
 _—a RS aes Den re re er er attend ohh oka othe taal ¢ beet 2 [i w Bere Se w fel c bee o Dal © [ef o We tal & Bed © beg 0 Joa © Joel o ted @ Bed o frat @ fant @ Tele © Jig © PE © fied u JEM @ foe o fend a ad @ Jo Bf o fod |
)) ooggoeagonenoonoaroodgaonaonomdboo db oono oo ko Dooooooaoo

9.9.0)/0"0).O50/0 70.8 O00 (0) OG. o.o-o50cn" o-oo 0:0 ooo B08 o° ed oo. 0°O.0 G6 Oo OCn Oo ooocboR
(UME oo ag oo ems 4) ia} ooo0®@ Oo o-0 BaD OO 00RD 0 oo Bp o
AIT oo 0 (ome) (a) oo a} ia) ‘i
na ooo (a) o dl q fj ad is} moo q
\° Qo0o0fF00UD To OTWoo ob eHoonooocoonooooo oe ooo gOoOoaogogaa
he ooeGOC OBO oD ooooboOood oo ee Oooo Oooo ooo oo ooo
42 ooo oD O00 FOOD oOo oo oo Doo ooo Ooo poo ooo oo oO Bo

(a) Boone oPeaosootoooeoeboenoeaboaeboboeaooooo ooo ooo
13} ogoo0000 DOOODODBoOe Doo oooDooep oo ooo oooooOooO

hee Gooa0g00007 00 0070000000000 DH OOOO OoOOoooooooooooo
Ras) aoa pQad-o 19 09 ooo belie © fail ° Jes | 700
Va or 7 eo fa] 1p 0 poo 1oo
1.0 1 oo [oJ i 1°B2r 2 oe roo
A oa t o-oo oo '1ag
Tee] (a) t fo fapers) oo eo}

; Oo: | % Do Tf ro ee a)
bs | 1 fa] |

; , o

DOB OD DOD ODA PAs Ann non hon nA nen en po poo Oo oo 8 oo HDoadoadoOobooOnooOonoOnoooOoaDooob eo oboooooooeo og

NDo9oovdadoaooonooeoodeonAanaobannaoabavaonaooonpoooooopooooo DG Scocoooooo0oooooooooopooooooooooooooooonooOonOoD

@oaeeaonaeaooaeonaooeoooooeoe woe oeooooo obo oe oooodoogoo

a
Oo

a
a

2 fs

5-4 ooo

poe ooag
eee ooo
pee ooo
cies ooo
ee ooo
Hae ooo
Fes ooo
Bn oog
ae ooo
oo ooo

sehr) oao
ee oo0
Boe ooo
oo 4 Jooo 1 ooao
oo@oo00 oo rs) oO DaootDoocooo GD
ca | a a n oooc 00
oo 8 oO Qo ogooo000
do 1 5) Oo eS ooo 0.0
oo 3 Oo oO ooa00
0.0 1 a 3 1 Jodoooa
oo QO fa 1 oc ooo0

-O.o v’oo0.0 oO ia} a is] oo ooa
oo 7.00.0) oo a o ra (a looooaga
oo }o-000 u u Haoce PDN L oO. oOooo00
yo oo on Oo Qood o09000000qgG 00 ooo0o000000.00
oo Doogoos oc fs) (Oe cdooooo0o0o0000
do pmEeoo q, oO oc JOo0qg000000-0
oo (eo) aan 1 oc Joooaoagogn0g a0

2O-0, oO. oY O-O. [a] o-€ oooagqo0ag090 ooo
‘Poova i Poo goog BE oo000900000
Rio § [Se Oo a oc JoOoo00000000
tio oo ww oo Py, Dec: sowrs oO Jo000000000
fdooodoooopoopoobooooooDoOnoD ooo DOoOOoODODOOoOOoODooG
‘Daooobob oD oooao oO Do oOooe eo oD Ooo oo0000000090
oat ota o-o ia oo | Guide o’o 9

|... (Ee : eee: Complete to...
ayo ot ae e oh o ihe : 1o o.0 0 OO000 0800-5

::. ne >: oe - See. IBM Pascal: Programming
‘ioto iain oa o hm a -O2o00000000000000000000o0000
foo st BG oh oi i LooO00 000000000000 00000000 0
@. 0-0 1 ro Qo tebe oooo Opoo0o oop ooooOpoo
hho o allie on meocas 'o overs ice.to an Lev
pec 5 oe oh o ih 2 LOR000 0005000000900 005G 00000008
doo o ciple oh o he : ooo0Do0O80D 000000090 Doo00 000090

fio o i—ai on ° nT > @ For IBM Enhanced Pe onak 22°55
‘oo o (iii ag °° o = oo. go ooooo8 of ooo00o0po000
‘bo oc fijnaladlied io o 2 oo - Computer Pascal pDoooocoopDoOoO
bi oo. calm oa oh 9 eee Mae Cae oa Gate eb ead eae
bo 0 cinemas ioe o i a HouoeogoopPoOoDDoOoooooooonooooooG

WE ooo oo OM oo eee ° @ Features°G ics ‘and°Sound © ° ©
to o ¢iheielliied mao o he o po00000900RDO0FO005000000000o000
Vee oO O09 oma oc % ooo Programming © 2222555005005
ee Bea mao o = HbooconoePoooeBoOnoDooOoooooooooooo
Ao o cia indies io o Z o00000000000;0G00 ooooaoocgoo08
Pe oO oo oO . °° aa) ° ia 0 ° @ Explains Files, -Poiriters, Lists, ° ° ° Wio oc iso Qo oooog oOo oo
doo «ieee mao oh °°°@nd Modules °° °°°°°°°2e2555:8
yo 010 ese oo --@ 8000000070000 000 0000000800
q#ooo0 pooo500eecoCooooDoFoooooeadeeoooooeooeAaooooeooo oo
wooo pDoOooOnopboOoopooOonDoOoOnoMooooeBhbooboonpoobpoeoooooooeGoo
q@ ooo obpogoooooooooDoopooooeooooeodsoeoooeeoonooooo
goo 0 oogoobogooBDoOoogooodDoooooaebootooooooooooooodooo
Jooo ® Bidets ee ee ee ee eee ope
#0 O70 i [fe [=] o A DoOoODoOoOoODoDOoooDODoOoOoOoOooOoooooG
wocooeobbooooooonWoooDoooooookoooeooeaoeooeooooooaaeoooo4o|g
foagooooooooeoooooOoDw oon o be ooooooe ooo oeaeetweooooooooeaooooo
Hino bpoopo noob oo ooo oe Ooo oD Ooo Oooo Oooo Oooo oOo ooo oOo ooo
eg 6 ono uto 0 Oo. bso oco ©) Oo ooo. 0.6-0)0.-0, 0 o oo o-oo o-oo o¢o p-G,070'o DO OvbsD-b o

QOocdaoenanooneonooonoaoonoooooaooanoooobooboonnooogoooaoooo

ogcogonooongn cocoa oeoo Oooo eoaadeadboooooeoeananaeaoonpoeobonodooobo nob oeoo oop oooop oo po boo oo po ta OOF s Dols fie» Gat > © Sy 2 RT 9 FRY o Py o RT feo Bi o eat o Seo eo fied o fa) o bens el o fied @ Jo J os ba to J fete Po do oO cd Oo eo fd | © Pd © Del Bo ed o 2S oe I 9 DO o PA wR w Goal Peet Yc PR Tw le Pel oo tes Te Ne aS Tr ne ye a0 o08 0069 02.0 0-00 00:0 0 0-0 0:0 0:00.00 0°05

PASCAL PRIMER for the IBM® PC
This book takes the beginning Pascal programmer on a fascinat-

ing educational journey through this important IBM PC language.
Pascal is preferred for serious application programs: it is a structured
language, which simplifies the writing and management of large pro-
grams, and it's compiled, which makes it fast. Pascal’s logical syntax
also gives it wide acceptance in the educational community.

The extensive programming examples in this book keep reader
interest high by using the graphics and sound capabilities of the IBM
PC. Experienced computer-book author Michael Pardee takes you
easily and quickly from fundamentals to advanced concepts, includ-
ing file usage, super-arrays, and interfacing Pascal to 8088 assembly
language.

™ @ Michael Pardee
r Michael Pardee is Managing Editor for The Waite Group, a San Rafael,

California corporation specializing in the writing and packaging of personal
computer books. Mr. Pardee, one of the earliest writers in the personal
computer industry, is coauthor, along with Mitchell Waite, of the books
Microcomputer Primer, Your Own Computer, and the best-selling BASIC
Programming Primer. Mr. Pardee has extensive experience in business data
processing and computerized typesetting for the newspaper industry, and is
knowledgeable in several high-level and microprocessor based languages.
Mr. Pardee is also an accomplished musician fluent in the guitar, piano and
organ. His personal interests include sailing and camping.

; 1

n we

ea nae i
| mo . gen) Dee 5 te wu co eat nt 9 ae ne

ae) BIT? A | Foe es We a

hd vO | - die p An cies + ae. “a

, ah . ata? Get ype les
_ 1 i: <7 — 5 pa

vi

7 = “oy
y Aw

a. Ger
7

at +0

ae : as = a at & —- 7

Act oi a ale ge ee

- : “ 54
He ie 7 a hz oo at iene : ic

, . elt -_ :

7 nomen ie ;

a | Garis

— Wwe ee:

« po eee ied

PASCAL
PRUMER

PG
by

Michael Pardee

©
A Plume/Waite Book
New American Library

New York and Scarborough, Ontario

NAL BOOKS ARE AVAILABLE AT QUANTITY DISCOUNTS WHEN USED TO PROMOTE
PRODUCTS OR SERVICES. FOR INFORMATION PLEASE WRITE TO PREMIUM MARKET-
ING DIVISION, NEW AMERICAN LIBRARY, 1633 BROADWAY, NEW YORK, NEW YORK

10019.

Copyright © 1984 by The Waite Group, Inc. All rights reserved. For information address New
American Library.

Several trademarks and/or service marks appear in this book. The companies listed below are the
owners of the trademarks and/or service marks following their names.

International Business Machines Corporation: IBM, IBM PC, IBM Personal Computer, IBM PC XT,
PC-DOS
Microsoft: MS-DOS, MBASIC
Digital Research: CP/M, CP/M-86
MicroPro International Corporation: WordStar
Apple Computer Inc.: Apple
Intel Corporation: Intel
SoftTech Microsystems: UCSD p-System
Epson Corporation: Epson
Atari Inc.: ATARI
Lotus: Lotus 1-2-3
Information Unlimited Software: Easy Writer
ATT Corporation: Bell Laboratories, Unix
ComputerLand
KayPro
Osborne
Xerox Corporation

LIBRARY OF CONGRESS CATALOGING IN PUBLICATION DATA

Pardee, Michael.
Pascal primer for the IBM PC.

“A Plume/Waite book.”
Includes index.
1. IBM Personal Computer—Programming. 2. PASCAL

(Computer program language) I. Title.
QA76.8.12594P27 1984 001.64’24 84-2159
ISBN 0-452-25496-5

PLUME TRADEMARK REG. U.S. PAT. OFE AND FOREIGN COUNTRIES
REGISTERED TRADEMARK—MARCA REGISTRADA
HECHO EN WESTFORD, MASS., U.S.A.

SIGNET, SIGNET CLASSIC, MENTOR, PLUME, MERIDIAN and NAL BOOKS are published in
the United States by New American Library, 1633 Broadway, New York, New York 10019, in Canada by
The New American Library of Canada Limited, 81 Mack Avenue, Scarborough, Ontario MIL 1M8

First Printing, May, 1984

il ose PS 7 OD)

Book and cover design by Dan Cooper

‘Typography by Walker Graphics

PRINTED IN THE UNITED STATES OF AMERICA

Contents
Acknowledgments _ viii

Preface ix

1 The Big Picture
What Is Pascal? 1
What Hardware Is Necessary? 5
What Software Is Necessary? 6
Diskette Organization 8
What Is a Pascal Program? 12
How Is a Program Compiled? 16
Summary 30
Exercises 30

2 Simple Data Types

Declaring Data Elements 31
INTEGER Type 34
WORD Type 41
BYTE Type 43
CHAR Type 43
BOOLEAN Type 46
Enumerated Types 48
Subrange Types 49
REAL Type 50
STRING and LSTRING Types 55
Summary 58
Exercises 58

3 Program Control

Conditional Programming 61
The IF...THEN Statement 62
The CASE Statement 71

Iteration Control Statements 76
The FOR...DO Statement 77
The WHILE...DO Statement 79
The REPEAT...UNTIL Statement 83

Escape Clauses 85
The GOTO Statement 86
The BREAK Statement 86
The RETURN Statement 87
The CYCLE Statement 87

Summary 87
Exercises 87

31

61

4 Structured Data Types 89

The ARRAY Structure 89
STRING and LSTRING 103
SUPER ARRAY Type 109
The RECORD Type 112
Dynamic Allocation of Variables 122
The SET Type 129
Summary 136
Exercises 136

5 Functions and Procedures 139

Function or Procedure 140
Examples Using a Function and Procedure 142
Program Segmenting 148
External Routines 149
ADDRESS Types _ 151
Developing PEEK and POKE for Pascal 152
The Monochrome Display Buffer 160
The Parameters 167
Linking Assembly Routines to Pascal 173
Summary 192
Exercises 192

6 Input and Output with Files 193

What Is a File? 194
File Types 197
File Access Routines 199
File Modes 200
Terminal Mode Files 203
SEQUENTIAL Mode Files 207
DIRECT Mode Files 222
Summary 233
Exercises 233

7 Systems of Programs 235
What Is a System of Programs? 237
PROGRAMs, MODULEs and IMPLEMENTATIONs 238
Attributes 239
PROGRAMs and EXTERNAL MODULEs 240
UNIT 245
The Color Graphics System 254
Pascal Demonstration Programs 272
Summary 279
Exercises 279

Appendix—Hexadecimal Numbering System 281

Index 291

vi Contents

To my Mother

vii

ACKNOWLEDGMENTS

The creation of any book always involves the cooperation of
many people. The author would like to take this opportunity to
give special thanks to Ken McCreery for his many contributions to
this book. Ken provided many of the programming examples for
the book, and was closely involved with its overall development.

Also to be acknowledged is Robert Lafore for his great editing job,

and his patience with the author.

—Michael Pardee

Vili

Preface

“more than a tool; it is a tool maker...”

This phrase from the JBM Personal Computer Pascal manual describes
IBM Pascal perfectly. Because the language is so powerful, it can be
used to create almost any kind of program, including such complex
programming tools as compilers, assemblers, and operating systems.

Pascal was originally created to teach the art of problem-solving
with computers, and it possesses the clear, logical structure that makes

learning it such a valuable experience. Every element of a Pascal program
is specifically defined, and every statement can be annotated with
extensive comments, so a program written in Pascal is much easier to
understand than one written in an interpreted language such as BASIC,

Moreover, Pascal has been extended far beyond its academic
beginnings. It includes versatile general-purpose input and output
capabilities and powerful dynamic memory allocation structures such
as “super-arrays.” (Don’t worry, we'll talk about what this means later.)

In addition, IBM has added many enhancements to IBM Personal
Computer Pascal, so that while it still supports programs written in
standard Pascal, there are many different and exciting things you can do
on your IBM that aren’t possible with other Pascal implementations. The
two-pass compiler optimizes the object code for size and speed, making

stems, and a vast horizon
of other areas. In addition, IBM Pascal is easily “linked” with assembly
language modules, so specialized I/O driver routines can be integrated
into a Pascal program.

This book is written for anyone who wants to learn IBM Personal
Computer Pascal (which we'll call “IBM Pascal” from now on). It will

be useful both for the novice, and for the programmer who is already

familiar with other higher-level languages such as BASIC. However,

the book assumes that the reader has some general knowledge of

programming and computers. 7

Like others in this Plume/Waite series, this book is intended to be

your guide to learning about the IBM Personal Computer, and how

Pascal is implemented in this specific environment. It is not just another
general-purpose Pascal language manual. There are many examples of
Pascal program segments to illustrate the various concepts, all of which

are written to take advantage of the IBM’s unique capabilities. Also
included is a system of routines to provide Pascal with color graphics and
sound capabilities.

We hope you enjoy your voyage into the world of Pascal
programming, and that you find it fascinating and profitable.

The Big Picture

Concepts
Interpreted and compiled languages
Source, Object and Executable files
Required hardware and software
Organizing the diskettes
Sections of a program
Program comments and remarks
Compiling a program
Linking a program
Using DOS Batch files

Keywords
PROGRAM, CONST, TYPE, VAR, VALUE, FUNCTION,
PROCEDURE, BEGIN, END

Were about to begin an adventure: learning how to use the Pascal
programming language for the IBM Personal Computer. It’s going to be
an exciting journey. We'll be exploring each of the major areas of Pascal
in detail. But first, let’s take a look at the big picture. We'll start with
some general information about Pascal and the IBM PC. We'll see what
hardware and software are necessary, and what’s involved in compiling a
Pascal program. Then, we'll present a real program. We'll discuss each of
the program’s major parts to orient you to Pascal programming. Then, in
further chapters, when we explore each area in detail, you'll have an idea

of how they all fit together.

What Is Pascal?

A few years ago, a new programming language appeared on the

computer scene in the United States. Pascal, developed in Switzerland in

2

1970, had found its way west. Similar in many respects to the language
ALGOL, Pascal was developed by Dr. Niklaus Wirth, a professor in
Zurich, as a vehicle for teaching a structured approach to problem
solving.

The first major implementation of Pascal in the US was at the
University of California at San Diego. This version, known as UCSD
Pascal, has been implemented on several different computers. including
the IBM PC. But IBM also has its own version of Pascal. This /BM
Pascal incorporates all of the standard features of Pascal, and includes

many enhancements that are IBM-dependent. This is a book about IBM
Pascal, not UCSD Pascal, or any other version.

Oh yes...the name? The Pascal programming language was named
after Blaise Pascal, a French mathematician, credited with building the

first mechanical computer. It’s a great name for a programming
language, and connotes a certain degree of class that is definitely in
keeping with the nature of the language. Pascalus‘one of the:most»
beautiful’programming languages you'll ever learn. Its logical’structures
‘are’clean andveasystoouse» The data types are powerful and all-inclusive.
Even the listings are pretty.

Interpreted Versus Compiled

difference is this. Jnsananterpreted language likesBASIGA,.the.actual

By “interpreted” we mean that the BASIC interpreter program figures
out what a particular statement means, and converts it into machine

language instructions — those that can be executed directly by the
computer.

ler. ‘The compiler’s job is to generate an object program that can be
linked into an executable program of machine language instructions. Then,
the compiler’s work is finished, at least until changes in the program are
necessary.

Advantages of Interpreted Languages

There are advantages and disadvantages of each type of
programming language-It's:generally.quicker,to.write.a.programinan

Pascal Primer for the IBM PC

anterpreted langwage. This is mainly due to the fact that the program
Statements are resident in the computer during execution. Therefore, it is
possible to:

Enter a program.

Run the program.

Observe the operation.

Make corrections.

Run it again.

In fact, it’s even possible to stop a program in mid-execution, make some

change and then resume execution at the point where it was stopped.
“The major dsadvantage of an interpreted programming language is

interpreted every time before the computer knows what to do. Another
disadvantage is that since the source program is right there in memory
during execution, the nature of its operation cannot be concealed. This
makes it practically impossible to write proprietary programs (those you
want to sell) with an interpreted language.

Advantages of Compiled Languages

~The main advantage of compiled programs 1s that they execute faster.
‘The program statements have already been compiled into actual machine : ie ; co HERIRANERER

found that Pascal executes the same types of operations in about 1/8th_

Another advantage of a compiled language is that its source
programs can be generously documented with comments right in line
with the code. Since the source program is not loaded into the computer
during execution, no consideration need be made for the memory that is
“wasted” on the comments. The comments are not compiled. They are
only printed on the listing that the compiler produces when it generates
the object program.

The major disadvantage of a compiled programming language is that
ee

This is because of the additional steps in compiled program development,

as shown in Figure 1-1. First, we have to input the sovirce statements via a

text editor of some sort. Next, we have to run phase one of the compiler

program. If the compiler detects errors in the source program, the

compilation will not be completed. Instead, error messages will be

inserted in the listing that the compiler produces. The errors must then

be corrected, again using the text editor, and the compilation process

The Big Picture

repeated. When writing a large, complex program, this process might be
repeated many times until the compilation is completed without any
errors. The program must then be linked together and run to check for
additional errors.

Interpreter Compiler

Type in Type in
the the

statements statements

Type in Run Type in
program the program
changes program changes

First phase
compile

Finished Second phase
compile
and link

Run

the
program

Finished

Figure 1-1. Interpreter versus compiler

4 Pascal Primer for the IBM PC

The choice between compiled and interpreted languages really
depends upon the particular programming application. Some
applications are better programmed using an interpreter like BASICA.
This is especially true for “one time” programs that you just want to get
working in a hurry. Other applications will be more suited to a compiled
language, especially those which require fast execution speed.

IBM Pascal Versus UCSD Pascal

We mentioned that UCSD Pascal can be used with the IBM PC. In
general, the actual Pascal data types and statement structures are similar
in IBM Pascal and UCSD Pascal. IBM Pascal and UCSD Pascal support
all of the standard Pascal features. But IBM Pascal also provides
extensions and enhancements to the standard.

The main difference between the two Pascals has to do with the
program development and execution process. UCSD Pascal is a
completely self-contained package, called the p-system. It has its own text
editor, the Pascal compiler; a runtime system that oversees the execution

of the program, and a special files system. It does not use the PC-DOS
operating system.

On the other hand, IBM Pascal can use any text editor (EDLIN®,

WordStar®, or others). The compiled object program is then converted
into an executable form by the linker program. This program is stored on
the disk with the filename extension EXE and can be run simply by
typing the program name at the DOS prompt (A>). IBM Pascal
programs use standard IBM files, and access them using PC-DOS
routines.

What Hardware Is Necessary?

IBM Pascal is designed to operate on an IBM Personal Computer.

The following hardware configuration is necessary to support Pascal.

System Memory of 128K

This is due to the size of

the two Pascal compiler phases. Thesfirst»phasesPAS1yas:over: 80K bytes;
1 This should cause little

trouble since most IBM-PGs are sold with at least this much memory.

The Big Picture

Dual Diskettes

While it is possible to write a Pascal program with only one disk

drive, it becomes quite cumbersome, and is generally not advisable. With

two diskettes, the various programs and files necessary for Pascal can be

more conveniently allocated, as you will see later in this chapter.

Printer

Although not absolutely necessary for programming in Pascal, we
strongly suggest that the system be equipped with a printer. Pascal
programs can become quite large, so it is desirable to be able to print out
a listing of the program to work on it.

What Software Is Necessary?

6

Several software elements are required to program the IBM PC using
Pascal. These are all provided with the IBM DOS, and the Pascal

compiler package. Figure 1-2 is a diagram showing how these elements fit
together. Now we’ll discuss each one of these elements in detail.

Text Editor

We need a text editor to type in our Pascal source program. We used
the WordStar program to create all of the programming examples in this
book, but any other good word processor would do as well. You can also
use IBM’s text editor EDLIN to enter the source programs, although
EDLIN is much more difficult to use than a real word processor.“The
main requirement is that the text editor produce a standard “text” file,
“PROG:PAS*You should also be careful that your word processor does not
insert any non-standard characters in your file. WordStar, for example,
has a “non-document” mode which does not insert “soft” spaces or

carriage returns.

Pascal Compiler

The IBM Pascal system consists of several components which come
with the compiler package when you buy it. There are two phases to the
compiler itself. These compiler phases are actually two distinct programs.
Each one must be executed separately. First, PAS] is used to perform the

Pascal Primer for the IBM PC

Enter
source

statements

Text
editor

PROG.PAS Cescey

Optional

Optional
— oe on oe es eS

os
Optional

Figure 1-2. Elements of the Pascal system

The Big Picture 7

initial compilation and detect errors. If no errors are detected, then PAS2

is executed to complete the compilation.

PASI Scans the source program and generates PASIBEBIN © 02 des :

@PAS2Also reports errors in the source program, and
creates PROG.LST, the listing file.

PAS2
; Also creates

PROG.COD, the optional listing of the object code.

The Pascal Library: PASCAL.LIB

The Pascal library is another file that comes with the compiler
package. It contains all of the standard predeclared functions and
procedures that can be used in a Pascal program. The*library 1s used"by»
thedinkersprograme(described next) during its generation of the
executable program.

The Linker Program

Linking is the final step in the process of converting a source
program written in Pascal into an executable form. The Linker is just
another program that puts it all together. It uses the object file,
PROG.OBJ, created by PAS2 of the compiler, along with the library file,
PASCAL.LIB, to generate PROG.EXE, an executable program. There is

also an optional file, PROG.MAP, that may be produced by the linker.
This is a map of the linked program, showing the actual memory
addresses of various parts of the final program.

The Linker program is part of the standard IBM DOS package, and
is well documented in the DOS manual. Therefore, we will not go into
detail on its operation.

Diskette Organization

If you are using a PC with two double-sided, double-density floppy
disk drives, as we did writing this book, then you will want to consider the
organization of files on the diskettes.

8 Pascal Primer for the IBM PC

Purchasing the Pascal Compiler
When you purchase the Pascal compiler, you will receive three

diskettes along with the manual. They are labeled:

PAS] Pascal compiler (phase 1)

PAS2 Pascal compiler (phase 2)

PASCAL.LIB Pascal library

These are single-sided diskettes, to support the users of PCs with single-
sided drives. Of course, they are also readable by double-sided drives, so
you can load them on your double-sided system.

The first thing to do, as IBM suggests, is to make a working copy of
the IBM supplied diskettes. Then you can put the IBM disks away in
your master archives so that you will always have the original. We used
the DOS utility DISKCOPY to copy each diskette from drive A to drive
B. We haven’t touched the original IBM diskettes since then. They are
safely stored, providing total backup of the Pascal system.

: : ae
D ipiicaies ee akenolataecdiskattemwillalsehessing| :
a ; 8 os PEER RSE ERNE eee the: DISKGOPY

Once you have made copies of the three diskettes, you can go ahead
with the actual system setup. You need to decide how to arrange the
various elements of the Pascal system. Then, you can use the DOS
command COPY to place those elements where you want them.

Typical System Layout

To adequately design a system layout, you must first decide exactly
what you want the system to do. Once these goals are clear, you can
determine your requirements, and the best way to satisfy them.
Depending upon the type of application you are implementing, there will
be some programs and files that you will want to have on-line all of the

time.
For example, in our case, the primary application area for the IBM

PC has been the creation of this book. To that end, we have used a word

processing program, WordStar, to create the manuscript. Since the

book is about Pascal, we have used the PC to create actual examples of

Pascal programs. The source programs for these examples were also

created using the WordStar program. Therefore, we needed to have

WordStar on-line all the time. You will probably want your favorite editor

or word processor available also.

The Big Picture

A>dir
COMMAND COM 4959 5-07-82 12:0Op

WS COM 20480 WordStar

CHKDSK © COM 1720 5-@7-82 12:0p
ASTCLOCK COM 813 9-18-82 Hardware clock rout.

XTALK COM 14336 3:14p Communications prog.

DEBUG = COM 5999 12: 0p
WSMSGS OVR 27264 WordStar

WSOVLY1 OVR 49960 WordStar

FILKQQ INC 5347 File Control Block
FILUQQ INC 1513 interface files.
AUTOEXEC BAT 128

XTALK HLP 13952

IFIGXXXX TXT 646

PASKEY 2816

SAVEIMAG OBJ 342

DRAW OBJ 433

SAVEIMAG EXE 3456

GROUP 384
ANSWER 384

BANDW OBJ 123

COLORM OBJ 124

HIGHRES OBJ 125
PORTIN OBJ 66

PORTOUT OBJ 10

SAVEIMAG ASM 3849.

SETLF EXE 24966

COMPILE BAT 128

IPASXXXX MAN 384

PLOT OBJ 73

30 File(s)

Communications prog.

Pascal predeclared —

ee Wis es eee rs ee t

MONMNMOANNMNNM MH NHMQNMWQQSHrKH Qs “AN POCO KS SS HS 1 O10 CO 1 CO CO OO ~1N © CO

i

A>chkdsk

322560 bytes total disk space
9216 bytes in 2 hidden files

195584 bytes in 31 user files
117760 bytes available on disk

131972 bytes total memory
118672 bytes free

Table 1-1. Directory of system diskette

10. ~=—Paccal Primer for the IRMA PC

The next requirement is the Pascal compiler. You will need both
phases of the compiler, the library file, and the linker program to be on-
line all the time also.

to

DISKCOPY for making backups, and
DEBUG for those “interesting” problems.

Oh yes! One more thing you'll need is some room on the disk to
develop new programs. You'll be surprised by how much disk space is
used in compiling one Pascal program.

As you can see from Tables 1-1 and 1-2, our approach to disk
organization starts with considering the A drive as the system drive, and
the B drive as the Pascal drive. We’ve put all our “system stuff’ on the A
drive. We’ve also located WordStar on the A drive. This leaves quite a bit
of work space on the A drive, as indicated by the CHKDSK program. In
fact, there are several files on our A drive that we will be using later in
this book.

We have put all the Pascal elements on the B drive. Both phases of

A>dir b:
PAS1 EXE <---- Phase One
PASKEY <---- Predeclared
PAS2 EXE <---- Phase Two
PASCAL LIB <---- Library

PASCAL :

LINK EXE Linker

6 File(s)

A>chkdsk b:

322560 bytes total disk space
311296 bytes in 6 user files
11264 bytes available on disk

131072 bytes total memory
118672 bytes free

Table 1-2. Directory of Pascal diskette

The Big Picture

the Pascal compiler, the library, auxiliary files, and the linker program
are all loaded onto one diskette, leaving very little space left over. But
that’s all right, because all of our work in progress will be on the A drive.

Although the system organization described worked well for us, there
are many other possible ways to organize your particular system to meet
your needs. The point is that you must give some thought to the problem
and come up with the best solution for your situation.

So now that we’re organized, let’s get down to the main event.

What Is a Pascal Program?

A Pascal program is a series of declarations and statements that are
compiled into an object file by the Pascal compiler. Certain things are
common to all Pascal programs. These are syntactic things, like the basic
structure of the program, how to indicate a remark within the program,
and so on.

The
intent is to illustrate briefly how the various parts of a Pascal program fit
together. As we progress throughout the book, we will be exploring each
of these parts in detail. For now, just relax and look at the big picture.

Figure 1-3. General Pascal form

[CCC ORI GCC OIRO IGA Kk

GENPAS. TXT General Pascal Forn.

This is the general form of a Pascal program, beginning
with the "Program declaration.

Const

const_name = value;
* * *

* * *

Type
type_name = type_spec;
* x *

* * *

12 Pascal Primer for the IBM PC

Var
var_name,
var_name,
var_name,

: type_name;

Value
var_name :=
* * *

* * *

init_value;

Function Func_name (param) : type_name;
Const
Type

Var

Value
Begin

{ Body of the function }
* * *

* * *

end;

Procedure Proc_name (param : type_name) ;

Const
Type

Var

Value
Begin

{ Body of the procedure }
* * *

{ Body of main program }
* * x

* x *

Figure 1-3. GENPAS. TXT General Pascal form
JOG GGA ORICA AAO IR REA |

The Big Picture 13

Sections of a Pascal Program

section-and.the, executable. sections Sometimes the latter is referred to as the

program body.
Everything is “declared” in Pascal. ‘That’s because the language is

painstakingly thorough about making sure that every aspect of its
process is spelled out. While seeming at first to be a lot of extra work,
this requirement will force you to be a better programmer, and your
programs will be more efficient and contain fewer errors.

Program Declaration
E — eee say

rather than a MODULE or IMPLEMENTATION. (In chapter 7,

“Systems of Programs,” we will discuss MODULEs and
IMPLEMENTATIONSs.) The PROGRAM declaration looks like this:

Program Progname (input, output) ;

This statement establishes the name of the program as “Progname” and
lists the files that it will use. There are two special files in Pascal called

Any program that is going to input from the
keyboard or output to the display screen must specify these two files in its
program declaration. Of course, if your program is not going to use one
or the other, then their names can be removed from the program

declaration.

CONST ant Section

Actually, CONSTants may appear anywhere in the declarative section.
‘ Q We like to

place them all at the very beginning of the declarative section, because
they are often used in subsequent declarations of VARiables (discussed
soon) to specify array sizes and subranges. CONSTant declarations look
like this.

Const

const_name = const_value;

TYPE Section

TYPE section: The types may be simply derivatives of the standard data

14 ~~ Pascal Primer for the IBM PC

types, or completely custom “enumerated” types relevant to the
application at hand.

Once the data type has been declared, it can be used in subsequent
VARiable declarations. Here is the general TYPE declaration:

Type

type_name = type_spec;

VARuable Section

The VARiable section is where any data element that is not'a
“GONS Tant:is:declared. These are the VARiable declarations. Variables
may change values when the program is run. They may be arranged in
any order, although we have a preference here as well. We like to declare
all the variables of a certain data type together. For example, we would
declare all the INTEGER types in a group, then all the CHAR types,
BOOLEAN, REAL and so on. The general form is:

Var

var_name : type;

var_name,
var_name,
var_name_ : type;

VALUE Section

It is in the VALUE section that any initial values are assigned to their
respective VARiables. Thi

zero;orsome other beginning value. This differs from the CONSTant

alues assigned here are only initial values and may be section in that v

i ion. CONSTants, on the other hand, may

not be changed by the program, and will retain the same value
throughout program execution. The VALUE section looks like this.

Value we

var_name := init_value;

Functions and Procedures Section

Any functions and procedures that will be used by the program are

defined in this section. They are not the standard functions and

procedures which come automatically with the Pascal compiler, but .

functions and procedures that are defined here for the sole use of this

program.

darger*one» They can have their own declarative sections following the

The Big Picture

function or procedure declaration statement. Each one also has an
executable section that looks just like that of a program. Later, we'll
devote an entire chapter (chapter 5) to studying functions and
procedures.

Executable Section

The executable section is the pody of the program. It contains all of
the program statements.

Program Remarks

Pascal can be a very “self-documenting” programming language. Not
only are its data types well defined, and its statements logical and clear in
their own right, but it is also possible to include a thorough commentary
on the operation of the program. ‘Vhissssdone»with»comment»statements

which. are.enclosed:in-braces({})“ These remarks are intermixed right
with the program statements, and can even be on the same line. The
compiler simply prints them out on the compilation listing. They do not
occupy memory during execution of the program, the way REM
statements do in an interpreted BASIC program. Comments can be
many lines long: the only requirement is that they begin with a left brace
({) and end with a right brace (}).

How Is a Program Compiled?

Now that we’ve seen all the different elements of a Pascal program in
general, let’s get specific, and look at how we would go about actually
compiling a small program. Remember that there are two phases for the
compiler, plus the linker step at the end.

The Source Program: MAGIC.PAS

For our example, we'll use the Magic Number program. This is a
simple little program that calculates a “magic number” by averaging the
ASCII values for characters in the user’s name. Figure 1-4 is a listing of
the Pascal source statements for the program.

16 Pascal Primer for the IBM PC

Figure 1-4. Magic number program

[EGCG ICSC AICCCR A AIA AR RA IGK

MAGIC. PAS Magic Number Program

This is an introductory Pascal program. After the user
enters his or her name, the program computes a “magic number"
from the ASCII values of the characters in the name.

Program Magic (input,output); { program declaration |

Const

beep = Chr (7); {| beep the speaker

Var

name { name as entered }
als tramg (ois

magic_num, { magic number }
length, { character count for name }
position { position marker in name }

: integer;

Value sere
magic_num := @; { initialize magic number }

eae roa 8 eS ye ve

Main program. Input user's name.

ea
Begin

Repeat
Writeln; ore
Write ('Hello! Please sign in ----> ');
Readln (name) ;

Until name. len > @;

length := Ord (name. len);
For position := 1 to length Do =

magic_num := magic_num + Ord (name[position])

The Big Picture 7

magic_num := magic_num Div length;
Writeln (beep, 'Thanks ', name) ; .
Writeln ('Your magic number 1s ', magic_num) ,

Figure 1-4. MAGIC. PAS Magic number program
FOC SGC AIGA SIC I OIC I A A RAR KK AK AK |

Don’t worry if you don’t understand all the statements in this
program. Our purpose is merely to show an example of the compilation
process. Later we'll begin our discussion of the language itself.

extension™PAS.” Notice the program declaration right at the beginning
after a multiple line comment. Then come the rest of the declarations,

not many for this little program. There are no functions or procedures in
this one, so we move right to the executable section. This starts with the

BEGIN statement, and continues until the END statement.
To illustrate how well Pascal programs can be documented within the

source file, we have included several forms of comments. We also use

comments to provide headings for the different sections of the program.

Compiler Pass One

The first thing we do is to run phase one of the Pascal compiler. This
is the program PAS1, which is resident on the B drive of our system. The
screen below presents an example of running this phase. There are
several options that must be specified, including whether or not to print

the listing files MAGIC.LST and MAGIC.COD.

IBM Personal Computer Pascal Compiler
Version 1.00 (C)Copyright IBM Corp 1981
Source filename [.PAS]: magic <— file created with word processor
Object filename [MAGIC. OBJ]: <— default name
Source listing [NUL.LST]: magic <— optional listing file
Object listing [NUL.COD]: magic <— optional code file
Pass One No Errors Detected.

18 = Pascal Primer for the IBM PC

The Listing File: MAGIC.LST

During phase one of the compilation process, the compiler will
display errors on the screen. Sometimes, if you’re quick enough, you can
see the problem right away. Usually though, it is desirable to print a
listing of the entire compilation, which also includes the error messages.
The listing is not printed during the compilation. Rather, the compiler
creates an ASCII file on the disk with the same name as the program,

but the extension “LST” instead of “PAS.” This file can then be viewed
using the TYPE command, or a word processor. The listing file is
optional, and may be omitted from the compilation process, as we shall
see.

Figure 1-5 is the compiler listing for the Magic Number program.
One nice thing about the compiler listing is that the date and time are
printed at the top of each page. This information can be compared to
the date and time in the disk directory, to verify that the listing

represents the current version of the program. Other than that, we have
not found the listings particularly useful (except for correcting errors).
The numbers on the left side of the listing represent line numbers, which
are useful if you are using EDLIN, or another line-oriented text editor, to

create your Pascal source files.

Figure 1-5. Compiler listing for MAGIC.PAS

CK KR ok kk Kk

Page 1

98-16-83

LOT

JG IC Line# Source Line IBM Personal Computer Pascal Compiler V1. 90
OO il GABE IE EEA OHS EG HOB BEIGE CCAIR II RI IE A AA

20 1 .
2 MAGIC. PAS Magic Number Program
Bie Re te Se eee oo ee oe ee eee eee

3

4 This is an introductory Pascal program. After the user

5 enters his or her name, the program computes a “magic number"

5 from the ASCII values of the characters in the name.

6
Se a i

7

8 |}
20 9 Program Magic (input, output); { program declaration }

19
i ne ae a ee oe

11

The Big Picture 19

20

12 Declarative section.
OS lt a a a a a

13
Lies

1 15 Const
19 16 beep = Chr (7); { beep the speaker }

7

19 18 + Var
10 19 name { name as entered }

10 20 lMistminen(io);
ail

19 22 magic_num, { magic number }
19 29 length, { character count for name }
10 24 position { position marker in name }
10 25 : integer;

26
10 27 Value
1¢ 28 magic_num := Q; { initialize magic number }

oor 5 5
30 0 ---
30
31 Main program. Input user's name.
B20 Haaren rrr er ns eens sss nanan H

32
cart

19 34 Begin
3.)

11 36 Repeat
12 Bu Writeln;
VW? 38 Write ('Hello! Please sign in ----> ');

MAGIC

Page 2

08-16-83
11:07:13

JG IC Line# Source Line IBM Personal Computer Pascal Compiler V1. 0@
12 39 Readln (name) ;

il 40 Until name. len > @;
a1
QQ wn nnn naan anon - o-oo eo = 2 == 5 $+ 2-2 = 2-2 === === +--+
43 Compute and output the magic number.
440 ---
a5q .

11 46 length := Ord (name. len) ;
11 47 For position := 1 to length Do
itl 48 magic_num := magic_num + Ord (name [position]);

49

ia 50 magic_num := magic_num Div length;

Pascal Primer for the IBM PC .

ula 51 Writeln (beep, ‘Thanks ', name);
11 52 Writeln (‘Your magic number is ', magic_num);

53

00 54 ‘End.

Symtab 54 Offset Length Variable
0 24 Return offset, Frame length
2 16 NAME :Array Static

18 2 MAGIC_NUM : Integer Static
Value

20 2 LENGTH : Integer Static
22 2 POSITION :Integer Static

Errors Warns In Pass One

) 0

Figure 1-5. MAGIC. LST Compiler listing for MAGIC. PAS
7 ROOK xk

The Code File: MAGIC.COD

The code file is another optional file that is output by the compiler. It
contains a sort of pseudo assembly language listing of the compiled
program. We have not found this feature that useful, and normally omit
this listing from our compilations. However, for completeness we have
included the code file for our Magic Number program in Figure 1-6.

Figure 1-6. Code listing for MAGIC.PAS

Procedure/Function :

** GO0OO1 PUSH
** 9OOOG2 MOV
** JOGGO4 SUB
k* JOOOO8 JB
** BODOOA CMP
** OOQOOE JA
** 990010 CALE
** $9013 MOV

** $0O015 ADD

** §9G019 LCALL

36:

ei:

loge

** BOOO1E MOV

** 900021 PUSH
** $OOO22 LCALL

MAGIC

BP
BP, SP
BP, QQ06H
$+6
BP, STKHQQ
$+3
14992
SP, BP
BP, OOQAH
INIFQQ

DX, @@OUTFQQ
DX
WTLFQQ

The Big Picture 21

L388:

** 000027 MOY DX, Q@OUTFQQ

** QOOO2ZA PUSH DX

** 00002B MOV DX, 0@1DH

** Q0002E PUSH DX

** QQ0002F MOV DX, @@<const>+48

** 000032 PUSH DX

** 900033 MOV DX, 7FFFH

** 000036 PUSH DX

** 900037 PUSH DX

** 900038 LCALL WTSFQQ
L39:

** Q0003D MOV DX, @@INPFRQ

** 900040 PUSH DX

** 900041 MOV DX, O@@FH

** 000044 PUSH DX

** 000045 MOV DX, @@NAME

** 900048 PUSH DX

** 900049 LCALL RTTFQQ

** QO004E MOV DX, @@INPFQQ

** 900051 PUSH DX

** 900052 LCALL RTLFQQ
L40:

noe

** 900057 MOV DX, NAME

** Q0005B XOR DH, DH

** 00005D CMP DX, 01H

** 000060 JB 5
14:

L46:

** 000062 MOV AX, NAME

** 000065 XOR AH, AH

** 000067 MOV LENGTH, AX
L47:

** QOOOOGA MOV DX, LENGTH

** Q0006E MOV [BP] . FAH, DX

** 900071 CMP [BP] . FAH, 01H

** 900075 JL EY

** 900077 MOV POSITI, 0001H
I8:

L48:

** Q0007D PUSH POSITI

** 000081 XOR DX, DX

** 900083 PUSH Dx

** 900084 MOV DX, QOOFH

** 000087 PUSH Dx

** 900088 LCALL RCIEQQ

** 00008D XCHG AX, DI

** Q00O8E MOV DX, NAME [DI]

22 Pascal Primer for the IBM PC

** §99O92
** 990094
** 999098
** BOOOIA
** GB8OO9D
** QOOO9E

I6:

** GBOOOAL
** BOODA4
** OOOOAS

— ** POBOA8
** BOOOAY
** QOQDAC

Wie

L50:

** QOOOAE
** 0OOOB1
** DOOOB2
** (OOOB8
** OOOOBA
** GBOAOOBD
** JOOOC1

ole

** BAOOCA
** QOGOCT
** JOOOC8
** §POGCB
** BAOOCC
** BOOOCF
** BOOODO
** OOOOD1
** DOOODE
** BAOODYI
** QOOODA
** QYOPODD
** ODOODE
** JOOOE1
** DOOOE2

** BODOFS
** OOOOFB

DH, DH
DX, MAGIC_
$+3
14994
AX, DX
MAGIC_, AX

AX, POSITI
AX
POSITI, AX
AX
AX, [BP] . FAH
18

AX, MAGIC_

LENGTH, FFFFH

MAGIC_, AX

DX, @@OUTFQQ
DX
DX, 00O7H
DX
DX, 7FFFH
DX
DX
WICFQQ
DX, @@OUTFQQ
DX

DX, @@<const>+78

DX
DX, 7FFFH

DX
DX

-WTSFQQ
DX, @@OUTFQQ
Dx
DX, QOOFH

DX, 7FFFH
DX

The Big Picture 23

Iba

L54:

** OOOOFC
** OOOOFD
** 090102
** 000105
** 900106

** 900108
** OOO10E
** 00010F
** 090112
** 990113
** 090116
** 090117
** OOO11A
** 90011B
** QGO11C
** 090121
** 090124
** 990125
** 900129
** 9O912C
** 09012D
** 09012E
** 090133
** 900136
** 909137

** BO913C
** OOO13F
** 900140

14094:

** 099141
14093:

** 990146
14092:

** 00014B
14691:

** 090150
149099:

** 990155

DX
WITFQQ
DX, @@OUTFQQ
DX
WTLFQQ

DX, @@OUTFQQ
DX
DX, 0015H

DX

DX, @@<const>+86

DX

DX, 7FFFH

WTSFQQ

DX, @@OUTF QQ
DX
MAGIC_
DX, 7FFFH

WTIFQQ

DE, [BP]. FCH
BP

Figure 1-6.
7 RRO OO GK ko kk oR dokok kok kk

24

MAGIC. COD Code listing for MAGIC. PAS

Compiler Pass Two

If there were no errors encountered during the first phase of the
Pascal compilation, then we may proceed with the second phase. The

Pascal Primer for the IBM PC

ree Cot 7 a er é |

with the same name as the
source file, except the extension is “OBJ.” It is this object file that is
turned into an executable program file by the linker. The screen below
shows how the second compiler phase looks when executed.

“A>brpas2.

Code Area Size = #@15A (346)

Cons Area Size = #Q06B (107)
Data Area Size = #0@18 (24)

Pass Two No Errors Detected.

As you can see, there really isn’t that much to running the second phase
of the compiler. If the first phase was successful, and there were no. Wee RIE ‘call ;

second phase.
The compiler displays the memory requirements for the program.

These are somewhat deceiving, since there is a large runtime module
that surrounds the actual Pascal program. The final product (the EXE
file produced by the linker) will require over 20K bytes of disk, in
addition to what PAS2 tells you the size of the program is.

The Linker

The linker is the last step in the process of making an executable
program from the Pascal source statements. There are several options
with the linker program that we must specify by answering the prompts.
First of all, we need to specify the name of the OBJ file that has just
been created by the second phase of the compiler. Next, we can accept
the default file name for the executable program by simply pressing

(Enter). A memory map listing is an option here, and we have elected to

print it. Normally, we omit this listing by pressing (Enter), but we'll print

one this time so you can see what it looks like.

Finally, the linker asks if there are libraries to be involved in this

linkage. The linker already knows that it is linking a Pascal program, and

that it must use the library of Pascal routines, PASCAL.LIB. However,

since this library is located on the B drive (at least the way our system Is

set up), and the A drive is currently specified as the default, we must tell

the linker to look for the library on the B drive. The next screen is an

example of running the linker.

The Big Picture

wa>brlink

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 1982

<— file created by PAS2

<— default name

<— optional load map file

<— library is on B drive

Object Modules [. OBJ ammagaes
Run File [{MAGIC. EXE]:

List File [NUL. MAP] Sittagives=
Libraries [. LIB (Gib:

Start Stop Length Name
OOOOOH QG159H Y15AH
QO160H 00485H $326H
00486H $14D2H 194DH
014D4H Q1AAEH %5DBH
Q1ABOH D1ABOH POOH
Q1ABOH Y1B76H YOCTH
Q1B78H 91FQ8H $391H
Q1FGAH 02847H Q93EH
$2848H @38EAH 1A3H
Q38ECH @39DBH QOFGH
Q39DCH $4249H $86EH
0424AH $43BOH 0167H
043B2H %43DFH $%2EH
043E0H 04590H $1B1H
04592H 946B2H %121H
O46B4H 04759H PPAGH
Q4760H 4760H %POOH
Q476OH $4760H OOOOH
Q4760H O495FH $200H
Q4960H $5047H O6E8H
O5950H $578DH %73EH
O5799H Q579CH DOGOH

MAGIC
MISGQQ
FILFQQ_CODE
ORDFQQ_CODE
INTXQQ
ENTXQQ
STRFQQ_CODE
ERREQQ_CODE
FILUQQ_CODE
MISYQQ_CODE
CODCQQ_CODE
PASUQQ_CODE
MISOQQ_CODE
HEAHQQ_CODE
UTLXQQ_CODE
MISHQQ_CODE
HEAP
MEMORY
STACK
DATA
CONST
2? SEG

Program entry point at @1AB: 000@

Pascal Primer for the IBM PC

Figure 1-7. Memory map for MAGIC.PAS

The Map File: MAGIC.MAP

This is the optional listing that can be obtained from the linker. It is a
map of the program, as it will reside in memory during execution. The»
start and stop memory addresses for each of the routines involved with |
the»programeare listed: Also listed is the program entry point. This is where
execution will begin when the program is run. This listing, again, is not
particularly useful, although if you’re interested in the inside structure of
Pascal, you may find it indispensable. The map file is shown in Figure 1-7.

Files Related to the Compilation

There are a number of files that are associated with every
compilation. We have included all of them with the example of the Magic
Number program, so that you would have an understanding of their

nature. Table 1-3 is a directory listing that shows all of the files associated
with compilation and linking of the Magic Number program.

Using a Batch File

As you saw in the previous example, there is quite a bit involved in
taking a Pascal source program all the way through the compilation and
linking process. This is mainly due to the number of options offered by

A>dir magic. *
MAGIC PAS 1920
MAGIC LSTr 4232

MAGIC MAP 1280
MAGIC EXE 24576

MAGIC OBJ 1110

MAGIC COD 4763

6 File(s)

Table 1-3. Files related to compilation

The Big Picture 27

the compiler, and the necessity to enter file names for the object file,

listing file, code file, executable file, and so forth. If you are going to be
doing any amount of Pascal development, then you will want to set up a
DOS batch file to handle some of these options automatically. (If you’re
not familiar with batch files, you can read all about them in the /BM

Personal Computer Disk Operating System manual.)
We have created a batch file called “COMPILE.BAT,” which contains

all of the DOS commands necessary to invoke the compiler phases and
the linker. This file also calls the DOS routine TIME, to get the start and
stop times for the compilation from the system clock. It specifies
automatically which of the optional files should be generated during the
compilation and linking processes. Figure 1-8 is a listing of the batch file.

Ojiaclalidneiinbhinas Gala eailitiablicel\ie\Sacanaiandeiatninublaaeiae iain, se ee

- Then, that name is passed on to the rest of the batch

file. In this way, all we have to type to compile and link a program is:

A>compile progname

time <---- Start time
b:pasl %1.pas %1. obj %1. 1st nul.cod <---- Phase One
b: pas2 <---- Phase Two
b: link %1,%1. exe, nul, b: pascal. lib <---- Linker
time <---- Stop time

Figure 1-8. Batch file for compile and link

28 Pascal Primer for the IBM PC

Jo illustrate this, we will compile the Magic Number program using
the batch file approach. Here is how the screen looks during the
compilation.

A>compile magic ENTER ENTER <— double ENTER for TIME command

A>time

Current time is 12:03:37.66
Enter new time:

ASP™PaSMMABT@™pas Magic Obj Magic let nul™@od™™ <—command line

IBM Personal Computer Pascal Compiler
Version 1.00 (C)Copyright IBM Corp 1981
Pass One No Errors Detected.

@>bapas2® = — command line

Code Area Size = #@15A (346)

Cons Area Size = #@@6B (107)
Data Area Size = #0018 (24)

Pass Two No Errors Detected.

A>brbink»magic, magic. exe, nul, b: pascal. lib =<— command line

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 1982

A>time
Current time 1s 12:905:33.17
Enter new time:

Notice that we have indicated pressing twice after typing the
command to execute the batch file. This is because the first thing that
happens is a call to the DOS routine TIME to get the starting time.
Unfortunately, the TIME routine also expects the user to either enter a

new time, or press (Enter). Since all the keyboard I/O is buffered through
the DOS, it is not necessary to wait for the TIME routine to display the

prompt “Enter new time.”
The command line for the compiler phase one, as shown in the

screen display, specifies that a compiler listing file be created called

MAGIC.LST, but that no code file be created. This is indicated by the

“nul.cod” in the command line.
No parameters are necessary for PAS2.

The Big Picture

The command line for the linker program specifies the name of the

executable file. It also tells the linker not to print a map file. This is done

by the “nul” value following the EXE file name. Finally, we have specified
the Pascal library (located on the B drive) to be used during the linking

process.

Summary

We have now seen a smattering of Pascal. We know the difference
between a compiled language and an interpreted one. We have our
diskettes organized for optimum efficiency, and we know all about source
files (.PAS), object files (OBJ), and executable files (.EXE).

Pascal is a special kind of programming language: one suitable for
quite complex applications. It is not as easy a language to work with as
BASIC, but it has many advantages over BASIC in certain situations.
You'll get used to the compilation process, and the more you use it, the
faster you will become at getting programs working.

qe ent SP EES GOED OSEAN ISS SOT STS EP EE

Exercises

30

1. What are the advantages of using a compiled language such as
IBM Pascal?

2. What are the two principal sections of a Pascal program?

3. Why do programs need to be linked?

Solutions

1. Compiled programs run much faster than interpreted programs.

They can also include more detailed comments since the comments won’t

be part of the final program.

2. The declarative section and the executable section (or program
body) are the main sections of a Pascal program.

3. The object program produced by the compiler (PAS2) must be
combined with portions of the library, PASCAL.LIB, to be executed. This
is done by the linker program.

Pascal Primer for the IBM PC

Simple Data Types
Concepts

Data elements
Declarations
Data types
Type compatibility
Arithmetic expressions
Operators
Boolean operators
Evaluation of an expression
Simple functions

Pascal Keywords
TYPE, CONST, VAR, VALUE, INTEGER, MAXINT, DIV, MOD,
WORD, MAXWORD, BYTE, CHAR, CHR, BOOLEAN, TRUE,
FALSE, REAL, STRING, LSTRING, .LEN, TRUNC, ROUND, FLOAT,
ABS, SQR, SORT, SIN, COS, ARCTAN, EXP, LN, CONCAT

Oe common element of all computer programs, no matter what
language they are written in, is that they process information. Whether it
be the simplest of game programs, or a real “number crunching”

application, there will be some manipulation of data elements. In order to
process data elements, , i i

The number ef bytes that are set aside,
and how they are used, are determined by the TYPE of data element.

As we discuss data types you will also become familiar with the
structure of simple Pascal programs.

31

Declaring Data Elements

The term variable is used in the programming community to describe

the elements of data that will be used in a program. Actually, sometimes

these data elements are not variables, but constants that will never change

throughout the execution of the program. So, “variable” is really a
misnomer, and Pascal (unlike many lesser languages) will have nothing to

do with such imprecision.«[fa,variable-is-really-a;constantthen itis»
declared so in Pascal.

Pascal Is Fussy

Pascal is one of the fussiest programming languages when it comes to
dealing with variables. Many other programming languages (BASIC
especially) are a lot less demanding of precise use of variables. In some

»andstring. BASIC usually differentiates between them by requiring the
programmer to append a dollar sign “$” to the end of the name assigned
to the string variables, as in the BASIC statement:

16 LET A$ = “PROGRAM NAME"

And that’s it! No further specification of data types need be made.
BASIC is very understanding and rather casual in its approach to
program variables and constants.

As we saw in the last chapter, in Pascal all data elements must be
declared in the beginning part of a Pascal program, before any
executable statements appear. True variables are declared within the VAR
section. If there is
to be a constant involved as a data element, then it is declared and
defined in the CONST section. Pascal will not allow a constant to be
altered by the program during execution.

Assignment

Assignment is the process by which a value is “assigned” to a variable
ina VALUE statement or during the course of program execution. This
is written differently in Pascal than in most other programming
languages. In the BASIC example above, we simply used the equal sign
(=) to indicate value assignment.

“assignment” and “equality.” he equal sign means equality in Pascal.

32 Pascal Primer for the IBM PC

This is known as a condition, and is often involved 1 in program control,
which we'll be studying 1 in the next chapter.

For
instance, here’s an assignment statement that assigns the value 10 to the
variable identifier discount.

discount := 1@:

Names in Pascal

IBM Pascal is very flexible in the names or identifiers you may use for
variables. They must start with a letter (A-Z), but may contain up to 30
other letters or digits (0-9).

underscore character (_) in the middle of a variable name to separate
words within the name. The compiler makes no distinction between

upper and lower case characters so that “FIRST_TRY,” “ First_Try,” and

“first_try” all refer to the same variable. These generous rules for names
apply not only to variables, but to constants, and programs, as well.

Pascal Declarations

As we mentioned, Pascal differentiates between several types of
variables that might be used in a program. All of them must be declared
at the beginning of the program before any processing is done. The
declarations are usually grouped together to make the program easier to
read, with these Pascal keywords heading each division.

CONST constant data elements are declared along with their

‘values.

TYPE declares a data type. |

VAR declares a variable.

VALUE sets initial value of a variable.

We will see some of these keywords appear in almost every program in
this book. Pascal makes sure that when a data element is used in a
program, its use is compatible with the variable’s type. This is done at

two levels in IBM Pascal: first by the compiler and then by the runtime

debug options.
There are so many different data types in Pascal that we have divided

our discussion of them into two chapters. In this chapter we will discuss

the variable types INTEGER, REAL, WORD, BYTE, CHAR,

BOOLEAN, STRING, and LSTRING. ‘We call these simple variable

types, as compared to structured variable types whi ch are discussed in

chapter 4.

Simple Data Types 33

s, and can be
used for handling data that consist of a finite set, such as a deck of cards,

the primary colors, days of the week, and so on.
When a programming situation requires that the value a variable

takes on be bounded between some limits during execution, Pascal does a
great job.

‘itsmatural.type. Then, when the program is executed, any operation that

results in a value outside the subrange produces an error.
So, let’s take a look at each of the different variable types. We'll see

how each is declared to the compiler, how it might be used within the
body of a program, and how the variable is actually represented in
memory.

As we discuss TYPEs in this chapter, we’ll also be introducing a
number of different Pascal programs as examples. Thus as you learn
about data types you will also be absorbing the fundamentals of Pascal
programming. Don’t worry if every program statement is not clear to
you. Type in the example programs, compile them (as explained in
chapter 1), and try them out. This will give you a sense of what Pascal is
all about, and eventually all the details will be explained.

Integer Type

34

The integer is probably the most common of data types. It is
encountered in just about every computer programming language in
existence. That’s probably because of the simple way an INTEGER is
usually represented in memory. In the IBM PC, an INTEGER occupies
two consecutive bytes of memory, forming a 16-bit binary value, as shown
in Figure 2-1. The first bit in the most significant byte of the INTEGER

Sign bit=0: Positive
1: Negative

15 bit value

Most Least
significant significant

byte byte

Figure 2-1. Internal representation of INTEGER type

Pascal Primer for the IBM PC

type is used to indicate the arithmetic sign of the INTEGER.

‘0’ — indicates a positive number

‘l’ — indicates a negative number

This means that there are only 15 bits remaining in the INTEGER to
represent its value. Thelargest valuetis'2**15— 1) or 32)767/ Soran»
INTEGER can take on any value from — 32767 to + 32767. Since it may
vary between computers, this limit has a name in Pascal. It is called
MAXINT, and is a predeclared constant. (Note that —32768 is not a valid

INTEGER value in Pascal, as it often is in other languages.)

Age Calculation Program

Here are some examples of the INTEGER declaration and the use of

INTEGER types.

Figure 2-2. Age calculation program in years

fr ATER AAAS SELLE ESA ELAR ED AAESE AREA REESE AAT LREREAR EE EASE ATES EES

AGECALC. PAS Calculate Age in Years.

var
age_in_years,
year_of_birth,
current_year .

: integer;

—— ee eee

Main program. Prompt for and input years.
Sere

Begin
Write ('Enter current year ----> ');
Readln (current_year) ;
Write ('Enter year of birth ---> ');
Readln (year_of_birth) ;

Simple Data Types 35

age_in_years := current_year - year_of_birth,

Writeln ('Age in years is ', age_in_years) ;

Figure 2-2. AGECALC. PAS Age calculation program in years
FOO IOI CAI ACI AC CI A ICA ICI Kk a |

The “Age_calc” program, shown in Figure 2-2, is a “safe” application
of the INTEGER type, in that none of the data elements which are
required in the program will exceed the MAXINT value. For the sake of
simplicity, all three of the variables are declared as INTEGERS with one
VAR statement. In the body of the program, some simple arithmetic
calculates the age in years. Of course we remember to use the
combination symbol (: =) to indicate the assignment of the value of the
expression to the variable “age_in_years.”

Before we go any further in this program, we should explain the
statements that Pascal uses for simple input and output.

WRITELN and WRITE

“BASIG WRITE is like a PRINT statement in BASIC followed by a
semicolon to prevent the automatic carriage return linefeed from taking
place.

Examine the statement

Write ('Enter current year ----> ');

As you can guess, this causes

Enter current year ---->

to be displayed on the screen. Anything. you..want.to display,on the screen.
.

;

. issplacedsn they | . certs El Stree

to.appear-exactly-as in your program, then you enclose it in single quotes
(’), as shown in the example above. This is similar to enclosing strings in
double quotes (“) in BASIC PRINT statements. (We'll discuss strings in
more detail later.)

36 = Pascal Primer for the IBM PC

On the other hand, if what you want to display is the value of some
variable, then don’t enclose it in single quotes. In the statement

Writeln ('Age in years is ', age_in_years);

the program will first display the string “Age in years is” and then display
whatever number it has calculated and assigned to the integer variable
“age_in_years.”

READLN

~READLN (pronounced “Read Line”) reads a number (or in the case

ing
(Enter<tis then assigned to the variable in parentheses following the
READLN.

READLN is a good bit like BASIC’s INPUT statement. In the
program above, the statement

Readln (current_year) ;

Once you have typed in the number and pressed ENTER, the value will
_be assigned to the variable “current_year.” —

We'll see many more examples of WRITE, WRITELN and READLN
as we move along.

Month Age Calculation Program

Figure 2-3 provides an example of calculating age in months.
In this example, the program needs to have more information in order to

be more specific in the age calculation. Two additional INTEGER type
variables are declared to represent both the “current_month” and the “month—
of_birth.” Notice that the expression for calculating the age is a little
more complex. The three arithmetic operations “+”, “—” , and “*” are
all used within the same statement. Also notice the appearance of the
constant “12” in the expression. This is of course the number of months
in a year, a factor we need to calculate age in months. The number 12 is
really just another data element required by the program. Whenut

wonstant#1t’s similar to presenting a string as a literal constant enclosed in

single quotes. The compiler will know what we want here. (Bet you

thought you would have to declare all of your constants too.)

Simple Data Types

Figure 2-3. Age calculation program in months

LARA RAE EER REAR E RE A RENTER EECA ee eee ee Ne ea

MONTHAGE. PAS Calculate Age in Months.

This program calculates age in months, given the .
current month and year, as well as the month and year of birth.

\
j
Program Monthage (input, output) ;

}
Var

age_in_ months,
month_of_birth,
year_of_birth,
current_month,
current_year

: integer:

{

Main program.

ie
Begin

Write ('Enter current month and year ------- i

Readln (current_month, current_year) ;
Write ('Enter month and year of birth ------ pelle
Readln (month_of_birth, year_of_birth) ;

|
Calculate and output age in months.

FES Ee Pee me ee Sateen OUR REL | iety ee eA NORE eR end RAE Ora ey

age_in_months :=
12 * (current_year - year_of_birth) *

(current_month - month_of_birth) ;

Writeln ('You are ', age_in_months, ' months old.'):

End.
{
\

Figure 2-3. MONTHAGE. PAS Age calculation program in months
FECA CIOM ABBE OE CC CCA BCAA ACTA TSAR IACOCCA AEE # |

38 Pascal Primer for the IBM PC

Evaluating an Expression

Let’s take a look at the way that the expression will be evaluated.
Notice the use of parentheses to group the elements of the expression to
control the order of its evaluation. Without parentheses, there is a default
“pecking order” among the arithmetic operators. Functions are evaluated*

subtractions Let’s use some arbitrary values.
Assume:

current_month T=une
current_year := 1983;
month_of_birth aoe
year_of_birth 7= 19455

So, plugging these values into the expression:

age_in. months := 12 * (1983 - 1945) + (5 - 4);
We es aie) Se (by =e)
456 + 1;

aot: i OUT ea

The first set of parentheses cause the subtraction of the years to
occur before the result is multiplied by the constant 12. Once the
grouped subtraction has been performed, the multiplication is given
priority before the remainder of the expression is evaluated. The second
set of parentheses is more for clarity in the program listing than for
evaluation control.

Let’s take one more example. Assume:

month_of_birth

year_of_birth
10;
1982; Hie ali

Now,

age_in_months 12 * (1983 - 1982) + (5 - 19);
We Msretta. =) 10) 2
Ze os

i oll

Exercise in Reality

And, just to make this a realistic book, let’s throw in an error.

Suppose we transposed the digits in the current year when we assigned it

and instead of 1983, entered 9183. Now when we plug in the numbers:

Simple Data Types 39

age-in' months’ <= 12°* (9183"= 1982)" (5 =" 19);

40

12 * 7201 + (5 - 19);
86412 (=o):
86407;

This would result in a runtime error since the value calculated in the

expression exceeds the MAXINT value of 32,767. This is a trivial

example of a feature that makes Pascal very desirable for those
programming applications where it is essential that no errors trickle

through the process without being caught.

Integers Are Versatile

So, the INTEGER variable is useful for many common data
requirements. It has a range large enough to represent simple data
elements. Later, we will see how integers are used in program control
logic. Generally, operations involvingAN TEGERswill-executesfaster than

later in this chapter. That is
because there are actual machine level instructions which add, subtract,

and multiply 16-bit quantities. Thisemeans»thatarithmetic operations.on

INTEGER types will only require one machine instruction, while REAL ‘i Tae

The DIV and MOD Functions

You may have noticed that we have not shown any examples of
INTEGER division yet. That’s because division is not accomplished with
the usual “/” operator. The “/” operator is reserved for REAL types. Tom

v1 Ince this function
produces an INTEGER result, in many cases it will return a truncated
version of the actual quotient. In other words, any “remainder” (or digits
to the right of the decimal place) will be dropped. For example:

20 div 5=4

but,

20 div 3=6

16 mod 2=0

35 mod 10=

lmod: 10 = 1

Pascal Primer for the IBM PC

So, that’s not too hard. In fact, these functions can prove very useful, as
you will see in some of our example programs.

Dollars and Cents Quantities

In some cases, it may be desirable to represent a dollars and cents
amount as an INTEGER to take advantage of the processing speed of
the INTEGER arithmetic. This can be done within limits if you simply
imagine the decimal point between the second and third digits, counting
from the right, and then require that the value of the dollar amount shall
never be greater than 327.67.

Of course, when the dollars and cents amount exceeds 327.67, we are

forced to use the REAL type data element (discussed later in this
chapter). Even with the REAL type, there are limitations. As we shall see,
there is also a “precision” limitation on REAL types of about 6 digits of
accuracy. This will lead to round-off errors, especially when performing
division operations.

WORD Type
Sometimes a programming application will require the use of

numbers larger than MAXINT (32,767) but will not need negative

values for these numbers. In*such a case it would be nice to utilize all 16.

Paap eiem orn -anlzenaaileclalsouelie : ORL ; : SR eRe eae

. Pascal also has a name for this limit. It is a

constant called MAXWORD, and can be used just like MAXINT. Notice

that negative values are not allowed since there is no sign bit.
The WORD type variable is also useful for dealing with 16-bit

quantities of unknown meaning. These could be integers, characters, or

16 bit value

Most Least
significant significant

byte byte

Figure 2-4. Internal representation of WORD type

Simple Data Types

maybe part of a record or array. Treated as WORDs, their 16-bit

configuration will remain undisturbed, and range errors involved with

INTEGER manipulation can be avoided.

Memory Address Manipulation

An example of the use of WORD types is manipulating memory
addresses. A powerful feature of IBM PC Pascal is its ability to deal with
any location, or address, in the segmented memory environment. The
addresses all have two parts, the segment and relative parts. (In*Pascal”

‘ " These are both
represented within the computer as 16-bit unsigned values, making the
WORD type a natural for the application. This provides the Pascal
programmer with the ability to access actual locations anywhere in the
memory of the IBM PC. Thus Pascal programs can interface to the
operating system and other areas of the machine. This ability is similar to
the “PEEK” and “POKE” statements of some BASICS, but much more

versatile.
We will demonstrate this ability in several examples later in this book.

WORD and INTEGER Compatibility

In general, the WORD type variable can be used like an integer.
Arithmetic operations can be performed on WORD variables with the
understanding that a WORD variable can not take on a negative value
since it is treated as a 16-bit unsigned quantity. Thereforey INTEGER.

i - The Pascal
compiler will issue a warning if they are and the resulting evaluation of
the expression will depend on the order of the different variables in the
expression.

INTEGER and WORD types are not “assignment compatible” either.
That means that you can not directly assign one to the other as below.

Program Mixed_words;

Var

signed_value santeger.,
unsigned_value “word,

Begin
signed_value := 500: | Okay }

‘error during PAS1}
End.

42 Pascal Primer for the IBM PC

When compiling this program, the compiler will issue a warning to
the effect that the types are not compatible. In order to use a mixture of
INTEGER and WORD types we must use one of the simple functions in
Pascal. This is the WRD function. It converts any INTEGER (or other
ordinal value) into a WORD type value so that the usage will be
compatible. Taking the example above, we could write the assignment
statement as follows.

unsigned_value := Wrd (signed_value) ;

BYTE Type
Similar to the WORD type is the BYTE type. As you probably

guessed, ityoccupies:one:byte:in: memory as shown in Figure 2-5. This
type can be used in the same way the WORD type is used, except that
the highest value for a byte is 255. The two types are not compatible
without using the WRD function. Occasionally it is useful to declare a
data element as a BYTE, but the compiler will allocate two bytes of
memory for it anyway, because in Pascal, all data elements must be
located at an even address in memory.

CHAR Type
TT on : veliae ;

program. A CHAR value is any of the characters that can be typed on
theskeyboard. This includes all of the regular displayable characters as
well as special control characters. They are different from byte variables
because they can not be used in arithmetic operations.

One Character at a Time

as a response to some other prompt. The Likeit program shown in

Figure 2-6 shows an example.

8 bit value
—————_

Leni eer

Figure 2-5. Internal representation of BYTE type

Simple Data Types

Figure 2-6. Example of CHARacter type

[ko KR RR ok ok kok KK KK aK ok OK A ok oR oR RK kK KK RK RR RK KKK KK KK KK
|

LIKEIT. PAS Example of CHAR type use.

Program Likeit (input, output) ;

Var

SANs ehemenchare

Begin
Write ('Do you like Pascal? '

Readln (answer) ;

If (answer ="wee) or (answer =ealyalee
Then Writeln ('Great! Lets go on')

Else Writeln ('Keep an open mind’);
End.

Figure 2-6. LIKEIT. PAS Example of CHAR type
SER RR ROKK ARK A AR ARR RRR RK KKK RR KARR KK KAKA KKK KE |

nae ‘thi —

i ower case characters are
different from upper case characters, so it is usually advisable for the
program to test for either in order to be “user-friendly.”

Alternate Characters

As you may have noticed, the IBM PC has a whole set of alternate
characters. These produce special symbols on the monochrome display
which can be used to dress up the display of information on the screen.
These characters can be invoked from the keyboard by holding the
key down, entering the ASCII value for the character, and then releasing
the (Alt) key. For example, a horizontal line can be displayed in a
character position on the screen by using 196.

The CHR Function

‘To display these alternate characters directly from a Pascal program
we need only use the simple function CHR. This is similar to the CHR$
function in BASIC, Ittakesany numeric value from_0 to 255.and treats i it

like'a character. So, if you wanted to draw a horizontal line across the
screen, you could use the Pascal program shown in Figure 2-7.

44 Pascal Primer for the IBM PC

Figure 2-7. Example of CHR function

CARRS C CCGG CACTI ICG AGS I A Aik

HORIZONT. PAS Demonstrates the alternate character set.

This program uses the alternate character set and the
CHR function to draw a horizontal line on the screen.

Program Horizont (output) ;

Const
length = 86; { length of line }

Var

hor_line : char;
count : integer;

Define the character and use a FOR...DO structure
to output a line of them on the screen.

Begin
hor_line := Chr (196); { <---- decimal value for char. }

For count := 1 to length Do
Write (hor_line); { display value 80 times }

End.

Figure 2-7. HORIZONT. PAS Example of CHR function
FCCC GCG I CG ACTOS SIRI ACCA AAA #4 }

Since the variable “hor_line” is only one character, we need to use a
loop to display it in each of the 80 character positions on the screen.
eee eA h” CONST: ise os

(=), since this is not the same thing as an assignment statement. Don’t
worry about the FOR...DO loop in this program. We will explore the
whole family of looping statements in chapter, 3.

Simple Data Types 45

BOOLEAN Type
Programming often involves determining whether or not something is

true or false. This is usually in regard to a particular question which can
be answered by “yes” or “no”, such as:

Is the operator’s password correct?

Does the data file exist?

Have all the data been entered?

These questions can also be represented as “true, false” statements as
follows:

Password is correct.

File exists.

End of data reached.

It’s Either FALSE or TRUE

In Pascal,

TRUE* The value of a BOOLEAN variable is generally interpreted
during some conditional part of a program, such as an IF... THEN
statement. Figure 2-8 illustrates the use of a BOOLEAN type.

Figure 2-8. Example of BOOLEAN type

[SCRE OCG GCE CEIS CCC SIGCSE SIGCEG IC ICICI ICRI ICICI A ICCA IR AACA ICR

BOOLEXAM. PAS Example of BOOLEAN usage.

This program illustrates the use of a BOOLEAN type to
act as a "validation flag." Here, two conditions are tested, and
the flag is set accordingly.

number : integer;
flag : boolean;

46 Pascal Primer for the IBM PC

Write (‘Enter a number between @ and 10@ ----> ')-
Readln (number) ;

Start with the flag FALSE, then IF either condition is
true, set the flag TRUE.

lag == false:

If number < @
Then flag := true;

If number > 100
Then flag := true;

If flag

Figure 2-8. BOOLEXAM. PAS Example of BOOLEAN type
FESO CCC ICE CCGG CCC IGAIOOC RIGS ICCC IORI ACI #4 1 }

Logical Conditions

As we shall see in chapter 3, the Boolean variables and the “false,
true” values are at the heart of all the IE.. THEN, WHILE...DO, and

REPEAT...UNTIL structures. There are also several Pascal keywords that
are Boolean by nature. For example, the ODD function returns a»

and*FALSE if itis‘aneven*number. The predeclared BOOLEAN
variables EOF and EOLN are used in conjunction with files. EOF is

TRUE if the end of a file has been reached during processing.

PRUE when'the end of a'lineshas been detected during input from the

keyboard or a file.

Simple Data Types 47

BOOLEAN Operators

There are some special operators that apply to BOOLEAN types. If

you remember your elementary logic, then these will be old friends. They

are AND, OR, and NOT, and here’s how they work:

TRUE AND TRUE= TRUE

TRUE AND FALSE= FALSE

FALSE AND FALSE= FALSE

TRUE OR TRUE=TRUE

TRUE OR FALSE= TRUE

FALSE OR FALSE = FALSE

NOT TRUE= FALSE

NOT FALSE= TRUE

These operators are not to be confused with the “bit logic operators” that
go by the same names and are used for actually manipulating the bits in
a BYTE or WORD type.

Enumerated Types

Type

48

The BOOLEAN variables described above are one form of the

enumerated data type. Enumeration means thatthe *setof values which are

For BOOLEAN types, they are predeclared with the set of values
(FALSE, TRUE).

Abstract Data Types

Other enumerated types can be declared with any kind of abstract
meaning that happens to be useful in the application. For example:

day = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
time_of_day = (morning, noon, night);
meal = (breakfast, lunch, dinner) ;
vegie = (lettuce, carrot, onion, cucumber) ;
fruit = (apple, orange, banana, pineapple) ;

Pascal Primer for the IBM PC

Using abstract data types makes programs much easier to follow and
frees us from worrying if the second day of the week is Monday or
Tuesday.

Subrange Types

Declaring a variable as a subrange type permits the Pascal runtime
debugging options to monitor the value of the variable, and stop
execution of the program if the value is out of range. This is done
automatically in the case of INTEGERS, where the subrange is
predeclared as ((MAXINT..MAXINT).

Suppose that you wanted to use the result of an arithmetic expression
to index some data in a table. The table will contain 100 entries, and the

arithmetic required to produce the entry number is assumed to be
complex, and in INTEGER mode. We want to be sure that the result is

within the allowable entry number range. Soywe-will declare‘a subrange_
by indicating the limits separated by two periods.

Program Chk_entry (input, output).;
Type

entry_number ==1g@" {Valid range}

Var

xX, y; Z tinteger-
result :entry_number; itype defined above}

Begin
readin (x,y,2Z);
result := 12 * x - y div z; {Range checked when running}
writeln (result);

End.

Not much of a program, right? However, assume that something else
would be done with the result after the calculation.

The main thing to notice in this program is the TYPE statement.

Through its use, we can declare any data type in a way that has meaning

for the application at hand. In this example, we declare a data type called »

% . Then we

declare a variable “result” as being of the “entry_number” type. When

this variable is assigned the value obtained from evaluating the

expression, a runtime error will occur if it is outside the specified

subrange.

Simple Data Types 49

REAL Type

50

Thus far in our exploration of variable types we have only been able

to deal with numeric values that are whole numbers within a limited

range. In many computer applications, these restrictions get in the way.

For example, how can we represent represent millions of dollars, or
numbers with fractional parts? In Pascal, we use the REAL type. This _

member, INTEGER and WORD types are

represented as 16-bit values, so arithmetic operations on these variables
can be performed directly by the processor using the internal 16-bit
registers.

Scientific Notation

In order to deal with numbers whose binary representation would
require more than 16 bits, Pascal uses a type of screntific notation. The
way scientific notation works is that a value is expressed as a number
multiplied by ten raised to some power. Any number can be expressed in
this manner. Some examples:

12,462 = 1.2462 * 10+

16:5 Ops LO:

05 = 25.0107

= DOi2)= 2 0.02-5 10}

6699

Pascal uses “e” to indicate the exponent that follows, in this format:

where the mantissa represents the actual numeric value, and the exponent
represents the power of ten to which it is raised. Some more examples,

then, using Pascal notation:

75,005 = 7.5005e4

= (00257 = —2.57e-3

29,650,299.50 = 2.96502995e7

10 = lel

Limitations of REAL Types

As you can see, there is quite a wide range of numbers that can be
represented using REAL type variables. However, there are limits here as
well. As with other types, these limits have to do with the way the variable

Pascal Primer for the IBM PC

is represented in memory. In IBM Pascal,

s shown in Figure 2-9. The
first 3 bytes contain the 24-bit mantissa (including the sign), while the 4th
byte contains an 8-bit binary exponent. Note that this is not the decimal
exponent. is ral

. With this knowledge of the internal
representation of REAL type variables we can determine their range
limits.

The mantissa part will establish the actual numeric composition of
the number, while the exponent part will determine the magnitude. The

largest magnitude, positive or negative, is 2 to the power of 127"The

Arithmetic Operations

Since these REAL types occupy four bytes of memory, they can not
be handled in arithmetic expressions directly by machine instructions.
Instead, arithmetic operations on REAL type variables are performed by
Pascal functions. Executing these functions requires many more machine
instructions than are required for INTEGER types. As a result,
programs which use REAL types will run slower than those which use
INTEGER types. ' en ae

indicate addition, subtraction, multiplication, and division. (Note that the

slash “/” is used to indicate division of REAL types; the DIV function is
used for INTEGER types. Figure 2-10 is a simple program that
computes the area of a circle to illustrate the use of REAL type variables:

Sign of mantissa Sign of exponent

23 bit mantissa 7 bit exponent
————_—_——

Figure 2-9. Internal representation of REAL type

Simple Data Types 51

Figure 2-10. Example of REAL type

LERKHHRA ERR ERE RK RKAE EE CE AEE ERERREEE EERE DEERE ERAT EEE AA EES LEO

CIRCAREA. PAS Calculate the area of a circle.

This program illustrates the use of REAL type data
elements to calculate the area of a circle, given its radius.

{

Declarative division.
Sha ek i sr aan a cS AP a a or ee ae

Const

pi = 3.1416:

Var

area,
radius,

real;

Main program. Input the radius

ee
Begin

Write ('Enter the radius ----- Spe
Readln (radius) ;

Calculate and display the area
Bee ok 2 sae esc Sam er tare eRe ee a es Ot eee ee

area := pi * radius * radius:

Writeln ('The area is ', area);

End.
{
|

Figure 2-10. CIRCAREA. PAS Example of REAL type
CECB IO ROB CIG RCO G EGBG TAHA GIORGI TOR OR IOC IOC |

52 Pascal Primer for the IBM PC

Notice the expression where the area is actually computed. In this
case, the radius is simply multiplied by itself in order to effect the
squaring. There is a REAL function that can be used to do the same
thing. Ita

area := pi * Sqr (radius);

TRUNC, ROUND, and FLOAT Functions

Since there are so many data types in Rascal, it becomes necessary to
convert them from one form to another in order to perform operations
on them and still maintain compatibility. The following three functions
are the most commonly used for conversion.

TRUNC (real_type) returns INTEGER y dropping any»fractional
part |

ROUND (real_type) —_ returns NT EGER rounded tothe next
highest whole number

FLOAT (integer_type) retums*REAL”

There are several other functions which will be discussed throughout
this book as they apply.

Figure 2-11 illustrates how the TRUNC function can be used to
generate random numbers to simulate dice being rolled.

Figure 2-11. Example of TRUNC function

KKK KKK KK KK RRR KKK RK KKK RRR RK RK KK KKK KKK KKK KKK KKK KKK KK KK KKK KKK KK

DICE. PAS Roll the Dice.

This program uses REAL types and the TRUNC function to

produce random values simulating the roll of two dice.

J

Program Dice (input, output) ;

Const
any number between 1 and 100 }
should be between .1 and .9 }

Mbltie = 8. 160452;
a0d = 0.534501; eee

Var

seed ‘real: { random number from @ to 1 }

diel, { two six-sided dice

die2, . |

total { total of the two dice

: integer;

Simple Data Types 53

answer -char; { answer from user }

Roll the dice, and display the results, as long
as the player is willing.

Begin
Write (‘Enter your lucky number ---> ')

readln (seed);
Repeat { until answer = 'n'

seed := seed * mult + add;
seed := seed - Trunc (seed); next seed

diel := Trunc (6 * seed) + 1; { set first die

seed := seed * mult + add;

seed := seed - Trunc (seed); next seed

die2 := Trunc (6 * seed) + 1; { set second die

total := diel + die2; { total of both dice

Writeln (diel, die2, total);

Write ('Roll again ? (y/n) ');
Readln (answer) ;

Untal “(answer =n’) or “answer = ¢N")-

Figure 2-11. DICE. PAS Example of TRUNC function
AR KK OK RK OK KKK KK KR AK KK OK OK OK OK OR OK OK KOR OK KK OK KK OK KK KOK KKK KK ROK Rokk Kok OK KK KK |

This program works by using three assignments that produce a random
die roll each time they are executed. The first is:

seed := seed * mult + add;

and is used to assure us that the value of “seed” will jump around a lot to
give us the random effect. The second statement:

seed := seed - Trunc (seed) ;

54 Pascal Primer for the IBM PC

changes “seed” to a value between zero and one by subtracting off the
whole number portion. Finally, we get an integer from one to six with the
expression:

diel := Trunc (6*seed) + 1

‘Iwo dice are simulated and the results totaled. To change the
sequence of rolls, enter a different lucky number.

Other REAL Functions

There are also several intrinsic functions available in IBM Pascal that
provide a variety of operations. They can be used in a Pascal program
without being declared. They include:

ABS(X) _ the absolute value of X —

SQR(X) the square of X |

SORT(X) the square root of X

SIN(X) _the trigonometric sine of X (where X is in radians)

COS(X) the cosine —

ARCTAN(X) .thesare-tangent
EXP(X) ‘exponential (e to the X power)

LN(X) ~ the natural logarithm of X

There are a host of other REAL functions which are not intrinsic,

and must be declared as external in the Pascal program. Most of these
deal with additional trigonometric functions; a few involve the use of two

REAL arguments. They are amply explained in the IBM manual.

STRING and LSTRING Types
Technically, STRING and LSTRING are structured data types, since

they are composed of more than one data element. In standard Pascal (as
opposed to IBM Pascal), there is no such thing as a string. Instead,
groups of characters that constitute a string must be declared as:

Var
name :packed array[1..25] of char;

6“ ”

However, since IBM PC Pascal includes an extended data type called

Simple Data Types 55

super array, and the types STRING and LSTRING have been
predeclared, we can shorten our variable declaration like this.

Var

name :string(25); {maximum length of 25}

We'll explain more about super arrays in chapter 4. The important
thing here is simply to become familiar with the form of the STRING
type.

We have chosen to discuss STRINGs in this chapter because the
concept is familiar to many BASIC programmers, and it will be useful to
understand it at this point.

Constant and Variable STRINGs

We are used to thinking of a STRING as a group of characters that is
treated as a unit. This might be a STRING constant employed as a
prompt, or it might be a variable STRING that is entered into the

program as data. Figure 2-12 contains an example of both of these
STRING types.

Figure 2-12. Example of STRING type

BER SEELEEE EERE EL ELE REEL EEL ELE LESS eee kk aes

FRIENDLY. PAS Example of STRING use.

This friendly little program uses a STRING to handle
groups of characters.

Program Friendly (input, output) ;

Const
prompt = 'Hey baby, whats your name';

Var

whale,» -)string(25):°
{
|

Heat
Begin

Writeln (prompt) ;

56 Pascal Primer for the IBM PC

Readln (name) ;
Writeln ('Have a nice day ', name):

Figure 2-12. FRIENDLY. PAS Example of STRING type
ER EEE ERB CER EECB CSOT CCE OCG OR GERI TOCCOA IO KK 17 EIR |

Length of STRINGs

In IBM PC Pascal, there is a special type of STRING, called an

LSTRING type. Basically, it is a STRING with its length attached to the
front end. LSTRINGs are predeclared as are STRINGs.

Type

lstring = super packed array[@..n] of char
Var

name :lstring(8@); {maximum length is 84}

The current length of the LSTRING is stored in its first character,

name[(]. This length will only occupy one byte of memory, and therefore
limits the length of an LSTRING type to 255 characters. The length of
an LSTRING type can also be determined by using the notation:

name. LEN

the result of this is a BYTE type variable containing the character count.
The recipient variable should therefore be of type BYTE, to be

compatible. We will be using several examples of the .LEN notation in
chapter 4, where we will show more examples that use both STRING and
LSTRING.

One commonly used function for LSTRINGs is CONCAT which
combines two strings into one long one.

Var ,
first_name, last_name : lstring (29) ;
full_name_ : lstring (49),

Begin
last_name := concat (last_name,',');
fullname := concat (last_name, first_name) ;

The two assignments above append a comma to the end of the last name,

then combine the names in the order they might appear in the telephone

book.

Simple Data Types 57

Summary

This concludes our discussion of Pascal’s simple data types,
expressions and functions. These provide the building blocks for most
programs. We will see their use throughout the book, in every

programming example. If you’re not sure you’ve got it all, maybe a quick
review is in order. Table 2-1 provides a quick overview.

Table 2-1. Simple data types

Simple Data Types

Type Examples Range of Values

INTEGER 1200 — MAXINT...MAXINT
—33 (32767...32767)

WORD 33000 0...MAXWORD
54321 (0265535)

BYTE 65 0.255

CHAR ‘A’ CHR(0)...CHR(255)

BOOLEAN true true, false

Enumerated (red, blue, green) programmer's choice
(Sun, Mon, Tue, Wed, Thu, Fri, Sat)

Subrange 1...10 Any portion of the
Mon...Fri above ranges

REAL 3.14159 +/—1.701412e38
—0.003

STRING ‘George Washington’ up to 32766 characters

LSTRING up to 255 characters

Don’t worry too much if every detail isn’t clear. Press on to the next
chapter, because there will be many more examples of these simple data
types throughout the book.

CSS SSNS

Exercises

1. What are variables?

2. What is the difference between INTEGER and REAL variables?
3. How many Boolean values are there? How many CHARacters

values?

58 ~ Pascal Primer for the IBM PC

4. What would be the result of the following expressions:
aio"?
b) (7 div 4)—1
c) Round (8.0 / 3.0)

d) 7.3—Trune (7.3)

e) (3=5)

Solutions

1. Variables are the data elements used by a program. They represent
a portion of memory set aside to hold various values while the program is
running.

2. INTEGER variables are only 2 bytes (16 bits) long and execute
much faster than REAL variables, but they have a limited range and can
not contain a fraction. REAL variables are 4 bytes (32 bits) long and

require more time for arithmetic than INTEGER variables, but they

cover a much larger range of values, including numbers with fractional
parts.

3. BOOLEAN: 2 values (true, false)

CHAR: 256 values (CHR(0)..CHR(255))

4.a) 13

b) 0

C3

d) 0.3

e) false

Simple Data Types 59

i :
4 7 c (45 Coe vs ¢°.ig a ot n

iset sausis SV 4h A (Rs BR. +e ‘tes wag

g ve : ag =) rte 7 7

_ a
t+ rot A 0" Tish SL. i ek SB aa Y i+

Vg ais 7 ‘ “ am aL Yau: | ul . AL 7 Lf & spel a om i} ie

i oe ie Ss : af ™ \ 2D ie 7 A a us 7 Tes bh hs ae 7 r “

s ® % a= ~ : 2 : ae 2 eae ; onde =H ey ag site? reer . ne) ‘. ae Sw lervcry. rna Netti hia We iY vont char
= wee e Ss ; a

. a aii -ovlar & ‘Y ASG 7
V 4! need Aves A Asi Sri Fa ase) Se om

-

74 ‘*

is
Lo =

2
Program Control

Concepts
Decision-making
Conditional Programming
Relational Operators
Error Flags
Compound Statements
Iteration and Loops
Repetitive Operations
Escape Clauses

Keywords
IF... THEN...ELSE, CASE, OTHERWISE, FOR...DO, WHILE...DO,
REPEAT...UNTIL, GOTO, BREAK, CYCLE, RETURN

e have learned how Pascal distinguishes among many different
types of data. There seems to be a Pascal data type for just about any
kind of application you can imagine. But what good 1s all this data
capability if there isn’t a way to use it, interactively? A program that says
“Hey baby...” every time it executes (as in the previous chapter) is really
nothing more than a glorified answering machine, regurgitating its
message no matter who calls. What we need is an answering machine
that can modify its message depending upon who’s calling. Then we
would have an “intelligent machine,” one that makes decisions.

Conditional Programming

The real key to the computer's decision-making power is that no
matter how complex the facts might be, they can all be broken down into

61

62

a number of simple decisions. These decisions are so simple that they can

be dealt with as “black and white,” “yes or no,” “true or false” issues.
There will never be the “shade of grey” which we as humans must

contend with.
“To be, or not to be — that is the question.” In a nutshell, that’s just

how the computer views the world. Either a condition exists, or it does
not, and decisions can be made upon that premise. In the following
sections, we will discuss how the computer analyzes the facts given to It.

The IF... THEN Statement

In almost every programming language the primary mechanism for
dealing with decisions is the IF... THEN statement. Simply stated, it
indicates that

IF (some condition exists) THEN (do something)

Of course, there are a few variations, but that’s the main theme. If the

condition exists, then the program will do the “something” following the
THEN keyword. If it does not exist, then the “something” will not be
done. The statement always works the same way no matter how many
times the program is executed.

In Pascal, we can add another phrase to the statement.

IF (some condition exists)

THEN (do something)

ELSE (do some other thing)

This scheme looks like a fork in the road. But the program will never
suffer the indecision Robert Frost had with “The Road Not Taken.” This
is because the choice is implicit in the conditions that lead to the fork.
The program can only take one path: the correct one. (That is, assuming
the program has been written correctly.)

The Condition Clause

There are many ways of expressing the condition that will determine
the outcome of the IF... THEN statement. The most common is to state
some mathematic relationship and make the decision based upon
whether the relationship is true.or false. An example we can all relate to
is:

IF (checking balance equals zero)

THEN (stop writing checks)

ELSE (live it up)

Pascal Primer for the IBM PC

The expression that directly follows the IF part of the statement is
called the condition clause. It may take several forms, but will always be
evaluated as a Boolean expression; that is, the condition clause will
always evaluate to TRUE or FALSE.

Evaluating an arithmetic relationship as the condition clause involves
the use of relational operators.

= equality

< less than

> greater than

<= less than or equal

>= greater than or equal

<> not equal

Here are some examples to give a general idea:

check_bal = 0 TRUE Zero,
FALSE if positive or negative

check_bal < 0 TRUE if negative,
FALSE if zero or positive

check_bal <= 100.00 ‘TRUE if 100.00 or less,

FALSE if over 100.00.

The arithmetic appearing in the condition clause may be quite
complex, involving different data types (as long as compatibility rules are
followed), arithmetic operators, and functions. The main thing to
remember is that the condition clause must eventually boil down to a
Boolean TRUE or FALSE. Here are some more complex condition
clauses:

SQRT (SQR (Side_a) + SQR (Side_b)) < min_hypot
height * length * width > max_volume
SQR (SQRT (number)) <> number
(a= bi +c) =— (di +e 421)

The foregoing examples all had to do with numeric data. We can also use

CHARacter type data in the condition clause of an IF statement. This ts

often useful when interpreting the answers to prompts such as:

Write ('Continue Y/N ');

Read (answer) ;
IF answer = 'Y' THEN...

Program Control 63

Something rather interesting about this kind of decision-making is
that often the decision can be approached from either side of TRUE or

FALSE. For example, the previous code segment would produce similar

results if written:

Write ('Continue Y/N ');

Read (answer) ;
IF answer <> 'N' THEN...

Here, instead of looking for the answer to be equal to “Y,” we are
checking to see that it is not “N.” This approach, while functional, leaves
some loopholes for errors. It assumes that since the answer is not “N”
that a “Y” response is implied. The former approach demands an
affirmative response; it is generally safer since it does not make
assumptions. We’ll discuss this again later in this chapter.

Using a Flag for Validation

Since the condition clause of the IF statement breaks down to a
Boolean TRUE or FALSE value during execution, it is possible to use a
BOOLEAN type data element as the condition clause, rather than a
relational expression. This is not usually necessary unless there are
several factors influencing the condition at different times during
program execution. In such cases, a flag may be used as shown in Figure

ake

Figure 3-1. Example of IF..THEN statement

[RRR RER RRR E RRR ER EEE HR RE RRR EHH KEE E RRR RR ER ERR R RARE EE EEE EEE EEE

VALIDATE. PAS Using an error flag.

This program demonstrates how an error flag may be
set as a result of a variety of validation testing.

Program Validate (input, output) ;

Var

Teme oem re : integer;
error_f lag : boolean;

we a a a a a a a a a a a a ne a a aw a a a a ee ee ee ee ee ee ee ee

error_flag := false;
Writeln ('Enter 4 positive integers');
Readln (a, b, c, qd);

64 Pascal Primer for the IBM PC

Test each integer and set the flag if any one is
less than or equal to zero.

If a <= @ then error_flag := true
If b <= @ then error_flag := true.
If c <= 9 then error_flag := true
If d <= 9 then error_flag := true

Figure 3-1. . VALIDATE. PAS Example of IF...THEN statement
AK RR RR EK RK KK ROK RR ROKK RRR RR KKK KKK KK KKK KK KK KK |

J

In this example, we initialize the BOOLEAN type variable “error
flag” with the value FALSE, since no error exists at the beginning of the
program. Then, the program asks that four positive integers be entered.

In a series of four IF... THEN statements, each of the four values input is

checked to make sure it is positive.
If any one of the variables 1s less than or equal to (< =) zero then “error

flag” is assigned a TRUE value. Finally, “error_flag” itself is used as the
condition clause of an IE..THEN statement. A TRUE value will cause
the WRITELN following the THEN to be executed and produce an
error message. This is called the “true statement.” A value of FALSE
would result in the program ending without the error message being
printed.

The False Statement

There is one more option to the IF statement: the “false statement.”

This is the statement that will be executed if the result of evaluating the

condition clause is FALSE. In the last example, the FALSE statement was

implied to end the program. This is called falling through an IF

statement, since there is no specified statement to be executed if the

result is FALSE.

Program Control 65

We specify a false statement by adding the Pascal keyword ELSE
followed by the false statement. For the previous example, we could

change that last IF statement as follows:

If error_flag
Then Writeln ('Error in data')
Else Writeln ('Thanks for doing it right’);

Variations

Have you ever heard the expression “there’s more than one way to
skin a cat”? As a cat lover, I have always somewhat resented it, but the
idea is still valid. IF there ever was a case when this was true, THEN it
applies to the IF... THEN statement! There are so many permutations of
this statement that if 10 programmers had been commissioned to write
the example program above, there would be 10 different approaches
used.

Pascal allows compound expressions to be used as the condition clause.
Each part of the compound expression is evaluated for TRUE or FALSE
and the rules of logic described earlier are used to yield the compound
result. Io accomplish this, the Boolean operators AND, OR, NOT are
used. With this approach, we can perform the value testing in the above
example as follows:

hi a AGO
(pe<=30)\) or

(e <=.0)\, vor.
(di <=")

Then Writeln ('Error in data')
Else Writeln ('Thanks for doing it right');

Here, we have composed one IF statement that checks all four of the

input variables, one at a time. The resulting TRUE or FALSE values

from each test are logically tied by ORs to obtain the final value of the
condition clause. Remember how the logical OR works? If any argument
is TRUE, then the entire expression evaluates TRUE.

Notice that each relational test is enclosed within parentheses. This is
to make sure that the compiler understands what we want. To illustrate,
let’s just write part of the statement a little differently.

[tere ONO mn)

Then...

66 Pascal Primer for the IBM PC

Without the parentheses, the compiler would interpret the statement as:

Live <= 10) Obyby <= 20
Then. ..

This is because the arguments for the OR operation are assumed to be
the immediately adjacent expression terms, one on each side of the word
OR. Of course, this assumption makes the rest of the condition clause
nonsensical, and the compiler would flag the statement as an error.

Both Sides of the Fence

Let’s look at an interesting phenomenon surrounding the IF

statement. Remember that we can approach a decision from either the
TRUE side or the FALSE side. In the example above, we have been

looking at the FALSE side. That is, the four values that are input are
supposed to all be positive integers. We are checking to see if any one of

them is not positive, and making the decision on that basis. We can also

use the TTRUE approach, and check to see that each value is in fact

positive.

tir (a> ¢) and

(o > 0) and
(c > @) and

(d > @)
Then Writeln('Thanks for doing it right')
Else Writeln('Error in data’);

Notice how this approach turned the whole statement inside out. The

relational operator is now “>” (greater than); the terms in the condition

clause are tied by ANDs instead of ORs, and the two messages have
exchanged places. Remember how the logical AND works? If any one of
the terms is FALSE then the entire condition clause is FALSE.

Compound TRUE and FALSE Statements

The TRUE and FALSE statement parts of the IF statement can be
compound just as the conditional part can. That means that several

program statements can be inserted as the TRUE or FALSE statement.

Program Control

There are two methods for accomplishing this in IBM Pascal. One way 1s

to group the elements of the compound statement using brackets [].

If (condition clause)
Then | ‘begin true}

(true statement #1);

(true statement #2) ;
* * *

* * *

} ‘end true}

Else [{begin false}
(false statement #1) ;

(false statement #2) ;
* * *

* * *

li ‘end false}

The second method, using BEGIN and END, is more traditional Pascal.

If (condition clause)
Then begin

(true statement #1);

(true statement #2) ;

end

Else begin
(false statement #1) ;
(false statement #2) ;
end:

Nested IF...THEN Statements

Since we can hang any group of Pascal statements on the true or false
“hook” of a condition clause, why not include another IF statement there
as well? Here's where it starts to get complicated, and you must be very
clear about your program design before you begin. This technique is
called the nested IF statement, and it looks like this:

If (condition clause #1)
then If (condition clause #2)

then (true statement #2)
else (false statement #2)

else If (condition clause #3)

then (true statement #3)
else (false statement #3):

68 Pascal Primer for the IBM PC

This example uses only two levels of nesting. You can see that without too
much more code, an entire program could be written using one
IF... THEN...ELSE statement. Figure 3-2 illustrates the use of nested
IF... THEN statements in an updated version of the old “guess the
number” game. You pick a number and then press to start the
program guessing. It uses the binary search technique to home in on the
number. Depending upon how you answer the “high or low” question (be
honest), the program will shrink the guessing range, and guess again.
Notice the nested IF... THEN statement that determines which way to
adjust the range. (We'll explain the REPEAT...UNTIL structure later in
this chapter.)

Figure 3-2. Example of nested IF statements

ER RRR AT ASSES EE ER EEE E ES TATE RER EERE ES LEAL REAR EAL AEE

GUESSER. PAS Program guesses the number.

Choose a number. The program will make a guess. Tell —
the program if its guess was high or low, and it will guess again
until it finds the correct number.

Program Guesser (input, output) ;

Const :

highest = 1000; | highest possible guess \

Type

gssrng = 1.. highest; { range of possible guesses }

Var
high, ee:

low, { limits after questions }

guess { guess of number |

- gssrng;

answer: char; { answer to questions |

FE ye ee alli Fahy li darian a ee # SRT IPA

; Main program. Prompt and start with ENTER-key.

ie
Begin

Writeln ('Pick a number between 1 and', highest);

Write ('Press Enter when ready’);

ReadIn;

Program Control 69

oy) = ale .
high := highest; { starting range \

Stay inside the REPEAT...UNTIL structure until the

number is guessed correctly.

Repeat { until number is guessed |

guess := low + (high - low) Div 2; { middle of range }

Repeat
Write (Es > -suess, “high, low, or ‘correet/= is
Readln (answer) ;

Until (answer = 'h') or
(answer
(answer

If answer <> 'c'
Then If answer = 'h'

Then high := guess - 1 { too high
Else low := guess + 1; { too low

Until answer = 'c'; { keep guessing until right ;

End. { guesser }

Figure 3-2. GUESSER. PAS Example of nested IF statements
PRE SE RE EE RR eR IE SE eS A PR IE oto ee RR RO

As you continue to learn Pascal, and write your own programs, you
will notice the inevitable use of the IF statement. There are hardly any
applications of computer programming that do not involve decision-
making of this nature.

The IF concept gives a program the semblance of intelligence; with
it, a program appears to be aware of events that occur within its realm
and able to change its behavior accordingly.

70 = Pascal Primer for the IBM PC

The CASE Statement

The CASE statement is another quite common statement in
programming languages. In BASIC, it is known as ON...GOTO. In
Fortran, it is called an “indexed GO TO.” It has a nicely structured form
in Pascal, but is basically the same as other conditional programming
concepts. The CASE statement is like an IF statement that can have more
than the two paths TRUE and FALSE. In fact, you can build as many

paths as you need. Here is the general form of the CASE statement.

Case (expression) of
(index #1): (statement #1);
(index #2): (statement #2);

(index #3): (statement #3) ;
* *

* *

* *

(index #n): (statement #n);

Otherwise
(exception statements) ;

end;

The CASE Index and Constants

When the CASE statement is executed, the case “expression” will be
evaluated to become the case “index.” This index value is then compared

to each of the index values listed. These are called the case constants.

Each case constant is associated with a statement (notice the colon “:”

between them). The statement will be executed only if the current value
of the case index is equal to its case constant. This one-to-one

relationship is essential to the correct operation of the program structure.
Obviously, we can’t have the same case constant associated with two

different statements. The Pascal compiler will detect this as an error.

The CASE Exception

If the evaluation of the case index yields a value that is not in the list

of case constants, the “exception statements” following the OTHERWISE

keyword are executed. This is an optional part of the CASE statement

and may be omitted without causing a compile error. However, a stray

case index will cause an error when the program is run. It’s always good

programming technique to provide some path to take when the

anticipated structure fails.

Program Control

Example of a CASE Statement

The CASE statement provides an efficient way to program a menu of
processes. Each process is associated with a case constant, so that the
value of the case index will determine which of the them will be
executed. Figure 3-3 illustrates how the CASE statement can be used as a
menu.

Figure 3-3. The CASE statement as a menu

GEARS E AS CORE EAC AGC ICICI CACC ACA ACACIA RA RRA RAR A A A

CASEMENU. PAS Example of CASE Statement as a Menu.

This program uses a CASE statement as the primary
structure in driving a menu program.

Program Casemenu (input, output) ;

Var

filename,
order_no,
report_date,
util_name,

: string (8) ;

answer Henan:

{

Main program. Display the menu, and input selection.

lan
Begin

Repeat
Writeln;
Writeln ('***** Main System Menu *****') ;
Writeln;
Writeln ('File Maintenance Pi
Weateln (Order Entry: 4... avn couse:
Writeln ('Sales Analysis ep.
Writeln ('Utility Programs re
Writeln;

Write (‘Enter selection ------- Bot)

Readln (answer) ;

72 Pascal Primer for the IBM PC

}
Case answer of

Isp tle [

Write (‘Enter file name ------- y,)
Readln (filename) ;

bs
roe [

Write ('Enter order number ----> '):
Readln (order_no) ;

ike
Tsgy Wie [

Write ('Enter report date ----- Sets
Readln (report_date) ;

Ie
Vay [

Write ('Which utility? -------- Se Ne
Readin (util_name) ;

is
{

The exception clause.

}
Otherwise

Writeln (‘Invalid selection');
end; {case}

{

Continue option.

. |
Write (‘Another selection? (y/n) ');

Readln (answer) ;

Until answer = 'n’;
End.

{

Figure 3-3. CASEMENU. PAS The CASE statement as a menu
FOGGIA IGS AC GIGI AA CA AA RK

Program Control 73

The menu itself is simply contained within the literal constants in the

WRITELN statements. A single CHAR type is input as the answer to
the menu selection.

Each CASE index is associated with a compound Pascal statement. In
our example, we just “fake” actually doing different things for different
selections. However, as we shall see in chapter 5, “Functions and

Procedures,” we could add a procedure call within each compound
statement to accomplish something useful.

Notice the OTHERWISE clause. It will cause an error message to be
displayed if an invalid menu selection is made.

Enumerated and Subrange CASEs

IBM Pascal also allows a range of values or a group of values to be
used as case constants. We can use this capability to make the previous
example a little more intelligent by recognizing either upper or lower case
characters.

Case option of
Nee | file maintenance }
RO ue | order entry }

}
|
i}
\

Sey: Sales analysis }
PU eeeiie: utility programs |

Otherwise ...

Here we have two case constants, separated by commas, associated with
each executable statement. Either one will invoke the statement.

Use of a range as the case constant provides a means of associating
data by category. In Figure 3-4, we will input test scores and accumulate
them by subrange to establish the distribution curve.

Figure 3-4. A subrange CASE statement

[FESSOR IGG GGG CCGG SGGGOGGGICIGI IG GK

SCORDIST. PAS Score Distribution Using CASE statement.

This program illustrates the use of a subrange as the
CASE statement index.

Program Scordist (input, output) ;

var

score, { score for each student !
J
\ grade_A, count of scores for each grade |

grade_B,

74 Pascal Primer for the IBM PC

erade_C,
grade_D,
erade_F

: integer;

Value
gprade_A :
grade_B :
grade_C :
grade_D :
grade :

; { start all counts all zero }

RP RH avn tM esses

. Main program. Input scores until a negative score
1s entered. Use the CASE statement to accumulate the score
distribution.

Writeln ('Enter test scores, negative to end');
Write ('Score ----> ');
Readln (score) ;

While score >= @ Do

[
Case score of

@..59: grade_F := grade F + 1;
60. . 69: grade_D := grade_D + 1;
Oe 194 grade_C := grade_C + 1;
80. . 89: gprade_B := grade_B + 1;
90. . 100: grade_A := grade_A + 1;
Otherwise

end;

Write ('Score ----> '); { input the next score }
Readln (score) ;

i;

Writeln; ;
Writeln ('Score Distribution’) ;

Writeln ('A', grade_A);

Program Control 75

Writeln ('B', grade_B);
Writeln ('C', grade_C) ;
Writeln ('D', grade_D) ;
Writeln ('F', grade_F)

Figure 3-4. SCOREDIST. PAS A subrange CASE statement
JOG GOGO RR aK AK Kx |

We will use the INTEGER variable “score” to be the case index.

Then, each of the case constants is really an integer subrange. Each time

a score is entered, it will filter through the CASE structure, causing one
of the statements to be executed. (We'll be explaining the WHILE...DO
statement later in this chapter.)

If “score” should contain a value other than those represented as case
constants, the OTHERWISE clause will be executed. This simply ends

the case structure, without executing any of its statements. Thus, a score
of less than 0 or greater than 100 will be ignored.

Iteration Control Statements

76

In the previous examples, we used some new Pascal keywords:
REPEAT...UNTIL, and WHILE...DO, without explaining how they
worked. These are two of the methods Pascal offers to do something in a
repetitive manner, or to perform iteration. The need for iteration is very
common in programming. Rarely will we write a program that executes
from top to bottom without repeating something. Many times the
iteration consists of performing the same operations on multiple data
elements, as in the SCORDIST program. At other times, iteration may
also involve recursion. This means that some data is processed, and then
the result of that process is processed again, and so on.

While the concept of iteration in programming is quite common,
Pascal does it with a great deal of style. There are three different
approaches to iteration control. They are so simple that they are
practically self-explanatory. They are:

FOR...DO

WHILE...DO

REPEAT “ONDE

We'll cover each of these statements in the following sections.

Pascal Primer for the IBM PC

The FOR...DO Statement

The FOR...DO statement is very similar to the FOR...NEXT loop in
BASIC. It provides a way of executing a section of program a specified
number of times. To achieve this, the program must count each time it
does the process, and also check that it does it the correct number of
times. The general form of the FOR...DO statement is as follows.

FOR control_var := initial_val TO final_val
DO statement;

Control Variable, Initial Value, and Final Value

The control variable is what does the counting in the FOR statement.
The first time the FOR statement is encountered, the control variable will

be set to the initial value. Then the statement following the DO is
executed, as long as the final value has not been reached. If it has, the

FOR statement is finished executing, and the program proceeds to the
next statement. If the final value has not been reached, the control

variable is incremented automatically, and the statement part is executed

again. Here are some simple FOR...DO examples.

For number := 1 to 100
Do Writeln (number) ;

For position := 1 to 8@
DorWrite: (eh):

For power := first to last
Do number := number * 2;

The first example simply prints out the value of the control variable
“number” each time through the loop. The second example prints 80
asterisks on the screen. In the third example, the variable “number” is
doubled successively each time through the loop.

An interesting thing to note about the last example is that the
statement part will not be executed at all if the current value of “last”
happens to be less than the current value of “first.” This feature adds a

bit of the IF statement condition testing ability to the FOR statement.

There are some rules for using the FOR statement. The control

variable and the initial value and final value must be type-compatible.

Also, the control variable must not be changed by any statement within

the repetitive loop. After the termination of the FOR statement, the

control variable might be any value, but it may be assigned a new value

or used in another FOR statement. The control variable cannot be passed

Program Control

as a reference parameter to a function or procedure (see chapter 5,
Functions and Procedures).

The Reverse Option: DOWNTO

There is a reverse option to the FOR...DO statement. Instead of
starting low, and increasing the control variable by steps, or mcrementing
it, to some final value, you can start high, and decrease by steps, or
decrement it, to some final value. This is like a “count-down” and can be

very useful. Here is the general form.

FOR control_var := initial_val DOWNTO final_val

DO statement:

’

Here again, the statement will not be executed at all if the “initial value’

starts out lower than the “final value.” Any ordinal type can be used as
the control variable, so it is also possible to use characters.

Example of FOR...DO Statement

Figure 3-5 is a one-statement program to output every ASCII
character to the monochrome display.

Figure 3-5. Example of FOR...DO statement

{ ERRHEAE AERA ERG ERLAEA EEKKEE EA EL LER EAE EREEREEAEERAAELELED ISLE EA ES

ASCIIOUT. PAS Output full ASCII set using FOR...DO.

This program uses a FOR...DO statement to output the
full 256 ASCII character set to the display.

Program Ascilout (output) ;

Var

decimal =: integer;

{

oe
Begin

For decimal := @ to 255 Do
Write (Chr (decimal)) ;

End.

{

Figure 3-5. ASCIIOUT. PAS Example of FOR...DO statement
A A A KO OK RK oR KK 2K KR kK KKK KR ok Rokk kkk kok kok ok kok ok koko & |

J

78 Pascal Primer for the IBM PC

Now, let’s carry this one step further. Remember how the IF statement
could have compound statements in its TRUE and FALSE clauses? Well,
this feature is also available in the FOR...DO statement. Once again,
there are two methods that can be used.

[] the bracket method

begin... end; pseudo procedure method

One very useful application of the FOR...DO statement is in
processing components of a structured data type. We will treat this whole
area of component processing, or indexing, in chapter 4. For now, let’s
move on to the second of Pascal’s repetitive statements.

The WHILE...DO Statement

The WHILE...DO statement is practically self-explanatory. WHILE
some condition exists, a statement, or group of statements following the
DO, are executed. It’s like the FOR...DO statement, in that it can loop

anywhere from zero to forever times. However, the WHILE statement

does not use an index variable the way that the FOR statement does.
Instead, its operation is dependent upon the Boolean expression that
composes the condition clause for the WHILE...DO statement. The
general form of the statement is:

While (condition clause)

Do (TRUE statement) ;

The Condition Clause

The rules for the condition clause in the WHILE...DO statement are
just like those for the IF... THEN statement. A Boolean expression is used
to establish the condition being tested, and the result will be either
TRUE or FALSE. As long as the evaluation of the condition clause is
TRUE, the statements following the DO will be executed.

The condition clause is evaluated before the statements are executed.

Then before executing them again, the condition clause is re-evaluated.

If the result is FALSE, the statements following the DO are skipped, and

execution resumes at the next statement. Notice that the condition clause

is evaluated the very first thing when the WHILE statement is executed.

If the result of the first evaluation is FALSE then the statements

following the DO will never be executed.

Program Control 79

Here are some simple examples of the WHILE...DO statement.

While check_amt <= balance
Do Write_check;

While intensity < max
Do intensity := 1.44 * intensity;

While not error_flag
Do |

/ process=.
Il

Here again, we prefer the use of the brackets “[” and “]” to the words
BEGIN and END, but either may be used to group statements together
in the statement clause of the WHILE.

In the last example we also see the Boolean operator NOT. This
causes the Boolean result of evaluating the condition clause to be
inverted. Therefore, execution of the statements following the DO will

continue as long as the condition is FALSE. This is because NOT
FALSE= TRUE, and so the statements are executed. Only when the
actual condition becomes TRUE will the statements following the DO be
skipped. Later we will see how this technique is used for looking-up
items in a table, and processing structured data types.

Examples of WHILE...DO Statement

Figure 3-6 is an example using the WHILE statement to control data
entry. The program loops continuously, reading numbers and outputting
their square roots until the user enters zero.

Figure 3-6. Example of WHILE...DO data entry

(FECA GTC GOGO GGG ICG AGG AGRA Ak

ROOTS. PAS Computes the square root of numbers.

This program illustrates the use of the WHILE...DO
statement for repetitive data entry.

Program Roots (input, output) ;

Var

number ,
square_root ‘real;

80 —— Pascal Primer for the IBM PC

Main program. Input positive numbers and use the SQRT
function to produce their square root.

Begin

Write ('Enter a number ----> ')
Readln (number) ;

While number > @ Do

[
Ssquare_root := sqrt (number) ;
Writeln ('The root is ', square_root);

Write ('Enter a number ----> ');
Readln (number) :

Ie

End.

Figure 3-6. ROOTS. PAS Example of WHILE...DO data entry
HR KR KK KR OK KK KK OK KR OK OK KK KK oR KK KKK KK KK KK A RK KK & |

WHILE statements can be nested the way IF statements can, and can
also contain or be connected with IF statements. The program set forth
in Figure 3-7 determines all of the prime numbers up to 10,000. (A
prime number is one that is evenly divisible only by itself and by the
number one.) The program uses a method called the “Sieve of
Eratosthenes,” which is really quite clever. Here you'll see an example of
the WHILE statement within an IE within a FOR statement.

The program starts testing numbers beginning with the number two,
which is prime by definition. It contains a structured data type in the
form of the variable “prime.” This is an ARRAY OF BOOLEAN types.
We’ll cover arrays in the next chapter; for now, just think of an array as a
list of flags similar to the flag that we used for data validation earlier in
this chapter.

In the beginning of the program, we use a FOR...DO statement to
“initialize” all of the flags in the array to a TRUE value. Then, the
program enters another FOR...DO statement that “sieves out” the non-
prime numbers. This is accomplished by setting the flag for all multiples

of a prime number to the value FALSE. As each prime number is

determined, it is displayed on the screen.

Program Control 81

This program is an amusing one to type in and run, but the

important point is to notice how a WHILE...DO statement can be nested

in an IF..THEN statement.

Figure 3-7. Example of WHILE...DO statement

MEARE DELILE LACE ERE RG RE EE RET ERE A SS i kt!

SIEVE. PAS Prime number sieve program.

This program uses the "sieve method" for determining
all the prime numbers up to "maxtest." An array of BOOLEAN types
is used to flag the prime nunbers.

Program Sieve (output) ;

Const
maxtest = 10000; { highest number to test }

Type

index = 2..maxtest; { range of number being tested }

Var
prime :array [index] of boolean;

{ set false when index is a
multiple of a prime

test : index; { value to test if prime }

1 :integer; { index for setting prime[{] |}

Main program. First initialize the array to TRUE.
Then start testing with the first element in the array.

For i := 2 to maxtest Do { initialize array |
prime[{i] := true;

For test := 2 to maxtest Do {| look for primes }
If prime [test] | true.if “test! is prime, }

Then [

Write (test); { display the prime. \

82 Pascal Primer for the IBM PC

13= 1 Hates:
While 1 <= maxtest Do

[, set multiples false }
prime[{i] := false.
jt lee LUeS te

ie

Writeln; { end last line |

Figure 3-7. SIEVE. PAS Example of WHILE, IF and FOR...DO
PESEREAALEERERALKAEELAT ERR ALELELEL EEE REA ARE LA LEL EL ELERE EERE RE

The REPEAT...UNTIL Statement

The REPEAT statement rounds out the Pascal trio of iteration control

statements. Here is the general form.

Repeat

(one or more statements) ;

Until (condition clause) ;

This statement is very much like the WHILE statement, except for one
distinct difference. In the WHILE statement the condition clause is
evaluated before the statements are executed, making it possible to bypass
them entirely if the condition clause is FALSE the first time through. In
the REPEAT statement, the condition clause is not evaluated until after

the statements in its body have been executed. ‘This means that the body
will be executed at least once before the condition clause is evaluated.

Another thing to notice is the znverted logic between the WHILE and
the REPEAT statements. The WHILE statement will execute its body as
long as the condition is TRUE. The REPEAT statement will execute its
body until the condition becomes ‘TRUE.

Both the WHILE and REPEAT statements are useful in deciding
when a process is finished. This is generally done by evaluating some
data that is used in the program. For example, Figure 3-8 shows a
program that inputs the names of people who will be players in a game.
Not knowing how many people will be playing, we will allow entry of
players’ names until the word “end” is entered.

In this example we see the use of three forms of conditional

programming. The REPEAT statement will cause the whole program to

be repeated until there is a at least one player. The inner WHILE

Program Control 83

SRO WHE QD Ae THE BAW CANE PACT aL THE PLOVHRA AS LOK As TAC
BRE W BOR Towa” Awad we hea Ae aar alka LF Gavomene tw Gophay a
Bearanwlled aesaage H Radoy wanss k Pe

TRe FOR... DOC WRIALE.. DO and REBEAT. UN TRE, sarees
OMWE a WARE CRORE BE CHO Way AR ROMANE process ca de carried Qag
WR Gack & Chawe af Rgeat GrACeAweg, VRMO BAY SeT OF CORRS EAR
de represented’ aaa Re Pascal

Beers SA Same of REPEAT UINTIC aimee

WLGS SSL VLA VSL VL SALA LV VAL VAL AVL LALLA LAGS VSS GAN VA VAA LLL SVASAVVSSQv&

TANS SS Tat pares ARES

Teas pregtam Wee the RENT UNTER SS
the aames af pragmective Blayees oo the game “Pascal ten
WRASSE EES SSS SSS OS 485 S88 EE Se

Praga PLAWETS | LAMA VVRNNe

CRBSt
max = & Warleam mwater af players

Yee 2 :
plaver_nare = [stringi td

Yar

hast antay]2..@) ef player rare

cuuRe,
TIVE LRleget

Value
Quart a

SL SS SSS SS SSS SSS ee ee eS SSS SS SSS

Ward BtvetaR. Tapert alarer names wrth] “end
SSS SSS SS SS SS ee ee ee en. +S,

Rega
wrrteln | Weleume te Pascal Man”).

BReat wert sametadr Dlass
Witeln ‘Plas wer Lear Rawes”)
writeln | Ure ‘ame’ her Fmiged ©).
weateln:
Rakin Tae _

S& Rescel Phimer fer ite |B, RC

f
PLO LL OL LLL LOL ELL ELLE LLL LOLOL EEO ee PPP LLL L LL LL Le

WA he seme th ie 1 8t
PPL IL LDL LLL OLE LEO LLLP LEO E OO E OEE ae aeeE

j :

Wille game -> (ent) wh (coms - ee
|

Ba Sa = wue+t
- Rt (eonmt!) - = game

Sritels
Witels tejoy the game |. ete
Britels (Was wil) be wert?’

— teas tone
-
,

if com =o
Tes Uritels (Oh come on! Lets play

til cout > St

PLL MM LL LL LL LO EL EL LL ML LM ee

Se, ovignt 2 listing of ane papers
De de ee Ae ee eee ed ee de Ad Ae dd

Oritels (com. ' players’)

Vor ishex -= 1 to comm De
Britels (list (ister);

ti.
;
OOD ee de ee tt ttt ttl

Vigwe 2-5. ALTE FHS trample A EPEAT... UNTIL
ULLLLELLLLLELELLALBPALAABELS ZLALLUELLLLUELUELLLELLELLLELEELELLLELELELELLLEE ;

Escape Clauses

We we Ota yung, wo te-eompaasite the Vaud keywords
CATO, BREAK, CVO, 20 RETURN. They ase very “un Pasa
inn the sense thas thes imps thas vanetbing uncxpeaed has ocurred.
Geuce Vid was gals desgned 2 on custom tx wo tea

suse apponkes w python whi, 8 wad secon thas these exape
Hauses tut be woe

tah A tee sacmens may invhve the use A 2 labA tha mus be

amped wy wane pon in the progsas. 4 tad can be atahed ws the

begin A an eae wih the hon ~" Whe this:

adel): Gane)

We may use either numeric labels like BASIC and Fortran or
mnemonic (memory-aid) labels like ALGOL or assembly language.
Remember to declare all labels at the beginning of the program.

The GOTO Statement

The GOTO statement will cause program execution to be

immediately transferred to the statement that bears the GOTO label.

1000:Write ('Enter the date');

Read (current_date) ;
If current_date <= last_date

Then goto 1000:

In general, we use numeric labels when dealing with the GOTO
statement, and mnemonic labels when dealing with BREAK, CYCLE,

and RETURN. In the preceding example the label 1000 is assigned to
the WRITE statement. Then, based on a validation check in the IF
statement, the program may branch back to repeat the data entry
statements. You can see that this resembles BASIC’s line numbers to
some extent, but it should not become habitual for you ’died in the wool”
BASIC programmers. The same process can be handled much more
elegantly by:

Repeat
Write ('Enter the date'):

Read (current_date) ;
Until

current_date > last_date:

The BREAK Statement

The BREAK statement is used to discontinue an iterative statement

(FOR, WHILE, or REPEAT) and resume execution at the next statement

following the end of the iterative structure. BREAK is useful for jumping

out of an iterative structure after searching for a value in an index table.
Here’s a simple example:

Loop:For pointer := 1 to table_end
Do |

table_entry := table [pointer];
If search_value = table_entry

Then Break Loop;
Else count := count + 1;

86 Pascal Primer for the IBM PC

Here again, a better approach should be used, taking advantage of one
of Pascal’s more specialized conditional programming statements.

pointer := 1;
While (pointer <= table_end) and

(search_value <> table [pointer])
Do pointer := pointer + 1;

The RETURN Statement

The RETURN statement is used in much the same way as the
BREAK statement. The difference is that RETURN is used to exit from
a function or procedure instead of a loop.

The CYCLE Statement

The CYCLE statement is another in this category of escape clauses.
Its purpose is to jump to the end of an iterative structure. This will cause
the condition clause to be evaluated, and in the FOR statement, the

control variable will be incremented or decremented, depending upon
which direction the loop is going (TO or DOWNTO).

Summary

In this chapter we have added more powerful tools — in the form of
statements used for decision-making and iteration — to our Pascal
workbench. There are many elegant ways to use these tools; and many
examples will appear in the following chapters.

(SSS SSS

Exercises

1. Solve the following Boolean expressions:

ANS eZ

B. (2<=5) and (2+2=4)

Ge lor (l= 00)

2. What is a compound statement?

3. What are the three loop structures for Pascal?

4. What are the differences between WHILE and REPEAT

statements?

Program Control

Solutions

1. A. True

Be ltue

C. True

2. A compound statement is one or more statements included within

another statement. For example:

3. The three Loop structures for Pascal are: FOR...DO,
WHILE...DO, REPEAT...UNTIL

4. The WHILE...DO loop tests the condition before executing the
loop even once. The REPEAT...UNTIL always executes the
statements in the loop first, then tests the condition afterwards. Also,

the logic is reversed, for example:

WHILE A= 90 DO [ooo lle

is similiar to

REPEAT [...] UNTIL A <> @;

except the first may not execute the statements at all.

88 Pascal Primer for the IBM PC

Structured Data Types

Concepts
Declaring an array
Indexing and iteration
Tables
Sorting an array
STRINGs and LSTRINGs as arrays
Super array types
Records and fields
Static and dynamic variables
The heap
Pointers and linked lists
Sets

Keywords
ARRAY, SUPER ARRAY, RECORD, WITH, NEW, DISPOSE, SET

Unni now, we have been discussing simple data types and their
related expressions and functions. These simple data types, discussed in
chapter 2, can be any of the different types — INTEGER, CHAR or
REAL and so on — but their important characteristic is that there is only
one element of data per identifier name, regardless of its type.

In this chapter, we'll look at structured data types, which, in contrast

to simple types, can be composed of many data elements, called
components. We’ll learn how to declare the structured types ARRAY,
SUPER ARRAY, RECORD and SET. We'll also learn how to index the

components in these structures in order to process them.

The ARRAY Structure

The array is a concept that is common to many programming

89

Var

Var

90

languages. It is used when there is a group of data elements that are all

somehow related. By structuring the data elements in an array, we can

take advantage of many powerful programming features to process data

more efficiently than is possible with the simple data types. We'll show an
example soon. In the meantime, let’s see how arrays are declared and
indexed.

Declaring an array

An ARRAY can be thought of as a chain in which each link
represents one data element. Just as all the links in a chain are similar, so
are all the components in an array. That’s why when we declare an array
in Pascal, the TYPE of its components must also be declared. The array
is a variable, and is therefore declared in a VAR statement.

identifier :array[1..size] of (type clause);

Besides declaring the type of the components of the array, we must also
declare how many components there will be in the array. This is done
within brackets “[”and”]” and is usually an integer subrange. In this case,
the array size will be dictated by the value of “size,” which would have to

be defined in a previous CONST section. The low end of the subrange is
usually “1” since normally there is no reason to declare an array starting
with any component other than its first. Here are some examples of array
declarations.

index_table -array[1..24] of integer;
sales_hist sArLayehl 212) sObareale
access_table :array[1..16] of boolean;

The variable “index_table” is declared as an array of 24 INTEGER types.
Each one of these integers is called a component of the array. Likewise, the
other arrays are declared in a similar way to have a certain number of
components, of REAL and BOOLEAN types. There are as many
different array types as there are types in general.

Indexing an Array

In order to make use of any of the components of an array, we must
be able to isolate a particular component from the rest. This is
accomplished through a process known as indexing. To reference a

Pascal Primer for the IBM PC

component of an array, we use the array identifier, followed by a
component number enclosed in brackets. In this way, a single component
of the array structure can be be used as though it were a simple variable.
Here is an example.

test_value := index_table [19];

Here, the value of the nineteenth consecutive component of the array
with the name “index_table” is assigned to the variable “test_value”
(presumably a compatible type). Figure 4-1 provides a graphic
representation of this process.

Arrays and Iteration

In our chapter on program control, we mentioned that iteration is a
valuable technique in dealing with structured variable types. Here’s our
old faithful FOR statement, just iterating away on sales history.

For index <="1 to 11

Do sales_hist [index] := sales_hist [index+1];

This is typical of “rolling over” monthly sales history. ‘The array named
“sales_hist” contains total sales amounts for the past twelve months. The
current month’s sales are contained in the twelfth component of the array,
and the oldest data is contained in the first component. As shown in
Figure 4-2, each month’s data is moved into the slot for the preceding
month.

Var index_table : array [1..24] of integer;

et.

/ SIDS DDL SANS GLE,
a ae saa ooo ol
loo Sa 8 Oe. 6 9.10 11-12 13:14 15:16:1718} 4 120.2122 23 24

Test walue! = index_table [19];

Figure 4-1. Indexing an array

Structured Data Types 91

Using Arrays for Tables

Sometimes a program application will involve the use of soft swatches
or software toggles to keep track of the system configuration. A large
group of options can easily be represented as an ARRAY OF BOOLEAN
type. Each component of the array can then represent some condition,
and of course its value will be either TRUE or FALSE. Illustrated in
Figure 4-3, this provides a quick method of screening access to an on-line
system.

In our program, all we need to do is input the menu selection and then
use the ARRAY OF BOOLEAN switches to provide controlled access to
the system. Figure 4-4 shows another example.

You might want to go back to chapter 3, “Program Control,” and take
another look at the prime number sieve program shown in Figure 3-7.
We slipped an ARRAY OF BOOLEAN types in on you in that example,
knowing that we would be explaining arrays here.

Var sales_hist: array [1..12] of REAL; Least
month

Current
Rolling over month

Figure 4-2. Iteration on an array

Var access_table: array [1..16] of BOOLEAN;

F=FALSE=0 T= TRUE=1

Lofalrfofifif[r [ofr fofofofofofef7/
felettrt tri tlelty Fl el FlF[Fie ity
P23 482 678 9 1041) 12.13 4 18 16

Figure 4-3. An array of BOOLEAN switches

92 Pascal Primer for the IBM PC

Figure 4-4.

j

BOOLMENU. PAS

j

Program Boolmenu (input, output) ;

Const

Type

Var

Value

Main program. Assuming a menu has been displayed, input

Then use the boolean table to screen access. the selection.

size = 16;

range = 1..S1ze;

menu_select

access_table

access_table [1]
access_table [2]
access_table [3]
access_table [4]
access_table [5]
access_table [6]
access_table[7]
access_table [8]
access_table [9]
access_table [19]
access_table[11] :
access_table [12]
access_table[13] :
access_table [14]
access_table[15] :
access_table[16] :

HE STE SOT TUR SU LP ee a a

muane es

-array [range] of

Example of an array of BOOLEAN

RR RRC CAG ICCC ICCC IG KKK Kx

Menu access controlled through boolean table.

boolean;

Write (‘Enter selection ----> ');

Readln (menu_select) ;

Structured Data Types 93

If access_table [menu_select]
Then Writeln ('Access granted')
Else Writeln ('Requires more authority');

Figure 4-4. BOOLMENU. PAS Example of array OF BOOLEAN
FE HO RSCG CEOCCAC KICK AGC CCIGI ACCIACCA I KAI OK A |

Indexes of Enumerated Types

It is also possible to declare an array to be indexed by an. enumerated
type. This is one of the nicest features of Pascal. In other languages it
would be necessary to set up some kind of complex coding scheme for
data elements other than numbers and characters. But in Pascal, we can

simply declare the valid components of an enumerated type. Figure 4-5 is
an example of a program that uses an enumerated type array as a data
table.

Figure 4-5. Example of an array as a table

[EERE REAERARAR ERR ENE TER AAERA ARAL E RADA TERE EERE REEL EE OSE RSE Te

CHANGE. PAS Change maker program.

This program demonstrates the use of arrays as tables.
In this case, change is made from a sales transaction. The
program determines how many of each "coin" will make up the
change amount.

j
Program Change (input, output);

Type
coins = (dollar, quarter, dime, nickel, cent);

Var

name { names of coins
:array [coins] of lstring(7);

colnval { values of coins
:array [coins] of integer;

sale, { sale amount
paid, ; amount paid

:real;

change, | change in cents
count, { count of currceoin needed

: integer:

94 Pascal Primer for the IBM PC

currcoin { current coin \
- coins;

Value {| set names and values of coins }

name {dol lar] s=Dolllar’:
name [quarter | := 'Quarter':

name [dime] ;= 'Dime';
name (nickel] r=. Nickel":
name [cent] := 'Cent':

coinval [dollar] := 100;
coinval [quarter | = Dhhe

coinval [dime] = 19;
coinval [nickel] =A.
coinval [cent] nl ie

Main program. Input the amount of cash received and the
amount of the sale.

Write (‘Enter sale amount ----> ');
Readln (sale);

While sale <> @ Do { terminate program when sale = @ }

Write ('Enter amount paid ----> ');
Readln (paid);

If sale = paid
Then Writeln ('No change’)

Else If sale > paid
Then Writeln ('You still owe me',

(sale - paid) :6:2)

Structured Data Types 95

Else [
change := Round (100 * (paid - sale));
Writeln ('Your change is’,

(change /10) aya

Determine how many of each coin are required and then
print a listing.

For currcoin := dollar to cent Do

[
count := change Div coinval [currcoin];
change := change Mod coinval [currcoin];

If count <> @
Then [

Write (count 2 a.
name [currcoin]);

If count.

Then Write ('s');
Writeln;

1;

}; { end FOR...DO loop. }
]; { end IF...THEN

Input the next sale amount.

|
Writeln;
Write ('Enter sale amount ----> ');
Readln (sale) ;

ls { end WHILE. . . DO |

End, { end PROGRAM |

Figure 4-5. CHANGE. PAS Example of array as a table
FUEGO BOBO BEC OB ABA H BOOB GHG CIOB GCSB IS KIOC AKAGI |

96 Pascal Primer for the IBM PC

The type “coins” is declared as an enumerated type consisting of the
valid data elements “dollar,” “quarter,” dime,” “nickel,” and “cent.” Then,
we declare two ARRAY type variables. First an array that will contain the
names of the coins for display purposes, and then an array of their
respective values. Notice the VALUE section where both the names and
their values are defined.

In the program itself, we input a sales amount, and an amount paid.
The program first determines whether there is any change due, or if the
payment was insufficient. If there is change due, the program computes
the amount and displays it. We’ve specified the way that the output is to
look by including some editing parameters in the WRITELN statement.

Writeln ('Your change is',
(change/100) :6:2);

The “6:2” tells the program to print the change amount in the form

XXX. XX

The first number, “6,” specifies the total number of columns to use for

displaying the variable. The second number, “2,” specifies the number of

digits to the right of the decimal point. We’ll see more examples of this
kind of output formatting in future example programs.

Next, the program determines how many of each “coins” component
should be given as change. The program takes advantage of Pascal’s
integer division operators, DIV and MOD, to simplify the calculations.
The same values could have been obtained with the following statements.

count trunc (change / coinval [currcoin]);
change := change - count * coinval [currcoin];

The number of coins is printed whenever they are needed and an “s” is

added when a plural is proper.

Figure 4-6 is an example of the output from the program Change.

Structured Data Types

Sorting an Array

Very often, a programming task involves sorting data elements into
some useful sequence. This may be an organization based upon numeric
size, or upon alphabetic order. With the enumerated type discussed
earlier, we can sort data into just about any abstract logical sequence: by
color, for example. That’s because each enumerated value equates to a

numeric value determined by its order in the declaration. The first
enumeration is equated with numeric zero. The second with numeric
one, and so on.

Figure 4-7 is an example of a simple Pascal program that inputs some
INTEGER type variables into an array and then sorts the array into
ascending numeric sequence and prints it out.

Figure 4-6. Output from the Change program

98

Enter sale amount ----> 4.49
Enter amount paid ----> 5.00
Your change is @.51

2 Quarters
Daten

Enter sale amount ----> 12.2@

Enter amount paid ----> 10.00
You still owe me 2.2@

Enter sale amount ----> 14.94

Enter amount paid ----> 20.0@
Your change is 5.96

me DOLiarS
3 Quarters

2 Dimes

1 Cent

Enter sale amount ----> 1.00
Enter amount pald ----> 1.@¢
No change

Enter sale amount ----> @

AS

Pascal Primer for the IBM PC

Figure 4-7. Example of sorting an array
J [ORCI GOGO KK

ARRYSORT. PAS Example of sorting an array.

This program takes any 10 integers, entered in any order
and sorts them into ascending sequence using an “exchange sort"
technique.

Program Arrysort (input, output) ;

Var

numbers -array[1l..10] of integer;

index,
temp,

: integer;

exchanged : boolean;

Const
Size = 19;

Main program. Enter 10 integer values.

oe
Begin

Writeln ('Enter 10 integers in any order');
For index := 1 to size

Do Readln (numbers [index]) ;

Scan through the array. Exchange the position of adjacent
components that are out of sequence, using a temporary variable.
Remain in the REPEAT structure until no exchanges are made.

Repeat
exchanged := false;

For index := 1 to size-1 Do
If numbers [index] > numbers [index+1]

Then [
temp := numbers [index];
numbers [index] := numbers [index+1];
numbers [index+1] := temp;
exchanged := true;

i

Structured Data Types 99

Until not exchanged;

Writeln ('Ascending sequence’) ;

For index := 1 to size Do
Write (numbers [index]) ;

Figure 4-7. ARRYSORT. PAS Example of sorting an array
FRA AR AR A KOR AR ARR KARR AR RK ARR KR ARR KKK KKK KKK KKK KKK KHER KKK EK KE |

100

This program provides a good example of what indexing is all about. We
have declared an INTEGER array called “numbers” which will be used
to contain the values to be sorted. The INTEGER type “index” will be
used to accesss individual components in the array.

There are basically three parts to the Arrysort program.

Enter the data.

Sort the data.

Print the data.

Each of these parts employs the use of an iterative structure to index the
array components. The FOR statement is usually the principal
mechanism for implementing this structure with arrays, since it can be
incremented or decremented within some range of values. One thing that
FOR doesn’t do is step a specified increment each time through the loop,
like BASIC’s FOR...NEXT statement. The increment is always | because
it is actually performed by the two functions SUCC (for incrementing)
and PRED (for decrementing). If it is really necessary to step through a
FOR statement at some other interval, it must be done using a secondary
variable derived from the FOR statement’s control variable. This kind of
stepping should not be necessary in Pascal, if the programmer has really
thought out the structure of the data that will be processed.

The sorting algorithm is really quite simple. It’s called a bubble sort,
sometimes an exchange sort, because of the way it works: the highest value
“bubbles” to the top of the array.

Here’s how it works. ‘Two adjacent components in the array are
compared. If the first one is numerically greater than the second, they
are exchanged in the array. hen the next two are tested, and so on. In

Pascal Primer for the IBM PC

order to exchange two array components we must use an intermediate
variable, which we call “temp” in this program, to temporarily save one of
the components. Since an array component can only be shifted one
position at a time, several passes through the exchange loop may be
necessary depending upon the original sequence of the components. The
worst case would be if the smallest value was at the top and the largest
value at the bottom of the array.

Each time the program is about to enter the exchange loop, it sets the
BOOLEAN type variable “exchanged” to FALSE, assuming that no

exchanges will be done on this pass through the loop. In the true
statement of the IF, this flag is set to TRUE, indicating that an exchange
has occurred. The exchange loop is then terminated by the condition
clause of the REPEAT statement, since we are looking for a TRUE value
here to stop the REPEAT.

Perhaps this can be visualized more clearly by using reverse logic.
The loop should end if there have been no exchanges, that is, when
“exchanged” = FALSE. So... NOT (FALSE) = TRUE, and the loop is

terminated. Figure 4-8 is a flowchart of this sort algorithm.

Finally, the sorted array is printed, again using a loop to index the
components. Each component is printed separately. Using the WRITE
statement instead of WRITELN causes them all to be printed on the
same line.

This ends our general introduction to arrays. Now we will take a look
at some of the specific types of arrays used in Pascal programs.

STRING and LSTRING

We have bent the rules slightly in this book, in order to provide a

more meaningful approach to learning Pascal for the IBM, in that we

have included the STRING and LSTRING types with the simple data

Structured Data Types 101

Initialize
exchange flag

FALSE

Initialize
array index

to]

Exchange
adjacent

components

Set
exchange flag

TRUE

Increment
array
index

Figure 4-8. Flowchart ot the sort algorithm

102. ~=— Pascal Primer for the IBM PC

types described in Chapter 2. One reason for this is that they are similar
to BASIC language strings. But in reality, STRINGs and LSTRINGs are
perfect examples of structured data types.

The technical declaration for STRING in Pascal is

Packed array(1..N] of char

But since STRINGs come up so often in programming, IBM decided to

shorten the declaration to simply:

String (N)

This is accomplished through a predeclared super type, which we'll discuss
further in this chapter. The LSTRING type is also predeclared in this
manner.

Length of STRING and LSTRING

In IBM Pascal, the length of the STRING is represented here by “N.”
During compilation, the length will be determined by an INTEGER
value. This is why the maximum length of a STRING should be 32,767.

(IBM says it’s 32,766. Perhaps they wanted it to be an even number.)
Actually, this is the maximum length of any structured type in IBM
Pascal. When you think about it, that’s quite a long string. It’s over 6,500
words, just about 20 pages of unbroken text.

The LSTRING type is a special structure similar to a STRING that
also contains its own current length. Remember, the length is contained
in the first byte of the LSTRING, so the maximum size for an LSTRING
type is 255 characters. This is more than enough for most simple string
applications. Figure 4-9 shows the internal representation of STRING
and LSTRING types.

There are some other advantages to using LSTRINGs. IBM has
several predeclared procedures for manipulating them. Also, an

LSTRING type may be used directly in a condition clause; a useful
feature, as you will notice in our example programs.

Structured Data Types

Var

name : lstring (19) ;

One situation in which we like to use an LSTRING involves testing

data as it is input from the user. It’s nice to have the user type “end”
when there is to be no further input. This is especially convenient if we
are inputting alphabetic data, like someone’s name. ‘Then, we can use the

following approach.

Write ('Enter name ----> ');
Readln (name) ;

While name <> 'end'

104

DOM aes

Here, the processing would be controlled by the WHILE...DO structure,

which is repeated as long as the name that was input is not “end.” We
couldn’t do this so easily using a STRING, because the entire length of a
STRING is involved in all operations, while only the current length of an

LSTRING is used.
If you’re sull having trouble with STRINGs and LSTRINGs, then

perhaps this simple program example will shed some light on them for

STRING(20) 7 blenks

SITY EST TS SS SI A EG EB Sa VIE ate(at fete (eae etc tere ic teted
L238 4.5-6. 7.8.9 10.11 12.1314 15 16.17.18 19 20

LSTRING(20) Not used

SCRE EF ES GEO BE SS FE SOeOGwenOCh seuim@a@ncocl
0.1.23 4:5 -6°7 8 91011 12.1814 15 16 17 18 1990 |

Figure 4-9. STRING and LSTRING representation

Pascal Primer for the IBM PC

you. Figure 4-10 is a STRING and LSTRING demonstration program. It
is an endless loop program that will not end until you type Ci

Figure 4-10. Example of STRING and LSTRING

[EEA GGG CACC IAAT CC GGG AAA AAR K Kk

STRDEMO. PAS STRING and LSTRING Demo Program.

This program demonstrates the difference between STRING
and LSTRING types. The STRING is always the same length, while
the length of the LSTRING can vary.

Program Strdemo (input, output) ;

Const
max = 80;

Var

str_type : string (19) ;
Istr_type - lstring (19) ;
count : integer;

Main program. Input both STRING and LSTRING values,
output each 80 times.

Begin
While true DO [

Write ('Enter STRING(1@) value ----> '

Readln (str_type) ;
Writeln;
For couny, “= to max

Do Write (str_type) ;

Writeln;
Write ('Enter LSTRING(1@) value ---> ')

Readln (lstr_type) ;
Writeln;
For count := 1 to max

Do Write (lstr_type) ;

Figure 4-10 STRDEMO. PAS Example of STRING and LSTRING
|

FOCI SGI A ICICI I ACK A xX |

Structured Data Types 105

Notice what happens when you type fewer than 10 characters. The

STRING version still outputs 10 characters, even if some of them are

blank. The LSTRING version on the other hand, outputs only the
current length of the LSTRING. Figure 4-11 shows the output from the

program shown in Figure 4-10.

Figure 4-11. Difference between STRING and LSTRING

106

A>strdemo
Enter STRING(1@) value ----> 123

123
123
120
123
123
123
123
123
123
123

123 123 123 123 123 123 123
123 ien3) 123 123 123 123 123
123 123 123 123 123 123 123
123 123 123 123 123 123 123
123 123 Ws) 123 123 123 123
123 123 123 123 1A, lize a
123 1a 123 123 25 123 123
es 128 123 123 123 123 123
123 123 123 123 123 123 123
123 123 123 123 125 123 123

Enter LSTRING(1@) value ---> 123

1231 23123123123123123 1231231231231 23123123123 1231231231 23l23io3i23al2algalesizel2
$12312312312381231231231231231231231231231231231231231231231231231231231 23123123)
Zolasl2si2ol 23231231 23i2sl 2323126123123 1281231231 23ie3le3iool3i jailed lZaieol2o

Sorting an Array of LSTRING Type

Let’s suppose an array contains people’s names, and we want to sort
them into alphabetic order. This is going to be quite different from
sorting numbers...right? Wrong! The program is almost identical, only
the names have been changed. Figure 4-12 is an example of how sorting
an array of LSTRINGs is just like sorting numbers.

Pascal Primer for the IBM PC

Figure 4-12. Example of sorting LSTRINGs

DECC IGG CIOS GOGO IAI Ix

NAMESORT. PAS Sorting an ARRAY OF LSTRING.

_ This program demonstrates how LSTRINGs can be sorted
just like numeric values.

Program Namesort (input, output) ;

Const

size = 10

Type

first_name = Istring(15);

Var

names -array[1l..size] of first_name;

index : integer;

temp : Istring (15);

exchanged : boolean;

Main program. Enter a list of names and the program
will sort them using the same exchange sort method.

Begin
Writeln ('Enter ', size,' names in any order');
Form pindex <= 1.10, size

Do Readln (names [index]);

Exactly the same idea as sorting numbers.
eae Se le AUN AS Rees eek Pe ee ee eects ee a ee ee

Repeat
exchanged := false;

For index := 1 to size-1 Do .
If names [index] > names [{index+1]

Then [
temp := names [index];
names [index] := names [indext1];
names [index+1] := temp;
exchanged := true;

hij

Structured Data Types 107

Until not exchanged;

Writeln ('Ascending sequence’) ;

For index := 1 to size Do
Writeln (names [index]) ;

Figure 4-12. NAMESORT. PAS Example of sorting LSTRINGs
FS SSC ICCC ICSC CIC IOR ICICI ICR AR IAC ACK 3K 41 x |

We simply changed the array variable “numbers” to one called
“names,” and declared “names” as an array of LSTRING type. This
allows us to easily compare two LSTRINGs of different lengths. The
names are input just as the numbers were. The sorting uses the same
algorithm to exchange two adjacent name components. The output
section is pretty much the same also: the only change we made was to use

Shaded area is not used

NLL LL) ee
[5 [mi |e || h [pa fear eege ee
aié[rlolble|r| + ieee

6 | n| dS ea else ae
[bf ils sss | Reel Celle Siete

Pere er ee

a)

3|5|b]e
4] 3 | b[o|
5/6] s [1]
65 | ¢[h|
717 [mi
8/3 | da
mel y
4m] i |

2

k —_— o)

(e)

Figure 4-13. An array of LSTRING type

108 = Pascal Primer for the IBM PC

WRITELN instead of WRITE to make each name appear on a line by
itself.

Notice the power of this structure, which is shown in Figure 4-13. We
can refer to each of the components in the array, manipulate it, and use it
to generate output, all within a few statements. Again the predominant
structure is the FOR statement, used to index the array of names. The
control variable “index” is used to point to one component of the array so
that it may be processed.

SUPER ARRAY Type
In the previous examples, we have shown the standard form of arrays

in Pascal. IBM has added a special type declaration to their version of
Pascal called the super array type. The key to understanding this type is
to realize that it is not a variable. Think of the a super array as a type
declaration that allows arrays to be declared in simpler, perhaps more
familiar, form. An example that will tie this together involves our new
acquaintances STRING and LSTRING. The complete declaration for a
STRING variable in standard Pascal looks like this.

Var

name :packed array[1..15] of char;

That looks reasonable you say, but what’s the “packed” do? It tells the
compiler that the characters in the array “name” will be stored one
character per byte. Otherwise, the compiler would use a whole 16-bit
word for each character. That’s because the compiler allocates space for
variables in increments of two bytes at a time. (That’s why the memory
addresses of the variables in a program will always be even numbers.)

The numbers inside the brackets serve to define the maximum
possible number of characters that can be stored in the array, in this case

15. And of course the “of char” tells the compiler that these will be
ASCII characters or their equivalents.

However, this packed array format is rather unwieldy. The IBM

people realized that if your program had a lot of string variables in it,

you would have to do a lot of typing just to get them declared. So they

invented the SUPER ARRAY.

Declaring a SUPER ARRAY

The SUPER ARRAY type is simply an array type declaration with the

Structured Data Types

Var

Type

Var

110

upper boundary set up as a “plug-in” parameter. Normally we would

have to declare a group of STRINGs like this:

name :packed array[1..25] of char;
address packed array[{1..25] of char;
city ‘packed array[1..2@] of char;
state :packed array[1..2] of char;
zipcode :packed array[1..9] of char;
areacode :packed array[1..3] of char;
telephone :packed array[{1..7] of char;

However, using the SUPER ARRAY type declaration, it can be done like

this:

string : super packed array[1..*] of char;

name - string (25) ;
address :string(25);
city : string (29) ;
state : string (2) ;

zipcode :string(9);
areacode :string(3);
telephone : string (7);

The compiler knows that the type “string” will need a parameter in
parentheses to fill in for the “*” in the TYPE declaration. In IBM Pascal,

STRING is a predeclared super type, and the TYPE statement is not
required.

We can also set up our own SUPER ARRAYs to handle special
situations. If the application at hand only uses one of a particular array
type, then it makes no sense to go through the extra steps of declaring it
a SUPER ARRAY. Only when there are to be several arrays of the same
type, but different sizes, does the SUPER ARRAY concept help.

The Sales Update Program

Suppose we are writing a sales update program. Its job will be to
update sales totals that are represented in memory as arrays. Why
arrays? Because we want to break out the sales information into 10
merchandise categories. We also want to save the sales statistics for the
current month, current fiscal quarter, and year to date. Figure 4-14 is an
example of how to use SUPER ARRAYs for this application.

Pascal Primer for the IBM PC

Figure 4-14. Example of array of REAL

[FERIA GIGI IOS RGA A AGAEK

SALESUPD. PAS Sales Update Program.

_ This program demonstrates the use of arrays to store
numeric data. There are three arrays used in this program, one

-each for "current month," "current quarter," and "year to date. "

Program Salesupd (input, output) ;

Const
Cats =e: { number of categories }

Type

sales_history = super array([1..*] of real;

Var
current_month,
current_quart,

year_to_date
:Sales_history (cats) ;

category
:@..cats;

amount

Main program. Enter category code and amount. As long as the
category code is not zero, update the proper component of the
sales history arrays.

Writeln ('Enter category and amount’) ;
Readln (category, amount) ;

While category <> @ Do

[

current_month [category] :=
current_month {category} + amount,

current_quart [category] :=
current_quart [category] + amount;

Structured Data Types 1

year_to_date [category] :=
year_to_date [category] + amount;

Readln (category, amount) ;

is

For category := 1 to 1% cats Do
Writeln ('Category ', category,

current_month [category],
current_quart [category],

year_to_date [category]);

Figure 4-14. SALESUPD. PAS Example of array of REAL
KKK KKK KKK KKK ARK KKK KKK KKK RAK KKK KA KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KK KK }

There are some things to look at here. The type declaration for the
type “sales_history” allows the three arrays to be declared in the VAR
statement much the same as STRING and LSTRING. Notice the variable
“category” is a subrange from 0 through 10 instead of | through 10.
This allows us to enter category zero to indicate the termination of the
data entry phase.

The RECORD Type

We have just learned about one of the most powerful data structures
available in most programming languages today. The array provides a
means of organizing data for ease of input, processing, and output. But,
there is one thing that limits the array’s use: all of the components of the
array must be of the same type. For instance, in the preceding sales
update program, (Figure 4-14), every array component represents sales
volumes in dollars and cents.

Let’s enhance our sales update program. Let’s suppose we wanted to
do more than just update the sales amount. We might also want to keep a
count of how many times sales are updated in each category. Also, we
might want to know what the amount of the last sale was, and keep a

running average sale amount for each category. And just to make things
really neat, let’s include a description of each category, as an LSTRING,

which can be used on printouts.

112 ~~ Pascal Primer for the IBM PC

The RECORD Layout

We could set up separate arrays for each of these requirements we’ve
decided upon, but this would be awkward. Pascal provides a better
alternative: the RECORD type structure. Figure 4-15 illustrates how we’ll
set up a RECORD structure.

We are dealing with three different data types, all related to the same
category. We have the category “name” which will consist of several
CHAR type elements, the “count” which will be an INTEGER, and the

sales totals themselves which are REAL types. Figure 4-16 shows how the
RECORD type is used in a program.

One record for
each category

[if fot [s[efo[n[[i[nfufefe/_[#/*/ /__/
Category names [1] sep Jipafk]iele{ fefafu/ilelme/afel |

gta pe ae: 9) aa ieee (TST
Update counter —| _|

Amount of last cale—| |

Figure 4-15. Sales statistics record layout

Structured Data Types 113

Figure 4-16. Sales update using RECORD type

{ERRRERARKAK LAKE AERA A AE REREEAAEEEEES ERESAERAREDES ALLEL HAL EASES ED De

SALESREC. PAS Sales update using a record.

This program illustrates the use of RECORD type structure
to facilitate the sales update operation.

J

Program Salesrec (input, output) ;

Const
maxcat = 10; { maximum number of categories }
width = 89; { width of screen }

Type | <---- sales stats record
declaration }

stats =
record

name
: lstring (29) ;

count
: integer;

last,
month,
quart,
year,
aver

-real;
end;

Var

sales { <---- an array of records \
-array[{1l..maxcat] of stats;

cat
:@..maxcat;

col
‘1. . width;

amount
: real;

114 Pascal Primer for the IBM PC

'Brass goods
‘Sprinkler equipment '
'** DISCONTINUED ** '

'Rubber goods
‘Insulation Ts
'Used Equipment ir
'Toilet Seats ae
'** DISCONTINUED ** '

‘Air conditioning
‘Copper Products)

sales [9] .name ;

op) jab) — iq?) n cS = =) (a>)

ee STC St St

Begin

Writeln ('Enter category and amount on one line')
Writeln (' Enter zeros to end')
Writeln;

Readln (cat, amount) ;

{

Update the category specified with the amount. Each
field is updated separately using the ". FIELDNAME" notation.

While cat <> @
Do [

sales [cat] .count :=
sales feat) eount: +1

sales [cat] .last :=
amount;

sales [cat] .month :=
sales [cat] .month + amount;

sales [cat] .quart :=
sales [cat] .quart + amount;

Structured Data Types 115

sales [cat] .year :=
sales [cat] .year + amount;

sales [cat] .aver :=
sales [cat] .month /

Float (sales [cat] . count);

Readln (cat, amount) ;

es

Writeln;
Write ('DESCRIPTION COUNT AST

Write (:! MONTH QUART YEAR!) ;

Writeln (' AVERAGE');

For col := 1 to width Do { <---- horizontal: line.
Write (chr (196))

Writeln;

For cat := 1 to maxcat Do
Writeln (sales [cat] .name : 29,

sales [cat] .count :4,
Sales: [cati. last<< 10: 2)
sales [cat] .month :10@: 2,
sales [cat] .quart :1@:2,
sales [cat] .year :10:2,
sales [cat] .aver :10:2

Figure 4-16. SALESREC. PAS Sales update using RECORD type
FOC O EOI C OCCA KICI CICA CICISSC I FIC SREI CSCC ISEIS EEA REE |

Sales Update Using a RECORD

The first thing to look at in Figure 4-16 is the TYPE statement. This
is another feature that makes Pascal a unique language. You can define
Just about any kind of structure imaginable, (and some that you can’t
imagine). Here, we have declared a data type called “stats” as a RECORD

116 Pascal Primer for the IBM PC

sales

consisting of several fields. The fields are declared following the word
RECORD. Each one is declared with its respective TYPE. First, the
“name” is declared as an LSTRING of length 20. Then the “count” is
declared as an INTEGER. Finally, the “dollars and cents” amounts are all
declared as REAL types. The RECORD declaration is terminated with an
END statement.

Now that the “stats” type has been declared, we can declare a variable
of that type. Since we know there are going to be several categories and
we will want the same information processed for each one, what better
structure than an ARRAY OF RECORDS? This is a very common data
structure in Pascal. It allows indexed processing of multiple records. It
also provides for iterative processing. So we'll declare a variable “sales” to
be an array of the “stat” type records.

Accessing Fields within a Record

A particular field that has been declared in the RECORD type “stats”
is accessible by simply appending a period and the field name to the
record name. Of course, the name “sales” refers to an ARRAY OF

RECORDS, each record representing a sales category. This means that
the particular record must be indexed before the field can be isolated.
This is done just as in any other array, by using the bracket notation “[”
and “}”. So for example, the “count” field in the fifth record would be

identified by:

[5] . count

We'll use the “category” entered as input data to index the proper
component of the array. This will also be used to terminate the data
entry if its value is zero. To guarantee a valid index, we will declare the
category as a subrange type. This will produce a runtime error if
anything outside the range 0..maxcat is entered for the category.

For this example, the category names are declared in a VALUE

statement. These could also be entered from the keyboard if so desired.

But, assuming that the category names won't change that often, we'll

hard-code them into the program. This means that if you do want to

change the category names, you will have to modify and re-compile the

program. fe

The program operation is really quite similar to our original sales

update example. The category and amount are entered for the first time

outside the WHILE structure. The program will then enter the WHILE

structure and loop there as long as the category is not equal to zero. In

Structured Data Types 117

the structure, the variable “cat” entered as the category is used to index

the array of sales statistics records. Then, each of the proper fields is

updated. The “count” is incremented (we could also use the SUCC
function for this). The current amount entered is stored in the “last_sale”

field. The “month,” “quarter,” and “year” fields are all updated. And of
course, the “average” sale is re-computed.

When a zero category is entered, the program falls out of the
WHILE structure and the array is printed. First a “heading line” is
printed (in pieces so it fits in this book). Next, a “heading underline” is
printed in a FOR statement using the alternate character set. Finally, each
of the fields is printed in the order they appear in the WRITELN
statement. Notice the formatting parameters that will control the field
size on the printout. With a little imagination, your output can take on
the look of a professional product as shown in Figure 4-17.

Figure 4-17. Output from the sales update program

KORG GOOG GK ok ok kk Kx

DESCRIPTION COUNT LAST MONTH QUART YEAR AVERAGE

Brass goods 3 2.50 17.49 17.49 17.49 D038

Sprinkler equipment 1 250. OO 250. 00 250. 00 250. 0 250. 00
** DISCONTINUED **) 0.00 0. 00 0.00 0.00 0. 00
Rubber goods 1 16.50 16.50 16.50 16.50 16.50
Insulation 3 el 2.59 2259 2.59 0. 86
Used Equipment 0 0. 0 0. 00 0.00 0. 00 0. 00
Toilet Seats 0 0.00 0. 00 0.00 0.00 0. 00
** DISCONTINUED ** 1 -9. 49 -9, 49 -9.49 -9, 49 -9. 49

Air conditioning) 0.00 0. 00 0. OO 0. OO 0. 00
Copper Products) 0.00 0. 00 0.00 0. 00 0. 00

Figure 4-17. SALESOUT. TXT Output from sales update program
ARGC GGG GGG GO OO a kak kak &

The WITH Statement

Now we are getting into the heart of Pascal's ability to manage all
sorts of different data structures. The ARRAY OF RECORDS
demonstrated in the last example will suit many simple programming
situations. As you can see, it is easy to use, once you have thought out the
requirements of the particular structure. In this section, we will see how
things can be made even easier using the WITH statement. The general
form is:

With (record_name) Do...

118 ~~ Pascal Primer for the IBM PC

Look back at the previous example (Figure 4-16). Notice how in every
instance where the ARRAY OF RECORDS is referenced, the first thing .
that appears is the indexed component of the array “sales [cat].” Then
comes the field identifier “.name,” etc. Well, it can get downright boring

having to type this same thing on every line. It also increases the chance
of a typing error. IBM Pascal has a solution for this problem. Using the
WITH statement, we need only index the component once. Then, as long

as the program remains within the structure of the WITH statement, the
fields may be referenced by their field name only.

Sales Update Using the WITH Statement

Figure 4-18 is a new version of the sales update program using the
WITH statement. Compare it to Figure 4-16 and you'll see how valuable
the WITH structure can be.

Figure 4-18. Sales update using WITH structure

GER OH ECCS CECA S COG GIGI IGCIGKOR CCCI CCAIR A RAK I AA 18K

SALESWIT. PAS
Sales Update Using WITH Structure.

This program inputs sales transaction categories and

amounts and update the sales statistics. The WITH structure
is used to simplify the array and record combination.

j
Program Saleswit (input, output) ;

Const

maxcat = 10;
width = 8@;

Type
stats =

record
name

- string (29) ;

count
: integer;

last,
month,

quart,
year,
aver

‘real;

end:

Structured Data Types 119

Var

sales
:array[l..maxcat] of stats;

cat
:@. .maxcat;

col
:1.. width;

amount
real;

Value
sales [1] .name := 'Brass goods ee
sales [2] .name := ‘Sprinkler equipment ';
sales [3] .name := '** DISCONTINUED ** ';

sales [4] .name := 'Rubber goods a
sales [5] .name := 'Insulation ie
sales [6] .name := 'Used Equipment Ue
sales [7] .name := 'Toilet Seats ue
sales [8] .name := '** DISCONTINUED ** ';

sales [9] .name := 'Air conditioning ie
sales [10].name := 'Copper Products ie

{

Main program. Input category and amount.

la
Begin

Writeln ('Enter category and amount on one line');
Writeln (' Enter zeros to end');
Writeln;

Readln (cat, amount) ;

Update the sales category using the WITH structure. In
this way, only the field names are required.

While cat <> @ Do

[
With sales [cat] Do { <---- WITH statement

[
count := count + 1;
last := amount;
month := month + amount:
quart := quart + amount; Nol

120 ~~ Pascal Primer for the IBM PC

year := year + amount;
aver := month / Float (count):
if

Readln (cat, amount):

Is

Writeln;

Write ('DESCRIPTION COUNT LAST") :

Write (@ MONTH QUART YEAR!) :

Writeln (' AVERAGE ') ;

Hor coll -=teto width Do

Write (chr (196));
Writeln;

Here again the WITH structure is used. Also notice the
formatting specifications for each of the fields.

HOLE Cate— LOnmaxcau: DO

With sales [cat] Do

Writeln (name : 20,
count :4,

ES ee eee

month : 10:2,
quart :10:2
year :10:2
aver S132))

Figure 4-18. SALESWIT. PAS Example of the WITH structure
FICC GGG AGIA CCCI GCI AIC A ARICA ACK a |

You will notice that this program looks a lot more concise. In fact, it is
smaller, both at the source code and executable levels. It is also easier to

see what’s happening by looking at the listing.
There are two places in the program where we have used the WITH

statement. The most obvious is in the WHILE structure where the actual

updating process is done. We have inserted the statement:

With sales [cat] Do

Structured Data Types 121

and then removed all other references to the array or the index for the

remainder of the WITH statement. Instead, we simply use the field

names in the processing. Now isn’t that nice?

The other place we used the WITH statement is in the section of the

program that prints out the sales statistics array. Here, we have inserted

the WITH statement in the DO clause of the FOR structure that prints

out the data. This will take care of the array indexing, giving us one
record at a time. In the balance of the statement, each of the fields in the

record is output by its name only. The formatting still applies as before.

Dynamic Allocation of Variables

Var

122

All of the data types that we have explored so far have been of a
fixed size. The size has been determined either explicitly in the
declaration, or through the use of some structured constant. When we

declare an array of 10 REAL types like this:

numbers
-array([1..10] of real;

there is no doubt that there will be exactly 10 components to the array
identified as “numbers.” The compiler sets aside the space in memory for
the array, and keeps track of that memory address in the symbol table.
Whenever the array is referenced by a statement within the program, the

compiler “knows” where the array is going to be, and can compile actual
memory addresses into the program. Variables like these are called
statically allocated. They can be considered as much a part of the program
as the instructions.

It is, however, sometimes hard to know, at the time you write the

program, just how many components will be necessary in an array. There
are program applications where the number of components can vary
greatly between different executions. For example, think of entering daily
sales transactions. Some days might be slow, and there would be only a
few transactions. On busy days, there would be more transactions.

If static allocation was the only feature available, then you would have
to be prepared to handle the “worst case” — largest number — of
transactions predicted. The various arrays would need to be declared as
large as possible without risking running out of memory. Then, most of
the me, you’d find you hadn’t used anywhere near the whole array. Of
course the real hitch is that someday the memory won’t be large enough.
If you need two or more such arrays then the problem can become very
complicated.

Pascal Primer for the IBM PC

Variables on the Heap

Pascal’s answer to this problem is dynamic allocation of variables from
an area of memory called the heap. The heap is just that... all the
memory that is not currently being used for either program instructions
or static data. At runtime, portions of the heap are allocated to those
variables that require it through the use of the procedure NEW, and de-
allocated through the use of DISPOSE. A special data type called a
pointer is used to access variables on the heap.

The Pointer Type

Since the location of these dynamically allocated variables is not
known at compile time, the standard techniques of indexing and iteration
can not be applied. The notation using brackets to select an array
component cannot be used in the usual way either. That’s where the
pointer comes into the picture. Internally, the pointer is just another 16-
bit quantity. Treated as a WORD, it represents the “offset” part of the
address of the memory location that contains the data. This pointer may
“point” to any of the 64K memory locations in the data segment. (To
learn more about the IBM PC’s memory and how to address it, see
Assembly Language Primer for the IBM PC and XT, by Robert Lafore, (New

York: Plume/Waite, New American Library, 1984).
The small program shown in Figure 4-19 will give you the basic

picture of how pointers work. The program will input names of no more
than 10 characters in length, and allocate part of the heap to store them,
until the word “end” is entered.

Figure 4-19. Example of POINTERs and the HEAP

(RRR RRR RRR RK ko ko AK oR KK

l .

DYNA. PAS Dynamic name entry program.

This program illustrates the use of POINTER types and

dynamic allocation of variables on the HEAP.

j ;

Program Dyna (input, output) ;

Type

- name = Istring(19) ; { <---- first declare the type }

Var |

CUTE pir | <---- then declare pointer

“name;

entry
name;

Structured Data Types 123

Main program. Names of up to 1 characters can be

entered until your system runs out of space on the HEAP.

Writeln ('Enter names forever') ;

Readln (entry) ;

Use the NEW procedure to define a new pointer value.

Display the pointer value and then assign the variable.

While entry <> 'end' Do

[
New (curr_ptr) ;

Writeln (curr_ptr) ;
curr_ptr’ := entry;

Readln (entry) ;

ie

Figure 4-19. DYNA. PAS Example of POINTERS and the HEAP
FESS CCI AGS ACCS TCR CGI AACR CIC AACR ICCA A A CR A 9 |

124

The actual array that will contain the names is not explicitly declared
anywhere in a VAR statement. Instead, we define the type “name” to be
LSTRING type of length 10. Now, we can use “name” as a “type clause”
in the VAR declaration.

The pointer is declared with the identifier “curr_ptr.” Notice the carat
(*); it is the notation for declaring a pointer. The (“) is followed with the

type of data to which it will point. In this case, it will be pointing to a
variable of type “name,” which is really an LSTRING(10). The pointer is
only capable of pointing to one name at a time.

The last variable declaration is for the input name. We'll simply call it
“entry” and also declare it to be of type “name.”

The NEW Procedure

In the body of the program, the WHILE structure will keep the
program looping as long as the name that is entered is not “end.” The
first thing that happens in the loop is a call to the procedure NEW. This

Pascal Primer for the IBM PC

procedure is part of Pascal’s runtime memory management utilities. The
parameter passed to the procedure is our pointer “curr_ptr.” Remember,
we've informed the compiler of the type of data the “curr_ptr” points to,
namely the LSTRING(10) type.

When we call the NEW procedure, it knows how many bytes to
allocate for the dynamic variable. That’s because we declared “curr_ptr”
as a pointer to an LSTRING(10) type. The compiler knows that an
LSTRING(10) will need 11 bytes of memory (one byte for the length).
NEW first checks to see if there are enough bytes remaining in the heap
to make the allocation. Assuming there is sufficient memory available in
the heap, the NEW procedure assigns the next available memory address
to the pointer “curr_ptr.” For illustration’s sake, we print out the value of
the pointer right after the NEW procedure.

Then, the name that was just entered is simply assigned to the new
variable location on the heap. The notation here involves the (*) again,
this time after the identifier. Here it means to assign the value in “entry”
to the location in memory specified by the value of the pointer. Finally,
we keep the loop going with another READLN statement.

If you just hold down the key, you will see the program run in
automatic. It will keep allocating space on the heap for each LSTRING
type, even though no characters are entered. If you hold down the
key long enough, the program will run out of heap, and an error
message will be displayed.

There seems to be one little difficulty though. Every time we call the
NEW procedure, it assigns a different value to the pointer, destroying the
original value and losing the address of the previous name. What we
need to do is establish some kind of continuity throughout the list of
names.

Linked List Structure

The linked list concept can be used in many situations and with many
programming languages. It is used whenever a series of components in a
structure are not physically contiguous. The main feature of a linked list

is that each component carries a pointer to the next component in the

list. The pointer in the last component will take on the unique value NIL.

(NIL is a special pointer value that means “not pointing to anything” or

“pointer not used.”)

With a linked list, the physical arrangement of the list components in

the computer's memory is immaterial. They can be scattered all around

in memory, as long as each one “knows” where the next one is, and the

last one “knows” that it is last. Figure 4-20 shows a graphic

representation of a linked list.

Structured Data Types 125

Example Using a Linked List

The example program “Namelist,’ shown in Figure 4-21, illustrates
how to create a linked list, and how to print it. Notice the similarities and
differences between handling a statically allocated array, like the ones in
the previous examples, and handling the dynamically allocated linked list.

Figure 4-21. Example of a linked list

NE A RR oR EK A 6 oe A A a I RR Ke RO eA RK Aa ak A tot

NAMELIST. PAS Linked List Demonstration Program.

This program demonstrates the technique of building a
linked list structure on the HEAP.

Program Namelist (input, output) ;

Type

name_fld = lstring(1@); {| <---- declare the type

Un-used byte for
Length byte even Bpoeay

“btetat tt ttt tiny,
| tbletafifn] [i fils|t fil unk

PET [rae
Ee dmpiftfeph] iil evi |

TELS TERI // TTT
tfofefef ft ——fiffoset

l Last component has
link value of NIL

ie fli ey lee a (RCA

Figure 4-20. Diagram of a linked list

126 Pascal Primer for the IBM PC

name_ptr’ = name_rec; { <---- declare the pointer

name_rec = record | <---- declare list element
name :name_f 1d;
next :name_ptr;

end;

Var ‘
jig BCA Oed Oh Oe aot { <---- working pointers
CULL

:name_ptr;
entry

-name_f 1d,

Main program. Set up the anchor record for the list.

Begin

New (first_ptr) ;
first_ptr*.name := 'Begin list';
Cirstptr*snext i= nl;
Cur pire = Tirstptr;

Input the names. Get a NEW pointer each time, and
display it on the screen.

Writeln ('Enter names or end');

Readln (entry) ;

While entry <> 'end' Do

[
With curr_ptr’ Do

[
New (next) ;
curr_ptr := next;

le
Writeln (curr_ptr) ;

Structured Data Types 127

With curr_ptr’ Do

[
name := entry;

Nextar=anue

it

Readln (entry);

lh

Curr ptr == LITst=pir;

While curr_ptr <> nil Do

|
With curr_ptr’ Do

[
Writeln (name) ;
CUrreDir 2 Next:

ie

Figure 4-21 NAMELIST. PAS Example of a linked list
HAR RRR KR RR KK RK RRR KKK AKA KK KKK RR KKK KKK KKK KKK ARK KKK K KF |

In the Namelist program, we define a data type called “name_ptx.”
This is our pointer type, and will point to a data type of “name_rec.”
Note how the (*) is used before the identifier in the type statement. Next,

“name_rec” is defined as a RECORD type consisting of two fields. The
first field is the name itself. he second field is another pointer, built
right into the record. It is this pointer “next” that will point to the next
record in the linked list structure. If there is no next record, the value of
the pointer should be NIL.

Then we get down to declaring variables. Two pointers will be used in
this program. The “first_ptr” will always contain the address of the first
record in the list. We’re going to use a list anchor record as this first
record. It’s a “dummy” record that will point to the real first record.

128 Pascal Primer for the IBM PC

(We'll explain more about this later.) The other pointer is called “curr
ptr,” and will be our general processing pointer.

The program begins by initializing the anchor record. A new heap
address is assigned to “first_ptr” by the NEW procedure. The next two
statements illustrate how a field within the newly-allocated record can be
accessed. It works just like any other record. The caret (*) is used to
indicate that the pointer itself is not being operated upon here. Rather,
the contents of the memory location it points to are being operated upon.
The field identifier simply follows the “.” after the pointer. The anchor
record is given the dummy name “Begin list” and a next pointer value of
NIL indicating that there are no further records in the list (yet). Finally,
“curr_ptr” is assigned the value of “first_ptr,” and we are ready to create
as many name records as will fit in memory.

Notice how we have simplified the identifer names using the WITH
statement. We can refer to the dynamically allocated record using the
pointer name followed by the caret (), just as if it were a RECORD
name. In the first WITH statement, a new pointer is assigned to the

current (anchor record) record’s link, overlaying the old NIL value. Then,
that new pointer is assigned to “curr_ptr,” and we print it out for fun.

Since we have a new value in “curr_ptr” we can again use the WITH
structure to assign the “entry” name to the “name” field in the newly
allocated record. Of course, its link pointer is assigned the value NIL to
indicate that it is the last record in the list. And we read the next name,

ClCs.
Upon entering “end,” the program will leave the WHILE structure

and reset the “curr_ptr” to the original “first_ptr” value and begin
printing the list. Again using the WITH statement to isolate one record
in the list (using the pointer), we can refer only to the field names ‘in the

processing. The “curr_ptr” is re-assigned each time through the loop
with the value of the link pointer in each record. In this way, the entire
list is traversed with relatively few statements.

The SET Type

It is often useful to have a data structure that defines a collection of

several logically related components. In other languages such as BASIC,

we would probably use an array structure of some sort. In Pascal, we can

use the SET type.
The number of members in a SET cannot exceed 255. The SET type

and the operators that are associated with SETs are based on the

mathematical concept of finite sets. We show SET's and SET operators in

Figure 4-22.

Structured Data Types 129

SET Operators

There are many mathematical operations that can be performed on

SETs, but we will only be concerned with the three SET operations that
are supported by Pascal. They are:

SET Union (denoted by “+” operator). For example,

Sep.3) = Serb qe

creates “set_3”, a combination of all the members in both “set_1” and

“sete 2

Set Union

Set_]

Set Intersection

Set_]

Set Membership
Set_l

Figure 4-22. Graphic representation of SETs

130 = Pascal Primer for the IBM PC

SET Intersection (denoted by “*” operator). For example,

Sei=3--= Set_l * set 2:

creates “set_3”, of those members which are common to both “set_1” and
(7 OQ”

seta?”

SE'T’ membership (denoted by “in”). For example,

If member in set_l Then...

results in a Boolean evaluation TRUE if “member” is in “set_1,” and
FALSE if it is not in the set.

A SET variable can also be thought of as an ARRAY OF BOOLEAN
values, one for each of the members of the set. If a particular member
actually is in the set, then the corresponding component of the array is

TRUE. Otherwise, the component indexed by that member is FALSE.

Declaring SET Types

When declaring a SET, it is necessary to specify the base type of the
members of the set. The base type must be an ordinal type such as:

CHAR <—— for characters
(Rr-ary) <— for integers
WS y2, Zi <— for any enumerated type

A constant set is declared as a list of values, separated by commas,
between brackets “[” and “]”. For example:

vowels RA Ne. wu moe enh i:

One particular set can contain no members at all: it’s called the “null set.”

The null set is indicated by empty brackets “[]” and is considered a

member of every set.

Example Using a SET

Figure 4-23 is a Pascal program that performs simple calculations

similar to a four-function calculator. To perform a calculation, the user

simply enters an arithmetic expression consisting of numeric digits and

operators.

Structured Data Types 131

Figure 4-23. Example using SETs

RRR RRR RK KKK KK KR KK KK RR RR RR RR KK ROKK KK RR KKK KEK KK KK

INTCALC. PAS Integer Calculator Program.

This program operates like a four-function calculator.
Type any integer expression using the digits 0-9 and the
operators + - * /. Press ENTER at the end of the expression,
and the program will display the resulting evaluation.

Program Intcale (input, output) ;

Var
char_in, { character from input
last_op { last operation !

char;

operators { valid operations \
:set of char;

digitval, { value of digit just read }
currnum, { current value being read }
prevnum, { previously read value \

: integer;

oper in, { true if char_in is an operator }
digitin, { trhueif charsin is a digit }

invalid, { true if char_in is invalid |
: boolean;

Initialize the set "operators" to contain only the
four arithmetic operators.

Value
Operators. =" ae eee ee ht

Main program. Enter the expression and press ENTER.
Lai ees idl Set RE Ss aha Ne ie og re

Begin

Repeat { until end of data }

Writeln (‘Enter calculation') ;
currnum := Q; | no previous values |

132 Pascal Primer for the IBM PC

prevnum := @;
lastop <= ‘+': { start with '+! |

If Eof Then Break; | done if no more data }

While not (eoln or invalid) Do

[
Read (char_in); {, get next character from input }

digitin := (char_in >= '@')
and

(chare tne 292):

operin := char_in in operators;

invalid := not (digitin or operin);

If digitin
Then | { convert to integer |

digitval := Ord(char_in) - Ord('@');
currnum := 10*currnum + digitval;

1

If eoln or operin Then
Case last_op of

'+': prevnum :

'-': prevnum :

ri prevnunr

Ler preva «

end;

prevnum + currnum;
prevnum - currnum;
prevnum * currnum;

prevnum Div currnum; eh

If operin
Then [{ setup another operator }

currnum := Q;
lastiopie = char in;

bi

le { while not (eoln or invalid) }

Structured Data Types 133

If invalid
Then Writeln ('Unrecognized character ')
Else Writeln ('Result is ',prevnum) ;

If eoln
Then Read (char_in)

Else ReadIn;

Until false; { loop until break executed

Ende eanicalicn:

Figure 4-22. INTCALC. PAS Example using SETs
FOGGIA CAC IAC RG ACA ICA CC A AK # |

Only integers may be used and an operator must be placed between
each pair of integers. For example, a calculation might be typed as:

foro *2

Or aS

125-86 + 2101/5718

All calculations are done left to right and “/” refers to integer division.
The only valid characters are the digits “0” thru “9,” and the operators,

Sp” and “7”. Any other character will cause an error message to

be displayed.
The SET variable “operators” is used to define the set of valid

operators that may be entered. The base type of this set is declared as
CHAR, so any character is a potential member. However, in the VALUE
section of the program, “operators” is assigned to be the SET declared
as:

| WE Healt DE a wi

134 Pascal Primer for the IBM PC

operin

operin
operin
operin
operin

Repeat
*

If Eof Then Break;
x

Thus, although the SET variable operators may contain any collection of
characters, it actually contains just the four characters that indicate the
valid operations for the integer calculator.

The BOOLEAN variable “operin” is set TRUE if “char_in” is a valid
operator, by the statement:

:= (char_in In operators);

This could also have been accomplished with the statement:

ESA Geimatia
cu ienaretn==
(=. (chanel ie=

chan ane

woily

ot)

Wx)

Ufa is

or

or

or

However, using a SET makes it easier to specify and to change if more
operators are wanted. Imagine how long the second statement would be
if the program allowed 10 different operators instead of only 4.

The heart of the program is a WHILE...DO structure that inputs
each character one at a time, until either the whole line is read
(EOLN = TRUE), or an invalid character is found. The BOOLEAN

variables “digitin” and “operin” are set according to the results of
evaluating the set operator IN. Any other character will cause “invalid” to
be TRUE which in turn terminates processing of the calculation and
displays an error message.

If the character entered is a digit, then the value of “curr_num” ts

increased. For example, if “2,” “3,” and “4” are found on three
consecutive passes through the loop, then “curr_num” will have the value
2, 23, and 234 respectively at the end of each pass. When an operator is
found, then “curr_num” has reached its final value, and it is combined
with any previous value “prev_num,” using the previous operator, “last-
op.” The result is saved in “prev_num” and the operator just found is
saved as “last-op” until the next number is typed in and “curr_num” will
get a new value. When the end of line is reached, the final calculation is
done, the loop is terminated, and the result displayed.

The main body of the program is contained a large loop:

* *

x x

Until False;

Structured Data Types 135

This causes the program to repeat indefinitely. The only way to stop the

program is by typing the end-of-file character (Ctrl) Z) when it asks for

another calculation. As always, a C can also be used to terminate

the program.

Summary

Now that we have finished our discussion of structured data types,

you are equipped with many of the tools that you will require to write
some wonderful Pascal programs. You can see that Pascal is perfect for
any application that requires flexible control over its data. The structured
types ARRAY and RECORD will be used quite frequently as we get
deeper into programming in Pascal.

See SS a Ee ea Ee

Exercises

1. What is the difference between ARRAYS and RECORDS?

2. When is it useful to consider STRINGs and LSTRINGs as arrays?

3. What are the advantages of using dynamic variables and pointers?

Use the following program segment to answer the questions 4, 5,

and 6.

type

str5@ = Istring (50);
people = (Bob, Ted, Carol, Alice, Jose)
group = set of people;

var
last_name :array [people] of str5Q;
leader ‘record

who people;
followers : group;

end;

4. Write the expression for Alice’s last name.

5. Write the expression for the leader’s name.

ee: Write the assignment statement for making everyone except Carol
followers of the leader.

136 ~~ Pascal Primer for the IBM PC

Solutions

1. ARRAYS are indexed by integers or enumerated variables; every
data element of the array is the same type. RECORDS have separate
names for each element; different types of data can be combined in a
single record.

2. When individual characters are needed in the middle of a STRING

or LSTRING, it is best to consider them as arrays.

3. When using dynamic variables and pointers, the maximum
number of items does not have to be known in advance. Also, powerful
data structures, such as linked lists, can be built and manipulated.

4. last_name [Alice]

5. last_name [leader.who]

6. leader.followers : =[Bob, Ted, Alice, Jose];

Structured Data Types 137

SS .
~~ { | 7.) 7? “Vv ae

'
Le 1 7 er

409), ‘Sue vbbstrieresl ¢

; anaes
3 de 2 a) 1 Gee iva pnd oat sA\9 a)
a ; = pms i Pat tend pat a ih iis? Sc he i 7

shale lanage wane lle is geek etbgy eae winatpooe ¢
ewes ‘.. 3a far dh 4? A Ol ae Ie wary pot pieiastaioce - : ee ee

nak ey irre wy * + (tte es —
tendo ind Ae

2

Ae _ i a i o>

~

: + hae ©

7
=

_ a

_ Zz “9 oz .
7

; “ee oe =

cm © °

i: us ®

:

7
= it

=) :
joie > @ =

7 ; ——s : ae Se

eg

- i
a

-

lt HOH | DS

2

= oi) a an!

; >» &" ee 4

‘ iy Ble
7 ae

es

~ Paw = 4 1 oy erey .a
r

Functions and Procedures

Concepts
When to use a function or procedure
Pre-declared functions and procedures
Local and external routines
Program segments
Address type variables
Referencing a memory location
The monochrome display buffer
The stack
Parameters and calling conventions
Characters and attributes
Linking assembly language and Pascal
Input/Output ports
The sound chip
Cursor positioning and location

Keywords
FUNCTION, PROCEDURE, RETURN, EXTERNAL, PUBLIC,
$INCLUDE, ADR, ADS

A function or procedure can be thought of as a little program in
itself. Often referred to as routines, they usually have a specific job to do,
and are generally part of a larger process that may contain several
functions and procedures. We have been using them all along in this
book, without making a point of it. For instance, in some of our earliest
example programs we used the WRD function to change between
INTEGER and WORD types. We also talked about the SQR and SORT
functions for squaring a number and finding its square root. In every
chapter we’ve used the READLN and WRITELN procedures to
accomplish input and output. Now we'll explore the general form of
functions and procedures.

139

Function or Procedure

140

The first thing we have to do is decide where and when to use a

function or procedure. If a particular process meets any of the conditions

described below, you’d be wise to use a function or procedure.

ledthe,process.is,to, be.applied.to,severaleditterentv»
»program variables.°(Think of the usefulness of the SQR
function.)

m. (Remember READLN and WRITELN.)

3. The process will be used by more than one program. —

nction
useful in many

applications. The SQR function, for example, can be useful in many
programs, and perhaps many times within one program.

If the program needs to execute some process at more than one point
in the flow, then a function or procedure will provide a more concise
program structure. If a process is only used once in a program, then it

makes little sense to go through the extra steps to make that process a
function or procedure. The program statements for the process should
simply be coded into the main program at the point where the process is
to be done.

When to Use a Function

The choice between function or procedure is predicated upon one
fact: The FUNCTION returnssavalue»Functions are usually involved in
assignment statements. An example of this is the TRUNC function,
which truncates a REAL type by dropping the fractional part to the right
of the decimal point. The resulting value is returned as an INTEGER
type, and is temporarily identified by the function name itself. Figure 5-1
is an example of the use of the TRUNC function.

Notice the assignment statement that invokes the TRUNC function.
The identifier within the parentheses of the TRUNC function is called a
parameter of the function. In this case, it is a REAL type that is to be
truncated to an INTEGER type. The value resulting from execution of
the function is temporarily accessible through the use of the function
name itself. It can therefore be used like a variable identifier in the

Pascal Primer for the IBM PC

assignment statement. The truncated value is assigned to the INTEGER
variable “whole_part,” which is then printed.

Generally, a function does not alter any other data elements. It should
simply take the parameter within the parentheses, perform its process,
and return the resulting value for further processing by the program.

for a procedure.

Figure 5-1. REAL to INTEGER conversion

PEARS GC IC GAAS TCG CCCI TGR KK AK

TRUNCER. PAS TRUNC function demo program

This program illustrates the use of the TRUNCate
function to convert REAL type data into INTEGER type.

j

Program Truncer (input, output) ;

var

real number real;
whole_part : integer;

Begin
Writeln ('Enter a real nunber') ;
Writeln ('The whole part will be returned');
Readln (real_number) ;

While real number <> 0.0 Do

whole part := Trunc (real number) ;
Writeln (whole part) ;

Readln (real_number) ;

Figure 5-1 TRUNCER. PAS REAL to INTEGER Conversion.
FOGG ORO ORIG AICI CIGAR AA KAA RK AK

When to Use a Procedure

AlLcan

alter many data elements. The returned value can be accessed directly,

rather than only by the name of the function. A procedure can involve

the use of other procedures or functions.

Procedures are invoked by the appearance of their identifier in a

Functions and Procedures 141

Face statement. The identifier is then followed by a list of the

. Two procedures we should be very

familiar with by now are READLN and WRITELN. The parameter list

for these two procedures contains the data elements to be input or

output.

Predeclared Functions and Procedures

All the functions and procedures we’ve encountered so far have been

predeclared. Vhat is, the nature of their operation has been built into the

Pascal compiler. All you have to do is mention their names and the

compiler knows what to do. In some cases, the compiler just generates
code to be inserted at the point of the call to the function or procedure.
In other cases, the compiler sets up the calling sequence for those

predeclared functions and procedures. We will discuss this in more detail
later in this chapter.

Local Functions and Procedures

There are other types of functions and procedures which the
compiler doesn’t know about automatically. They are most commonly
declared within a program and used by that program and none other. A
function or procedure has a structure that is similar to overall program
structure. Remember: We said they were like little programs. Well, that’s
just the way the compiler treats them. The compiler wants all functions
and procedures to be declared before the BEGIN statement in the main

$e .

Functions and procedures may also be EXTERNAL. But let's not
worry about that until we’ve worked through a simple example using a
function and a procedure.

Example Using a Function and Procedure

142

The program shown in Figure 5-2 uses both a function and a
procedure. It should be a useful utility program for your IBM PC,
especially if you ever need a quick way to convert numbers from
hexadecimal to decimal. (If you are unfamiliar with the hexadecimal
numbering system, now would be a good time to read about it in the
Appendix.)

The program’s name is HEXEDIT, and its task is to get and put
values represented in hexadecimal. “Get” means to take ASCII
hexadecimal characters entered from the keyboard or elsewhere and
decode them into a 16-bit WORD type. “Put” means to take a 16-bit

Pascal Primer for the IBM PC

WORD type and encode it into ASCII characters, generally to be output
to the video display.

We will be using the function and the procedure defined in this
program for some more exciting applications later on in this chapter. For
now, we'll use this program to study a new function and a new
procedure.

Figure 5-2. Hexadecimal editing program

Wititttttttit tel ttee ete e eee eee Tee te Pte Te Peete Te Set ET eS

HEXEDIT. PAS Hexadecimal editing program

This program demonstrates the use of a FUNCTION and a
PROCEDURE to perform hexadecimal editing.

Program Hexedit (input, output) ;

Var | for main program }
hex string : lstring (4) ;
word val : word;
mode scnar:

This function takes a character string, and returns a
16-bit WORD type value.

Const
hex_chars = '@123456789abcdef' ;
hex_size = 16;

Var

digits,
pos : integer;
one_char vehars
hex_tot,
hex_val : word;

Begin
hex tot := 9; |

digits := Ord (chars.len); { convert length byte to an integer j;

Functions and Procedures 143

Convert one character at a time using the table of hex

characters.

For pos := 1 to digits Do {loop through each character in Istring |}

[
one_char := chars [pos];
hex val := Wrd (Scaneq (hex_size, one_char, hex_chars, 1));

If hex_val = hex_size Then

[
Writeln ('Invalid character in position ', pos);
Return;

Now, scale the value based upon the character's position
in the string.

Case (digits - pos) of
ile hex val := hex_val * 16;
OK hex_val := hex_val * 256;
3: hex_val := hex_val * 4996;
Otherwise;

end;

hex tot := hex_tot + hex val;

J;

Finally, assign the accumulated value to the function
identifier name to be returned to the caller.

Gethex := hex_tot;

End; | {| end of GETHEX

This procedure takes a 16-bit WORD type and converts it
into a string of 4 ASCII characters which represent the
hexadecimal value of the WORD.

Procedure Puthex (word _val:word; Var chars: lstring) ;

144 Pascal Primer for the IBM PC

Const
hex_chars = '0123456789abcdef ';

Var

pos : integer;
hex_val word;

Begin ,

Compute the hex character for each position in the 16-bit
word value.

For pos := 1 to 4 Do

[
Case pos of

te [

hex_val := word val Div 4996;
word val := word_val mod 4096;
J;

2: [

hex_val := word val Div 256;
word_val := word_val mod 256;

ie
oe [

hex_val := word_val Div 16;
word_val := word_val mod 16;

Ie
4: [

hex_val := word_val;
word val := @;

I;
end;

chars [pos] := hex_chars [hex val + 1];

lke

chars 0] <= ehr (4); { <---- set Istring length. }

end; | end of PUTHEX }

Repeat
Write ('Get or Put (g/p) ');
Readln (mode) ;

Functions and Procedures 145

In the GET mode, input a string of characters and use the
GETHEX function to produce the 16-bit value.

Case mode of
ote [

Writeln ('Enter hex values');
Readin (hex_string) ;
While hex string. len > @ Do

[
word val := Gethex (hex string) ;
Writeln (word_val);
Readln (hex string) ;

ile

In the PUT mode, input a decimal value, and use the PUTHEX
procedure to convert it into hexadecimal form.

Writeln ('Enter decimal values’);
Readln (word val) ;
While word val > @ Do

[
Puthex (word_val, hex_string);
Writeln (hex string) ;
ReadIn (word_val) ;
iis

le

Otherwise;
end;

Write (‘Continue (y/n) '); Readln (mode) ;
Until mode = 'n';

Figure 5-2 HEXEDIT. PAS Hexadecimal Editing Progran.
PERE EA RIE ABE A RRR RR REE ATT ta Si cere tan ern Ae ae eal

146 Pascal Primer for the IBM PC

The GETHEX Function

Thegempart of the program shown in’ Figure-5-2.decodes.an.
LS TRING of up'to4 characters representing a 4-digit/hexadecimalvalue»
such. aSelb3es7fffeor2en The get is done by the function GETHEX, which
returns a value of type WORD. It has one parameter which is given the
formal name “chars.” This will be the input to the function. “Chars” is an
LSTRING type that will contain the characters representing the
hexadecimal value.

The main job in this function occurs in the FOR structure, where
each character in the input LSTRING is analyzed.

We use the IBM string function SCANEQ to locate the character in P ; Sam

“hex_chars.” This position is returned as an INTEGER type, which we
immediately change to WORD type using the WRD function. The
variable “hex_val” will then contain a value ranging from 0) to 15, unless
the character is not found in “hex_chars.” In that situation, the value

returned would be 16, and an error would be detected.

This test for validity is performed in one IF structure. A message is
displayed on the screen indicating that there is an invalid character in a
given position. Notice the RETURN statement here. This terminates
further execution of the GETHEX function, and returns to the main

program, at the point where the function was called.
The next step in the GETHEX function is to scale the hexadecimal

digit according to its position from the right in the hexadecimal value.
This is done using a CASE structure. The case index is derived from the
difference between the total number of digits and the current position
being processed.

The last step in the FOR structure is to accumulate the value for the
current position by adding it to the total “hex_tot.” After all of the
characters in the source LSTRING have been processed, the
accumulated total in “hex_tot” is assigned to the identifier name
“Gethex,” and the function returns to the calling program.

Notice that the only value coming out of the GETHEX function is at
the end, where it is assigned to the function identifier. Also, there are no

other alterations to memory outside of the function itself. This makes

GETHEX a pure function. It has all of its indexing variables built in, and

even has its own LSTRING of hexadecimal characters.

There’s one last thing to look at in GETHEX. In the FUNCTION

heading we see a VAR declaration for “chars.” This is called a formal

reference parameter. It means that when the function is called, “chars” will

contain the location of the LSTRING to be processed, not the LSTRING

itself. (Later in this chapter we will discuss calling conventions for

Functions and Procedures 147

functions and procedures; that is, how the calling program

communicates with the function or procedure.)

The PUTHEX Procedure

The procedure PUTHEX works in an exactly opposite way than
GETHEX. PUTHEX takes a 16-bit value and encodes it into 4 ASCII
characters in an LSTRING type. For each hexadecimal position, the
input value “word_val” is divided by the appropriate position scaler. This
integer division truncates the fractional part of the quotient..

The division for each hexadecimal place is performed in a CASE
structure within a FOR structure. At the end of the FOR structure, the

proper character is located in the “hex_chars” LSTRING and assigned to

the output LSTRING “chars” in the corresponding position. Finally,
outside of the FOR structure, the length byte (position 0) of “chars” is set
to four since there are four characters in the LSTRING.

The HEXEDIT Program

Now that we have declared all of the work to be done by this editing
program, we can declare the program flow itself. This is a demonstration
program, so we'll allow you to select whether to get or put. Another
CASE structure will control the mode until you enter a value of zero.
Then you will be given an option whether or not to continue.

Notice how concise this makes the main program. By putting all the
“number-crunching” activity in the function and procedure, we can write
a main program that is easy to understand. HEXEDIT also demonstrates
the fact that functions return just one value, while procedures can alter

several values.

Program Segmenting

148

How could we use the GETHEX and PUTHEX routines in some
other program? Our present example has the routines embedded in the
code for the main program, but it can be done differently.

There are several ways to go about making Pascal programs available
to more than one application. One way of hooking programs, functions,
and procedures together is called program segmenting, and it happens at
the source code level.

We can use our word processor or other editor to strip out the
GETHEX function and the PUTHEX procedure from our
demonstration program HEXEDIT. We'll put each into its own file and
call them GETHEX.PAS and PUTHEX.PAS respectively. We can use

Pascal Primer for the IBM PC

either or both of these routines by using one of the the IBM Pascal
compiler’s metacommands. The command we’ll want to use is called
$INCLUDE. It works quite simply; the general syntax is:

(sinclude: 'filename' }

Notice that the entire command is enclosed with the braces that normally
signify a comment. When the first character of the comment is a dollar
sign ($), the compiler interprets the comment as a metacommand. This
metacommand tells the compiler to find the file named “filename,” read
and compile source statements from it until the end of file is reached, and
then resume compilation from the original file.

So, we can $INCLUDE the GETHEX and PUTHEX routines in any
compilation using the metacommand

($include: 'gethex.pas'}

and/or,

{$include: 'puthex. pas'}

Now that we have such useful tools to edit hexadecimal notation, we

can use them to create still other tools.

External Routines

As we mentioned previously, sometimes functions and procedures
may be declared EXTERNAL. When they are, only the heading 1s
declared with the word “EXTERNAL?” following it. These external
functions and procedures reside either in the Pascal library file,

PASCAL.LIB, or as distinct object (OBJ) files that can be linked into the
final program by the linker. They are called EXTERNAL functions and
procedures because they are external to the main program. We will use
them quite a bit in our sections on color graphics (in Chapter 7, “Systems

of Programs”).
IBM Pascal supplies several EXTERNAL routines to provide low-level

access to the system. Included are procedures to find out the date and

time and a function to directly access the PC-DOS.

Example of an EXTERNAL Function

Let’s look at a function that the IBM manual almost ignores entirely:

the DOSXQQ function. This EXTERNAL function allows limited access

to the operating system, PC-DOS.

Functions and Procedures

The operating system is a group of routines that handle all input and

output for programs. When a program is running, it usually performs all

the data transfers for input/output by calling the operating system. DOS

calls are inherently low-level and involve the registers inside the 8088 chip

used by the IBM-PC.
To use any EXTERNAL function or procedure we must tell the

compiler about it. We do this by declaring the routine’s name and
parameters as usual; then, instead of any further declarations or body, we

simply use the word “EXTERNAL.” For example, the DOSXQQ function
is declared with the statements:

Function dosxqq (dosnum: Byte; dxreq: Word): Byte; External;

There are over 80 DOS calls for the PC-DOS and the first argument
indicates which of these you want. The second argument becomes the
value of the DX register before calling the DOS. The function returns
the value of the AL register after the call. Each DOS call uses these
registers of the 8088 chip differently. Some calls also return values in the
CX and DX registers. These values can be obtained by using two
EXTERNAL variables, CRCXQQ and CRDXQQ, respectively.

One DOS call that may be helpful to you is the keyboard input
function. This is DOS call number one and requires no registers except
AL in which it returns the byte corresponding to the character typed on
the keyboard. This can be accomplished with a statement such as:

ch := chr (dosxqq (1,9));

Notice the CHR function is needed to convert the BYTE value returned
by DOSXQQ into a Pascal CHAR type. This might be used to write a
program that performs some task on a single keystroke rather than
waiting until the key is pressed.

If you are interested in learning more about DOS calls and their use
you should read the IBM PC-DOS manual or DOS Primer for the IBM PC
and XT by Mitchell Waite, John Angermeyer, and Mark Noble (New York:
Plume/Waite, New American Library, 1984), another book in this series.

Since some calls require more registers than AL, CX, and DX you
might consider writing your own Pascal function to call the DOS. If you
are considering that approach we would highly,recommend the Waite
Group book Assembly Language Primer for the IBM PC and XT by Robert
Lafore (New York: Plume/Waite, New American Library, 1984).

150 ~—— Pascal Primer for the IBM PC

ADDRESS Types

There is still a data type that we have not covered. IBM considers the
ADDRESS type as a structured type, probably because it can be treated
like a RECORD with one or two fields, and can be used like a pointer.
The purpose of the ADDRESS type is to provide Pascal with access to
any location in the megabyte address space of the IBM PC.

Specifying ADDRESSes

We should explain how addresses are specified in the 8088
microprocessor that is used in the IBM PC. This microprocessor can
address one megabyte of memory, which is 1,048,576 bytes. This
number, expressed in hexadecimal, is fffff, or five hexadecimal digits.

However, the registers (internal data processing elements) in the 8088 can

only accommodate four hexadecimal digits; that is, numbers up to ffff.
Each address must therefore be represented in the 8088’s internal
registers by two four-digit hexadecimal numbers. The first of these
numbers ts called the segment address, and the second is called the relative
address.

These two four-digit numbers are combined in an interesting way to
yield the necessary five-digit hexadecimal address. The segment address
is multiplied by sixteen. This is the same as shifting the number one
hexadecimal place to the left. The relative address is then added to the
result.

For example, a segment address of b123 and a relative address of
4000 (both in hexadecimal) would be combined this way to yield the
absolute address:

b123 times 10 = b1230

+ 4000

b5230

This segment:relative form must be used whenever we want to

specify an address in the IBM PC.

Using ADDRESS Type Variables

As we will see demonstrated in the next section, the ADDRESS type

variable “location” can be used to access the actual memory location

specified. This variable is declared in the function’s own VAR statement.

Variables declared inside the function are only available to that function

unless they are declared PUBLIC. In general, that’s the way we want it.

There are two varieties of the ADDRESS type variable.

Functions and Procedures 151

Var

ADR OF (some type) 16-bit relative offset.

ADS OF (some type) 16-bit segment address, plus
16-bit relative offset.

The ADR type provides only the relative offset part of the address, using
whatever segment is currently in use. The ADS type provides both the
segment and the relative parts of the actual memory location.

This type of variable — ADR or ADS — can be thought of as a
pointer. It “points” to an actual memory location just like pointers do,
and it may be used to reference a memory location. (By “reference” we
mean to get the value that is stored at the memory location.) The

compiler will need to know what type of data is stored at the address
being referenced. That’s why the full type declaration might look like
this.

start ‘adr of array[1..19@] of integer;
current :adr of integer;
buffer :ads of char;

As you can see, there are as many different address declarations as there
are types.

The ADS type can be treated just as if it were a record. The segment
and relative parts of the address can be denoted with the record notation
using a period followed by the field name.

Developing PEEK and POKE for Pascal

152

Two tools familiar to most BASIC programmers, but painfully absent
from the Pascal language, are PEEK and POKE. These BASIC routines
directly access any memory location by its address. Now we have
everything we need to create Pascal equivalents of PEEK and POKE.

The PEEK Function

The PEEK operation allows us to literally “peek” at a given byte in
memory to see what binary value is stored there. This value could be a
character, or part of some numeric data, or even part of a program

instruction. Generally, if you know where to peek, you will know what to
expect there. Usually, we will want to assign the byte value that we peek

Pascal Primer for the IBM PC

at to some variable identifier within our program. That’s why PEEK
should be a function, since it will return a value.

Here is how our PEEK function might be used in a program:

There are two parameters for PEEK. The first is the 16-bit segment
address and the second is the 16-bit relative offset part of the address to
peek into. Both of these must be supplied by the calling program. The
function will return an 8-bit value. Figure 5-3 shows the source code for
the PEEK function.

Figure 5-3. Memory PEEK function

ACSC OCCA ASIOOCCSIICISISRICIC IGARCICICIICIAICCAC RA

PEEK. PAS Memory peek function.

This function simulates the operation of the BASIC PEEK
command. It returns the 8-bit byte value of the memory location
specified by the segment and relative address passed as parameters.

j
Function Peek (seg, rel :word) : byte;

Var
location | <---- address type variable |

:ads of byte;

Begin
location.s := seg;
location.r <= rel;
Peek := location’;

end;

Figure 5-3 PEEK. PAS Memory PEEK Function.
FOO SGC SIC OIG AGIOS A CS II AC I ICR CIA AAC IK |

The function heading includes all the information about the
parameters that are passed by the caller. In this case, there are two

parameters being passed: the segment and relative parts of the address.

These are both 16-bit quantities, and are declared in the heading with

the type WORD. Notice how the type of the result is declared with the

type clause BYTE, right after the heading.

For the PEEK function, we have chosen to use the ADS type, and

provide both the segment and relative parts as parameters. This allows

PEEK to access any part of memory.

Functions and Procedures 153

The variable “location” is going to belong to the PEEK function, for
its use alone. We have declared “location” as type ADS OF BYTE. This
tells the compiler that “location” will be the full 2-word address of a byte
somewhere in memory.

In Figure 5-3, “location.s” and “location.r” are simply assigned
whatever 16-bit values were passed by the caller. Again, using pointer
notation, the memory location specified by the ADS type is referenced
through the use of the caret (*) following the identifier name. ‘The 8-bit

value residing at the specified memory location is assigned to the
function identifier PEEK.

The POKE Procedure

The POKE procedure is rather similar to PEEK. It uses the same
principle for addressing the memory: the address type variable. But
instead of gettzng the value at the location and returning it as PEEK does,
the POKE procedure will put some value into the location. This value is
also supplied by the caller in the form of an 8-bit quantity as an
additional parameter. Figure 5-4 shows the source statements for POKE.

Figure 5-4. Memory POKE procedure

LCR EERERE ALERT ECR EERE SARA E REESE RELA E RE ERE L A EEE ES SEE sie ae Es

POKE. PAS Memory poke procedure.

This procedure is used to simulate the operation of the
BASIC POKE command. The value contained in "data" is placed in
the memory location specified by the segment and relative
address.

Procedure Poke (seg, rel :word; data: byte) ;

Var

location { <---- address type variable |
:ads of byte;

Begin
location.s := seg;
loeattonr y= rel:
location®:= data;

end;

Figure 5-4 POKE. PAS Memory POKE Procedure.
RK RA OK A RK RK OK KK OK OK OK KO KK KKK OK OK RK ROK KK KKK KK Rok KK KKK kok kok kok kok & |

i}

154 Pascal Primer for the IBM PC

The operation of the procedure is again quite simple. An address
type variable called “location” is used to point to the memory location.
Then, using the caret (~) symbol, the value of “data” is assigned to the
memory location being pointed to by “location.” Note that this “location”
is a different variable entirely from the variable that appears in the PEEK
function. The fact that they have the same name doesn’t mean a thing,
since each is used in a different function or procedure.

Using the PEEK Function

Great! Now that we have PEEK and POKE set up, let’s put together a
demonstration program. It must be able to both PEEK and POKE any
memory location with an 8-bit value. All input and output will be in
hexadecimal. We'll use a little of everything we’ve learned so far. The
PEEKPOKE program in Figure 5-5 demonstrates the ability to PEEK
and POKE with Pascal.

Figure 5-5. PEEK and POKE demonstration program

GEE ECOG IACI CCCI ACEI IGRI SEIKI ICCA ORCA ICR A ACK A 1K

PEEKPOKE. PAS PEEK and POKE demonstration program.

This program is used to demonstrate the operation of the
PEEK function and the POKE procedure. It also uses the routines
GETHEX and PUTHEX to do the decimal to hexadecimal conversion.

Program Peekpoke (input, output) ;

Var
mode, mode indicator
seg str, { string for segment address
rel str, | string for relative address
hex str, hexadecimal string

: string (4) ;

seg wrd, segment address

rel _wrd, relative address

a word;

data - byte

'$include: 'gethex. pas' }
'$include: 'puthex. pas' |

Functions and Procedures 155

{$include: 'peek. pas' }
'$include: 'poke. pas' |
J

Repeat
Write ('Enter peek or poke ');
Readln (mode) ;

Write ('Enter segment address in hex ');
Readln (seg str);_
seg wrd := Gethex (seg str);

PEEK mode. Get the address into which to PEEK.

If mode = 'peek' then

[
Writeln ('Enter relative offset address in hex'):

Readln (rel str);

While rel_str.len > @ do

|
rel wred ‘= Géthex (rel str).

data := Peek (seg wrd, rel wrd);
Puthex (data, hex_str) ;
Writeln (hex str) ;

Readln (rel str);

POKE mode. Get the address and the data.

If mode = 'poke' then

|
Writeln ('Enter relative offset address in hex'):
Readln (rel str);

156 Pascal Primer for the IBM PC

While rel_str.len > @ do
|
rel_wrd := Gethex (rel str):
Wolves Baten): e
Readin (hex str):
data := Gethex (hex str):
Poke (seg _wrd, rel wrd, data);

Readln (rel str);
ie

i

Write ('Continue (y/n) ');
Readln (mode) ;

Until mode = 'n';

Figure 5-5. PEEKPOKE. PAS PEEK and POKE Demo Program.
ECE ICCIECI ECAC ACCC CCC AF ORCA ACOC IG CACOK CACC CIR IR |

The whole program is built inside a REPEAT structure. The
structure has two main sections, one for PEEK and one for POKE. We'll
use several LSTRING types to contain the hexadecimal addresses and
data. Two WORD types will be used to provide the binary memory
addresses.

Each section is inside a WHILE structure. Execution will remain here
as long as relative addresses are entered. If the key is pressed
without entering an address, the length of the Istring will be 0; a simple
way to exit the WHILE.

(By the way... can you see another potential application for a function
or procedure within this demonstration program? It’s something that
happens in both PEEK and POKE.)

Well, now that we have the PEEK and POKE features available, let’s

take a look at what we can use them for. There are several memory
locations that would be interesting to peek into. We'll always write the
segmented address in the form “seg:rel.”

Equipment Flag

The bytes at 40:10 and 40:11 contain the IBM equipment flag. This

is set up during power on, and used by the DOS to determine the

configuration of the system. Now that you can PEEK with Pascal, you

may want to include this ability in one of your own programs. Here's

what the equipment flag looks like.

Functions and Procedures 157

40:10 bit O diskette flag

(0 — no diskettes

1 — diskettes on the system
1 not used

2-3. on board RAM size

00 — 16K

10 — 32K

01 —48K

11 —64K

4-5 initial video mode

00 — not used

10 — 40x25 color

01 — 80x25 color

11 — 80x25 monochrome

6-7 number of disk drives on the system

(only if bit 0 is on)

00 — 1 disk

10 — 2 disks

01 — 3 disks

11 — 4 disks

40:11 bitO — not used
1-3. number of RS232 cards attached

(0 through 7)
4 set if game I/O attached
5 not used
6-7 number of printers attached (0 through 3)

Remember that we can only peek at one byte at a time with the function
we have now. Can you figure out how to modify it to display more than
one byte?

Other PEEKs

Here are a few other interesting places to peek. Some of them can
also be POKEd with data to change the operation of the system, but such
“back door” approaches can be dangerous as we'll see.

Pascal Primer for the IBM PC

memory size in K bytes

1/O RAM size in K bytes

current CRT mode

00 — 40x25 black & white

01 — 40x25 color

02 — 80x25 black & white

03 — 80x25 color

04 — 320x200 color

05 — 320x200 black & white

06 — 640x200 black & white

40:4a number of CRT columns

40:6c — 40:6d low word of timer count

40:6e — 40:6f high word of timer count

Using the POKE Procedure

This is where it starts to be fun. Using the PEEKPOKE
demonstration program we can also POKE values into memory. We have
to be careful doing this, since we could crash the system by poking
somewhere we shouldn't. For example, if we POKE the CRT mode byte
at location 40:49 with a value of 06, the system will go into the 640x200
high resolution graphics mode, and unless our program is ready to
operate in that mode, we'll lose the picture.

Functions and Procedures

The Monochrome Display Buffer

One area that is really fun to poke around in 1s the Monochrome
Display Buffer. Everything that appears on the monochrome display is
actually contained in this buffer, which resides in the system memory
space. There is also a buffer for the color graphics adapter which we'll
discuss soon. For now, let’s play around with the monochrome display.

Figure 5-6 shows that the monochrome display consists of 25 lines of
80 columns each. This makes a total of 2,000 character positions. Each
one of these character positions occupies 2 bytes of the display buffer.

76543 2.10

[Tl [| [[[1 [1 J ASCil Character (Even address)

IBIR G BII{R G B] Attribute Byte (Odd address)

AEN ED ATED EI
ERR
erent [eet re |e

Cee
=”

re

Col 77 Col 78 Col 79

Figure 5-6. Monochrome display buffer

160 ~—— Pascal Primer for the IBM PC

Attributes

The first byte is at an even address and contains the ASCII character
itself. The second byte, located at the next memory location above the
character, contains the attribute. Each character position on the screen can
be assigned attributes such as “blinking,” “reverse video,” and
“underline,” just by setting the proper value into the attribute byte. The
following list shows the assignments of the bits in each attribute byte:

Byte 0 — ASCII character (even address).

Byte 1 — attribute byte (odd address).
bits 0-2 foreground video

000 — non-display
001 — underline

111 — normal (white on black)

bit 3. intensity
0 — low intensity
1 — high intensity

bits 4-6 background video
000 — select foreground
111 — reverse video

bit 7 blink

0 — no blink

1 — blink

The Buffer in Memory

The monochrome display buffer is located in the system memory at —

address B0000 hexadecimal, which can be represented in
ince there are 2,000 character

positions and 2,000 attribute bytes; the total display buffer size is 4,000

(decimal) bytes. All of the even addresses contain characters; all of the

odd addresses contain attribute bytes.
The display buffer is really just another area of system memory that

has been set aside for the sole purpose of containing the information that

is being displayed on the screen. The CRT controller constantly scans the

Functions and Procedures 161

display buffer, and generates the appropriate dot matrix pattern in the
location specified. Figure 5-7 shows the display buffer in the system
memory space.

Accessing the Buffer

Normally, Pascal’s input and output are handled by calls to the
resident DOS routines. These take care of putting characters on the
screen, as for example, a Pascal program uses WRITELN. There is
another way to output data directly from a Pascal program, and have it
appear on the screen.

‘To experiment with this, we’ll use the PEEKPOKE program and try
poking around in the display buffer. Let’s cause a “happy face” to appear
in the middle of the screen. Remember, there are 2,000 character

positions on the screen, so the one thousandth position is the one we are
after to get the middle of the screen

, So the one thousandth position is
actually relative bytes 1,998 and 1,999 (since we start counting with 0).

=

=
3) bo

2
mo)
fe]
®
oz
=
=
”n
~
7) Monochrome buffer

expansion area
64K ies

#00000 #BO000

Figure 5-7. Display buffer in system memory

162 = Pascal Primer for the IBM PC

The character is stored in relative byte 1,998, and the attribute in byte
1,999; these are 7ce and 7cf in hexadecimal.

Here’s what to do when you run PEEKPOKE.

A>peekpoke
Enter peek or poke --->poke
Enter segment address in hex --->b00@
Enter relative offset address in hex
Tce

Data --->2

At this point, you will see a “happy face” appear in the middle of the
screen.

Let’s do it once more and notice what happens.

7ce

Data --->2

The first “happy face” is scrollang up the screen with each carriage return
as we enter the addresses and data values to the PEEKPOKE program.
This is because the CRT controller still is in charge of the display buffer.
Since the Pascal READLN and WRITELN procedures use the resident
DOS routines to input and output, the scrolling is automatic. Each pass
through the PEEKPOKE program will cause the entire screen to scroll
up two lines (unless you’ve just cleared the screen with (Ctrl) (Alt) (Del),
in which case the cursor will not yet be at the bottom of the screen).

Let’s see if we can be clever and locate the first “happy face.” We'll
actually locate its attribute byte, and make it blink in high intensity. The
“happy face” has scrolled up 4 lines, each line containing 80 characters
and 80 attribute bytes. That puts it 640 bytes below its original location
in the display buffer. Actually, we want the attribute byte just above the
“happy face” character, so that’s only 639 bytes below the original

location. Subtracting 639 from 1998 gives 1359. Converting to

hexadecimal for PEEKPOKE yields:

54f

Data --->8f

Functions and Procedures 163

There, we found the correct attribute byte, and made that little face
blink.

Faster Buffer Access

Poking one character at a time into the buffer isn’t much fun is it?
Let’s use some of the skills we’ve learned so far to experiment more. The
next program will fill half of the display buffer with whatever character
and attribute we enter from the keyboard. The program shown in Figure
5-8 will give you an idea of how fast Pascal operates.

Figure 5-8. Monochrome display demonstration program

(EERE CHEE C ORE COC ECIOCE ECOG GCI ARIA AAA RA AEH

MONOF ILL. PAS Monochrome display demo

This program fills about half of the monochrome display
buffer with the character and attribute values entered by the
user.

j
Program Monofill (input, output) ;

Var
char_str,
atin Str SPST ram ate)

char_byte,
attr_byte : byte;

seg addr,
rel addr : word;

Value
seg addr := #b000; { <---- base address for display }

Include the GETHEX and POKE routines in the compilation.
eae Rape eee ae See a er eeee es Sor hs arte, Meee renee etre Se) 7 ae ee

| $include: 'gethex. pas'}
{ $include: ‘poke. pas! |
J
\

Main program. Input the character and attribute from the
user and fill half of the display buffer.

i

Begin
Writeln (‘Enter character and attribute (CCAA)'):

164 = Pascal Primer for the IBM PC

Readln (char_str, attr_str);

While char_str.len > @ do

|
char_byte
attr_byte :

Gethex (char_str);
Gethex (attr_str); WN

POKE the character byte into all the even memory
locations, and the attribute byte into all the odd locations.

For rel addr := @ to 1999 do
If Odd (rel addr)

Then Poke (seg addr, rel addr, attr_byte)
Else Poke (seg addr, rel addr, char_byte);

Readln (char_str, attr_str);

Figure 5-8. MONOF ILL, PAS Monochrome Display Demo.
FOC CSCO OOS C SICA AG AIG CA Ak |

For the purpose of this demonstration, we'll enter the hexadecimal

value for the character, followed immediately by the hexadecimal value

for the attribute. This will represent a four-character group that looks
like this:

CCAA where,

CC — character value in hex

AA — attribute value in hex

You can use any hexadecimal value for the character part, from 00 to
ff, although not all of them are displayable on the IBM monochrome
display. There is of course the entire alternate character set which
contains some graphics segments that can be used for drawing such
designs as boxes.

Functions and Procedures 165

166

The attribute byte will only be meaningful if it is entered as described

earlier. Here are some easy values to try.

Character Video level

attribute Low High Rev

normal character display 70
underlined character —

blinking character FO

blinking and underlined —

Conflict with the CRT Controller

If you try the monochrome display demonstration program on your
PC, then you'll realize that we still have the same old problem: Every time
we use Pascal’s standard input/output (I/O) routines READLN and

WRITELN, the CRT controller scrolls up the entire screen. If this didn’t
happen, we could easily put fancy screens together for more interactive
data entry. However, with the standard routines being used, we get kind

of a teletype feeling as each line is scrolled up the page.
To avoid this problem we need to send information to the CRT

controller directly from a Pascal program, rather than using Pascal’s
standard I/O routines. Then, we could control both scrolling and cursor
position. But the CRT controller takes its orders through an I/O port. We
cannot access this port using address types from Pascal. That’s because
ports are not memory locations; they are special I/O registers that can
only be accessed using the machine language IN and OUT instruction.

Outside Help

IBM PC Pascal just doesn’t include any routines for getting to the
CRT controller directly. What we need is a machine language IN and
OUT instruction that we can somehow bring into our Pascal programs.
There is a way of doing this, using routines that are written in IBM PC
assembly language. But first we need some more background for this to
make sense.

Pascal Primer for the IBM PC

The Parameters

In order to understand how we can use routines written in assembly
language to enhance our Pascal programs, we must examine how Pascal
functions and procedures are implemented. One of the major reasons for
using a function or procedure is to be able to apply a given process to
many different sets of data. This is why functions and procedures usually
have a parameter list enclosed in parentheses as part of the declaration.
An example of this is shown in Figure 5-9.

Figure 5-9. Minimum value function

(GAARA GCG GG TGCS RTCA TORIC A A AC CCK

MINVAL. PAS Minimum value function

This function takes two integer values as parameters.
It will return the smaller value to the caller.

Function Minval (first, second : integer) : integer;

Begin
If first > second

Then Minval :=
Else Minval := first;

| wn (4?) OQ o = a.

Figure 5-9. MINVAL. PAS Minimum Value Function.
FOC ACO CII AICCCR I A |

In the function declaration in Figure 5-9, there are two parameters:
“first” and “second.” These are not actually variables, but represent the
variables that will be used during the execution of the function. These
are known as formal parameters, and allow the compiler to prepare for the
actual values that will be present during execution.

Of course we have to tell the compiler what type the variables will be
when they do come along. Parameters can be declared in groups, as

shown. Both “first” and “second” are declared as INTEGER types. Since

functions return values, we must also tell the compiler the type of the

returned value. In our example, the returned value will also be of

INTEGER type.
The reason we must declare all this to the compiler is that special

code will be generated to connect the function or procedure with the

calling program.

Functions and Procedures 167

168

Using the Stack

This exchange of data between caller and callee will all take place on
the system stack. This is an area of memory that is automatically set aside
just for this purpose. It is called a stack because it can be visualized that
Way.

An 8088 CPU register keeps track of the location of the top of the
stack. When a calling program wishes to use the stack to communicate
with a function or procedure, it must push the necessary data onto the
stack before calling. Then of course the function or procedure which is
called must pop the data off of the stack, and use it appropriately. This is
demonstrated in Figure 5-10.

9 = a
fe) =

YAscendin | addresse

Top of the stack

Bottom of the stack First item Pushed

Memory
continues

;
Figure 5-10. Using the stack for communicating

Pascal Primer for the IBM PC

Remember, the stack is just another area of memory, so all we have
here is a series of 8-bit values, unless we know what to expect. That’s why

the function and procedure declarations so thoroughly specify the data
types. Figure 5-11 depicts what the stack would look like during the
function call to MINVAL, the minimum value function we saw in Figure

5-9,
Also placed on the stack is the return address of the calling program.

This will be the memory address within the calling program at which
execution will be resumed when the function is completed.

Value Parameters

Since there are only two parameters for the minimum value function,
and they are both integers, we’ve declared them as value parameters. This
means that their identifier names appear in the function heading without
the keyword VAR or CONST preceding them. The compiler will
generate code to put the value of the actual variables represented by
“first” and “second” right on the stack as shown. Since these are
INTEGER types, each will occupy two bytes of the stack, four bytes in all
for them both.

Return address — in calling program

Value of Second integer

Value of First integer

Stack prior to call to MINVAL

Figure 5-11. Stack during call to MINVAL

Functions and Procedures 169

This is acceptable when we’re only dealing with a couple of
INTEGER types, but not good if we want to work on a large data

structure of some kind. It also doesn’t work when we want to alter one of

the parameters during the function or procedure. Since value parameters
are only replicas of the parameters that appeared in the call, altering
them would not affect the actual! variable itself. When either of these
conditions occurs, we must declare the parameter differently, by using
VAR. ‘

Reference Parameters

Let’s suppose we want a function to examine an array of 100 REAL
type variables, and return the smallest value. We wouldn’t want to put a
duplicate of the whole array on the stack; it would take too much

memory. (A REAL type requires 4 bytes of memory. So, 100 REALs
would take 400 bytes of the stack.) Instead, we will declare the function
using a reference parameter and the keyword VAR right in the function
heading.

The VAR or CONST keywords tell the compiler that we are not
expecting the actual values to appear on the stack. Rather, we will be
expecting the memory address of the variable. In this case, it will be the
address of the ARRAY OF REAL variables that is to be searched for its
lowest value. Shown in Figure 5-12 1s the program TESTMIN, which
includes a function called “Min_array” that does just what we’ve been
talking about.

Figure 5-12. Finding the minimum value in an array

POC CICA IO IG OIORIC CGC ICG A ICI IOI Hak

TESTMIN. PAS Find minimum value in array

This program illustrates how to find the smallest value in
an array of REAL types.

j

Program Testmin; | <---- no input or output

Type

reals = array [1..10@] of real:

Var

scores :reals; | <---- array of scores
min ‘real:

170 ~~ Pascal Primer for the IBM PC

j

Function Min_array (Var test_scores :reals) - real:

Var

test ‘Teal

index =: integer:

Begin
test := test_scores [1]
For index := 2 to 10@ do

If test_scores [index] < test
. Then test := test_scores [index];

Min_array := test;
End;

min := Min_array (scores) ;

Figure 5-12 TESTMIN. PAS Find Minimum Value in an Array.
FCC CC ICC IC ICCC ICAI AIAG CCC AAAI ACAI IC IK |

One lesson here is the way that the structured type is declared in the
function heading. If we try to say it all in the heading, (z.e., “array[1..100]
of real”) the compiler issues an error. But, if we define the type in a
TYPE statement, we can use the new type identifier in the function
heading. Also, the keyword VAR tells the compiler this is not a value, but
a reference parameter. As illustrated in Figure 5-13, on the following
page, only the memory address of the array will be pushed onto the stack,
not the array itself.

Functions and Procedures 171

Choosing Parameters

Value and reference are the two most common kinds of parameters.

You will need to decide which to use.

Value parameters provide an important advantage. When calling the
function or procedure, value parameters can be a calculation of some
sort instead of a variable name. When a calculation is used for a value

parameter, the stack contains the result of the calculation. For example:

limit = minval (3*a+b, 2*(atb))

Here the two calculations will be performed, and the results pushed on to
the stack. “Minval” will then do its thing and the smaller of the two
results will be returned and become the value of “limit.”

In contrast, reference parameters must be variables because there
must be some portion of memory reserved for the vaiue of the argument.

¢
7

4

Batumi Return address in calling program

address
Adrece Address of TEST SCORES array

of array

Stack prior to call to MINARRAY

Figure 5-13. Stack during call to MINARRAY

172 ~~ Pascal Primer for the IBM PC

So, to summarize these parameters:

Value parameter

Passes a replica of the data

Inefficiently uses the stack
Cannot be altered

Can be called with a calculation

Reference parameter

Sends only the address of the data
Efficient with data structures

Can be altered unless CONST

Must be called with a VAR

Linking Assembly Routines to Pascal

Remember the problem we had with not being able to do IN and
OQUT-with-Paseal?,But in assembly language it’s easy to perform IN and
OUT...they are actual CPU instructions. The IN instruction will input
from the specified input-output port, and store the 8-bit value found
there in a CPU register. The OUT instruction will output the contents of
an 8-bit CPU register to the specified port» If we could use'them; such.
routines if Pascal would take the following form...

ing
e. What we need then is

some way of hooking up an assembly language IN and OUT instruction
to our Pascal program. The solution is to write the routines using the
IBM Macro Assembler, and then link them into an executable program,

the EXE file, using the IBM linker program.

External Declaration

Assembly language routines are not declared as part of the source

code. Instead; only their headings are declared, with the special keyword

EXPERNAW following'them. This tells the Pascal compiler that the

Functions and Procedures

function or procedure will be supplied at link time. All of the

information necessary to the compiler is present in the heading. Figure

5-14 is a listing of the declarations for the PORTIN and PORTOUT

external routines.

Figure 5-14. External port routine declarations

FEB AB EEOC ARCO H SSCS ECAR IGG CE ICRI CCCI AACA I EF

PORTIO. PAS Pascal port I/0 external declarations

This source code segment contains the declarations for the
routines PORTIN and PORTOUT, which are both EXTERNAL.

Function Portin (port_addr:word) : byte; wmexberiial eh

Procedure Portout (port addr: word; data: byte) ; qxexbernadies

Figure 5-14 PORTIO. PAS External Declarations for PORT I/O.
FOSS CCGG CCGG ICCC ACCS ATC AGIA A CA A AK a |

174

return-a»value; and not alterany other data» PORTIN will have one value

parameter “port_addr” of WORD type, the input/output (I/O) port
address. It will return the 8-bit value from the port specified.

- It does not return a value, but it does alter the
contents of an I/O port address. Again, the value parameter “port_addr”
specifies the I/O port to receive the output. A second value parameter,
“data,” contains the 8-bit value to be output to the port.

Pascal IN and OUT

To illustrate how these new external routines can be used, we will use
an example similar to the PEEKPOKE program developed earlier in this
chapter. We'll call this program PINPOUT for “portin/portout”; its listing
is shown in Figure 5-15.

This is almost a carbon copy of the PEEKPOKE demonstration
program (Figure 5-5). We have done away with the references to
segmented addresses and have replaced them with references to “portin”
and “portout.” PINPOUT works the same as PEEKPOKE. We can select
whether to perform IN or OUT, and then we enter an input/output port
address in hexadecimal digits. If we’re doing IN, the PORTIN function is
executed, returning the value from the port. This is displayed on the
screen. If we’re doing OUT, the program will ask us to enter the data to

Pascal Primer for the IBM PC

be output to the port. Remember, the data can only be 8-bits, or two
hexadecimal digits.

Figure 5-15. PORTIN and PORTOUT demonstration program

FR CCR CC COCR RCIA CCA A CK A ACK A KK

PINPOUT. PAS PORTIN and PORTOUT Demonstration Program.

This program demonstrates the use of the routines PORTIN
and PORTOUT. It also uses the routines GETHEX and PUTHEX to get
the port numbers and data from the user.

\
J

Program Pinpout (input, output) ;

Var

mode,
POLE GS TM,
hex str,

: lstring (4) ;

port_wrd
word;

data
: byte;

|
{$include: 'gethex. pas
{$include: 'puthex. pas
{$include: 'portio. pas
f
{

Write ('Enter in or out ');

Readin (mode) ;

If mode = 'in' then

Functions and Procedures 175

[
Writeln ('Enter port number in hex’) ;
Readln (port_str) ;

While port_str.len > @ do

|
port wrd := Gethex (port_str) ;

data := Portin (port wrd);
Puthex (data, hex str);
Writeln (hex str) ;

Readln (port_str) ;

5

If mode = 'out' then

[
Writeln ('Enter port number in hex’);
Readln (port_str) ;

While port_str.len > @ do

[
port_wrd := Gethex (port_str);
Write ('Data ');
Readln (hex str) ;
data := Gethex (hex_str);
Portout (port_wrd, data) ;

Writeln ('Enter port number in hex');
Readln (port_str);
I's

Mis

Write ('Continue (y/n) '); Readln (mode) ;
Until mode = 'n';

Figure 5-15 PINPOUT. PAS Port I/O Demonstration Program.
it aaa cS ee eS a Re Ro)

176 Pascal Primer for the IBM PC

Assembly Language IN and OUT

Now that we already have a demonstration program for PORTIN and
PORTOUT, we'll take a brief look at the assembly language routines. A
very brief look in fact, because this book is about Pascal, not assembly
language. .

Figures 5-16 and 5-17 show the assembly language listing or source
files for the two routines PORTIN and PORTOUT. Imordertouse them

ina Pascal program, the routines must be assembled into object files

The source files for assembly language programs are created in much
the same way as the source files for Pascal programs: they are typed in
with a word processing program. However, instead of the extension PAS
given to Pascal source files, assembly language files must be given the
extension ASM. Thus the first step is to create the source files
PORTIN.ASM and PORTOUT.ASM from the listings in Figures 5-16
and 5-17.

Figure 5-16. Port IN instruction for Pascal

OGG a aK kk kkk

- PORTIN. ASM Performs machine IN instruction.

segment byte public

assume cs: coder

public portin

portin proc far

push bp
mov bp,sp

mov dx, [bp + 6]

in al, dx

pop bp
ret 2

Functions and Procedures 177

portin endp
coder ends

end

Figure 5-16 PORTIN. ASM Assembly IN Instruction.
AICI TCICII I A AGC ICI A AAC AA AR CRIA A A A AK BAK

’

)

Figure 5-17. ..PortOUT instruction for Pascal»

OGG RK Fok kk kk dk kk x

; PORTOUT. ASM Routine performs machine OUT instruction.

coder segment byte public

assume cs: coder

public portout

portout proc far

push bp
mov bp, sp

mov dx, [bp + 8]
mov ax, [bp + 6]

out dx,al

pop bp
ret 4

portout endp
coder ends

Figure 5-17 PORTOUT. ASM Assembly Language OUT Instruction.
ECGS IS ACA A GK

)

)

The next step is to assemble these files to creat object files. This
process is similar to using the Pascal compiler, except that it is a one-step
process. Of course, to assemble an assembly language program you will
need an additional program, the IBM Macro Assembler, a separate
programming package (probably available from the same place you
bought your Pascal compiler).

Figure 15-17 shows the prompts for assembling the routines PORTIN
and PORTOUT.

178 Pascal Primer for the IBM PC

Figure 5-18. Assembling the port routines

A>asm portin
The IBM Personal Computer Assembler
Version 1.00 (C)Copyright IBM Corp 1981

Object filename [PORTIN. OBJ]: (Enter
Source listing {[NUL.LST]:
Cross reference [NUL. CRF]:

Warning Severe
Errors Errors

0 0

A>asm portout
The IBM Personal Computer Assembler
Version 1.00 (C)Copyright IBM Corp 1981

Object filename [PORTOUT. OBJ]: (Enter
Source listing [NUL.LST]:
Cross reference [NUL. CRF]:

Warning Severe
ELMO saeROGS

))

The next step is to use the LINKer program to link the assembled
routines and the compiled Pascal program (all OBJ files), into one
executable program, the EXE file. Figure 5-19 illustrates how the
LIN Ker is run. Notice that all three of the object file names are specified
to the LINKer prompt for OBJ files.

The result of all this effort is the complete PINPOUT program,
which can be executed directly from DOS like any other EXE file.

Functions and Procedures 179

Figure 5-19. Linking the port routines

A>b: link

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 1982

Object Modules [.OBJ]: pinpout portin portout
Run File (PINPOUT. EXE]; — Just press (Enter)
List File [NUL. MAP] : = NIKE

Libraries [.LIB]: b: <— Enter Drive containing PASCAL.LIB

Ports of Call

Here are some input/output ports that may be interesting to explore
with our new PINPOUT demonstration program. The IN process will be
harmless enough, but remember that the OUT instruction is a lot like a

POKE. Things will be changed as a result of the OUT, so be prepared

for possible problems should you inadvertently crash the system. It’s best
to have an JBM Personal Computer Technical Reference manual close at
hand if you’re going to experiment with these new routines.

Here are some input/output ports you may want to experiment with:

Hex Port

Address Description

4()-43 8253-5 timer chip

60-63 8255A-5 timer chip

200-20F game I/O adapter
378-37F — parallel printer port
380-38F monochrome display CRT controller
3D0-3DF color graphics adapter
3F8-3FF RS-232-C ports

Tooting Your Own Horn

One interesting experiment you can try with PINPOUT is to make
the speaker beep. There are two methods for generating sound with the
speaker in the IBM PC. The speaker is controlled by a combination of

180 = Pascal Primer for the IBM PC

two timer chips. One of them is used to contain a delay count which will
determine the audio frequency, or pitch, of the beep. The other timer is
used to gate the speaker on and off. Both of these timers are accessible
through the use of PORTIN and PORTOUT. Here is the basic idea.

Hex Port Desens

Address coyokeon

42 Through this port is entered the count which will
determine the frequency of the beep. The count
is a 16-bit value that is entered with 2 OUT
instructions (least significant byte first). The
larger the value, the lower the pitch.

This port is multi-purpose. Some of the 8 bits are
used for the speaker while others are not.

Bit 0 = 1 Use timer (port 42) for count.
=0 Pulse speaker from bit 1.

Bit | = | Gate the speaker on.
= (0 Gate the speaker off.

Bit 2-7 Not used for speaker, but must be
preserved when bit 0 or | is altered.

Bit | actually turns the speaker on and off. If bit 0 is on, the value
found in the timer port will control the pitch. If bit 0 is off when bit 1 is
changed, only one pulse to the speaker will occur. This means that you

can create your own pitches by pulsing bit 1 on and off, while keeping bit

0 off.
The easiest way to beep the speaker is to first program a delay count

into the timer through port 42, and then toggle the speaker, that is, turn

it on through port 61. We want to make sure to preserve the other 6 bits

of port 61, so the first thing we should do is use the IN command to

establish their value. Here’s how to run the program.

Functions and Procedures 181

A>pinpout
Enter in or out ---> in
Enter port number in hex ---> 61

004d

So that is how we have to restore port 61 after we’re done tooting
around. Now, let’s use the program to make some noise.

Continue (y/n) ---> y
Enter in or out ---> out
Enter port number in hex ---> 42
Data ---> 00
Enter port number in hex ---> 42
Data ---> 20

There, that much will put a delay count of 2000h into the timer. This is
8,192 in decimal, and represents about 1/8th of the timer range. Next, we

need to toggle the speaker.

Enter port number in hex ---> 61
Data ---> 4f

There’s your beep! Since the value at port 61 was equal to 4d, to turn on
bit 1 we must OUT a value of 4f. This is because the binary value of 4d
is 01001101, in which bit 1 (the second from the right) is set to zero.

Turning this bit on changes the binary value to 01001111, which is 4f
hexadecimal.

Changing this bit to “on” tells the speaker chip to turn on the
speaker and use the timer count to determine the pitch. Let’s try
changing the pitch while it’s running.

Enter port number in hex ---> 42
Data ---> 00

Enter port number in hex ---> 42
Data ---> 7

182 Pascal Primer for the IBM PC

A higher pitch. We have entered a smaller delay count into the timer.
This means that the time it takes to count down is shorter; therefore the
frequency is higher. Let’s try one more.

Enter port number in hex ---> 42
Data ---> 09
Enter port number in hex ---> 42
Data ---> 3

An even higher pitch. We’ve just about halved the timer count. Would
you say the pitch is twice as high? Getting tired of listening to it? Okay.
Let’s turn it off.

Enter port number in hex ---> 61
Data ---> 4d

Ah... silence is golden.

Blaise Away!

So now you have the tools to make sound. Things can be automated
of course, so we don’t have to sit here typing in hexadecimal values. We
can do it all from our program. Shown in Figure 5-20 is a simple
example program which produces a sound effect using Pascal. We call
this program BLAISER BLAST.

Figure 5-20. Blaiser Blast sound demonstration program

GEOG GOGO CCCI CCICI OCC ECI SCC SG IOC I ICI CK Ai

BLAISER. PAS Blaiser Blast sound demo

This program uses the PORTIN and PORTOUT routines to
operate the sound timer circuits in the IBM PC.

j

Program Blaiser (input, output) ;

Const
speaker = #61; speaker toggle port address
timer = #42; timer port address |
toggle on = #4f; { value to turn speaker on

toggle off = #4d; { value to turn speaker off

Functions and Procedures 183

max count = 259;
scaler = 2;

Var

code,
count word

Main program. Another endless loop. Every time the ENTER
key is pressed, the "blaiser" fires away. Try just holding down
the ENTER key and see what happens.

Repeat
Write ('<RETURN> to fire');
Readln;

Portout (speaker, toggle on); { toggle the speaker on ;

For count := @ to max_count do { change the delay }

[
code := Sqr (count) Div scaler;
Portout (timer, lobyte (code));
Portout (timer, hibyte (code));

If

Portout (speaker, toggle off); { toggle the speaker off \

Until county "air it:
End.

Figure 5-20 BLAISER. PAS Blaiser Blast Sound Demo.
FFB B BOBBIE HORACE GFR GGFR OCEIG CISC IC CIOKI ACR IGRI RE |

Since a laser blast sound should have kind of a sweeping quality, we
will generate the sound in a FOR structure which will be converted into
an exponential generator through the use of the SQR function. We'll just
throw in some constants to get started. You might want to fool around
with changing these to see what happens to the sound.

Notice how the speaker is toggled on, outside of the FOR structure.
All that happens within the structure is the rapid change of frequencies

184 ~~ Pascal Primer for the IBM PC

to be ported out to the timer one byte at a time. Finally, the speaker is
toggled off after the program exits from the FOR structure.

The whole thing is suspended inside a REPEAT structure that will
never be true. This will allow the program to continue until you abort it
using C.

Well, it’s up to your imagination now. Sound is available to your
Pascal programs using a small external assembly language routine to
provide IN and OUT instructions. These routines PORTIN and
PORTOUT can be very useful in the graphics area as well.

Access to the CRT Controller

Remember earlier in this chapter we did some simple monochrome
graphics manipulation and we couldn’t get past the CRT controller’s
ported access? PORTIN and PORTOUT should solve that problem. We
now have the tools to IN or OUT to any port address. Let’s explore what
we can do with the CRT controller now.

CRT Controller Ports and Registers

The 6845 controller chip used in the IBM-PC has several ports
connected to it. It is programmable and all of the programming happens
through two ports. One, the zndex port, is used to specify one of the 18
registers inside the chip. We can access only | of the 8-bit registers at a

Not Used
Not Used
Not Used
Not Used
6845 Index Register
6845 Data Register
Not Used
Not Used
CRT Control Port 1

Reserved
CRT Status Port

Reserved
Parallel Data Port
Printer Status Port

Printer Control Port

Not Used

Table 5-1. Port addresses for CRT controller

Functions and Procedures 185

time through the other port, the data port. The port addresses for the

CRT controller are shown in Table 5-1.
To access one of the 6845’s registers, we must first OUT the register

number to the index port 3B4. Then, we may OUT the 8-bit value we
wish to load to that register, through the data port 3B5. There are
several things about the CRT that we can control with this method.
Notice that a lot of the registers shown in Table 5-2 are “write only.” That

REG. 40x25 80x25 GRAPHIC
ADDR DESCRIPTION UNITS ALPHA ALPHA MODES

Horizontal Char. Write
Total Only

Horizontal Char. Write
Displayed al

Horiz. Syne
Position

Horiz. Syne
Width

Vertical Total

Vertical Total
Adjust

Vertical
Displayed

Vert. Sync
Position

Interlace Mode

Max Scan
Line Addr.

N [o)

N

N N -

ee

N [o}

E

fo) [o)

[o) (oe)

E

~<

Cursor
Addr. (L)

Note: All register values are given in hexidecimal.

Table 5-2. 6845 registers

186 = Pascal Primer for the IBM PC

means that values are OUTed to them, but nothing can be INed. Some of
them have to do with the number of lines and columns on the screen.
Others have to do with the cursor.

Positioning the Cursor. If we want to control the cursor position
(and make our Pascal programs appear “smarter’) we need to look at the

cursor address registers. There are two of them; one to hold the most
significant byte, and the other to hold the least significant byte of the
cursor address. The cursor address can be thought of as the character
position on the screen where the cursor presently exists. Start in the
upper left hand corner at column 0 on line 0, and call that position 0.
Moving to the right on line 0, keep numbering up to 79, (assuming you
are using the 80-column monochrome display). Now, just as if you were
reading, you drop to the leftmost end of the next line and call that
position 80, and so on.

As we’ve said, there are 25 lines of 80 columns on the monochrome

display, adding up to a total of 2,000 character positions. A number that

large requires 16 bits to store, and therefore requires two registers in the
6845 CRT controller. To get a quick idea of how to position the cursor,
take a look at the procedure shown in Figure 5-21.

Figure 5-21. Cursor positioning procedure

GEE CO CIC CEGASIOCCCSIIGCIACCC AACR AA AA AAA A A

CURSPOS. PAS Monochrome cursor positioning procedure

This procedure will position the cursor of the monochrome
display to the column and line coordinates passed as parameters.

J .

Procedure Curspos (Const col, line: word) ;

Const
count = 80;
index_reg = #3B4;
data_reg = #3B0,
curs h reg = #0K;
curs 1 reg = #0F;

Var
curs_wrd word;

Begin
curs wrda *="colnt * line + col;

Portout (index_reg, curs_h_reg);

Portout (data_reg, Hibyte (curs_wrd) };

Functions and Procedures 187

Portout (index reg, curs 1 reg);
Portout (data reg, Lobyte (curs _wrd));

Figure 5-21 CURSPOS. PAS Cursor Positioning Procedure.
FOS O SOC CCCIGCACIAC CI ACR CARA A AK a |

There are two parameters to this procedure: the column position and
line number where we want the cursor to be. In a CONST section we
have set up the port numbers for the index and data registers of the
6845. Also, we have set up the register numbers for the high and low

bytes of the cursor address.
To calculate the relative location from the column and line

coordinates, we do some simple arithmetic. This gives us a 16-bit relative
cursor position in the variable “curs_wrd.” It takes four OUT instructions
to position the cursor. The first two set up the index to point to the high
byte register and then OUT the data using the HIBYTE function. Then,
in a similar manner, the low byte of the address is OUTed. That’s it. The
cursor is now at the new position, as you can see by running the program
set forth in Figure 5-22. It is a demonstration program that will pass the
cursor from upper left to lower right on the screen.

Figure 5-22. Cursor positioning demonstration program

CCGA CGC ACCS IC CIS ACCIACCA TGA RA Ak 4k

POSTEST. PAS Cursor positioning demo

This program demostrates the use of the procedure
CURSPOS. Just to keep things simple, we will only flash the
cursor around the screen.

)

Program postest;

Const

delay _cnt = 1000;

Var

delay,
col,

line : word;

188 = Pascal Primer for the IBM PC

:Sinclude: 'portio. pas'}
:$include: 'curspos. pas' |

Main program. Place the cursor in every position on the
screen
5 eI ie ae rie ee ee ee, ge ee er ee ee ek

Begin

For line := @ to 24 do | switch order of FOR statements }
For col := @ to 79 | to perform vertical sweep }

|
Curspos (col, line);
For delay := 1 to delay_cnt do

[ilk

IV

End.

Figure 5-22 POSTEST. PAS Cursor Position Demo Progran.
FECA CCCI GGG CC GCG CGIAR AAI IK x |

Observe the “$include” metacommands again. These are hooking up
some of these procedures and functions for us. It’s a simple enough
program. Just two nested FOR structures, one representing columns, the

other lines. Together, they sweep the cursor across each line, and on down
the screen.

Locating the Cursor. Occasionally it is useful to know where the
cursor is on the screen. Notice that in the table of registers for the 6845,

the cursor address registers are read/write type. This means that you can
use the PORTIN function to get the value of the cursor position from
the controller. To accomplish this we will use another procedure to get
the cursor location for us, and present it in column and line form.

The routine shown in Figure 5-23 accesses the two registers on the
6845 controller that contain the cursor address. Each byte of the cursor
address is obtained by combining the use of PORTIN and PORTOUT.
Then, the two bytes are passed to the IBM function BYWORD to convert

them into a WORD type. From this, the column and line can be
calculated using the simple arithmetic functions DIV and MOD. Now, we

need a program to test this CURSLOC procedure.

Functions and Procedures 189

Figure 5-23. Cursor location procedure

PEREIRA AA RAE SRR RRA tat REE Ae A ee

CURSLOC. PAS Monochrome cursor locate procedure

This procedure determines the position of the cursor on
the monochrome display. It uses the PORT routines to get the
position from the CRT controller, and returns it in the form of
column and line.

Procedure Cursloc (Var col, line: word) ;

Const
count = 80;
index_reg = #3B4
data_reg = #3B5;
curs h reg = #05;
curs | reg = #0F;

Var
curs_h,
cursed : byte;

curs _wrd : word;

Begin
Portout (index_reg, curs_h reg);
curs h := Portin (data_reg) ;

Portout (index_reg, curs 1 reg);
curs 1 := Portin (data_reg) ;

Now, calculate the line and column.

curs_wrd := byword (curs_h, curs_l);
line := curs_wrd Div count;
col := curs _wrd Mod count;

End;

Figure 5-23 CURSLOC. PAS Cursor Location Procedure.
7 8 OK OK RRR RRR ROKK RK Kok koko kok okokak ak kokokak ak kk |

j

190 ~—- Pascal Primer for the IBM PC

The program shown in Figure 5-24 uses the standard Pascal routines
READLN and WRITELN to perform input and output. The idea is to
display a specified number of asterisks by entering the count. Each
asterisk is Output One at a time using the WRITE procedure. This does
not put a carriage return and line feed at the end, so the cursor will be

left positioned at the end of the line of asterisks. The call to the
CURSLOC procedure will then return the column and line position of
the cursor. The process can be repeated as long as the count is greater
than zero.

Figure 5-24. Cursor location demonstration program

FA A RR RRR A RRA RBA KR ARK ROR RR RR RRR RRA KAKA KH

LOCTEST. PAS Cursor location demo

This program demonstrates the use of the cursor location
procedure CURSLOC.PAS. The user inputs a character count. The
program then outputs that number of characters, and then calls
the procedure to determine the cursor position. This should be
in agreement with the number of characters that were requested.

i

Program Loctest (input, output) ;

Var

col, line,
pos, count :word;

Include the PORT routines, and the cursor locate routine.
RAE ces ee Son eee ee ee ee

‘$include: 'portio. pas' |
‘$include: 'cursloc. pas' }
j
|

Writeln ('Enter character count in decimal');

Readin (count) ;

While count > @ { output the count

Do [
For pos := 1 to count do

Wiemuea ey:

Functions and Procedures 191

Cursloc (col, line);

Writeln (col, line);

Readln (count) ;

Figure 5-24 LOCTEST. PAS Cursor Location Demo
FOGG IGG SGA ICCC ICICI ARIK

Summary

Well...in this chapter we’ve added quite a bit of power to the Pascal
language. We have filled in some of the holes in the language with
functions and procedures to allow access to the monochrome display
buffer and the CRT controller. We have also given Pascal a musical voice
to cheer up our programs. This is only the beginning. With these tools
you can go on to fully explore your IBM PC and Pascal.

| sgt FER TE SETI eR OF NESTA DRS

Exercises

192

1. What is the difference between a function and a procedure?

2. What is an address variable?

3. What is the difference between value parameters and reference

parameters ?

4. What is an EXTERNAL function or procedure?

Solutions

1. A procedure is called as a statement by itself; a function is used in
an expression or assignment statement.

2. An address variable is a 16-bit or 32-bit address of another type of

variable.

3. Value parameters are placed on the stack; reference parameters
have the address of a variable placed on the stack.

4. An EXTERNAL function or procedure must have its name and
parameters declared while the rest of the function or procedure is in
another file.

Pascal Primer for the IBM PC

Input and Output with Files

Concepts
Files as structured data types
Components
Buffer variable
Accessing a file
Sequential and direct modes
End-of-file considerations
Terminal mode
Binary and ASCIl files
Keystroke processing
General ledger and customer file systems
Loading, printing, and updating a file

Keywords
FILE, INPUT, OUTPUT, TEXT, READFN, ASSIGN, RESET, REWRITE,
CLOSE, GET, PUT, READ, READLN, WRITE, WRITELN, SEEK,
TERMINAL, DIRECT, SEQUENTIAL, EOF, MODE

Weve seen that Pascal is very thorough about dealing with data
elements. If you spend a little time thinking out your program design,
you can come up with a well-structured, efficient system using Pascal.
The program will always know just what kind of information it is dealing
with, and what operations are permitted. The only problem is that this
data processing ability is relevant only to the particular program at hand.
The data elements are embedded within the program (except for data
entered at the keyboard or printed on the screen, which can never be a
great deal of data), and can only be used by that program. Also, the data
only exist as long as the particular program is running. When some other
program is loaded, or the system power is turned off, the data elements

are lost.

193

What Is a File?

Var

194

What our Pascal programs need is some way to communicate with

the world outside of the program, and to store information for further

use. This need is common to all programs, regardless of their language.
In Pascal, this need is fulfilled through the use of files. A file has two

purposes.

INPUT and OUTPUT (I/O) to provide a communication

channel to the outside world

STORAGE to save data for future use

Throughout this book, we have been using files for input and output.
Remember the names “input” and “output” that appear in the
PROGRAM declaration statement at the beginning of almost every
program example we’ve used? These are special predeclared files which we
will explore further. Generally, “input” is assigned to the keyboard and
“output” to the display. Together, they provide interactive “conversation”
with the user.

FILE Variable Declaration

The files “input” and “output” are declared automatically by using
their names as parameters in the PROGRAM declaration. Other files may
also be declared in a Pascal program. User-defined files are declared as
variables in a VAR statement. That’s because in Pascal, a FILE is just

another structured data type. Here are some examples of how files might
be declared.

numbers -file of integer;
prem_rates wt ilenof, teal:
letter ‘file of char;

Files can be thought of as similar to arrays, especially when considering
files of simple types as above. Most of the time we will want our files on
the disk, where they can be stored permanently.

More complex files can be declared through the combined use of the
TYPE and VAR statements. Here is an example of how to declare a
transaction file.

Pascal Primer for the IBM PC

Type

transaction = record

tran date : string (8) ;
tran_type “char:
tran_desc : string (29) ;
tran amount “Teal;

end;

Var
tran ‘file ‘file of transaction;

File Components

The TYPE clause that is included in the FILE declaration above
specifies what components constitute the file. In our earlier examples,
each component had been a single ordinal element. In this more complex
example, we’re using a RECORD structure for each file component.

Each file component of “tran_file” is described in the TYPE

declaration for “transaction.” It is actually a RECORD consisting of
several fields including the date (MM/DD/YY); a single character

transaction type; a 20-character description; and the amount, carried as a
REAL. As shown in Figure 6-1, this record occupies 34 bytes of memory.

Each time a program references a component of this file, it will really
be referencing one entire record with all its fields. This is very important,

since the program will only be able to access one component of a file at
any given instant.

tran_date tran_desc tran_amount

STRING(8) STRING(20) REAL(4)
—— aS en NS ee

| MM/DD/YYYX|x x{ |

CHAR
tran_type*

(2)

*NOTE: Two bytes are allocated for CHARacter -
types to maintain even memory boundary.

Figure 6-1. Transaction file record component

Input and Output with Files 195

File Buffer Variable

All files in Pascal are accessed through the use of the buffer variable.
This can be thought of as a “window” into the file that allows us to see
one component at a time. (See Figure 6-2.)

The buffer variable is identified by the name of the file variable, followed
by a caret (*). It may be used like a pointer variable in the sense that it
can be assigned and used in expressions.

The IBM Pascal compiler doesn’t like you to use a buffer variable in
certain situations. In general, it is better programming practice to
routinely declare a second variable with the same type as the file
component. Then, before processing a component of the file, you can
assign the component to the variable. Do all your processing on this
variable, and then assign its value back to the buffer variable just before

outputting it to the file.

Var
tran_ input : transaction;
tran file :file of transaction;

Begin
; Input the component from the file }

tran_input := tran_file’;
With tran_input Do

{ Process fields in variable component |
tran file’ := tran_input;

| Output the component to the file |
End.

One component of
file being accessed

Figure 6-2. Buffer variable is like a window

196 ~~ Pascal Primer for the IBM PC

This approach will ensure that data are not lost as a result of accidentally
reassigning the buffer variable before output is performed. It will also
prevent some compiler warnings that are issued when the buffer variable
is used.

File Types

In reality, all file components, all data elements, all programs and
operating systems consist of bits — nothing but Is and 0s arranged in
some meaningful order. The way we interpret the bit arrangements lends
meaning to their patterns. In IBM Pascal, there are two ways of looking
at the bits that compose a file structure.

BINARY All data types can be represented in binary, just
like in memory.

TEXT or ASCII Data are translated to or from ASCII characters.

Binary Files

The components in a BINARY file are represented exactly the same
way as they are in memory. For example, an INTEGER component would
occupy two adjacent 8-bit bytes, a REAL component would occupy four
bytes, and a STRING(n) would occupy (n) bytes. A RECORD type can
also be a component of a binary file. The individual fields are connected
together and can be input or output as simply a group of bytes.

A binary file is also called unformatted since there is no character
conversion involved in the transfer. (See Figure 6-3 for a representation
of a binary or unformatted file.) This type applies mostly to files which
reside either on disk or tape. The component size in bytes is determined
by the total of all the fields.

TEXT or ASCII Files

TEXT is a predeclared file type in Pascal. It is a special file which is
comprised of ASCII characters. (See Figure 6-4.) Files of this type are
compatible with word processors, or other character-oriented programs
like compilers. These files are line oriented. The components are actually

ASCII characters which are separated into lines. Lines are determined by

a special character known as the line marker, which corresponds to a
carriage return and line feed on most I/O devices.

Since a TEXT file is comprised only of ASCII characters, we must do

some conversion to allow numeric types to be components. Outputting

Input and Output with Files 197

the 16-bit representation for an INTEGER type to a TEXT file would
result in 2 characters of unknown value. The INTEGER must first be

converted into a string of characters that represent its value. This is done

automatically by the procedures READ, READLN, WRITE, and
WRITELN which are used to process TEXT files.

ee ies of the file >|

Lo oM
SaaS
By 8

fl FILE OF INTEGER

(b) FILE OF REAL

ESENESE ES eee es Sc Canoe?
] 2 3 4

(c) FILE OF STRING(5)

Figure 6-3. Binary or unformatted files

Figure 6-4. Text or ASCII or formatted files

198 = Pascal Primer for the IBM PC

File Access Routines

Pascal provides several different methods of utilizing files. File
handling is performed through the use of predeclared functions and
procedures, each applicable in different situations. These functions and
procedures use the DOS routines to perform the I/O.

We'll be discussing the use of each of these routines in this chapter.
For now, we'll just give you a quick idea of how many routines there are
and what they do.

Initializing and Terminating Files

You will need certain routines to initialize and terminate files.

READFN Reads DOS file name and assigns to Pascal file.

ASSIGN Assigns name in STRING variable to Pascal file.

RESET Opens a Pascal file for input.

REWRITE Opens a Pascal file for output.

CLOSE Closes a Pascal file.

Unformatted Input and Output

There are two routines you will use for unformatted I/O.

GET Inputs one component with no conversion.

PUT Outputs one component with no conversion.

Formatted Input and Output

There are four routines you will use for formatted I/O.

READ Inputs characters and assigns a variable.

READLN Like READ, but it ignores balance of line.

WRITE Encodes a variable and outputs characters.

WRITELN Like WRITE, but it includes a carriage return.

Direct Access

There is one routine you will use for direct access.

SEEK Prepares for I/O with a specified component.

Input and Output with Files 199

File Modes

We use the window provided by the buffer variable to input or output
one component of a file at a time. The manner in which the one
component is selected is determined by the mode of the file. There are
three file modes used by Pascal.

TERMINAL — Components are read or written in real time usually
from the keyboard and to the display.

SEQUENTIAL Components are accessed in a series beginning with
the first and continuing to the last, with no backing

up or skipping around.

DIRECT Components are accessed in any order using the
SEEK procedure.

Terminal Mode

So far in this book we have been using a special type of file called a
TERMINAL mode file. A TERMINAL mode file is one which is
interactive with the user, generally using the keyboard and display
devices. A TERMINAL mode file is illustrated in Figure 6-5. In Pascal,

Figure 6-5. Terminal mode files

200 ~=— Pascal Primer for the IBM PC

the predeclared files “input” and “output” are assigned to the keyboard
and display respectively. TERMINAL mode files are similar to
SEQUENTIAL files and must be of ASCII type. This means that the file
components are characters input or output one at a time.

Sequential Mode

When a file is in SEQUENTIAL mode the components are accessible
only in the order that the file was created. Accessing begins with the first
component in the file and continues from one component to the next.
There is no ability to back up (except all the way to the beginning), and
random accessing of the components is not possible.

End-of-File in Sequential Mode

At the end of a sequential file there is a special component called the
EOF (end-of-file). It provides a means of detecting the end of a file in a

Pascal program. The EOF component is placed in the file when it 1s
created, and can be used from then on to signal the end-of-file condition.
This condition is available to the Pascal program in the form of a
Boolean function called EOF which is returned TRUE if the end of file
has been reached. This allows a nice form for sequential processing.

While not Eof (file_name) Do...

First Last
Component Component
oe aha ah

BEGIN

= (i bab bLsbLebo
Figure 6-6. Sequential access

Read/Write
in any order

i

el el 4
Figure 6-7. Direct access

Input and Output with Files 201

Direct Mode

DIRECT mode access to a file permits the program to operate on any

component in the file, in random order. (See Figure 6-7.)

The target component is specified by its component number in the file. This

requires that the program “know” where the desired component exists

within the file. It also implies that the file resides on some hardware
medium that is physically capable of random access. For example, it
would not make sense to declare the printer as a direct mode file. Since
the printer’s output must be one component (character) at a time, it can

only be used as a sequential file.
Usually, direct mode files will be on disk. The components will be

stored as a group of bytes in IBM disk format. The DOS routines used to
access the file will know how many bytes are in each component and
where each component is located on the disk.

To access a file in direct mode, you must set the MODE to “direct”.

This sets a flag in the file control block that determines which DOS
routines will be used to access the disk file. This must be done prior to
any other operation with the file, using the assignment statement:

file name.mode := direct;

202

End-of-File in Direct Mode

The IBM Personal Computer Pascal Compiler manual warns us what
happens to the EOF condition when a file is accessed in direct mode.
According to the manual, when a file is created (or updated) in DIRECT

mode, the end-of-file is not exact. Thus the normal EOF can’t be used to

detect the true end-of-file. Not only that, but the file’s EOF will no longer
be detectable in SEQUENTIAL mode either once it has been created or
updated in DIRECT mode.

Why does this matter? Once a disk file has been accessed using
DIRECT mode, it can no longer be accessed using SEQUENTIAL mode.
This is rather inconvenient to say the least, and we hope some
improvement is forthcoming in a revised Pascal compiler for the IBM PC,

It seems to us that the best solution for now (until IBM comes out
with a revised compiler) is to always access your file in one mode or the
other. This may seem like extra work, especially just for printing listings
or other normally sequential processes; but if you ever use DIRECT
mode on a file, its EOF will be undependable for SEQUENTIAL mode
access. Better some extra work today than an unuseable file tomorrow!

Pascal Primer for the IBM PC

Terminal Mode Files

We have been using TERMINAL mode files in our examples all
through this book without fully explaining their operation. Every time we
use READLN to input some data for a test program, we are actually
using the system keyboard as an input file. The procedure reads
characters from the keyboard and converts them into the appropriate
variable types for the parameters in the READLN calling sequence.
Correspondingly, every time a program produces a prompt on the display
using WRITELN, it is actually using the monochrome display unit as an
output file.

Predeclared Files: INPUT and OUTPUT

The file names “input” and “output” appear in the PROGRAM
declaration of most of our program examples. In Pascal, these are
predeclared files that are automatically assigned to the system console.
Since all Pascal I/O utilize the DOS routines, these two files operate in
SEQUENTIAL mode, transferring one character at a time.

As characters are typed on the keyboard, they are echoed
automatically to the display so that you can see what you are typing.
Characters are buffered by the DOS so that nothing 1s actually sent to the
program until you press the key. This permits line editing with
the and keys and provides some degree of input validation,
since entering even one character will require two keystrokes (the key
itself and (Enter)).

Keystroke Processing

In some cases, it would be nice to be able to make things happen in
our Pascal programs by pressing a single key, instead of having to always
press as well. For example, suppose we want our program to
display a menu of operations from which we are to select. We would like
the selection to be executed by pressing a single key. The menu might

look like this:

***** Main System Menu *****

File Maintenance f
ORGS AEM ET: A nctcen.h 4: 0
Sales ANalVSISh act 9s S
Utility Programs uU

Enter Selection -------- >

Input and Output with Files 203

Just to keep this example simple, when one of the menu selections is
entered, we'll redisplay the option name to indicate positive selection. If
an invalid key is pressed, the menu will simply be re-displayed.

In the example provided in Figure 6-8, we use several of the file
handling routines to give you an idea of how they work. It’s important to
notice how the file for the keyboard is handled. In the VAR section notice
the declaration for the file “kybd” as a FILE OF CHAR. Right after the
BEGIN statement for the main program, we use the ASSIGN procedure
to assign the name “user” to the Pascal file “kybd”. USER is a special file
name used for nonbuffered keyboard input on the IBM PC. Individual
keystrokes are available from this input file.

Figure 6-8. Interactive menu demonstration

ROKK RR RR KK KK ROK KOK KK RR RK KKK KKK KK KK KKK KKK KKK KKK KKK KK KKK KK KKK KK KK KK KKK

MENU. PAS Interactive Menu Demonstration

This program is intended to illustrate the use of
keystroke-oriented responses to menus in general. The input
1s performed by the user procedure “Readkey. "

i

Program Menu (input, output) ;

Const
item_cnt = 4;

Type

text_line = Istring (39) ;
index = 1..1tem_cnt;

Var

heading narbaviil. wo) Ot textwhine
option ‘array[1..item_cnt] of text_line;
code sarray([1..item ent] of char;
select ‘text_ line;
answer Eel aletins
item : index;

kybd ‘file of char; { <----- File declaration

204 = Pascal Primer for the IBM PC

ee siaties section contains the information on the menu
which is to be displayed. There are better ways to handle
menus, such as storing them in disk files, but this will do
for now.

}
Value

heading[1] := '***** Main System Menu ****x*':
heading (2) <= "Subsystem - 2. ccc. Enter';

option{1] := 'File Maintenance Le Mage
code [1] = betas
Option|2y “= TOrderaRntry:... aceha<s vee
code [2] = “yi
Opt ION [S| .= sales: Analysis... vw. ey
code [3] = ces
option(4] 2= "Utility Programs
code [4] = Bue

select = 'Enter Selection ------- > be

This function uses the file routine GET to access the
CHAR type components of the keyboard file (kybd). The function
loops until an ASCII character appears in the buffer.

j
Function Readkey Eclat.

Begin
Repeat Get (kybd) Until kybd’ <> chr (@);
Readkey := kybd’;

end;

This is the main program. There is no way out. —
Assign the "kybd" file to the non-buffered keyboard routine
in the BIOS.
oo TRE See re naa a a ec ee

J .

Begin
Assign (kybd,'user'); { <---- Non-buffered keyboard }
Reset (kybd) ;

Input and Output with Files 205

This section displays the entire menu each time

through the program, and prompts the user for a selection.

Writeln (heading [1]) ;
Writeln (heading [2]) ;
Writeln;
Writeln (option[1], code([1});
Writeln (option[2], code[2]);
Writeln (option[3], code[3]) ;
Writeln (option[4], code[4]);
Writeln;
Write (select);

answer := Readkey; | <---- Keystroke input

If the selection is valid, re-display it for
verification, otherwise just loop back.

For item := 1 to item_cnt Do
If answer = code{item]

Then Writeln (option[item]) ;

Figure 6-8. MENU.PAS Interactive Menu Demonstration Program.
Cee ceeeecceeCoCceecceeecccerrceceercrc cere cerecece reece ee eee 2 ee eee eee ee ee ee

J

The trick is that we have to be able to tell when a key is being
pressed. This is done by continuously inputting from the file “kybd” until
a value other than CHR(Q) appears in the buffer variable. In our
example, this is achieved by our user-written function “Readkey”. But the
real work is done when “Readkey” calls the file routine GET. That's just
what it does: it gets a component from the file specified as a parameter.
In this case, the file is “kybd”, and one component is one character.
“Readkey” hangs inside the REPEAT structure until a character appears.
It is then assigned to the function identifier to be used by the program.

206 ~—— Pascal Primer for the IBM PC

Immediately following the ASSIGN statement is a RESET statement.
This initializes the file for input, and actually performs the first GET.
This is a CHR(0) unless a key was being pressed just as the RESET was
executed.

The rest of the program is unspectacular, just a quick way of
displaying a menu. One thing you might see is that there is no way out of
this one (except (Ctrl (Break)). But then the program doesn’t really do
anything either.

SEQUENTIAL Mode Files

Most of the time, when we hear the word “file”’ we think of a disk file

containing data to be used by some program. This is the best way to save
information over a period of time. In standard Pascal, all files are

SEQUENTIAL; each component must be considered one after another, in

order. This concept dates back to the days when computers did
everything with punched cards or magnetic tapes. Files were often kept
in card form, sometimes occupying many drawers. The computing
machinery couldn’t just pluck one card out of the middle of the file for
processing. Instead, all of the cards had to be processed to find a desired
component in the middle of a file.

This principle worked for years in the data processing world, and it
still works adequately for some applications. The sequential approach can
be quite satisfactory when the number of components in a file is small. If
the file is on a disk, it won’t take long to process all of the records in
sequence each time, processing is required.

In the next two examples we’ll demonstrate how to create a sequential
file. We'll deal with both a BINARY file and a TEXT file and compare
their relative merits.

General Ledger File

If you’re interested in accounting using your IBM PC, this example is
for you. The idea is to set up a file on the disk to represent a General
Ledger. The file components will be RECORDs, each record containing

the information for one General Ledger (G/L) account. The declaration

for the fields within each record is done in a TYPE statement. We have

created the TYPE declaration as a separate file which can be

$INCLUDEd in any compilation.
Figure 6-9 shows a typical General Ledger account. There are several

different types of data involved with this record. The account number is

an INTEGER. There’s a CHAR type code, two STRINGs and a whole lot

Input and Output with Files 207

of REAL types to store dollar amounts. This type of record structure

would provide the hub of a home accounting system.

Figure 6-9. General ledger master file record

FOGG GG Ra kk kk

GLMASTER. REC G/L Master Field Declarations

Type

gl master = record
acct_no : integer; Account number for reference |
acct_type :char; laeasset Vil ability. euc.
acct_desc =: string (29); Descriptive title
last_activ :string(8); Date MM/DD/YY last activity
last_tran, { Last transaction amount
beg bal, { Beginning balance
end bal, Ending balance
curr_debit, Total debits this period
curr_credit Total credits this period

real;
hist_debits, Total debits history array
hist_credits { Total credits history array }

-array{1..hist size] of real;
end; {gl master.rec}
f
\

Figure 6-9. GLMASTER.REC General Ledger Master File Record
FEC CCGG CCGG IGG IGISIGIOIOCCCCCC RAK |

Loading the G/L File

The next thing we need to do is write a program to load the G/L file
with the accounts we will be using. In order to construct a file of records
that can be used as a general ledger, we must have a program that
mmitializes all of the fields in each record just the way we want them. We
will want to assign Our own account numbers and descriptions, and be
able to set up beginning and ending balances. This program, set forth in
Figure 6-10, is called “Glload”.

First look at the way the field declarations for “gl_master” are
“$INCLUDEd” in the compilation right in the beginning of the
declarative section. Once the type “gl_master” has been declared, the
variable “master” is declared, as well as the file “gimaster.”

The DATE procedure is declared here as EXTERNAL: the way that
IBM (for some reason) requires it. Assuming our system has been
initialized with the correct date, each G/L account record we create will
have today’s date in it.

208 = Pascal Primer for the IBM PC

Figure 6-10. General ledger file loading program
J

ee er eae an tne Rete 2h oe cls

GLLOAD. PAS Load General Ledger File

This program loads the General Ledger file. The
‘data for each account are enteréd from the keyboard, while
the file is constructed in sequential mode.

f
Program Glload (input, output) ;

Const

glname = 'glmaster. dat': | <---- DOS file name is CONST }
end input = @:
histesize = 2:

{$include: 'glmaster. rec'} | <---- Compiles TYPE declaration |

Var

today : string (8) ;
ACCu IN,
index : integer;

master -gl master; | <---- RECORD type variable }

glmaster ‘file of gl master; | <---- FILE declaration }

Main program begins here. Get the date, and open
the General Ledger master file.

)

Begin
Date (today) ; [—--—— Get date from system

Assign (glmaster, glname) ; | <---- Assign DOS Bile name

Rewrite (glmaster) ; | <---- Open for writing }

Input and Output with Files 209

With master Do | same for every record }

[
last_ activ := today;
last_tran := @;
curr debit := @;
curr_ credit := 9;

For index := 1 to hist_size Do

[
hist_debits [index] := Q;
hist_credits [index] := 9;
if

Writeln;

While acct_in <> end_input Do

[
With master Do

[
ACCUNO: e=caccu sin:
Write ('Acct type -------- > '); Readln (acct_type) ;
Write ('Description ------ > '); Readln (acct_desc);
Write ('Begin balance ----> '); Readln (beg bal);
Write (‘Ending balance ---> '); Readln (end bal):
ile

glmaster’ := master; { <---- Assign buffer variable }
Put (glmaster) ; { <---- Put a component in file }

Writeln;

Write ('Acct number ------ Sa Readln (acct_in);
Is

210 ~~ Pascal Primer for the IBM PC

Figure 6-10. GLLOAD.PAS General Ledger File Loading Program
FCCC GCC GGG KK |

f

We use the ASSIGN statement to connect the Pascal file name
“glmaster” to the actual DOS file name “glmaster.dat.” The REWRITE
statement immediately follows. This opens the file for writing or output.
Anything that may previously have been in the file becomes inaccessible
after the REWRITE is executed.

The next section of the program is a WITH structure that initializes
all of the static fields in the record variable “master.” These fields will
always be the same in every record.

After prompting for and inputting the initial account number from
the keyboard, the program enters a WHILE structure: it will remain in
this structure as long as the account number entered is not zero.

One by one, the user-definable fields in the G/L master record are

prompted for and input. This 1s all done using the predeclared
procedures WRITE and READLN. (We’re already familiar with using
these for I/O with the console. Later in this chapter we will see how they
can be used in a more general way.)

Finally, the record variable “master” is assigned to the buffer variable
“glmaster*” and the PUT procedure is called. ‘This literally writes out all
of the bytes that are contained in the buffer variable. The DOS does
some internal “housekeeping” to keep track of the disk file. Each time
PUT is executed, it moves a pointer so that the next record will be
written in the next available space on the disk.

All it takes to end this program is entering an account number of
zero. The program will then CLOSE the file. This is done automatically
in most cases by the Pascal termination module, but it is still a good idea
to include it as an explicit program statement.

Listing the General Ledger File

Now we need some way of listing the accounts we have just loaded

into the General Ledger file. Since the records are stored in a BINARY

type file, we can’t use the TYPE command in the DOS to list them. We'll

Input and Output with Files 211

take this opportunity to demonstrate how to use the printer as a

SEQUENTIAL file of type TEXT. (See Figure 6-11.)

Figure 6-11. General ledger file listing program

NSERC RA ae Rak A in La Ie RCT ce A ein ca Rr cece ers is ee

GLLIST. PAS Print General Ledger File Listing

This program is used to print a listing of the General
Ledger file. The printer is treated just like another sequential
file.

Program Gllist (input, output) ;

Const
glname = 'glmaster. dat'; | <---- DOS file name }
hist_size = 12;

{$include: 'glmaster.rec'} | <---- Compile TYPE declaration }

Var
glmaster ‘file of gl master; | <---- FILE declaration }

printer : text; { <---- Output file is ASCII }

Begin
Assign (glmaster, glname) ; | <---- G/L file |
Reset (glmaster) ;

Assign (printer, 'PRN'); { <---- System printer \
Rewrite (printer) ;

While not eof (glmaster) Do | <---- loop through file |
[
With glmaster’ Do { <---- Output to printer }

Writeln (printer, :
acct_no,
acct_desc ‘22,
last_activ : 1,
last_tran 1Oe2,

212 ~~ Pascal Primer for the IBM PC

curr debit pale
curr credit :16:2
ie

Writeln (printer) ; | <---- Double spacing }
Get (glmaster); { <---- Get the next record
iF

Figure 6-11. GLLIST.PAS General ledger File Listing Program
FORCE IGC ICICI CICCCI GCE C SOO CCICCI CCCI ACAI EK |

Again, notice the $INCLUDE compiler metacommand that will cause

the RECORD declaration to be compiled in line. The files that are
declared are “glmaster” and “printer.” The “printer” file is declared as a
TEXT file, so that we can use the standard procedure WRITELN to

output lines of characters.
The ASSIGN statements specify the DOS file name for the General

Ledger file and the special file “PRN” for the printer. Notice the RESET
for the file being read, and the REWRITE for the file being written.

The RESET also performs the first GET of a record component in
the file “glmaster.’ That’s why we can enter the WITH structure and
begin printing the fields.

There is something different about the WRITELN statement here. It
has the file name “printer” as the first parameter. Whenever the first
parameter is a FILE type, the routine will output to that file instead of to

the display.
Then, one by one, the fields we wish to print are output in the same

WRITELN statement. Notice the formatting that can be done by using
specifications following each variable name. ‘This can allow you to space
your printouts however you want.

A second WRITELN to the file “printer” achieves double spacing.
Then, the next record in the file is retrieved with the GET procedure. If

there are no more records in the file, the result of the GET will set EOF
(glmaster) equal to TRUE, causing termination of the WHILE structure

and the end of the program.

Input and Output with Files 213

An example of the printout from the “Gllist” program, shown in

Figure 6-11, is set forth in Table 6-1.

Table 6-1. General ledger file listing

510
520
590
610
520
530
540

214

Consulting Income O7-17-83 0. 00
Royalty Income Q7-17-83 0. OO
Other Income 07-17-83 0. 00
Owners Draw Q7-17-83 0.00
Travel Expense 07-17-83 0.0
Automotive Expense 07-17-83 0. 00 9.00 0. OO
Other Expense 07-17-83 0. 00 0.00 0. OO

This type of general ledger can be very useful in managing the
budget at home or for a small professional business. Later in this chapter
we will show you how to update the General Ledger with the transactions
of your business. For now, we’ll demonstrate the use of TEXT type files
for a similar application: a Customer file.

The Customer File

In addition to a General Ledger with accounts for income and
expense, it is often useful to have a file of the customers of a business.

The same principle could be applied to creditors. We will make this file a
TEXT type file since many of the fields involved are STRING type. This
will also make the file accessible to the TYPE command in the DOS and
to most word processing programs.

We will also include some REAL type variables in our Customer file.
These are to keep track of customer balances and year-to-date activity.
Remember, when these are handled by the TEXT file routines READLN
and WRITELN, they are converted to a string of characters. The default

format for REAL is the scientific notation form with a mantissa and
exponent. Since that is hard to read, we’ll have to specify the format in
the WRITELN statement that creates the records.

Customer Field Declarations

The fields are declared in a program segment that can be
$INCLUDEd in any compilation. Since the Customer file will be a TEXT
file, we do not GET and PUT the RECORD type variable as we did with
the General Ledger file. Instead, we will use READLN and WRITELN
to read and write a string of characters that represent the fields converted
to an ASCII form. So, instead of declaring a RECORD type, we will
declare each of the variables that we want to be part of the Customer file
record on the disk. Each of these fields will be formatted by the
WRITELN procedure. Figure 6-12 shows a file that contains our VAR
declarations.

Pascal Primer for the IBM PC

Figure 6-12. Customer file field declarations

DECISIS ASI GAGA AK Kx

CUMASTER. REC Customer Master Field Declarations

Var

acct_no : integer; Account number for reference }
name, , Customer name
address, Street address
city_sta City and State

wsiring (25)-
zipcode : string (9) ; Zipcode
areacode oSur Mngt) Area code

telephone, Telephone number XXX-XXXX
date_opened Date account opened MM/DD/YY

: String (8)
beg balance, Beginning A/R balance
ytd_charges, Year-to-date charges
ytd_payments, | Year-to-date payments
end balance , Ending A/R balance

real

status ecnars Account status

Figure 6-12. CUMASTER Customer File Field Declarations
FOGG CIOS IAA AA CCC ACIS I A A A a a a a |

We'll use some typical fields. An account number will provide easy
reference. We'll also want the name and address (city, state, and zip code).
It’s a good idea to have the area code and telephone number, and let’s
throw in the date that the account record was created on the disk. So far,

all of these fields are STRING type. Let’s add four REAL types to keep
track of the account balance and activity, and for good measure, one
CHARacter type as a status indicator.

Loading the Customer File

No doubt you will notice that loading the Customer file is very similar
to loading the General Ledger file. In this program, set forth in Figure 6-
13, you can enter every field except the “date_opened” field.

The declarations for this program consist most importantly of the
$INCLUDE compiler metacommand that will compile the field

declarations for the Customer file. After that, the Pascal file variable

“cumaster” is declared as a TEXT type (ASCII structure file).

Input and Output with Files 215

Figure 6-13. Customer file load program

ROR RRR RR ROKR ROKR RRR RRR KK RRR RRR KR KKK KKK KK RK KK EK KK KK

CUSTLOAD. PAS Create Customer Master File

This program creates the Customer master file from
data entered by the user from the keyboard. All fields except
the “date opened" are defined by the user. This is a TEXT file.

}
Program Custload (input, output) ;

Const
end input = @;

{$include: 'cumaster.rec'} { <---- Customer field declarations }

var
cumaster :text; { <---- Customer FILE declaration }

Value
status := 'n';

External date procedure.

Procedure Date (Var s: string) ; external;

Main program begins here. The DOS file name is entered
upon program execution using the READFN procedure.

Begin
Date (date opened) ; | <---- Initialize the date }
Write ('Enter file name --> '); { <---- Prompt for file name }
Readfn (input, cumaster) ; { <---- Input from keyboard }
Rewrite (cumaster) ; { <---- Open the file \

Readln;

Write ('Acct number --> '); Readln (acct_no);

216 = Pascal Primer for the IBM PC

While acct_no <> end input Do

[
Wr ive atNaiiesss-2e5— 2 a Readln (name) ;
Write l(VAddress.=----< ye ReadIn (address) :
Write ("City/State ---> "). Readln (city_sta);
Write ('Zipcode ------ Saal Readln (zipcode) ;
Write ('Area code ----> De Readln (areacode) ;
Write ('Telephone ----> '): Readin (telephone) ;
Write ('Begining bal -> '); Readln (beg balance) ;
Write ('YTD charges --> ');: Readln (ytd_charges) ;
Write ('YTD payments -> ') Readln (ytd_payments) ;
Write ('Ending bal ---> ') ReadIn (end_balance) ;

{$include: 'cumaster. wln'} { <---- WRITELN for cust. file }

Writeln;

Write (‘Acct number --> '); Readln (acct_no);

I

Program end. Don't forget to CLOSE the file.

,
Close (cumaster) ; | <---- CLOSE the file }

End.

Figure 6-13. CUSTLOAD.PAS Customer File Load Program
FCIAC CICA CCCI ICC SSI ICCC A AA ACR A A 4 }

The EXTERNAL procedure DATE 1s used, this time to initialize the

variable “date_opened.”
In this program, we will use the READFN procedure to get the

actual DOS file name. This is an alternative to the ASSIGN statement

which assigns the same name each time. When we use the READFN

procedure, we can create several different Customer files with different

names. Once the file name has been resolved, the REWRITE statement

initializes the file for output.

There is a dummy READLN statement here to clear the line feed

Input and Output with Files 217

character from the buffer variable of the file “input” before attempting

any further READLN calls. We had to pay close attention to the /BM

Personal Computer Pascal Compiler manual to catch this one: see the

explanation of READFN on page 12-31 of the first edition (August

LOS):
One by one, the fields for the Customer file record are prompted and

input using the same WRITE/READLN combination. Then comes an
important twist to using this TEXT file method: we must be very careful
that each time we write records to the Customer file from this or any
other program, we use exactly the same format. For this reason, we create
another Pascal code segment that consists of only a WRITELN statement
with all the fields in the correct order, as shown in Figure 6-14.

Figure 6-14. WRITELN for customer file

(AEG RIGA RICCO AR AAR AAA KAR AA

CUMASTER. WLN Customer Master File Writeln Statement

Writeln (cumaster,
acct_no,
name,
address,
Clive Sta,
Zipcode,
areacode,
telephone,
date opened,
beg balance 10:
ytd_charges WOE
ytd_payments pl G:
end balance 10:

DO DO DO

bo

Figure 6-14. CUMASTER.WLN WRITELN for Customer File
FORO OGG GRO aa Rok ok kk |

J

218

The STRING variable types are written out consecutively, one after

another. ‘The REAL types, however, are formatted. The 10:2 following
each REAL type causes the WRITELN procedure to convert the REAL
to a string of 10 characters. The string includes a decimal point, and has
two digits to the right of the decimal.

The field size specified for numeric output should be large enough to
guarantee that at least one blank will be generated by the formatting, so
that each field is separated from its neighbor by a blank. That’s the only

Pascal Primer for the IBM PC

way that the READLN procedure can tell where one field ends and the
next begins.

As you might expect, there is also a corresponding Pascal code
segment containing nothing but a READLN call. Notice in Figure 6-15
that we do not need any formatting here.

Figure 6-15. READLN for customer file

AAFC CCGG AGC GCS ICICI AIK A AA

CUMASTER. RLN Customer Master File Readln Statement

Readln (cumaster,
acct_no,

name,
address,
city_sta,
zipcode,
areacode,
telephone,
date_opened,
beg balance,
ytd_charges,
ytd_payments,
end balance

Figure 6-15. CUMASTER.RLN READLN for Customer File
AGS OCIS ACCC IA A A a Ac IC AC IC I ok |

Listing the Customer File

Once we have loaded our Customer file, we will probably want to
print it out in some form. Since it is a TEXT file, there are several
techniques available. We can read the file into our word processor, and
print it out from there. Or we can use the DOS command TYPE to
display the file on the screen or printer (using the key). Or,
more interestingly, we can write a Pascal program to print out the file, as
we have in Figure 6-16. We'll call this program “Custlist”.

Once again, we'll $INCLUDE the field declarations in the file

“cumaster.rec” in the compilation. As in the General Ledger printing

program, the disk file is ASSIGNed and RESET. The file “printer” is

assigned to the special device “PRN” and initialized for printing with the

REWRITE procedure.

Input and Output with Files 219

Figure 6-16. Customer file listing program

ORR A Ak A RG dante eee A ee ea

CUSTLIST. PAS Print Customer File Listing

This program prints a listing of the Customer master
file. Not all of the fields are printed.

Program Custlist (input, output) ;

Const
cuname = 'cumaster. dat'; {| <---- DOS file name }

{$include: 'cumaster.rec' } <---- Compile field declaration }

Var
cumaster Vex; <---- Customer file

printer Stexits <---- Printer file

Main program begins here. Initialize files.

te:
Begin

Assign (cumaster, cuname) ; { <---- Customer file is on disk }
Reset (cumaster) ;

Assign (printer, 'PRN'); { <---- Assign printer device}
Rewrite (printer) ;

\

Read a record and print sequentially.

While not eof (cumaster) Do

{$include: 'cumaster. rln'} { <---- Compile READLN call \

Writeln (printer,
name,
' (', areacode, ')'
telephone eu | <---- Length override }
date_opened 10

Mi

Writeln (printer,
address) ;

220 ~—— Pascal Primer for the IBM PC

Writeln (printer,
city_sta, zipcode,
beg balance :10:2, | <---- Format override }
end_balance OR2
i

Writeln (printer) ; | <---- Double spacing
Is

End.

Figure 6-16. CUSTLIST.PAS Customer File Listing Program
FOC ECCECACCIGC CCC ACCES AECCGI CCI CCCI AAA RE |

The program enters a WHILE structure, waiting for the Boolean
function EOF to indicate that the end-of-file has been reached. Here,
notice the $INCLUDE of the READLN call. This is very important, and

ensures consistency between different programs that access the Customer
file.

We don’t want all of the fields on this printout. We just want the
name and address in the standard three-line format used for addressing,

and the REAL types that contain the account balances.
Several WRITELN calls perform the printing. A dummy WRITELN

to the file “printer” causes double spacing between records. ‘Table 6-2
gives an example of the Customer File listing.

Table 6-2. Customer file listing

L. A. Herald Examiner (213) 744-8085 @7-15-83

1 Ss Hill Street

Los Angeles, CA 90015 0.00 1400.00

Independent -Journal (415) 883-8600 7-15-83
710@ Alameda Del Prado

Novato, CA 94947 4500.00 26540. 00

The Waite Group (415) 459-3830 7-15-83
1505 Fifth Avenue

San Rafael, CA 94901 0.00 0. OO

Input and Output with Files 221

DIRECT Mode Files

Thus far, we have dealt with files as though they were pipelines

through which all the data required by a program travels in sequence. As

we’ve seen, the SEQUENTIAL file mode is practical for many

applications. However, more sophisticated computer applications must be

able to access data randomly and for that, we need to use the DIRECT

mode.

Setting DIRECT Mode

Before a file can be treated as a DIRECT access file, the Pascal

program must change the MODE indicator for the file. This changes a
field within the “File Control Block.” (The File Control Block is used by
the DOS to hold data about each file being accessed by the system.) Since
the File Control Block is a Pascal RECORD type, we can use the file

identifier and set the mode in an assignment statement. This must be
done before the file is opened with RESET or REWRITE. For example:

filename.mode := direct:
Reset (filename) ;

Opening a Direct Mode File

The procedures RESET and REWRITE, which are used in Pascal to

open files, operate slightly differently on DIRECT mode files than on
SEQUENTIAL or TERMINAL mode files. Either RESET or REWRITE

will open a file for both reading and writing operations in DIRECT
mode. However, RESET will cause an error if the DOS file name

specified can not be found, whereas REWRITE will create a new file if

the name is not found.

The SEEK Procedure

‘To access a file in the DIRECT mode, we need to supply the record
number of the component of the file we wish to access. Remember, files
can be thought of as large arrays, each component having a given
number. So DIRECT access allows you to read or write any record in the
file without having to traverse the file sequentially. The SEEK procedure
is used just prior toa GET, PUT, READ, READLN, WRITE, or
WRITELN. It looks like this:

Seek (filename, record_no) ;
Get (filename) ;

222 Pascal Primer for the IBM PC

Seek (filename, record_no);
Write (filename, data);

Building an Index Table

In order to have the record number to pass to the SEEK procedure,
we have to know what each record contains, and where to look for a

specified account. A common solution to this problem is to build an index

table in memory at the beginning of the program, and then use it to
determine the record numbers needed for SEEK.

We will build an index table very soon. For now, you should know that

because the index table is in memory, it can be searched, even
sequentially, in very little time compared to actually searching through
the disk file. The entire file is traversed once, at the beginning of the
program, to build the index table. But after that, random access to the

disk is easy. This method works quite well for files up to about 100
records on a mini-diskette. For larger files, the time required to build the
index table each time the file is accessed will start to become

unacceptable. Then, the index table should be maintained as a separate

file on the disk.

Remember the File Pointer

The SEEK procedure doesn’t actually do anything to the file. It just
calculates where the requested record is located, and sets the file pointer
to that record. The next read or write operation will then access the
correct record. However, remember that the file pointer is advanced by
either a read or write operation. This must be considered when reading
or writing in the same file. You must use the SEEK procedure before
both the GET and the PUT procedures to make sure you are accessing
the correct record.

Updating Files

In both of the examples we’ve developed in this chapter, there is an
obvious need to be able to update a file once it has been written. In fact,

that’s the whole idea behind setting up files like these. Typically entries in
them will change quite frequently.

Several different methods are used to update disk files, depending

upon the nature and frequency of the transactions. When there are only

a few transactions, you may wish to save them up, and enter them all at

once, say at the end of a month. But if there are a lot of transactions, you

Input and Output with Files 223

224

may want to perform your data entry more frequently. Sometimes it is

necessary to update a file “on the fly” so that every transaction is
immediately added to the master file.

Immediate or Batch Update

The two updating techniques in common use for all kinds of business
data processing are the immediate and the batch update. Simply put, an
immediate update changes the file as soon as the transaction has been
entered. The batch update, on the other hand, involves an intermediate

“batch file” into which the transactions are loaded when they are entered.
Then the batch file is usually listed, and proofed to make sure no entry
errors were made. Only after the listing is found to be correct will the
transactions in the batch file be used to update the master file.

Our example programs are designed to use the simpler, immediate
update technique because all we want to do is illustrate the use of
DIRECT mode file access, but you should be aware of the other option.
The batch update approach is definitely superior for accuracy and
documentation. When you need to update several files for each
transaction, the batch method will speed up your data entry.

Updating the Customer File

The Customer file example is still fresh in our minds, so let’s tackle a
program to update it with transactions. Since we are updating in
immediate mode, we'll enter the transactions from the keyboard, so they

will update the file right away. We'll need a program that accepts
keyboard input, and updates a disk file. We would like to use the
customer’s account number as a reference for the transactions, and as a
means of accessing the file. Therefore, we will need an index table that
contains entries matching account numbers with record numbers. Then,
when a specific account 1s sought, the program can search the index table
to find the record number.

Remember, whenever we want to access a TEXT file in DIRECT

mode, we have to specify the number of bytes that will be read for each
component. In this case, the length of all of the fields that make up the
customer record is 151 bytes. The length is declared with the Pascal file
variable “cumaster.”

As you can see in Figure 6-17 the Customer file update program has
the usual declarations at the beginning, including a type declaration
which needs careful examination. The “index entries” are described here
as RECORD types consisting of an INTEGER type account number, and
a WORD type record number. Next, we see the expected $INCLUDE

used to bring in the Customer file field declarations, and some work

Pascal Primer for the IBM PC

variables. Finally, the “index” table is declared as an array of the index
entry records.

Figure 6-17. Customer file update program

{ECAR SSCS AAI ICRI GIO IG IGG ACR Gx

CUSTUPDT. PAS Customer File Update Program

. This program updates the Customer file with
transactions entered by the user from the keyboard. The
update is immediate, and no validation is performed.

Program Custupdt (input, output) ;

Const
cuname = 'cumaster.dat'; | <---- DOS file name }
max recs = 19; | <---- Maximum record count }
end_ input = @;

Type

index. entry = record { <---- Index table TYPE }
acct : integer;
rec_no word;

end;

Var é
cumaster text (251); { <---- Customer file with length }

{$include: 'cumaster.rec'} { <---- Customer field declarations }

Var
amount real;

acct_in : integer;

entry,
rec_count,
rec_addr :word;

index -array[1..max_recs] of index_entry;

Begin .

Assign (cumaster, cuname) ; { <---- Customer file

cumaster.mode := direct; | <---- Set DIRECT mode

Reset (cumaster) ;

See

Input and Output with Files 225

rec_count := @;
While not Eof (cumaster) Do

[
rec_count~:= rec_count + 1;
With index[rec_count] Do

[
Readin (cumaster, acct);
rec no := rec_count;

While acct_in <> end_input Do

[
rec addr := @;
For entry := 1 to rec_count Do

With index[entry] Do
If acct = acct_in

Then [
rec_addr := rec_no;
Break;

If rec_addr > @
Then [|

Seek (cumaster, rec_addr);

{$include: 'cumaster.rln'} | <---- Customer file READLN call }

226 Pascal Primer for the IBM PC

Writeln (name, '(record', rec_addr, ')');
Write ('Enter amount ------ ate)
Readln (amount) ;

If amount > @
Then ytd_charges :=

ytd_charges + amount
Else ytd_payments :=

ytd_payments + amount;
{
l

Now, SEEK again and write back the record.
a ptt Sete, Sac Se A ako IE st lene Rap epee dar a ae eat Sh GF gee il

Seek (cumaster, rec_addr);

{$include: 'cumaster.wln' } { <---- Customer file WRITELN call }

|
f
|

Error message if no account number match.
ee re

j
Else

Writeln (‘Invalid account number') ;
{

Writeln;
Write ('Acct number ------- See
Readln (acct_in);

Input and Output with Files 227

Figure 6-17. CUSTUPDT.PAS Customer File Update Program
FOCI GCICISIGI IA AATCC CCC GCI ATI ICRC |

228

To use the file, we ASSIGN the DOS file name, set the DIRECT

mode, and open the file using RESET.
Next, we build the index table. The WHILE structure causes the

program to traverse the entire file sequentially. The records are counted
as we go along. Notice the READLN call that only reads the “acct”
number (which has to be the first field in the record). One by one, the

index table entries are created so that the file may be accessed by the
account numbers.

The data entry for this program consists of the account number and
the transaction amount. As long as the account number is not zero, the
program will continue processing transactions.

After getting the desired account number, the program searches the
index table for the account number entered. This is done in a FOR
structure, since we know the number of records in the file. One by one,
each index entry is compared with the account number entered from the
keyboard. If a match is found, the BREAK command 1s executed,

dropping the program out of the search loop.
Once out of the loop, the program must determine whether the

account number was found. This is easy since the variable “rec_addr’” is
set to zero each time before the index table is searched. If a matching
entry 1s not found in the index table, the program will come out of the
loop with “rec_addr’” still equal to zero.

The rest of the program is inside the IF structure. A positive value
for “rec_addr” will be the expected path. The SEEK procedure is called,
with the record number determined from the index table. Then we use
the $INCLUDE for the READLN statement to read the specified record.

For verification, the customer’s name is displayed, along with the
record number, before the transaction is entered. If you select the wrong

customer by mistake, enter a transaction amount of zero to avoid
affecting the file.

The amount entered is examined to determine whether to update the
charges field or payments field in the customer record. Once the
arithmetic update has been completed, the SEEK procedure is again

Pascal Primer for the IBM PC

called to prepare for writing the customer record back into the file. As
before, this is accomplished by the $INCLUDE command, to compile the
WRITELN statement for the Customer file.

The program will continue accepting input until a zero account
number is entered.

Updating the General Ledger File

As another example of using DIRECT mode files, let’s develop an
update program for the General Ledger file we created earlier in this
chapter. Basically, the update philosophy will be the same as for the
Customer file. The accounts will be accessed by using an index table,
constructed from their account numbers and record numbers. The
difference between this program and the Customer file update program
we just finished is that we’ll use GET and PUT, instead of READLN and
WRITELN, since this is a BINARY type file.

This program, shown in Figure 6-18, follows the same approach as
used in the Customer file update program. The index table is built
almost exactly the same. How convenient! Note, however, that the index

table is built ina WHILE structure as long as EOF remains FALSE. But,

the first time into the WHILE, there is already a record in the buffer
variable because RESET does an initial GET from the file. That’s why
you see the GET statement as the last thing in the WHILE structure.

Figure 6-18. General ledger file update program

eet Ae dee Oct LESTE AE TRALEE RAPE ATRL E RARER RETR ER SAAR R DEEDES

GLUPDATE. PAS General Ledger File Update

This program updates the General Ledger file with
transactions entered by the user from the keyboard. The update

is immediate.

Program Glupdate (input, output) ;

Const .

glname = 'glmaster. dat'; { <---- DOS file name

max recs = 10;
end input = @;
hist_size = 12;

{$include: 'glmaster.rec' } { <---- G/L record declaration }

Type |

index_entry = record { <---- Index table TYPE }

acct : integer;

Input and Output with Files 229

rec_no -word;
end;

Var ;
glmaster ‘file of gl master; | <---- G/L file }

work record :gl master; { <---- Update work area }

Var

amount real;

entry,
rec_count,
acct_in : integer;

rec_addr word;

index -array[(1..max_recs] of index_entry;

today : String (8);

|
f
Procedure Date (Var s:string); external;

Date (today) ;
Assign (glmaster, glname) ;
Reset (glmaster) ;

rec_count := @;
While not Eof (glmaster) Do

| :

work_record := glmaster’;
rec count == Tee count. + 1:
With index{rec_ count] Do

With work record Do
acct := acct_no;

rec_no := Wrd (rec_count);

230 ~=— Pascal Primer for the IBM PC

ie
Get (glmaster) ;
I

glmaster.mode := direct;
Reset (glmaster) ;

Write("Acct number ==-=--- Sas
Readln (acct_in);

Look up the account in the index table
to get the record number.

While acct_in <> end input Do

rec_addr := @;
For entry := 1 to rec_count Do

With index[entry] Do
If acet.= acct_in

Then [
rec_addr := rec no;
Break;

If rec_addr > @
Then [

Seek (glmaster, rec_addr);
Get (glmaster) ;
work record := glmaster ;

Input and Output with Files 231

232 Pascal Primer for the IBM PC

With work record Do

[
Writeln (acct_desc, '(record', rec_addr,
Write ('Enter amount ------ Salle

Readln (amount) ;

last_tran := amount;
last_activ := today;

If amount > @
Then curr_debit :=

curr_debit + amount
Else currcredit $=

curr_credit + amount;

glmaster’ := work_record;
Seek (glmaster, rec_addr);
Put (glmaster) ;

Write ('Acct. number ---==--> ').;
Readln (acct_in);

Unt
);

Figure 6-18. GLUPDATE.PAS General Ledger File Update Program
KKK KKK KKK KKK KAR KKAKAKAKAKKKAAK KK AK KK KKK KAK KAKA KKK KAKAKAKKKKKKKK KKK }

Once the index table is ready, the program begins the data entry and
update section. This is all contained in another WHILE structure which
operates as long as the account number entered is not zero.

For each transaction entered, the program searches the index table for
a matching account number. If found, the SEEK and GET procedures
are used to retrieve the record. We chose to update several fields in the
General Ledger file, including the last transaction date.

Finally, notice that replacing the record in the file requires both

another SEEK and a PUT since the preceding GET call advanced the file
pointer to the next record.

Summary

You’ve seen that it’s possible to use a file for many different types of
applications. Now, all of the major features of Pascal have been discussed.
We can save information on the disk for future use, and we can pass data
back and forth between the program and the real world, all using files.

CS

Exercises

1. How many components can a file have? How many components can

be used at a time?

2. What Pascal statements are needed to open the file “READ.ME”

for input?

3. What is the difference between binary and TEXT (or ASCII) files?

4, How is PUT different from WRITE for output to a file?

5. What is direct access on a file?

Input and Output with Files 233

234

Solutions

1. A file can have as many components as will fit on the diskette. Only
one component can be used at a time.

2. To open the file “READ.ME” for input, you need: ASSIGN
(file_var, “READ.ME”); RESET (file_var);

3. Binary files contain data just as it is stored in memory; TEXT (or
ASCII) files translate all data into a form that can be read by people.

4. PUT outputs one component of a binary file; WRITE translates as
many variables as specified into ASCII strings and outputs them to a
EXT fle:

5. Direct access is the ability to extract a component of a file from the
middle without having to read through from the first component.

Pascal Primer for the IBM PC

Systems of Programs

Concepts
Determining when a system is needed
The system library
Top-down and modular programs
Programs, modules, and implementations
Source and object code files
Linking object files
Units and Interfaces
Assembly language routines for graphics
Color graphics

Keywords
EXTERNAL, PUBLIC, MODULE, INTERFACE, IMPLEMENTATION,
UNIT, USES, $INCLUDE, F.ERRS, F.TRAP

So far, the examples in this book have been relatively small
programs that perform an entire function by themselves. However, it is
often useful to write several programs that can work together and
perform more complex tasks. Actually, we’ve already used a few
EXTERNAL procedures and functions. In chapter 5, we used the
assembly language routines PORTIN and PORTOUT to experiment with
the monochrome display and the sound chip. Those two routines and the
Pascal program which called them constitute a simple system of programs.

However, there are other, more powerful ways that programs can be
linked together. For instance, IBM Pascal allows us to put together a
library of procedures and functions which are usable by other programs.
We can add new procedures and functions by writing a MODULE. When
using a complex system of interrelated declarations we can reduce the
possibility of error by using UNIT’s and IMPLEMENTATIONS.

We'll discuss some relatively advanced techniques in this chapter. If

235

you are just learning to program, you might want to skip this chapter for
the time being. If you are interested in using only a few MODULES, then
just read the first third or so of the chapter. But if you already are, or

Pascal source program and
predeclaration file are PROG.PAS
read by the first pass ;
of the compiler.

PAS]

fo CU) The front end does all
Scanner character parsing.

The appropriate utility is
Low level Medium level used to process syntax.
utilities utilities These high-level sections

handle all of Pascal's
powertul features

Expression
processor

Declaration] Statement
processor | processor

An intermediate binary file
and symbol table are
written by PAS] and then PASIBF.BIN P
subsequently processed by
PAS2.

PAS2

AEE SE EE optimizer finds the

the program.
Generates assembly language
for the IBM PC.
Creates object file for
the linker.

* Optional

Object file ready to be
linked, and optional PROG.OBJ PROG.COD
code listing file.

Figure 7-1. Pascal compiler system of programs

236 = Pascal Primer for the IBM PC

intend to be, an advanced programmer who fully utilizes the abilities of
the Pascal compiler, the final two-thirds of this chapter are for you.

What Is a System of Programs?

There are endless possibilities for using systems of programs. Figure
7-1 illustrates how the Pascal compiler itself is a system of several
modules incorporated into two programs, PAS] and PAS2.

The first program, PAS1, contains several sections. These are all
related to parsing the Pascal source program statements into the
intermediate code, ready for PAS2. The second program, PAS2, takes
over where PAS] left off. It completes the compilation process, and
generates an object file, ready for the linker program.

There are many other situations which require a system of programs.
In business, a system might perform some complex task such as tracking
sales or preparing an income tax form. At home, you might have a
collection of procedures and functions to help in writing future
programs. Or, you might purchase a system of special routines to help
with such complex tasks as graphics or keyed file access.

When Should a System Be Used?

In general, any time you are solving a large, complex problem you
should consider breaking it down into smaller parts by using a system of
programs. Splitting the problem into separate parts involves some extra
work, but it can be well worth the effort. Reuse of commonly used

procedures can save time when writing and compiling programs and
reduce the possibility of typing errors. Finding errors in a large, complex
program can be very difficult. Writing small portions of the program and
testing them separately can greatly reduce the debugging time for the
final program.

Sometimes it is necessary to split a large program into several parts
just to make each part fit in a limited amount of memory. The Pascal
compiler, for instance, was divided into two passes so that it could handle
large programs even on systems with minimal memory.

Top-Down and Modular Programming

There are two terms used quite often by professional programmers

relating to writing systems of programs: top-down and modular

programming. The top-down approach involves dividing a complex

problem into several simpler problems, then dividing each of those

further into step-by-step processes, and so on until the problem is

Systems of Programs 237

completely solved. Imagine for example, that you were building a house.

You would first lay out the floor plan, then decide where to put the

cabinets, and later decide on the number of shelves in each cabinet. In a

similar way, top-down programming goes from the large, general
problem to a number of specific, detailed problems.

Modular programming uses several small components, called routines,

to construct a program; each routine performs a single, well-defined
function. In a business system, one routine might be used for reading the
customer file and another used to sort data to be printed on a report.

IBM Pascal provides a number of features to encourage the top-down
approach to problem solving and to facilitate the use of modular
programming. These features, which we'll describe in the next sections,
are expansions of the PROGRAM structure we have been using so far.

PROGRAMs, MODULEs, and IMPLEMENTATIONs

The Pascal compiler accepts source files in three different divisions:
PROGRAMs, MODULEs, and IMPLEMENTATIONS. All divisions are
source files which are compiled into object files by the Pascal compiler.
IBM calls these divisions Compilands. A chapter in the /BM Personal
Computer Pascal Compiler manual covers this topic; don’t be discouraged
by its description of compilands. They aren’t really that complicated, as
we'll see. A division must start with one of the division identifiers:
PROGRAM, MODULE, or IMPLEMENTATION OEF All divisions
terminate with the keyword END and a period. When compiled, each
division produces a single object file to be used by the linker.

The PROGRAM Division

A PROGRAM file is the division containing the body of a main
program. Every executable file produced by the linker contains the object
file from exactly one PROGRAM division. The PROGRAM division
contains the first statement performed when the program is run (after
initialization). The program object file is the first name supplied to the
“Modules:” prompt while linking the program. For example,

IBM Personal Computer Linker
Version 1.19 (C)Copyright IBM CORP 1982
Object Modules [.OBJ]: Progname+Modnamel+Modname2+. . .

238 Pascal Primer for the IBM PC

The MODULE Division

A MODULE file is a division that only contains definitions of
PUBLIC procedures, variables, or functions. As we have seen, the Pascal
keyword PUBLIC is an attribute that can be assigned to a variable,
function, or procedure. It means that the variable, function, or
procedure will be available to any PROGRAM that uses the MODULE.

A MODULE does not have a BEGIN...END block outside of any
procedures or functions declared by it. A PROGRAM and any number of
MODULEs may be compiled separately and combined with the linker to
form a single executable program. (We'll see an example of this soon,
when we develop the “Stopwtch” PROGRAM and link it with a
MODULE called “Prnttime.”)

The IMPLEMENTATION Division

The IMPLEMENTATION division contains the statements that

define the procedures and functions declared in a special file called an
INTERFACE. It is technically called IMPLEMENTATION OF

(Unitname). “Unitname” is defined in the INTERFACE file. The

IMPLEMENTATION must $INCLUDE the INTERFACE it is defining

at the beginning, even before the IMPLEMENTATION statement itself.

The IMPLEMENTATION can USE other UNITs, nesting them as
deeply as desired. (These terms will be made clearer later in this chapter,

when we'll develop an IMPLEMENTATION OF Graphics to perform
color graphics with Pascal.)

Attributes

Before we get any further in our discussion of systems, we need to
add some more attributes to our vocabulary. We have already discussed
and used the EXTERNAL and PUBLIC attributes. There are three more
attributes that are similar, but not generally needed. READONLY is

useful both for documentation and for preventing mistakes that might
otherwise be hard to track down. Variables specified as READONLY are
treated as constants and cannot be changed by the program. The version

number of a program, or the number of lines on the screen, might be

declared as READONLY since they would not normally change during

the execution of the program.
The STATIC attribute is equivalent to declaring a variable as part of

the main program, so that it doesn’t get cleared on each call to the

function or procedure in which it is defined. This is useful if some

initialization is necessary only on the first call to a routine. All

Systems of Programs 239

EXTERNAL and PUBLIC declarations are automatically STATIC.

The PURE attribute can be given to functions to improve the

efficiency and safety of the program. The PURE attribute indicates a

function that doesn’t change any data. A PURE function may not
perform input or output operations, nor may it alter the value of any
variable. It may only return a value.

PROGRAMs and EXTERNAL MODULEs

Sometimes, it is useful to assemble or compile portions of a program

separately, and then link them together. This reduces the size of the
source programs and the time it takes to compile them. On large
programs several programmers might work on different portions of a
system at the same time. As each portion is completed, it can be linked
into the rest of the system.

The object files that we linked in previous chapters (like the Port
Demonstration Program, “Pinpout”, in chapter 5) are called MODULEs
and the procedures within them were EXTERNAL to the programs that
called them. (Remember: An EXTERNAL procedure or function is one
that has already been assembled, or compiled, into an object file.)

Example Using a MODULE

The program “Stopwtch” operates just like an event timer. It is
written in two parts. The first, “Stopwtch.pas”, shown in Figure 7-2, is
the main program. It contains the control for user inputs and display of
the elapsed time. The second part is shown in Figure 7-3. It is a
MODULE containing the routine “Printtime” which displays the date and
time on the screen, and returns the number of seconds elapsed in the
day to the main program.

Figure 7-2. Stopwatch program using EXTERNAL

SG GCOS COGS ORCI ORIG Kk

STOPWTCH. PAS Stopwatch Program.

This program uses EXTERNAL routines to time an event
and then displays the elapsed time when ENTER is pressed.

J

Program Stopwatch (input, output) ;

Var

240

hr,min: integer: | final elapsed time }

Pascal Primer for the IBM PC

secl,sec2: real: {| number of seconds }
ans: char;

{

PRINTTIME This EXTERNAL function displays the time.
Bee as eG SRO 8 oe we ha, pte ape hs soe ae

Function Printtime : real; external;

Main program starts here.

if
Begin { stopwatch }

Repeat
Write ('Press ENTER to start’);
Readln;
secl := Printtime; { get first time }

{

Stopwatch is running.

.
Write ('Press ENTER for time’);
Read1n;
sec2 := Printtime;

Calculate elapsed time.

}
SeC2--=_seCa, = SeCl: { get elapsed time }

hr := trunc(sec2) div 3609; { elapsed hours }
sec2 := sec2 - 3600*hr;

min := trunc(sec2) div 69; { elapsed minutes }
sec2 := sec2 - 60*min; { elapsed seconds }

Writeln (hr, ' hours ',
min, ' minutes ',
sec2::2, 'seconds');

Write ('Run again ? ');
Readln (ans);

Systems of Programs 241

Unt) \(anse= Ne sor nse ae

End. { stopwatch }

Figure 7-2. STOPWTCH. PAS Stopwatch Program Using EXTERNALS
FEELERAEREERR ARE TREE EREEREE REALL REKAKERREEAERERRELELELEEEEL ERE }

Figure 7-3. Printing routine for stopwatch program

RAS EEC TES ALE ARERR RISE ELE eRe ha Ma ESA

PRNTTIME. PAS Printing Routine for Stopwatch Program.

This is an EXTERNAL module that displays the date and
time, returning the time of day in seconds.

Procedure Time (var s:string); extern; { returns time as 'HH;MM;SS'}
Procedure Date (var s:string); extern;
Function Tics : integer; extern;

Function Printtime : real [public];

Var

tyes String (8). { time and date strings }
sec: real; { number of seconds during day }
tmp: integer; { temporary for decoding value }
[stra string (2s { temporary for decoding dates }

Begin { Printtime }

Time (t); Date (d); { get date and time }
sec := float (Tics); | hundredths of a second }

Writelno(d, * “1 around (Seti 2.)

242 ~=Pascal Primer for the IBM PC

sec := sec / 100.0:

Copylse (ain. rstr):
Concay (istr, Cisii
Eval (Decode (lstr, tmp)); ; get number of seconds }
sec := sec + float (tmp);

Copylst-(pi4ir sty :
Concat (kstr, t(5]):
Eval (Decode (Istr, tmp)); | get number of minutes }
sec := sec + float (606 * tmp);

COpyistT ti str):
concatt tstr, wii 4\-

eval (decode (lstr, tmp));\ { get number of hours |
sec (= sec + 60.0 + float’ 60° * tmp)-;

Printtime <= sec: | return time in seconds |

end; { print time }

End. { module }

Figure 7-3. PRNTTIME.PAS Printing Routine for Stopwatch Program

FOC E GREG E CCG C CCGG ICIICCIC IOC RA III K AK KA |

Linking a PROGRAM with Its MODULES

Linking is the combining of separately assembled or compiled
modules into a program ready to be executed. The EXTERNAL
attribute following a function or procedure declaration indicates that the
actual routine is in a different MODULE than the calling program. The
PUBLIC attribute indicates that the MODULE can be used by other
programs. All functions or procedures declared in the main program as
EXTERNAL must have a corresponding object file that has been
declared PUBLIC.

After each program and module is compiled separately, they are then

combined into a single executable program. This is done with the LINK

program by specifying the object file names (PROGRAM name first)

separated by a space or a plus sign (+).

When you specify the names of MODULES to the linker, it attempts

Systems of Programs 243

to match up all the EXTERNALs to the PUBLICs. After loading all the

MODULEs, if there are any EXTERNALs that have not yet been
resolved, the linker will display an error message.

Here’s how the linker would be used for the STOPWTCH example:

IBM Personal Computer Linker

Version 1.1 (C)Copyright IBM CORP 1982
Object Modules: [.0OBJ] STOPWTCH+PRNTTIME
Run File (STOPWTCH. EXE] :
List File [STOPWTCH. MAP] :
branes SB:

Note that since the PROGRAM and MODULE must be compiled
separately, we'll need to change the batch files that we’ve used until now
for automatically compiling and linking a program. In particular, the
module PRNTTIME.OBJ does not get linked into an executable
program by itself.

You may find it convenient to make separate batch files for compiling
and linking. A listing of these batch files is shown in Figures 7-4 and 7-5.
The listings are based on the assumption that the source files are on
drive A and the Pascal Diskette is on drive B.

Figure 7-4. Compile only batch file

A KK KR RK KB RK KK OR RK RR KK BR KK OK KK KK OK OB OK OR OK OK OR OK OK KK OK KOR OK OK OK ROK KK KK KK KKK KK

time
b:pasl %1l.pas %1.obj %1.1st nul.cod
b: pas2
time

Figure 7-4. COMPONLY. BAT Compile Only Batch File
OKC GGG GG aR OR oR oR oR do RK ok kok kok kok

Figure 7-5. Link only batch file

FOGG GGG Ga kak kab x

time
b: link %1 %2 %3 %4,%1.exe, nul, b: pascal. lib
time

Figure 7-5. LINKONLY. BAT Link Only Batch File
FCG GG EE

244 ~~ Pascal Primer for the IBM PC

The LINK program will create an executable file that can be run by
typing the command “STOPWTCH”. You can find the elapsed time by
pressing (Enter). If you tell the linker program to save the map file,
PRINTTIME, DATE, TIME, and TICS will all appear in the listing of
EXTERNALs. PRINTTIME is defined in the module PRNTTIME.OB];
the rest are found in the library PASCAL.LIB.

UNIT

One of the problems that comes up when using MODULES is that
the PUBLIC and EXTERNAL declarations are in separate files. This
means that if you want to change the operation of the program, you will
have to make the corresponding change in every other module that may
reference the one you want to change. The UNIT in IBM Pascal allows
you to circumvent this problem. It provides a single place, the
INTERFACE file, for declaring variables and procedures that are jointly
used in several modules.

The INTERFACE

INTERFACE its one of two files associated with a UNIT (the other is

the IMPLEMENTATION). The INTERFACE is not a division, and can

not be compiled by itself. It must be referenced using the $INCLUDE
metacommand. The INTERFACE declares the variables, functions and
procedures that are to be used by several programs and implementations.

The INTERFACE of a UNIT is the portion that is used by every
PROGRAM, MODULE or IMPLEMENTATION referring to the UNIT.
It declares any types that are needed and specifies the types of all the
variables in it. It specifies the names and parameter lists for all the
procedures and functions. It does not specify EXTERNAL or PUBLIC
since this is determined by whether it is to be used in an
IMPLEMENTATION (PUBLIC) or in a PROGRAM or MODULE
(EXTERNAL). There is no body (BEGIN...END block) declared for

either the INTERFACE or any of the functions or procedures within it.
The body will be provided by the PROGRAM or IMPLEMENTATION
that USES the INTERFACE.

When an INTERFACE is to be used, it must be read in from the disk

during the compilation. This is done by placing the $INCLUDE

metacommand at the beginning of the PROGRAM or

IMPLEMENTATION division. The command for including a file named

“SAMPLE.INF” would be:

{$include: ‘SAMPLE. INF'}

Systems of Programs

(For more information on including files, see the chapter on

metacommands in the /BM Personal Computer Pascal Compiler manual.)

How to USE a UNIT

After all the INTERFACEs have been included, the PROGRAM or

MODULE statement should appear followed by a USES statement. The

names of the UNITs should appear in the USES statement. For example,

assume that we want to use UNITs named SUBONE and SUBTWO ina

program named FOOBAR. The INTERFACEs for each of the
MODULEs are in the files SUBONE.INF and SUBTWO.INE Then the
source file for FOOBAR should start with:

‘$include: 'SUBONE. INF’ }
{$include: 'SUBTWO. INF’ }

Program Foobar (input, output) ;

Uses subone, subtwo; | may also be done with
two USES statements |

Const
* * *

The program must start with the INTERFACE and UNIT

statements. The INTERFACE file contains the actual declarations of

types, constants and variables to be used. It also contains the parameter
list for any procedures and functions in the UNIT. The program will not

redeclare this information. Identifiers specified in the INTERFACE will
not be available for use by the program unless they appear in the UNIT
statement. An INTERFACE always ends with END and a semicolon, not a

period.
The UNIT statement contains the name of the UNIT being defined

and then, in parentheses, the names of all the identifiers that are to be

used by other programs. The identifiers must include all the procedures,
variables, and functions that are to be declared as EXTERNAL. Also any

CONS Tants or TYPEs needed should be specified, including the values
of any enumerated types. Then follow the appropriate declarations for all
the procedures, variables, and functions listed in the UNIT statement.

INTERFACE of a UNIT

Let’s look now at a UNIT that is supplied by IBM on one of the
Pascal disks. The record declaration for the “File Control Block” (FCB) is
integral to the operations of Pascal files. The INTERFACE file is called
“FILKQQ.INC.” This file is discussed in the chapter on Files in the /BM

246 ~=Pascal Primer for the IBM PC

Personal Computer Pascal Compiler manual, and described in technical
detail in the manual’s appendix titled File System Internals. Here we shall
describe one way to use this INTERFACE file.

First, let’s review some of the fundamentals about IBM Pascal files. A
file is treated as a special type of variable. Files have their own set of
procedures including READLN, GET, and so on. The file can be

declared either as TEXT (for ASCII use) or FILE OF ... (for binary use).

There is a File Control Block associated with each file declared by a
program.

The File Control Block contains all of the information needed by the
system to use a file. Because of the wide range of uses of files and
because of complexities involved in using them with PC-DOS, the File
Control Block contains a lot of information. In Pascal this information is
arranged in a RECORD type variable with many fields. We used one of
these fields, MODE, when we wanted to directly access a file. For
instance, to access a file named “binfile” in direct mode, we would use the

assignment statement

binfile.mode := direct;

before any RESET or REWRITE statement. This statement is nothing
more than an assignment to one of the fields in the File Control Block
record for the file “binfile.” Figure 7-6 shows the entire File Control
Block INTERFACE.

Figure 7-6. File conirol block interface

JOR GGG OR GR a kk ok 6k

{ IBM Personal Computer Pascal file control block }
Version 1.90 (C) Copyright 1981 by IBM Corp

INTERFACE; UNIT
FILKQQ (FCBFQQ, FILEMODES, SEQUENTIAL, TERMINAL, DIRECT,

DEVICETYPE, CONSOLE, LDEVICE, DISK,
DOSEXT, DOSFCB, FNLUQQ, SCTRLNTH) ,

CONST

FNLUQQ = 21; { length of a DOS file name }

SCTRLNTH = 512; { length of a disk sector |

TYPE

DOSEXT = RECORD { DOS file control block extension }

Systems of Programs 247

PS [0]: BYTE; { boundary byte, not in extension }
FG [1]: BYTE; | flag; must be 255 in extension }
XZ [2]; ARRAY [@..4] OF BYTE; | padding, internal use }
ARS ee Line { attribute bits }

END;

DOSFCB = RECORD { DOS file control block (normal) }

DR {[@]: BYTE; { drive number, @=def, 1=A etc }
FN [1]: STRING (8); { file name - 8 bytes }
FT [91% YSTRING: (3); { file extension - 3 bytes }
Ex 2): BYoe { current extent, lo byte |}
H2 13]. BYTE { current extent, hi byte }
Se 1145 BYTH: { sector size, lo byte }
Reet oT: BY ih { sector size, hi byte (ext sect) }
Z1 [16]: WORD; { file size, lo word; readonly }
Z2 [18]: WORD; { file size, hi word; readonly }
DA [20]: WORD; { date, bits DDDDDMMMMYYYYYYY }

DN [16]: ARRAY [@..9] OF BYTE; { reserved for DOS }

CR [32]: BYTE; { current sector within extent }
RN [33]: WORD: { direct sector number lo word }
R2 (35) BYTE: { direct sector number hi byte }
Re (oe): BYTE: { hi byte (if sect size < 64) }
PD [37]: BYTE; { pad to a word boundary, not DOS }

END;

DEVICETYPE = (CONSOLE, LDEVICE, DISK);

{ physical device type }

FILEMODES = (SEQUENTIAL, TERMINAL, DIRECT) ;
{ access mode for file }

FCBFQQ = RECORD {byte offsets start every field comment}

{fields accessible by Pascal user as <file variable>.<field>}

TRAP: BOOLEAN; {00 Pascal user trapping errors if true}
ERRS: WRD(@)..15; {@1 error status, set only by all units}
MODE: FILEMODES; {#2 user file mode; not used in unit U}

{fields shared by units F, V, U; ERRC is write-only}

MISC: BYTE; {03 pad to word bound, unused, reserved!
ERRC: WORD; (04 error code, error exists if nonzero!

{1000..1999: set for unit U errors}
{1190..1199: set for unit F errors!
{1209..1299: set for unit V errors}

ESTS: WORD; {06 unused - reserved }

248 Pascal Primer for the IBM PC

CMOD:

{fields set / used by units F and V, and read-only in unit U}

TXTF:

SIZE:

MISB:
OLDF:

INPT:

RECL:

RECH:
USED:

FILEMODES;

BOOLEAN;

WORD;

WORD;

BOOLEAN;

BOOLEAN;

WORD;

WORD;

WORD;

{@8 system file mode; copied from MODE}

{@9 true: formatted / ASCII / TEXT file}
false: not formatted / binary file}

{1@ record size set when file is opened}
_ {DIRECT: always fixed record length}

(others: max length (UPPER (BUFFA)) }
{12 unused - reserved }
{14 true: must exist before open; RESET}

{false: can create on open; REWRITE}
{15 true: user is now reading from file}

{false: user is now writing to file}
{16 DIRECT record number, lo order word}
{18 DIRECT record number, hi order word}
{20 number bytes used in current record}

{field used internally by units F and V not needed by unit U}

LINK: ADR OF FCBFQQ; {22 DS offset address of next open file}

{fields used internally by unit F not needed by units V or U}

BADR:
TMPF’:
FULL:
MISA:
OPEN:

ADRMEM;

BOOLEAN;
BOOLEAN;
BYTE;
BOOLEAN;

{24 ADR of buffer variable (end of FCB) }
{26 true if temp file; delete on CLOSE}
{27 buffer lazy evaluation status, TEXT}
{28 unused - reserved }
{29 file opened; RESET / REWRITE called}

{fields used internally by unit V not needed by units F or U}

FUNT:
ENDF':

INTEGER;
BOOLEAN;

{30 Unit V's unit number always above 0}
{32 Unit V's file-at-end operation flag}

{fields set / used by unit U, and read-only in units F and V}

REDY:

BCNT:

EORF:

EOFF:

NAME:

DEVT:

RDFC:

WREC:

CHNG:

SETR:

BOOLEAN;
WORD;
BOOLEAN;
BOOLEAN;

{33 reserved }
134 number of data bytes actually moved}
136 true if end of record read, written}
137 end of file flag set after EOF read}

{unit U (operating system) information starts here}

LSTRING (FNLUQQ) ; 38 DOS file name for this file }
DEVICETYPE;

a a ee

60 type of device accessed by this file }
61 function code to read from a device }
62 function code to write to a device }
63 true if data in sbuf was changed }
64 pointer (index) into sbuf |

Systems of Programs 249

: DOSEXT; 66 extended DOS file control block |
: DOSFCB; 74 normal DOS file control block }
: BOOLEAN; 112 true if eoff should be true next get }
: BOOLEAN; {113 true if a filename error has occurred }
~ BY Tie 114 max length of textfile line in sbuf }
ABV Ene 115 number of chars read into sbuf |
: ARRAY [WRD(@)..SCTRLNTH-1] OF BYTE; {116 sector buffer }
: ARRAY [@..5] OF BYTE; {116 + sctrlnth: reserved pad }

: CHAR; { Pascal buffer variable, (component) }

{end of section for unit U specific OS information}

Figure 7-6. FILKQQ. INC File Control Block Interface
COCR CRRA AK AKA KAKA KAKA KR KA KEKE KK RK KK

The file FILKQQ.INC can be displayed with the TYPE command in
PC-DOS or examined with any word processor or editor. (Be careful not
to change the contents of the file!) The file contains the INTERFACE for
a UNIT named FILKQQ. After a short comment for identification, it
starts with an INTERFACE statement and a UNIT statement, and ends

with the END; statement. After the UNIT’s name, FILKQQ, is a list of

the types and constants that are used in the File Control Block. IBM
provided this INTERFACE to allow the Pascal programmer to access the
file system with full flexibility. Because this UNIT just contains
definitions of types and constants used internally, there is no
corresponding IMPLEMENTATION for the UNIT FILKQQ.

Many of the definitions in the INTERFACE are too technical for
most of us, but a few of the declarations can be useful to anyone. Skip

over the first couple of declarations until you find the statement:

FILEMODES = (SEQUENTIAL, TERMINAL, DIRECT);

250

This defines the enumerated type FILEMODES for specifying how a file
may be accessed. Note that the UNIT statement at the beginning of the
INTERFACE specified both the type identifier FILEMODES, and all of
the possible values: SEQUENTIAL, TERMINAL, and DIRECT. As you
probably guessed this is the TYPE declaration for the MODE field in the
File Control Block.

After the enumerated type definitions, we find the declaration for the
File Control Block record type, FCBFQQ. This starts with:

Pascal Primer for the IBM PC

FCBFQQ = RECORD
TRAP: BOOLEAN,
ERRS: WRD(Q)..15;
MODE: FILEMODES,

TRAP, ERRS and MODE are the three fields in the record most
commonly used by Pascal programmers. TRAP is set true when the
programmer wants to prevent a program from terminating when a file
error 1s detected. ERRS is set by the DOS to indicate which error
occurred, if any, when TRAP is true. We will use TRAP and ERRS again

in the “Filechk” program in Figure 7-7.
If we skip down the record definition further we come to two more

fields that might be useful: NAME and DEVT. NAME is the PC-DOS file
name associated with the file. This is especially useful with temporary
files whose names are determined by the operating system. DEVT is an
enumerated value of type DEVICETYPE and it indicates what type of
physical device is associated with the file. For all disk files DEVT = DISK.
Non-disk files include physical devices such as the keyboard and display
screen which have DEVT =CONSOLE.

IBM also supplies an INTERFACE file called FILUQQO.INC (we have
been using FILKQQ.INC). FILUQQ.INC is for accessing the DOS level
control of the file system and is beyond the intended scope of this book.
IBM provided it for those knowledgeable assembly language
programmers who want to expand the power of IBM Pascal.

PROGRAM Using a UNIT

The program “Filechk.pas”, shown in Figure 7-7, USES the
INTERFACE for the UNIT FILKQQ. Declared within the program 1s a
function, “fileexists,’ which determines if a file already exists on the disk.

This can be difficult since RESET normally will terminate the program if
the file doesn’t exist, and REWRITE will create a new file.

Figure 7-7. Check for file existence

[GOR G a 4 4 458 24 k He dice

FILECHK. PAS See if a file exists.

This program traps DOS errors so that execution 1s not

terminated when an error occurs. Instead, the F. ERRS field of the

file control block is tested to see if the file exists.

|

J
J /$include: 'FILKQQ. INC' } { <---- Interface file |

Systems of Programs 251

Program Filecheck (input, output) ;

Uses filkqq; { <---- Field Definition Unit }

Var
testfile: text; { file to check }

This function does the work. It sets the error trap and
then tries to open the file with a RESET. Then the condition of
F.ERRS being equal to zero is assigned to the function.

Function Fileexists (var f: fcbfqq) : boolean;

Begin
{trap = true; { don't stop on an error }
Reset (f); { try to open for input }
Fileexists := (f.errs = @);

{ evaluate the error flag as a
Boolean value, only true if
file was found }

Close (f); { always close file }
f. trap := false; { don't trap other errs }

end; { fileexists }

Main program starts here. Input a file name and check
to see if it exists.
lb Ai ec ea deh sca

Begin { filecheck }

Write (‘Enter any file name: ');
Readfn (testfile); { get file name }

If Fileexists (testfile)
Then Writeln ('File found')

Else Writeln ('File is not on the disk');

End. { filecheck }

Figure 7-7. FILECHK. PAS Check for File Existence
EEA ERR SESE AC RATS SR ALESE SE EOS ERATE LS Sa eee he Ae

252 Pascal Primer for the IBM PC

The only portions of FILKQQ that are used are the File Control
Block record type, FCBFQQ, and two of the fields within the record,
TRAP and ERRS. Note that the file that contains the INTERFACE,
FILKQQ.ING, is specified by an $INCLUDE metacommand at the
beginning of the program. This file has to be on the default disk drive or
the compiler will give a fatal error. After the $INCLUDE comes the

division specifier: in this case the PROGRAM statement. Immediately
after the PROGRAM statement comes the USES statement specifying the
name of the UNIT to be used, FILKQQ.

The main body of the program is a simple routine that associates a
file name entered by the user with a file type variable “testfile”. A call is
then made to the function “fileexists” and an appropriate message is
displayed based upon the results of the function call. Note that the
variable “testfile” could also have been declared as a binary type file
(FILE OF..) without changing the results.

The function “fileexists” utilizes the INTERFACE file. It takes a
single parameter, “f” of type FCBFQQ. The error trapping is set TRUE
for the file to prevent termination of the program if an attempt is made
to open the file for input (the RESET statement), and the file does not
exist. This condition will be signaled by the value of the File Control
Block field ERRS. The file is always left CLOSEd and the error trapping
flag is always returned to its default state, FALSE.

This example is informative and is a useful addition to a library of
user written procedures and functions. The function “fileexists” could be
put into a module by itself by changing the PROGRAM statement to a
MODULE statement and deleting the declaration of “testfile” and the
body of the main program. When used in its present form, the program
requires no special handling by the linker. Also notice that we used a
portion of a large complex record definition without having to see the
entire definition; this minimized the risk of typing errors. This capability
is one of the advantages of using UNITs.

The IMPLEMENTATION OF a UNIT

We have seen how to take frequently-used codes and set up a

MODULE, and how, using an INTERFACE file, the-main program can

easily use a complicated definition. These features can be combined by

using an IMPLEMENTATION. Like MODULEs, an

IMPLEMENTATION is a separately-compiled source file that contains

variables and procedures used by one or more other programs. ‘The same

INTERFACE file that the IMPLEMENTATION uses to define the

EXTERNAL procedure can be used by the calling program(s).

An IMPLEMENTATION is similar in structure toa PROGRAM ora

Systems of Programs 253

MODULE. It must begin with an $INCLUDE for the INTERFACE for

the UNIT that it defines. Any other required UNITs should also be

$INCLUDEd at the beginning of the IMPLEMENTATION. Instead of a

PROGRAM or MODULE statement, the IMPLEMENTATION OF
statement is used. The USES statement must follow with the name of the
UNIT. Any declarations that are needed only for local use within the
IMPLEMENTATION should be made. LABELs can be used and a
VALUE section specified. These are useful features not available in
MODULEs.

We will use these IBM compilands in the remainder of this chapter to
develop a system of programs to perform color graphics output from
Pascal on an IBM PC equipped with the color graphics adapter.

The Color Graphics System

254

Among the many features available for the IBM Personal Computer is
a fine color graphics display adapter. The adapter allows the IBM PC to
completely control the operation of a color monitor or color television.
This makes it possible to write programs that will output color graphics:
a very desirable feature in any computer. As the proverb says, “One
picture is worth a thousand words.” Color graphics can be used for a
number of applications, from games to sales charts, and greatly enhance
the value of your PC.

The BASIC language for the IBM PC supports color graphics
operations fully. There are special BASIC commands that control the
display mode and color. Unfortunately, the Pascal language is lacking
these features. Perhaps at some future date IBM will release an updated
version of Pascal, containing some graphics capability. For now, we will
develop our own color graphics system as an example of a system of
programs.

The Hardware

‘To perform color graphics with the IBM PC, we must have a machine
equipped with the color graphics adapter, shown in Figure 7-8. The color
adapter is a printed circuit board that plugs into one of the expansion
slots inside the IBM PC. It has 16K of its own memory which is mapped
into the system memory space, and used as the display buffer. Its
operations are all controlled by a CRT controller chip, located on the
board. This is the same kind of controller that is used for the
monochrome display. The adapter is also controlled through the CPU’s
INPUT/OUTPUT ports.

Pascal Primer for the IBM PC

The adapter can be connected directly into a color monitor. It can
also output a video signal to an external RF modulator for a standard

color television set.

The Display Buffer

The 16K of memory on the adapter board is used as the display
buffer, shown in Figure 7-9. This means that whatever is to appear on
the screen is represented in the buffer in some binary format. The
display buffer physically resides on the color adapter board and is
mapped into the system memory space starting at address B8000h (“h”
indicates a hexadecimal value). Like the monochrome display buffer, this
memory is accessible by both the CRT controller and the CPU.

Color composite
signal phono jack

Rear panel Color direct
drive 9 pin “D”
shell connector

P1-4 pin berg strip slafhal oli))P2-6 pin berg strip
for RF modulator BEBEB for light pin connector

Color/graphics
adapter

APEC UUULISUUCUL
FAL JLUUC uu
A UOUULUULLE

Figure 7-8. Color graphics adapter hardware

Systems of Programs 255

Like the monochrome display buffer, the color display buffer is a
contiguous array of memory locations. These are used and interpreted
differently, depending upon the current mode of the adapter.

Color Graphics Modes

There are two basic modes in which the color graphics adapter may
be operated.

ALPHANUMERIC supports the full 256 ASCII characters
with standard attributes.

ALL POINTS
ADDRESSABLE graphics mode has 2 levels of

resolution. The medium resolution,

320x200, supports color graphics; the
high resolution, 640x200, supports
black and white only.

=
o

=
o
=

3 oO

ie}
cy

[a4

e
® _
nn
>=
Y Monochrome buffer

64K AK
4
as

expansion area

#00,000] #B0000 #B8000

Figure 7-9. Color display buffer in system memory

256 ~—— Pascal Primer for the IBM PC

Alphanumeric Mode

The alphanumeric mode is used to display the standard character set
on the color adapter. This allows the user to have a color television as the
only display device on the system. In this mode, the characters are
displayed much the same as on the monochrome display. The display
buffer is used to contain the characters to be displayed, along with their
attributes. Two bytes are used for each character in the display buffer.
(See Figure 7-10.)

The first byte contains the ASCII code for the character. This code is
used to access a table in which the actual dot pattern for the character is
stored. This table can be at any location in the system memory since its
address can be programmed into the CRT controller. This means that
you can build your own set of characters somewhere in memory, and
access it by changing the table address for the controller. Each character is
displayed as an 8x8 matrix. Every consecutive 64 bits (8 bytes) in the
character generator table contain the pattern for a single character.

1 6 543,32 1,0

[1 [| 1 1 I [[I] ASCH Character (Even address)

[BIR G B[I[R G B] Attribute Byte (Odd address)

Cor?

LEBEL AZE EE EEE
Row 0 tft}

]

Col 77 Col 78 COn7,

Figure 7-10. Buffer in alphanumeric mode

Systems of Programs 257

The second byte for each character in the buffer contains the
attribute information. These attributes are similar to the attributes given
to characters in the monochrome display. In addition to the intensity and
blink attributes, here we can specify one of eight colors. If you intend to
pursue this area further, we suggest that you have the JBM Personal
Computer Technical Reference manual available.

All Points Addressable Modes

As we mentioned earlier, the all points addressable graphics mode has
two levels of resolution: medium and high.

Medium Resolution Mode. Figure 7-11 shows the medium resolution
color mode. It will probably be your most common mode for general
color graphics. The screen is divided into 200 horizontal lines, each
containing 320 picture elements, called pels by IBM.

Each picture element may be set to one of four colors. This is possible
because there are two bits used to represent each picture element. So,
there will be four picture elements stored in each byte of the display
buffer. Accessing a particular picture element will require some
arithmetic to determine which byte actually contains the picture element.

C1) 2-bit picture elements (pel)

COL OG. COLA COL? COLS. COl4 COL S COOLS

195

196

197

198

ROW 199

COL. COE. COL
317. 318 319

Figure 7-11. Medium resolution color mode

258 Pascal Primer for the IBM PC

High Resolution Mode. The color options available are decreased in the
high resolution mode. As shown in Figure 7-12, the screen is divided into
200 horizontal lines, each containing 640 picture elements.

Each bit in the display buffer represents a picture element. That’s why
this mode only supports black and white: the one bit can only determine
whether the picture element is on or off.
Odd and Even Scan Lines. When operating in either the medium
resolution or high resolution graphics mode, the display buffer is no
longer treated as a contiguous array of screen locations. Instead, the odd
and even scan lines are grouped together.
As illustrated in Figure 7-13, the first part of the display buffer contains
the even numbered lines (0,2,4,etc.). Then, there is a small area that is

unused. Finally, the odd numbered lines (1,3,5,etc.) occupy the rest of
the buffer. This throws a wrinkle into our color graphics system since we
can’t treat the color display buffer quite so simply as we treat the
monochrome buffer.

C1 1-bit picture element

eee

zai (ea ib Well
af A a fae a

LEA iy aie
ee

636 637 638 COL
639

Figure 7-12. High resolution black and white mode

Systems of Programs 259

Direct Pascal Access

We could access the color display buffer in much the same way as we
accessed the monochrome display buffer in chapter 5. By using an
ADDRESS type variable. we can access any memory location, including
those in the display buffer.

B8000h

Even scan lines

Figure 7-13. Even and odd scan lines

260 ~—— Pascal Primer for the IBM PC

When we were developing the program examples for this book, we
tried this approach for a while, and decided that it was not acceptable, for
two reasons. First, the declaration for the display buffer with its
segregated odd and even scan lines and its different modes, makes for a
complicated Pascal program. Second, the complexity of addressing the
display buffer slowed the execution speed until it was not satisfactory for
most applications. For these reasons, we decided to use some assembly
language routines to perform the primitive functions for our graphics
system.

Assembly Routines for Color Graphics

‘Io use our assembly routines for color graphics you must have the
IBM Assembler or a similar program. Several operations will be standard
in our system. These will be performed by the assembly language
routines set forth in Figures 7-14 through 7-18. These routines are
written in assembly language, as PUBLIC procedures. Once assembled,
they will reside on the disk as object files which can be linked into any
main program.

We are presenting the assembly source statements for these routines
so that you can see some basic things about their use. If you would like to
learn more about assembly language, we suggest that you also read
Assembly Language Primer for the IBM PC and XT by Robert Lafore (New
York: Plume/Waite, New American Library, 1984), another book in this

series.
The routine BANDW, like the rest of our graphics routines, utilizes

the DOS to perform the actual I/O to the color adapter. The three mode
setting routines are examples of this technique. The proper code is
placed in the “equipment byte” and a call to the DOS is made via an
interrupt instruction (INT). The routines COLORM and HIGHRES, set

forth in Figures 7-15 and 7-16, are similar to BANDW.
To facilitate the actual graphics operations, we have developed two

additional assembly language routines, PLOT and DRAW. These are set
forth in Figures 7-17 and 7-18.

PLOT is a procedure that treats the high resolution screen like a
giant chessboard. Each picture element can be described by its row and
column position, expressed as X and Y coordinates. The range along the

X axis is from 0 to 639, while the range along the Y axis is from 0 to 199.

The third parameter to the PLOT routine is the color. In high resolution

mode, there are only two colors: black and white. A white point will be

plotted on the screen if the value of color is 1. A black point will be

plotted (blanking out any point already existing) if the value of color is 0.

Systems of Programs 261

The DRAW routine is used for drawing lines on the screen. Each line

is defined with two pairs of X and Y coordinates and a color value. Each

coordinate pair describes one end of the line.

The routine will operate in either the high resolution (black and
white) mode, or the medium resolution (color) mode. The only

differences are that in the medium resolution mode, the X axis ranges

from 0 to 319, and the color parameter can be set to 0 (for black) or 1, 2,

or 3 for one of the colors in the medium resolution palette.

Figure 7-14. Set monochrome display mode

p RK 3K 3K KK RK KK KKK KR OK OR OR KKK OK OK OK KK KKK OR OK OK ROK KK KK KOK KK KK KKK KK KKK

; BANDW. ASM Set Monochrome Display Mode.

; This routine sets the system monochrome display mode by
;encoding its value into the “equipment flag" and making a BIOS

; SEGMENT TO CONTAIN EQUIPMENT FLAG

rom da segment at 4@h
org 10h

eq flag label word
rom da ends

- PROGRAM SEGMENT

coder segment para public
assume cs: coder

public bandw

bandw proc far
push ds ; save DS

; CHANGE TO MONOCHROME DISPLAY

assume ds: rom da
mov ax,romda ;set DS to
mov ds, ax ; equipment flag

mov ax,eq flag ;get equipment flag
and ax,11001111b ;mask off video bits
or ax, 0@110000b : monochrome bits
mov eqflag,ax ;back into flag

262 = Pascal Primer for the IBM PC

mov al,2 ;80 column b & w code
mov ah,@ ; "set mode" function
int 10h ;call Video BIOS

pop ds ;get DS back

ret ;return to caller

bandw endp
coder ends

end

Figure 7-14. — BANDW. ASM Set Monochrome Display Mode
FCCC CCG AGA ACCC GGG KR x

Figure 7-15. Set medium resolution color mode

3 SEES Se Pit Mottade Se ta IT Rolo Rut oto Meattalh Seen tata tS Da RoR uli tad Sa iat de ban atod Natta ital:

 COLORM. ASM Set 320 x 200 Medium Resolution Color Mode

This routine sets the medium resolution color mode by
‘encoding its value into the “equipment flag" and making a BIOS
Teall,

 SBCMENT TO CONTAIN EQUIPMENT FLAG

rom da segment at 40h
org 10h

eq flag label word
rom_da ends

PROGRAM SEGMENT

coder segment para public
assume cs: coder

public colorm

colorn proc far
push ds -save DS

‘CHANGE TO 320 x 200 color mode

assume ds:rom_da
mov ax,romda ;set DS to

mov ds, ax - equipment flag

Systems of Programs 263

mov ax,eq flag ;get equipment flag
and ax,110@1111b ;mask off video bits
or ax,0@100000b :color card 8M x 25
mov eqflag,ax ;back into flag

mov al,4 - 320x200 color
mov ah,@ -"set mode" function
int 1h ‘call Video BIOS

pop ds ‘get DS back

ret ‘return to caller

Figure 7-15. | COLORM. ASM Set Medium Resolution Color Mode
5 RRR RRR RR RCAC CR ACR A ACCC AOR RRR KKK RK

Figure 7-16. Set high resolution black and white mode

SK KKK AKA KK KKK KKK KKK AKA KKK KKK KKK KKK ARK KK KAR KAKKKAKKKAKKKAKKKKKKKKK
d

‘ HIGHRES. ASM Set 640 x 200 High Resolution Graphics Mode.

This routine sets the high resolution color graphics mode
- by placing its value into the “equipment flag" and making a BIOS
Calle

: SEGMENT TO CONTAIN EQUIPMENT FLAG

rom da segment at 40h
org 10h

eq flag label word
rom da ends

: PROGRAM SEGMENT

coder segment para public
assume cs: coder

Hates proc far
push ds “save DS

‘SET UP FOR 640 x 200 black and white

264 Pascal Primer for the IBM PC

assume ds:rom_da
mov ax,rom da ;set DS to
mov ds, ax ; equipment flag

mov ax,eq flag get equipment flag
and ax,110@1111b ;mask off video bits
or aX, 00190000b ;color,card 80 x 25
mov eqflag,ax ;back into flag

mov al,6 ; 640x200 b & w code
mov ah,@ ;"set mode" function
int 1@h ‘call Video BIOS

pop ds ;get DS back

ret ‘return to caller

highres endp
coder ends

: Figure 7-16. | HIGHRES. ASM Set High Resolution Black and
White Mode

CURB EBSCO SEBS IO GUESS GUUS SOC ISSOG EAI SS EAI SGA IGGE

Figure 7-17. High resolution plot routine -

LES CELE EE ARAL ELAR AER A EL RERR ELLER DE ELA EL ERK ERR ER ESE REAR EELS

PLOT. ASM Color Graphics Plot Routine

This routine uses the BIOS to plot a point in the

color graphics 640 x 200 high resolution mode.

pro_nam segment para public
assume cs:pro_nam

public plot
plot proc far ‘main part of program

0
il

2 hi-offset return address

5 Lo
4 hi-segment return address

Se allt)
6 hi color word

Systems of Programs 265

T lo
; 8 hi column number
Pe ee Mi
; 10 hi row number
oo walle 16

push bp ‘save old BP
mov bp, sp ‘ptr to stack
mov ax, [bp + 6] ;get color word
mov cx, [bp + 8] ;column number
mov dx, (bp + 10] ;row number

; Use the BIOS to write dot.
5 row # in DX

col in CX
: color in AX

mov ah,12d ‘write dot function
int 10h ‘video BIOS routine

pop bp ‘restore old BP
ret ‘return to caller

plot endp ‘end of main part of program
pro_nam ends ;end of code segment

end

ene 7-17. PLOT. ASM High Resolution Plot Routine
5 AAA RA AOR RR A RR AK KK KK RR KK RRR RR RR REE EE KEE KKK

Figure 7-18. Color graphics line routine

SRR RAK KK KKK KR RK RK KKK RK AR RRR ARR ARK KK KK KK KKK KKK KK

; DRAW. ASM Color Graphics Line Drawing Routine.

This routine uses the BIOS to perform the actual
color graphics I/0, in the current mode.

Lee segment ‘define data segment

delta_x dw ? Seibert al|
delta_y dw ? ; |y2-yl|
halfy label word Peis ale yee
halfx dw ? Pep al) aie?
count dw ? ; set to long axis

datarea ends

266 ~~ Pascal Primer for the IBM PC

pro. nam segment para public
assume cs:pro_nam, ds: datarea
public draw

draw proc far

‘DRAW -- SUBROUTINE TO DRAW LINE

Input sax. yh (Start of ine)
x2, y2 (end of line)

: color (0-1 or Q-4)

; Assume these five 16-bit numbers are
-on the stack in the form

a) old BP register <---stack pointer
aa lo
ie offset return address
a lo

74 segment return address
as lo

6 cohor = bp-t76
yf lo
:8 y2 hi ;bp +8
me) lo
10 x2 hi ;bp + 10
| lo

ll Vienien ee bps 2
ait lo
sare! xl hi ;bp + 14
calls lo

push bp ‘save calling prog's BP
mov bp, sp ‘establish new BP

;find |y2-y1| -- result is delta_y
mov ax, [bp + 8] ;get y2
sub ax, [bp + 12] ;subtract yl

‘result in AX
‘figure out if delta_y is positive or negative

SI=1 if positive, SI=-1 if negative)

mov si,l -set flag to positive
jge store_y ; keep it that way
mov si,-l ‘set flag to negative
neg ax ‘set to abs value

SLOLe: Vy:
mov delta_y,ax ;store delta_y

Systems of Programs 267

;find |x2-x1| -- result is delta_x
mov ax, [bp + 16] ;get x2
sub ax, [bp + 14] ‘subtract xl

‘result in AX
‘figure out if delta_x is positive or negative
; DI=@ if positive, DI=1 if negative

mov di,1 ‘set flag to positive
jge store x ; keep it that way
mov di, -1 ‘set flag to negative
neg ax ‘set to abs value

store x:
mov delta_x,ax ;store delta_x

;figure out if slope is greater than 1, or less
mov ax,delta_x ;get delta x
cmp ax,delta_y ;compare deltas
jl esteep ‘Slope > 1
call easy “slope < 1, or = 1
jmp finish

csteep:
call steep ‘Slope > 1

; DONE LINE -- RETURN
finish:

pop bp
ret 10 ‘return to caller

draw endp

easy proc near

; SLOPE < 1

‘calculate half of delta_x, call it halfx
mov ax,delta_x ;get |x2-x1|
Si eed ‘shift right to divide
mov halfx,ax ; by 2

‘initialize values
mov cx, [bpt14] ;set x1
mov dx, [bpt12] ;set yl
mov bx,@ ‘initialize BX.
mov ax,delta_x ;set count
mov count,ax ; to |x2-x1|

268 Pascal Primer for the IBM PC

newdot:

call dotplot ;plot the dot
add cx,di -inc/dec X
add bx,delta_y ;add |y2-y1| to BX
cmp bx,halfx compare to |x2-x1|/2
jle dcount ; (don't inc/dec Y)

sub bx,delta_x ; subtract |x2-x1|
; from BX

add dx,si ‘inc/dec Y
dcount:

dec count ;done line yet?
jge newdot ;not yet

ret ‘done line

; SLOPE > 1

;calculate half of delta_y, call it halfy
mov ax,delta_y ; get |y2-y1|
Shite bax vl ‘shift right to divide
mov halfy,ax ; by 2

; initialize values
mov cx, [bp+14] ;set xl
mov dx, [bpt12] ;set yl

mov bx,@ ‘initialize BX
mov ax,delta_y ;set count

mov count,ax ; to x2-yl

newdot2:
call dotplot ‘plot the dot
add dx,si -ine/dec Y
add bx,delta_x ;add |x2-x1| to BX
emp bx,halfy compare to |y2-y1| / 2
jle dcount2 ‘don't inc/dec X
sub bx,delta_y ; subtract |y2-y1|

- from BX
add cx, di -inc/dec X

deount2:
dec count ‘done line yet?
jge newdot2 ‘not yet
ret ‘return to main dline

steep endp

Systems of Programs 269

; SAVE REGISTERS AND CALL PLOT ROUTINE

push bx “save registers
push cx
push dx
push ax
push si
push di

‘use ROM routine to write dot
‘requires row # in DX, col in CX, color in AL

mov ax, [bp + 6] ;set color value
mov ah,1l2d ‘write dot function
int 1@h ‘video BIOS routine

pop di ‘restore registers
pop sl
pop ax
pop dx
pop cx
pop bx

ret ‘return

dotplot endp

pro_nam ends ;end of code segment
end ‘end assembly

‘Figure 7-18. DRAW. ASM Color Graphics Line Routine
4 A ER RK KR A ROR OR OR KR RK RR OR OR OK ROR RR OR ROR ROR ROK RRR RRR KKK KKK KKK KKK KKK

270

IMPLEMENTATION OF Graphics

In order to use all of these new routines in Pascal programs, we have
to set up an INTERFACE file, containing the declarations of all the

external routines in the UNIT named “Graphics.” Figure 7-19 shows the
INTERFACE file.

Each of the external routines is declared, including the parameter list.
These are all then grouped together under the UNIT name, “Graphics.”
This file must be $INCLUDEd in each compilation that is to use the
graphics routines.

Pascal Primer for the IBM PC

Figure 7-19. Graphics interface file

ESCO GCG GCG CGI AK

GRAPHICS. INF Color Graphics Interface File.

j
Interface;

Unit graphics (bandw, colorm, highres, plot, draw, box) ;

Procedure bandw;
Procedure colorm;
Procedure highres;
Procedure plot (x,y, color: integer) ;
Procedure draw (x1, yl,x2,y2, color: integer) ;
Procedure box (x,y, xdim, ydim, color: integer) ;

b/w mode }
color mode }
high res mode }
plot a point }
draw a line }
draw a box } Fp a

end; | graphics interface }

Figure 7-19. GRAPHICS. INF Graphics Interface File
AB A OR AR RH A AH A RR A KR A KA RR KR RR KK ARR KR KR KKK ER KKK ARK KKK KE |

The IMPLEMENTATION OF Graphics is like part of a program. It
is compiled into an OBJect file, which can then be linked into many
executable programs. Figure 7-20 is a listing of the IMPLEMENTATION
file. Notice the external declarations. Here they don’t need their
respective parameter lists; they have already been declared in the
INTERFACE.

Figure 7-20. Graphics implementation file

RESIN SITS ERASE ESA ES ES SAR eel tee GER EE SSA SALI Rie AR TES ELEY 5

GRIMPLNT. PAS Color Graphics Implementation.

{$include: 'graphics. inf'} { <---- Interface file |

Implementation of Graphics;
f

Procedure bandw; external;
Procedure colorm; external;
Procedure highres; external;
Procedure plot; external;
Procedure draw; external;

Systems of Programs 271

Pascal procedure for drawing boxes.
ea ee ere eee SO ane. Yer ele Coty, See eer ene ae ES !

Procedure box;

Var
Kivi, x2.vo col sinteger,

Begin
Xe Xe yl :=y;
x2 -= xl t+-xdin: WA yale

draw (xl,yl,x2,y2,col);

Ne Wah ee sifolall ly 2s
draw (oly yl ye cols

Kou Ke yl S= Wee

draw (xl,yl,x2,y2,col);

A Rao y2 :=y;
drawa(xiy yiixeve,co li.

end; { box }

end. { graphics implementation |

Figure 7-20. GRIMPLNT.PAS Color Graphics Implementation File
BRAK EAE AAA RK RRR EKER A KEKE A REAR K HARA EK KKK K HK ARR KEK EAE KKK KKK |

One additional feature we thought would be useful is the BOX
routine. This Pascal procedure uses the assembly language primitive
DRAW to draw the four lines that comprise a box. The parameter list for
the box routine describes the location of the upper left corner of the box,
and both the X and Y dimensions. From this, the Pascal routine can
determine the end points of the four lines that must be drawn to
complete the box. You can use the BOX procedure as a model for your
own procedures.

Pascal Demonstration Programs

‘To illustrate the use of these new routines, we’ve put together some
demonstration programs. These are nothing fancy, nor are they difficult
to understand. They do provide insight into the operation of the color
graphics adapter, and are a convenient springboard for further
experimentation.

272 ~=—~ Pascal Primer for the IBM PC

Linking the Graphics Programs
After each one of the Pascal demonstration programs has been

compiled, you will need to link it with all of the external routines before
an executable file can be created. Here is what the linker session might
look like.

IBM Personal Computer Linker

Version 1.10 (C)Copyright IBM CORP 1982
Object Modules: [.0OBJ] PROGNAME+

GRIMPLNT+
BANDW+COLORM+HIGHRES+
PLOT+DRAW

Run File (PROGNAME. EXE]:

List File [PROGNAME. MAP];
Libraries[|: B:

The PLOTDEMO Program

The first program, “Plotdemo”, shown in Figure 7-21, simply plots
two functions in the high resolution mode. The first is a sawtooth pattern
consisting of three lines. The second function is a lazy parabola
generated using multiplication rather than the SQR function.
Notice the $INCLUDE of the INTERFACE file at the very beginning of

the compilation. This comes even before the PROGRAM declaration.
Also notice the USES statement. This refers to the UNIT named
“Graphics” that has already been compiled into the
IMPLEMENTATION OF Graphics, and stored on the disk as an OBJ
file.

Figure 7-21. High resolution plot demonstration

GCSE ECGS AIG IOC ACCCGII AIC CR AA A 1K

PLOTDEMO. PAS Color Graphics Plot Demo Progran.

This program demonstrates the use of the color graphics
routines to set the display mode and plot a series of points.
The program first draws a sawtooth pattern of lines, and then
a lazy parabola using REAL arithmetic.

{$include: 'graphics. inf! }

Systems of Programs 273

Program Plotdemo (input, output) ;

Uses Graphics;

Var

DSN AY: : integer;
XX, VY real;
select -ehar:

\

Select the mode.
Se ee ee te a

J .

Begin

bandw; { <---- Make sure in alpha mode }

Writeln(' h - high res’);
Writeln(' m - medium res') ;
Writeln(' 1 - low res');
Write ('Select mode '); Read (select) ;

Case select of
Chie highres; { <---- Set 200x640 mode \
me colorm; { <---- Set 200x320 mode }
ws bandw; { <---- Set 80x25 mode }

For y := @ to 199 Do

[
See SAy:
DIOt (ye xy ale

IRs

For y := 199 downto @ Do

[
x (= 400 = ¥;
DEOw Lya) Xe

Ly

For y := @ to 199 do

[
X := y + 400;

phot (yy x 1)

ts

274 Pascal Primer for the IBM PC

For y := @ to 199 do

yy := float (y-100) / 100;
XX := 600 * yy * yy;
pire wig bts Len 9,0. fe

PLOte (Wen, 1)
ise

bandw; | <---- Return to monochrome }

Figure 7-21. PLOTDEMO. PAS High Resolution Plot Demonstration
ECT NR EEL EAD EARLE LALS EEE ELAS LEELERRER ELE EA PEER RE REE REE RELL

The LINDEMO1 Program

Shown in Figure 7-22 is one of two programs that demonstrate the
use of the DRAW routine. In this example, you are prompted to enter the
end points for the line as INTEGERs. As soon as the four values have
been entered, the routine proceeds to draw the line: Notice that with
each successive line, the whole screen scrolls up one line. This is because

we are using standard Pascal TERMINAL mode I/O for the keyboard
and screen.
Again, notice the use of INTERFACE, IMPLEMENTATION OF, and

USES in this example.

Figure 7-22. Single line demonstration

(EAA IGG IGG GIG GORGIGCG ACG IA AA Ak

LINDEMO1. PAS Color Graphics Line Drawing Demo.

This program demonstrates the use of the DRAW routine.
This routine operates only in the high resolution 640 x 260 mode.
It inputs endpoint pairs from the user in the form X and Y.

{$include: 'graphics. inf '} | <---- Interface file |

Program Lindemol (input, output) ;

Uses Graphics; | <---- Graphics unit

Systems of Programs 275

Var

mode sucha:

xl, yl, x2, y2 :integer; { <---- Endpoint pairs

Main program starts here. The program will terminate

after drawing a line with an x1 value greater than 649.

Writeln (' m - medium res 320 x 200');
Writeln (' h - high res 64@ x 200');
Writeln ('Enter mode ------------ Salihe

Readln (mode) ;

Case mode of

'm' :Colorm;
'h' :Highres;

Otherwise Abort ('lindemol', #0000, #0000) ;

end:

Repeat
Weitelny (Enver: syle ox2esy2 Ys
Readln (xl, yl, x2, y2);

Draw (xl, yl, x2, y2, 1); { <---- Draw the line

Until x1 > 64@:

Figure 7-22. LINDEMO1. PAS Single Line Demonstration
SEAGIG ICCC CGO GIOI ICCC AICS I IK Aik ok |

The LINDEMO2 Program

In Figure 7-23, we let the program calculate the end points of the
line. All of the lines are drawn radiating outward from the center of the
screen. The lines are drawn in a fan motion starting at the upper left
corner of the screen. You may enter the “interval,” which is simply the
step used to fan the lines around the screen. You may also specify the
color from one of the three colors in the currently defined palette.

276 ~~ Pascal Primer for the IBM PC

Figure 7-23. Demonstrates lines from center of screen
FERRO IGG CSCC IOI I AR 4 1k

LINDEMO2. PAS Draws Lines from the Center of the Screen.

{$include: ' graphics. inf'} (gece Interface file }

Program Lindemo2 (input, output) ;

Uses Graphics;

Var

SVK om vicwGO ll.
count, xmax, ymax, interval

: integer;

answer :char:;

Begin

Repeat

Writeln('Enter interval '); Read (interval) ;
xmax := 320 div interval;
ymax := 200 div interval;

Write ("Enter color (1,2,3) ")< mead fol);

Colorm; { <---- Set medium res mode \

Pia 160 ey = 100;

x2 := -interval;
y2 := 9;
For count := % to xmax do

[x2 := x2 + interval; draw(xl,yl,x2,y2,col)];

y2 := -interval; 2 = 319;
For count := @ to ymax do

(y2 := y2 + interval; draw(xl,y1,x2,y2, col)]

y2 := 199;
For count := xmax downto @ do

[x2 := x2 - interval; draw(xl,yl,x2,y2,col)];

vals MPa")
For count := ymax downto @ do

(y2 := y2 - interval; draw(xl,yl,x2,y2,col)];

Systems of Programs 277

Bandw; | <---- Return to monochrome }

Write ('Do it again? '); Read (answer) ;
Until answer = 'n';

Figure 7-23. LINDEMO2. PAS Demonstrates Lines From Center of
Sereen

KAKKKKKKK KAKA KK KKK KKK KKK KKK KKK KKK KKK KKK KAK AAA KAKAAAAKAKAKAKAKAKAK EX |
j

The BOXDEMO Program

This program is used to demonstrate the use of the BOX routine.
Enter the X and Y coordinates for the upper left corner of the box, as
well as the dimensions of the box in both the X and Y direction. Notice
that this program only draws boxes that are parallel to the X and Y axes.
(See Figure 7-24.)

Figure 7-24. Color graphics box demonstration

GABBA B IEE IEA COR CIE ISCAS CECI OK ARORA AACA RAR AR AIA IRA RARER

BOADEMO. PAS Color Graphics Box Routine.

{$include: 'graphics. inf! } { <---- Interface file }

Program Boxdemo (input, output) ;

Uses Graphics;

Var
X, y, Xdim, ydim, col : integer;
answer : char;

Begin

Repeat
bandw;
Writeln ('Enter x,y, xdim, ydim');
Readln (x,y, xdim, ydim) ;

colorm;
CO lue—an

Box (x,y, xdim, ydim, col);

Write ('Again? '); Read (answer) ;

278 Pascal Primer for the IBM PC

until answer = 'n';

Figure 7-24. BOXDEMO. PAS Color Graphics Box Demonstration
TASES CCC AICCCR CCGG COCCI ICCA IK AK |

Summary

We have scratched the surface of the potential uses for compilands.
The color graphics system we’ve demonstrated is only the start of what
could be a wonderful enhancement to your IBM PC Pascal system.

There are parallel systems of programs for just about any application
you can imagine. This system approach is especially useful in business
applications, where there will be many small tasks to perform in the
overall processing scheme.

We have learned how to link code from other sources into a Pascal
program, and have covered the use of files to store information, and to

transmit it between programs. We have also seen how to break down a
complex problem into smaller problems that can be solved individually
and then combined for the final solution.

So consider yourself adequately primed to go forward in your
accumulation of knowledge and expertise with the IBM PC. You can go
on to explore new heights in Pascal programming. There are several
other Waite Group books available for the IBM, including an exciting
book all about the powerful things you can do with the DOS routines.
The tools exist. It’s up to you to put them to work.

(SS SS

Exercises

1. What is a library of procedures and functions?

2. When are MODULEs used?

3. How does an INTERFACE file help a programmer?

4. What is the difference between how a procedure in an

INTERFACE file is used in a PROGRAM and how it is used in an

IMPLEMENTATION?

Systems of Programs

280

Solutions

1. A library is a collection of useful procedures and functions that

can be used by several different programs.

2. MODULEs are usually used to declare procedures and functions
that do not need an INTERFACE file.

3. An INTERFACE provides a single place for complex declarations;
the program that uses an interface will have the same declaration as the
interface.

4. The procedure in a PROGRAM would be declared as

EXTERNAL; in an IMPLEMENTATION, it would be declared as

PUBLIC and the body specified.

Pascal Primer for the IBM PC

Appendix—Hexadecimal
Numbering

if this appendix we’re going to discuss the hexadecimal numbering
system. You don’t have to be familiar with this system to write simple
Pascal programs, but if you want to take full advantage of all of the IBM
PC’s features, you do need to know something about it. It’s also useful in
other areas of the computer field — understanding it is a real mark of
computer literacy. Unfortunately, hexadecimal numbers can look
intimidating at first, with their strange mixture of letters and decimal
digits. We hope the following discussion will demystify the hexadecimal
system for you, and provide a valuable tool for understanding
programming and computers.

What Is a Numbering System?

Over the course of millennia humans have learned to assign symbols
to different numbers of objects. At first these symbols were oral: “one
mastodon, two clubs, three men.” When writing came into use, these

counting symbols were translated into a written form: one wedge-shaped
symbol meant “one,” two such symbols together meant “two,” and so on.
This was all right for small numbers of objects, but drawing fifteen little
wedges to stand for fifteen sheep was inconvenient.

The Roman numbering system was an attempt to streamline things
by assigning single symbols to numbers other than one, so that “V” was

five, “X” was ten, and so on. However, this system was not completely

successful, as generations of school children can attest.

It was the Arabs who figured out a system so efficient that it is still in
use today. Their idea was to assign single symbols to numbers up to a
certain value, and then start over in a different column when the list of

symbols had been exhausted, using a special symbol to indicate an
“empty” column. Thus,

281

282

List of symbols

OANA ARWNH

10 — Start over with the same symbols, but
bee a different column

The “O” represents an empty column

This system seems perfectly natural to us, since we are so used to
working with it; but in fact the idea of using columns in this way, and a
symbol to stand for nothing, or “zero,” is a stroke of genius. It’s hard for
us to imagine a useful numbering system that doesn’t take advantage of
these ideas.

Notice, however, that the number of symbols to be counted before

moving to the next column is purely arbitrary. There is no particular
reason why there are exactly ten numbers. Well, of course there zs a
reason: the fact that we happen to have ten fingers. But there’s no
mathematical reason. Counting and arithmetic and mathematics would all
work just as well with some other number, say eight:

List of symbols

NAOBR WN 7

— O— Start over with the same symbols,
but in a different column

In fact, several numbering systems besides those based on ten have

been used in the course of history. The Babylonians favored a numbering
system based on sixty. It lingers on, anachronistically, in our clocks and
watches; we count up to sixty seconds, then increment the next column to
one minute and start over with zero seconds.

Pascal Primer for the IBM PC

What Numbering System Do Computers Like?

If people feel at home with the decimal numbering system (ten
numbers) because they have ten fingers, what numbering system do
computers feel at home with? Computers are filled with thousands of tiny
switches called transistors. Each of these little devices can be in either of
two states: switched on, or switched off. That is, a transistor can store this

very small amount of information: “on” or “off.” This much information
— the choice between two things (yes or no, on or off, black or white) —
is called a bit. If we decide to call the “off” state of a transistor “zero,” and

the “on” state “one,” we have a very simple numbering system, a one-bit
system, with only two possible states.

Transistor

Sra
The same transistor
in its other state

fa)
‘To represent more than two numbers in a computer we need more

transistors. Suppose, for example, we had two transistors. Each of these

two transistors can be either 0 or 1, so altogether they can represent four

different states:

First Second
transistor transistor

off off =o

off

off =

Il

Appendix 283

Let’s simplify how we write this by representing the little transistors

more symbolically, using “O” to stand for “off,” and ”1” to stand for “on.”

00=0
O1=
10=2
11 =3— Decimal numbers

Binary numbers

The numbers on the left, which stand for the on or off state of

transistors, are examples of the binary numbering system. Binary means
“based on two,” just as decimal means “based on ten.” Notice how, since
there are only two numbers in binary, 0 and 1, we must put a | in the
next column over after only two things have been counted:

0
1 ; List of symbols

10 — Start over with the same symbols, but
in a different column

Suppose we had three transistors:

ce] ee] ee
How many things could we count? Let’s represent the transistors in

binary again:

000=0
001=1
010=2
011=3
100=4
101=5
110=6
111 =7— Decimal numbers

_____ Binary numbers

284 ~=Pascal Primer for the IBM PC

As you can see, each time we add a transistor — which is the same
thing as adding another column in our binary numbering system — we
can count up twice as far as we could before. With 4 transistors, or binary
digits, we can count to 16; with 5 we can count to 32, and so on.
Computers frequently use 8 transistors to represent a number, so the
number can be as large as 255, as shown below.

00000000 =
00000001 =
00000010 =
00000011 =
00000100 =
00000101 =
00000110=
00000111 =
00001000 =
00001001 =
00001010=10
00001011=11
00001100=12
00001101=13
00001110=14
00001111=15
00010000 = 16

OOANAAKRWN—O

11111100=252
11111101 =253
11111110=254
1111111171=255

| L_ Decimal numbers
Binary numbers

Using the binary system makes the transistors in the computer
happy: they “think” naturally in terms of binary numbers. And using the
decimal system makes us happy: we think naturally in terms of decimal
numbers.

If we need to convert from binary to decimal — that is, from
computer-counting to human-counting — we can use the table above, or
better yet, let the computer figure out what the decimal equivalent of a
particular binary number is, and print it out. Isn’t this all we need to
know? After all, most higher-level computer languages, such as Pascal, do

this sort of conversion so routinely that we’re not even aware that the

computer is thinking in binary: it prints out decimal numbers, and we

type in decimal numbers, and it all works out fine. Why can’t we do the

Appendix 285

286

same thing in assembly language?
The problem is that when we want to deal more directly with a

machine’s hardware (its memory or input/output devices) we often need to

look at the data in the computer in its untranslated or binary state. This

is important because we’re often concerned with the state of particular bits,
rather than with numbers. We can, for instance, immediately see that the

binary number 11111100 has all its bits set to 1, except the two on the

right; whereas when we look at the equivalent decimal number, 252, this

information is no longer obvious.
The reason 252 doesn’t tell us very much about bit patterns is that

each decimal number does not represent a fixed number of transistors
(or binary digits). You can’t use three binary digits to represent the
decimal numbers, since with three bits you can only count up to eight.
On the other hand if you use four binary digits you can count up past ten
— to sixteen. There just is no simple relationship between binary and
decimal.

What would be ideal is a numbering system that has the advantages
of binary — an easy to understand relationship between the state of the
transistors in the computer and the number itself — and of decimal —
numbers concise enough to be easily understood by humans.

Two such systems are in fairly wide use: the octal, or base eight
system, and the hexadecimal, or base sixteen system. Octal is actually

much easier to learn than hexadecimal, but it takes three binary bits to
represent an octal number, and three is thought to be an awkward
number in the computer business. (We would use octal if we had a 12-bit
or 36-bit computer — multiples of 3 bits — rather than 8-bit and 16-bit
computers.) Hexadecimal, or base sixteen, has therefore become the most

commonly used computer numbering system.
What exactly does a base sixteen system mean? It means we have

sixteen symbols for numbers, starting at 0 and going up to...oops. We
run out of decimal digits at nine, so we need six more. What to do? Why

not use another common symbol — letters — for the digits beyond nine?
The result looks like this:

0000= O= 0
0001= 1= 1
0010= 2= 2
0011= 3= 3
0100= 4= 4
0101= 5= 5
0110= 6= 6
Olll= 7= 7
1000= 8= 8

Pascal Primer for the IBM PC

T™MDOPYP YD

OW wD a te IL SS ee Sa Sees

NAORBR WN ONO

OR We th he Uh Sa nNo—-O 8— Decimal numbers
| t————. Hexadecimal numbers

Binary numbers

Notice how four binary digits represent one hexadecimal digit. When
the hexadecimal number gets so big it has to use two digits, (going from
F to 10 hexadecimal, which is from 15 to 16 decimal), the binary

numbers also shift into another column (from 1111 to 10000). It’s this

exact relationship of four binary digits to one hexadecimal digit that
makes the hexadecimal numbering system so much more useful in
computers than decimal.

Conversions between Binary and Hexadecimal

When you see a number with one hexadecimal digit you can convert
it immediately to binary, using the table above.

If there are two hexadecimal digits in a number, they are converted to
binary one at a time, again according to the above table. For instance,

A8h = 10101000,

since Ah = 1010, and 8h = 1000. (From now on in this appendix,

numbers followed by “h” will represent hexadecimal numbers.)
Hexadecimal numbers with any number of digits can be converted to

binary in a similar way. For instance,

B49Ah = 1911 0100 1001 1010

Hexadecimal Arithmetic

What happens when you try to perform arithmetic in the

hexadecimal numbering system? For small numbers it’s not so hard. For

instance,

Ah
+2h
6h

Appendix 287

This is just the same as decimal.
How about

Ah
+ 4h

Eh

Not too bad either. We count 4 past A: “B, C, D, E,” much as we used to

count on our fingers when we were first learning the decimal system.

When we need to carry, things get a little trickier, since we need to
remember that “F” in hexadecimal plays the role of “9” in decimal: it’s
the last digit before 10.

We find this result by counting eight digits past A: “B, C, D, E, F 10, 11,

Ie
After a while you get the hang of doing hexadecimal arithmetic on

small numbers. However, large numbers are another story. Confronted
with

A84Bh
+7C5Fh

?

most of us would head for the showers. What to do? One answer is to

convert the hexadecimal numbers to decimal, do the arithmetic, and

convert them back again to hexadecimal.

Converting Between Hexadecimal and Decimal

288

Besides simplifying arithmetic on large hexadecimal numbers,
hexadecimal to decimal conversions are often useful in their own right, as

you'll find in several places in this book. Assuming you don’t have a

conversion table, what do you dor

Hexadecimal to Decimal Conversions

The important thing when finding the decimal equivalent of a
hexadecimal number is to remember that the digits in each column of a
hexadecimal number are each worth sixteen times more than the digits in
the column to the right. (Just as digits in the ten’s column in decimal are

Pascal Primer for the IBM PC

digit:
num

worth ten times more than the digits in the one’s column, and so forth.)
Let's find the decimal equivalent of BF3Ch. (In these examples we'll

show decimal numbers followed by “d” to avoid any possibility of
confusion.) The one’s column of the hexadecimal number is easy: we
simply look up the number in the table above. The ten’s column must be
multiplied by sixteen, the hundred’s column must be multiplied by 256d
(which is 16d times 16d), and the thousand’s column by 4096d (256d
times 16d).

BF3Ch

| Ch dal digie a ld=tec ioe
Showed woode manléd=o 48d
Fh=15d 15d * 256d= 3840d
Bh=1]ld_ ld * 4096d=45056d

Decimal total = 48956d

Thus BF3C hexadecimal is 48956 decimal.

Decimal to Hexadecimal Conversion

To do conversions in the other direction, from decimal to
hexadecimal, we reverse the process, which involves division by sixteen,
instead of multiplication. Let’s take the same number we just converted to
decimal and see if we can convert it back to its original hexadecimal
value.

‘To find the hexadecimal digits, from left to right, divide sixteen into
the number and use the remainders for each digit. Using our example:

48956 / 16=3059
remainder =12d=Ch

3059 / 16=191
remainder = 3d= 3h

1917 16=11
remainder = 15d =Fh

117 16=0
remainder = 11d = Bh——

BF3Ch

Each step could be performed with the Pascal assignments:

num mod 16;
num div 16;

You should continue dividing by sixteen until the result (quotient) is zero.

Appendix 289

Let’s look again at the problem we passed on before:

A84Bh
+7C5Fh

?

Are you ready to try it? How about if we tell you the answer is 124A A7h.
Can you get it?

Now you understand binary numbers and hexadecimal numbers, and
how to convert back and forth between these new systems and the old
familiar decimal system. As with most new skills, practice is the most
important way to increase your familiarity with hexadecimal. Keep
plugging away, and eventually those funny numbers will start to seem
perfectly normal, and you'll wonder why all humans, or at least
programmers, don’t grow more fingers and count in hexadecimal too!

290 ~— Pascal Primer for the IBM PC

Index
$INCLUDE, 149

ABS function, 55

ADDRESS type, 151
ADR OF, 152
ADS OF, 152
AND, 48, 67
ARCTAN function, 55

ARRAY, 89-102
components, 90
declaration, 90
indexing, 90

sorting, 98
ASCII, 142
ASSIGN, 199
All-points addressable modes, 257

Alphanumeric mode, 256

Alternate character, 44

Alternate character set, 165
Arithmetic operators, 51
Assembling, 178

Assembly language, 177-80
Assembly routines, 260

Assignment, 32
Assignment compatible, 42
Attribute, 161

background, 161
blink, 161
foreground, 161

intensity, 161

BOOLEAN, 46

BREAK, 86, 227

BYTE, 43

BY WORD, 189
Batch file(s), 28, 223, 243
Beep, 180
Boolean operators, 48

Bubble sort, 100

Buffer variable, 196

CASE, 71-76
constant, 71

enumerated, 74

exception, 71

index, 71
subrange, 74

CHAR, 43

CHR function, 44

CLOSE, 199, 210

CONCAT, 57

CONST, 170
CONSTant section, 14

COS function, 55

CRCXQQ, 150

CRDXQQ, 150

CRT controller, 185

CYCLE; 87

Call, 142

Calling sequence, 142

Code file, 21

Color graphics, 253-79
Color graphics adaptor, 253
Color graphics modes, 255
Comments, 16

Compilands, 237

Compiled language, 2
Compiler, 2

Compound expression, 66
Compound statement, 67, 79

Condition clause, 62, 79, 83
Conditional programming, 61-88
Constant, 31

Control variable, 77

Conversion, hexadecimal, 142

Cursor

locating, 189-92

positioning, 187-89

DATE, procedure, 207

DIRECT, mode files, 221-32

DISPOSE, 123
DIV, 40
DOSXQQ, 149

DOWNTO, 78
Data elements, 31

Declarative section, 14

Decrement, 78

Direct mode, 202
Dynamic allocation, 122

ELSE, 62
EOF, 47, 198, 201, 202

EOLN, 47, 198

ERRS, 246
EXP function, 55

EXTERNAL, 149, 173, 238, 242

End-of-File

direct mode, 202
sequential mode, 201

Enumerated type, 48
Equality, 32

Equipment flag, 157-58

Executable, 2

Executable section, 14, 16

Exponent, 50
Expression, 38

External routines, 149-50

FALSE, 46, 62

FCB, 245
FCBFOQ, 252

FILKQQ.ING, 245

FILUQQ.INC, 250

FLOAT function, 53

FOR...DO, 77

False statement, 65

Field, 117

File(s), 193-233
ASCII, 197
BINARY, 197
DIRECT, 200

SEQUENTIAL, 200
TERMINAL, 200

TEXT, 197

declaration, 194

formatted, 197
unformatted, 197

updating, 222
File access routines, 199

File buffer variable, 196

File components, 195
File Control Block, 221, 245
File modes, 200

File pointer, 222

Final value, 77

Flag, 64
Formatting, output, 97

Function, 139-92

local, 142

predeclared, 142

GETE199
GOTO, 86

HIBYTE, 187

Heap, 123
Hexadecimal, 142

editing, 143

High resolution mode, 258

I/O port, 174

IE.. THEN, 62-70
IMPLEMENTATION, 238, 244,

252
IN, 166
INPUT, predeclared files, 203

INTEGER, 34
INTERFACE, 238, 244

Identifier, 33

Implied constant, 37

Increment, 77

Index entries, 223

Index table, 222, 227

Initial value, 77

Input, 14, 194

Interpreted language, 2
Iteration control, 76-85

291

Keystroke processing, 203

LEN, 57
LN function, 55

LOBYTE, 188
LSTRING, 55, 103-9

length, 103

sorting, 106
Label, 85
Line marker, 197
Linked list, 125
Linker, 8, 25, 179

Linking, 8, 242, 272

Listing file, 19

Literal constant, 37

MAXINT, 35
MAXWORD, 41
MOD, 40
MODE, 202, 221, 246
MODULE, 238
Mantissa, 50
Map file, 27

Medium resolution mode, 257

Memory map, 25
Modular programming, 236
Monochrome display buffer, 160-66

NEW, 123, 124
NIL, 125
NOT, 48, 80
Nested IF... THEN, 68

ODD Function, 47

OR, 48, 66
OTHERWISE, 71, 74
OUT, 166

OUTPUT, Predeclared files, 203

Object, 2
Offset, 42

Output, 14, 194

PAS1, 5, 18, 236

PAS2, 5, 24, 236
PEEK, 152-66

POKE, 152-66
PRED function, 100

PRN, 212
PROGRAM, 237

PROGRAM declaration, 14

PUBLIC, 238, 242
PURE, 239

PUT, 199, 210

P-system, 5
Packed array, 55

Parameter, 140, 167

292 ~=‘Index

formal reference, 147

reference, 170

value, 169

Parameter list, 167

Pascal, Blaise, 2

Pascal, general form, 12

Pascal library, 8
Pels, 257
Pointer, 123

Pop, 168
Port, 173

Procedure, 139-92

local, 142
predeclared, 142

Program body, 14
Program segmenting, 148-49
Programming

modular, 236

top down, 236

Pseudo-variable, 28

Push, 168

READ, 199
READEN, 199, 216

READLN, 37, 199

READONLY, 238
REAL, 50

RECORD, 112-29, 195
REPEAT...UNTIL, 83

RESET, 199, 212
RETURN, 87, 147

REWRITE, 199, 210

ROUND function, 53

Reference, memory, 152

Relational operators, 63
Relative, 41

Relative address, 151

Remarks, 16

Return address, 169

Routine(s), 139

assembly language, 173

SCANEQ, 147

SEEK, 199, 221, 227
SEQUENTIAL, mode files, 206-20
SET, 129-36

declaration, 131

intersection, 131

membership, 131

operators, 130

union, 130

SIN function, 55

SQR function, 53, 55
SQRT function, 55

STATIC, 238
STRING, 55, 103-9

length, 103

SUCC function, 100

SUPER ARRAY, 109

Scan lines, 258

Scientific notation, 50

Segment, 41
Segment address, 151
Sequential mode, 201

Sound, 180

Source, 2

Speaker, 180
Stack, 168-72

Static allocation, 122

Structured data, 89

Subrange type, 49
Systems of programs, 234-78

AUD. E Pale!

TIME, 28
TRAP, 246

TRUE, 46, 62

TRUNC function, 53

yao, ivAl

TYPE section, 14

Table, 92

Terminal mode, 200

Terminal mode files, 203

Top down programming, 236
True statement, 65

WCSD Pasealy 255

UNIT, 238, 244

USE, 238

USER, file, 203

USES) 245, 253, 2:72

VALUE section, 15

VAR, 170

VARiable section, 15
Variable, 31

WHILE...DO, 79
WITH, 118-22, 210
WORD, 41
WRITE, 36, 199
WRITELN, 36, 199
Wirth, Dr. Niklaus, |

Other Plume/Waite books on the IBM PC:

(_] BASIC PRIMER for the IBM® PC and XT by Bernd Enders and Bob Petersen.
An exceptionally easy-to-follow entry into BASIC programming that also serves as
a comprehensive reference guide for the advanced user. Includes thorough cover-
age of all IBM BASIC features: color graphics, sound, disk access, and floating
point. (254957—$16.95)

[.] DOS PRIMER for the IBM® PC and XT by Mitchell Waite, John Angermeyer,
and Mark Noble. An easy-to-understand guide to IBM's disk operating system,
versions 1.1 and 2.0, which explains—from the ground up—what a DOS does and
how to use it. Also covered are advanced topics such as the fixed disk, tree-struc-
tured directories, and redirection. (254949—$14.95)

(_] ASSEMBLY LANGUAGE PRIMER for the IBM® PC and XT by Robert Lafore.
This unusual book teaches assembly language to the beginner. The author's unique
approach, using DEBUG and DOS functions, gets the reader programming fast
without the usual confusion and overhead found in most books on this fundamental
subject. Covers sound, graphics, and disk access. (254973—$21.95)

([] BLUEBOOK OF ASSEMBLY ROUTINES for the IBM® PC and XT by Christo-
pher L. Morgan. A collection of expertly written “cookbook” routines that can be
plugged in and used in any BASIC, Pascal, or assembly language program. In-
cluded are graphics, sound, and arithmetic conversions. Get the speed and power
of assembly language in your program, even if you don’t know the language!

(254981—$19.95)

Buy them at your local bookstore or use this convenient
coupon for ordering.

NEW AMERICAN LIBRARY
P.O. Box 999, Bergenfield, New Jersey 07621

Please send me the PLUME BOOKS | have checked above. | am enclosing $______
(please add $1.50 to this order to cover postage and handling). Send check or money
order—no cash or C.O.D.’s. Prices and numbers are subject to change without notice.

Name

Address.

Citys ee icles ee ip Cove

Allow 4-6 weeks for delivery
This offer subject to withdrawal without notice.

ela waa’
=~ ote Alte

Gee
-

eo
)

7

b
a

i
d
e

»
&

i
:

'
=

oat
.

Z
h
e
:

.
‘

{

i
f

i
e

,
_

b
Y

i

ey
:

‘

-

j
i] ’

»
'

Fi.
i

vs
a
e

:

A
i

+

.
o
y

;
7

rs
-

:
.

/

i
:

:
-

:
-

iy

=

a

ne
=

f
.

a
n

;
;

'
/

i
y

u
s

z.
:

:
o
o

'

i
’

/

:

¢

f

|
7

i

7
>

_

7
i

a
y

'

_

’
:

i
;

:
a2

so
t

:
a

»
h
s

:
=

;
7

o
S

a
n
v

Ss

:
-

o
>

a

i
e

P
o
a

a
,

i
,

P
e

©

J

i

-
:

7
a

7

a
:

i

ad
ie

;
4

7
"
v
e

a

o
v
.

e
e

S
e
e

_
-

“
a

COMPUTER: 25496 ° $17.95
CANADA * $22.50

PASCAL PRIMER for the IBM’ PC

IBM Enhanced PC Pascal is a powerful language that can be used to create

elegant general-purpose programs as well as major systems software.

Compatible with PC-DOS, IBM's Pascal offers many advanced features,

including compiler directives, attributes, super array type, string processing,

constant values, and system implementation.

This book is a primer on the IBM Pascal language. It will take you from the

beginning to the advanced stages of PASCAL programming — in short, it's for

anyone who wants to develop well-structured software for the IBM PC.

Pascal Primer for the IBM PC discusses the features of IBM Pascal that make it

so popular with programmers, and explains, through hands-on examples, the

fundamentals of simple variables, program control, structured variables,

procedures and functions, pointers and disk files. All the secrets of structured

records are revealed. Finally you are shown how to add color graphics and

custom assembly routines to your Pascal programs to give your IBM PC

unequalled flexibility.

The Pascal Primer is completely compatible with other books in the

Plume/Waite IBM Primer series and enhances the learning process with
extensive use of IBM graphics and sound capabilities. Routines from the

Assembly Language Primer or Bluebook of Assembly Routines can be added to

your Pascal programs for increased speed and power.

The Waite Group is a San Rafael, California based producer of high-quality
books on personal computing. Acknowledged as a leader in the industry, the
Waite Group has written and produced over thirty titles, including such best

sellers as Unix Primer Plus, Graphics Primer for the IBM PC, CP/M
_ Primer, and Soul of CP/M. Internationally known and award winning,

{ | Waite Group books are distributed world-wide, and have been repack-
yee ph yy | aged with the products of such major companies as Epson, Wang,
(bord | i= jff \ Xerox, Tandy Radio-Shack, NCR and Exxon. Mr. Waite, President of
\ ay | Ken VA \ the Waite Group, has been involved in the computer industry since

\ \

¢
. rica MOAN a a ae \ ' | 1972 when he bought his first Apple I computer from Steven Jobs.

President .

Dee be =e S4abHS

