAY NOOV
PRINT([(pathname)] PR PRINT(object file. MP1)
NOPRINT NOPR
PRINTCONTROLS(PC Not applicable

{ LINES I NOLINES|

COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS[EXCEPT(symbol[....])]|
NOPUBLICS [EXCEPT(symbol [,...])]|
TYPE!NOTYPE|

PURGE | NOPURGE } [....]))

PUBLICS [EXCEPT(symbol [,...]))] PL [EC] PUBLICS
NOPUBLICS [EXCEPT(symbol [....])] NOPL[EC]
PUBLICSONLY(pathname]....]) PO Not applicable
PURGE PU NOPURGE
NOPURGE NOPU
RENAMEGROUPS({ group TO group } [....]) RG Not applicable
SEGSIZE({ segment| \ class| \ overiay]| SS Not applicable
(min-size[,[max-size]]) } [,...])
SYMBOLS SB SYMBOLS
NOSYMBOLS NOSB
SYMBOLCOLUMNS({11213143}) sC SYMBOLCOLUMNS(2)
TYPE TY TYPE
NOTYPE NOTY

If you specify a control more than once in a single invocation line, only the last ver-
sion entered counts. For example, if you enter NOMAP on the invocation line and
then later decide you want a link map, you can specify MAP. The ASSIGN control,
however, is an exception to this general rule.

The following controls are effective only when the BIND control is specified:

FASTLOAD
MEMPOOL

ORDER
PRINTCONTROLS
SEGSIZE
SYMBOLCOLUMNS

2-4 APX 86,88 Family Utilities

The following control is effective only when the BIND control is NOT specified:
INITCODE

The following control is effective only when the OVERLAY control is specified:
ASSUMEROOT

See Chapter 7 for operating system information and for operating system-specific
examples of the LINK86 controls.

ASSIGN

Syntax

ASSIGN ({variable-name (address) }(, ...])

Abbreviation

AS

Default
Not applicable

Definition

ASSIGN makes it possible to define absolute addresses for symbols at LINK time.
The absolute address associated with the variable-name is specified in address,
which should be an absolute 20-bit memory address that conforms to PL/M-86
notation. The variable-name is internally defined as a PUBLIC symbol.

Notes

® This control is particularly useful for memory-mapped 1/0.

e If the variable-name has a matching public definition in another module, the
public definition in that module is flagged as as duplicate. Whenever a reference
to the variable-name occurs, the variable defined in the ASSIGN control
governs.

¢ If multiple ASSIGN specifications are provided in one LINK86 invocation, all
will be effective (not only the final entry).

LINK86 2-5

ASSUMEROOT

Syntax

ASSUMEROOT (pathname)

Abbreviation

AR

Default
Not applicable

Definition

ASSUMEROOT suppresses the inclusion of any library module(s) in an overlay if
the library module(s) have already been included in a root file identified by
pathname. When this control is used, the root file is scanned, and all external,
undefined symbols in the overlay modules which have a matching definition in the
root file are marked ‘‘temporarily resolved.”’ This marking means that while a
library search for the symbols will not be made, their status remains externally
undefined until the overlays are linked with the root.

Notes

e This control should be used only in conjunction with the OVERLAY control
and libraries.

e This control will not eliminate common library modules from overlay to
overlay.

® This control may not be used when an input module already has an overlay
record.

2-6 iAPX 86,88 Family Utilities

BIND/NOBIND

Syntax

BIND
NOBIND

Abbreviation

BI
NOBI

Default
NOBIND

Definition

BIND combines the input modules into a load-time-locatable (LTL) module. An
LTL module may be loaded and executed, and any logical reference to a segment or
group base can be resolved at load time. The load-time-locatable output cannot be
loaded by the ICE-86 loader or UPM.

Notes

e FASTLOAD, MEMPOOL, ORDER, SEGSIZE, and SYMBOLCOLUMNS
have no effect when NOBIND is specified.

e When NOBIND is in effect, [NOJLINES, [NOJSYMBOLS, [NO]PUBLICS,
and [NO|PURGE affect only the output object module.

e When BIND is specified, the default object file name has no extension.

LINK86 2-7

COMMENTS/NOCOMMENTS

Syntax

COMMENTS
NOCOMMENTS

Abbreviation

CM
NOCM

Default

COMMENTS

Definition

COMMENTS allows object file comment records to remain in the output module.
The NOCOMMENTS control removes all comment records except those designated
as nonpurgable.

Comment records are added to the object module for various reasons. All
translators add a comment record, identifying the compiler or assembler that pro-
duced it.

Comment records are superfluous to the production of executable code and may be
removed at any time during the development process.

Notes

¢ See PURGE, PRINTCONTROLS and OBJECTCONTROLS.

e COMMENT records should not be removed when you submit an object file in a
Software Problem Report.

o NOCOMMENTS will decrease the size of the output object file.

2-8 iAPX 86,88 Family Utilities

FASTLOAD/NOFASTLOAD

Syntax

FASTLOAD
NOFASTLOAD

Abbreviation

FL
NOFL

Default

NOFASTLOAD

Definition

FASTLOAD reduces program loading time by causing data record concatenation.
The data records are concatenated to a maximum length of 64K. FASTLOAD also
makes the object file compact by removing such information as local symbols,
public records, comments, and type information (unless the object file contains
unresolved external symbols).

Notes

* Thiscontrol is effective only when BIND is specified.

* Output produced with this control in effect may be incompatible with LINK86
versions earlier than 2.0.

LINK86 2-9

GROUPOVERLAYS/
NOGROUPOVERLAYS

Syntax

GROUPOVERLAYS
NOGROUPOVERLAYS

Abbreviation

G0
NOGO

Default

]

Definition

GROUPOVERLAYS causes LINK86 to optimize static memory space for LARGE
Model Overlay programs. LINK86 achieves this optimization by creating Group
definitions containing logically separate segments from the various overlays.

Notes
. GROUPS created by LINK86 are not listed in the group map of the print file.

. Segments that are already in some group are not affected.

. The STACK and MEMORY segments are not placed in any group created by
the linker.

Notes

. The minimum-size must be less than or equal to the maximum-size.
. MEMPOOL has no effect unless the BIND control is also specified.

. The static size of a program is the size of the memory required to load the
program itself; it is automatically calculated by the linker.

Dynamic size is the size of the memory the program will need during its execu-
tion; it is specified by the user with the MEMPOOL control.

2-10 iAPX 86,88 Family Utilities

INITCODE

Syntax
INITCODE

Abbreviation

IC

Default
Not applicable

Definition

INITCODE causes LINK86 to create a new segment that contains code to initialize
the segment registers. The equivalent assembly language code is shown below:

STACKFRAME DW

DATAFRAME DW

EXTRAFRAME DW
CLI
MoV
MOV
MOV
MoV
JMP

Notes

stack frame
data frame
extra frame

SS,
SP,

CS:STACKFRAME
stack offset

DS, CS:DATAFRAME
ES, CS:EXTRAFRAME
program start

* The initialization code segment is created only if a register intialization record
for 8086 segment registers exists in the input. These register initialization
records are automatically produced by 8086-based translators for main

modules.

e BIND and OVERLAY controls used in conjunction with INITCODE will cause
LINKS86 to ignore the INITCODE control and issue a warning message.

e INITCODE should be used to ensure compatibility with 8085-based LINK86,
LOC86, and LIB86 products.

¢ The name of the new segment, if created, is ??INITCODE.

LINK8e 2-11

LINES/NOLINES

Syntax

LINES
NOLINES

Abbreviation

LI

NOLI

Default

LINES

Definition

LINES allows line number information to remain in the object file. ICE-86 and
other debuggers use this information. The line number information is not needed to
produce executable code. The NOLINES control removes this information from the
output file.

Notes

See PRINTCONTROLS and OBJECTCONTROLS.

See the PURGE control.

NOLINES will decrease the size of the output object file.

Unless BIND is in effect, LINES/NOLINES affects only the object module.

LINES has no effect on local symbols; the inclusion of local symbol records in
the object file is controlled by SYMBOLS.

2-12 iAPX 86,88 Family Utilities

MAP/NOMAP

Syntax

MAP
NOMAP

Abbreviation

MA
NOMA

Default
MAP

Definition

MAP produces a link map and inserts it in the PRINT file. The link map contains
information about the attributes of logical segments in the output module. This
includes size, class, alignment attribute, address (if the segment is absolute) and
overlay name (if the segment is a member of an overlay).

NOMAP inhibits the production of the link map.

Notes

e MAP can be overridden by the NOPRINT control.
e See the discussion of the link map at the end of this chapter.

IINK86 2-13

MEMPOOL

Syntax

MEMPOOL (minimum-size[, maximum-size])

Abbreviation

MP

Default
Not applicable.

Definition

MEMPOOL specifies the dynamic memory requirements of the program. This
allows the loader to check free memory at load time, and prevent a run-time error.

The minimum size is a 20-bit number. There are three ways of specifying this value:

e + indicates that the number should be added to the current dynamic memory
requirements.

* — indicates that the number should be subtracted from the current dynamic
memory requirements.

® o sign indicates that the number should become the new minimum dynamic
memory requirement.

The maximum size is a 20-bit number. There are two ways of specifying this value:

* + indicates that the number should be added to the current minimum dynamic
memory requirement.

® no sign indicates that the number should become the new maximum dynamic
memory requirement.

Notes

. The minimum-size must be less than or equal to the maximum-size.
. MEMPOOL has no effect unless the BIND control is also specified.

. The static size of a program is the size of the memory required to load the
program itself; it is automatically calculated by the linker.

Dynamic size is the size of the memory the program will need during its execu-
tion; it is specified by the user with the MEMPOOL control.

. For the STACK segment, only the maximum size can be set.

2-14 iAPX 86,88 Family Utilities

NAME

Syntax

NAME (module name)

Abbreviation

NA

Default

The module name of the first element in the input list.

Definition

NAME assigns the specified module name to the output module. If NAME is not
specified, then the output module will have the name of the first module in the input
list.

The module name may be up to 40 characters long. It may be composed of any of
the following characters in any order:

? (question mark),
@ (commercial at),
: (colon),

. (period),
__(underscore),
A,B,C,...,Zor
0,1,2,...,9.

Lower-case letters may be used, but they are automatically converted to uppercase.

Notes

e NAME does not affect the output file’s name. Only the module name in the
output module’s header record is changed.

LINK86 2=15

OBJECTCONTROLS

Syntax

OBJECTCONTROLS({LINES | NOLINES |
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS
PUBLICS [EXCEPT (symboll,...])] |
NOPUBLICS [EXCEPT (symbol[,...])]|
TYPE | NOTYPE |
PURGE | NOPURGEY[,...]
)

Abbreviation

0C

Default
Controls apply to both the print file and the object file.

Definition

OBJECTCONTROLS causes the controls specified in its arguments to be applied to
the object file only. Comment records, line number records, local and public symbol
records, and symbol type records are selectively included or excluded from the
object file. This will not affect the print file nor the information contained in it.

Notes

e Abbreviations for the controls within the parentheses may be given.

e A control specified in both OBJECTCONTROLS and PRINTCONTROLS has
the same effect as specifying it once outside of these controls.

2-16 iAPX 86,88 Family Utilities

ORDER

Syntax

ORDER ({group name ({segment name
[\class name[\overlay name]]}
[,..])}
LD

Abbreviation

0D

Default

Segments are placed into object file in the same order in which they were
encountered in the input list.

Definition
ORDER specifies a partial or complete order for the segments in one or more
groups.

The group name identifies the group whose segments are to be ordered.

The segment name identifies the segments to be ordered. The \class name and
\overlay name may be used to resolve conflicts with duplicate segment names. 1If
\overlay name is specified, the \ c/lass name is required.

Notes
¢ ORDER has no effect unless BIND is also specified.

¢ If one of the segments specified is not contained in the designated group, an
error message is generated.

e See discussion of module combination at the end of the chapter for details of the
default ordering.

LINK86 2-17

OVERLAY/NOOVERLAY

Syntax

OVERLAY[(overiay name) |
NOOVERLAY

Abbreviation

ov
NOOV

Default
NOOVERLAY

Definition

OVERLAY specifies that all of the input modules shall be combined into a single
overlay module. When the optional overlay name argument is specified, all
segments contained within the overlay module have that name in addition to their
segment names and class names. When overlay name is not specified, LINK86 uses
the module name of the first module in the input list.

Notes
e Each overlay in a given program must be linked separately before they are all
linked into a single object module.

¢ The overlay specified in the argument must be the same as the overlay name
used when calling the operating system to load the overlay.

e When linking root and overlay files, LINK86 assumes the first file in the
invocation line is the root.

e The ASSUMEROOT control can be specified in conjunction with the
OVERLAY control.

2-18 iAPX 86,88 Family Utilities

PRINT/NOPRINT

Syntax

PRINT[(pathname)]
NOPRINT

Abbreviation

PR
NOPR

Default

PRINT (object file .MP1)

Definition

PRINT allows you to direct the link map and other diagnostic information to a
particular file. [f the PRINT control is not specified or if the control is given without
an argument, the print file will have the same pathname as the output file except the
extension will be .MP1. NOPRINT prevents the creation of this file.

Notes

e The discussion at the end of this chapter describes the contents of the print file.

e MAP, SYMBOLCOLUMNS, LINES, SYMBOLS, PUBLICS and
PRINTCONTROLS affect the contents of the print file.

LINK86 2-19

PRINTCONTROLS

Syntax

PRINTCONTROLSC({LINES | NOLINES |
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS [EXCEPT (symboll,...])]
NOPUBLICS [EXCEPT (symbol[,...])]|
TYPE | NOTYPE |
PURGE | NOPURGED [, ...]
)

Abbreviation

PC

Default

Controls apply to both the orint file and the object file.

Definition

PRINTCONTROLS causes the controls specified in its arguments to be applied to
the print file only. Line number information, and local and public symbol informa-
tion are selectively included or excluded from the print file. This will not affect the
object file or the information contained in it.

Notes

* When a control is specified in both the PRINTCONTROLS and the
OBJECTCONTROLS, it has the same effect as specifying it once outside of
these controls.

® Abbreviations to the parenthesized controls may be used.

e Unless BIND is specified, PRINTCONTROLS and its arguments have no
effect.

2-20 iAPX 86,88 Family Utilities

PUBLICS/NOPUBLICS

Syntax

PUBLICS [EXCEPT (public symbol[,...})]
NOPUBLICS[EXCEPT (public symbol [,...])]

Abbreviation

PL [EC]
NOPL [EC]

Default

PUBLICS

Definition

PUBLICS causes the public symbol records to be kept in the object file and the
corresponding information to be placed in the print file. Public symbol records are
needed to resolve external symbol definitions in other files. The EXCEPT subcon-
trol allows you to modify the control. Public records are used by LINK86 to resolve
external references.

Notes
e The scope of PUBLICS can be modified by PRINTCONTROLS and
OBJECTCONTROLS.

e Unless BIND is specified PUBLICS/NOPUBLICS affect only the object file.
e NOPUBLICS will decrease the size of the output object file.

N

LINK86 2-21

PUBLICSONLY

Syntax

PUBLICSONLY (pathname |, ...])

Abbreviation

PO

Default
Not applicable

Definition

PUBLICSONLY is an input list control. When used it must appear in the input list
and not the control list.

PUBLICSONLY indicates that only the absolute public symbol records of the argu-
ment files will be used. The other records in the module will be ignored. This can be
used to resolve external references to 8089 files and overlays when a multifile overlay
system is desired.

Notes

® Although it is possible to create overlays using PUBLICSONLY, it is easier to
use the OVERLAY control to create overlays.

2-22 iAPX 86,88 Family Utilities

PURGE/NOPURGE

Syntax

PURGE
NOPURGE

Abbreviation

PU
NOPU

Default
NOPURGE

Definition

PURGE in the control list is exactly the same as specifying NOLINES,
NOSYMBOLS, NOCOMMENTS, NOPUBLICS, and NOTYPE. NOPURGE in
the control list is the same as specifying LINES, SYMBOLS, COMMENTS,
PUBLICS, and TYPE.

PURGE removes all of the debug or public records from the object file and their
information from the print file. It will produce the most compact object file
possible.

The records that would be included by NOPURGE are useful to debuggers, but
otherwise they are unnecessary for producing executable code.

Notes
e PRINTCONTROLS and OBJECTCONTROLS can be used to modify the
scope of PURGE.

e Unless BIND is specified, PURGE affects only the output object file.

LINK86 2-23

RENAMEGROUPS

Syntax

RENAMEGROUPS ({group name TO0 group name} [,...])

Abbreviation

RG

Default

All groups keep the name they already have.

Definition

RENAMEGROUPS allows you to change the group names assigned by the
translator. The first group name must be an existing group in one of the modules in
the input list.

Notes

None

2-24 iaPX 86,88 Family Utilities

SEGSIZE

Syntax

SEGSIZE ({segment name[\class name[\overlay name]]
(minimum size[, [maximum size]]) }
...

Abbreviation

SS

Default
Not applicable

Definition

SEGSIZE allows you to specify the minimum memory space needed for any seg-
ment. If you specify the maximum size for a segment, that segment must either not
be a member of any group or be the last segment in the group.

The segment name identifies the segment whose size is to be changed.

The minimum size is a 16-bit number. There are three ways of specifying this value:
® +indicates that the number should be added to the current segment length.

e — indicates that the number should be subtracted from the current segment
length.

® o sign indicates that the number should become the new segment length.

The maximum size is a 16-bit number. There are two ways of specifying this value:
¢+ indicates that the number should be added to the minimum segment length.

* o sign indicates that the number should become the new maximum segment
length.

Notes

e The maximum segment size must always be greater than or equal to the
minimum segment size.

e Segment lengths are initially assigned by the translator.
e Unless BIND is also specified SEGSIZE has no effect.

* For the STACK segment, only the maximum size can be set.

LINK86 2-25

SYMBOLS/NOSYMBOLS

Syntax

SYMBOLS
NOSYMBOLS

Abbreviation

SB
NOSB

Default

SYMBOLS

Definition

SYMBOLS specifies that all local symbol records shall be included in the object file.
Local symbol records are used by debuggers.

Notes
¢ Unless BIND is also specified, SYMBOLS affects only the output object file.
¢ NOSYMBOLS will decrease the size of the output object file.

e SYMBOLS has no effect on line numbers; the inclusion of line numbers in the
object file is controlled by the LINES control.

2-26 iAPX 86,88 Family Utilities

SYMBOLCOLUMNS

Syntax

SYMBOLCOLUMNS ({1 | 2 | 3 | 41

Abbreviation

SC

Default

SYMBOLCOLUMNS (2)

Definition

SYMBOLCOLUMNS indicates the number of columns to be used when producing
the symbol table for the object module. Two columns fit on a 78-character line; four
columns fit on a single 128-character line printer line.

Notes
¢ SYMBOLCOLUMNS has no effect unless BIND is also specified.

LINK86 2-27

TYPE/NOTYPE

Syntax

TYPE
NOTYPE

Abbreviation

TY
NOTY

Default
TYPE

Definition

TYPE specifies that type checking is to be performed on the object file. Symbol type
records produced by the translator are used by LINK86 to perform type checking on
modules. Symbol type records should be kept in the file if it may be relinked with
another file.

Notes

¢ NOTYPE will decrease the size of the ouput object file without affecting
run-time operation.

2-28 iAPX 86,88 Family Utilities

LINK86’s Print File

The print file is always created unless you specify NOPRINT. The optional argu-
ment to PRINT designates the name of the print file. The default print file is the
object file with the extension .MP1.

The print file may contain as many as five parts:

1. A header (always in the print file)

2. A link map (requires MAP)

3. A group map (requires BIND)

4. A symboltable (requires BIND and PUBLICS, LINES, or SYMBOLYS)
5. Anerror message list (always included when they occur)

The Header

The header is self-explanatory; it identifies the 8086 linker by version number and
gives the important details about the input and output files used during this execu-
tion. Figure 2-2 shows an example of LINK86’s print file header.

system-id 8086 LINKER, Vx.y

INPUT FILES: :pathnamel.pathnamel

QUTPUT FILE: :pathname3d

CONTROLS SPECIFIED IN INVOCATION COMMAND:
IND

B
DATE: MN/DD/YY TINE: HH:NM:SS

Figure 2-2. LINK86 Print File Header

The Link Map

The link map supplies useful information about segments in the object file — order,
size, alignment attribute, and segment, class, and overlay names. Figure 2-3 shows
LINK86’s link map.

LINK MAP OF MODULE ROOT

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS ALIGN SEGMENT CLASS OVERLAY
w CODE CODE
L] CONST CONST
W DATA DATA
'] STACK STACK
] MEMORY MEMORY
G ?7SEG NEMORY

INPUT HODULES INCLUDED:
pathnamel (ROOT)

__/

Figure 2-3. LINK86 Link Map

LINK86 2-29

The map consists of three parts:
¢ Segment map

* Input module list

® Unresolved symbol list

The segment map describes all of the segments included in the object file. Each seg-
ment description includes five entries: length, the address (if the segment is
absolute), alignment attribute, segment name, class name and overlay name, if any.

A segment may have any one of the following alignment attributes:

absolute

byte

paragraph

member of an LTL group
page

word

in-page

OVE T D>

In-page alignment means that the entire segment must be resident within a single
256-byte page. The address of the first byte in any page has zeros in the first 2-
hexadecimal digits (OOH, 100H, 200H,...0FFFO0H).

The module list identifies the order of modules included in the output file. LINK86
gives both the file containing the module and the module name for each entry in the
list.

The unresolved symbol list itemizes each external symbol whose public definition
was not encountered. The module that references the unresolved symbol is also
indicated. The printed message that appears under the heading UNRESOLVED
EXTERNAL NAMES is as follows:

* symbolname IN pathname (module name)
¢ If ASSUMEROOT is specified, the message would read:
symbolname (DEFINED IN ROOT-FILE,pathname)
e [f PUBLICS/NOPUBLICS EXCEPT is specified, the message would read:

symbolname IN LINK86 COMMAND LINE

The Group Map

LINK86 produces a group map when the BIND control is specified. Each group
name and all segments contained in that group are listed. The offset from the group
base for each segment appears to the right of the segment name. Figure 2-4 shows an
example of the group map.

GROUP MAP

GROUP NARE: CGROUP
OFFSET SEGMENT NAME
0000H CODE

GROUP NAME: DGROUP
T

OFFSE SEGMENT NARE
Q0000H CONST

001kH DATA

OBYEH STACK

OF90H MREMORY

Figure 2-4. LINK86 Group Map

2-30 iAPX 86,88 Family Uti

The Symbol Table

LINKS86 produces a symbol table only when the following conditions are true:
1. BIND is specified
2. PRINT and MAP controls are in effect.

3. At least one of the following controls is in effect: PUBLICS, LINES, or
SYMBOLS.

Figure 2-5 shows LINK86’s symbol table with the SYMBOLCOLUMNS set at two
(the default). The symbol table is shown in two parts: the top section contains the
public symbol information; the lower section contains line and local symbol
information.

SYMBOL TABLE OF MODULE ROOT

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYNBOL

Gea) 0lbbH PuB BINDCONTROL 6e2) 004CH PuUB BNODEBASE

6(2) 00L8H PUB BUFBASE 6t2) 001lLH PUB BUFLEN

G(2) 00YEH PUB C(LASHNODEBASE G6(2) 00bGH PUB COCONN

G6(2) D1S5AH PUB COMMENTSCONTROL 6e2) 0173H PUB CURRENTOVERLAYNU

G(2) 0173H Pua DEBUGTOGGLE [1%:33 00A7H PUB DEFAULTPRTFILENA
-ME

6(2) 00bL2H PUB EXCEPTION G2y o048H PUB FANODEBASE

G2y 00LEH PUB FBLOCKBASE 6(2) 00bAH PUB FBLOCKLISTHEAD

6(2) 00LCH PUB FBLOCKLISTTAIL Gea) 013DH PUB FBLOCKSEQUENCENL
-MBER

6¢2) D04AKH PUB FBNODEBASE G(2) D04LH PUB FNODEBASE

G(2) 004uH PUB FENODEBASE 62y 00u0H PUB FFNODEBASE

62y 003u4H PUB FIRSTBNODEP 6(2) 0028H PUB FIRSTEXNODEP

G(2) 002CH PuB FIRSTGRNODEP 6(2) 003CH PuB FIRSTNMNODEP

62> 0030H PUB FIRSTOVNODEP Gea) DDSOH PUB FIRSTRENANEBLOCK

6(2) Q020K PLB FIRSTSGNODEP 6(2) 0024H PUB FIRSTTDNODEP

62y D03&H PUB GRNODEBASE 6(2) 0BuYCH PUB HIGHESTDATALOCAT
-10N

MODULE NAME = RQOT

BASE OFFSET TYPE SYnBOL BASE OFFSET TYPE SYHBOL
[2%:3] 0F30H SYm HMEHORY 6(2) 0000H Syn COPYRIGHT
6(2) 00lbH syn BUFLEN G(2) 0018H syn BUFBASE
G(L) 00F?H syn ERROR 6(1) DOFEH SYR WARNING
6(2) 001AH syn LASTNRNODEP 6(2) 003CH SYH FIRSTNANODEP
G(2) Q0)MEH SYM LASTSGNODEP 62y 0020H svn FIRSTSGNODEP
62y 0022H syn LASTTDNODEP G2y 0024H syn FIRSTTDNODEP
62y 002LH SYR LASTEXNODEP G2y 0028aH syn FIRSTEXNODEP
G2y Q002AH syn LASTGRNODEP 6¢a) o02CR syn FIRSTGRNODEP
6(2) DQ2EH syn LASTOVNODEP 6(2) 0030H syn FIRSTOVNODEP
6(2) 0032H syn LASTBNODEP 6(2) 0034H syn FIRSTBNODEP
6(2) 003bLH SYm SGNODEBASE 6(2) 003&H sYn GRNODEBASE
G(2) 003AH svn SYNODEBASE 6(2) 0D3CH syn NHMNODEBASE
6(2) 0D3ER syn TDNODEBASE 6(2) 0040H SYn FFNODEBASE
G(2) 00uY2H syn OVNODEBASE 6(2) 0GY4H SYm FENODEBASE
6¢2) 0046H syn FDNODEBASE 6(2) DOY4&H sSYn FANODEBASE
62y DOYAH sYR FBNODEBASE 6(2) 004CH syn BNODEBASE
G(ay QO4EH symn CLASHNODEBASE 6t2) 0050H sym FIRSTRENAMEBLOCK
-P

Figure 2-5. LINK86 Symbol Table

LINK86 2-31

6(2) 03ANH sYn SIGNONNSG (19} 0374H SYn PRINTNANE
6(L) OLA3H SYM INITIALIZEINPUT G(1) OLABH SYn OPENFBLOCKFILE
6(1) 0LF&LH SYM CLOSEFBLOCKFILE (48 3] ODF78 LIN ?
6(1) DOFAH LIN 10 6(1) ODFEH LIN 13
6(2) 010K LIN 14 [19%] 0M0SH LIN 73
6(1) 0L0D&H LIN 75 G(3) QLOFH LIN 76
6(1) 0L18H LIN 7 [A9%] 011DH LIN 78
(43} 012kH LIN k&l (193] 012AH LIN &0
(93] 0i2PH LIN 8y (193] 0}3kH LIN 85
GtL) 013DH LIN 8b 6(1) DM44H LIN x4
(X%} D1S3H LIN as G(L) OLSAH LIN 89
G(L) D1LaH LIN 10 6(1) 0170K LIN 93
G 0L74H LIN 94 6(1) 017?7H LIN 9%
6L DLB8EH LIN 7 6(1) 0198H LIN 98
G¢L) D39EH LIN 1 6L OLA3H LIN 100
G(L) 0LAGH LIN 03 6(1) D1ASH LIN 105
G(1) OLABH LIN 106 6()) DMBEH LIN 07
[483] DLC8H LIN 108 61 0LCFH LIN 109

REFERENCES TO SEGMENT BASES EXIST IN THE INPUT HMODULES:
ROOT

Figure 2-5. LINK86 Symbol Table (Cont'd.)

BASE is usually a symbolic group or segment index. If the base is the stack, then
STACK is used instead of the index.

OFFSET is a four-digit hexadecimal number that is the offset of the symbol or line
from BASE, or from the current BP for stack symbols.

TYPE describes the kind of symbol it is. There are four possible entries in the TYPE
column:

BAS based on an other symbol’s value

LIN line (not asymbol)

PUB public symbol (alphabetized within each separate BASE)
SYM local symbol

SYMBOL refers to the name of the symbol or number of the line. If the
SYMBOLCOLUMNS value is one, this field is 40 characters wide. Otherwise, this
field is 16 characters wide. If the symbol name is longer than the width of the field,
then the name is hyphenated and continued on the next line.

If there are any references to segment bases in the input modules (if the output
module is an LTL program), LINK86 prints the following message at the bottom of
figure 2-5. The message identifies all input modules containing such references.
These references are to be resolved by the system loader or LOC86.

Error Messages

The warning messages are listed consecutively as warning situations are
encountered. They may appear before or after the link map. Errors always terminate
processing—an error message will always be the last line in the print file.

See the discussion of the interpretation of individual messages in Appendix D.

CREF86

CREF86 scans 8086 object modules to provide a cross-reference among external and
public symbols in multiple modules. CREF86 accepts a list of files and controls as
input and produces one output file: a print file.

Figure 3-1 illustrates the types of input accepted and output produced. The input
modules may include one or more of the following 8086 object modules:

¢ Unlinked modules from one or more translators
e Library files or specific library modules
¢ Linked modules

The output file consists of information about files and modules, plus an
alphabetically sorted list of external and public symbols. Information printed for
each symbol includes the name of the module defining the symbol and the name(s)
of the module(s) declaring the symbol as external.

This chapter provides details concerning the CREF86 invocation, controls, and
cross-reference listing. For definition of file-naming and syntax notation conven-
tions used in this chapter, refer to Notational Conventions following the Preface.
For a summary of the CREF86 controls and information on error and warning
messages which may be produced, refer to Appendix E. For details concerning
CREF86 symbol table space limitations, refer to Appendix C.

TRANSLATED
OBJECT INVOCATION
MODULE(S) LINE CONTROLS
R A -
- L]
LIBRARY 1 I PRINT FILE
MODULE(S) 3 CREF8S ! “*.CRF""
.
| A 4
—
LINKED CONSOLE
OBJECT MESSAGES
MODULE(S)
1

121616-5

Figure 3-1. CREF86 Input and Output Files

3-2 iAPX 86,88 Family Utilities

CREF86 Invocation Line

The general syntax for invocation is:
|directory-name]CREF 86 input list[controls]

The input list is one or more modules to be scanned for external-public cross-
references:

pathname| (module name(, ...][, ...]

Unless a module name is specified, all modules in a pathname are included in the
cross-reference listing produced. If the pathname is a library file, any modules
named in parentheses are included in the cross-reference listing, even if they do not
contain public symbol definitions for external symbols declared elsewhere in the
input list.

Either all or none of the pathnames may contain overlay records (produced by
LINK86 with the OVERLAY control). If the input modules do contain overlay
records, the first file named in the invocation is considered to be the root file; the
rest are treated as overlays.

The controls can be any subset of the controls described in the next section.

CREF86 Controls

The controls specify cross-reference listing attributes such as print file name, the
title at the top of each listing page, and the amount of information printed on each
page. The controls are described in table 3-1.

Table 3-1. Summary of CREF86 Controls

Control Abbrev. Default
PAGELENGTH(number) PL PAGELENGTH(60)
PAGEWIDTH(number) PW PAGEWIDTH(120)
PRINT{(pathname}) PR PRINT(first input file.CRF)
TITLE(character-string) T Not applicable

If there are multiple occurrences of any control in the invocation line, the rightmost
occurrence governs.

See Chapter 7 for operating system information and for operating system-specific
examples of the CREF86 controls.

CREF86 3-3

PAGELENGTH

Syntax

PAGELENGTH (number)

Abbreviation

PL

Default

PAGELENGTH(60)

Definition

PAGELENGTH specifies the number of lines to be printed on each page. The
number must be a decimal value between 10 and 255, inclusive.

Notes
None

3-4 iAPX 86,88 Family Utilities

PAGEWIDTH

Syntax

PAGEWIDTH Chumber)

Abbreviation

PW

Default

PAGEWIDTH(120)

Definition

PAGEWIDTH specifies the maximum number of characters to be printed on a
single line. The number must be a decimal value from 80 to 132, inclusive.

Notes
* PAGEWIDTH truncates the TITLE if TITLE is greater than the number of
unused character locations on the title line.

e If the specified PAGEWIDTH does not allow enough space to print the
referring module name(s) on the same line as the defining module name, the
referring module names(s) will be printed on separate lines.

CREF86 3-5

PRINT

Syntax

PRINT[(pathname)]

Abbreviation

PR

Default

PRINT (firstinput file . CRF)

Definition

PRINT provides the ability to specify a pathname for the cross-reference listing.
The pathname identifies the destination of the listing. If the PRINT control is not
specified or if the control is given without an argument, the print file will have the
same pathname as the first file in the input list, except the extension will be .CRF.

Notes

e If no PRINT control is specified, output goes to a default file. The name of the
default file is the name of the first file in the invocation command with the
extension .CRF.

e If PRINT is specified with no pathname, output goes to the default file.

3-6 iAPX 86,88 Family Utilities

TITLE

Syntax

T1TLE (character string)

Abbreviation

TT

Default
Not applicable

Definition

TITLE may be used to specify a heading having a character string of null to 80
characters, inclusive. This heading appears on the first line of every page of the
cross-reference listing.

Notes
e The TITLE string is truncated if the PAGEWIDTH control is not large enough
to accommodate the entire string.

e [If the character string contains any characters defined by the operating system
as special, the string must be delimited in accord with operating system conven-
tions for special characters and string delimiters.

CREF86 3-7

CREF86’s Print File

The print file is a cross-reference listing of external and public symbols in the input
modules. This listing consists of the following parts:

* A header
* Warnings (if any)
®* Module list

e Cross-reference information

Header

Figure 3-2 illustrates the components printed in this part of the cross-reference

listing:

e A title line output by CREF86, usually consisting of a program identifier
(CREF86), any user-defined TITLE, date of listing, and the page number

® A line identifying the CREF86 environment {operating system and version
number)

® Oneor more lines summarizing the pathnames of input files
¢ Aline for identifying the print file pathname

®* One or more lines giving the controls specified at invocation, present only if
controls were specified

Warnings

Figure 3-3 illustrates how warning messages appear on the cross-reference listing
when CREF86 detects such conditions as mismatched types, modules not found, etc.
Refer to Appendix E for information on CREF86 error and warning messages.

CREF 8L EXAMPLE OF CROSS REFERENCE USING CREF8L nn/pD/YY PAGE

system-id CREF&L Vx.y

INPUT FILES: pathnamel pathnamel pathnamed pathnamey pathnames pathnamek
pathname? pathnamed pathnamed pathnameld pathnamell pathnamel
pathnamel3 pathnamelt pathnamels pathnamelh pathnamel?

QUTPUT FILE: pathnameld
CONTROLS SPECIFIED: PR(OUT) TT(EXAMPLE OF CROSS REFERENCE USING CREFAL) PW(120) PL(LO)

Figure 3-2. Header of Cross-Reference Listing

WARNING 19: TYPE HISHATCH
FILE: pathnamels
HODULE: MISMATCH
SYNBOL: ENAMEID

WARNING 19: TYPE MISMATCH
FILE: pathnamels
MODULE: HISHATCH
SYNBOL: FOUR

WARNING 20: SPECIFIED MODULE NOT FOUND
FILE: pathnamelb
MODULE: UNKNOWN_MODULE

Figure 3-3. Warning Messages on CREF86 Listing

3-8 iAPX 86,88 Family Utilities

Module List

The module list, shown in figure 3-4, is a tabulated summary of all input files and
corresponding modules included from these files.

After the module list is printed, the rest of the page is skipped, so that the symbol

cross-references begin on the next new page.

m

MODULES INCLUDED:

FILE NARE MODULE NAME(S)

pathnamel CREF 8L

pathname2 PARSE

pathname3 SIGNON

pathnamed NEXTSTATE

pathnames

pathnameb UTILITIES

pathname? HEMORYMANAGEMENT

pathnamed SCANMODULES

pathnamed PROCESSRECORDS

pathnameld SCANUTILITIES

pathnamall LISTOUTPUT

pathnamel?d LISTUTILITIES

pathnameld SYHBOLSORT

pathnameld OBJAN

pathnamelS MISHATCH

pathnamelb

pathnamel? DAALLOCATE DRATTACH DQCHANGEEXTENSION DQCREATE
DADETACH DREXIT D@FREE DAGETARGUNENT
DRGETTINE DQOPEN DQREAD D@SEEX
SYSTENSTACK

D@DECODEEXCEPTION
DQGETSYSTEMID
DQURITE

Figure 3-4. Module List on CREF86 Listing

Symbol Cross-Reference Information

Figure 3-5 illustrates the format for listing data for all external and public symbols

referenced in the Module List.

The first column contains the names of the external and public symbols, in

alphabetical order.

The second column identifies the type of each symbol, as declared in the external or
public reference. The following tabulation identifies the entries which may occur in

this column:

CREF86 Entry
BYTE
WORD
DWORD
LWORD
INTEGER (n)
REAL(n)
POINTER
STRUCTURE
ARRAY OF
UNKNOWN
FILE
LABEL
PROCEDURE
(NEAR, FAR)
CONSTANT
SELECTOR

Symbol Type

8-bit unsigned
18-bit unsigned
32-bit unsigned
64-bit unsigned
n=1,2 4, or8bytes
n=1,2,4, or8bytes

null

The symbol type that appears in the second column is that associated with the first

occurrence of that symbol in the input list.

CREF86 3-9

CREF &L EXAMPLE 0F C(ROSS REFERENCE USING CREFBL nM/DD/YY hh/mm PAGE 3

SYMBOL NARE SYMBOL TYPE DEFINING MODULES REFERRING MODULE(S)

ACCESS_PAGE UNKNOWN 0BJNAN

ALLOCATE - .. UNKNOWN 0BJNAN

APPENDNODE PROCEDURE NEAR UTILITIES

APPENDUDSMNODE . PROCEDURE NEAR UTILITIESS PARSE SCANMODULES PROCESSRECORDS

ARRAYBASE . . POINTER SYMBOLSORT LISTOUTPUT

ATOX ... PROCEDURE WORD NEAR UTILITIESS PARSE

BTOX ... PROCEDURE WORD NEAR UTILITIESS LISTUTILITIES

EUBBLESORTVARNAH[S . PROCEDURE NEAR SYMBOLSORTS LISTOUTPUT

BUMPLINECOUNT PROCEDURE NEAR LISTUTILITIESS LISTOUTPUT

CHECKHEADER . PROCEDURE NEAR SCANUTILITIESS SCANMODULES

CHECKOVERLAY PROCEDURE NEAR SCANUTILITIESY SCANRODULES

CHECKVARTYP PROCEDURE BYTE NEAR SCANUTILITIESS PROCESSRECORDS

CHMPNAMES - - PROCEDURE BYTE NEAR LISTUTILITIESS SYMBOLSORT

CHPSTRNGS PROCEDURE BYTE NEAR UTILITIESS NEXTSTATE SCANMODULES SCANUTILITIES

CNCTI - WORD UTILITIESS HISHATCH

CNCTO . WORD UTILITIESS SIGNON ERROR MISMATCH

(ONTROLXD(OORDINATE . .- WORD PARSES UTILITIES

(ONTROLOFFS[T(OORD!NATE BYTE PARSES UTILITIES

(ONTKOLSARESP[(IFIED BYTE PARSES UTILITIES

CREATEOBJECT . PROCEDURE WORD NEAR OBJUMANS PARSE SCANMODULES PROCESSRECORDS
SCANUTILITIES SYMBOLSORT

CURRENTOVLNUN BYTE PROCESSRECORDS SCANUTILITIES

CURRENT_PAGE UNKNOWN CBJNAN

DEBUGTOGGLE BYTE PARSES

DEBUGTOGGLE BYTE ssxxDUPLICATE D[(LAR!TIONI::: MISMATCH

DQALLOCATE . PROCEDURE WORD NEAR DRALLOCATES MEMORYMANAGEMENT SYMBOLSORT 08UNAN

DAATTACH PROCEDURE WORD NEAR DQATTACHS UTILITIES SCANUTILITIES

Dd(HANGE[XTENSION PROCEDURE NEAR DACHANGEEXTENSION: PARSE

DACREATE -+ v vvvnnn PROCEDURE WORD NEAR DQCREATES UTILITIES

DOD[(ODEEXCEFTION PROCEDURE NEAR DEDECOD[EXCEPTION- ERROR

DRDET PROCEDURE NEAR DADETAC SCANMODULES

DOEXIT PROCEDURE NEAR hﬂEXIT- CREF8b ERROR

DAFREE PROCEDURE NEAR DAFREE S LISTOUTPUT

DQGETARGUNE PROCEDURE BYTE NEAR DQGETARGUMENT

DAGETSYSTEMID PROCEDURE NEAR DQGETSYSTEMID: SIGNON

DQGETTIME PROCEDURE NEAR DRGETTIMES LISTOUTPUT

Figure 3-5.

Symbol Cross-Reference Information

The third column contains the following for each symbols listed:

® The name of the module in which the symbol is defined public (defining

module)

* Asemicolon (;), if there are external references to the symbol in any of the input

modules

® The name(s) of the modules(s) in which the symbol is declared external

(referring module(s))

The third column is also used to flag unresolved and duplicate references. In the case
of unresolved external references, the string ***UNRESOLVED*** appears before
the semicolon. In the case of duplicate references, i.e., when a symbol has two or
more public definitions, the first public declaration is considered legal, and the rest
are flagged as duplicates. The string ***DUPLICATE DECLARATION***
appears, followed by a colon (:) and the name of the module containing the
duplicate public declaration.

If the input files contain overlays, CREF86 produces a symbol cross-reference that
consolidates all the symbols from all overlay and root modules. The first file in the
input list is considered to be the root file. CREF86 distinguishes between public
symbols with the same name in different overlays and does not flag these symbols as
duplicates. However, CREF86 does flag duplicate public declarations within any
one root/overlay combination.

TN

LIB86

L1B86 allows you to create, modify, and examine library files. It is an interactive
program.

This chapter provides details concerning LIB86 invocation and commands. For
definition of file-naming and syntax notation conventions used in this chapter, refer
to Notational Conventions following the Preface. For a summary of the LIB86 com-
mands and information on error and warning messages that may be produced, refer

to Appendix F. For details concerning L1B86 symbol table space limitations, refer to
Appendix C. '

LIB86 Invocation

The general syntax for the invocation line is:

[directory-name)L 1B 86[comment)

LIB86 Commands

Once LIB86 has begun execution, it displays an asterisk (*) and waits for a com-
mand. Table 4-1 lists all of L1B86’s commands.

Table 4-1. Summary of LIB86 Commands

Command Abbrev. Description

ADD {pathname|(module name |,...])]} A Adds modules to a library

[,...] TO pathname
CREATE pathname C Creates library files
DELETE pathname(module name |[,...]) D Deletes modules from alibrary file
EXIT E Terminates session with LIB86
LIST {pathname|((module name [,...])|} L Lists modules contained in a library

[,...]1 (YO pathname] [PUBLICS] [P] file, and optionally lists all publics

See Chapter 7 for operating system information and for operating system-specific
examples of the LIB86 commands.

4-2 iAPX 86,88 Family Utilities

ADD

Syntax

ADD {pathnamet[(module name|,...])]}[,...]T0 pathname2

Abbreviation

A

Definition
ADD adds modules to a library file.

The pathname? can be an object file or a library file.

The pathname?2 is the destination library file. The library must exist before the ADD
command is given; it may contain other modules.

If pathnameT is an object file produced by a translator, LINK86, or LOC86, then all
modules contained within the object file will be added to the designated library.

If pathname? is a library file, it may be specified with or without the module name
list. If no module name list is specified, all modules contained in the source library
will be added to the destination library. If the module name list is specified, then
only the modules specified within the parentheses are added to the destination
library.

LiBse 4-3

CREATE

Syntax

CREATE pathname

Abbreviation

C

Definition
CREATE creates a library file with the specified pathname.

Notes

e If a file with the specified pathname already exists, the library will not be
created and an error message will be provided.

4-4 iaPX 86,88 Family Utilities

DELETE

Syntax

DELETE pathname (module name |, ...])

Abbreviation

D

Definition

DELETE removes modules from a library file. Modules can be deleted from only
one library at a time.

Notes

None

LIB86 4-5

EXIT

Syntax

EXIT

Abbreviation

E

Definition

EXIT terminates a session with LIB86 and returns control to the operating system.

Notes

e LIB86 disassembles libraries into an internal form. The library is not
reconstituted until the EXIT command is processed. Therefore significant 170
will take place following an EXIT command.

4-6 iAPX 86,88 Family Utilities

LIST

Syntax

LIST {pathnamei|(module name[,...])]} [,...][T0 pathname2]
[PUBLICS]

Abbreviation

L [P]

Definition

LIST prints the names of modules, and optionally the public symbols contained in
those modules, to the specified output pathname.

The pathnamef is the library whose modules are to be listed.
The module name, if specified, identifies the modules to be listed.

TO pathname?2 identifies the device or file to receive the listing. If it is not specified,
the listing is directed to the console output device.

PUBLICS indicates that, in addition to the module names, all public symbols con-

tained within the module will also be listed. PUBLICS may be abbreviated as ‘P’.

Notes

None

LOC86

LOCB6 changes a relocatable 8086 object module into an absolute object module.
As figure 5-1 illustrates, LOC86 takes a single 8086 object module as input and out-
puts a located object file and, optionally, a print file. The print file output contains
diagnostic information. The object file contains absolute object code.

This chapter provides details concerning the LOC86 invocation, controls, and print
file. For definition of file-naming and syntax notation conventions used in this
chapter, refer to Notational Conventions following the Preface. For a summary of
the LOC86 controls and information on error and warning messages that may be
produced, refer to Appendix G. For details concerning LOC86 segment support
capabilities, refer to Appendix C.

INVOCATION
LINE CONTROLS

r———
| |
ABSOLUTE
wepint = toces F———| “osiecr
| MODULE
e
PRINT
FILE
- MP2
CONSOLE
MESSAGES

121616-6

Figure 5-1. LOCB86 input and Output Files

LOCS86 Invocation Line

The general syntax for the invocation line is:
|directory-name]LOC86 input file [TO object file|[controls]

The input file is a file containing an object module to be located. 1t is usually, but
not necessarily, the output from LINK86.

TO object file specifies the file to receive the located object module. In most cases
this is an executable file. If object file is not specified, then output will be directed to
a file that has the same pathname as the input file, except it will have no extension.

The controls may be any subset of the controls described in the next section.

LOCB86 Controls

The controls are described in table 5-1.

If you specify the same control more than once in the same invocation line, only the
last version entered counts. For example, if you enter NOMAP, and then later
decide you want a locate map, you can enter the MAP control without error. The
second version of the control is recognized and the first is ignored.

See Chapter 7 for operating system information and for operating system-specific
examples of the LOC86 controls.

5-2 iAPX 86,88 Family Utilities

Table 5-1. Summary of LOC86 Controls

Control Abbrev. Default
ADDRESSES(AD Not applicable
{SEGMENTS({segment|\class|\overiay|| (SM|
(addr)}|....}) | CS|GR)
CLASSES({class(addr)}....]) |
GROUPS({groupladdr)}{....]) }
[oD)
BOOTSTRAP BS Not applicabie
COMMENTS CM COMMENTS
NOCOMMENTS NOCM
INITCODE{{address)| IC INITCODE(200H)
NOINITCODE NOIC
LINES LI LINES
NOLINES NOLI
MAP MA MAP
NOMAP NOMA
NAME(module) NA Not applicable
OBJECTCONTROLS(oC Notapplicable
{LINES | NOLINES |
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGE)|....])
ORDER(oD Not applicable
{SEGMENTS({segment| \class|\ overlay||} (SM|CS)
[P
CLASSES({class|(segment |... .|} |...N} |...]) cs
PRINT((pathname)| PR PRINT(object file. MP2)
NOPRINT NOPR
PRINTCONTROLS({LINES | NOLINES | PC Not applicable
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGE}|....})
PUBLICS PL PUBLICS
NOPUBLICS NOPL
PURGE PU NOPURGE
NOPURGE NOPU
RESERVE({addr TOaddr} |,...}) RS Notapplicable
SEGSIZE({segment|\class|\overlay]| SS Not applicable
(size)} [,...1)
START({symbol | paragraph offset}) ST Not applicable
SYMBOLS SB SYMBOLS
NOSYMBOLS NOSB
SYMBOLCOLUMNS({112i314}) SC SYMBOLCOLUMNS(2}

Locse 5-3

ADDRESSES

Syntax

ADDRESSES ({SEGMENTS ({segment name[\class name
[\overlay name]| (address) }

[,...
CLASSES ({class name (address) }[,...]) |
GROUPS ({group name (address) }[,...]) }

§oeee

Abbreviation

AD(SM|CS|GR)

Default
Not applicable

Definition

ADDRESSES allows you to override LOC86’s default address assignment
algorithm. You may assign a beginning address to segments, classes, or groups. All
addresses must follow Intel rules for integer representation. (These rules are the
same as those used by ASM86 and PL/M-86.) The subcontrols, SEGMENTS,
CLASSES, and GROUPS, identify exactly what elements of the input module are
being assigned addresses. When assigning an address with the SEGMENTS sub-
control, you may also specify the class name and overlay name of the particular
segment.

LOCB86 attempts to detect and avoid conflicts whenever possible. If the specified
address does not agree with the alignment attribute of the specified segment or the
first segment in the specified class, then the address is ignored. If an absolute seg-
ment is located at the address assigned to a class, then the class begins at the first free
address after the absolute segment. If you assign a non-paragraph address to a
group, LOC86 will assign the first paragraph address below the specified address.

Notes

e The subcontrols SEGMENTS, CLASSES, and GROUPS can be specified
multiple times in a single ADDRESSES control.

e If an address assignment causes a conflict with an ORDER control, a
RESERVE control or an absolute segment, LOCS86 generates an error message.

e When locating bound object modules, you may not assign an address to a
segment in a group.

¢ Segments of length 0 are ignored during address assignments.

¢ The address assignment for a GROUP does not affect the addresses assigned to
segments in that GROUP.

5-4 iAPX 86,88 Family Utilities

BOOTSTRAP

Syntax

BOOTSTRAP

Abbreviation

BS

Defauit
Not applicable

Definition

BOOTSTRAP indicates that the code for a long jump to the module’s start address
should be placed at location OFFFFOH, when the module is loaded. This is the first
instruction executed by the 8086 after reset. If the input module has no start address
and none is specified in the START control, LOC86 will generate an error message.

Notes
¢ Seealso the START and INITCODE controls.

Locss 5-5

COMMENTS/NOCOMMENTS

Syntax

COMMENTS
NOCOMMENTS

Abbreviation

CM
NOCM

Default
COMMENTS

Definition

COMMENTS allows object file comment records to remain in the output module.
The NOCOMMENTS control removes all comment records except those designated
as non-purgable.

Comment records are added to the object module for various reasons. All
translators add a comment record to the object files they produce. The record iden-
tifies the compiler or assembler that produced the object file.

Comment records are superfluous to the production of executable code and may be
removed at any time during the development process, or left in the file.

Notes
e See PRINTCONTROLS, OBJECTCONTROLS, and PURGE.

e Comment records should not be removed when you submit an object file in a
Software Problem Report.

* NOCOMMENTS will decrease the size of the output object module.
¢ COMMENTS has no effect on the print file.

5-6 iAPX 86,88 Family Utilities

INITCODE /NOINITCODE

Syntax

INITCODE[(address)]

NOINITCODE
Abbreviation
IC

NOIC

Default
INITCODE(200H)

Definition

INITCODE causes LOCB86 to create a new segment that contains code to initialize
the segment registers. The optional address argument specifies the physical address
of the code that performs this initialization. If no address is specified, the initializa-
tion code will be placed at 200H. The equivalent assembly language code is shown

below:

STACKFRAME DW

DATAFRAME DW

EXTRAFRAME DW
CLI
MoV
MOV
MoV
MoV
JMP

Notes

stack frame
data frame
extra frame

SS, CS:STACKFRAME
SP, stackoffset

DS, CS:DATAFRAME
ES, CS:EXTRAFRAME
program start

¢ The initialization code segment is created only if a register initialization record
for 8086 segment registers exists in the input. These register initialization
records are automatically produced by 8086-based translators for main

modules.

e If the area of memory used by the INITCODE default is reserved, LOC86
places the initialization code above the reserved space.

e |fcreated, the new segment is called ??LOC86__INITCODE.

Locss 5-7

LINES/NOLINES

Syntax

LINES
NOLINES

Abbreviation

LI
NOLI

Default

LINES

Definition

LINES allows line number information to remain in the object file. In-circuit
emulators and other debuggers use this information; it is not needed to produce
executable code. The NOLINES control removes this information from the output
file.

Notes

¢ The scope of the LINES control can be modified with PRINTCONTROLS and
OBJECTCONTROLS.

e See the PURGE control.

® NOLINES will decrease the size of the output object file; however, this infor-
mation is used by debuggers.

5-8 iAPX 86,88 Family Utilities

MAP/NOMAP

Syntax

MAP
NOMAP

Abbreviation

MA
NOMA

Default

MAP

Definition

MAP causes LOC86 to produce a locate map for the output module and add it to the
print file. For all segments in the module the map shows the complete name (seg-
ment name, class name, and overlay name), size, alignment, start address, and stop
address. A more complete description of the locate map and the rest of the print file
is at the end of this chapter.

Notes
® MAP can be overridden by the NOPRINT control.

Locse 5-9

NAME

Syntax

NAME (module name)

Abbreviation

NA

Default

Module retains its current name.

Definition

NAME assigns the specified module name to the output module. If NAME is not
specified, then the output module retains its current name.

The module name may be up to 40 characters long. It may be composed of any of
the following characters in any order:

? (question mark)
@ (commercial at)
: (colon)

. (period)

_ (underscore)
A,B,C,....Z
0,1,2,...,9.

Lower case letters may be used, but they are automatically converted to upper case.

Notes

e NAME does not affect the output file’s name, only the module name in the
output module’s header record.

5-10 iAPX 86,88 Family Utilities

OBJECTCONTROLS

Syntax

OBJECTCONTROLSC({LINES | NOLINES |

COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGE}

(v
)

Abbreviation

0C

Default

Controls apply to both the print file and the object file.

Definition

OBJECTCONTROLS causes the controls specified in its arguments to be applied to
the object file only. Comment records, line number records, local and public symbol
records, and symbol type records are selectively included or excluded from the
object file. This will not affect the print file and the information contained in it.

Notes

If you specify an invalid control in the arguments to OBJECTCONTROLS,
LOCS86 generates an error message.

You may specify a control or control pair more than once within
OBJECTCONTROLS, but only the last version specified counts.

You may abbreviate the controls used within OBJECTCONTROLS.

When you specify a control in both OBJECTCONTROLS and
PRINTCONTROLS, it will have the same effect as specifying it once outside of
these controls.

Locss 5-11

ORDER

Syntax

ORDERC{SEGMENTS ({segment name|[\ class name|[\ overlay name]] }
[|
CLASSES ({class name[(segmentname[,..])]} {,..])}
[,..]D

Abbreviation

OD(SM|CS|)

Default
Not applicable

Definition

ORDER specifies a partial or complete order for segments, classes, and the segments
within a class. Segments and classes listed in ORDER are located before any other
relocatable segment.

The subcontrol SEGMENTS indicates that the list of segment names shall be
ordered.

The segment name identifies the specific segments to be ordered. The \class name
and \overlay name may be used o resolve conflicts with duplicate segment names.
If \overlay name is specified, the \ class name is required.

If one of the segments specified is not contained in the designated group, an error

message is generated.

Notes
o See ““LOCB86’s Algorithm for Locating Segments’’ at the end of this chapter.

5-12 iAPX 86,88 Family Utilities

PRINT/NOPRINT

Syntax

PRINT[(pathname)]
NOPRINT

Abbreviation

PR
NOPR

Default

PRINT (object file .MP2)

Definition

PRINT allows you to direct the locate map symbol table and other diagnostic
information to a particula. file. If the PRINT control is not specified or if the con-
trol is given without an argument, the print file will have the same pathname as the

output file except the extension will be .MP2. NOPRINT prevents the creation of
this file.

Notes

e The discussion at the end of this chapter describes the contents of the print file.

¢ See also MAP, SYMBOLCOLUMNS, LINES, SYMBOLS, PUBLICS, and
PRINTCONTROLS.

Locss 5-13

PRINTCONTROLS

Syntax

PRINTCONTROLSC({LINES | NOLINES |
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGE?}

(]
)

Abbreviation

PC

Default
Controls apply to both the print file and the object file.

Definition

PRINTCONTROLS causes the controls specified in its arguments to be applied to
the print file only. Line number information, and local and public symbol informa-
tion are selectively included or excluded from the print file. This will not affect the
object file or the information contained in it.

Notes

e If you specify an invalid control in the arguments to PRINTCONTROLS,
LOCS86 generates an error message.

¢ You may specify a control in OBJECTCONTROLS more than once, but only
the last version specified counts.

* You may abbreviate the controls used within PRINTCONTROLS.

®* When you specify a control in both PRINTCONTROLS and
OBJECTCONTROLS, it will have the same effect as specifying it once outside
of these controls.

5-14 iAPX 86,88 Family Utilities

PUBLICS/NOPUBLICS

Syntax

PUBLICS
NOPUBLICS

Abbreviation
PL
NOPL

Default

PUBLICS

Definition

PUBLICS causes the public symbol records to be kept in the object file and the
corresponding information to be placed in the print file.

Notes
. The scope of PUBLICS can be modified by PRINTCONTROLS and
OBJECTCONTROLS.

. NOPUBLICS will reduce the size of the output object file; however, public
symbol records may be used by debuggers.

. See the PURGE control.

TN

Locss 5-15

PURGE/NOPURGE

Syntax

PURGE
NOPURGE

Abbreviation

PU
NOPU

Default

NOPURGE

Definition
PURGE is exactly the same as specifying NOLINES, NOSYMBOLS,

NOCOMMENTS, and NOPUBLICS. NOPURGE in the control list is the same as
specifying LINES, SYMBOLS, COMMENTS, and PUBLICS.

PURGE removes all of the public and debug information rom the object file and
the print file. 1t will produce the most compact object file possible. The records that
would be included by NOPURGE are useful to debuggers and in-circuit emulators,
but otherwise they are unnecessary for producing executable code.

Notes

e PRINTCONTROLS and OBJECTCONTROLS can be used to modify the
scope of PURGE.

5-16 iAPX 86,88 Family Utilities

RESERVE

Syntax

RESERVE ({address? T0 address?} [,...])

Abbreviation

RS

Default

All of memory is assumed available.

Definition

RESERVE prevents LOC86 from locating segments in certain areas of memory.
LOC86 will not use all memory addresses from address? to address? inclusive;
address1 must be less than or equal to address2.

Notes

e If an absolute segment uses a reserved memory area, a warning message is
generated.

e Reserved areas may overlap.

Locse 5-17

SEGSIZE

Syntax

SEGSIZE ({segment name|\class name[\overlay name]] (size)}

[..D

Abbreviation

SS

Default
Not applicable

Definition
SEGSIZE allows you to specify the memory space used by a segment.

The segment name may be any segment contained in the input module.

The size is a 16-bit number that LOC86 uses to change the size of the specified
segment. There are three ways of specifying this value.

® + indicates that the number should be added to the current segment length.

e — indicates that the number should be subtracted from the current segment
length.

* No sign indicates that the number should become the new segment length.

Notes

e L.OCB6 issues a warning message when SEGSIZE decreases the size of a
segment.

5-18 iAPX 86,88 Family Utilities

START

Syntax

START ({public symbol | paragraph , offset})

Abbreviation

ST

Default

The start address designated in the input module

Definition

START allows you to specify the start address of your program.

If you specify public symbol, that symbol must be defined within the input module.

The paragraph value initializes the CS register and the offset value initializes the IP
in an 8086 long jump when your program is started.

Notes
¢ See the BOOTSTRAP and INITCODE controls.

Locse 5-19

SYMBOLS/NOSYMBOLS

Syntax

SYMBOLS
NOSYMBOLS

Abbreviation

SB
NOSB

Default

SYMBOLS

Definition

SYMBOLS specifies that all local symbol records shall be included in the object
file, and information concerning local symbols will also appear in the symbol table
contained in the print file. Local symbol records are used by debuggers and in-
circuit emulators.

Notes
. The scope can be modified by OBJECTIONCONTROLS and
PRINTCONTROLS.

° NOSYMBOLS will decrease the size of the output object file; however,
this information is used by debuggers.

J See the PURGE control.

5-20 iAPX 86,88 Family Utilities

SYMBOLCOLUMNS

Syntax

SYMBOLCOLUMNS({1]2]3]4})

Abbreviation

SC

Default

SYMBOLCOLUMNS (2)

Definition

SYMBOLCOLUMNS indicates the number of columns to be used when producing
the symbol table for the object module. Two columns fit on a 78-character line; four
columns fit on a single 128-character line printer line.

Notes

None

Locse 5-21

LOCB86’s Print File

The print file is always created unless you specify NOPRINT. The optional argu-
ment to PRINT designates the name of the print file. The default print file is the
object file with the extension .MP2.

The print file may contain as many as three parts:
* Asymboltable

* A memory map

® Anerror message list

The symbol table is included in the print file when a PUBLICS, LINES, or
SYMBOLS control is in effect. The memory map is controlled by the
MAP/NOMAP control. Error and warning messages, if any, are always added to
the print file.

The Symbol Table

LOC86 produces a symbol table when any or all of the symbol controls (LINES,
SYMBOLS, and PUBLICS) are in effect. No symbol table will be produced when
PURGE is in effect for the print file.

Figure 5-2 shows LOC86’s symbol table with the SYMBOLCOLUMNS set at 2 (the
default).

BASE is usually a 4-digit hexadecimal number that is the base address of the group
that contains the symbol. If the base is the stack, then STACK is used instead of a
number. If the symbol is based on another symbol’s value, then the BASE and
OFFSET values for that symbol are given.

OFFSET is a 4-digit hexadecimal number that is the offset of the symbol or line
from BASE, or from the current BP for stack symbols.

To compute the physical address of the specified symbol you would use the follow-
ing equation:

(BASE * I0H) + OFFSET = Physical Address

Of course, the physical address of the symbols whose base is the STACK, or symbols
that are based on another symbol’s value, cannot be computed until run-time.

TYPE describes the kind of symbol it is. There are four possible entries in the TYPE
column:

BAS based on another symbol’s value
LIN line (notasymbol)

PUB public symbol

SYM local symbol

SYMBOL field contains the name of the symbol or number of the line. If the
SYMBOLCOLUMNS value is 1, this field is 40 characters wide. If the
SYMBOLCOLUMNS value is 2 or more, then this field is 16 characters wide. If the
symbol name is longer than the width of the entry, then the name is hyphenated and
continued in the SYMBOL field on the next line.

5-22 iAPX 86,88 Family Utilities

DATE:

BASE

OOBBH
DOBBH
ocges
0O0BBH

00BBH

00BBH
00BBH
DOBBH

0O08BH
00BBH
00BBH
00BBH
00BBH

CO08BH
008BH

BASE

DOBBH
0088H
0020H
00BBH

00BBH
0D20H
00204
0020H
0020H
0020H
0020H
0D20H
0020H
0020H
0020H
002DH
0020H
0020H
0020H
0020H

HH/DD/YY

OFFSET

01LCH
OO01EH
0054H
0160H

0179H

00L&H
D0?4H
oa?aH

ODSOH
DOYAH
DO3AH
0032H
0D3kH

0026H
DO3EH

ROOT
OFFSET

OFAOH
0D1CH
DOF7H

DLAAH
D1A3H
OLFLH
OOF AH
030LH
0108H
0118H
032kH
0laDH
013DH
DL53H
01LBH
01744
OLBEH
D19FH
01AbH

INPUT FILE: pathnamel
QUTPUT FILE pathnamel
CONTROLS SPECIFIED IN INVOCATION COMMAND:

TINE:

TYPE

TYPE

SYH

system-id 808k LOCATOR. Vx.y

HH:NN:5S

SYNBOL TABLE OF MODULE ROOT

symeoL

BINDCONTROL
BUFBASE
CLASHNODEBASE
COMNENTSCONTROL

DEBUGTOGGLE

EXCEPTION
FBLOCKBASE
FBLOCKLISTTALL

FBNODEBASE
FENODEBASE
FIRSTBNODEP
FIRSTGRNODEP
FIRSTOVNODEP

FIRSTSGNODEP
GRNODEBASE

SYHMBOL

MERORY

LASTNMNODEP
LASTSGNODEP
LASTTDNODEP
LASTEXNODEP
LASTGRNODEP
LASTOVNODEP
LASTBNODEP
SGNODEBASE
SYNODEBASE
TDNODEBASE
OVNODEBASE
FDNODEBASE
FBNODEBASE
CLASHNODEBASE

SIGNONMSG
INITIALIZEINPUT
CLOSEFBLOCKFILE

BASE

D08BH
00BBH
00BBH
00BBH

0O0BBH

00BBR
D0BBH
D0BBH

00BBH
00BBH
008BH
ODEBH
D0BBH

0DBBH
D0BBH

DD20H
0020H
0020H
00204
0020H
0020H
0020H
0020H
0020H
0020H
oD20#
0020H
0020H
0020H
0020H
00204

OFFSET

00SeH
001CH
00bLH
0177H

ODADH

OD4EH
00?0H
0343H

00u4CH
00YLH
DOZEH
oo22H
005kH

002AH
0852H

OFFSET

00DbH
00LEH
DOFEH
ooz2H
002LH
002AH
002EH
0032H
003bH
OD3AH
DO3EH
Q0uaH
004kH
DDY4AH
DDYEH
DOS52H
GOSLH

0174H
01A&H
0OF?H
OOFEH
0105H
O0LOFR
0L1DH
0l2AH
013LH
OL44H
0L5AH
0170H
QL77H
0198H
DLA3H
0LABH

TYPE

PUB
PUB
PUB
PUB

PUB

PuB
PUB
PUB

PUB
pus
PuB
PUB
PUB

Pus
PuB

_—

MODULE

TYPE

_—

sYn
sYm
LIN
LIN
LIN
LIN

—

SYMBOL

BNOEBASE

BUFLEN

COCONN
CURRENTOVERLAYNU

DEFAULTPRTFILENA
-HE

FANODEBASE
FBLOCKLISTHEAD
FBLOCKSEQUENCENU

-MBER
FDNODEBASE
FFNODEBASE
FIRSTEXNODEP
FIRSTNMNODEP
FIRSTRENAMEBLOCK

-p
FIRSTTDNODEP
HIGHESTDATALOCAT

-TON

sSyYmaoL

COPYRIGHT
BUFBASE
WARNING
FIRSTNHNODEP
FIRSTSGNODEP
FIRSTTDNODEP
FIRSTEXNODEP
FIRSTGRNODEP
FIRSTOVNODEP
FIRSTBNODEP
GRNODEBASE
NMNODEBASE
FFNODEBASE
FENODEBASE
FANODEBASE
BNODEBASE
FIRSTRENAMEBLOCK
-p

PRINTNAME
OPENFBLOCKFILE

Figure 5-2. LOC86 Symbol Table

LOC86

5-23

The Memory Map

The memory map supplies useful information about segment placement and address
assignment. Figure 5-3 shows LOC86’s memory map.

The map consists of three parts:
* Header

® Segment map

¢ Group map

The header includes the input module name and the start address.

The segment map is a table with six columns. From left to right the columns show:
¢ the START address of the segment

¢ the STOP address of the segment

* the LENGTH of the segment

e the ALIGNMENT attribute of the segment

* the NAME of the segment

e the CLASS of the segment

¢ the OVERLAY of the segment

A “*C” printed between the STOP and LENGTH columns indicates that two
segments have overlapping memory locations; a warning message is also issued.

A segment may have any one of the following alignment attributes:

absolute

byte

paragraph

member of an LTL group
page

word

in-page

—_—

MEMORY MAP OF RMODULE ROOT

D E OXT O

NODULE START ADDRESS PARAGRAPH = 0020H OFFSET = 0002H
SEGHENT HaP

START STOP LENGTH ALIGN NARE CLASS OVERLAY
0D200H 0DBBSK 09BLH () CODE CODE

00BBLH 00BCER 003&H [] CONST CONST

00BCCH 03703K 0B3&H (] DATA DATA

03704K QLBY5H 0442H W STACK STACK

01BSO0R DLB5COH 0000H 4 ?7SEG

0L850H 01B50H 0CO0H [l MEMORY MEMORY

GROUP MAP

ADDRESS GROUP OR SEGMENT NANE
oo200K CGROUP
CodE
00BBOH DGROUP
CONST
DATA
STACK
HEMORY

\/”J

Figure 5-3. LOC86 Memory Map

5-24 iAPX 86,88 Family Utilities

In-page alignment means that the entire segment must be resident within a single
256-byte page. The address of the first byte in any page has zeros in the first two
hexadecimal digits (O0H, 100H, 200H,... OFFFOOH).

The group map has two columns: the first is the physical address (five-digit hexa-
decimal number) of the beginning of the group; the second column is the group
name, followed by the segments contained in that group. The segment names con-
tained within a given group are listed in the same column but indented slightly.

Error and Warning Messages

The error and warning messages are listed consecutively as the error situations are
encountered.

See the discussion of the interpretation of individual messages in Appendix F.

LOC86’s Algorithm for Locating Segments

Assuming that there are no errors in the invocation line or input module, LOC86
locates an input module in three stages.

1. All absolute segments are removed from the list of segments contained in the
module.
2. The remaining relocatable segments are ordered into a sequential list.

3. The relocatable segments are then given absolute addresses according to each
segment’s alignment, size, and memory attribute.

Absolute Segments

When LOCB86 encounters an absolute segment, LOC86 removes the segment from a
list of input segments and reserves the memory area used by that segment. LOC86
maintains a map of free memory. Each time an absolute segment is encountered, the
memory space used by that segment is removed from the memory map. A segment
can become absolute in one of three ways:

1. [t may beassigned an absolute address by the translator.
2. It may be explicitly specified in an ADDRESSES control.

3. It may become absolute implicitly. If an absolute segment is specified in an
ORDER control, then all other segments referred to in that control, either by
segment name or by class name, are treated as absolute.

Segment Ordering

After all memory used by absolute segments has been removed from LOC86'§ f.ree
memory map and before LOCB86 begins assigning addresses to the remaining
relocatable segments, LOC86 prepares an ordered list of all relocatable segments.

All relocatable segments specified in an ORDER control are placed at the head of
the list.

Locse 5-25

After all ORDER controls, if any, have been processed, LOC86 adds the relocatable
segments that remain to the end of the list. If the first segment not previously used
has a class name, then all other segments with the same class name are added to the
list. After all segments of the class have been added to the list, then the next segment
is added to the list.

This process continues until all segments have been added to the ordered list.

NOTE
Memory segments do not adhere to this process — a memory segment is
always located at the top of memory, if possible. If an input module con-
tains more than one memory segment, only the first is placed at the top of
memory; the other segments are treated as any other relocatable segment.

Assigning Addresses to Relocatable Segments

Once LOC86 completes the ordered list of relocatable segments, it begins assigning
addresses. LOC86 will never assign addresses that conflict with the location of
absolute segments or the RESERVE control or between 00H and 200H, since that
area is reserved for interrupt routines.

Starting at location 200H, LOC86 scans free memory to find an area in which the
first segment will fit. When LOCS86 finds a suitable address, it assigns it to the seg-
ment and removes that area from free memory. LOC86 then scans free memory for
an area that will fit the next segment in the ordered list. LOC86 begins scanning at
the end of the previous segment.

IF LOC86 reaches the end of memory and all of the relocatable modules have not
been located, it makes an additional scan through free memory. The scanning pro-
cess continues until all modules have been located.

LOCB86’s Algorithm for Locating Modules
Containing Overlays

LOCS86 locates programs with overlays in much the same way as it handles programs
that do not contain overlays. However, there are some differences.

1. Segments contained in the root and each overlay are ordered separately.

2. Segments that are common to both the root and overlays (e.g.,STACK and
MEMORY) are put at the end of the list of relocatable segments.

3. Segments in the root are located at the lowest available addresses in memory.

4. Segments contained in the overlays are located at the first available address
above the root.

5. Segments common to the root and overlays are located immediately above the
largest overlay in the file.

Figure 5-4 illustrates how LOC86 treats two PL/M-86 programs that use overlays.
Figure 5-4a shows how segments are located when the modules are compiled with the
LARGE model. Figure 5-4b shows how segments are located when the modules are
compiled with the SMALL model of segmentation.

5-26 iAPX 86,88 Family Utilities

ROOT

A.CODE

B.CODE

C.DATA

OVERLAY 1

A.CODE

B. CODE

C.DATA

OVERLAY 2

A.CODE

B. CODE

C.DATA

cs

A. CODE/RQOT

B8.CODE/ROOT

A.CODE/OVL1

DS —»1

B. CODE/OViL1

A CODE/OVL2

B. CODE/OVL2

C.DATA/ROOT

C.DATA/OVL1

C.DATA/OVL2

a. LARGE Model

CLASS CODE

CLASS DATA

121616-7

Figure 5-4.

LOC86’s Address Assignments for Overlays

Locse 5-27

ROOT OVERLAY 1 OVERLAY 2
CODE
CODE C GROUP
CONST CONST CONST
DATA DATA
DATA
STACK STACK D GROUP
MEMORY STACK
MEMORY
MEMORY
cs Y i
I CODE FORROOT I
CODE FOR
CODE FOR OVERLAY 2 C GROUP
OVERLAY |
0000
DS.SS ——» 3
CONSTFORROOT
DATA FORROOT
CONST FOR OVERLAY 1 CONST FOR OVERLAY 2
DATA FOR OVERLAY 2
DATA FOR ” Z
OVERLAY 1 / /
» D GROUP
SIZE OF ROOT STACK
STACK
MAXIMUM SIZE
OVERLAY STACK
sp
MAXIMUM SIZE
MEMORY OF MEMORY (OVERLAY 1
J
b. SMALL Model
121616-8

Figure 5-4. LOC86’s Assignments for Overlays (Cont’d.)

OH86

OH86 converts 8086 absolute object modules to 8086 hexadecimal format. The
input module must be in absolute format, and it may not contain overlays or register
initialization records.

Figure 6-1 illustrates the object-to-hexadecimal conversion process. Any errors
encountered during execution are displayed at the console output device.

For definition of file-naming conventions and syntax notation, refer to Notational
Conventions following the Preface. For information on error and warning messages
which may be produced, refer to Appendix H.

The general syntax for the invocation line is:

|directory-name|0H86 input file[TO output file)

The input file contains an 8086 absolute object module.

TO output file designates the file to receive the 8086 hexadecimal format. If output
file is not specified, then output is directed to a file that has the same pathname as

the input list, but its extension is HEX.

See Chapter 7 for operating system-specific examples of the OH86 invocation.

r———™7
|
ABSOLUTE] ABSHOELXUYE
OBJECT [——| OH86 —_— Hex
MODULE i JFILE
]
CONSOLE
MESSAGES

121616-9

Figure 6-1. OH86 Input and Output Files

Using the iAPX 86,88 Utilities under DOS

This chapter contains information and examples for using the iAPX 86,88 utilities in

a DOS environment to create executable code for an iRMX 86-based system.

Hardware/Software Environment

The iAPX 86,88 Ultilities can run on an IBM XT or AT under the DOS operating
system, version 3.0 (or later), and require at least 192K of memory. The code produced
in this environment is executable on an iRMX 86-based system, as well as on various
other Intel and non-Intel target systems. The examples in this chapter show how to

produce code that is executable on an iRMX 86-based system.

Operating System Considerations

In this manual, the examples assume that the iAPX 86,88 utilities have already been
installed in the directory named C:\intel. For this reason, the pathname is not speci-
fied in any of the examples. Refer to the Disk Operating System manual in the IBM
Personal Computer Computer Language Series for information on changing the default
directory and pathname as well as for further details on the DOS operating system.

Command Line

The general form of the command line used to invoke LINKS86 is as follows:

(YL INKB6 inputlist TO outputfile controls

where
C»> is the DOS prompt.
LINK86 invokes LINKS86.
inputlist is one or more modules to be linked together into a single
object module.
outputfile designates the file to receive the linked object module.
controls are the LINK86 controls discussed in chapter 2.
Example

In this example, the LINK86 utility is invoked to link TEST.OBJ, SMALL.LIB, and

USER.LIB with the BIND control in effect:

Y INK86 PROG\TEST.OBJ, PROGVSMALL.LIB, & <cr>
IBJUSER . LIB TO PROGNTEST BIND

{cr)

For general invocation examples of the other utilities (CREF86, LIB86, LOC86, and
OHS86), see the appropriate chapter for the utility. In addition, specific invocation

examples are shown of each of the utilities at the end of this chapter.

7-2 iAPX 86,88 Family Utilities

Note that DOS places a 128 character limit on the length of the first line in the
invocation sequence.

Continuation lines are necessary when a command or invocation will not fit on one
line. The ampersand (&) should be used as the continuation character in this case.

Automating Program Invocation and Execution

DOS offers two ways of automatically invoking and executing multiple programs:
batch files and command files. The two sections that follow provide examples that
demonstrate how to use these files when using Intel software development tools.

DOS Batch Files

A DOS batch file is a file that contains one or more commands that DOS executes
one at a time. A batch file can contain commands that are valid only within a batch
file. All batch files must have the extension .BAT. See the Disk Operating System
manual in the IBM Personal Computer Computer Language Series for information
on how to create a DOS batch file.

You can pass parameters to a DOS batch file when the file executes. This way, the
batch file can do similar work on a different program, or set of data, each time the
batch file is executed. The following example illustrates how to use a batch file this
way.

Example

In this example, the batch file PLM.BAT contains the command sequence that invokes
the PL/M-86 compiler, and then invokes LINK86. LINK86 links the object module
that resulted from the compilation to SMALL.LIB, in turn producing a bound object
module with the extension .86. Each time this batch file is invoked, any PL/M
sourcefile, with the extension .PLM, can be given as the parameter to be passed to
the batch file. The percent signs and the following digit in the batch file will be
replaced with the parameters that are specified on the command line that invokes the
batch file.

1. Create a batch file named PLM.BAT that contains the following lines:

PLM86 X%¥1.PLM
LINKBE %1.0BJ, SMALL.LIB TO %1.86 BIND

2. Invoke the batch file by typing the name of the batch file (without specifying
the .BAT extension), followed by the name of the source file to be compiled. Do
not specify the sourcefile extension.

PLM PROG!

This executes the batch file named PLM.BAT which invokes the compiler to
translate PROG!.PLM, in turn passing the resulting file PROG1.0BJ to
LINK86. LINK86 then links PROG1.0OBJ with SMALL.LIB to produce
PROG]1.86.

Other important characteristics of DOS batch files are listed below.
. Batch files accept control flow constructs such as IF and GOTO. For example,
IF ERRORLEVEL n GOTO /abel

Using the iAPX 86,88 Utilities under DOS 7-3

allows the result of program execution in a batch file to determine which program
in the batch file will be executed next. (The value of ERRORLEVEL is the
error code returned by the last program executed.) If the error code returned is
greater than or equal to the value specified for n, then control will be transferred
to the line immediately after label. Thus, the batch file in the previous example,
PLM.BAT, could contain the following lines:

PLMBG6 %1.PLM

IF ERRORLEVEL 1 G6OTO STOP

LINK86 %1.0BJ, SMALL.LIB TO %21.86 BIND
:STOP

. Batch files cannot be nested. If a batch file references another batch file, control
will be passed directly to the other batch file, but control will not return to the
referring batch file.

. To process continuation lines in DOS batch files(not supported by DOS) you
must redirect the input from a file that contains continuation lines to a batch
file.

Example

In the example that follows, two files are created: LINKBIG.BAT is a batch file and
LINKBIG.CON is a file containing continuation lines that must be redirected to the
batch file upon execution. To redirect the file containing continuation lines (named
LINKBIG.CON) to the batch file(LINKBIG.BAT), perform the following steps.

1. Create a batch file named LINK.BAT, and enter the following:
LINK86 MODULE?Y1.OBJ, MODULE2.0BJ, & ¢ LINKBIG.CON

2. Create a text file named LINKBIG.CON that contains the following continua-
tion lines:

MODULE3.0BJ, MODULE4.0BJ, &
PLM86.LIB, SMALL.LIB &
TO BIGPROG.86

3. Execute the batch file by typing the following:
LINKBIG

When LINKBIG.BAT is executed LINK86 is invoked, and MODULE1, MODULE?2,
PLM86.LIB and SMALL.LIB are linked; the resulting object module is placed in
BIGPROG.86.

A batch file can contain several invocation lines, but each invocation line must fit on
a single line. In the following example, the batch file GENBIG.BAT contains several
invocation lines.

pim86 modulet.plm
plmB86 module2.plm
plm86 module3.plm
asmB86 moduled.asm
l1ink86 moduletl.obj, module2.0bj, & ¢ linkbig.con

To execute GENBIG.BAT, type the following:

(BYGENBIG <cr>

All of the modules in GENBIG.BAT will be compiled or assembled and then linked
to produce the BIGPROG.86.

7-4 iAPX 86,88 Family Utilities

Command Files

Under DOS version 2.0 or later it is possible to invoke the DOS command line inter-
preter program, COMMAND.COM, with input that is redirected from a file (called
a command file). This file can contain a sequence of DOS commands, as well as those
that invoke programs such as the PL/M-86 compiler. This command file must contain
the DOS EXIT command as its final line.

For example, if you create a command file named MAKEPROG.CMD that contains
the following information:

PLM86 main.plm

PLMB86 io.plm

PLM86 util.PLM

LINKBG main.obj, io.obj, util.obj, small.lib
to prog.86 bind

EXIT

It is now possible to redirect the commands in this file to the command line inter-
preter by typing the following:

(BYCOMMAND ¢ MAKEPROG.CMD

COMMAND.COM will then invoke all commands listed in the file
MAKEPROG.CMD.

The following considerations apply when invoking the command line interpreter
(COMMAND.COM) with input that is redirected from a command file:

. This method of redirecting commands only works for a fixed sequence of
commands; it is not possible to pass parameters to COMMAND.COM.

. The DOS batch file commands that allow conditional execution of portions of
the command file (IF and GOTO) are not supported; commands are always
executed sequentially.

. Command files can be nested by reinvoking COMMAND.COM from the
primary command file with input redirected from a secondary command file.
The secondary command file must contain an EXIT command as its final line.
When the EXIT command is executed, control returns to the point in the primary
file immediately following the point from which the secondary file was invoked.

. Command files, unlike DOS batch files, can contain continuation lines. For
example, the following is a valid command file:

LINKS8GE &
filel.obj, ¢
file2.obj &
to filel2.1nk

LINKBG &
file3.obj, &
filed.obj &
to file34.1nk

LINKB8E &
filet2.1nk, &
file34.1nk &
to files.86 bind

EXIT

If a command file is invoked with output redirected to a file, that file will contain
a complete log of all console output created during the execution of the command

Using the iAPX 86,88 Utilities under DOS 7-5

file, including the invocation line for each program executed in the command
file. For example, the following command would invoke the command file
MAKEPROG.CMD, and would create a log file named MAKEPROG.LOG.

(BICOMMAND ¢« MAKEPROG.CMD MAKEPROG.LOG

)

Work Files

The utilities create work files during processing, and delete them at the end of
processing. These files are designated :WORK: and they do not conflict with any
other files.

The DOS environment provides a mechanism for selecting the drive where :WORK:
files are to be placed. The default drive is C:, but another drive can be selected as
shown in the following example:

Example

[BYSET :WORK:=d:\

In this example, the DOS SET command sets the current directory in which tempo-
rary files are created to be placed in the root directory d. This location is useful when
the DOS VDISK.SYS device driver has been used to create a virtual disk in memory.

Generating Code to Run on an iRMX™ 86-Based
System

To generate code that runs on an iRMX 86-based system, perform the following steps:

1. Translate the program into object code by using the appropriate compiler or
assembler.

2. Use LINKS86 to link the program with other routines or libraries as necessary.
When doing this, remember the following:

. If you wrote your program in FORTRAN or Pascal, or if you invoked
specific universal development interface (UDI) calls, you must link your
program to the iRMX 86 UDI library that corresponds to the model of
segmentation for your program. These libraries are:

Library Model of Segmentation
URXLRB.LIB LARGE or MEDIUM
URXCOM.LIB COMPACT
URXSML.LIB SMALL

. Do not use FASTLOAD control. Currently, the iRMX 86 Operating System
cannot load programs linked with this control.)

. To produce LTL code, use the BIND control. In this case, also specify the
MEMPOOL and SEGSIZE controls to allocate memory for the memory
pool and stack. If you do not use BIND, you must specify SEGSIZE with
the LOC86 command.

3. If you did not specify the BIND control in the LINK86 command, use LOC86
to assign absolute addresses to your program. In order to run this program in an

7—6 iAPX 86,88 Family Utilities

iRMX 86 environment, you must also reserve the program’s memory locations
during iRMX 86 configuration.

4. To invoke the program from a terminal, enter the pathname of the file that
contains the program’s linked (if LTL code) or located object code.

Program Development Examples

The following examples are programming problems solved by using one or more of
the iAPX 86,88 utilities under the DOS operating system.

Example 1: Using CREF86

Figure 7-1 illustrates a CREF86 cross-reference listing for an input list of 15 files,
one of which contains several modules. The output print file pathname OUT and a
title for the listing were specified in the controls. Although PAGEWIDTH(PW) and
PAGELENGTH (PL) specifications were also noted in the controls, the numbers
specified are the same as those provided by default.

Example 2: Building and Using Library Files

A library is a file that contains object modules. Libraries allow you to collect commonly-
used pieces of software into one file. The library file can be included in a LINK86
invocation, and LINK&86 will use the modules to resolve references.

You can add the output from a translator, LINK86, or LOC86 to a library. The
modules added may be relocatable or absolute; they can have unresolved references
or be completely linked.

Consider the following example—you have created six routines (SINE, COSINE,
TANGENT, COSECANT, SECANT, and COTANGENT). You want to create a
library file that will allow each routine to be linked to programs separately.

The first step necessary to create the library is to translate each routine separately. If
you were to put them in a single source module, the translator would translate them
into one module with six public symbols. You could add this module to a library, but
when you tried to link one of the routines into a program all six would be included.

Once the routines are translated, the interactive utility LIB86 can be used to create

a library file and add modules. The LIST command is used to display the contents of
the library and the publics contained within it.

B3 [B8G6<cr)

D0S 8086 LIBRARIAN Vxy

MCREATE LIBRARYNTRIG.LIB<¢cr>»
MADD IN,0BJ, COS.0BJ TO LIBRARYANTRIG.LIB<¢cr)

ML IST LIBRARY\TRIB.LIB PUBLICS«<cr>»

LIBRARY\TRIG.LIB
SIN
SINE
cos
COSINE

Using the iAPX 86,88 Utilities under DOS 7-7

MADD SEC.LNK, CSC.LNK, COT.LNK, &<cr>
A TAN.LNK TO LIBRARY\TRIG.LIB <cr»
ML 1ST LIBRARY\TRIG.LIB PUBLICS<cr)

LIBRARY\TRIG.LIB

SIN

SINE
cos

COSINE
SEC

SECANT
Cs¢e

COSECANT
cor

COTANGENT
TAN

TANGENT

- ATIEED

Example 3: Linking and Locating Programs with Overlays
Using OVERLAY Control

The easiest way to build an 8086 program that contains overlays is with LINK86’s
OVERLAY control. Overlay modules built with this control reside in the same file as
the root. The target operating system (iIRMX 86, in this case) supplies routines that
will load the overlays constructed in this way. See the iIRMX™ 86 Loader Reference
Manual or the Run-Time Support Manual for iAPX 86,88 Applications.

After the program modules that will constitute the root and its overlays are trans-
lated, each of the overlays and the root must be linked separately. Then the root and
all of the overlays are linked together.

The example following shows the first step toward linking overlays—Ilinking all of the
modules that will constitute each overlay and the root separately:

0v1B.0BJ

(YL [NK86 O0V1.0BJ, OV1A.O0BJ, <cro

IBYOVERLAY(COVERLAY 1) <cr)

ovaCc.0BJ &«<crd

3L I NKB86 Qv2.0BJ, 0v2B.0BJ,
PBYJOVERLAYCOVERLAY2) ¢cr)

0V3A.0BJ OVERLAY(OVERLAY3)<cr>

Y [NK86

gv3.oBJ,
L [NK86 O0V4.0BJ, OV4A.0BJ OVERLAYCOVERLAY)<¢cr)>

RCOTB.OBJ, &<cr>

[BJL INK86 ROOT.0BJ, ROOTA.COBJ,
PBJURXSML .LIB OVERLAY(ROOT)<¢cr>

Notice that all of the modules, including the root, are linked with the OVERLAY
and NOBIND controls. The overlay name for the root is not as critical as for the
overlays, since the overlay name is used when calling the loader.

7-8 iAPX 86,88 Family Utilities

(REF 8L

D0S CREF Vx.y

INPUT FILES:

OUTPUT FILE:

MODULES INCLUDED:

FILE NAME

ROOT.0BJ
PARSE.0BJ
SIGNON.O0BY
STATE.0BY
ERROR.08Y
UTILS.0BJ
MEMMAN-0BJ
SCANNR.0BJ
PROCES. 0BJ
SCUTIL.08J
LIST.O0BY
LSUTIL.08y
SORT. 08y
UDSHA.LNK
URXCOM.LIB

CONTROLS SPECIFIED:

P

(REF&L

SYMBOL NAME

ACCESS_PAGE ...
ALLOCATE. ...
APPENDNODE .
APPENDUDSMNODE
ARRAYBASE
ATOI

BUBBLESORTVARNANES

CHECKHEADER ..
CHECKOVERLAY .
CHECKVARTYPE

CREF 8L

VARAREAP
VBLOC

YARNING - - -
GRITEDATE -......
WRITEINITLINEBUF
WRITELINE
WRITENEWLINE

URITETOFILE

BTOX «ovvvnnnns e

BUMPLINECOQUNT

L//_

UNLOAD_PAGE .-v.vntn

WRITETOCOMHANDBUF ..

EXAMPLE CF CROSS REFERENCE USING CREF8L MH/DD/YY hh/ma PAGE
R0OOT.0BJ PARSE.0BJ SIGNON.0BJ STATE.0BJ ERROR. 08J UTILS.0BJ
HMENMAN. 084 SCANNR.0BJ PROCES . 0BY SCUTIL.O0BY LIST.vBY LSUTIL.0BY
SORT.08J UDSHA.LNK URXCONM.LIB

ouT
PR(OUT) TT(EXANPLE OF (ROSS REFERENCE USING CREFBL) PW(l20) PL(LO)
HODULE NAMEC(s)
CREF 3L
PARSE
SIGNON
NEXTSTATE
ERROR
UTILITIES
HENMORYMANAGENENT
SCANMODULES
PROCESSRECORDS
SCANUTILITIES
LISTOUTPUT
LISTUTILITIES
SYHBOLSORT
0BJMAN
DAALLOCATE DAATTACH DGCHANGEEXTENSION DACREATE D@DECODEEXCEPTION
DADETACH DREXIT DAFREE DQGETARGUMENT D@GETSYSTENID
DQGETTINE DQOPEN D@READ DASEEX DQUWRITE
SYSTEMSTACK
EXAMPLE OF (ROSS REFERENCE USING CREF8L HH/DD/YY hh/mm PAGE
SYMBOL TYPE DEFINING MODULES REFERRING MODULE(S)
URKNOEN O0BJMAN
UNKNOWN 0BJMAN
PROCEDURE NEAR UTILITIES
PROCEDURE NEAR UTILITIESY PARSE SCANMODULES PROCESSRECORDS
POINTER SYMBOLSORTS LISTOUTPUT
PROCEDURE WORD NEAR UTILITIESS
........ PROCEDURE WORD NEAR UTILITIESS LISTUTILITIES
PROCEDURE NEAR SYMBOLSORTS LISTOUTPUT
..... . PROCEDURE NEAR LISTUTILITIES: LISTOUTPUT
PROCEDURE NEAR SCANUTILITIESY SCANMODULES
PROCEDURE NEAR SCANUTILITIESS SCANNODULES
PROCEDURE BYTE NEAR SCANUTILITIESS PROCESSRECORDS
EXAMPLE OF CROSS REFERENCE USING CREFBG RA/DD/YY hh/mm PAGE
...... . UNKNOWN 0BJMAN
POINTER MERORYHANAGEMENT S PROCESSRECORDS LISTOUTPUT SYHBOLSORT
WORD PROCESSRECORDSY UTILITIES LISTOUTPUT SYNBOLSORTY
PROCEDURE NEAR ERRORS SCANNODULES PROCESSRECORDS
PROCEDURE NEAR LISTUTILITIESS ERROR UTILITIES LISTOUTPUT
PROCEDURE NEAR LISTUTILITIESS ERROR UTILITIES LISTOUTPUT
PROCEDURE NEAR LISTUTILITIESS LISTOUTPUT
PROCEDURE NEAR LISTUTILITIESS UTILITIES LISTOUTPUT
PROCEDURE NEAR PARSE
PROCEDURE NEAR LISTUTILITIESS ERROR LISTOUTPUT
..... . WORD UTILITIES

1

e

b

Figure 7-1. CREF86 Cross-Reference Listing

Using the iAPX 86,88 Utilities under DOS 7-9

Finally, the overlays and root must be linked together. Since any one of the files could
be the root, LINK86 requires for the final link the file containing the root must be
first in the input list. During this final link, the OVERLAY control is not used:

B3 INK86 RODT.LNK, COV?1.LNK, OV2.LNK,
jRI0YV4 . LNK TO PROG.86 BIND<¢cr)

V3. LNK &ccr)

In the invocation, the BIND control is specified. The resulting object file is execut-
able on an iRMX 86-based system.

Figure 7-2 shows the LINKS86 print file listing for the previous invocation.

There is nothing special about the invocation line to LOC86 when locating a file that
contains overlays or that has been bound:

YL 0C86 PROG.86 RESERVE (O0H TO 77FFH, &ccr)

IRY0FCO00H TO OFFFFFH)<ccr>

The RESERVE control prevents LOC86 from assigning memory addresses reserved
for the operating system. However, the values you enter with the RESERVE control

must depend on the size and location of your operating system and other application
software. Figure 7-3 illustrates the printout from this invocation.

Example 4: Linking and Locating Programs with Overlays
Without OVERLAY Control

It is harder to produce overlay modules without using the OVERLAY control.
However, sometimes it is necessary to build programs in this way, for example, build-
ing a program for running under an operating system that does not support overlay
modules contained in the same file as the root module.

Regardless of the above reason, building overlays in this fashion places an extra burden
on the programmer. He must do some of the work that would be left to LINK86 (and
LOC86) if he were to use the OVERLAY control. The following example shows the
preparation of a root and two overlay modules in separate files.

First you must compile all modules. Examples of the invocation lines are shown below:

BIPLM86 ROOT.SRC SMALL<cr>
(BYPLMB86 O0V1.SRC SMALL<cr>
[BYPLMBE OV2.SRC SMALL<cr>

In the next step we must link the root module to resolve external symbols with a
library and to obtain a link map:

(B3I [NK8E ROOT.OBJ,USER.LIB MAP<cr>

You will need the link map for locating purposes. The link map, shown in
figure 7-4, shows the size of each segment in the root. Since the overlays are self-
contained except for references to the root, you do not need a link map for them. The
PL/M-86 listing files will show the size of each overlay’s segments, as illustrated in
figure 7-5.

7-10 iAPX 86,88 Family Utilities

Dos 8086 LINKER.

INPUT FILES:
QUTPUT FIL PROG .
CONTROLS SPECIFIED IN INVOCATION COMMAND

Vx.y

BIND
DATE: MM/DD/YY hh/mm
LINK MAP OF MODULE ROOT

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS ALIGN SEGMENT CLASS
3CE7H 6 CODE CODE
0DpOOH G CONST CONST
2840H G DATa DATA

ROOT.LNK, OVL.LNK, OV2.LNK. OV3.LNKs OV4.LNK
8

OVERLAY
ROOT
ROOT
ROOT

-

INPUT MODULES INCLUDED:
ROOT.LNK(ROOT)
OVL.LNK(PARSE)
OV2.LNK(ILUDE)
OV3.LNK(PICILUDE)
OVY.LNK(FASTLOAD)

GROUP MAP

GROUP NAME: CGROUP
OFFSET SEGMENT NARME
0000H CODENCODENROOT
3CE&H CODENCODE\PASS]
3CE8H CODENCODE\PASSZ

SYMBOL TABLE OF MODULE ROOT

BASE QFFSET TYPE SYMBOL

6(2) 253CH PUB ACTUAL

G(2) OF22H PUB BASEFIXUPSEXIST

6(2) 0D2kH PUB BNODEID

6(2) QD2&H PUB (LASHNODEID

G2y 0FODH PUB COMMENTSCONTROL

G(2) OFLAH PUB CURRENTOVERLAYNU

OVERLAY NAME = ROOT. MODULE NAHE = ROOT
BASE OFFSET TYPE SYMBOL

G(2) YA20H SYM REMORY

G2y ODDOH SYRM LASTANMNODEID

6(2) ODOYH SYM LASTSGNODEID

6(2) QDOBH SYM LASTIDNODEID

Gta) 0DOCH SYM LASTEXNODEID

Gta) ODLOH SYM LASTGRNODEID

6(2) ODLYH SYM LASTOVNODEID

62y ODLEH SYM LASTGNODEID

OVERLAY NAME = ROOT, MODULE NAME = LIT
BASE OFFSET TYPE SYNMBOL

6(2) 4A20H SYM HMEMORY

6(2) OFSLH SYM LITBASE

6(2) OF5kH BAS LITNODE

6(2) OFb4H SYM FIRSTNODE

G(2) OF96H SYM TEMPLATE

6(1) OLLEH SYM GETLIT

STACK 0004H SYm I

—_—

—_—

— o e e
—_—

w

OFFSET TYPE SYMBOL

OFODH PUB ASSUMEROOTCONTRO
-L

OFOCH PUB BINDCONTROL

24EAH PUB BUFBASE

ODSAH PUB COCONN

OFSOH PUB CURRENTFILNUM

OFBEH PUB CURRENTRECINDEX

OFFSET TYPE SYMBOL

0002H SYM COPYRIGHT
0DO2H SYM FIRSTNNMNODEID
ODDbR SYM FIRSTSGNODEID
ODOAH SYM FIRSTTDNODEID
ODOEH SYM FIRSTEXNODEID
0DP12H SYM FIRSTGRNODEID
OPlbH SYM FIRSTOVNODEID
ODIAH SYM FIRSTBNCDEID

OFFSET TYPE SYM8OL

D03CH BAS SGNODE

OFS8H Sym LITID

OF5AH SYM FIRSTNODEIDS
OFBEH SYH CURRENTRECINDEX
0FBH Syn II

00DLH SYM INDEX

D207H SyYm SGLIT

Figure 7-2. LINK86 Listing for Program with Overlays

Using the iAPX 86,88 Utilities under DOS 7—-11

D0S 808k LOCATOR: Vx.y
INPUT FILE: PROG.BS
OUTPUT FILE: PROG
CONTROLS SPECIFIED IN INVOCATION COMMAND:

RESERVE(OH TO ?2FFH.OFCOOOH TO OFFFFFH)
DATE: MM/DD/YY hh/mm
SYMBOL TABLE OF MODULE ROQT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
LD3uH 25LCH PUB ACTUAL LO3uH OFODH PUB ASSUMEROOTCONTRO

-L

1L034H OF22H PUB BASEFIXUPSEXIST LO034H OFOCH PUB BINDCONTROL
L034H 0Dp2bH PUB BNODEID 1034H 2Y4EAH PUB BUFBASE
10344 OD2&H PUB CLASHNODEID 1034H DDSAH PUB COCONN
10344 OFDOH PUB COMMENTSCONTROL 10344 DFSOH PUB CURRENTFILNUM
1034H OFLAH PUB CURRENTOVERLAYNU L034H DFBEH PUB CURRENTRECINDEX
OVERLAY = ROOT. MODULE =ROOT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
1034H YA20H SYM HMEMORY 1034H 00D2H SYM COPYRIGHT
L034H ODOOH SYM LASTNMNODEID 10344 ODD2H SYM FIRSTNMNODEID
10344 0DO4H SYM LASTSGNODEID 1034H 0DOLH SYM FIRSTSGNODEID
10344 ODOBH SYM LASTTDNODEID 1034H ODOAH SYM FIRSTTDNODEID
103uH 0DOCH SYM LASTEXNODEID 103wH ODDEH SYM FIRSTEXNODEID
L0344 ODLDH SYM LASTGRNODCID 1034H OD12H SYM FIRSTGRNODEID
3034H ODL4H SYM LASTOVNODEID LD34H ODLLH SYM FIRSTOVNODEID
10344 ODLBH SYM LASTBNODEID 1034H ODLAH SYN FIRSTBNODEID
1034H ODLCH SYM SGNODEID 10344 ODLEW SYN GRNODEID
OVERLAY = ROOT, MODULE =LIT
BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
L0344 YA20H SYH HEMORY 1034H OD3YH SYM SGNODE
1034H OF5eH SYM LITBASE 1034H OF58K SYM LITID
1034H OFELH SYM LITNODE 1034H OFSAH SYM FIRSTNODEIDS
1034H OFL4H SYM FIRSTNODE 1034H OFBEH SYN CURRENTRECINDEX
303uH OF9bH SYM TEMPLATE 1034 OFBIH S¥YM
0780H DLLEH SYm GETLIT STACK DDOLH SYM INDEX
STACK 0004H SYN I 07604 D207H SYM SGLIT

START

0B4ES
08YES|
0BYEA

MEMORY MAP OF MODULE ROOT

HODULE START ADDRESS PARAGRAPH = 14DbH OFFSET =
SEGMENT MaP

STOP LENGTH ALIGN NAME CLASS

0?800H 0B4ERH 3CE?H " COPE CoDE
H OF98AH Y4D3IH n CODE CoDE

H 0EQCEH 2BE7?H " CODE CoDE

H 30337H YESOH L CODE CODE

000bH

OVERLAY

ROOT
PASS)

PASS2
PIC_PASS2

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
078004 CGROUP

CODENCODENROOT
CODENCODENPASSL
COPENCODENPASSZ
CODENCODENPIC_PASS2
CODENCODENFASTLOAD

10340H DGROWP

CONSTNCONSTAROOT
DATANDATA\ROOT
STACK\STACK\

E—

Figure 7-3. LOCS86 Listing for Program with Overlays

7-12 iAPX 86,88 Family Utilities

Dos 808b LINKER: Vx.y

INPUT FILES: HOME:ROOT.0BJ.USER.LIB
OQUTPUT FILE: HOME:RQOOT.LNK

CONTROLS SPECIFIED IN INVOCATION COMRAND:

MAP
DATE: MA/DD/YY hh/mm
LINK MAP OF MODULE LOANER

LOGICAL SEGMENTS INCLUDED:

LENGTH ADDRESS ALIGN SEGMENT CLASS OVERLAY
BAGEH - - W CODE CODE
0381H [} CONST CONST
029LH L] DATA DATA
0D30H] STACK STACK
oooo# w MEMORY HEMORY

INPUT MODULES INCLUDED:
HOME:ROOT.0BJ(ROOT)
ROG:USER.LIB(LOADER)
ROG:USER.LIB(EXIT)
ROG:USER.LIB(ERROR)
ROG:USER-LIB(TIME)

Figure 7-4. LINK86 Map for Root File

ovi‘'s segment size information
MODULE INFORMATION:

CODE AREA SIZE = 7531H 300010 this is the CODE segment
CONSTANT AREA SIZE = 0081H 1290 this is the CONST segment
VARIABLE AREA SIZE DLl8LH 385D this is the DATA segment
MAXIAUM STACK SIZE = OOMOH b4D this is the STACK segment

918 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-8L COMPILATION

0v@'s segment size information
MODULE INFORMATION:

CODE AREA SIZE = 189AH ?706bD this is the CODE segment
CONSTANT AREA SIZE = DM01H 25?p this is the CONST segment
VARIABLE AREA SI2E = DuS4H 11080 this is the DATA segment
MAXINUM STACK SIZE = 0O0&?H 303D this is the STACK segment

9148 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-8b COMPILATION

Figure 7-5. Module Information for Overlays

Using the iAPX 86,88 Utilities under DOS 7=13

Note that the length of the root’s code segment and OV1’s code segment must fit
within 64K. This means that the code for the overlays must be in a part of memory
contiguous with the root (to avoid altering the CS register during execution). OV2’s
CONST and DATA segments are larger than OV1’s so that the STACK segment
must be placed to leave room for OV2’s CONST and DATA segments. If the overlays
share the STACK and MEMORY segments with the root, they must be located at
the same address.

After computing the required location for the root’s DGROUP and STACK, you can
locate the root module. The resulting file will not be executable, but it allows you to
resolve references to the root’s code and data symbols in the overlays. The following
LOCS86 invocation will leave room for the overlays’ code segments and place the
DGROUP in the first unused memory location. (In the command line below, the DS
register is initialized to OFFCEH, and the CS register is initialized to 0.) The STACK
and MEMORY segments will be located above OV2’s DATA segment:

[BIL0C86 ROOT.LNK &ccro
IBIADDRESSESC(GROUPS(COGRAUP)IOH) ,DEGROUPIOFFCEH)), 4<¢cr>
» SEGMENTSC(CODECOHO,CONSTCOFFCEH),STACK(10B34RH000 &ccr>
PRJORDER(CSEGMENTS(CODE,CONST,DATA,STACK ,MEMORY)) &«ccr)
IBISEGSIZECSTACKC100H) Y ¢cry

Once the root is located, you can use it to resolve external references in the overlay
modules. The overlay modules cannot call each other, since only one is resident in
memory at any time. The link commands are shown below. The NOPUBLICS with
the EXCEPT control is used to avoid conflicts when you use the located overlays to
resolve external references in the root:

(YL INK86 0V1.0BJ,PUBLICSONLY(RCOT) é<¢cr>
IRINOPUBLICS EXCEPT(OVICODE, OVIDAT)<¢cr>

B INK86 O0V2.0BJ,PUBLICSONLY(ROOT) s<¢cr>
pRINOPUBLICS EXCEPT(OV2CODE, OV2DATA)<Ccr)>

The PUBLICSONLY control resolves references to public symbols contained in the
root.

After the overlays have been linked, they must be located. The code and data segments
must be placed in the memory locations that were reserved when you first located the
root. In this case the STACK and MEMORY segments must be the same for the
overlays and the root:

[BYL0C86 OVI.LNK &ccr>
IBIADDRESSES(GROUPS)CGRAOUP(OK) ,DGROUPIOFFCEH)), &<cr)
SEGMENTS(CODE(BASCH) ,CONSTC(105EDQH),STACK(10B34H)))
PRYORDER(SEGMENTS(CODE ,CONST,STACK ,MEMORY)) &<ccr)

d<cr

(B3 0C86 OV2.LNK &ccr)
pBIADDRESSES(GROUPSCCGOGROUPCOH) ,DGROUPCOFFCEHDY), &ccr>
) SEGMENTS(CODECBAYCH) ,CONSTC(IQSEDH),STACK(10B34H)))
IBJORDERCSEGMENTS(CODE, CONST,DATA,STACK,MEMORY D)) s<cr>
PRYSEGSIZECSTACKC100KH) Icer>

§<cr

The CGROUP and DGROUP base address must be specified in order to compute
offset information. The final base address assigned to DGROUP by LOC86 will be
rounded down to OFFCOH.

7-14 iAPX 86,88 Family Utilities

Once the overlays are located, the root is linked and located into an executable form.
The PUBLICSONLY control will resolve references to symbols in the overlay modules.
Other than the addition of this input control, the LINK86 and LOC86 command
must be identical to those used previously.

YL INK86 ROOT.0BJ,USER.LIB,
pRYP UBLICSONLY(COVT,0V2)<cr)

f<cr)

[(BIL0C86 ROOT.LNK &<crd
PBJADDRESSES(GROUPS(CGROUPCOH) ,DGROUPCCGFFCEH)), <cr)
SEGMENTS(CODECOH) ,CONSTC(OFFCEH) ,STACK(10B34H)))
pRYJORDER(SEGMENTS(CODE,CONST,DATA,STACK, MEMORY)) &<cr)
IBYSEGSTZECSTACKC100H) Y ¢ccr >

The executable forms of the root and its overlay files are contained in ROOT, OV1,
and OV2. Figure 7-6 shows the resulting layout of memory.

Invocation Examples

The remainder of this chapter consists of a list of invocation examples for each of the
iAPX 86,88 Family Utilities with each of the controls for that utility.

These examples should be used in conjunction with the syntax specifications given in
the chapter for the specific utility. (Chapter 2 for LINK86, Chapter 3 for CREF86,
Chapter 4 for LIB86, Chapter 5 for LOC86, and Chapter 6 for OH86.)

l I "
" ROOT CODE A
1 SPACE
8A9B
8A9C
N OVERLAY N
CODE
SPACE
OFFCO «+———DS, SS
‘lfrrcs
r ROOT DATA ﬂ
SPACE
105DF
105E0
R OVERLAY N
~ DATA ~
SPACE
10833
10834
~ STACK AREA A
10C33
10C3¢ -———sp
MEMORY
r -

121616-10

Figure 7-6. Memory Organization for Example 4

N

Using the iAPX 86,88 Utilities under DOS 7-15

LINK86 Examples

ASSIGN

L 6o FilEn Filez FilE3 i cor
655 161 (VARDIECSOH), & ool

By ¢ R710(20001)) ccr

The above example defines two public symbols, VARONE and VARTWO, with
absolute addresses SOH and 2000H, respectively.

ASSUMEROOT

(B3 [NK86 O0V1.0BJ, 0OvV2.0BJ, &
I8 1B1, LIB2 7O OVL?! OVERLAY
PBIASSUMROOT (RTFILED <cr)

<cry
(gvL1)

& <cr)

In the above example, the root file is RTFILE, and LIB1 and LIB2 are library files.

BIND/NOBIND
B v o6 et 0B b o)
1 5eiR i USER LD b o)
»» EEEENCARRRTIR]

The above example creates an LTL module. The output object file is TEST with no
extension.

(Y. INK86 GENERAL.OBJ & <cr»
IBINOBIND<ccr)>

The above example specifies default to avoid ambiguity.

COMMENTS/NOCOMMENTS

YL INK86 SYSTEMAPROG.OBJ é&<cr>
pBYT0 SYSTEMATEMP.TST &<cr>
PRYCOMMENTS<¢cr)

FASTLOAD/NOFASTLOAD

(B3 INKBE PROG.O0BJ,
PRIB IND FASTLOAD

LIB2

§<cr

LIB1,
<cr)

Do not use the FASTLOAD control when producing code for an iRMX environment.

7-16 iAPX 86,88 Family Utilities

GROUPOVERLAYS/NOGROUPOVERLAYS

(B3 INK86 PROG.O0BJ TO PROG
IBIB I ND GROUPOVERLAYS <crd

d¢cr)

The segments in PROG.OBJ will be grouped by default for optimization of static
memory usage.

INITCODE

[BJL INK86 MYPROG INITCODEc¢cr)

LINES/NOLINES

B INKB86 TESTARN.OBJ NOLINES«<cr>

[INK86 TESTARN.OBJ LINES«<cr>

LINES is the default, so it need not be specified.

MAP/NOMAP

[y [NK86 TESTER.OBJ MAP<ccr)

By INK8E MAIN,DBJ,
IRJUSER.O0BJ, &<crd
PP UBLICSONLY(8087.L0C)
PRINOMAP <cr>

d<cr)

§<cr)

MEMPOOL

(B3 [NK86 TEST.0BJ, é&<cr>
IBJUSER.LIB, PASCAL.LIB BIND
PRI EMPOOL (+20H) ¢ccr

k<cr

The above MEMPOOL example will increase the minimum dynamic memory
requirements by 20H bytes, and by default the maximum size will increase, if neces-
sary, to equal the minimum.

[INK86 USERNTEST.OBY
PRIMEMPOOQLC100H, «200H)

d<cr)
BIND«¢cr>

The minimum dynamic memory requirement is 100H. The maximum dynamic memory
requirement is 300H.

NAME

BYL INK86 TOM.LBJ, &<cr>
RIS YS.LIB NAME &<cr)
IRY(‘THIS 1S A VERY LONG MODULE@NAME’)<cr>

The LINK86 output module in the above example will have the name specified in
parentheses in the control.

Using the iAPX 86,88 Utilities under DOS

7-17

OBJECTCONTROLS

[BIL INK86 FINAL, &<cr)
PBJUSER.LIB, SYS.LIB é&<¢cr>
IMIOBJECTCONTROLS (PURGE)<¢cr)

The above example removes all debug and public records from the object file.

(YL [NKBE PASCL1.0BJ &<cr>
IRYOBJECTCONTROLSCPURGE), &<¢cr)
IRINOPUBLICS EXCEPT(START, &<cr)
pBIDATA1, DATAZ2)<cr>

The EXCEPT in the NOPUBLICS overrides the PURGE.

ORDER

3L [NKB6 PLMPRG.O0BJ, sccr>
pRYP LM, LIB, URXSML,LIB, &<cr)
pRJUSER.LIB ORDER (DGROUP(SEGT, SEG2)
pRICGRAUP (CSEGT, CSEGR2, CSEG3))

<cr)

This use of ORDER specifies the order of segments for two groups.

OVERLAY/NOOVERLAY

[BJL [NK86 FILE?!, FILEZ2,
IRITD OVI.LNK & <cr>
IBYAVERLAY(OVERLAY 1) <ccr)

FILE3 d&<cr>

The above example will create an overlay record. The name of the overlay will be
OVERLAY]1.

PRINT/NOPRINT

YL INK96 USERVPROG.OBJ
PRYT0 USERNTEMP1.TST
IRIPRINT Cccr>

d<er)

i<cr)

The print file in the above example is: USER\TEMP1.MP1.

[BIL INK86 PROG.OBJ<cr)

The print file in the above example is PROG.MP1

(B INK86 PROG.O0BJ, & «<cr>
pRIUSER.LIB PRINT &<cr>
pRY(THE . MAP)Y<cr)

The print file in the above example is THE.MAP.

7-18 iAPX 86,88 Family Utilities

PRINTCONTROLS

(Y INK86 TEMP.O0BJ BIND 4«<cr>
PRIPRINTCONTROLSCNOLINES, &<cr>
PRINOCOMMENTS, NOSYMBOLS) <crd

The above example removes information about line numbers, local symbols, and
comments from the print file.

(B INK86 PASCL1.0BJ &<cr)
IBIPRINTCONTROLS (PURGED)<cr>
The above statement removes all but the segment information and error messages

from the print file.

PUBLICS/NOPUBLICS

B INK86 TEST.OBJ, &ccr>
pRJUSER.LIB NOPUBLICS EXCEPT &«¢cr>
pRA(DATAT1, DATAZ2, LABEL3, PROC4I<cr)

Public information concerning only DATAI1, DATA2, LABEL3, and PROC4 is placed
in the object file.

(BRI INK86 TEMP,0BJ, &<cr>
pRYUR X SML . LIB, USER.LIB PUBLICS«<cr>»

All public symbol information will be included in the print file and output file.

PUBLICSONLY

YL INK86 PUBLICSONLY & <¢cr>

pRI(8087.L0C)Iccr>

The above example will produce a file containing only the absolute public symbol
records from 8087.LOC. The object file will be 8087.LNK.

[BJ INK86 ROOT.O0BJ, &<crd
pRIP UBLICSONLY (OV?T, DV2)<cr>

The above example will resolve the references in ROOT.OBJ to absolute public symbols
in the separately linked and located overlays OV1 and OV2.

PURGE/NOPURGE

(YL INK86 INDEX.OBJ PURGE«<cr>

The above example produces an object file containing no debug or public information.

(YL INK86 FINAL.OBJ é<¢cro
IRYPRINTCONTROLSCNOPURGE) ¢cr>

The above example confirms that the line and symbol information should be kept in
the print file.

Using the iAPX 86,88 Utilities under DOS 7-19

RENAMEGROUPS

B INK86 PLMPRG.OBJ & <cr>
IRIRENAMEGROUPSC(CGROUP TQ «<cr>
IBITHE@CODE) ¢cr>

The above example will change the translator-assigned name CGROUP to
THE@CODE. A subsequent linkage would not merge THE@CODE with a group
named CGROUP.

[BYL INKB6 ASMPRG.O0BJ &sc¢cr)
IRIRENAMEGROUPS(CODE TO CGRCOUP)<cr>

The above example changes the group name CODE to CGROUP.

SEGSIZE

(Y INK8B GEORGE.OBJ 4<¢cr)
pRJUSER.LIB, SYSTEM.LIB BIND &«<cr>
IRYSEGSIZE(MEMORY C(1SFFH, &ccr)
pBY+2000H)) ¢ccr>

The above example tells the loader that 15FFH bytes of code is the minimum require-
ment for MEMORY. The new maximum size of MEMORY is 35FFH.

YL INK86 PROJECT.OBJ, s<cr>
PRIREST.LIB SEGSIZE é&<crd
PRY(MEMORY (+1FF,+1FF))<cr>

In the above example, MEMORY’s minimum size is incremented by 1FFH bytes.
The maximum size of MEMORY is equal to the old minimum size plus 3FEH.

SYMBOLS/NOSYMBOLS

L INKB86 TEMP.OBJ, &<cr>
IBJUSER.LIB NOSYMBOLS &<crd

In the above example the local symbol records will be included in the object file.

By INK86 TEST.O0BJ, s¢cr>
PBJUSER.LIB

IBIPURGE <cr>

PURGE is a shorthand for NOSYMBOLS, NOCOMMENTS, NOPUBLICS,
NOTYPE, and NOLINES.

SYMBOLCOLUMNS
(B INK86 TEST.OBJ s<crd
IRy Y MBOLCOLUMNS (1) <cry

In the above example, SYMBOLCOLUMNS has no effect, since BIND was not
specified.

7-20 iAPX 86,88 Family Utilities

YL INK86 ROODT.LNK, sccrd
pRY0OV 1 . LNK, O0V2.LNK, &<cr)
pRIPUBLICSONLY(8087)4¢cr>
PRIS YMBOLCOLUMNS(4) BIND &«<¢cr>
IBYPRINT¢ccr)>

In the above example, the symbol table will be printed on a line printer with 4 columns
on each line.

TYPE/NOTYPE

Bl INK86 LIBMOD.OBJ TYPE«<cr>

In the above example, LIBMOD will retain its type information.

CREF86 Examples
PAGELENGTH

[BYCREFS86 FILEY, FILE.LIB & <¢cr>
IBAP AGELENGTH(35) «<cr>

The cross-reference listing produced from the above example will have 35 lines on
each page.

PAGEWIDTH

[BJCREF86 PROGRAM,
IBIPROG.LIB(MOD1) &
PRIPAGEWIDTH (100

The cross-reference listing produced from the above example will be 100 characters
wide, maximum, per page.

PRINT

[BYCREF86 MYPROG, HISPROG, HERPRDG &<cro

IBIPRINT (MYFILE) <cr>

The pathname of the print file in the above example will be MYFILE.

TITLE

[BJCREFB86 MYPROG, HISPROG, HERPROG, &ccr)
pRIMYLIB, HISLIB, HERLIB TITLE &<cr)

IR (‘A CROSS-REFERENCE’) & <cr>
IRIPAGEUIDTH(105) <cr>

In the above example, the message in the TITLE control must be placed on one line.
If the message contains special characters, it must be enclosed in single quotes ().

Using the iAPX 86,88 Utilities under DOS 7-21

LIB86 Examples

ADD
MADD SIN, COS, TAN TO & <cr)
MUSER.LIB ¢cr)

In the above example, three object files are added to the USER.LIB.

WMADD LIB.ABC(MOD?, MOD2, MOD3) & <crd
WM T0 PROJ.TOM <cr>

Three modules from the LIB.ABC are added to PROJ.TOM in the above example.

CREATE
MCREATE SYSTEM\TOMS.LIB ¢crd

The example shown above will produce an empty library file called TOMS.LIB.

MCREATE USER.LIB <cr>

DELETE

MDELETE
MM TEMP 3,

USER.LIBCTEMP1, & <cr)
TEM_TMP, TEST?)

<cr)

WDELETE IO0.LIBCFLOPPY, CRT, & <cr>
P APER, TAPE) <cro

In the above examples, four modules are deleted from the library USER.LIB.

EXIT

MEXIT <cr>

LIST

ML IST USER.LIB «<cr»

USER.LIB
TEMP
TEST
EXEC
MAIN
LogP
8IS T uscR.LiB(TERs, TESD) o)
USER.LIB
TEMP
TEST

7-22 iAPX 86,88 Family Utilities

ML IST USER.LIB,TEMP.LIB<¢cr)

USER.LIB
TEMP
TEST
EXEC
MATN
LoagP

TEMP.LIB
MODULEN1
MODULE3
MODULETC

LOC86 Examples
ADDRESS

(B 0C86 COME.LNK TO WENT & <CR»
PRYADDRESSESC(SEGMENTS(SEGTCISFFH)
RIS EG2(4F5AH))

&

<cr

In the above example, if SEGI] is byte alignable, it will be located at 15FFH. If
SEG?2 is byte or word alignable, it will be at 4FSAH.

Address assignment of groups, segments, and classes can be in any order, as long as
addresses do not conflict with existing absolute addresses.

BOOTSTRAP

YL GC86 USERNTEST.LNK & <¢cr>
IRISTART(GO) BOOTSTRAP <cro

A long jump to GO will be placed at location OFFFFOH.

COMMENTS/NOCOMMENTS

(Y 0C86 SOURCE.LNK NOCOMMENTS «<cr>
(Y. 0C86 TEMP.LNK COMMENTS <¢cr>

INITCODE/NOINITCODE

[BYL0C86 FORK.LNK & <¢cr>
IBIINITCODE (32768) <cr)

The initialization code is placed at address 32768 decimal (8000H).

YL 0C86 TEST.LNK NOINITCODE «<cr>

No initialization code will be produced.

Using the iAPX 86,88 Utilities under DOS 7-23

LINES/NOLINES

(Y 0C86 RUN.LNK NOLINES «<cr>
(YL 0C86 TEST.LNK «<cr

LINES is the default, so it need not be specified.

MAP/NOMAP

(B3 0C86 TESTER.LNK MAP <cr>

The map is placed in the file named TESTER.MP2.
(WYL 0C86 GONE.LNK TO & <cr>
PIHERMAP . OVY NOMAP <cr)

NAME

C>
PN (' THIS

L0C86 SHORT.LNK NAME &<cr)
IS A VERY LONG MODULE’)

<cr)

OBJECTCONTROLS

B3 0C86 UPWARD.LNK & <crd
IBI0BJECTCONTROLS (NOLINES, &
PRINOCOMMENTS, NOSYMBOLS) <cr>

<cr)

The statement in the above example removes all debug records from the object file,
but keeps the information in the print file.

B3 0C86 PASCALT.LNK & «<cr>
IBY0OBJECTCONTROLS (PURGE, PUBLICS)

{cr)

NOPUBLICS is implied by PURGE, but PUBLICS overrides it.

ORDER

YL 0C86 SPCSEQ.LNK ORDER & <cr)
IBY(CLASSES (CLASS?T (SEGaA, SEG@EB), & <cr>
IRICLASS2), SEGMENTS & <crod

IBI(SEGT, SEG22, SEG10)) <cr>

SEG@A of CLASSI will be the first relocatable segment located. SEG@B will be
next, followed immediately by any other segments contained within CLASS1. The
extra segments in CLASS]1 (and all of the segments in CLASS?2) are located in the
order in which they are encountered. Finally, the list in the SEGMENTS subcontrol
is handled.

PRINT/NOPRINT

Y. 0C86 PROG.LNK TQ & <cr>
PRYTEMP 1. TST PRINT <cr>

7-24 iAPX 86,88 Family Utilities

The print file for the above example is TEMP1.MP2.
(YL 0C86 INTRUPT.LNK <cr>

The print file for the above example is INTRUPT.MP2.
(BIL0C86 PROG.LNK PRINT(MAP)Ccr>

The print file for the above example is MAP.

PRINTCONTROLS

(YL 0C86 LINEAR.LNK & <cr>
PBYPRINTCONTRAOLS(NOLINES) <cr>

Information about line numbers is removed from the print file.

(YL 0C86 DIRT\SUBDIR\PR.LNK & <¢cr>
IBIPRINTCONTROLS (PURGE) «<cr>

All but the segment information is removed from the print file.

PUBLICS/NOPUBLICS
B3 0C86 PRIVATE.LNK NOPUBLICS«¢cr>
No public information is included in the output file and the print file.

[(BYL 0C86 TEXT.LNK & <cr)
IBYP UBLICS <cr>

All public information will be included in both the print file and the output file.

PURGE/NOPURGE
YL 0086 PROJS.LNK PURGE <cr)

The object file contains no public or debug information, and the symbol table does
not appear in the print file.

(B3 0C86 B0209.LNK PURGE & <cr)
IBJPRINTCONTRALS (NOPURGE) <ccr>

The line and symbol information will be kept in the print file.

RESERVE

BYL. 0C86 LOWMEM.LNK RESERVE & <cr)
PRRCOFO0000H TO OFFFFFH) <cr)d

The control in the above example reserves a high-order 64K of memory.

(YL 0C86 HUGOS.LNK RESERVE & «<cr>
pRYC00H TO 0200H, OFFFOQOH TO OFFFFFH) <cr>

A 200H and a 100H section of memory at the top and bottom of memory are reserved.

Using the iAPX 86,88 Utilities under DOS 7-25

SEGSIZE

(Y 0C86 GROW.LNK SEGSIZE
PRI (MEMORY (+2000))<cr>

& <cr>

The size of segment MEMORY will be increased by 2000 bytes.
1 0C86 SEGPROB.LNK SEGSIZE & <cr>
IRYI(MYSELFC-1FFH))¢ccr)

The size of segment MYSEG will be decreased by 511 bytes.

(MY 0C86 RPLACE.LNK SEGSIZE & <cr)

PBY(XENDA(C7770))¢ccr>

The new segment size for XENDA is 7770 bytes.

START

(YL 0C86 AUTO.LNK STARTCIGNITION) <cry

Execution of AUTO will start at IGNITION.

(Y. 0C86 HALTS.LNK START
IRI(00K, 200H)

& (cr)

<cr)

HALTS will start at location 200H.

SYMBOLS/NOSYMBOLS

(B3 0C GESHTA.LNK SYMBOLS «<cr»

This statement will include the local symbol records in the object file and the symbol
information in the print file.

3. 0C86 TEST.LNK PURGE «<cr>

PURGE is a shorthand for NOSYMBOLS, NOCOMMENTS, NOPUBLICS, and
NOLINES.

SYMBOLCOLUMNS

Y. 0C86 TEST.LNK & <¢cr>
PRYIS YMBOLCOLUMNSC1) «<cr>

(B3 0C86 LINKED.LNK & <¢cr>
pRIS YMBOLCOLUMNSC(4) PRINT <cro

The symbol table will be printed on a line printer. Each line will contain 4 columns.

OH86

BY0HB86 FINALPRG TQ FINISH.HEX <cr>

iIAPX 86,88 Absolute Object
File Formats

Introduction

The 8086 Absolute Object File Format herein described is a proper subset of the full
8086 Object File Formats. An absolute object file consists of a sequence of records
defining a single absolute module. An absolute module is defined as a collection of
absolute object information that is specified by a sequence of object records.

Definitions

This section defines certain terms fundamental to 8086 Relocation and Linkage
(R&L). The terms are ordered not alphabetically, but so you can read forward
without forward references.

Definition of Terms
OMF—acronym for Object Module Formats
R&L—acronym for Relocation and Linkage

MAS—acronym for Memory Address Space. The 8086 MAS is one megabyte
(1,048,576 bytes). Note thal the MAS should be distinguished from actual memory,
which may occupy only a portion of the MAS.

MODULE—an ‘‘inseparable’’ collection of object code and other information pro-
duced by a translator or by the LINK86 program. When a distinction must be made:

T-MODULE—denotes a module created by a translator, such as PL/M-86 or
ASMS86, and

L-MODULE—denotes a module created by LINK86 from one or more constituent
modules. (Note that modules are not ‘‘created’’ in this sense by the iIAPX86,88
Locater, LOC86; the output module from LOCB86 is merely a transformation of the
input module).

Two observations about modules must be made:

1. Every module must have a name, so that the iIAPX86,88 Librarian, LIB86, has a
handle for the module for display to the user. (If there is no need to provide a
handle for LIB86, the name may be null.) Translators provide names for T-
modules, providing a default name (possibly the file name or a null name) if
neither source code nor user specifies otherwise.

2. Every T-module in a collection of modules linked together may have a different
name, so that symbolic debugging systems can distinguish the various symbols.
This restriction is not required by R&L and is not enforced by it.

FRAME—a contiguous region of 64K of MAS, beginning on a paragraph boundary
(i.e., on a multiple of 16 bytes). This concept is useful because the content of the
four 8086 segment registers define four (possibly overlapping) FRAME’s; no 16-bit
address in the 8086 code can access a memory location outside of the current four
FRAME’s. The FRAME starting at address 0000H is FRAME 0.

A-2 iAPX 86,88 Family Utilities

Module Identification

In order to determine that a file contains an object program, a module header record
will always be the first record in a module. There are two kinds of header records
and each provides a module name. The additional functions of the header records
are explained below.

A module name may be generated during one of two processes: translation or link-
ing. A module that results from translation is called a T-MODULE. A T-MODULE
will have a T-MODULE HEADER RECORD (THEADR). A name may be
provided in the THEADR record by a translator. This name is then used to identify
the progenitor of all debug information found in the T-MODULE. The name may
be null, i.e., of length zero.

A module that results from linking and locating is called an L-MODULE. An
L-MODULE will always have an L-MODULE HEADER RECORD (LHEADR) or
an R-MODULE HEADER RECORD (RHEADR). Inthe LHEADR or RHEADER
record a name is also provided. This name is available for use to refer to the module
without using any of its constituent T-MODULE names. An example would be two
T-MODULES, A and B, linked together to form L-MODULE C. L- MODULE C
will contain two THEADR records and will begin with an LHEADR record with the
name C provided by the linker as a directive from the user. The L- MODULE C can
be referred to by other tools such as the library manager without having to know
about the originating module’s names, yet the originating module’s names are
preserved for debugging purposes.

Module Attributes

In addition to a name, a module may have the attribute of being a main program as
well as having a specified starting address.

If a module is not a main module yet has a starting address, then this value has been
provided by a translator, possibly for debugging purposes. A starting address
specified for a non-main module could be the entry point of a procedure, which may
be loaded and initiated independent of 2 main program.

Physical Segment Definition

A module is defined as a collection of data bytes defined by a sequence of records
produced by a translator. The data bytes represent contiguous regions of memory
whose contents are determined at translation time.

Physical Segment Addressability

The 8086 addressing mechanism provides segment base registers from which a 64K
byte region of memory, called a Frame, may be addressed. There is one code seg-
ment base register (CS), two data segment base registers (DS, ES), and one stack seg-
ment base register (SS).

iAPX 86,88 Absolute Object File Formats A-3

Data

The data that defines the memory image represented by a module is maintained in
two varieties of DATA records: PHYSICAL ENUMERATED DATA RECORD
(PEDATA) and PHYSICAL ITERATED DATA RECORD (PIDATA). Both
records specify the data to be loaded into a contiguous section of memory. The start
address of this contiguous section is given in the record. PEDATA records contain
an exact byte-by-byte copy of the desired memory image. The PIDATA record dif-
fers in that the data bytes are represented within a structure that must be expanded
by the loader. The purpose of the PIDATA record is to reduce module size by
encoding repeated data rather than explicitly enumerating each byte, as the
PEDATA record does.

Record Syntax

The following syntax shows the valid orderings of records to form an absolute
module. In addition, the given semantic rules provide information about how to
interpret the record sequence. The syntactic description language used herein is
defined in Wirth: CACM, November 1977, V20, N 11, pg. 822-823.

absolute__object _file =module.
module =tmod | Imod | omod.
tmod =THEADR |REGINT|content def mod__tail.
Imod =LHEADR [REGINT]t component mod _ tail.
omod =RHEADR {OVLDEF}|REGINT| 0o_component
{OVLDEF} mod tail.
o__component =t_component ENDREC.
t_component =|THEADR| content _def
content__def =PEDATA | PIDATA.
mod __tail =[REGINT| MODEND.
NOTE

The character strings represented by capital letters above are not literals but
are identifiers that are further defined in the section defining the Record
Formats.

One module may not contain more than one REGINT record and more than one
OVLDEF sequence. If a REGINT record and an OVLDEF sequence exist, the
REGINT record must immediately follow the OVLDEF sequence.

A proper Absolute Object File produced by Intel products will contain at least the

above record types. It may also contain other record types which, if present, will

follow the Module Header record and precede the Module End record. These other

record types fall into two categories:

1. Extraneous, containing information not pertinent to an absolute loader. The
record numbers in this category are:

72H, 74H, 7AH, 7CH, 7EH, 88H, 8CH, 8EH, 90H, 92H, 94H, 96H, 98H, 9AH, 9CH
2. Erroneous, containing information about relocation, indicating that the object

module is not yet in absolute form or that erroneous record types exist. The
record numbers in this category are all other record type numbers.

A-4 iAPX 86,88 Family Utilities

Record Formats

The following pages present diagrams of Record Formats in schematic form. Here is
a sample, to illustrate the various conventions:

Sample Record Format (SAMREC)

REC RECORD NAME CHK
TYP LENGTH SUM
xxH

Lo

Title and Official Abbreviation

At the top is the name of the Record Format described, together with an official
abbreviation. To promote uniformity among various programs, the abbreviation
should be used in both code and documentation. The abbreviation is always six
letters.

The Boxes

Each format is drawn with boxes of two sizes. The narrow boxes represent single
bytes. The wide boxes represent two bytes (or one word) each. In the object file, the
low order byte of a word value comes first. The wide boxes with four vertical bars in
the top and bottom represent 4-byte fields. The wide boxes with three dots in the top
and bottom represent a variable number of bytes, one or more, depending upon
content.

Rec Typ

The first byte in each record contains a value between 0 and 255, indicating the type
of record.

Record Length

The second field in each record contains the number of bytes in the record, exclusive
of the first two fields.

Name

Any field that indicates a ‘““NAME’’ has the following internal structure: the first
byte contains a number between 0 and 40, inclusive, that indicates the number of
remaining bytes in the field. The remaining bytes are interpreted as a byte string;
each byte must represent the ASCII code of a character drawn from this set:

[?@ :._0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ |

Most translators will choose to constrain the character set more strictly; the above
set has been chosen to ‘‘cover’’ that required by all current processors.

iAPX 86,88 Absolute Object File Formats A=5

Repeated Fields

Some portions of a Record Format contain a field or series of fields that may occur
an indefinite number of times (zero or more). Such fields are indicated by the
“‘repeated’’ or ‘‘rpt’’ brackets below the boxes.

Similarly, some portions of the Record Format are present only if some given condi-
tion obtains; these fields are indicated by similar ‘“‘conditional’’ brackets below the
boxes.

Chk Sum

The last field in each record is a check sum, which contains the two’s complement of
the sum (modulo 256) of all other bytes in the record. Therefore, the sum (modulo
256) of all bytes in the record equals 0.

Bit Fields

Descriptions of contents of fields will sometimes get down to the bit level. Boxes
with vertical lines drawn through them represent bytes or words; the vertical lines in-
dicate bit boundaries; thus this byte has three bit-fields of three, one, and
four bits:

Ignored Records

REC RECORD IGNORE CHK
TYP LENGTH THIS © SUM
PART

Allrecord types that may be in an object module that provide information not perti-
nent to an absolute loader must be ignored. They may all be treated as if they have
the above format. Records in this category have REC TYP in the set 72H, 74H,
7AH, 7CH, 7EH, 88H, 8CH, 8EH, 90H, 92H, 94H, 96H, 98H, 9AH, 9CH.

T-Module Header Record (THEADR)

REC RECORD T CHK
TYP LENGTH MODULE SUM
80H NAME

Every module output from a translator must have a T-MODULE HEADER
RECORD. Its purpose is to provide the identity of the original defining module for
all debug information encountered in the module up to the following T-MODULE
HEADER RECORD or MODULE END RECORD.

This record can also serve as the header for a module; i.e., it can be the first record
and will be for modules that are output from translators.

A-6 iAPX 86,88 Family Utilities

T-Module Name

The T-MODULE NAME provides a name for the T-MODULE.

L-Module Header Record (LHEADR)

LE N J
REC RECORD L CHK
TYP LENGTH MODULE SUM
82H NAME

oo

A module created by LINK86 and LOC86 may have an L-MODULE HEADER
RECORD. This record serves only to identify a module that has been processed
(output) by LINK86 and/or LOC86. When several modules are linked to form another
module, the new module requires a name, perhaps unique from those of the linked
modules, by which it can be referred to (by the LIB86 program, for example).

L-Module Name

The L-MODULE NAME provides a name for the L-Module.

R-MODULE HEADER RECORD (RHEADR)

REC RECORD R-MODULE OVERLAY CHK
TYP LENGTH NAME INFO SUM
6EH

Every module with overlays created by LINK86/LOC86 will have an R-MODULE
HEADER RECORD. This record serves to identify a module that has been processed
(output) by LINK86/LOCS6. It also specifies the overlay count and the location of
the Overlay Definition records. When several modules are linked to form another
module, the new module requires a name, perhaps unique from those of the linked
modules, by which it can be referred to.

R-MODULE NAME

The R-MODULE NAME provides a name for the R-Module.

OVERLAY INFO

The OVERLAY INFO field provides information on overlays in the module and has
the following format:

[XX] 4! I I I LX)
IGNORE OVERLAY OVERLAY IGNORE
THIS RECORD RECORD THIS
PART COUNT OFFSET PART
oos 1] e

The first subfield is a 5-byte field that should be ignored.

iAPX 86,88 Absolute Object File Formats A=7

The OVERLAY RECORD COUNT subfield indicates the number of Overlay
Definition Records in the module.

Thq OVERLAY RECORD OFFSET subfield is a 4-byte field. It contains a 32-byte
unsigned number indicating the location in bytes, relative to the start of the object
file, of the first Overlay Definition Record in the Module.

The last subfield is a 16-byte field that should be ignored.

OVERLAY DEFINITION RECORD (OVLDEF)

RN

REC RECORD OVERLAY OVERLAY Z CHK
TYP LENGTH NAME LOCATION SUM
76H

This Record provides the overlay name, the location of the overlay in the object file.

A loader may use this record to locate the data records of the overlay in the object
file.

OVERLAY NAME

The OVERLAY NAME field provides a name by which a collection of data records
may be referenced for loading.

OVERLAY LOCATION

The OVERLAY LOCATION is a 4-byte field which gives the location in bytes
relative to the start of the file of the first byte of the records in the overlay.

z

The Z field is a reserved field. This field is required to be zero.

END RECORD (ENDREC)

REC RECORD END CHK
TYP LENGTH TYP SUM
78H

This record is used to denote the end of a set of records such as records in an
overlay.

A-8 iAPX 86,88 Family Utilities

END TYP

This field specifies the type of the set. It has the following format:

TYP is a two bit subfield that specifies the following types of ends:

REGISTER INITIALIZATION RECORD (REGINT)

TYP

w N = o

TYPEOF END

End of overlay
(Reserved)
(lllegal)
(Illegal)

REC
TYP
70H

RECORD
LENGTH

REG REGISTER
TYP CONTENTS

CHK
SUM

This record provides information about the 8086 registers/register-pairs:
IP, SS and SP, DS and ES. The purpose of this information is for a loader to set the

|——— repeated ——J

necessary registers for initiation of execution.

REG TYP

The REG TYP field provides the register/register-pair name. It has the following

format:

REGID

REGID is a two bit subfield that specifies the name of the registers/register-pairs as

follows:

REGID

W 2o

REGISTER/REGISTERPAIR

CSandIP
SS and SP
DS
ES

AN

iAPX 86,88 Absolute Object File Formats A=9

REGISTER CONTENTS

The REGISTER CONTENTS field has the following format:

Z z FRAME REGISTER
NUMBER OFFSET

I— conditionalJ

The Z fields are reserved fields. They are required to be zero.

The FRAME NUMBER field specifies a frame number that must be used to
initialize the base register indicated by the REGID value.

The REGISTER OFFSET field, present only if REGID <= I, specifies an offset

relative to the FRAME. This value is appropriate for the initialization of either the
IP register (REGID = 0) or the SP register (REGID = 1).

Module End Record (MODEND)

REC RECORD MOD START CHK
TYP LENGTH TYP ADDRS SUM
8AH

L conditional —l

This record serves two purposes. It denotes the end of a module and indicates
whether the module just terminated has a specified entry point for initiation of
execution. If the latter is true, then the execution address is specified.

Mod Typ

This field specifies the attributes of the module. The bit allocation and their
associated meanings are as follows:

MATTR | 0|0 |0|0[0]0

MATTR is a two-bit subfield that specifies the following module attributes:

MATTR MODULE ATTRIBUTE
0 Non-main module with no starting address
1 Non-main module with starting address
2 (invalid value for MATTR)
3 Main module with starting address

A-10 iAPX 86,88 Family Utilities

Start Addrs
The START ADRS field has the following format:

FRAME OFFSET
NUMBER

FRAME NUMBER. This field specifies a frame number relative to which the
module will begin execution. This value is appropriate for insertion into the CS
register for program initiation.

OFFSET. This field specifies an offset relative to the FRAME NUMBER that
defines the exact location of the first byte at which to begin execution. This value is
appropriate for insertion into the P register for program initiation.

Physical Enumerated Data Record (PEDATA)

REC RECORD FRAME OFF CHK
TYP LENGTH NUMBER SET DAT SUM

84H
I___rpt_‘

This record provides contiguous data, from which a portion of an 8086 memory
image may be constructed.

Frame Number

This field specifies a Frame Number relative to which the data bytes will be loaded.

Offset

This field specifies an offset relative to the FRAME NUMBER which defines the
location of the first data byte of the DAT field. Successive data bytes in the DAT
field occupy successively higher locations of memory. The value of OFFSET is con-
strained to be in the range 0 to 15 inclusive. If an OFFSET value greater than 15 is
desired, then an adjustment of the FRAME NUMBER should be done.

Dat

This field provides consecutive bytes of an 8086 memory image. The number of
DAT bytes is constrained only by the RECORD LENGTH field. The address of
each byte must be within the frame specified by FRAME NUMBER.

Physical Iterated Data Record (PIDATA)

REC RECORD FRAME OFF ITERATED CHK Py
TYP LENGTH NUMBER SET DATA SUM
86H BLOCK

see
|— repeated—‘

This record provides contiguous data, from which a portion of an 8086 memory
image may be constructed. It allows initialization of data segments and provides a
mechanism to reduce the size of object modules when there are repeated data to be
used to initialize a memory image.

iAPX 86,88 Absolute Object File Formats

A-11

Frame Number

This field specifies a frame number relative to which the data bytes will be loaded.

Offset

This field specifies an offset relative to the FRAME NUMBER which defines the
location of the first data byte in the ITERATED DATA BLOCK. Successive data
bytes in the ITERATED DATA BLOCK occupy successively higher locations of
memory. The range of OFFSET is constrained to be between 0 and 15 inclusive. If a
value larger than 15 is desired for OFFSET, then an adjustment of FRAME
NUMBER should be done.

Iterated Data Block

This repeated field is a structure specifying the repeated data bytes. It is a structure
that has the following format:

REPEAT BLOCK
COUNT COUNT . CONTENT

Repeat Count. This field specifies the number of times that the CONTENT portion
of this ITERATED DATA BLOCK is to be repeated, and must be greater than zero.

Block Count. This field specifies the number of ITERATED DATA BLOCKS that
are to be found in the CONTENT portion of this ITERATED DATA BLOCK. If this
field has value zero than the CONTENT portion of this ITERATED DATA BLOCK
is interpreted as data bytes.

If BLOCK COUNT is non-zero then the CONTENT portion of this ITERATED
DATA BLOCK is interpreted as that number of ITERATED DATA BLOCKS.

Content. This field may be interpreted in one of two ways, depending on the value
of the previous BLOCK COUNT field.

If BLOCK COUNT is zero, then this field is a one-byte count followed by the
indicated number of data bytes.

If BLOCK COUNT is non-zero, then this field is interpreted as the first byte of
another ITERATED DATA BLOCK.

NOTE

From the outermost level, the number of nested ITERATED DATA
BLOCKS is limited to 17; i.e., the number of levels of recursion is limited
to17.

The address of each data byte must be within the frame specified by
FRAME NUMBER.

Hexadecimal Object File Format
Hexadecimal object file format is a way of representing an object file in ASCII.

The function of the utility program, OH86, is to convert 8086 absolute object
modules to 8086 hexadecimal object modules.

A-12 iaPX 86,88 Family Utilities

The hexadecimal representation of binary is coded in ASCII. For example, the eight-
bit binary value 0011 1111 is 3F in hexadecimal. To code this ASCII, one eight-bit
byte containing the ASCII code for 3(00110011 or 33H) and one eight-bit byte con-
taining the ASCII code for F(0100 0110 or 46H) are required. This representation
(ASCII hexadecimal) requires twice as many bytes as the binary.

There are four different types of records that may make up an 8086 hexadecimal
object file. They are:

¢ Extended Address Record
e Start Address Record

® Data Record

* End of File Record

Each record begins with a RECORD MARK field containing 3AH, the ASCII code
for colon (:).

Each record has a REC LEN field which specifies the number of bytes of informa-
tion or data which follows the RECTYP field of each record. Note that one byte is
represented by two ASClI characters.

Each record ends with a CHECKSUM field that contains the ASCI| hexadecimal
representation of the two's complement of the eight-bit sum of the eight-bit bytes
that result from convertiug each pair of ASCII hexadecimal digits to one byte of
binary, from and including the RECORD LENGTH field to and including the last
byte of the DATA field. Therefore, the sum of all the ASCII pairs in a record after
converting to binary, from the RECORD LENGTH field to and including the
CHECKSUM field, is zero.

Extended Address Record

RECD REC REC CHK *
MARK LEN ZEROES TYP USBA SUM
u ‘02’ *0000’ ‘02’

The 8086 EXTENDED ADDRESS RECORD is used to specify bits 4-19 of the Seg-
ment Base Address (SBA) where bits 0-3 of the SBA are zero. Bits 4-19 of the SBA
are referred to as the Upper Segment Base Address (USBA). The absolute memory
address of a content byte in a subsequent DATA RECORD is obtained by adding
the SBA to an offset calculated by adding the Load Address Field of the containing
DATA RECORD to the index of the byte in the DATA RECORD (0, 1, 2, ... n).
The offset addition is done modulo 64K, ignoring a carry, so that offset wrap-
around loading (from OFFFFH to 00000H) results in wrapping around from the end
to the beginning of the 64K segment defined by the SBA. The address at which a par-
ticular data byte is loaded is calculated as:

SBA + ([DRLA + DR1] MOD 64K)
where
DRLA is the DATA RECORD LOAD ADDRESS.

DRI is the data byte index withina DATA RECORD.

iAPX 86,88 Absolute Object File Formats

A-13

When an EXTENDED ADDRESS RECORD defines the value of SBA, the
EXTENDED ADDRESS RECORD may appear anywhere within an 8086 hexa-
decimal object file. This value remains in effect until another EXTENDED
ADDRESS RECORD is encountered. The SBA defaults to zero until an
EXTENDED ADDRESS RECORD is encountered.

Recd Mark
The RECD MARK field contains 03AH, the hex encoding of ASCII *:’.

Rec Len
The Record Length field contains 3032H, the hex encoding of ASCII ‘02,

Zeroes
The Load Address field contains 30303030H, the hex encoding of ASCII ‘0000°.

Rec Typ
The Record Type field contains 3032H, the hex encoding of ASCI1*02’.

USBA

The USBA field contains four ASCI] hexadecimal digits that specify the 8086 USBA
value. The high-order digit is the 10th character of the record. The low order digit is
the 13th character of the record.

Chk Sum
This is the check sum on the REC LEN, ZEROES, REC TYP, and USBA fields.

Data Record

RECD REC LOAD REC CHK
MARK LEN ADDRESS TYP DATA SUM
. 00"

The DATA RECORD provides a set of hexadecimal digits that represent the ASCII
code for data bytes that make up a portion of an 8086 memory image. The method
for calculating the absolute address for each byte of DATA is described in the
discussion of the Extended Address Record.

Recd Mark
The RECD MARK field contains 03AH, the hex encoding of ASCII *:”.

Rec Len

The REC LEN field contains two ASCI1I hexadecimal digits representing the number
of data bytes in the record. The high-order digit comes first. The maximum value is
‘FF’ or 4646H (255 decimal).

A-14 iAPX 86,88 Family Utilities

Load Address

The LOAD ADDRESS field contains four ASCII hexadecimal digits representing
the offset from the SBA (see EXTENDED ADDRESS RECORD) defining the

address at which byte 0 of the DATA is to be placed. The LOAD ADDRESS value is -
used in calculation of the address of all DATA bytes.
Rec Typ
The REC TYP field in a DATA record contains 3030H, the hex encoding of
ASCII ‘00’
Data
The DATA field contains a pair of hexadecimal digits that represent the ASCII code
for each data byte. The high order digit is the first digit of each pair.
Chk Sum
This is the check sum on the REC LEN, LOAD ADDRESS, REC TYPE, and
DATA fields.
il
Start Address Record -
RECD REC REC CHK
MARK LEN ZEROES TYP CS P SUM
‘04’ ‘0000’ ‘03’
The START ADDRESS RECORD is used to specify the execution start address for
the object file. Values are given for both the Instruction Pointer (IP) and Code Seg-
ment (CS) registers. This record can appear anywhere in a hexadecimal object file.
[f a START ADDRESS RECORD is not present in an 8086 hexadecimal file, a
loader is free to assign a default start address.
Recd Mark
The RECD MARK field contains 03AH, the hex encoding for ASCIt *:”.
Rec Len
o i

The REC LEN field contains 3034H, the hex encoding for ASCII ‘04,

Zeroes
The ZEROES field contains 30303030H, the hex encoding for ASCII ‘0000’.

Rec Typ
The REC TYP field contains 3033H, the hex encoding for ASCII ‘03’.

iAPX 86,88 Absolute Object File Formats A=15

CS

The CS field contains four ASCII hexadecimal digits that specify the 8086 CS value.
The high-order digit is the 10th character of the record; the low-order digit is the
13th character of the record.

1P
The IP field contains the four ASCII hexadecimal digits that specify the 8086 1P

value. The high-order digit is the 14th character of the record, the low order digit is
the 17th character of the record.

Chk Sum
This is the check sum on the REC LEN, ZEROES, REC TYP, CS, and IP fields.

End of File Record

RECD REC REC CHK
MARK LEN ZEROES TYP SUM
Y 00’ 0000’ 01’ 'FF’

The END OF FILE RECORD specifies the end of the hexadecimal object file.

Recd Mark
The RECD MARK field contains 03AH, the ASCII code for colon (:).

Rec Len
The REC LEN field contains two ASCII zeroes (3030H).

Zeroes
The ZEROES field contains four ASCH zeroes (30303030H).

Rec Typ
The REC TYP field contains 3031H, the ASCII code for 0O1H.

Chk Sum

The CHK SUM field contains 4646H, the ASCII code for FFH, which is the check
sum on the REC LEN, ZEROES and REC TYP fields.

A-16 iAPX 86,88 Family Utilities

Examples
Sample Absolute Object File

The following is an example of an absolute object file. The file contains eight re-
cords. The eight records perform the following functions:

Record Function

1 LHEADR record begins the object module and defines the module
name.

2 THEADR record defines the translator-generated module name
which is the same as the name in the LHEADR record.

3 PEDATA record defines a contiguous memory image from 00200H
to 00215H.

4 PEDATA record defines a contiguous memory image from 00360H
to 00377H.

5 PEDATA record defines a contiguous memory image from 004 15H
to 0042BH.

6 PEDATA record defines a contiguous emory image from 051620H
to 0516633H.

7 PIDATA record defines a contiguous memory image from

051BOOH to 051B1DH. The iterated data consists of three repeti-
tions of “ABC”’ (414243H), followed by three repetitions of (four
repetitions of “D’’ (44H)), three repetitions of “‘E’’ (45H).

8 MODEND record specifies that the module should be started with
CS =5162H and IP = 0005H.

(1) 82 0008 0653414D504C45 AE

(2) 80 0008 0653414D504C45 BO

(3) 84 001A 0020 00
004992DB246DB6FF4891DA236CBSFE47
90D9226BB4FD 63

(4) 84 001C 0036 00
0062C42688EA4CAE1072D43698FASCBE
2082E446A80A6CCE 82

(S5) 84 001B 0041 05
001D3AS77491 AECBE805223F5C7996B3
DOEDOA2744617E 72

(6) 84 0018 5162 00
00850A8F14991EA328AD32B73CC146CB
S0DSSADF FB

(7) 86 001C 51BO 00
0003 0000 03 414243
0003 0002
0004 0000 01 44
0003 0000 O1 45 FA

(8) 8A 0006 CO 5162 0005 F8

NOTE

The blank characters and carriage return and line feed characters are
inserted here to improve readability. They do not occur in an object
module. This file has been converted to ASCII hex so that it may be printed
here. All word values (RECORD LENGTH, REPEAT COUNT, etc.) have
been byte-reversed to improve readability.

TN

iAPX 86,88 Absolute Object File Formats A=17

Sample Absolute Hexadecimal Object File

The following is the hexadecimal object file representation of the object file given in
the example above:

:020000020020DC
:10000000004992DB246DB6FF4891DA236CBSFE47B8
:0600100090D9226BB4FD43

:020000020036C6
:100000000062C42688EA4CAE1072D43698FASCBEOO
:080010002082E446 A80A6CCE30

:020000020041BB

110000500001 D3AS577491AECBE80S5223F5C7996B353
:07001500DOEDOA2744617ED3

:02000002516249

:1000000000850A8F 14991 EA328AD32B73CC146CB98
:0400100050D5S5SADF8E

:0200000251BOFB
:1000000041424341424341424344444444454545BF
:0E001000444444444545454444444445454524
:04000003516200054 1

:00000001 FF

Hexadecimal-Decimal Conversion

The following table is for hexadecimal-to-decimal and decimal-to-hexadecimal con-
version. To find the decimal equivalent of a hexadecimal number, locate the hexa-
decimal number in the correct position and note the decimal equivalent. Add the

decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower

decimal number in the table and note the hexadecimal number and its position. Sub-
tract the decimal number from the table from the starting number. Find the dif-
ference in the table. Continue this process until there is no difference.

BYTE BYTE BYTE
HEX DEC | HEX DEC | HEX DEC | HEX DEC | HEXDEC | HEXDEC
0 010 0o]o 010 0]0 010 0
1 1,048,576 | 1 65,536 | 1 4,096 (1 256 | 1 16 | 1 1
2 2,097,152 | 2 131,072 | 2 8,192 | 2 512 | 2 3212 2
3 3,145,728 | 3 196,608 | 3 12,288 | 3 768 | 3 48 | 3 3
4 4,194,304 | 4 262,144 | 4 16,384 | 4 1,024 | 4 64 | 4 4
5 5,242,880 | 5 327,680 | 5 20,480 |5 1,280 | 5 80 | 5 5
6 6,291,456 | 6 393,216 | 6 24,576 | 6 1,536 | 6 96 | 6 6
7 7,340,032 |7 458,752 | 7 28,672 |7 1,792 | 7 127 7
8 8,388,608 |8 524,288 | 8 32,768 (8 2,048 |8 128 | 8 8
9 9,437,184 (9 589,824 | 9 36,864 | 9 2,304 |9 144 | 9 9
A 10,485,760 | A 655,360 | A 40,960 | A 2,560 | A 160 | A 10
B 11,534,336 | B 720,896 | B 45,056 | B 2816 | B 176 | B 1
) 12,582,912 | C 786,432 | C 49,152 [C 3,072 | C 192 | C 12
D 13,631,488 | D 851,968 | D 53,248 [D 3328 | D 208 [D 13
E 14,680,064 | E 917,504 | E 57,344 | E 3,584 [E 224 | E 14
F 15,728,640 | F 983,040 | F 61,440 | F 3,840 | F 240 | F 15

The Effect of Available Memmory on
LINK86, CREF86, LIB86, and LOC86

The system resources required by LINK86, CREF86, LIB86, or LOC86 depend on
the number of symbols, modules, or segments in the input file(s). The greater the
number of symbols in the input, the greater the memory requirements.

LINK86, CREF86, AND LIB86

These utilities can take advantage of up to 512K of available memory space. When
the number of symbols in the input list requires more memory than is available,
these utilities use disk resources to accommodate the remainder. Available memory
means RAM which the utilities have available to them exclusively. Once a utility has
run out of memory and has to use disk, performance will become impaired.

The following table defines the number of symbols or modules which these utilities
may process without performance degradation, given several levels of available
memory. The available memory depends on the hardware and software environment
under which the utilities are running on your system. Note that the relationship
between number of symbols or modules and the amount of available memory is
linear, up to a maximum. The following assumptions were used to calculate the
figures provided:

e Variable and module names average 10 characters.
e Each symbol has five references (CREF86).
¢ Each module has 1.4 public names (LIB86).

e A symbol as used here is an abstract representation of an 8086 object module
format record:

LINK86 CREF86 LIB86

Maximum number of symbols or

modules which can be processed

without performance penalty:

With 100K available memory 1,700 symbols 1,900 symbols 450 modules
With 164K available memory 2,900 symbols 3,300 symbols 1,000 modules
With 228K available memory 4,200 symbols 4,700 symbols 1,700 modules
With 484K available memory 10,000 symbo!s 11,000 symbols 4,000 modules
Theoretical maximum number of

symbols or modules, regardless of

available memory: 10,000 symbols 11,000 symbols 4,000 symbols

LOC86

With 96K of available memory, LOC86 will support up to 900 segments.

LINK86 Controls
and Error Messages

Table D-1 lists all of LINK86’s control syntax, abbreviations, and default settings.

Table D-1. Summary of LINK86 Controls

Controt Abbrev. Defauit

ASSIGN({ variable(address) } [,...]) AS Not applicable
ASSUMEROQOT(pathname) AR Not applicable
BIND Bl NOBIND
NOBIND NOB!
COMMENTS CM COMMENTS
NOCOMMENTS NOCM
FASTLOAD FL NOFASTLOAD
NOFASTLOAD NOFL
GROUPOVERLAYS GO GROUPOVERLAYS
NOGROUPOVERLAYS NOGO
INITCODE IC Not applicable
LINES LI LINES
NOLINES NOLI
MAP MA MAP
NOMAP NOMA
MEMPOOL(min-size [, max-size]) MP Not applicable
NAME(module name) NA Not applicable
OBJECTCONTROLS(oC Not applicable

{ LINES|NOLINES |

COMMENTS | NOCOMMENTS |

SYMBOLS | NOSYMBOLS |

PUBLICS [EXCEPT(symbo!{....])] |

NOPUBLICS [EXCEPT (symbol [,...]})] |

TYPEINOTYPE|

PURGE | NOPURGE } [,...]})
ORDER({ group({ segment | \ class | \ overlay oD Not applicable

Lo
(D

OVERLAY/[(overlay)] ov NOOVERLAY
NOOVERLAY NOOV
PRINT[(pathname)] PR PRINT(object file.MP1)
NOPRINT NOPR

D-2 iAPX 86,88 Family Utilities

Table D-1. Summary of LINK86 Controls (Cont’d.)

Control Abbrev. Detault

PRINTCONTROLS(PC Not applicable
{ LINES | NOLINES |
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS|
PUBLICS[EXCEPT(symbol(,...])] |
NOPUBLICS [EXCEPT(symbol [,...])] |
TYPEINOTYPE|
PURGE | NOPURGE } [,...])

PUBLICS [EXCEPT(symbol [,...])] PL [EC] PUBLICS
NOPUBLICS [EXCEPT(symbol [,...])] NOPL[EC]
PUBLICSONLY(pathnamel|,...]) PO Not applicable
PURGE PU NOPURGE
NOPURGE NOPU

RENAMEGROUPS({ group TO group } [,...]) RG Not applicable
SEGSIZE({ segment| \ class| \ overlay]] S8 Not applicable

(min-size[,[max-size]]) } [....])

SYMBOLS SB SYMBOLS
NOSYMBOLS NOSB
SYMBOLCOLUMNS({1/2[314}) sC SYMBOLCOLUMNS(2)
TYPE TY TYPE
NOTYPE i NOTY

The following are descriptions of all LINK86 error and warning messages. The
description of each message has up to four parts:

* Meaning—how to interpret the message

® Cause—the usual reason for the error or warning condition

* Effect—the state of LINK86 and the object file(s) after the message is issued
® User Action—what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self-
explanatory.

Error messages are always fatal, but warning messages are not. In the event of a
warning, read the EFFECT of the warning carefully to determine whether the
resulting code is valid.

Error and warning messages are displayed at the console device, but printed only if a
listing would otherwise be printed.

ERROR 1: I/0 ERROR
operating system error message
FILE: pathname

ERROR 2: I/0 ERROR
operating system error message
FILE: pathname

LINK86 Controls and Error Messages D-3

ERROR 3: 1/0 ERROR
operating system error message
FILE: pathname

ERROR 4: CONSOLE I/0 ERROR
operating system error message
FILE: pathname

Meaning

An /O error was detected by the operating system. The error number identifies the
file that caused the error:

1. Theinput file

2. The print file

3. The object file

4. The console file (usually the console)

Refer to the documentation for your operating system for a complete list of all
possible messages.

Effect

LINK 86 immediately terminates processing, all open files are closed. The contents
of the print and object files are undefined.

User Action

Correct the error and restart LINK86.

ERROR 5: INPUT PHASE ERROR
FILE: pathname
MODULE: module name
Meaning
LINK86 encountered a record during the second phase of linkage that does not agree
with information gathered during the first phase of linkage.
Cause
This error is caused by a data transmission error or a LINKS86 error.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Contact Intel immediately. Forward a copy of the object file, the LINK86 invoca-
tion line, and your version of LINK86.

D-4 iAPX 86,88 Family Utilities

ERROR 6: CHECK SUM ERROR
FILE: pathname
MODULE: module name

Meaning

The check sum field at the end of one of the object module records indicates a
transcription error.

Cause

Any one of many possible data encoding or communication errors could be at fault.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Retranslate the source that produced the specified module and relink.

ERROR 7: COMMAND INPUT ERROR

Meaning

LINKS86 encountered an error while attempting to read the complete invocation line.

Cause
Possibly an end-of-file while reading from the console input device.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Examine the invocation line, and reinvoke LINK86 correctly.

LINK86 Controls and Error Messages D-5

WARNING 8: SEGMENT COMBINATION ERROR
FILE: pathname
MODULE: module name
SEGMENT: segmentname
CLASS: class name
Meaning

Two segments with the same name have been found to be uncombinable.

Cause

The specified segments have different combination attributes or incompatible align-
ment attributes.

Effect

Although LINKS86 will continue processing pass I, pass 2 will not be started. The
object file will be useless and the print file will contain limited information.

User Action

Retranslate the source that produced the specified file and module.

WARNING 9: TYPE MISMATCH
FILE: pathname
MODULE: module name
SYMBOL: symbolname
Meaning

LINKS86 has found a public/external symbol pair for which the type definitions do
not agree.

Effect

LINK86 continues processing using the first definition only. The object file and the
print file should be valid, except the second definition is ignored.

User Action

Modify the public or external declaration and recompile and relink the source file.

D-6 iAPX 86,88 Family Utilities

WARNING 10: DIFFERENT VALUES FOR
FILE: pathname
MODULE: module name
SYMBOL: symbolname
Meaning
LINK86 encountered the same symbol declared public in two different modules. The
specified file and module contains the second definition encountered.
Cause
Two modules have used the same symbol name for different public definitions.

Effect

LINK86 continues processing using the value of the first public definition; the
second definition is ignored. Both the print file and the object file will be valid.
User Action

Change the name of the symbol in either the specified file or the file containing the
earlier definition.

ERROR 11: INSUFFICIENT MEMORY
FILE: pathname
MODULE: module name
Meaning
There is insufficient memory in your system for LINK86 to build its internal tables
and data structures.
Cause

You are using too many public symbols.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

If expanding system memory is not possible, try incremental linkage (i.e., link
smaller sets of files together using the NOPUBLICS control, then link the resulting

composite modules together).

LINK86 Controls and Error Messages D-7

WARNING 12: UNRESOLVED SYMBOLS
FILE: pathname
MODULE: module name

Meaning

There are declarations of external symbols that were not resolved during this
linkage.

Cause

This is very common when performing an incremental linkage.

Effect

The print file is valid. The object file must be linked to resolve the external
references.

User Action

Link object file to a file that will resolve the external references.

WARNING 13: IMPROPER FIXUP
FILE: pathname
MODULE: module name

Cause

The external reference makes assumptions about the segment register that do not
agree with the assumption made for the public definition.

Effect

LINK86 continues processing. The object file will not be usable, but the print file
will be complete and accurate.

User Action

Depending on the cause of the error: change your ORDER control, recompile with a
different model of segmentation, or change the source and reassemble.

D-8 iAPX 86,88 Family Utilities

WARNING 14: GROUP ENLARGED
FILE: pathname
GROUP: group name
MODULE: module name
Meaning
The specified group name has been defined twice in two different modules. The
segments contained in the two definitions are different.
Effect

The two groups are combined into one. All segments that were in ¢ither group are
included in the resulting group. Segments with the same segment name, class name,
and overlay name are combined. LINK86 continues processing. Both the print file
and object file are valid.

User Action

No user action should be necessary.

ERROR 15: LINK86 ERROR
FILE: pathname
MODULE: module name

User Action

Contact Intel immediately. Forward a copy of the object file, the LINK86 invoca-
tion line, and your version of LINK86.

ERROR 16: STACK OVERFLOW
FILE: pathname
MODULE: module name
Meaning

LINK86’s run time stack used for type matching has overflowed.

Cause

The type definition of one of your symbols is overly complex.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Try incremental linkage — if error persists, contact Intel.

LINK86 Controls and Error Messages D—9

WARNING 17: SEGMENT OVERFLOW
SEGMENT: segment name
CLASS: class name

Meaning

The combination of two or more segments has resulted in a segment that exceeds
64K.

Effect

LINK86 continues processing during the current pass, but the print and object files
are not useable.

User Action

Reorganize your segments and reassemble.

WARNING 18: IMPROPER START ADDRESS
FILE: pathname
MODULE: module name
Meaning
A start address was found in one of the overlay modules, and none was found in the
root module.
Cause

This error is often caused by misordering the input modules in the input list.

Effect

LINKB86 ignores the start address in the specified overlay module and continues
processing.

User Action

If you want the module containing the start address to be the root, relink with that
module first in the input list.

ERROR 19: TYPE DESCRIPTION TOO LONG
FILE: pathname
MODULE: module name
Meaning
The type definition is too long to fit in LINK86’s symbol table.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Contact Intel immediately. Forward a copy of the object file, the LINK86 invoca-
tion line, and your version of LINK86.

D-10 iAPX 86,88 Family Utilities

WARNING 20: NO SUCH GROUP
NAME: group name

Cause

You have attempted to rename a nonexistent group.

Effect
LINKB86 ignores the RENAME control and continues processing.

User Action
Reinvoke LINK86 with the correct invocation line.

WARNING 21: RENAME ERROR
NAME: name
Meaning

The new group name specified is the same as an existing group.

Effect

The group is not renamed. LINK86 continues as if the rename control was not given.

User Action

Reinvoke LINK86 with the correct invocation line.

ERROR 22: INVALID SYNTAX
ERROR IN COMMAND TAIL NEAR #
partial command tail
Cause
This is usually the result of a typo in the invocation line. The partial command tail
up to the point where the error was detected is printed.
Effect
LINK86 terminates processing and closes all open files. The contents of the print file
and the object file are undefined.
User Action
Reinvoke LINK86 more carefully this time.

LINK86 Controls and Error Messages D—11

ERROR 23: BAD OBJECT FILE
FILE: pathname
MODULE: module name
Meaning
LINK86 has discovered an inconsistency in the fields of a record in the specified
input file.
Cause

This could be an error by the translator or a data transmission error.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Retranslate the source file. If the problem persists contact Intel.

WARNING 24: CANNOT FIND MODULE
FILE: pathname
MODULE: module name

Meaning

The specified module cannot be found in the specified library file.

Effect

LINK86 continues processing as if the specified module was not in the list.

User Action

If the module is important, you can link it into the output object file later.

WARNING 25: EXTRA START ADDRESS IGNORED
FILE: pathname
MODULE: module name

Meaning

LINKS86 has encountered a start address in more than one module.

Cause
This will occur any time you specify more than one main module in the input list.

Effect

LINKS86 uses the start address encountered earlier and ignores the start address in
the specified module. LINK86 continues processing with no other side effects.

User Action

None, if the start address in the specified module was intended to be ignored.

D-12 iaPX 86,88 Family Utilities

ERROR 26: NOT AN OBJECT FILE
FILE: pathname
Meaning

The specified file is not an object file.

Cause

This is usually the result of a typo when entering. However, certain data trans-
mission errors can also cause this error.

Effect

LINK86 terminates processing and closes all open files.

User Action

Reinvoke LINK86 typing the line more carefully. If error resulted from a data
transmission error, retranslate and then relink.

ERROR 27: OPERATING SYSTEM INTERFACE ERROR
FILE: pathname
Effect
LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.
User Action

Refer to the documentation for your operating system. If you cannot correct the
error condition, contact Intel; forward a copy of the object file, the LINK86 invoca-
tion line, and your version of LINK86.

WARNING 28: POSSIBLE OVERLAP
FILE: pathname
MODULE: module name
SEGMENT: segmentname
CLASS: class name
Meaning

LINK86 issues this warning when it combines two absolute segments.

Effect
LINK86 continues processing with no side effects.

User Action
If there is a conflict LOC86 or the loader will detect the overlap.

LINK86 Controls and Error Messages D—13

WARNING 29: GROUP HAS BAD EXTERNAL REFERENCE
GROUP: group name
SEGMENT: segmentname

Meaning

This error occurs if the public symbol corresponding to an external reference has
been specified by its absolute address, and the address does not reside in any
segment.

Effect

LINK86 continues processing and the print and object files will be valid except the
external reference has not been properly resolved.

User Action

Either remove the reference to the public symbol or do not allow the symbol to be
absolute.

ERROR 30: LIBRARY IS NOT ALLOWED WITH PUBLICSONLY CONTROL
FILE: pathname

Meaning

The specified file is a library and libraries are not allowed in a PUBLICSONLY
control.

Effect

LINK86 immediately terminates processing and closes all open files. The contents of
the print file and the object file are undefined.

User Action

Remove library file from PUBLICSONLY argument list and reinvoke LINK86.

WARNING 31: REFERENCED LOCATION OFFSET UNDERFLOW
FILE: pathname
MODULE: module name

Meaning

While computing the offset for an 8089 self relative reference, LINK86 had a
negative result.

Cause
Either with the ORDER control or the order of files in the input list, the reference
was separated from its target, or the 8089 segment is too large.

Effect
LINK86 continues processing; however, the invalid offset computation is used.

User Action

Examine the ORDER control in the invocation line and modify its arguments.
Reinvoke LINKS86 carefully.

D-14 iaPX 86,88 Family Utilities

WARNING 32: EXTRA REGISTER INITIALIZATION RECORD IGNORED
FILE: pathname
MODULE: module name

Cause

You have included two main modules in your input list.

Effect

LINKS86 uses the first register initialization record and ignores the second. Process-
ing continues.

User Action

If the register initialization information in the specified file and module should be
used, then modify your input list; otherwise, no user action is necessary.

ERROR 33: ILLEGAL USE OF OVERLAY CONTROL
FILE: pathname
MODULE: module name
Meaning
LINK86 has found an overlay definition in the specifed file and module, while pro-
cessing input modules for an overlay.
Effect
LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.
User Action

Remove the specified file from the input list and relink.

ERROR 34: TO0O MANY OVERLAYS IN INPUT FILE
FILE: pathname
MODULE: module name
Meaning
The specified file and module above contains more than one overlay definition.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Remove the specified file from the input list and relink.

LINK86 Controls and Error Messages D—15

ERROR 35: SAME OVERLAY NAME IN TWO OVERLAYS
FILE: pathname
MODULE: module name
NAME: name
Meaning
The specified file contains an overlay that has the same name as an overlay
encountered in the input list.
Effect
LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.
User Action

Remove one of the duplicate names from the input list and relink. If both overlays
are necessary, relink one overlay specifying a different overlay name.

ERROR 36: ILLEGAL OVERLAY CONSTRUCTION

FILE: pathname

MODULE: module name
Meaning
Some of the modules in the input list contain overlay definitions while others do not.
This is not permitted — all modules in the input list must be the same with respect to
overlays.
Effect
LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.
User Action

Remove the non-overlay files and relink.

WARNING 37: DIFFERENT PUBLICS FOR EXTERNAL IN ROOT
FILE: pathname
MODULE: module name
Meaning
LINK86 has found two symbol definitions in the overlay modules that resolve an
external symbol definition in the root.
Effect
LINK86 ignores the definition in the specified file and module, and continues pro-
cessing with no side effects.
User Action
Remove the unwanted symbol definition and relink.

D-16 iaPx 86,88 Family Utilities

ERROR 38: INVALID OVERLAPPING GROUPS
FILE: pathname
MODULE: module name
SEGMENT: segmentname
GROUP: group name
Meaning

While binding the input list LINK86 found a segment that was defined to be within
two groups.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Either modify the source to remove the segment from one of the groups or do not
link with the BIND control.

ERROR 39: SPECIFIED GROUP NOT FOUND IN INPUT MODULE
GROUP: group name
Cause

Often this is the result of a typographical error in the invocation line.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Correct the invocation line and relink.

ERROR 40: SPECIFIED SEGMENT NOT FOUND IN THE GROUP
SEGMENT: segmentname
GROUP: group name

Cause

Usually this is the result of a typographical error in the ORDER control.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Correct the invocation line and relink.

LINK86 Controls and Error Messages D—17

ERROR 41: SPECIFIED SEGMENT NOT FOUND IN INPUT MODULE
SEGMENT: segmentname
CLASS: class name

Cause

Usually this is the result of a typographical in the SEGSIZE control.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Find the module that contains the specified segment and add it to the input list.

WARNING 42: DECREASING SIZE OF SEGMENT

SEGMENT: segmentname
Meaning
The size change specified in SEGSIZE has caused LINK86 to decrease the size of the
specified segment.
Effect
Decreasing the size of a segment can cause sections of code to be unaccounted for
during the memory allocation process. LINK86 continues processing with no side
effects.
User Action

None if the size decrease was intended.

ERROR 43: SEGMENT SIZE OVERFLOW; OLD SIZE + CHANGE > 64K
SEGMENT: segmentname
CLASS: classname
Meaning
The size change specified in the SEGSIZE control caused the segment to become
greater than 64K.
Effect
LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.
User Action
Reinvoke LINK86 with the correct SEGSIZE control.

D-18 iAPX 86,88 Family Utilities

ERROR 44: SEGMENT SIZE UNDERFLOW; OLD SIZE + CHANGE < 0
SEGMENT: segmentname
CLASS: class name
Meaning
The size change specified in the SEGSIZE control caused the segment’s size to be
less than zero.
Effect
LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.
User Action
Reinvoke LINK86 with the correct SEGSIZE control.

ERROR 45: THE SEGMENT MAXIMUM SIZE IS LESS THAN THE
SEGMENT MINIMUM SIZE
SEGMENT: segmentname
CLASS: class name
Cause

Usually this is the result of a typographical error in the SEGSIZE control.

o

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Correct the invocation line and relink.

ERROR 46: ILLEGAL USE OF SEGSIZE CONTROL
SEGMENT: segmentname
CLASS: class name
Cause
A maximum size was specified for either a stack segment, an absolute segment, or a
segment that is not the highest component of its group.
Effect
LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.
User Action
Remove the specified segment from the SEGSIZE control and relink.

LINK86 Controls and Error Messages D—-19

WARNING 47: GROUP HAS NO CONSTITUENT SEGMENTS
GROUP: group name

Meaning

The group has no segments and is not placed in the output object file.

Cause

Often this is the result of a typographical error in the invocation line.

Effect

LINK86 does not place the specified group in the object file and continues process-
ing with no side effects.

User Action

Unless there is some particular need for the specified group, no user action is
necessary.

WARNING 48: SIZE OF GROUP EXCEEDS 64K
GROUP: group name
Meaning
All of the segments that belong to the specified group do not fit within the physical
segment defined for that group.
Cause
This error is usually caused by misuse of the SEGSIZE or ORDER controls.

Effect

LINKS86 includes all segments in the object file and continues processing the input
module. The output module will be executable, although addressing errors may
occur.

User Action

Examine the invocation line and reinvoke LINK86 using the SEGSIZE or ORDER
control more carefully.

D-20 iaPx 86,88 Family Utilities

WARNING 49: MAXIMUM SIZE OF GROUP EXCEEDS 64K
GROUP: group name
Meaning
The maximum segment size for the segments contained in the specified group
exceeds 64K.
Cause
This error is usually caused by misuse of the SEGSIZE control.

Effect

LINK86 reduces the maximum size of the group and its constituent segments.
LINK86 continues processing the input module. The output module will be
executable.

User Action

No action is necessary. If you want to remove the error, examine the invocation line
and reinvoke LINK86 using the SEGSIZE control more carefully.

WARNING 50: MORE THAN ONE SEGMENT WITH THE MEMORY
ATTRIBUTE

SEGMENT: segmentname
Meaning
After the first memory segment is found, LINK86 issues this warning each time it
finds a segment with the memory attribute.
Effect
LINKS86 ignores the memory attribute on the segment specified in the message.
Processing continues with LINK86 treating the additional memory segment as just
another segment.
User Action

Depending on your intentions, this message may be ignored or you may wish to
change the segment definition and relink.

WARNING 51: SEGMENT WITH MEMORY ATTRIBUTE NOT PLACED
HIGHEST IN MEMORY
SEGMENT: segmentname

Meaning
The specified memory segment was not located at the highest offset in its group.

Cause

This can only occur when you explicitly request this organization through the
ORDER control.

Effect

Since this can only occur by user request, LINK86 continues processing without side
effects.

LINK86 Controls and Error Messages D—-21

WARNING 52: OFFSET FIXUP OVERFLOW
FILE: pathname
MODULE: module name
Meaning
While computing ar offset from a base, LINK86 found that the offset was greater
than 64K.
Cause

One of the segments of a group is outside the 64K frame of reference defined by its
group base.

Effect

LINKS86 continues processing. The print file will be valid, but the output file with
regard to the out of place segment will not be usable.

User Action

Modify the group definitions in your source and retransiate.

WARNING 53: OVERFLOW OF LOW BYTE FIXUP VALUE
FILE: pathname
MODULE: module name

Meaning

An 8-bit displacement value, when calculated, exceeded 255.

Cause

This type of error often occurs when a page resident segment crosses a page
boundary.

Effect

LINK86 continues processing. The contents of both the print file and the object file
will be valid. However, the fixup value will remain invalid.

User Action

Organize your segments so that the addressing error will not be encountered.

ERROR 54: ILLEGAL USE OF ORDER CONTROL
GROUP: group name

Meaning

The specified group’s segments have already been ordered.

Cause
You are attempting to relink a file that has been linked with the BIND control.

Effect

LINKS86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action
Relink using the unbound input modules.

D-22 iAPX 86,88 Family Utilities

ERROR 55: ILLEGAL FIXUP
FILE: pathname
MODULE: module name

Meaning

While processing a fixup record, LINK86 found that the base for the reference and
target are different.

Cause

This is usually a coding error.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Examine your assembly language source and retranslate.

ERROR 56: DATA ADDRESS OUTSIDE SEGMENT BOUNDARIES
FILE: pathname
MODULE: module name
SEGMENT: segmentname
Meaning
One of the data records associated with the specified segment contains an address
outside of the segment’s boundary.
Cause

This error can occur when you decrease the size of a segment.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action

Change SEGSIZE control and relink.

ERROR 57: MAXIMUM DYNAMIC STORAGE LESS THAN MINIMUM
DYNAMIC STORAGE

Meaning

The size change specified in MEMPOOL has caused the maximum dynamic storage

to be less than the minimum dynamic storage.

Effect

LINK86 immediately terminates processing; all open files are closed. The contents
of the print and object files are undefined.

User Action
Reinvoke LINK86 with correct arguments to MEMPOOL.

LINK86 Controls and Error Messages D—23

WARNING 58: NO START ADDRESS SPECIFIED IN INPUT MODULES

Meaning

The BIND control was specified, and none of the input modules has a start address.

Cause

The input list contains no main module.

Effect

The CS and 1P registers remain uninitialized, and their values are dependent on your
system loader. The object module will be valid.

User Action

Reinvoke LINK86 with a main module or execute LOC86 with the START control.

ERROR 59: I/0 ERROR WITH ROOT-FILE IN ASSUMEROOT CONTROL
FILE: pathname
operating system message
Meaning
The ASSUMEROOT control was specified, but the root file identified by pathname
in the invocation could not be accessed.
Effect

LINK86 immediately terminates processing.

User Action

Refer to your operating system documentation to correct the condition, then rein-
voke LINK86.

ERROR 60: OUTPUT FILE IS SAME AS INPUT FILE
FILE: pathname

Meaning
LINK86 detected an output pathname identical to an input pathname.

Cause
The pathnames of the specified input file and the output file were identical.

Effect

LINKS86 terminates processing immediately.

User Action
Reinvoke LINK86 after fixing the duplicate-name situation.

D-24 iapX 86,88 Family Utilities

ERROR 61: ROOT-FILE IN ASSUMEROOT CONTROL IS NOT PROPER
OBJECT FILE
FILE: pathname
Meaning
The ASSUMEROOT control was specified, but the root file is not found to have an
overlay record in it.
Cause

The root file needs an overlay record.

Effect
LINK86 terminates processing immediately.

User Action
Relink the root file using the OVERLAY control.

WARNING 62: ASSUMEROOT CONTROL MEANINGFUL ONLY WITH
OVERLAYS

Meaning

The ASSUMEROOT control should be used only when the input modules do not

contain overlay records.

Cause

ASSUMEROOT was specified, but not in conjunction with the OVERLAY control.

Effect
LINK86 ignores the ASSUMEROOT control. The object code is valid.

User Action
Reinvoke LINK86, using the OVERLAY and ASSUMEROOT controls.

WARNING 63: BAD SEGMENT ALIGNMENT
FILE: pathname
MODULE: module name
SEGMENT: segmentname

Meaning

The segment is not paragraph/page-aligned.

Cause
The object code has references to the base of the specified segment, and the segment
is not declared as paragraph/page-aligned.

Effect

Although the object module will be valid, the loader may not load the program
correctly.

User Action

Declare the specified segment to be paragraph/page-aligned.

LINK86 Controls and Error Messages D—=25

WARNING 64: PUBLIC SYMBOLS NOT SORTED DUE TO INSUFFICIENT
MEMORY

Meaning

The amount of memory required to sort the public symbols for the LINK86 print file
listing is insufficient.

Cause

The number of public symbols in the input-list modules is too large for LINK86 to
sort with the available memory resources.

Effect

The LINKS86 print file listing provides public symbols in the order in which they were
encountered in the input files. This condition has no effect on the correctness or
validity of the output module.

User Action

Increase the amount of available RAM or decrease the number of public symbols.

WARNING 65: ILLEGAL FIXUP: INCORRECT DECLARATION OF
EXTERNAL SYMBOL
FILE: pathname containing external declaration
MODULE: name of module containing external declaration
SYMBOL: name of external symbol
FRAME : identification of reference location
TARGET: identification of target location

Meaning

The declaration of the specified SYMBOL was found to be inconsistent with a
corresponding public symbol definition, and LINK86 could not resolve the
reference.

Cause

This condition may exist for several reasons. The modules containing the external
and public symbols may have been compiled under different translator controls
(e.g., SMALL, LARGE). In the case of assembly language programs, the SYMBOL
may be defined in a group, segment, or frame different from that in which it is
declared as external. Or an attempt has been made to access absolute entry points
from pre-located code without using the PUBLICSONLY control explicitly.

Effect

LINKS86 internally converts these illegal fixups to legal formats to identify all
occurrences in a single execution. Thus the output object module may not be cor-
rect, although it will be a valid 8086 object module.

User Action

If the warning occurred because of an attempted access of absolute entry points
from pre-located code, use the PUBLICSONLY control in conjunction with the file
that contains public definitions for those entry points. Otherwise, use the FRAME
and TARGET information given in the warning message to pinpoint the source of
the error, then correct the code.

D-26 iaPX 86,88 Family Utilities

For example:

WARNING 65: ILLEGAL FIXUP: INCORRECT DECLARATION OF
EXTERNAL SYMBOL
FILE: EXTFIL
MODULE: EXTMODULE
SYMBOL: EXTSYM
FRAME: GROUP - DGROUP
TARGET: SEGMENT - CODE

The symbol EXTSYM is declared to be in SEGMENTS. The external-public resolu-
tion specified that the calculations be made with respect to the base of GROUPI,
but the segment SEGMENTS is not in GROUPI.

WARNING 66: CS AND IP REGISTERS ARE NOT INITIALIZED

Meaning

The INITCODE control was specified, and the register initialization record does not
contain information for initialization of 8086 registers. CS means code segment
register, and 1P means instruction pointer.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The values of CS and IP at the beginning of program execution are entirely depen-
dent on the loader of your system. The object code will be valid.

User Action

Retranslate your code, then reinvoke LINK86.

WARNING 67: SS AND SP REGISTERS ARE NOT INITIALIZED

Meaning

The INITCODE control was specified, and the register initialization record does
not contain information for initialization of 8086 registers. SS means stack segment
and SP means stack pointer.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The values of SS and SP at the beginning of program execution are entirely depen-
dent on the loader of your system. The object code will be valid.

User Action

Correct your code if necessary, then reinvoke LINK86.

LINK86 Controls and Error Messages D—-27

WARNING 68: DS REGISTER NOT INITIALIZED

Meaning

The INITCODE control was specified, and the register initialization record does not
contain information for initialization of the 8086 DS (data segment) register.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The value of the DS register at program execution is entirely dependent on the loader
of your system.

User Action

Correct your code if necessary, then reinvoke LINK86.

WARNING 69: OVERLAPPING DATA RECORDS

Meaning

The FASTLOAD control was specified, and two data records belonging to the same
segment have offsets which make them overlapping.

Cause

This warning is usually the result of a translation error, unless you have intentionally
overlapped data records.

Effect

LINKS86 ignores the second record and does not include it in the output file. The
code will be unusable.

User Action

If you want an overlap condition to exist, reinvoke, but do not use the FASTLOAD
control. Otherwise, retranslate, then reinvoke LINK86.

WARNING 70: INITCODE CONTROL INEFFECTIVE WITH BIND
CONTROL

Meaning
The INITCODE and BIND controls were combined in one invocation statement.

Effect
The INITCODE control will be ignored by LINK86.

User Action

Do not invoke LINK86 using both of these controls at the same time. To invoke
them separately, use the INITCODE control first, then the BIND control during a
second invocation.

D-28 .iaPX 86,88 Family Utilities

WARNING 71: TOO MANY MAIN MODULES IN INPUT
FILE: pathname
MODULE: module name
Meaning
LINK86 discovered two or more main modules (modules with start addresses) in the
input list.
Cause

The input list contains too many main modules.

Effect

LINK86 uses the start address of the first main module it reads and ignores the
others. The object code will be valid.

User Action

Ensure that the LINK86 interpretation is suitable to your objectives. If not, modify
the input list, and reinvoke LINK86.

WARNING 72: REGISTER INITIALIZATION CODE EXISTS, NEW
INITIALIZATION IGNORED
FILE: pathname
MODULE: module name
Meaning
Two or more initialization codes for 8086 registers were encountered in the input
list.
Cause

This condition resulted from a translation or linkage problem.

Effect

LINK86 uses the first initialization code and ignores the others. The object code will
be valid.

User Action
If retranslating or relinking does not correct the error, contact Intel.

WARNING 73: INITCODE CONTROL INEFFECTIVE WITH OVERLAYS

Meaning
Both INITCODE and OVERLAY controls were specified.

Effect
The INITCODE control is ignored. The object code will be valid.

User Action

Reinvoke LINK86, using the INITCODE control. In a second invocation, specify
the OVERLAY control.

LINK86 Controls and Error Messages D=29

ERROR 74: PRINT FILE SAME AS INPUT FILE
FILE: pathname
Meaning
The pathnames of the print file and one of the input files are identical.

Effect
LINKS86 terminates processing immediately.

User Action
Reinvoke LINK86 after fixing the duplicate-name situation.

ERROR 75: PRINT FILE SAME AS OUTPUT FILE

Meaning

The names of the print and output files are identical.

Cause

The invocation line included duplicate names.

Effect
LINK86 terminates processing immediately.

User Action

Correct the invocation line and reinvoke LINK86.

WARNING 76: BASE OF REFERENCED SEGMENT DIFFERS FROM BASE
OF CONTAINING GROUP
FILE: pathname
GROUP: group name
MODULE: module name
SEGMENT: segment name

Meaning

An assembly language reference to the base of the specified segment in the specified
group exists. However, the specified segment is not the first segment in the group.
This warning occurs only when BIND is in effect.

Cause

Unless vou have deliberately created this reference, this warning is most likely the
result of an incorrect ASSUME directive or an incorrect OFFSET operator

specification.

Effect

LINK86 will process the specified reference to the segment base rather than to the
group base. The output module will be valid.

User Action

If the reference to the segment base was deliberate, continue debugging your
assembly language code as planned. Otherwise, check the correctness of the code,
particularly the ASSUME directives and OFFSET operator specifications; then
reassemble and relink.

D-30 iAPX 86,88 Family Utilities

WARNING 77: REFERENCED OFFSET IN SEGMENT DIFFERS FROM
OFFSET FROM GROUP BASE
FILE: pathname
GROUP: group name
MODULE: module name
SEGMENT: segmentname

Meaning

An assembly language reference to an offset from the base of the specified segment
in the specified group exists. However, the specified segment is not the first segment
in the group. This warning occurs only when BIND is in effect.

Cause

Unless you have deliberately created this reference, this warning is most likely the
result of an incorrect ASSUME directive or an incorrect OFFSET operator
specification.

Effect
LINK86 will process the specified reference as an offset from the segment base
rather than the group base. The output module will be valid.

User Action

If the reference to the offset in the segment was deliberate, continue debugging your
assembly language code as planned. Otherwise, check the correctness of the code,
particularly the ASSUME directives and OFFSET operator specifications; then
reassemble and relink.

CREF86 Controls
and Error Messages

Table E-1 lists all of CREF86’s control syntax, abbreviations, and default settings.

Table E-1. Summary of CREF86 Controls

Control Abbrev. Default
PAGELENGTH(number) PL PAGELENGTH(60)
PAGEWIDTH(number) PW PAGEWIDTH(120)
PRINT (pathname) PR PRINT (first input file .CRF)
TITLE(character-string) T Not applicabte

The following are descriptions of all CREF86 error and warning messages. The
description of each message has up to four parts:

* Meaning—how to interpret the message

® Cause—the usual reason for the error or warning condition

¢ Effect—the state of CREF86 and the object file(s) after the message is issued
e User Action—what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self-
explanatory.

Error messages are always fatal, but warning messages are not.

Error and warning messages are displayed at the console device, but printed only if a
listing would otherwise be printed.

ERROR 1: I/0 ERROR
operating system message explaining the cause of this erorr
FILE: pathname
Meaning
An [/0 error was detected. See the appropriate operating system documentation for
interpretation.
Effect
CREF86 immediately terminates processing; all open files are closed. The contents
of the print file are undefined.
User Action
Correct the error and restart CREF86.

E-2 iAPX 86,88 Family Utilities

ERROR 2: SYNTAX ERROR IN INPUT COMMAND

Meaning
An error in the syntax of the invocation line was detected.

Cause

This condition is usually the result of a typographical error or transposition.

Effect

The invocation command line, to the point it is parsed, is written to the console with
a # following this string.

User Action

Correct the syntactic error and retransmit the invocation line(s).

ERROR 3: OUT OF MEMORY

Meaning

CREF86 does not have enough memory to create its internal data structures, tables,
etc. This condition may also occur because of inadequate disk space for temporary
files.

Cause

The input list contains too many symbols and/or too many references among them.

Effect

CREF86 immediately terminates processing, closing all open files. The contents of
the print file are undefined.

User Action

Ensure that adequate resources are available to run CREF86.

ERROR 4: I/0 ERROR
operating system error message
FILE: pathname
Meaning
An 170 error was detected. See the appropriate operating system documentation for
interpretation.
Effect
CREF86 processing is immediately terminated.

User Action
Correct the error and restart CREF86.

CREF86 Controls and Error Messages E-3

ERROR 5: IMPROPER OBJECT MODULE
FILE: pathname
MODULE: module name

Meaning
The specified module does not meet 8086 object module requirements.

Cause

This condition may be caused by the translator or by an error in data transmission.

Effect

CREF86 processing is immediately terminated.

User Action

Try retranslating the source-file. If the problem persists, call Intel.

ERROR 6: PREMATURE EOF
FILE: pathname

Meaning

CREF86 expects more input data, but encounters an end-of-file (EOF) condition.

Cause

This condition usually results from a translator error.

Effect

CREF86 processing is immediately terminated.

User Action

Return to the previous step in program development, then retranslate or relink.

ERROR 7: LIBRARY SEEK ERROR
FILE: pathname
MODULE: module name

Meaning
CREF86 did not encounter a proper library record when scanning a library file.

Cause
The library file or the disk may be corrupted.

Effect

CREF86 immediately terminates processing.

User Action
Reinvoke CREF86 after replacing the file or the disk.

E-4 iAPX 86,88 Family Utilities

ERROR 8: LIBRARY IN OVERLAY MODE
FILE: pathname

Meaning

An input list contains object file(s) with an overlay record count greater than zero
and a library file.

Cause

Libraries cannot contain overlay records. CREF86 can process either all modules or
no modules with overlay records.

Effect

CREF86 immediately terminates processing.

User Action
Reinvoke CREF86 using a valid input list.

ERROR 9: IMPROPER MODULE SEQUENCE
FILE: pathname
MODULE: module name

Meaning

A combination of modules containing overlay records with those containing
nonoverlay records was encountered in the input list.

Cause

CREF86 can process input lists consisting of either all modules with overlay records
or no modules with overlay records.

Effect

CREF86 immediately terminates processing.

User Action
Reinvoke CREF86 with a valid input list.

N

CREF86 Controls and Error Messages E—5

ERROR 10: MORE THAN 255 OVERLAYS NOT SUPPORTED

Meaning

The input list contains over 255 files with overlay records.

Cause

CREF86 does not support more than 255 overlay files. In the case of input lists
without overlays, however, there is no limit (except available memory) on the
number of files CREF86 can process.

Effect

CREF86 immediately terminates processing.

User Action
Reinvoke CREF86 using fewer than 255 overlay files.

ERROR 11: TOO MANY OVERLAYS
FILE: pathname
MODULE: module name

Meaning
The input file contains more than one overlay.

Cause

CREF86 can support files with only one overlay record each.

Effect

CREF86 terminates processing immediately.

User Action

Reinvoke CREF86 with an input list containing files with no more than one overlay
each.

E-6 iAPX 86,88 Family Utilities

ERROR 12: I/0 ERROR
operating system error message
FILE: pathname

Meaning

An 1/0 error was detected. See the appropriate operating system documentation for
interpretation.

Effect

CREF86 terminates processing immediately.

User Action
Correct the error and restart CREF86.

ERROR 13: IMPROPER PAGE WIDTH SPECIFICATION

Meaning

The PAGEWIDTH control specification includes a number outside the valid
syntactic range.

Effect

CREF86 terminates processing immediately.

User Action

Correct the syntax error and reinvoke CREF86. CREF86 accepts a PAGEWIDTH
number in decimal form from 80 to 132, inclusive, in the following format:

PAGEWIDTH (humber)

CREF86 Controls and Error Messages E=7

ERROR 14: TIMPROPER PAGE LENGTH SPECIFICATION

Meaning

The PAGELENGTH control specification includes a number outside the valid
syntactic range.

Effect
CREF86 terminates processing immediately.
User Action

Reinvoke CREF86 using the proper PAGELENGTH syntax. CREF86 accepts a
PAGELENGTH number in decimal form from 10 through 255, in the following
format:

PAGELENGTH (number)

ERROR 15: ILLEGAL LIBRARY FILE
FILE: pathname

Meaning

CREF86 did not encounter a proper library record in the proper location.

Cause
The library file or disk may be corrupted.

Effect

CREF86 terminates processing immediately.

User Action
Reinvoke CREF86 after replacing the file or the disk.

E-8 iAPX 86,88 Family Utilities

ERROR 16: IMPROPER OBJECT FILE
FILE: pathname
MODULE: module name

Meaning

CREF86 did not encounter an 8086 object module record in the proper location.
Cause

The object file may be corrupt or the file may not be an 8086 object file.

Effect

CREF86 terminates processing immediately.

User Action

Determine whether the integrity of the object file is intact and whether the file is a
proper input file for CREF86. Reinvoke CREF86 with a valid and usable object file.

ERROR 17: OUTPUT FILE SAME AS INPUT FILE
FILE: pathname
MODULE: module name

Meaning

CREF86 detected an output pathname identical to an input pathname.

Cause

The invocation line specified two identical pathnames.
Effect

CREF86 terminates processing immediately.

User Action

Reinvoke CREF86 after fixing the duplicate-name situation.

CREF86 Controls and Error Messages

ERROR 18: CREF86 INTERNAL ERROR
FILE: pathname
MODULE: module name

User Action

Contact Intel immediately. Forward a copy of the object file, the CREF86 invoca-
tion line, and your version of CREF86.

WARNING 19: TYPE MISMATCH
FILE: pathname
MODULE: module name
SYMBOL: symbol name

Meaning

CREF86 detected a type mismatch between two symbols with the same name.

Cause

Two symbols are declared to have identical names but different types, and the
symbols are not in different overlay modules.

CREF86 does not check the entire TYPE declaration for any given symbol. For
example, dimension values for arrays, number of parameters in procedure calls, etc.
are not compared. Only simple types (e.g., byte, word, structure) are checked.

Effect

CREF86 flags the condition in the cross-reference listing.

User Action

Ensure that the condition is not damaging to your programming objectives.

E-10 iAPX 86,88 Family Utilities

WARNING 20: SPECIFIED MODULE NOT FOUND
FILE: pathname
MODULE: module name

Meaning

A module explicitly included in the input list of the invocation is not found by
CREF86.

Cause

The specified module is not part of the file specified by the pathname.

Effect

CREF86 continues processing the modules it is able to find.

User Action

Determine why the module is missing, then reinvoke CREF86.

ERROR 21: OPERATING SYSTEM INTERFACE ERROR
operating system error message

Meaning

CREF86 cannot open its temporary file.
Effect

CREF86 terminates processing immediately.

User Action

Refer to the documentation on the operating system to help diagnose any possible
operating system malfunction.

LIB86 Commands
and Error Messages

The table below shows all of LIB86’s commands.

Table F-1. Summary of LIB86 Commands

Command Abbrev. Description
ADD {pathname{(module name|,...])|} A Adds modules to a library
[,...] TO pathname
CREATE pathname C Creates alibrary file
DELETE pathname(module name |,...}) D Deletes modules from a library
file
EXIT E Terminates session with LIB86
LIST {pathname|(module name |,...))]> L Lists modules contained in a
[,...][TO pathname| [PUBLICS] [P) library file, and optionally lists
all publics

The following are descriptions of all LIB86 error and warning messages. The
description of each message has up to four parts:

* Meaning—how to interpret the message

* Cause—the usual reason for the error or warning condition

e Effect—the state of LIB86 and the object file(s) after the message is issued
* User Action—what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self-
explanatory.

Error and warning messages are displayed at the console device.

MODULE NOT FOUND
MODULE: module name
FILE: pathname

Meaning

The specified module could not be found in the specified library.

Cause

There is a typographical error in the command line.

Effect

L1B86 ignores the module in the list and continues processing.

User Action

No user action is necessary.

F-2 iAPX 86,88 Family Utilities

RIGHT PARENTHESIS EXPECTED
partial command tail

LEFT PARENTHESIS EXPECTED
partial command tail

INVALID MODULE NAME
partial command tail

MODULE NAME TOO LONG
partial command tail

INVALID SYNTAX
partial command tail

'TO' EXPECTED

partial command tail

Meaning

All of the above errors are syntax errors. For each of the above errors LIB86 issues
the associated error message and displays the partial command up to the point of the
error.

Cause

There is a typographical error in the command line.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Examine the command line, make the necessary corrections and reissue the
command.

LIB86 Commands and Error Messages F=3

UNRECOGNIZED COMMAND

Cause
You mistyped a command (ADD, CREATE, DELETE, EXIT, or LIST).

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Examine the command line and enter the corrected command.

INSUFFICIENT MEMORY

Meaning

There is not enough memory available to execute the command.

Cause

Exceptionally long and complex commands can cause this error.

Effect

L1B86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Simplify your command line and reexecute.

COMMAND LINE TOO LONG

partial command tail

Meaning

The length of the LIB86 command you tried to execute exceeded the size limit of the
system’s command buffer.

Effect

LIB86 immediately terminates processing the command, displays this error message
plus the portion of the command it would accept, then issues the prompt character

(*).
User Action

Simplify your command line and reexecute.

F-4 iAPX 86,88 Family Utilities

LIB86 ERROR

Meaning

LIB86 failed an internal consistency check.

Effect

LIB86 immediately terminates processing. The results of previous commands on the
library being manipulated when this error occurred may have been lost.

User Action

Contact Intel. Forward a copy of the libraries and object files used during the
session in which the error occurred.

FILE ALREADY EXISTS

FILE: pathname

Meaning

The file specified in the CREATE command already exists.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Specify a nonexistent file in the CREATE command.

DUPLICATE SYMBOL IN INPUT

SYMBOL: symbol name

MODULE: module name

FILE: pathname

Mehning

The specified public symbol conflicts with a public symbol defined in one of the files
given earlier in the input list. This error occurs only during the ADD command.
Effect

L1B86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*). The library being manipulated returns to the
state it was in prior to the ADD command that prompted this message.

User Action

Correct the ADD command and reinvoke LIB86.

LIB86 Commands and Error Messages F—5

NOT A LIBRARY

FILE: pathname

Cause

The file that the command requests L1B86 to DELETE or LIST is not a library file.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Reissue the command specifying a library file.

ILLEGAL RECORD FORMAT

MODULE: module name

FILE: pathname

Cause

This error is usually caused by a transcription error or translation error in some part
of an object file examined by LIB86.

Effect

L1B86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Return to the last step in program development, then retranslate, relink, or relocate.

PREMATURE EOF
MODULE: module name
FILE: pathname
Meaning

Due to some transcription error or other the specified file has no module end record.

Cause

This is usually the result of a transcription error or translator error.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Return to the last step in program development, then restranslate, relink, or
relocate.

F-6 iAPX 86,88 Family Utilities

CHECKSUM ERROR
MODULE: module name
FILE: pathname
Meaning

The specified file has an error in one of its checksum fields.

Cause

This is the result of a transcription error.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Return to the last step in program development, then retranslate, relink, or retocate.

ATTEMPT TO ADD DUPLICATE MODULE

MODULE: module name

Meaning

A module with the specified module name already exists in the library.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Remove the duplicate module from the list and reissue the command.

ATTEMPT TO ADD MODULE CONTAINING OVERLAYS
MODULE: module name
FILE: pathname

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*). All modules in the input list up to the erroneous
file are added to library.

User Action

Reissue the command with all elements in the input list except those that contain
overlays.

LIB86 Commands and Error Messages F=7

PUBLIC SYMBOL ALREADY IN LIBRARY
SYMBOL: symbol name

MODULE: jnput module name

FILE: inputpathname

Meaning

The library already contains the public symbol identified in the error message.

Cause

This error occurs when a module is added that has a symbol definition already in the
library.

Effect

LIB86 immediately terminates processing the command, displays the error message,
and issues the prompt character (*).

User Action

Reexecute the command without the file that contains the duplicate symbol.

LOC86 Controls

and Error Messages

Table G-1 lists all of LOC86’s control syntax, abbreviations, and default settings.

Table G-1. Summary of LOC86 Controls

Control Abbrev. Detault
ADDRESSES(AD Not applicable
{SEGMENTS({segment|\class|\overiay]| (SM|
(addn...) | CS|GR)
CLASSES({class(addn}|,...| |
GROUPS({group(addr)}{,...]) }
L)
BOOTSTRAP BS Not applicable
COMMENTS CM COMMENTS
NOCOMMENTS NOCM
INITCODE (address)| IC INITCODE(200H)
NOINITCODE NOIC
LINES B} LINES
NOLINES NOLI
MAP MA MAP
NOMAP NOMA
NAME(module name) NA Not applicable
OBJECTCONTROLS(
{LINES| NOLINES | oC Not applicable
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGE} [,...])
ORDER(oD Not applicable
{SEGMENTS({segment{\class|\overlay||} (SM |
. cs)
CLASSES({class|(segment(,...D|}{...D}
{,--D
PRINT{(pathname})) PR PRINT(objectfile MP2)
NOPRINT NOPR
PRINTCONTROLS(
{LINES | NOLINES | PC Not applicable
COMMENTS | NOCOMMENTS |
SYMBOLS | NOSYMBOLS |
PUBLICS | NOPUBLICS |
PURGE | NOPURGE} [,...))
PUBLICS PL PUBLICS
NOPUBLICS NOPL
PURGE PU NOPURGE
NOPURGE NOPU

G—2 iAPX 86,88 Family Utilities

Table G-1. Summary of LOC86 Controls (Cont’d.)

Control Abbrev. Default
RESERVE({addr TOaddr} [,...])) RS Not applicable
SEGSIZE((segment|\class|\overiay]) SS Not applicable

(size)}(,...])

START({symbol | paragraph offset}) ST Not applicable
SYMBOLS SB SYMBOLS
NOSYMBOLS NOSB
SYMBOLCOLUMNS({1|2[3] 4}) SC SYMBOLCOLUMNS (2)

The following are descriptions of all LOC86 error and warning messages. The
description of each message has up to four parts:

® Meaning—how to interpret the message

* Cause—the usual reason for the error or warning condition

o Effect—the state of LOC86 and the object file(s) after the message is issued
¢ User Action—what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self-
explanatory.

Error messages are always fatal, but warning messages are not. In the event of a
warning, read the EFFECT of the warning carefully to determine whether the code
is valid.

Error and warning messages are displayed at the console device, but printed only if a
listing would otherwise be printed.

ERROR 1: I/0 ERROR:
operating system error message
Meaning
An 170 error was detected. Refer to the documentation for your operating system
for interpretation.
Effect
LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action
Correct the error and restart LOC86.

LOC86 Controls and Error Messages G-3

ERROR 2: INVALID SYNTAX
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

A syntax error was detected in the invocation line. LOC86 repeats the invocation
line up to the point of the error.

Cause

This is usually the result of a typographical error in the invocation line.

Effect

LOCB86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reenter the invocation line more carefully.

ERROR 3: MISSING INPUT FILE NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

LOC86 was unable to find the input file name in the invocation. LOCB86 repeats the
invocation line up to the point of the error.

Cause

This is usually the result of a typographical error in the invocation line.

Effect

LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Reinvoke LOC86 more carefully.

G-4 iAPX 86,88 Family Utilities

ERROR 4: INSUFFICIENT MEMORY

Meaning
The memory available on your system has been used up by LOC86.

Cause

This can be caused by an input module that has a very large number of segments or
an impossibly long invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

This may require changing the source file to reduce the number of segments and
retranslating.

ERROR 5: BAD RECORD FORMAT
MODULE: rnodule name
Meaning

There is a record in the specified input module that has an incorrect format.

Cause

This is usually a transcription error.

Effect

LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Retranslate and relink the input files before attempting to locate the input module
again.

LOC86 Controls and Error Messages G—=5

ERROR 6: INVALID KEY WORD
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

One of the controls or subcontrols in the invocation line is incorrect. LOC86 repeats
the invocation line up to the point of the error.

Cause

This is usually the result of a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reinvoke LOC86 more correctly.

ERROR 7: NUMERIC CONSTANT LARGER THAN 20 8ITS
ERROR IN COMMAND TAIL NEAR #:
partial command tail
Meaning
You have specified an address greater than 1,048,575 (OFFFFFH). LOC86 repeats
the invocation line up to the point of the error.
Effect
LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action

Examine the invocation line and invoke LOC86 with the correct address.

ERROR 8: NON NUMERIC CHARACTER IN NUMERIC CONSTANT
ERROR IN COMMAND TAIL NEAR #:
partial command tail
Meaning
This is a type of syntax error. LOC86 repeats the invocation line up to the point of
the error.
Cause

This is usually caused by a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Enter the invocation more carefully.

G-6 iAPX 86,88 Family Utilities

ERROR 9: NUMERIC CONSTANT LARGER THAN 16 BITS
ERROR IN COMMAND TAIL NEAR #:
partial command tail
Meaning
You have specified an offset greater than 65,536 (OFFFFH). LOC86 repeats the
invocation line up to the point of the error.
Effect
LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action

Retype the invocation line more carefully.

ERROR 10: INVALID SEGMENT NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

LOC86 was expecting a segment name when it found a token that does not cor-
respond to a valid segment name. LOC86 repeats the invocation line up to the point
of the error.

Cause

This is usually the result of a typographical error.

Effect

LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Reinvoke LOC86 more carefully.

LOC86 Controls and Error Messages

ERROR 11: INVALID CLASS NAME
ERROR IN COMMAND TAIL NEAR #:
partial command tail

Meaning

LOC86 was expecting a class name when it found a token that does not correspond
to a valid class name. LOCB86 repeats the invocation line up to the point of the error.

Cause

This is usually the result of a typographical error.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Reinvoke LOC86 more carefully.

ERROR 12: INVALID INPUT MODULE

MODULE: module name
Meaning
The input module is invalid. It could mean that object module records are out of
order, or LOCS86 has found an invalid field within a record, or a required record is
missing.
Cause
This is usually caused by a translator error or an attempt to locate something other
than an object file (e.g., a source file).
Effect
LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action

Retranslate source and relink, then try to locate again. 1f this error continues contact
Intel.

G-8 iAPX 86,88 Family Utilities

WARNING 13: MORE THAN ONE SEGMENT WITH THE MEMORY
ATTRIBUTE
SEGMENT: segment name
Meaning
After the first memory segment is found, LOC86 issues this warning each time it
finds a segment with the memory attribute.
Effect

LOC86 ignores the memory attribute on the segment specified in the message. Pro-
cessing continues with LOC86 treating the additional memory segment as just
another segment.

User Action

Depending on your intentions, this message may be ignored or you may wish to
change the attribute for the segments and relink them.

WARNING 14: GROUP DEFINED BY AN EXTERNAL REFERENCE
NAME: external name
GROUP: group name

Meaning

The specified group is defined by an external reference. This is a type of unresolved
external reference.

Effect

LOCS86 continues processing without side effects.

User Action

Find the module that defines the specified symbol and relink the input module.

WARNING 15: PUBLIC SYMBOL NOT ADDRESSABLE
NAME : public symbol name

Meaning

The specified symbol is more than 64K from its base. This error occurs when the seg-
ment containing the public symbol is not completely contained within the 64K
physical segment defined by the symbol’s base.

Effect

LOC86 continues processing. The object file will be executable. However, any
attempt to access the specified public symbol will not produce the desired results.
Debug symbols with this attribute will not be added to the object file.

User Action

Change the ORDER or ADDRESSES control so that the segment containing the
public symbol will be within range of the symbol’s base.

LOCB86 Controls and Error Messages G-9

WARNING 16: LOCAL SYMBOL NOT ADDRESSABLE
NAME: Jocal symbol name

Meaning

The specified symbol is more than 64K from its base. This error occurs when the seg-
ment containing the local symbol is not completely contained within the 64K
physical segment defined by the symbol’s base.

Effect

LOC86 continues processing. The object file will be executable. However, any
attempt to access the specified symbol will not produce the desired results. Debug
symbols with this attribute will not be added to the object file.

User Action

Change the ORDER or ADDRESSES control so that the segment containing the
local symbol will be within range of the symbol’s base.

WARNING 17: LINE NUMBER NOT ADDRESSABLE
NAME: Jine number

Meaning

The specified line is more than 64K from its base. This error occurs when the seg-
ment containing the line number is not completely contained within the 64K physical
segment defined by the line’s base.

Effect

LOC86 continues processing. The object file will be executable. However, any
attempt to access the specified line number will not produce the desired results.
Debug symbols with this attribute will not be added to the object file.

User Action

Change the ORDER or ADDRESSES control so that the segment containing the line
number will be within range of the line’s base.

G-10 iAPX 86,88 Family Utilities

WARNING 18: SIZE OF GROUP EXCEEDS 64K
GROUP: group name
Meaning
Some of the segments of the specified group are not contained within the physical
segment defined by the group’s base.
Cause
This error is usually caused by misuse of the ORDER or ADDRESSES control.

Effect

LOC86 continues processing the input module. The output module will be
executable, but addressing errors may result.

User Action

Examine the invocation line and reinvoke LOC86 using the ORDER or
ADDRESSES control more carefully.

WARNING 19: BOOTSTRAP SPECIFIED FOR MODULE WITHOUT START
ADDRESS

Meaning

You have specified BOOTSTRAP when locating a module that has no start address.

Effect
LOCS86 continues processing as if no BOOTSTRAP control was specified.

User Action

If you wish initialization code in the program, relocate the input module specifying
both BOOTSTRAP and START.

ERROR 20: INVALID NAME
NAME: bad name
Cause

This is the result of a typographical error in the NAME control. A valid name is
composed of up to forty of the following characters in any order:

e Alphabetic (A, B, C, ..., Z2)
e Numeric(0,1,2,...,9)
» Special(@,?,:, .,)

Effect

LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Reinvoke LOC86 more carefully.

LOC86 Controls and Error Messages G—=11

ERROR 21: SEGMENT REGISTER DEFINED BY SPECIFIED EXTERNAL
NAME
NAME: external name
Meaning
A segment register or register pair is defined using the specified external symbol
name.
Effect
LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action

Relink and relocate your object modules.

ERROR 22: SEGMENT SIZE OVERFLOW; OLD SIZE + CHANGE > 64K
SEGMENT: segmentname
CLASS: class name
Meaning
The size change specified in the SEGSIZE control caused the segment to become
greater than 64K.
Effect
LOCB86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action

Look at the segment’s size in the link map and reinvoke LOC86 with the correct
SEGSIZE control.

ERROR 23: SEGMENT SIZE UNDERFLOW; OLD SIZE - CHANGE < 0
SEGMENT: segment name
CLASS: class name

Meaning

The size change specified in the SEGSIZE control caused the segment’s size to be
less than zero.

Effect
LOC86 immediately terminates processing; all open files are closed. The contents of

the print and object files are undefined.

User Action

Look at the segment’s size in the link map and reinvoke LOC86 with the correct
SEGSIZE control.

G-12 iAPX 86,88 Family Utilities

ERROR 24: INVALID ADDRESS RANGE

Meaning
The arguments to the RESERVE control are invalid.

Cause

The usual cause of this error is that the low address is larger than the high address.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOCS86 correctly.

ERROR 25: PUBLIC SYMBOL NOT FOUND
NAME: public symbol name
Meaning
The symbol specified in the START control was not found.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Either specify the argument to START with paragraph and offset, or specify an
existing public symbol.

WARNING 26: DECREASING SIZE OF SEGMENT
SEGMENT: segmentname
Meaning
The size change specified in SEGSIZE has caused LOC86 to decrease the size of the
specified segment.
Effect

Decreasing the size of a segment can cause sections of code to be unaccounted for
during the locating process. This is only a warning message. LOC86 continues pro-
cessing with no side effects.

User Action

If the size decrease was not intended, examine the SEGSIZE control in the invoca-
tion line and relocate.

LOC86 Controls and Error Messages G—13

ERROR 27: SPECIFIED SEGMENT IS ABSOLUTE
SEGMENT: segmentname
Meaning

You attempted to assign an address to an absolute segment.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Reinvoke LOC86 without using absolute segments in the ADDRESSES control.

WARNING 28: PAGE RESIDENT SEGMENT CROSSES PAGE BOUNDARY
SEGMENT: segment name
Cause

If you have changed the specified segment’s size, it may be too large to fit within a
256 byte page, or if you have specifed an address for the segment, it may force the
segment to cross a page boundary.

Effect

Since this error can only occur when you have intentionally specified the segment in
a control, LOCS86 ignores the page resident attribute and continues to process the
module as if no error has occurred.

User Action

If you have invoked LOCB86 correctly, then the message is only verifying your inten-
tions — no action is necessary.

G-14 iAPX 86,88 Family Utilities

WARNING 29: OFFSET FIXUP OVERFLOW
MODULE: module name
REFERENCED LOCATION: 20-bitaddress
FRAME OF REFERENCE: 20-bitaddress

Meaning
While computing an offset from a base (FRAME OF REFERENCE), LOC86 found
that the REFERENCED LOCATION was more than 64K bytes away from the base.

Cause

This error usually occurs as a result of misuse of the ORDER or ADDRESSES
control. One of the segments of a group is outside the 64K byte physical segment
defined by its group base.

Effect

LOC86 continues processing. The print file will be valid, but the output file with
regard to the out-of-place segment will not be usable.

User Action

Find the symbol that corresponds to the referenced location, and change the
ORDER or ADDRESSES control.

WARNING 30: UNRESOLVED EXTERNAL REFERENCE TO NAME
AT SPECIFIED ADDRESS

NAME: symbol name

SEGMENT: segmentname

ADDRESS: 20-bitaddress
Meaning
There is no public definition for the specified public symbol. There is an unresolved
external reference to that symbol in the specified segment.
Cause

You are locating a module that is not completely linked.

Effect

LOCS86 continues processing with no side effects. The print file will be valid, and
except for the unresolved references the object file should be executable.

User Action

No action is necessary if the unresolved reference is known. Otherwise, you must
relink and resolve the external reference.

LOC86 Controls and Error Messages G=15

WARNING 31: UNRESOLVED EXTERNAL REFERENCE TO NAME NEAR
SPECIFIED ADDRESS
NAME: symbol name
SEGMENT: segmentname
ADDRESS: 20-bitaddress
Meaning
There is no public definition for the specified public symbol. There is an unresolved
external reference to that symbol in the specified segment.
Cause

You are locating a module that has not been completely linked.

Effect

LOC86 continues processing with no side effects. The print file will be valid, and
except for the unresolved references the object file should be executable.

User Action

No action is necessary if the unresolved reference is known. Otherwise, you must
relink to resolve the external reference.

WARNING 32: OVERFLOW OF LOW BYTE FIXUP VALUE
MODULE: module name
REFERENCED LOCATION: 20-bitaddress
FRAME OF REFERENCE: 20-bitaddress

Meaning

An 8-bit displacement value, when calculated, exceeded 255.

Cause

This type of error often occurs when a page resident segment crosses a page
boundary.

Effect

LOC86 continues processing. The contents of both the print file and the object file
will be valid. However, the fixup value will remain invalid.

User Action

Find the symbol that corresponds to the REFERENCED LOCATION and organize
your segments so that the addressing error will not be encountered.

G-16 iAPX 86,88 Family Utilities

WARNING 33: GROUP HAS NO CONSTITUENT SEGMENTS
GROUP: group name

Meaning

The group has no segments and is not placed in the output object file.

Cause

Often this is the result of a typographical error in the invocation line. However, it
may be a linking error that has not shown up until now.

Effect
LOC86 continues processing with no side effects.

User Action

Unless there is some particular need for the specified group, no user action is
necessary.

ERROR 34: SPECIFIED CLASS NOT FOUND IN INPUT MODULE
CLASS: classname

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of

the print and object files are undefined.

User Action

Find the module that contains the specified class and link it into the module to be
located.

ERROR 35: SPECIFIED SEGMENT NOT FOUND IN INPUT MODULE
SEGMENT: segmentname
CLASS: class name

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Find the module that contains the specified segment and link it into the module to be
located.

LOC86 Controls and Error Messages G—17

WARNING 36: SEGMENTS OVERLAP
SEGMENT: segment name
SEGMENT: segmentname
LOW OVERLAP ADDRESS: 20-bitaddress
HIGH OVERLAP ADDRESS: 20-bitaddress
Meaning

The two segments overlap in the specified address range.

Cause

This can be caused by any number of things: mistake in the SEGSIZE control,
misuse of ADDRESSES, or two absolute segments that overlap.

Effect

LOCB86 continues processing the input module. The print file is valid, and the object
file, with the exception of the overlap, should be usable.

User Action

If overlap was intended, no action is necessary. Otherwise, depending on the cause
of the message, it may be necessary to relocate or even modify the source, and
retranslate, relink, and relocate.

ERROR 37: INPUT MODULE EXCEEDS 8086 MEMORY

SEGMENT: segmentname
Meaning
While attempting to locate the specified segment, LOC86 ran out of available 8086
address space.
Cause
Although it is possible to write a program that uses a full megabyte of memory, this
error usually results from an error in the arguments to the RESERVE control.
Effect
LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action

Examine the RESERVE control. If, in fact, your program requires more than
1,048,576 bytes of memory, try optimizing with ASM86 or use overlays.

G-18 iaPx 86,88 Family Utilities

WARNING 38: SEGMENT WITH MEMORY ATTRIBUTE NOT PLACED
HIGHEST IN MEMORY
SEGMENT: segmentname
Meaning

The specified memory segment was not located at the highest address in memory.

Cause

This can only occur when you explicitly request this organization through the
ORDER or ADDRESSES control, or when you implicitly request it by assigning
another segment to the top of memory.

Effect

Since this can only occur by user request, LOC86 continues processing without side
effects.

ERROR 39: NO MEMORY BELOW SEGMENT FOR SPECIFIED SEGMENT
SEGMENT: segmentname
SEGMENT: segmentname
Meaning
In the ORDER control you have requested that the first segment be located below
the second segment. LOC86 found that there is not enough memory to maintain this
order.
Cause

This error can only occur when one of the segments in an ORDER control is
absolute. The absolute segment is not necessarily either of the segments specified in
the command.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action
Modify the order control.

LOC86 Controls and Error Messages G—19

WARNING 40: CANNOT MAINTAIN SPECIFIED ORDERING
SEGMENT: segmentname

Meaning

LOCS86 cannot locate all of the segments in the ORDER control consecutively.

Cause

This is usually caused by specifying absolute segments in the ORDER control or by
specifying the same segments in ORDER and ADDRESSES. The conflict might not
be immediately obvious. For example, the specified segment may be specified in the
ORDER control by its segment name and specified in the ADDRESSES control by
its class name.

Effect

LOC86 continues processing. The print and object files are valid. However, the
requested segment ordering is not maintained.

User Action

Carefully examine your invocation line to find the conflict and relocate the input
module.

ERROR 41: SPECIFIED CLASS OUT OF ORDER

CLASS: class name
Meaning .
The ORDER control and ADDRESSES control for the specified class disagree.

Cause

Either you have assigned an address to the specified class or one of its constituent
segments, or the translator has made one of its constituent segments absolute. In
either case, the ORDER control cannot be realized.

Effect

LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Modify the ADDRESSES control or modify the ORDER control.

G-20 iaPX 86,88 Family Utilities

ERROR 42: SPECIFIED SEGMENT OUT OF ORDER
SEGMENT: segment name
Meaning
The ORDER control and ADDRESSES control for the specified segment disagree.

Cause

Either you have assigned an address to the specified segment or the translator has
made the segment absolute. In either case, the ORDER control cannot be realized.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Modify the ADDRESSES control or modify the ORDER control.

ERROR 43: ADDRESS FOR CLASS SPECIFIED MORE THAN ONCE
CLASS: class name

Cause

This is often caused by a typographical error or some other mechanical error while

entering the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of

the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 44: SEGMENT ADDRESS PREVIOUSLY SPECIFIED IN INPUT
MODULE OR COMMAND LINE
SEGMENT: segment name
CLASS: class name
Cause

Either the specified segment is absolute or it has been listed twice in the same
ADDRESSES control.

Effect
LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line. If the translator has made it an absolute segment,
either use the translator-assigned address or retranslate the segment.

LOC86 Controls and Error Messages G=21

ERROR &45: SEGMENT SPECIFIED MORE THAN ONCE IN ORDER
SEGMENT: segmentname
CLASS: class name

Cause

This error can be caused by either of two errors in the invocation line. You have
simply specified the same segment twice in the ORDER control.

Effect

LOCB86 immodiately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and ORDER control and reinvoke LOC86.

ERROR 46: CLASS SPECIFIED MORE THAN ONCE IN ORDER
CLAS\§: class name

Cause |

You have specified the same class more than once in the same ORDER control.

Effect

LOCB86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 47: SPECIFIED SEGMENT NOT IN SPECIFIED CLASS
SEGMENT: segmentname
CLASS: class name
Cause
This error is usually caused by a typographical error in the arguments to an ORDER
control.
Effect
LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action
Examine the invocation line and reinvoke LOC86 correctly.

G-22 iAPX 86,88 Family Utilities

ERROR 48: INVALID COMMAND LINE

Meaning

LOCS86 has encountered an end-of-file or an 170 error while reading the invocation
line.

Cause

You probably terminated the invocation line in the middle of a control argument.
Most likely you forgot to type the ampersand before you typed the carriage return.

Effect

LOCB86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOCS86 correctly.

WARNING 49: SEGMENT ALIGNMENT NOT COMPATIBLE WITH
ASSIGNED ADDRESS
SEGMENT: segmentname
Meaning
The alignment attribute does not agree with the address specified in the
ADDRESSES control.
Effect
LOC86 ignores the address assignment and treats the segment as any other
relocatable segment.
User Action

If the address that LOC86 assigns is satisfactory, then no action is necessary. Other-
wise, examine the print file and assign an address that will agree with the alignment
attribute.

LOC86 Controls and Error Messages

G-23

ERROR 50: INVALID COMMAND LINE; TOKEN TOO LONG
ERROR IN COMMAND LINE NEAR #:
partial command tail
Meaning

An invocation line ‘‘token’’ is impossibly long. A token is a series of characters that
are not broken by a parenthesis, a comma or a blank (space, carriage-return, line-
feed or tab). Tokens are syntactic units used in invocation line parsing. Depending
on how it is used, a token can be a control word, a symbol name, a segment name, a
filename, etc.

Cause

This is often the result of a typographical error in the invocation line.

Effect

LOCB86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

WARNING 51: REFERENCING LOCATION IS OUTSIDE 64K FRAME OF
REFERENCE
MODULE: module name
ADDRESS: 20-bitaddress
FRAME OF REFERENCE: 20-bitaddress
Meaning

The address of a self-relative reference lies outside of the 64K frame of reference of
the jump or call. This error occurs while locating the module containing the self-
relative instruction.

Cause

This error occurs as a result of misuse of the ORDER or ADDRESSES control.

Effect

LOCS86 continues processing. The print file is valid, but the object file with respect
to the module containing the self-relative reference is not executable.

User Action

Examine the locate map and reinvoke LOC86 modifying your ORDER and
ADDRESSES control to correct the error.

G-24 iAPX 86,88 Family Utilities

WARNING 52: REFERENCED LOCATION OQUTSIDE 64K FRAME OF
REFERENCE
MODULE: module name
REFERENCED LOCATION: 20-bitaddress
FRAME OF REFERENCE: 20-bitaddress
Meaning

The target of a self-relative reference lies outside of the 64K frame of reference of
the jump or call. This error occurs while locating the module containing the target of
a self-relative instruction.

Cause

This error occurs as a result of misuse of the ORDER or ADDRESSES control.

Effect

LOC86 continues processing. The print file is valid, but the object file with respect
to the module containing the self-relative reference is not executable.

User Action

Examine the locate map and reinvoke LOC86 modifying your ORDER and
ADDRESSES control to correct the error.

WARNING 53: CANNOT ALLOCATE CLASS AT SPECIFIED ADDRESS
ADDRESS: 20-bitaddress
CLASS: class name

Meaning

The specified class cannot be located at the address requested. This is the result of a
conflict with another address assignment, or an absolute segment, or an address less
than 200H.

Effect
LOC86 assigns the class to the nearest address that will not cause conflict. LOC86
continues processing, and both the print and object file are valid.

User Action

If the alternate address suits your purpose, then no action is necessary. Otherwise,
examine the locate map and modify your invocation line.

LOCB86 Controls and Error Messages

G-25

ERROR 54: DATA ADDRESS OUTSIDE SEGMENT BOUNDARIES

SEGMENT: segmentname

MODULE: module name
Meaning
One of the data records associated with the specified segment contains an address
outside of the segment’s boundary.
Cause
This error can occur when you assign an address or an order to an absolute segment,
or a size to a segment. Under some circumstances this can be the result of a linkage
or transiation error.
Effect
LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.
User Action
Change the ADDRESSES, ORDER, or SEGSIZE control and relocate.

WARNING 55: UNDEFINABLE SYMBOL ADDRESS
SEGMENT: segmentname
MODULE: module name

Meaning

A local symbol, line number, or public symbol has been found in the specified seg-
ment that is addressed relative to the specified group’s base address. However, the
segment containing the symbol is not within the 64K frame of reference that is
defined for that group.

Cause

This is usually the result of an address assignment error in the invocation line.

Effect

LOCS86 continues processing with no other side effects. The print file and object files
are valid. However, you cannot use the symbols contained in the specified segment.

User Action

Examine the invocation line and reinvoke LOC86.

G-26 iAPX 86,88 Family Utilities

WARNING 56: SEGMENT IN RESERVE SPACE
SEGMENT: segment name
Cause

Either an absolute segment uses the area reserved in the invocation line or you
assigned an address to a segment or class that forces the specified segment to be
located in the reserved area.

Effect

The specified segment is located in the reserved area, and LOCS86 continues process-
ing with no other side effects. Both the print file and object file are usable.

User Action

If the assigned address is acceptable for the segment, no action is necessary.

ERROR 57: INVALID GROUP NAME
ERROR IN COMMAND TAIL NEAR #:

partial command tail.
Meaning
LOC86 was expecting a group name when it found a token that did not correspond
to a valid group name. LOCS86 repeats the invocation line up to the point of the
error.
Cause

This is often caused by a typographical error in the invocation line.

Effect

LOCS86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 58: SPECIFIED GROUP NOT FOUND IN INPUT MODULE
GROUP: group name
Cause

This is often caused by a typographical error in the invocation line.

Effect

LOC86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line to LOC86 and the link map for the input module.
Reinvoke LOC86 correctly.

LOC86 Controls and Error Messages G—27

ERROR 59: GROUP ADDRESS PREVIOUSLY SPECIFIED IN INPUT
MODULE OR COMMAND LINE
GROUP: group name
Cause

Either you gave a single group an address twice in the same ADDRESSES control or
the group already had an address (due to a previous locate).

Effect

LOCB86 immediately terminates processing; all open files are closed. The contents of
the print and object files are undefined.

User Action

Examine the invocation line and either use the previously assigned address or assign
the group one address per ADDRESSES control.

WARNING 60: REFERENCED LOCATION IS NOT WITHIN 32K OF
SPECIFIED ADDRESS
MODULE: module name
REFERENCED LOCATION: 20-bitaddress
FRAME OF REFERENCE: 20-bitaddress

Meaning

An 8089 self-relative reference is not within 32K bytes of its target address.

Cause

Either with the ORDER or ADDRESSES control you have separated the reference
from its target or the 8089 segment is too large.

Effect

LOCB86 leaves the invalid reference and continues processing with no other side
effects. Both the print file and the object file will be valid.

User Action

Examine the invocation line and reinvoke LOC86 correctly.

ERROR 61: OVERLAY ERROR

Meaning
An internal LOC86 error has occurred.

User Action
Contact Intel immediately.

G—-28 iAPX 86,88 Family Utilities

WARNING 62: CS AND IP REGISTERS NOT INITIALIZED

Meaning

This warning occurs when INITCODE is specified and the input register initializa-
tion record does not specify intialization of the 8086 code segment (CS) register and
the 8086 instruction pointer (IP) register.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The values of CS and IP at the beginning of program execution are completely
dependent on the loader of your system.

User Action

Invoke LOC86 with the START control if desired.

WARNING 63: SS AND SP REGISTERS NOT INITIALIZED

Meaning

The INITCODE control was specified, but the register initialization record does not
contain information for initialization of stack segment (SS) and stack pointer (SP)
records.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The values of SS and SP at the beginning of program execution are entirely depen-
dent on the loader of your system.

User Action

If you will need to use the stack, retranslate your code, then relink and relocate.

LOC86 Controls and Error Messages G-29

WARNING 64: DS REGISTER NOT INITIALIZED

Meaning

INITCODE was specified, but the data segment (DS) register initialization record is
incomplete.

Cause

This condition is usually the result of an incomplete END directive in your assembly
language module or a translation error.

Effect

The value of the CS register at program execution is entirely dependent on the
system loader.

User Action

Correct your code if necessary, then reinvoke LINK86 and LOC86.

WARNING 65: SEGMENT ORDER IN ORDER-CONTROL CANNOT BE
MAINTAINED

SEGMENT: segmentname
Meaning
The ADDRESSES and ORDER control specifications for a segment are in conflict
and/or the segment cannot be allocated space in accordance with the ORDER
control.
Effect
The conflicting segment is allocated space after all other segments in the target 8086
memory.
User Action

If desired, reinvoke LOC86, using the appropriate ADDRESSES and ORDER
controls.

G-30 iaPx 86,88 Family Utilities

WARNING 66: START ADDRESS NOT SPECIFIED IN OUTPUT MODULE

Meaning
The CS (code segment) and 1P (instruction pointer) registers are not initialized.

Cause

The input module does not have an explicit start address, and the START control
was not specified.

Effect

The values of these registers upon initial program execution are entirely dependent
on the loader.

User Action

Either reinvoke LOC86 using the START control or relink to include a main
module.

OHB86 Error Messages

The following are descriptions of all OH86 error and warning messages. The
description of each message has up to four parts:

* Meaning—how to interpret the message

® Cause—the usual reason for the error or warning condition

o Effect—the state of OH86 and the object file(s) after the message is issued
e User Action—what you can do to correct the condition

Not all these parts are given for each message. However, parts excluded are self-
explanatory.

Error messages are always fatal, but warning messages are not. In the event of a
warning, read the EFFECT of the warning carefully to determine whether the
resulting code is valid.

Error and warning messages are displayed at the console device.

pathname, PREMATURE END-OF-FILE ENCOUNTERED

Meaning

OHB86 has scanned the entire input file without finding the record that signals the
end of the module.

Cause

There is a transcription error in the specified file.

Effect

OH86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Return to the last step in the program development process that did not generate this
error and relocate, relink, or even retranslate.

H-2 iAaPX 86,88 Family Utilities

pathname, EXPECTED MODULE HEADER NOT FOUND

Meaning

The first record in the input file was not a module header record.

Cause

This is usually caused by specifying an input file that does not contain an 8086 object
module.

Effect

OH86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Check the invocation line; if you specified the input file incorrectly, then reinvoke
OHB86 more carefully. Otherwise, return to the last step in the program development
process and reexecute.

pathname, 1LLEGAL RELOCATION RECORD ENCOUNTERED

Cause

This error occurs whenever you specify a non-absolute 8086 object module as the
input file.

Effect

OHB86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Locate the object module with LOC86 before reinvoking OH86.

pathname, INSUFFICIENT MEMORY TO PROCESS DATA RECORD

Meaning

There is insufficient memory in your system for OH86 to process your input file.

Cause

You are trying to convert a file that is too complex for the available memory in your
system.

Effect

OHS86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

Expand the memory on your system.

LOC86 Controls and Error Messages H=3

pathname, TLLEGAL REGISTER INITIALIZATION RECORD ENCOUNTERED

Cause
Your input module contains a register initialization record.

Effect

OHB86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action
Relocate with INITCODE in effect.

pathname, TLLEGAL OVERLAY INFORMATION ENCOUNTERED

Cause
You attempted to convert a file containing overlay information.

Effect

OHB86 immediately terminates processing and closes all open files. The contents of
the output file are undefined.

User Action

If overlays are necessary, create root and overlay in separate files.

absolute object file formats, A-1
absolute object modules, 1-2
AD, 5-3
address,
in ADDRESSES control, 5-3
in ASSIGN control, 2-4
in INITCODE control, 5-6
in RESERVE control, 5-16
ADDRESSES, 5-3
addressing,
A, 4-2
absolute, 1-4, 2-4
ADD, 4-2
8086, 1-5
relative, 1-4
alignment,
boundaries, 1-8
of segments, 1-7
AR, 2-5
AS, 2-4
ASSIGN, 24
Automating Program Invocation and
Execution, 7-2
available memory, effect of, C-1

BI, 2-6

BIND, 2-6

BOOTSTRAP, 5-4

bound modules (see LTL modules)
BS, 5-4

C, 4-3
class, 8086, 1-9
CLASSES, 5-3, 5-11
class name,
in ADDRESSES control, 5-3
in ORDER control,
LINKS6, 2-16
LOCS6, 5-11
in SEGSIZE control,
LINKS6, 2-24
LOCS86, 5-17
CM, 2-7

Index

COMMENTS,
in OBJECTCONTROLS,
LINKS6, 2-15
LOC8s6, 5-10
in PRINTCONTROLS,
LINKS6, 2-19
LOCS6, 5-13
LINKS86 control, 2-7
LOCS86 control, 5-5
control summary,
CREFS86, E-1
LIB86, F-1
LINKS6, D-1
LOCS86, G-1
CREATE, 4-3
CREFS86,
controls,
PAGELENGTH, 3-3
PAGEWIDTH, 3-4
PRINT, 3-5
TITLE, 3-6
control summary, 3-2
error messages, E-1
in development process, 1-1
input, 3-1
invocation, 3-2
invocation examples,
output, 3-1
print file, 3-7
use of libraries, 1-3
cross-reference listing, 3-7
CS, 5-3, 5-11

D, 4-4
data records, 8086, A-3
debug records,
LINKS6, 2-22
LOCS86, 5-15
DELETE, 4-4
DOS Operating System Information, 7-1

E, 4-5
ENDREC, A-7

Index-2 iAPX 86,88 Family Utilities

error messages,
CREF86, E-1
LIB86, F-1
LINKS86, D-2
LOCS86, G-2
OHS86, H-1
examples,
invocation,
CREF86,
LIBS6,
LINKS86,
LOCS86,
OHS86,
program development,
CREF86,
LIBS86,
LINK86,
LOCS6,
EXIT, 4-5
external references,
cross-reference listing, 3-7
definition of, 1-2
resolution of, 1-3

FASTLOAD, 2-8
FL, 2-8

GR, 5-3
group,
addressing, 1-9
8086, 1-9
group map, 2-29
group name,
in ADDRESSES control, 5-3

in LINK86 ORDER control, 2-16
in LINK86 RENAMEGROUP control,

2-23
GROUPOVERLAYS, 2-9
GROUPS, 5-3

hexadecimal-decimal conversion, B-1

hexadecimal object file format,
conversion to, 6-1
records of,
data, A-13
end of file, A-15
extended address, A-12
start address, A-14

IC,
LINKS6, 2-10
LOCS86, 5-6

INITCODE,
LINKS6, 2-9
LOC86, 5-6

initialization code,
LINKS6, 2-9
LOCS6, 5-6

input list control, 2-21

L, 4-6
LHEADR, A-6
LI,
LINKS6, 2-10
LOCS86, 5-7
LIB86,
commands,
ADD, 4-2
CREATE, 4-3
DELETE, 4-4
EXIT, 4-5
LIST, 4-6
command summary, 4-1, F-1
error messages, F-1
in development process, 1-1
input, 4-1
invocation, 4-1
librarian (see LIB86)
libraries,
adding to, 4-2
creating, 4-3
deleting from, 4-4
listing contents of, 4-6
use of by CREF&86, 1-3
use of by LINKS86, 1-3
line number control,
LINKS6, 2-11
LOC86, 5-7
LINES,
in OBJECTCONTROLS,
LINK86, 2-15
LOCS6, 5-10
in PRINTCONTROLS,
LINKS86, 2-19
LOCS86, 5-13
LINKS86, 2-11
LOC86, 5-7

iAPX 86,88 Family Utilities Index-3

link map, 2-28
linkage (see LINK86)
LINKS6,
and LOCS86, 1-4
controls,
ASSIGN, 2-4
ASSUMEROOT, 2-5
BIND, 2-6
COMMENTS, 2-7
FASTLOAD, 2-8
GROUPOVERLAYS, 2-9
INITCODE, 2-10
LINES, 2-11
MAP, 2-12
MEMPOOL, 2-13
NAME, 2-14
NOBIND, 2-6
NOCOMMENTS, 2-7
NOFASTLOAD, 2-8
NOGROUPOVERLAYS, 2-9
NOLINES, 2-10
NOMAP, 2-12
NOOVERLAY, 2-17
NOPRINT, 2-18
NOPUBLICS, 2-20
NOPURGE, 2-22
NOSYMBOLS, 2-25
NOTYPE, 2-27
OBJECTCONTROLS, 2-15
ORDER, 2-16
OVERLAY, 2-17
PRINT, 2-18
PRINTCONTROLS, 2-19
PUBLICS, 2-20
PUBLICSONLY, 2-21
PURGE, 2-22
RENAMEGROUPS, 2-23
SEGSIZE, 2-24
SYMBOLCOLUMNS, 2-26
SYMBOLS, 2-25
TYPE, 2-27
control summary, 2-2, D-1
error messages, D-2
in development process, 1-1
input, 1-4, 2-1, 2-21
invocation, 2-1
output, 1-4, 2-1

print file, 2-28
segment combination, 1-7
use of libraries, 1-3
LIST, 4-6
load-time-locatable module (see LTL
module)
location (see LOC86)
location algorithm,
for modules with overlays, 5-25
for segments, 5-24
LOCSS,
and LINKS86, 1-4
controls,
ADDRESSES, 5-3
BOOTSTRAP, 5-4
COMMENTS, §5-5
INITCODE, 5-6
LINES, 5-7
MAP, 5-8
NAME, 5-9
NOCOMMENTS, 5-5
NOINITCODE, 5-6
NOLINES, 5-7
NOMAP, 5-8
NOPRINT, 5-12
NOPUBLICS, 5-14
NOPURGE, 5-15
NOSYMBOLS, 5-19
OBJECTCONTROLS, 5-10
ORDER, 5-11
PRINT, 5-12
PRINTCONTROLS, 5-13
PUBLICS, 5-14
PURGE, 5-15
RESERVE, 5-16
SEGSIZE, 5-17
START, 5-18
SYMBOLS, 5-19
SYMBOLCOLUMNS, 5-20
control summary, 5-2, G-1
error messages, G-2
in development process, 1-1
input, 1-4, 5-1
invocation, 2-1
output, 1-4, 5-1
print file, 5-21
LTL controls,

Index-4 iaPX 86,88 Family Utilities

BIND, 2-6

FASTLOAD, 2-8

MEMPOOL, 2-12

ORDER, 2-15

PRINTCONTROLS, 2-18

SEGSIZE, 2-23

SYMBOLCOLUMNS, 2-25
LTL modules, 1-2, 1-4, 1-10

MA,
LINKS6, 2-12
LOC86, 5-8
MAP,
LINKS6, 2-12
LOCS86, 5-8

maximum-size,
in MEMPOOL control, 2-13
in SEGSIZE control, 2-24
memory,
configuration with overlays, 1-10
8086, 1-5
memory map, 5-23
memory requirements controls,
LINK86 MEMPOOL, 2-13
SEGSIZE,
LINKS86, 2-24
LOC86, 5-17
MEMPOOL, 2-13
minimum-size,
in MEMPOOL control, 2-13
in SEGSIZE control, 2-24
MODEND, A-9
module attributes, A-2
module identification, A-2
module name,
in LINK86 NAME control, 2-14
in LOC86 NAME control, 5-9
MP, 2-13

NA,
LINKS86, 2-14
LOC86, 5-9

NAME
LINKS86, 2-14
LOC86, 5-9

naming output module,
LINKS86, 2-14

LOCS86, 5-9
NOBI, 2-6
NOBIND, 2-6
NOCM, 2-7
NOCOMMENTS,
in OBJECTCONTROLS,
LINKS86, 2-15
LOC86, 5-10

in PRINTCONTROLS,
LINKS6, 2-19
LOC86, 5-13
LINKS6, 2-7
LOCB6, 5-5
NOFASTLOAD, 2-8
NOFL, 2-8
NOIC, 5-6
NOINITCODE, 5-6
NOLI,
LINKS6, 2-11
LOC86, 5-7
NOLINES,
in OBJECTCONTROLS,
LINKS6, 2-15
LOCS86, 5-10

in PRINTCONTROLS,
LINKS6, 2-19
LOC86, 5-13

LINKS6, 2-11

LOC8e6, 5-7
NOMA,

LINKSe6, 2-12

LOCS86, 5-8
NOMAP

LINKS86, 2-12

LOC86, 5-8
NOOV, 2-17
NOOVERLAY, 2-17
NOPL,

LINKS6, 2-20

LOCS86, 5-14
NOPR,

LINKS6, 2-18

LOCS86, 5-12
NOPRINT,

LINKS6, 2-18

LOCS86, 5-12
NOPU,

iAPX 86,88 Family Utilities Index-5

LINKS6, 2-22
LOCS86, 5-15
NOPUBLICS,
in OBJECTCONTROLS,
LINKS6, 2-15
LOCS86, 5-10
in PRINTCONTROLS,
LINKSS6, 2-19
LOCS86, 5-13
LINKS6, 2-20
LOCg86, 5-14
NOPURGE,
in OBJECTCONTROLS,
LINKS6, 2-15
LOCS86, 5-10
in PRINTCONTROLS,
LINKS6, 2-19
LOC86, 5-13
LINKS6, 2-22
LOCS86, 5-15
NOSB,
LINKS6, 2-25
LOCS6, 5-19
NOSYMBOLS,
in OBJECTCONTROLS,
LINKS6, 2-15
LOCS86, 5-10
in PRINTCONTROLS,
LINKS6, 2-19
LOC86, 5-13
LINKS6, 2-24
LOCS6, 5-19
NOTY, 2-27
NOTYPE,
in OBJECTCONTROLS, 2-15
in PRINTCONTROLS, 2-19
LINKS6, 2-27

OBJECTCONTROLS,
LINKS6, 2-15
LOCS86, 5-10
object module format, 1-4, A-1
ocC,

LINKSS, 2-15
LOCS86, 5-10
OD,

LINKS6, 2-16

LOCS86, 5-11
offset, 5-18
OH3B6,
error messages, H-1
in development process, 1-1
input, 6-1
invocation, 6-1
output, 6-1
ORDER,
LINKSS6, 2-16
LOCS6, 5-11
oV, 2-17
OVERLAY, 2-17
overlay controls,
ASSUMEROOT, 2-5
OVERLAY, 2-17
overlay, 8086, 1-10
overlay name,
ADDRESSES, 5-3
LINK86 ORDER control, 2-16
LINK86 OVERLAY control, 2-17
SEGSIZE,
LINKS6, 2-24
LOC386, 5-17
overlays and location, 5-25
OVLDEF, A-7

PAGELENGTH, 3-3
PAGEWIDTH, 3-4
paragraph, 5-18
pathname,

in ASSUMEROOT control, 2-5

in LIB86 commands, 4-1

in PRINT control,

LINKS6, 2-18
LOCS86, 5-12

in PUBLICSONLY control, 2-21
PC,

LINKS86, 2-19

LOCS6, 5-13
PEDATA, A-10
performance-memory relationship, C-1
PIC, 1-10
PIDATA, A-10
PL,

CREF86, 3-3

LINKS6, 2-20

Index-6 iAPX 86,88 Family Utilities

LOCSS6, 5-14
PO, 2-21
position-independent code (see PIC)
PR,
CREF86, 3-5
LINKS6, 2-18
LOCS86, 5-12
PRINT,
CREF86, 3-5
LINKS86, 2-18
LOC86, 5-12
PRINTCONTROLS,
LINKS6, 2-19
LOCS6, 5-13
print file,
controls,
CREF86, 3-2
LINKS6, 2-19
LOCS86, 5-13
CREF36,
cross-reference information, 3-8
header, 3-7
module list, 3-8
warnings, 3-7
LINKS86,
error messages, 2-31
group map, 2-29
header, 2-28
link map, 2-12, 2-28
symbol table, 2-30
LOC8e6,
errors and warnings, 5-24
memory map, 5-23
symbol table, 5-21
print file name,
LINK386, 2-18
LOC86, 5-12
program development, 1-1
PU,
LINKS6, 2-22
LOC86, 5-15
PUBLICS,
in LIB86 LIST control, 4-6
in OBJECTCONTROLS,
LINKS6, 2-15
LOC86, 5-10
in PRINTCONTROLS,

LINKS86, 2-19
LOCS86, 5-13
LINKS6, 2-20
LOC86, 5-14
PUBLICSONLY, 2-21
public symbol, 1-2, 5-18
public symbol cross-references, 3-7
public symbol records,
in libraries, 4-6
LINKSS,
PUBLICS/NOPUBLICS, 2-20
PUBLICSONLY, 2-21
LOCS86, 5-14
PURGE,
in OBJECTCONTROLS,
LINKSS®, 2-15
LOC86, 5-10
in PRINTCONTROLS,
LINKS6, 2-19
LOC86, 5-13
LINKS6, 2-22
LOC86, 5-15
PW, 34

record formats,
end, A-7
L-module header, A-6
module end, A-9
overlay definition, A-7
physical enumerated data, A-10
physical iterated data, A-10
register initialization, A-8
R-module header, A-6
sample, A-4
T-module header, A-5
record syntax, A-3
REGINT, A-8
register initialization, 2-10, 5-6, A-8
relocatable object module, 1-2
relocation (see LOCS86)
RENAMEGROUPS, 2-23
RESERVE, 5-16
RG, 2-23
RHEADR, A-6
RS, 5-16

iAPX 86,88 Family Utilities Index-7

SAMREC, A-4
SB,
LINKS86, 2-25
LOCS86, 5-19
SC,
LINKS86, 2-26
LOCS86, 5-20
segment,

alignment, 1-7, 2-29
combining, 1-8

8086, 1-6, A-2

locating, 1-8, 5-24
memory, 1-8, 2-24, 5-17

ordering,
LINKSS6, 2-16
LOCS86, 5-11, 5-24
stack, 1-8

segment addressability, A-2
segment location algorithm,
absolute segments, 5-24

relocatable segments, 5-25
segment ordering, 5-24
segment map, 2-30
segment name,
in ADDRESS control, 5-3
in ORDER control,
LINKS6, 2-16
LOC86, 5-11
in SEGSIZE control,
LINKS86, 2-24
LOC86, 5-17
SEGMENTS, 5-3
SEGSIZE,
LINKS86, 2-24
LOCS8e6, 5-17
size, 5-17
SM, 5-3, 5-11

SS,
LINKS86, 2-24
LOCS86, 5-17
ST, 5-18
START, 5-18
start address, 5-4, 5-18
SYMBOLCOLUMNS,
LINKS86, 2-26
LOCS86, 5-20
SYMBOLS,
in OBJECTCONTROLS,
LINKS, 2-15
LOCS86, 5-10
in PRINTCONTROLS,
LINKS6, 2-19
LOCS6, 5-13
LINKS86, 2-25
LOC86, 5-19
symbol table,
LINKS86, 2-26, 2-30
LOC86, 5-20, 5-21

THEADR, A-5
TITLE, 3-6
TT, 3-6

TY, 2-27
TYPE,

in OBJECTCONTROLS, 2-15
in PRINTCONTROLS, 2-19

LINKS86 control, 2-27
type checking, 2-27

UTILITIES

operating system-specific invocation

examples,

variable name, 2-5

iAPX 86,88 Family Utilities User’s Guide
® for DOS Systems
122395-001

REQUEST FOR READER’S COMMENTS

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi-
cation. If you have any comments on the product that this publication describes, please contact your Intel repre-
sentative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1.

Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications
are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating)

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE _____ ZIPCODE

(COUNTRY)

Please check here if you require a written reply. D

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

DEVELOPMENT TOOLS OPERATION HF2-38
INTEL CORPORATION

5200 NE ELAM YOUNG PARKWAY
HILLSBORO OR 97124-9978

Please fold here and close the card with tape. Do not staple.

Send your problem report and any additional material to
the address printed above.

if you are in the United States and are sending only this
card, postage is prepaid.

If you are sending additional material or if you are outside
the United States, please insert this card and any
enclosures in an envelope. Send the envelope to the
above address, adding ‘‘United States of America” if you
are outside the United States.

Thanks for your comments.

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK

Intel Denmark A/S
Glentevej 61-3rd Floor
dk-2400 Copenhagen

ENGLAND

Intel Corporation (U.K.) LTD.
Piper’'s Way

Swindon, Wiltshire SN3 1RJ

FINLAND

Intel Finland QY
Ruosilante 2
00390 Helsinki

FRANCE

Intel Paris

1 Rue Edison-BP 303

78054 St.-Quentin-en-Yvelines Cedex

ISRAEL

Intel Semiconductors LTD.
Atidim Industrial Park
Neve Sharet

P.O. Box 43202

Tel-Aviv 61430

ITALY

Intel Corporation S.PA.
Milandfiori, Palazzo E/4
20090 Assago (Milano)

Printed in U S.A.

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

NETHERLANDS

Intel Semiconductor (Nederland B.V.)
Alexanderpoort Building

Marten Meesweg 93

3068 Rotterdam

NORWAY

Intel Norway A/S
P.O. Box 92
Hvamveien 4
N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA
28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvaegen 24
S-171 36 Solna

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17

8125 Glattbrugg
CH-8065 Zurich

WEST GERMANY

Intel Semiconductor GmbH
Seidlestrasse 27

D-8000 Muenchen 2

DEVELOPMENT SYSTEMS

