
V. DIGITAL
RESEARCH

#r
Pascal/MT+"

Language

Programmer’s Guide
for the IBM® Personal Computer

Disk Operating System

pcjs.org

Pascal/MT+™
Language

Programmer’s Guide
for the

IBM® Personal Computer
Disk Operating System

Copyright © 1983
Digital Research

P.0. Box 579
160 Central Avenue

Pacific Grove, CA 93950
(408) 649-3896

TWX 910 360 5001

All Rights Reserved

pcjs.org

COPYRIGHT

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M and CP/M-86 are registered trademarks of
Digital Research. ASMT-86, DIS-86, LIB/MT+86, LINK-
86, LINK/MT+86, and Pascal/MT+ are trademarks of
Digital Research. IBM is a registered trademark of
International Business Machines. IBM DOS is a
trademark of International Business Machines. Intel
is a registered trademark of Intel Corporation.
Intel MCS-86 and Intel SBC-86 are trademarks of
Intel Corporation. UCSD Pascal is a trademark of
the Regents of the University of California. Z80 is
a registered trademark of Zilog, Inc.

The Pascal/MT+ Language Programmer's Guide for the
IBM Personal Computer Disk Operating System was
prepared using the Digital Research TEX Text
Formatter and printed in the United States of
America.

* First Edition: April 1983 **********************************

pcjs.org

Foreword

The Pascal/MT+™ language is a full implementation of standard
Pascal as set forth in the International Standards Organization
(ISO) standard DPS/7185. Pascal/MT+ also has several additions to
standard Pascal that increase its power to develop high-quality,
efficiently maintainable software for microprocessors. Pascal/MT+
is useful for both data processing applications and for real-time
control applications.

The Pascal/MT+ system, which includes a compiler, linker, and
programming tools, is implemented on a variety of operating systems
and microprocessors. Because the language is consistent among the
various implementations, Pascal/MT+ programs are easily
transportable between target processors and operating systems. The
Pascal/MT+ system can also generate software for use in a ROM-based
environment, to operate with or without an operating system.

This manual describes the Pascal/MT+ system, which runs under
the IBM® Personal Computer Disk Operating System, version 1.1, on
an 8086- or 8088-based microcomputer. The manual tells you how to
use the compiler, linker, and the other Pascal/MT+ programming
tools. Also included are topics related to the operating system for
your particular implementation.

For information about the Pascal/MT+ language, refer to the
Pascal/MT+ Language Reference Manual.

pcjs.org

Table of Contents

1 Getting Started with Pascal/MT+
1.1 Pascal/MT+ Distribution Disks 1-2

1.2 Installing Pascal/MT+ 1-6

1.3 Compiling and Linking a Simple Program 1-7

2 Compiling and Linking
2.1 Compiler Organization 2-1

2.2 Invoking the Compiler................................. 2-1

2.2.1 Compilation Data............................... 2-2
2.2.2 Compiler Errors................................. 2-3
2.2.3 Command Line Options...........................2-3
2.2.4 Source Code Options............................. 2-5

2.3 Using the Linker..2-9

2.3.1 Linker Options................................ 2-10
2.3.2 Required Relocatable Files 2-14
2.3.3 Linker Error Messages 2-15

2.4 Using Other Linkers 2-15

3 Segmented Programs
3.1 Modules..3-1

3.2 Overlays.. 3-4

3.2.1 Pascal/MT+ Overlay System 3-5
3.2.2 Using Overlays................................. 3-6
3.2.3 Linking Programs with Overlays 3-7
3.2.4 Overlay Error Messages 3-11
3.2.5 Example...3-11

3.3 Chaining... 3-14

4 Run-time Interface
4.1 Run-time Environment 4-1

4.1.1 Stack.. 4-2
4.1.2 Program Structure 4-2

v pcjs.org

Table of Contents
(continued)

4.2 Assembly Language Routines 4-2

4.2.1 Accessing Variables and Routines 4-2
4.2.2 Data Allocation................................. 4-4
4.2.3 Parameter Passing 4-6
4.2.4 Assembly Language Interface Example 4-7

4.3 Pascal/MT+ Interface Features 4-10

4.3.1 Direct Operating System Access 4-10
4.3.2 INLINE...4-12
4.3.3 Absolute Variables 4-14
4.3.4 Interrupt Procedures 4-15
4.3.5 Heap Management................................ 4-17

4.4 Recursion/Nonrecursion 4-18

4.5 Stand-alone Operation 4-19

4.6 Error and Range Checking..............................4-20

4.6.1 Range Checking................................ 4-21
4.6.2 Exception Checking 4-21
4.6.3 User-supplied Handlers 4-22
4.6.4 I/O Error Handling............................4-22

5 Pascal/MT+ Programming Tools
5.1 ASMT-86, the Assembler 5-1

5.1.1 Assembler Operation 5-2
5.1.2 Invoking ASMT-86 5-3
5.1.3 ASMT-86 Command Line Options 5-3

5.2 DIS-86, the Disassembler............................... 5-3

5.3 LIB/MT+86, the Software Librarian 5-5

5.3.1 Invoking LIB/MT+86 5-5
5.3.2 Searching a Library.......................... 5-5

5.4 Debugger...5-6

5.4.1 Debugging Programs 5-6
5.4.2 Debugger Commands 5-7

vi
pcjs.org

Table of Contents
(continued)

6 ASMT-86 Assembly Language
6.1 Pseudo-opcodes..6-1

6.2 Fundamental Values 6-3

6.3 Operators.. 6-5

6.4 Expressions.. 6-6

6.5 Attribute Overrides 6-6

6.6 Indexing Expressions 6-7

Appendixes

A Compiler Error Messages A-l

B Library Routines ... B-l

C Sample Disassembly ... C-l

D Sample Debugging Session D-l

E Interprocessor Portability E-l

F Syntax of ASMT-86.. F-l

G Comparison of I/O Methods................................. G-l

vii
pcjs.org

Tables, Figures, and Listings

Tables
1-1. Pascal/MT+ System Filetypes 1-3
1- 2. Pascal/MT+ Distribution Disks 1-4

2- 1. Default Values for Compiler Command Line Options. 2-4
2-2. Compiler Source Code Options 2-5
2-3. $K Option Values................................... 2-7
2-4. Linker Options.................................... 2-10
2-5. Linker Error Messages 2-15

4-1. Size and Range of Pascal/MT+ Data Types........... 4-6
4- 2. @ERR Routine Error Codes......................... 4-21

5- 1. ASMT-86 Command Line Options 5-3
5-2. Examples of Parameters............................ 5-8
5-3. Debugger Display Commands 5-9
5-4. Debugger Control Commands 5-10

A-l. Compiler Error Messages A-l

B-l. Run-time Library Routines B-l

G-l. Size and Speed of Transfer Procedures............. G-2

Figures
1- 1. Software Development under Pascal/MT+ 1-2

2- 1. Pascal/MT+ Compiler Organization 2-1

4-1. Memory Layout....................................... 4-1
4- 2. Storage for the Set A..Z.......................... 4-5

5- 1. ASMT-86 Operation 5-2
5-2. DIS-86 Operation 5-4

Listings
3- 1. Main Program Example.............................. 3-3
3-2. Module Example..................................... 3-4
3-3. DEMOPROG. PAS...................................... 3-12
3-4. MODI. PAS.. 3-12
3-5. MOD2. PAS.. 3-13
3-6. Chain Demonstration Program 1 3-15
3- 7. Chain Demonstration Program 2 3-16

4- 1. Pascal PEEK_POKE Program 4-8
4-2. Assembly Language PEEK and POKE Routines 4-9

viii
pcjs.org

Tables, Figures, and Listings
(continued)

Listings
4-3. Calling IBMDOS Functions 6 and 7...................4-11
4-4. Calling IBMDOS Function 23 4-12
4-5. Using INLINE to Store Values in ES Register . . . 4-13
4-6. Using INLINE to Contruct Compile-time Tables. . . 4-14
4-7. Using Interrupt Procedures 4-16

C-l. Compilation of PPRIME................................C-2
C-2. Disassembly of PPRIME............................... C-3

D-l. DEBUG.PAS Source File................................D-l

G-l. Main Program Body for File Transfer Programs . . G-l
G-2. File Transfer with BLOCKREAD and BLOCKWRITE . . . G-3
G-3. File Transfer with GNB and WNR.................... G-4
G-4. File Transfer with SEEKREAD and SEEKWRITE G-5
G-5. File Transfer with GET and PUT.....................G-6

ix
pcjs.org

Section 1
Getting Started with Pascal/MT+

The Pascal/MT+ system includes a compiler, a linker, a large
library of run-time subroutines, and other programming tools to help
you build better programs faster. The programming tools are

• ASMT-86™, a relocating assembler
• DIS-86™, a disassembler
• LIB/MT+86™, a software library-building utility
• a dynamic debugger

The Pascal/MT+ system runs under DOS on an 8086-based computer.

The size of a program developed with Pascal/MT+ depends on the
size of the source code, and on the number of run-time subroutines
it uses. Typically, the minimum size of a simple program is about
8K bytes.

Figure 1-1 illustrates the software development process using
the Pascal/MT+ system.

1-1 pcjs.org

Pascal/MT+ Programmer's Guide 1 Getting Started

Figure 1—1. Software Development under Pascal/MT+

1.1 Pascal/MT+ Distribution Disks
The Pascal/MT+ system is supplied on four separate disks.

These disks contain a number of files of different types. Table 1-1
describes the filetypes used in the Pascal/MT+ system. Table 1-2
briefly describes the contents of each distribution disk.

1-2 pcjs.org

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

Table 1-1. Pascal/MT+ System Filetypes
Filetype Contents

BLD Build file; input file used by LIB/MT+86

DOC Document file; contains printable text in
ASCII form

ERR Error message file output by compiler

EXE Executable file; directly executable under
DOS

186 Intel® 8086 file; contains assembly language
source file for ASMT-86

KMD Linker input command file
LIB Library file; contains subroutines

PAS Pascal source file; contains source code in
ASCII form (the compiler also accepts SRC as
a source filetype)

PRN Print file output by compiler

PSY Intermediate symbol file used by linker

R86 Relocatable 8086 object file; contains
relocatable object code emitted by the
compiler

SRC Pascal source file; contains source code in
ASCII form (the compiler also accepts SRC as
a source filetype)

SYP Symbol file used by debugger

SYM Symbol file output by the linker

TXT Text file; contains text of messages output
by compiler, etc.

nnn Hexadecimal n; used for numbering overlays

1-3 pcjs.org

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

Table 1-2 Pascal/MT+ Distribution Disks
Disk 1

File Content or Use
LINKMT.EXE
LINKMT.001
LINKMT.002
MT86.EXE
MTERRS.TXT
DEBUGGER.R86

TRANSCEND.R86
FPREALS.R86
PASLIB.R86
MT2INT.EXE

Pascal/MT+ Linker
Linker Overlay-
Linker Overlay
Pascal/MT+ Compiler
Compiler Error Message Text File
Debugging module that can be linked
to a program
Transcendental arithmetic module
Floating-point arithmetic module
Pascal/MT+ Run-time System module
Conversion utility for changing R86
files into Intel relocatable object
file format

Disk 2

File Content or Use

MT 86.000
MT 86.001
MT 86.002
MT 86.003
MT 86.004
MT86.005
READ.ME

Compiler Overlay
Compiler Overlay
Compiler Overlay
Compiler Overlay
Compiler Overlay
Overlay used with Debugger
Release Notes

Disk 3
File Content or Use

DIS86.EXE
LIBMT.EXE
STRIP.EXE
NM.EXE

SZ.EXE

CONCAT.EXE
87REALS.R86
BCDREALS.R86
FULLHEAP.R86
RANDOMIO.R86
REALIO.R86
INIPC.I86
8087.186
87XOP.I86

Disassembler
LIB/MT+86 Librarian Utility
Utility program used with LINKMT
to eliminate unused entry points
Utility program used with LIBMT to
determine module names
Utility program used with LIBMT to
determine module sizes
Concatenates TEXT files
8087 processor arithmetic module
BCD arithmetic module
Heap management module
Random I/O file processing module
Real arithmetic I/O module
DOS initialization routine
8087 math routines
8087 miscellaneous routines

1-4 pcjs.org

Pascal/MT+ Programmer's Guide 1.1 Distribution Disks

Table 1-2. (continued)
Disk 3

File Content or Use
87TRS.I86

HLT.I86
DBUGHELP.TXT
FIBDEF.LIB
87REALS.BLD

ECHO.PAS
CPMGET.PAS
CPMINI.PAS

MODI.PAS
MOD2.PAS
DEMOPROG.PAS

8087 truncate, round, and square
route routines
DOS halt routine
Help file for debugger module
File Information Block definition
Build file for 8087 arithmetic
module
Sample Program
Source file for GET routine
Source file for initialization
routine
Sample Program
Sample Program
Sample Program

Disk 4

File Content or Use

ASMT86.EXE
ASMT.001
ASMT.002
ASMT.003
ASMT.004
AMERS.TXT
OVLMGRPC.186
IOALONE.DOC

IOMOD.PAS

Pascal/MT+ Assembler
Assembler Overlay
Assembler Overlay
Assembler Overlay
Assembler Overlay
Assembler Error Message Text File
Overlay Manager
Document file explaining stand-alone
I/O
Source file for I/O routine

1-5 pcjs.org

Pascal/MT+ Programmer 1s Guide 1.2 Installing Pascal/MT+

1.2 Installing Pascal/MT+
The first thing you should do when you receive your Pascal/MT+

system is make a copy of all the distribution disks.

Note: you have certain responsibilities when making copies of
Digital Research products. Be sure you read your licensing
agreement.

Although you can use the compiler, linker, and other utilities
directly from the distribution disks, it is more convenient if you
copy specific files from the distribution disks to working system
disks. One way to set up your Pascal/MT+ system is to use one disk
for compiling and another disk for linking. You can use other disks
for the programming tools, assorted source code, and examples.

This suggested configuration is just one way of setting up your
disks. The important thing is that all the compiler modules are on
one disk, and all the linker modules are on one disk. For
simplicity, it is a good idea to put all the related relocatable
files on the same disk as the linker.

Note that the file MT86.005 is only necessary when using the
debugger, and that the compiler can run without the error message
file MTERRS.TXT. If your compiler disk is short of space, you can
eliminate these two files.

To make a compiler disk and a linker disk, perform the
following steps:

1) Install DOS and the COPY utility on two blank disks. Label
one disk as the compiler, and the other, the linker.

2) Put a text editor on the compiler disk.

3) Copy the following files from the distribution disk to the
compiler disk: •

• MT86.EXE
• MT86.000 through MT86.005
• MTERRS.TXT

4) Copy the following files to the linker disk:

• LINKMT.EXE
• LINKMT.001
• LINKMT.002
• all the R86 files

pcjs.org

Pascal/MT+ Programmer's Guide 1.3 Compiling and Linking

1.3 Compiling and Linking a Simple Program
If you have never used Pascal/MT+ before, the following step-

by-step example shows you how to compile, link, and run a simple
program. This example assumes that you are using a DOS system with
two disk drives.

1) Put the compiler disk in drive A and the linker disk in
drive B.

2) Using the text editor, create a file called TEST1.PAS and
enter the following program. Put the file on drive B using
COPY.

PROGRAM SIMPLE_EXAMPLE;

VAR
I : INTEGER;

BEGIN
WRITELN ('THIS IS JUST A TEST');
FOR I := 1 TO 10 DO
WRITELN (I);

WRITELN ('ALL DONE')
END.

3) Now, compile the program with the following command:

A>MT86 BrTESTl

If you examine your directory, you see a file named
TEST1.R86 that contains the relocatable object code emitted
by the compiler. If the compiler detects any errors,
correct your source program and try again.

4) Now, log on to drive B, and link the program using the
following command:

B>LINKMT TEST1,PASLIB/S

Your directory now contains a file named TEST1.EXE that
runs under DOS.

5) To run the program, enter the command:
B>TEST1

1-7 pcjs.org

Pascal/MT+ Programmer's Guide 1.3 Compiling and Linking

Although the test program shown above is very simple, it
demonstrates the essential steps in the development process of any
program, namely editing, compiling, and linking.

If you want to write other simple programs, follow the same
steps, but use your new program's filename instead of TEST1.

End of Section 1

1-8 pcjs.org

Section 2
Compiling and Linking

This section tells how to use the compiler with its various
options. It also describes how to link programs using the
Pascal/MT+ linker as well as different linkers.

2.1 Compiler Organization
The Pascal/MT+ compiler processes source files in three steps

called passes or phases.

• Phase 0 checks the syntax and generates the token file.
• Phase 1 generates the symbol table.
• Phase 2 generates the relocatable object file.

The compiler creates some temporary files on the disk
containing the source file, and under normal conditions it deletes
those files. Make sure there is enough space on the disk, or use
the T option to specify a different disk for the temporary files.
See Section 2.2.3.

The compiler is segmented into overlays, as shown in the
following figure.

REQUIRED OVERLAYS OPTIONAL

Figure 2-1. Pascal/MT+ Compiler Organization

2.2 Invoking the Compiler
You invoke the Pascal/MT+ compiler with a command line of the

following format:
MT86 <filespec> {<options>}

where <filespec> is the source file to be compiled, and the
<options> are a list of optional parameters that you can use to
control the compilation process.

2-1 pcjs.org

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

The compiler can read the source file from any disk. The
<filespec> must conform to the standard filespec format, and end
with a carriage return, line-feed, and CTRL-Z. Refer to your
operating system manual for a description of a standard filespec.

If you do not specify a filetype, the compiler searches for
the file with no filetype. If the compiler cannot find the file, it
then assumes a SRC filetype, then assumes a PAS filetype. If the
compiler still cannot find the file, it displays an error message.

The compiler generates a relocatable object file with the
same filename as the input source program. The relocatable file has
the R86 filetype.

2.2.1 Compilation Data
The Pascal/MT+ compiler periodically outputs information

during Phases 0 and 1 to assure you it is running properly.

During Phase 0, the compiler outputs a + (plus sign) to the
console for every 16 lines of source code it scans.

At the beginning of Phase 1, the compiler indicates the
amount of available memory space. The space is shown as a decimal
number of memory bytes available before generation of the the symbol
table. Phase 1 also indicates available memory space following
generation of the symbol table. This second indication is the
amount of memory left for user symbols after the compiler symbols
are loaded.

During Phase 1, the compiler also outputs a # (pound sign) to
the console each time it reads a procedure or function. Symbol
table overflow occurs if too little symbol table space remains for
the current symbol. You can overcome this by using the $K option
and breaking the program into modules. At completion. Phase 1
indicates the total number of bytes remaining in memory.

Phase 2 generates the relocatable object code. During this
phase, the compiler displays the name of each procedure and function
as it is read. The offset from the module's beginning and the size
of the procedure (in decimal) follow the name.

When the processing is complete, the compiler displays the
following information:

Lines lines of source code compiled (in decimal)
number of errors detected (in decimal)
bytes of code generated (in decimal)
bytes of data reserved (in decimal)

Errors
Code
Data

2-2 pcjs.org

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

2.2.2 Compiler Errors
When the compiler finds a syntax error, it displays the line

containing the error. If you are using the MTERRS.TXT file, the
compiler also displays an error description. If you are not using
the MTERRS.TXT file, or you have a nonsyntax error, the compiler
displays an error identification number.

When all processing is completed, the ERR file generated by
the compiler summarizes all nonsyntactic errors.

Mote: in Pascal/MT+, the compilation errors have the same sequence
and meaning as in Jensen's and Wirth's Pascal User Manual and
Report. Appendix A contains a complete list of the error messages,
explanations, and causes.

When the compiler encounters an error, it asks if you want to
continue or stop, unless you use the command line option C. (See
Section 2.2.3.)

If the compiler cannot find an overlay or a procedure within
an overlay, it displays the following messages:

Unable to open <filename> <overlay # >
Proc: "<procname>" not found ovl: <filename> <overlay #>

The compiler displays one of the following procedure names if
it cannot find an overlay name in the entry point table.

001 INITIALI or PHASE1
002 PH2INIT
003 BLK
004 PH2TERM
005 DBGWRITE

The number preceding the name is the group number of the overlay
that contains the procedure.

Usually you can find a missing overlay by ensuring that the
name is correct, and it is on the disk. If you cannot find it,
recopy the overlay from your distribution disk. If you are sure the
overlay is on the disk and you still get an error message, it means
the file is corrupted.

2.2.3 Command Line Options
Compiler command line options control specific actions of the

compiler such as where it writes the output files. All command line
options are single letters that start with a $ or a #. Certain
options require an additional parameter to specify where to send the
output file or where an input file is located. If you specify more
than one option, do not put any blanks between the options.

2-3 pcjs.org

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Table 2-1 describes the commmand line options. In this
table, d stands for a parameter to specify a disk drive or output
device. The parameters are as follows:

• X sends the output file to the console.
• P sends the output file to the printer.
• @ specifies the logged-in drive.
• Any letter from A to 0 specifies a specific drive.

Table 2-1. Default Values for Compiler Command Line Options
Option Meaning Default

B Use BCD rather than binary for
real numbers.

Binary reals

C Continue on error; default is
to pause and let user interact
on each error, one at a time.

Compiler stops
and asks on
each error

D Generate debugger information
in the object code and write
the PSY file to the drive
specified by the R option.

No debugger
information and
no PSY file
generated

Ed The MTERRS.TXT file is on
disk d: d= @,A..O

MTERRS.TXT on
default disk

Pd Put the PRN (listing file)
on disk d: d= X,P,@,A..O

No PRN file

Q Quiet, suppress any unnecessary
console messages.

Compiler outputs
all messages

Rd Put the R86 file on disk d:
d=@,A..0

R86 file on
default disk

Td Put the token file PASTEMP.TOK
on disk d: d= @,A..O

PASTEMP.TOK on
default disk

V Print the name of each
procedure and function when
found in source code as an aid
to determining error locations
during Phase 0.

Procedure names
not printed

X Generate an extended R86 file
including disassembler records.

R86 file cannot
be disassembled

@ Make the @ character
equivalent to the ~ character.

@ not equivalent
to

2-4 pcjs.org

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

The following is an example command line:

A>MT86 AiTESTPROG $RBPX

This command line tells the compiler to read the source from drive
A, write the R86 file to drive B, and display the PRN file on the
console.

2.2.4 Source Code Options
Source code compiler options are special instructions to the

compiler that you put in the program source code. A source code
option is a single lower- or upper-case letter preceded by a dollar
sign, embedded in a comment. The option must be the first item in
the comment. Certain source code options require additional
parameters.

You can put any number of options in a source program, but
only one option per comment is allowed. You cannot place blanks
between the dollar sign and the option letter. The compiler accepts
blanks between the option letter and the parameter.

Pascal/MT+ supports twelve source code compiler options, as
summarized in Table 2-2.

Table 2-2. Compiler Source Code Options
Option Function Default

Cn No effect in 8086 version;
included for compatibility only

E +/- Controls entry point generation E+

I<filespec> Includes another source file into
the input stream, for example,
{$1 XXX.lib}

Kn Removes built-in routines to save
space in symbol table (n=0..15)

L +/- Controls the listing of source
code

L+

P Enter a form-feed in the PRN file
Qn No effect in 8086 version;

included for compatibility only
R +/- Controls range checking code R-

s +/- Controls recursive/static vari
ables

S+

2-5 pcjs.org

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Table 2-2. (continued)
Option Function Default

T +/- Controls strict type checking T-

w +/- Generates warning messages W-

X +/- Controls exception checking code X-

z Sets the stack pointer

The following examples show proper source code compiler
options:

{$E+}
(*$P*)
{$1 D:USERFILE.LIB}

Entry Point Record Generation (E)

The E option generates entry point records in the relocatable
file. You enable the option using a + parameter, and disable it
using a - parameter. E+ is the default.

E+ makes global variables and all procedures and functions
available as entry points. For example, EXTERNAL declarations in
separate modules can reference global variables and all procedures
and functions if the E+ option is in effect. E- suppresses the
generation of entry point records, thus making all variables,
procedures, and functions local.

Include Files (I)

I<filespec> tells the compiler to include a specified file
for compilation in the input stream of the original program. The
compiler supports only one level of file inclusion, so you cannot
nest include files.

The filespec must contain the drive specification, filename,
and filetype in standard format. If you omit the filetype, the
compiler looks first for a SRC, then a PAS, and finally a blank
filetype. The file must end with a carriage return, line-feed, and
CTRL-Z. If you omit the drive specification, the compiler looks on
the default drive.

2-6 pcjs.org

Pascal/MT+ Programmer 1s Guide 2.2 Invoking the Compiler

Symbol Table Space Reduction (Kn)

Predefined identifiers normally take about 6K bytes of symbol
table space. The K option removes unreferenced built-in routine
definitions from the symbol table to make more room for user
symbols.

The K option uses an integer parameter ranging from 0 to 15.
Each integer corresponds to different groups of routines as defined
in Table 2-3. Enter all K options before the words PROGRAM or
MODULE in the source code. Use as many K options as required, but
place only one integer parameter after each letter K. Note that any
reference in a program to the removed symbols generates an undefined
identifier error message.

Table 2-3. $K Option Values
Group Routines Removed

0 ROUND, TRUNC, EXP, LN, ARCTAN,
SQRT, COS, SIN

1 COPY, INSERT, POS, DELETE, LENGTH,
CONCAT

2 GNB, WNB, CLOSEDEL, OPENX, BLOCKREAD,
BLOCKWRITE

3 CLOSE, OPEN, PURGE, CHAIN, CREATE

4 WRD, HI, LO, SWAP, ADDR, SIZEOF,
INLINE, EXIT, PACK, UNPACK

5 IORESULT, PAGE, NEW, DISPOSE

6 SUCC, PRED, EOF, EOLN

7 TSTBIT, CLRBIT, SETBIT, SHR, SHL

8 RESET, REWRITE, GET, PUT, ASSIGN,
MOVELEFT, MOVERIGHT, FILLCHAR

9 READ, READLN

10 WRITE, WRITELN

11 unused

12 MEMAVAIL, MAXAVAIL

2-7 pcjs.org

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Table 2-3. (continued)
Group Routines Removed

13 SEEKREAD, SEEKWRITE

14 unused on the 8086

15 unused on the 8086

Listing Controls (L,P)

The L option controls the listing that the compiler generates
during Phase 0. You enable the L option with the + parameter and
disable it with the - parameter.

The P option starts a new page by placing a form-feed
character in the PRN file.

Run-time Range Checking (R)

The R option controls the generation of run-time code that
performs range checking for array subscripts and storage into
subrange variables. You enable the R option with the + parameter
and disable it with the - parameter. Refer to Section 4.6.1 for
information on range checking.

Recursion and Stack Frame Allocation (S)

In the 8086 implementation, the compiler ignores the S option
because it always generates reentrant and recursive programs, unlike
the 8080/Z80 version. Global variables within programs or modules
are always allocated statically.

Strict Type and Portability Checking (T,W)

The T option controls the strict type checking/nonportable
warning facility. The W option controls the display of warning
messages pertaining to the T option. You enable both options with
the + parameter and disable them with the - parameter. The default
value for both options is -.

When the T option is enabled, the compiler performs weak type
checking only. If the T and W options are enabled and the compiler
detects a nonportable feature, the compiler displays error message
500. String operations cause error 500 when the two options are
enabled because the STRING data type is not standard.

The T and W options check for compatibility with the ISO
Pascal standard. They do not check for all features listed in the
Pascal/MT+ Language Reference Manual, because certain features are
implementation dependent and others are software routines.

2-8 pcjs.org

Pascal/MT+ Programmer's Guide 2.2 Invoking the Compiler

Run-time Exception Checking (X)

In the current release of Pascal/MT+, the X option remains in
effect. Normally, the X option controls exception checking.
Exception checking covers integer and real zero division, string
overflow, real number overflow, and underflow. Refer to Section 4.6
for information on run-time error handling.

Setting the Stack Pointer (Z)

In a DOS environment, the compiler generates 128 bytes of
prefix code. This code initializes the SS and SP registers, and
builds a CP/M-86® like Base Page. This code is not needed in a ROM
environment. If you use the Z option, you must provide code to
preload the SS and SP registers before executing the program. This
code is normally in the form of an assembly language routine.

2.3 Using the Linker
LINK/MT+86™is the linkage editor that reads relocatable object

modules with filetype R86 and generates a command file with filetype
EXE. The linker can also generate overlay files.

You invoke LINK/MT+86 with a command line of the following
format:

or
LINKMT <main module> {,<module>) {,<library>}

LINKMT <new filespec>=<main module> {,<module>} {,<library>}

The linker writes the command file to the same logical disk as
the <main module>, unless you specify a new <filespec> using an
equal sign. The <main module> and each <module> can be on any
logical drive. You can specify the drive before each file in the
command line.

The linker assumes a R86 filetype for the <main module> and all
<modules> unless you specify a KMD filetype, see the discussion
about the /F option for information about KMD files. LINK/MT+86 can
link a maximum of 40 files at one time.

2-9 pcjs.org

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

The following examples show valid LINK/MT+86 command lines:

A>LINKMT CALC,TRANCEND,FPREALS,PASLIB/S

A>LIHKMT B:CALC=CALC,B:TRANCEND,FPREALS,PASLIB/S

A> LINKMT D: NEWPROG=B zCALC ,C: TRANCEND ,C: FPREALS ,C: PASLIB/S/M

2.3.1 Linker Options
Linker options are special instructions to LINK/MT+86 that you

specify in the command line. You specify options as a single lower-
or upper-case letter. Each option must be preceded in the command
line with a slash, /. Some options require an additional parameter.
LINK/MT+86 supports 16 options as summarized in Table 2-4.

Table 2-4. Linker Options
Option Function

S Search preceding name as a library,
extracting only the required
routines.

L List modules as they are being linked.

M List all entry points in tabular form.

E List entry points beginning with $, ?
or @ in addition to other entry
points requiring /M or /W to operate.

Prnnnn Relocate object code to nnnnH.

D:nnnn Specify maximum data area of nnnnH
bytes.

R:nnnn Specify maximum code area of nnnnH
bytes.

X:nnnn Specify Extra segment of nnnnH
paragraphs (for root programs).

Z:nnnn Specify Stack segment of nnnnH
paragraphs.

Y' <f ilespeo ' Write linker messages to <filespec>.

2-10
pcjs.org

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

Table 2-4. (continued)
Option Function

W Write a SYM file (written to the same
disk as the EXE file) .

F Take preceding filename as a KMD file
containing input filenames.

C Continuation flag in KMD file (use on
all but last line).

Vm:nnnn Overlay area starting address.

X:nnnn Overlay static variable space (when
linking overlays).

0: n Number the overlay and use the
previous filename as the root program
symbol table. By default, n ranges
from 1 to 50 but can be extended (1
to 256) by altering the overlay
manager.

Run-time Library Search (/S)
The S option tells the linker to search the file whose name the

option follows as a library and to extract only the necessary
modules. The S option must follow the name of the run-time library
in the linker command line. The S option extracts modules from
libraries only. It does not extract procedures and functions from
separately compiled modules.

The order of modules within a library is important. Each
searchable library must contain routines in the correct order and be
followed by /S. PASLIB and FPREALS are specially constructed for
searchability. Unless otherwise indicated, the other R86 files
supplied with the Pascal/MT+ system are not searchable. You cannot
search user-created modules unless they are processed by LIB/MT+86,
as described in Section 5.3.

Memory Map (/M)
The M option generates a map and sends it to the map output

file. Place the M option after the last file named in the parameter
list.

2-11 pcjs.org

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

Load Maps (/L),(/E)

The L option tells the linker to display module code and data
locations as they are linked.

When used with the M or W options, the E option tells the
linker to display all routines as they are linked, including
routines that begin with ? or @, which are reserved for run-time
library-routine names. The E option does not enable the L, M, or W
option. E will not display module code and data locations if used
alone.

Program Origin (/P)

Use the P option to link overlays by controlling the location
of the object code within the Code segment. The linker supports
relocation of object code so that it can overlay. The P option does
not tell the linker to leave space at the beginning of the EXE file.

The syntax of the P option is

/P:nnnn

where nnnn is a hexadecimal number in the range 0 to FFFF.

Maximum Code Size (/R) and Maximum Data Size (/D)

The R option specifies the maximum code area size. The D
option specifies the maximum data area size. The R and D options
have a single hexadecimal number argument following a colon
(/R:nnnn, /D:nnnn). The argument can range from 0 to OFFFFH,
specifying the segment size in bytes.

Generate SYM File (/W)

The W option tells the linker to generate a SYM file for use
with a symbolic debugger. The file contains information about entry
points in the program. The linker uses the SYM file when it links
overlays. The V option also enables the W option.

Linker Input Command File (/F)

Normally in a DOS environment, you must use the BAT facility
for typing repetitive sequences such as linking multiple files
together. LINK/MT+86 allows you to enter this data into a file and
have the linker process the filenames from the file. You must
specify a file with a filetype of KMD and follow this filename with
a /F, for example, CFILES/F.

2-12 pcjs.org

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

The linker reads input from this file and processes the
filenames. Filenames can be on one line, separated by commas, or
each name or group of names can be on a separate line. At the end
of each line except the last, you must place a /C option. The last
line must end with a carriage return or line-feed.

The input from the file is concatenated logically after the
data on the left of the filename. In the command line, additional
options can follow the /F, but not additional object module names.

The following example demonstrates how to use a KMD file to
link the files CALC, TRANCEND, FPREALS, and PASLIB into a EXE file.
The command to link the files is

A>LINKMT CALC/F/L
The file CALC.KMD contains

A:CALC ,D:TRANCEND,FPREALS,B:PASLIB/S
The linker searches PASLIB only for the necessary modules, and
generates a link map.

Extra Segment and Stack Segment Size Switches (/X),(/Z)

On the 8086 under DOS, you can specify the size of the Extra
segment that the heap uses exclusively and the size of the Stack
segment that the return addresses, parameter passing, and local
variables use.

The X option controls the size of the Extra segment. Its
default value is 0. Therefore, MEMAVAIL returns 0 and no heap is
available if you do not specify X.

The Z option default value of Z:200 allocates 8K bytes for the
stack. Note that you specify the size of the segments in 16-byte
paragraphs, not bytes. The number is in hexadecimal, so x:800 asks
for 800H paragraphs, which actually means 8000H bytes, or 32K.

Directing Linker output to a file (/Y)

LINK/MT+86 lets you direct linker output to a file with the Y
linker option. The default action directs output to the console.
You must follow the Y option with the filespec or device name in
single apostrophes. For example.

2-13 pcjs.org

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

/Y'MYFILE'

tells the linker to generate the file MYFILE.MAP, and

/Y'LST:'

tells the linker to route the output to the system-list device.
When errors occur, a message goes to both the output file and the
console.

Overlay Options

The linker uses three options to process an overlay or a root
program in an overlay scheme. The Vm option gives the overlay-area
address. The X option controls how the linker allocates data space
for overlays and how the linker allocates space for the heap. The 0
option numbers the overlay and indicates that the previous filename
is the root program symbol table. Section 3.2 explains these
overlay options.

2.3.2 Required Relocatable Files
The distribution disks contain certain R86 files that you must

link into any program that loads, stores, assigns, inputs, outputs,
or declares any real number. If you have any of these routines as
undefined references, link the appropriate relocatable file to
resolve them. The following are R86 files: •

• TRANCEND: Support for SIN, COS, ARCTAN, SQRT, LN, EXP, SQR.
Use only with FPREALS.

• RANDOMIO: SEEKREAD and SEEKWRITE are resolved here.

• DEBUGGER: @NLN, @EXT, @ENT generated when debugger option is
requested. If @XOP and @WRL are undefined, see Section 5.4.

• PASLIB: Comparisons, I/O, arithmetic support, etc.

The following files contain the real-number routines:

• BCDREALS: BCD real numbers, @XOP, @RRL, @WRL

• FPREALS: Binary real numbers @XOP,@RRL,@WRL (searchable)

• 8 7 REALS: Hardware real numbers using the Intel 8087
coprocessor

2-14 pcjs.org

Pascal/MT+ Programmer's Guide 2.3 Using the Linker

2.3.3 Linker Error Messages
Table 2-5 shows the linker error messages.

Table 2-5. Linker Error Messages
Message Meaning
Unable to open input file: xxxxxxxx

The linker cannot find the specified input
f ile.

Incompatible relocatable file format

Either the R86 file is corrupted or it has a
format that is incompatible with the format
expected by LINK/MT+86.

Duplicate symbol: xxxxxxx

This usually means a run-time routine or
variable has the same name as a user routine or
variable.

SYSMEM not found in SYM file

This means the root-program symbol file is
corrupt.

External offset table overflow

This means you have exceeded the 200 externals
plus offset addresses that the linker allows in
its offset table.

Initialization of DSEG not allowed

The linker has encountered a DB or DW
instruction in the Data segment.

2.4 Using Other Linkers
LINK/MT+86 links Pascal/MT+ main programs, Pascal/MT+ modules,

and assembly language modules created by ASMT-86. The MT2INT
program, supplied on distribution disk #1, converts R86 files into
Intel format 8086 OBJ files. You can transport these files to a
CP/M-86 system and link them with LINK-86™.

2-15 pcjs.org

Pascal/MT+ Programmer's Guide 2.4 Using Other Linkers

You invoke MT2INT with a command line of the form:

MT2INT <filename>

where <filename> is the name of an R86 file.

End of Section 2

2-16
pcjs.org

Section 3
Segmented Programs

One of the biggest advantages of Pascal/MT+ is the ability to
write a large, complex program as a series of small, independent
modules. You can code, test, debug, and maintain each module
separately, and thereby greatly simplify the overall task of program
design. The process of breaking a program into separate units is
called segmenting.

Pascal/MT+ provides three methods for segmenting programs:
modules, overlays, and chaining.

• Modules are separately compiled program sections. You can link
modules together to build entire programs, libraries, or
overlays.

• Overlays are sections of programs that only need to be in
memory when a routine in that overlay is called. Otherwise,
the overlay remains on the disk.

• Chaining allows one program to call another, leaving shared
data for the new program in memory.

You can use these three features in any combination to produce
modular programs that are easier to maintain and take up less memory
than monolithic programs.

If you are not an experienced Pascal/MT+ programmer, you should
start by writing programs without overlays.

3.1 Modules
The Pascal/MT+ system lets you do modular programming with

little preplanning. You can develop programs until they become too
large to compile and then split them into modules. The $E compiler
option lets you make variables and procedures private.

Modules are similar in form to programs. The differences are
the following:

• Use the word MODULE instead of the word PROGRAM.

• There is no main statement body in a module. Instead, after
the definitions and declaration section, use the word MODEND,
followed by a period.

3-1 pcjs.org

Pascal/MT+ Programmer's Guide 3.1 Modules

For example.

MODULE LITTLEMOD;

VAR

MAINFILE : EXTERNAL TEXT;

PROCEDURE ECHO (ST: STRING; TIMES: INTEGER);
VAR

I : INTEGER;
BEGIN
FOR I:= 1 TO TIMES DO
WRITELN (MAINFILE, ST)

END;

MODEND.

Note that a module must contain at least one procedure or function.

Modules can have free access to procedures and variables in
any other module. If you want to keep procedures or variables
private within a module, use the $E- compiler option.

Use the EXTERNAL directive to declare variables, procedures,
and functions that are allocated in other modules or in the main
program. EXTERNAL tells the compiler not to allocate space in the
module. You can declare externals only at the global (outermost)
level of a module or program.

For variables, put the word EXTERNAL between the colon and
the type in a global declaration. For example,

VAR
I,J,K : EXTERNAL INTEGER; (* in another module *)

R: EXTERNAL RECORD (* in another module *)
x,y : integer;
st : string;

END;

Be sure the declarations match with the declarations in the
module where the space is allocated. The compiler and linker do not
check declarations between modules.

For procedures and functions declared in other modules, put
the word EXTERNAL before the word FUNCTION or PROCEDURE. These
external declarations must come before the first normal procedure or
function declaration in the module or program.

3-2 pcjs.org

Pascal/MT+ Programmer's Guide 3.1 Modules

Numbers and types of parameters must match in the Pascal/MT+
system. Returned types must match for functions; the compiler and
linker do not type-check across modules. External routines cannot
have procedures and functions as parameters.

In Pascal/MT+, external names are significant to seven
characters only. Internal names are significant to eight.

In Pascal/MT+, the code generated for main programs and for
modules differs in the following ways:

• Main programs begin with sixteen bytes of header code. Modules
do not.

• Main programs have a main body of code following the procedures
and functions. Modules do not.

Listing 3-1 shows the outline of a main program, and Listing
3-2 shows the outline of a module. The main program references
variables and subprograms in the module; the module references
variables and subprograms in the main program.

PROGRAM EXTERNAL_DEMO;

<label, constant, type declarations>

VAR

I,J : INTEGER; (* AVAILABLE IN OTHER MODULES *)

K,L : EXTERNAL INTEGER; (* LOCATED ELSEWHERE *)

EXTERNAL PROCEDURE SORT(VAR Q:LIST; LEN:INTEGER);

EXTERNAL FUNCTION IOTEST:INTEGER;

PROCEDURE PR0C1;
BEGIN

IF IOTEST = 1 THEN
(* CALL AN EXTERNAL FUNC NORMALLY *)

BEGIN
SORT (---)
(* CALL AN EXTERNAL PROC NORMALLY *)

END.

Listing 3-1. Main Program Example

3-3
pcjs.org

Pascal/MT+ Programmer's Guide 3.1 Modules

MODULE MODULE_DEMO;

< label, const, type declarations>

VAR

I,J : EXTERNAL INTEGER;

K,L : INTEGER;

EXTERNAL PROCEDURE PROC1;

PROCEDURE SORT(...);

FUNCTION IOTEST:INTEGER;

<maybe other procedures and functions here>
MODEND.

(* USE THOSE FROM MAIN PROGRAM *)

(* DEFINE THESE HERE *)

(* USE THE ONE FROM MAIN PROG *)

(* DEFINE SORT HERE *)

(* DEFINE IOTEST HERE *)

Listing 3-2. Module Example

3.2 Overlays
Using overlays, you can link programs so that parts of them

automatically load from the disk as they are needed. Thus, a whole
program does not have to fit in memory simultaneously. Store
infrequently used modules and module groups that need not be co
resident in overlays.

The following terms are used in this section:

• overlay: a set of modules, linked together as a unit, that
loads into memory from disk when a procedure or function in one
of the modules is referenced from somewhere else in the
program. Overlays have hexadecimal filetypes, for example,
PROG.OIF.

• root program: the portion of the program that is always in
memory. Root programs have the EXE filetype. A root program
consists of a main program, the run-time routines it requires,
and optionally, the run-time routines the overlays require.

• overlay area: an area of memory where the overlay manager
loads overlays. You must plan the location and size of the
overlay areas and specify them at link-time.

3-4
pcjs.org

Pascal/MT+ Programmer's Guide 3.2 Overlays

• overlay static variables:global variables, or variables local
to a run-time or assembly language routine in the overlay. All
Pascal/MT+ modules are recursive. Recursion reduces the amount
of static data. It does not necessarily eliminate it because
run-time code linked with the overlay might contain static
data. When you link the overlay, the linker determines the
amount of data space required for static variables.

3.2.1 Pascal/MT+ Overlay System
The major features of the Pascal/MT+ overlay system are the

following:

• Supports up to 255 overlays.
• Supports up to 15 separate overlay areas.
• Overlays can call other overlays, even in the same overlay
area.

• Overlays can access procedures and variables in the root.
• Overlays load from the disk only when necessary.
• Overlays can contain an arbitrary number of modules.
• Linkage to a procedure in an overlay is by name.
• You can specify drives containing individual overlays.

Overlays have an arbitrary number of entry points for the root
program and other overlays to access. They access the entry points
byname. The linker and relocatable formats limit overlay procedure
and function names to 7 significant characters, as with all
externals.

You assign overlay areas when you link the root module. You
assign overlay numbers when you link the overlay. If you do not
specify an overlay area when you link the root module, the default
action is to place it in overlay area 1.

Most Pascal/MT+ programs only use one overlay area. You can
devise more extensive schemes using multiple overlay areas. The
overlay number determines the area where LINK/MT+86 loads an
overlay.

• Overlays 1 to 16 load into overlay area 1.
• Overlays 17 to 32 load into overlay area 2. •

• Overlays 241 to 255 load into overlay area 15.

You must determine the size and address of overlay areas and
make sure the overlays are smaller than the area into which they
load. If you do not specify the address for an overlay area, it
defaults to the same address as overlay area 1.

3-5 pcjs.org

Pascal/MT+ Programmer's Guide 3.2 Overlays

The overlay-loading routine loads overlays into memory in 128-
byte segments, so consider the extra size when you save space for
overlays. You must specify area 1; the remaining areas are
optional.

Overlays have one or more modules, written in Pascal or
assembly language. The overlay manager in PASLIB has space in its
drive table for 50 overlays, numbered 1 to 50. If you need more
overlays, you can modify the overlay manager source, reassemble it,
and link it before PASLIB. The source code for the overlay manager
is in the file OVLMGRPC.I86 on distribution disk #4.

You do not have to number overlays consecutively. For example,
if you want to use three overlays in three overlay areas, you can
number them 1, 17, 33, or any combination that puts the overlays in
different areas.

You can load more than 15 overlays into overlay area 1 by
explicitly supplying the overlay area number when you link the root
module. Otherwise, the default number is 15.

3.2.2 Using Overlays
If a procedure or function is in an overlay, the compiler

inserts a call to the overlay manager, @OVL, before the call to the
procedure or function. @OVL makes sure that the requested overlay
is in memory, loading it from disk if necessary. When the procedure
or function returns, the overlay manager returns control to the
calling procedure.

When part of a program calls an overlay-resident routine, the
program accesses that routine through an entry point table at the
beginning of the overlay. Only procedures and functions declared
without the $E- compiler option have their names in the entry-point
table. Use the $E- option to make routines private to an overlay
and to save space in the table.

Calling an Overlay Procedure

To tell the compiler that a procedure or function is in an
overlay, put the overlay number in the declaration, as in the
following examples:

EXTERNAL [3] PROCEDURE CONV_SYM;
EXTERNAL [FIXUP] FUNCTION NEW_TOK : INTEGER;

The overlay number must be an integer constant, either literal or
named.

Overlays can access procedures, functions, variables, and run
time routines in the root by using regular external declarations.

3-6 pcjs.org

Pascal/MT+ Programmer's Guide 3.2 Overlays

If an overlay is not on the same disk as the main EXE file, use
the @OVS routine to specify the drive. Declare the routine as
follows:

EXTERNAL PROCEDURE @OVS
(OVERLAY_NUMBER : INTEGER; DRIVE : CHAR);

Call @OVS to define the drive before calling the overlay-resident
procedure or function. The drive must be upper-case, and can be the
@ character or a letter from A...0. The @ represents the logged-in
disk. You must ensure that the specified disk is on-line.

Overlays Calling Other Overlays

The standard overlay manager does not reload a previous overlay
when it returns from an overlay call. If you want to return control
to a previous overlay in the same overlay, you must change the
overlay manager to a reloading version. The source for the overlay
manager is in the file OVLMGRPC.186 which is on distribution disk
#4. If you need the reloading version, link it before PASLIB.

Overlays can call other overlays under the following
conditions:

• You use /X to link overlays if there are static variables in
the overlays. This ensures that no procedure alters the data
of another.

• You must use the reloading overlay manager if an overlay calls
another overlay in the same overlay area. If the overlays are
in different overlay areas, both are in memory at the same
time.

Assembly Language Modules

Pascal/MT+ overlays are always pure code, but other modules
written in assembly language might not be. The overlay does not
reload if it is already in the overlay area. Do not use DB in the
Code segment for variables that are modified because they will not
be initialized every time the overlay is called.

3.2.3 Linking Programs with Overlays
The linker separately links each part of a program containing

overlays. The linker first builds a SYM file containing the entry
points for the root, and then uses that file when it links the
overlays.

3-7 pcjs.org

Pascal/MT+ Programmer's Guide 3.2 Overlays

Before the entry points can be correct, you have to know how
much code and data space the overlays need. The first time that you
link an overlay program, you have to link the entire program twice,
once to determine the sizes, and once to produce the actual program
files. The following steps outline the linking process.

1) Link the root program without reserving space for the
overlay areas and overlay data. This step generates the
first SYM file.

2) Use the SYM file from step 1 to link the overlays. This
step tells you how much space the overlays need.

3) Relink the root, specifying the overlay-area addresses and
static-data size. This step produces the SYM file with the
correct entry points.

4) Relink the overlays, using the new SYM file.

There are three linker options that control overlay linking:

• The 0 option specifies overlay numbers.
• The V option specifies overlay-area addresses.
• The X option specifies data-area sizes.

Overlay Group and SYM Option /0:

/0:n tells the linker that the previous file is a SYM file and
that n is the overlay number, in hexadecimal. The linker uses the
overlay number to make the filename. This option is for overlays
only.

If you make a change in an overlay, you only need to relink the
overlay. The exception is when the code size or data size changes
beyond the constraints you gave when you linked the root.

Overlay Area Option /V:

/Vm:nnnn tells the linker where to locate the overlay area,
nnnn is the hexadecimal address of the overlay area, and m is the
overlay area number, in hexadecimal.

The V option automatically enables the E and W options, causing
the linker to generate a SYM file. This option is for root programs
only.

You can use the /V option up to 16 times when you link the main
program, once for each of the 16 overlay areas. You must use it at
least once to give the default address for overlay area 1.

3-8 pcjs.org

Pascal/MT+ Programmer's Guide 3.2 Overlays

To find the value for /V, link the root program with the
necessary libraries. The root program's total code size plus 80H is
the lowest address you can use for an overlay area.

Overlay Local Storage Option /X;

X:nnnn controls how the linker allocates space for data. This
option is for both roots and overlays. To determine the amount of
data used by an overlay, link it and note the total data size put
out by the linker.

Note: when you use this option, give yourself extra space so that
you do not have to relink everything when the data areas change
size.

When used to link roots, /X:nnnn tells the linker how much
space to leave for the Extra segment. nnnn is the hexadecimal
number of 16-byte paragraphs. See Section 2.3.1 for more
information.

When linking overlays, /Xtnnnn tells the linker how far to
offset a particular overlay's static data area. nnnn is the
hexadecimal number of bytes from the top of the root's data area.
The default value for this option is /X:0000.

For example, suppose a program has two overlays with a combined
total of 500 bytes of static data. Overlay 1 has 350 bytes, and
overlay 2 has 150 bytes. Overlay 1 needs no offset, and overlay 2
needs to have its data area 350 bytes from the end of the root's
data area. The minimum value for overlay 2 is /X:015E, which is 350
in hexadecimal.

Linking a Root Program

Linking a root program is similar to linking a nonoverlayed
program. The difference is that you have to generate the SYM file,
and you have to allow room for the overlay areas and for overlay
static data. The command line for linking a root program has the
general form:

LINKMT cmodules and libraries> /Vm:nnnn/D:oooo/R:pppp

This command line only shows the three required options. You can
use any of the other options as needed.

3-9 pcjs.org

Pascal/MT+ Programmer's Guide 3.2 Overlays

• Use the V option for each separate overlay area. You must at
least specify the location of overlay area 1. If you do not
specify a location for any other overlay areas, the linker
assigns them the same location as area 1.

• The D option specifies the size of the data area. The value is
the sum of the root's data size and the sizes of the overlay's
data. Leave room during development, so that the overlay data
areas can grow.

• The R option specifies the total code size, which includes the
overlay areas. Use the sum of root program's code, plus 80H,
and the size of each separate overlay area, plus 80H for each
area.

• Remember to use the X option if your program uses the heap.
The default size is 0.

The overlay manager reads in 128 bytes of code at a time. Make
sure you allow room at the end of your overlay areas so that the
garbage bytes that pad out the last sector do not overwrite the next
area. The minimum size for an overlay area should be the size of
the largest overlay plus 80H, rounded to the next multiple of 128.

During development, you should leave some extra room in the
overlay areas so that you do not have to relink the entire program
if one overlay gets bigger.

If an overlay calls a library routine that the root does not
call, the linker puts the routine in the overlay. To force a
routine into the root, make a dummy reference to the routine in the
root.

When you link a root program just to generate a SYM file,
either use a dummy value for V or use the E and W options. Either
way generates the symbol file.

Linking an Overlay

When linking an overlay, the linker uses the SYM file to tell
which symbols are in the root. If an external symbol is not in the
SYM file, the linker looks for it in the specified libraries. The
command line for linking overlays has the following form:

LINKMT <prog>=<sym file>/0:n,<modules/libraries>/P:mmmm/X:ssss

The linker generates a file with the same name as the program,
but with a filetype that is the overlay number in hexadecimal. If
you do not specify the program name, the linker uses the name of the
first module after the SYM file.

The command line above only shows the three options that are
required for linking overlays.

3-10 pcjs.org

Pascal/MT+ Programmer's Guide 3.2 Overlays

• The 0 option tells the linker that the file is a SYM file and
that the overlay number is n, in hexadecimal.

• For P, use the starting address of the overlay area. Use the
same value that you use with the V option that sets up the
overlay area.

• Use the X option if the overlay has any static data.

You must relink an overlay whenever you relink the root,
because entry points change. Be sure to use the new SYM file.

3.2.4 Overlay Error Messages
The overlay manager can detect two errors:

•If the overlay manager cannot find the requested overlay it
displays the message:

Unable to open <filename> <overlay #>

If the overlay is not on the default disk, call @OVS in the
program to tell the overlay manager where to look.

• If the overlay manager cannot find a particular procedure or
function in the specified overlay it displays the message:
Proc: "<procname>" not found ovl: <filename> coverlay #>

The problem might be an incorrect EXTERNAL statement or a
misnumbered overlay.

3.2.5 Example
The following example has a root program that asks for a

character from the console keyboard. It calls one of two
procedures, depending on the character entered. A large menu-driven
business package could work in a similar way.

The main program and the two modules are shown in Listings 3-3,
3-4, and 3-5 respectively. These files are also on distribution
disk #3. You should compile and link them to get a feel for using
overlays. The files are the following: •

• DEMOPROG.PAS
• MODI.PAS
• MOD2.PAS

3-11 pcjs.org

Pascal/MT+ Programmer's Guide 3.2 Overlays

PROGRAM DEMO_PROG;
VAR

I : INTEGER; (* TO BE ACCESSED BY THE OVERLAYS *)
CH: CHAR;

EXTERNAL [1] PROCEDURE OVLl; (* COULD HAVE HAD PARAMETERS *)
EXTERNAL [2] PROCEDURE OVL2; (* ALSO COULD HAVE HAD PARAMETERS *)
(* EITHER COULD ALSO HAVE BEEN A FUNCTION IF DESIRED *)
BEGIN

REPEAT
WRITE('Enter character, A/B/Q: ');
READ(CH);
CASE CH OF

'A','a' ; BEGIN
I ;= 1; (* TO DEMONSTRATE ACCESS OF GLOBALS *)
OVLl (* FROM AN OVERLAY *)

END;
'B','b' ; BEGIN

I ;= 2;
OVL2

END
ELSE

IF NOT(CH IN [' Q' , ' q1]) THEN
WRITELN('Enter only A or B1)

END (* CASE *)
UNTIL CH IN ['Q'r'q*1;
WRITELN('End of program')

END.

Listing 3-3. DEMOPROG.PAS

MODULE OVERLAY1;
VARI : EXTERNAL INTEGER; (* LOCATED IN THE ROOT *)
PROCEDURE OVLl; (* ONE OF POSSIBLY MANY PROCEDURES IN THIS MODULE *)
BEGIN

WRITELN ('In overlayl, I=',I)
END;
MODEND.

Listing 3-4. MODI.PAS

3-12 pcjs.org

Pascal/MT+ Programmer's Guide 3.2 Overlays

MODULE OVERLAY2;
VAR

I : EXTERNAL INTEGER; (* LOCATED IN THE ROOT *)
PROCEDURE OVL2; (*ONE OF POSSIBLY MANY PROCEDURES IN THIS MODULE *)
BEGIN
WRITELN ('In overlay 2, I=',I)

END;
MODEND.

Listing 3-5. MOD2.PAS

After you compile the three modules, you must link them
together. Link the main program using the command:

A>LINKMT DEMOPROG,PASLIB/S/D:1000/V1:4000/R:5000
This creates the files DEMOPROG.EXE and DEMOPROG.SYM with the data
size set to 1000 (this is arbitrary). The overlay areas, 1 to 16,
are at 4000 (again arbitrary), and the total code size is estimated
to be 5000.

To link overlay 1, enter this command:

A>LINKMT DEMOPROG.001=DEMOPROG/0:1,MODl,PASLIB/S/P:4000/L

This creates the overlay file DEMOPROG.001. The /0:1 option tells
the linker to read DEMOPROG.SYM, and this is overlay #1. 4000 is
the address of the overlay area for this overlay. The linker
searches PASLIB to load only those modules required by this overlay
but not present in DEMOPROG.EXE.

To link overlay 2, enter this command:

A>LINKMT DEMOPROG.002=DEMOPROG/0:2,MOD2,PASLIB/S/P:4000/L

The options are the same as above. Note that /X is not needed when
linking the overlays because they do not have any local data.

Now run the program. Notice that if you enter the same letter
more than once in succession, for example. A, A, A, the overlay does
not reload. However, when you enter the letters in alternate order,
for example. A, B, A, ..., the overlays load for each call.

3-13 pcjs.org

Pascal/MT+ Programmer's Guide 3.3 Chaining

3.3 Chaining
Chaining allows one program to call another program into memory

and transfer control to that program. Chaining is an
implementation-dependent feature that might not be available on all
implementations of Pascal/MT+.

When one program chains to another, the run-time routine loads
the new program into the code area and starts execution. Programs
pass information by leaving it in the data area.

To chain programs, you must declare an untyped file (FILE;) and
use the ASSIGN and RESET procedures to initialize the file to the
name of the new program. You can then execute a call to the CHAIN
procedure passing the name of the file variable as a single
parameter.

The run-time library routine performs the appropriate functions
to load in the file opened with the RESET statement. You must use
the /R and /D linker options, see Section 2.3, to reserve enough
space in the first program in the chain for all programs in the
chain. The /R value should be the size of the largest program plus
80H, and the /D value should be the size of the largest data
requirement plus 80H.

There are two ways that chained programs can communicate:
shared global variables, and absolute variables.

With the shared global variable method, you must guarantee that
at least the first section of global variables is the communication
area. You must declare the the shared variables identically so that
they have the same location and size in all the chained programs.
The remainder of the global variables do not need to be the same in
each program.

Using the absolute variable method, you typically define a
record that is used as a communication area, and then define this
record at an absolute location in each module.

No special facilities are needed to maintain the heap across
the chain as are necessary in 8-bit versions of Pascal/MT+. Unlike
the 8-bit versions, files cannot remain open across a chain. If you
want to leave something open, you must use overlays, not chaining.

Listings 3-6 and 3-7 list two example programs that
communicate with each other using absolute variables. The first
program chains to the second program, which prints the results of
the first program's execution.

3-14 pcjs.org

Pascal/MT+ Programmer's Guide 3.3 Chaining

(* PROGRAM #1 IN CHAIN DEMONSTRATION *)

PROGRAM CHAIN1;
TYPE
COMMAREA = RECORD

I,J ,K : INTEGER
END;

VAR
GLOBALS : ABSOLUTE [$40:$8000] COMMAREA;
(* this address is arbitrary and might not work *)
(* on your system *)
CHAINFIL: FILE;

BEGIN (* MAIN PROGRAM #1 *)
WITH GLOBALS DO

BEGIN
I := 3;
J := 3;
K := I * J

END;
ASSIGN(CHAINFIL,'CHAIN2.EXE 1) ;
RESET(CHAINFIL);
IF IORESULT = 255 THEN

BEGIN
WRITELN('UNABLE TO OPEN CHAIN2.EXE');
EXIT

END;
CHAIN(CHAINFIL)

END. (* END CHAINl *)

Listing 3-6. Chain Demonstration Program 1

3-15
pcjs.org

Pascal/MT+ Programmer's Guide 3.3 Chaining

(* PROGRAM #2 IN CHAIN DEMONSTRATION *)

PROGRAM CHAIN2;
TYPE
COMMAREA = RECORD

I,J,K : INTEGER
END;

VAR
GLOBALS : ABSOLUTE [$40:$8000] COMMAREA;

BEGIN (* PROGRAM #2 *)
WITH GLOBALS DO
WRITELN('RESULT OF ' ,1,' TIMES ',J,' IS =', K)

END. (* RETURNS TO OPERATING SYSTEM WHEN COMPLETE *)

Listing 3-7. Chain Demonstration Program 2

End of Section 3

3-16
pcjs.org

Section 4
Run-time Interface

This section explains how to interface Pascal/MT+ programs with
the run-time environment, with assembly language routines, and with
the operating system. It also explains how to write stand-alone
programs that run without an operating system.

4.1 Run-time Environment
Figure 4-1 shows the memory layout for a Pascal/MT+ program.

The heap grows towards high memory from the low end of the Extra
segment. The local-variable stack grows towards low memory from the
high end of the Stack segment.

CODE SEGMENT

--------$ i--------
PROGRAM CODE AREA INCLUDING THE

RUN-TIME LIBRARY ROUTINES

-------> *------
_______ DEFAULT SIZE ________

OR/R VALUE

DATA SEGMENT

BASE
PAGE

9

9

0 100H DEFAULT SIZE
OR/D VALUE

EXTRA SEGMENT

-4 5-
HEAP DATA

4 9-
DEFAULT SIZE IS 0

MUST SPECIFY BY /X OPTION

STACK SEGMENT

—* y-
,LOCAL VARIABLES. RETURN VALUES, AND PARAMETERS

-------------4 $-------------
DEFAULT SIZE IS 8K

OVERRIDE USING /Z OPTION

Figure 4-1. Memory Layout

4-1 pcjs.org

Pascal/MT+ Programmer's Guide 4.1 Run-time Environment

4.1.1 Stack
The hardware and local-variable stacks are separate in 8-bit

implementations of Pascal/MT+. In the 8086/8088 implementations,
they are the same. If your program fails due to insufficient stack
area, you can enlarge the stack with the /Z linker option.

Note: if you are using an interrupt-driven system, you often need
to enlarge the stack.

4.1.2 Program Structure
The Pascal/MT+ compiler generates program modules containing

simple structures. A jump table at the beginning of each module has
jumps to each procedure or function in the module. The main module
also has a jump to the beginning of the code.

Programs have sixteen bytes of header code for overlay
information. In nonoverlayed programs, these are NOPs.

Under DOS, the linker provides code for loading the stack
pointer. You should compile ROM-based code with the $Z option to
suppress the generation of this code. The compiler calls the @INIPC
routine that initializes INPUT and OUTPUT text files. If you use
ROM, you must rewrite the 0INIPC routine to suit your needs.

4.2 Assembly Language Routines
The ASMT-86 assembler and the Pascal/MT+ compiler generate

entry-point and external-reference records in the same relocatable
file format. These records contain external symbol names. The
Pascal/MT+ relocatable format allows up to 7 characters in a name

The Pascal/MT+ compiler ignores the underscore character in
names. For example, A_B is the same as AB. The Intel standard ASM-
86 language treats an underscore as a significant character.
Therefore, do not use underscores in labels in assembly language
modules if the names resolve to entry points in a Pascal program.

4.2.1 Accessing Variables and Routines
To access assembly language variables or routines from a Pascal

program, you must perform the following steps:

4-2
pcjs.org

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

• Declare them PUBLIC in the Data segment of the assembly
language module.

• Declare them EXTERNAL in the Pascal/MT+ program.

To access Pascal/MT+ global variables and routines from an
assembly language routine, you must perform the following steps:

• Declare the name EXTRN in the Data segment of an assembly
language program.

• Declare the variable or routine at the global level in the
Pascal program.

• Compile the program using the $E+ option.

The following example shows how an assembly language module
references a variable that is declared in a Pascal/MT+ module.

NAME DEMO
ASSUME CS:CODE , DS:DATA

; ASSEMBLY LANGUAGE PROGRAM FRAGMENT
DATA SEGMENT PUBLIC

EXTRN PQR:WORD
DATA ENDS

CODE SEGMENT PUBLIC

MOV AX,PQR ;GET contents OF PASCAL VARIABLE

CODE ENDS

END

(* PASCAL PROGRAM FRAGMENT *)

VAR (* IN GLOBALS *)
PQR : INTEGER; (* ACCESSIBLE BY ASM ROUTINE *)

4-3 pcjs.org

Pascal/MT+ Programmer 1s Guide 4.2 Assembly Routines

4.2.2 Data Allocation
In the global data area, variables are allocated in the order

you declare them. The exception is variables appearing in an
identifier list before a type. These are allocated in reverse
order. For example, given the declaration:

A,B,C : INTEGER

C is allocated first, then B, then A.

In memory, Pascal/MT+ stores variables contiguously with no
space left between one declaration and the next. For example, given
the declaration:

A : INTEGER;
B : CHAR;
I,J,K : BYTE;
L : INTEGER;
P : "INTEGER;

the following storage layout appears:

byte # contents

0 A LSB (least significant byte)
1 A MSB (most significant byte)
2 B
3 K
4 J
5 I
6 L LSB
7 L MSB
8 P offset LSB
9 P offset MSB

10 P segment LSB
11 P segment MSB

Arrays are stored in row-major order. For example, the
declaration:

A: ARRAY [1..3, 1..3] OF CHAR

is stored in the following way:

4-4 pcjs.org

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

byte # contents

0
1
2
3
4
5
6
7
8

A[l,l]
A[l,2]
A[l,3]
A[2,1]
A[2,2]
A [2,3]
A [3,1]
A[3,2]
A[3,3]

Logically, this is a one-dimensional array of vectors. In
Pascal/MT+, all arrays are logically one-dimensional arrays of some
type.

Records are stored like global variables. Sets are stored as
follows:

• Sets are stored as 32-byte items.
• Each element of the set uses one bit.
• Sets are byte oriented.
• The low-order bit of each byte is the first bit in that byte of

the set.

Figure 4-2 shows the storage for the set A..Z. In this figure, the
first bit, bit 65 ($41), is in byte 8, bit 1. The last bit, bit 90,
is in byte 11, bit 2. (Bit 0 is the least significant bit in the
byte.)

BYTE NUMBER

00 01 02 03 04 05 06 07 08 09 0A 0B OC 0D 0E OF 10 . . . IF

00 00 00 00 00 00 00 00 FE FF FF 07 00 00 00 00 00 ... 00

AN 109

Figure 4-2. Storage for the Set A..Z

4-5
pcjs.org

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

Table 4-1 summarizes the size and range of Pascal/MT+ data
types.

Table 4-1. Size and Range of Pascal/MT+ Data Types
Data Type Size Range

CHAR 1 8-bit-byte 0..255
BOOLEAN 1 8-bit-byte false..true
INTEGER 1 8-bit-byte 0..255
INTEGER 2 8-bit-bytes -32768..32767
LONGINT 4 8-bit-bytes 2 32 -1.. 2~32
BYTE 1 8-bit-byte 0..255
WORD 2 8-bit-bytes 0..65535
BCD REAL 10 8-bit-bytes 18 digits, 4 decimal
FLOATING REAL 8 8-bit-bytes 10~307. .10307
STRING 1 . . 256 bytes
SET 32 8-bit-bytes 0. .255

4.2.3 Parameter Passing
When you call an assembly language routine from Pascal or a

Pascal routine from assembly language, parameters pass on the stack.

On entry to the routine, the top of the stack is a single word
containing the return address. The parameters are below the return
address, in reverse order from declaration.

Each parameter requires at least one 16-bit word of stack
space. A character or Boolean passes as a 16-bit word with a high-
order byte of 00. VAR parameters pass by address.

Address operands and pointers use two words of stack space.
They are stored as offset word on top of segment word, just as in a
data area. The address represents the byte of the actual variable
with the lowest memory address.

Nonscalar parameters, except sets, always pass by address. If
the parameter is a value parameter, the compiler generates code in a
Pascal routine to call @MVL to move the data.

The @SS2 routine handles set parameters. If passed by value,
the actual value of the set goes on the stack. Sets are stored on
the stack with the least significant byte on top and the most
significant byte on bottom.

The following example shows how a typical parameter list
appears on the stack on entry to a procedure:

4-6
pcjs.org

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

PROCEDURE DEMO(I,J : INTEGER; VAR Q:STRING; C,D:CHAR);

STACK —> 0 RETURN ADDRESS
+1 RETURN ADDRESS
+2 D
+3 BYTE OF 00
+4 C
+5 BYTE OF 00
+6 offset ADDRESS OF ACTUAL STRING LSB
+7 offset ADDRESS OF ACTUAL STRING MSB
+8 segment ADDRESS OF ACTUAL STRING LSB
+9 segment ADDRESS OF ACTUAL STRING MSB
+10 J (LSB)
+11 J (MSB)
+12 I (same as J)
+13 I (same as J)

The assembly language program must remove all parameters from
the stack before returning to the calling routine. This is usually
done with a RET n instruction, where n is the number of bytes of
parameters. In the example above, n is 12.

Nonreal function values return in registers. Single-byte and
single-word values return in the AX register. If a pointer or
LONG_INT requires a second word, the high order/segment value
returns in the BX register.

Real values return on the stack. They are placed below the
return address before the function returns. Therefore, they remain
on the top of the stack when the calling program reenters after the
return.

Assembly language functions return only simple types, such as
enumerations, INTEGER, REAL, BOOLEAN, LONGINT, pointers, and CHAR,
but not arrays, STRINGS, or records.

4.2.4 Assembly Language Interface Example
Listings 4-1 and 4-2 illustrate the interface between a Pascal

program and some assembly language routines.

The Pascal program performs the PEEK and POKE functions found
in BASIC. The assembly language module simulates the PEEK and POKE.
PEEK returns the byte found at the address passed to it, and POKE
puts the bytes in the specified address.

4-7
pcjs.org

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

PROGRAM PEEKJPOKE;

TYPE
BYTEPTR = ’'BYTE;

(* THIS IS VERY 8086 SPECIFIC AND IS NOT PORTABLE! *)
(* BUT ON THE OTHER HAND IT IS EXTREMELY VALUABLE! *)
POINTERKLUDGE = RECORD

CASE BOOLEAN OF
TRUE : (P : BYTEPTR);
FALSE: (OFFSET : INTEGER;

SEGMENT: INTEGER)
END;

VAR
ADDRESS : INTEGER;
CHOICE : INTEGER;
BBB : BYTE;
PPP : POINTERKLUDGE;

EXTERNAL PROCEDURE POKE (B : BYTE; P : BYTEPTR);
EXTERNAL FUNCTION PEEK (P : BYTEPTR) : BYTE;

BEGIN
REPEAT
WRITE('Address? (input as segment< space> offset) ');
READLN(PPP.SEGMENT,PPP.OFFSET);
WRITE('1) Peek OR 2) Poke ');
READLN(CHOICE);
IF CHOICE = 1 THEN
WRITELN(ADDRESS,' contains ',PEEK(PPP.P))

ELSE
IF CHOICE = 2 THEN
BEGIN
WRITE('Enter byte of data: ');
READLN(BBB);
POKE(BBB,PPP.P)

END
UNTIL FALSE

END.

Listing 4—1. Pascal PEEKPOKE Program

4-8
pcjs.org

Pascal/MT+ Programmer's Guide 4.2 Assembly Routines

NAME PEEK_POKE_MODULE
ASSUME CS:CODE,DS:DATA

DATA SEGMENT PUBLIC
DATA ENDS

CODE SEGMENT PUBLIC

PUBLIC PEEK
PUBLIC POKE

;Peek returns the byte found in the address passed on the stack
;It is declared as an external in a Pascal program as:
;EXTERNAL FUNCTION PEEK(P : BYTEPTR) : BYTE

PEEK PROC NEAR
POP BX ;RETURN ADDRESS INTO BX
POP DI ; GET OFFSET INTO DI
POP ES ; GET SEGMENT INTO ES
MOV AL,ES: BYTE PTR [DI] ;GO GET THE BYTE
XOR AH,AH ; MAKE HI ORDER AX = 0
JMP BX ;AND EXIT LEAVING FUNCTION VALUE IN AX

PEEK ENDP

;Poke places a byte into memory
;It is declared as an external in a Pascal program as:
;EXTERNAL PROCEDURE POKE (B : BYTE; P : BYTEPTR);

POKE

POKE

CODE

PROC NEAR
POP BX
POP DI
POP ES
POP AX

GET RETURN ADDRESS INTO BX
GET OFFSET
GET SEGMENT
GET BYTE TO STUFF

MOV ES:BYTE PTR [DI],AL ;STUFF BYTE AWAY
JMP BX
ENDP

ENDS

;AND RETURN

END

Listing 4-2. Assembly Language PEEK and POKE Routines

4-9
pcjs.org

Pascal/MT+ Programmer's Guide 4.3 Interface Features

4.3 Pascal/MT+ Interface Features
Pascal/MT+ provides several features that let you control your

program's run-time environment. The following features are
explained in this section:

• direct access to the operating system
• machine code inserted into Pascal source
• variables with absolute addresses
• interrupt procedures
• heap management

4.3.1 Direct Operating System Access
You can make direct calls to the operating system by using the

0IBMDOS routine. You declare it in a Pascal program as follows:
EXTERNAL FUNCTION 0IBMDOS(FUNC:INTEGER; PARM:INTEGER) :INTEGER;

The first parameter is the function number. Refer to your
specific operating system's manual for the list of functions. The
second parameter is an integer value passed to the operating system
in the DX register.

Note: for compatibilty with CP/M implementations, the run-time
system also includes the external procedure 0BDOS86. However,
0BDOS86 has been modified in order to map as many CP/M BDOS calls as
possible onto the corresponding DOS calls. There are some
fundamental differences between the two operating systems, and there
is no guarantee that all the function calls will operate properly.

The following example shows KEYPRESSED, a function that uses
the 0IBMDOS function. KEYPRESSED returns TRUE if a key is pressed,
and FALSE if not.

FUNCTION KEYPRESSED : BOOLEAN;

BEGIN
KEYPRESSED := (0IBMDOS(11,0) <> 0)

END;

The second operand is of type PTR, which is any user-declared
pointer type, usually the result of the ADDR function.

Listings 4-3 and 4-4 show a call to 0IBMDOS.

4-10
pcjs.org

Pascal/MT+ Programmer's Guide 4.3 Interface Features

(* DEMO OP THE USE OF IBMDOS FUNCTION CALLS 6 & 7 FOR CONSOLE 10 *)

PROGRAM IBM7;
TYPE

PTR = 'INTEGER; (* THIS JUST DEFINES A POINTER TYPE *)

VAR
CH : CHAR;
I : INTEGER;

(* THIS VARIABLE IS USED TO PUT A CHARACTER INTO A POINTER VARIABLE *)
(* IT IS REQUIRED BECAUSE WE WANT TO PASS A CHAR TO SIBMDOS BUT...*)
(* IBMDOS EXPECTS A POINTER TYPE. *)
CHTOPTR : RECORD

CASE BOOLEAN OF
TRUE ; (P : PTR); (* THIS IS THE POINTER TYPE *)
FALSE: (HI : INTEGER; (* THE CHARACTER GOES HERE *)

LO : INTEGER); (* THIS IS THE REST OF THE PTR *)
END;

EXTERNAL FUNCTION 0IBMDOS(FUNC:INTEGER; PARMtPTR):INTEGER;

BEGIN (* ECHO ANY INPUT CHARACTER TO THE CONSOLE UNTIL A : IS READ *)
REPEAT
CH:=CHR(@IBMDOS(7,CHTOPTR.P)); (* READ CHARACTER *)

(* THE SECOND PARM IS A DUMMY. FUNCTION 7 ONLY REQUIRES 1 PARM *)
IF CH <> ':' THEN

BEGIN
CHTOPTR.HI:=ORD(CH); (* CONVERT CHAR TO POINTER TYPE *)
I:=@IBMDOS(6.CHTOPTR.P); (* WRITE CHARACTER *)
END;

UNTIL CH= ':';
END.

Listing 4-3. Calling IBMDOS Functions 6 and 7

4-11
pcjs.org

Pascal/MT+ Programmer's Guide 4.3 Interface Features

(* DEMO OP THE USE OF IBMDOS FUNCTION CALL 23 TO RENAME FILES *)
PROGRAM IBMDOS23;
TYPE

FCBLK = PACKED ARRAY [0..36] OF CHAR;
PTR = "INTEGER; (* THIS JUST DEFINES A POINTER TYPE. *)

VAR
FI,
F2 : FCBLK;
I : INTEGER;
OLDNAME.NEWNAME : STRING;
EXTERNAL PROCEDURE SPARSE(VAR F:FCBLK; SlSTRING);
EXTERNAL FUNCTION SIBMDOS(FUNC:INTEGER; PARM:PTR):INTEGER;

BEGIN
WRITE('ENTER OLD FILE NAME: '); (* GET THE OLD FILE NAME *)
READLN(OLDNAME);
SPARSE (FI,OLDNAME) ; (* CREATE AN FCB WITH THE OLD FILE NAME IN IT *)
WRITE('ENTER NEW FILE NAME: '); {* GET THE NEW FILE NAME *)
READLN(NEWNAME);
SPARSE(F2,NEWNAME); (* CONVERT STRING TO FILE NAME FORM *)
MOVE(F2,FI[161,12); (* MOVE NEW NAME INTO FCB CONTAINING OLD NAME *)
(* CALL THE RENAME FUNCTION. PASS A POINTER TO THE FCB *)
(* CONTAINING THE OLD AND NEW FILE NAMES *)
IF SIBMDOS(23,ADDR(F1)) = 255 THEN
WRITELNC RENAME FAILED. ',OLDNAME,' NOT FOUND.')

ELSE
WRITELN('FILE ',OLDNAME,' RENAMED TO ',NEWNAME);

END.

Listing 4-4. Calling IBMDOS Function 23

Note: in this simple example you must enter the drive specifier
with the filename.

4.3.2 INLINE
INLINE is a built-in feature that lets you insert data in the

middle of a Pascal/MT+ procedure or function. You can insert small
machine-code sequences and constant tables into a Pascal/MT+ program
without using externally-assembled routines.

INLINE syntax is similar to that of a procedure call:

• The word INLINE is followed by a left parenthesis.

• After the parenthesis come any number of arguments.

• Arguments must be constants, or variable references that
evaluate to constants.

4-12
pcjs.org

Pascal/MT+ Programmer's Guide 4.3 Interface Features

• Arguments can be of types CHAR, STRING, BOOLEAN, INTEGER,
LONGINT, or REAL.

• Separate the arguments with slashes (/).

• The arguments end with a right parenthesis.

Note that a string in single apostrophes does not generate a
length byte, but simply the data for the string.

On the 8086, local variables specified by name evaluate to a
word containing the offset into the appropriate Stack segment (based
upon BP). Global variables evaluate into a word containing their
offset in the Data segment (from the DS register).

The *+n and *-n of 8-bit versions of Pascal/MT+ are unnecessary
on the 8086, because all jumps are relative to the base of the
segment.

Literal constants of type integer are allocated one byte if the
value falls in the range 0 to 255. Named and declared integer
constants always get two bytes.

Because of the complexity of the assembly language, Pascal/MT+
does not have a built-in mini-assembler.

The following listing shows how to use INLINE to store values
in the ES register after calling @IBMDOS,

EXTERNAL FUNCTION @IBMDOS(FUNC:INTEGER; PARM:INTEGER):INTEGER;
FUNCTION ES_REG(FUNC:INTEGER; PARM;INTEGER):INTEGER;
VAR

ESVAL : INTEGER; (* SO WE CAN STORE IT HERE *)
(* ASSUME A GLOBAL VARIABLE CALLED BDOSVAL *)
(* IN WHICH TO STORE THE RESULT FROM SIBMDOS *)

BEGIN
BDOSVAL := 0IBMDOS(FUNC.PARM);
(* NOW USE INLINE TO STORE THE VALUE OF ES *)
INLINE($8C/ (* MOV large_offset[BP],ES opcode *)

$86/ (* second byte of opcode *)
ESVAL); (* referencing var places a word of offset here *)

ES_REG:= ESVAL; (* SET FUNCTION VALUE *)
END;

Listing 4-5. Using INLINE to Store Values in ES Register

The listing on the next page demonstrates how INLINE constructs
compile-time tables.

4-13
pcjs.org

Pascal/MT+ Programmer's Guide 4.3 Interface Features

PROGRAM DEMO INLINE;

TYPE
IDFIELD = ARRAY [1..4] OF ARRAY [1..10] OF CHAR;
IDPTR = ''IDFIELD;
(* THIS WORKS ONLY ON THE 8086 *)
POINTERKLUDGE = RECORD

CASE BOOLEAN OF
TRUE : (P : IDPTR);
FALSE: (LOWORD : WORD;

HIWORD : WORD)
END;

VAR
TPTR : IDPTR;
P : POINTERKLUDGE;

PROCEDURE TABLE;
BEGIN

INLINE (1MTMICROSYS1 /
1 SOFTWARE 1 /
’POWER ’ /
’ TOOLS.... ’) ;

END;

BEGIN (* MAIN PROGRAM *)
P.P := ADDR(TABLE);
P.LOWORD := P.LOWORD + WRD(8);
TPTR := P.P;

WRITELN(TPTR~[3]); (* SHOULD WRITE ’POWER ’ *)

END.

Listing 4-6. Using INLINE to Construct Compile-time Tables

Here, the ADDR of TABLE must be added to its offset. This is
because ADDR does not give the address of TABLE, due to additional
code that recursion management produces. An extra eight bytes of
code is generated.
Note: the table must be in the same module as the statement that
takes the ADDR of TABLE.

4.3.3 Absolute Variables
You can declare ABSOLUTE variables if you know the address at

compile time. The following examples show the special syntax for
declaring absolute variables.

I : ABSOLUTE [$40:$8000] INTEGER;
SCREEN: ABSOLUTE [$2000:$C0] ARRAY[0..15, 0..63] OF CHAR;

4-14
pcjs.org

Pascal/MT+ Programmer's Guide 4.3 Interface Features

Note that you must put the address of the variable in brackets
[...].

The compiler does not allocate space in your Data segment for
ABSOLUTE variables. Make sure no compiler-allocated variables
conflict with the absolute variables.

String variables cannot exist at all locations. On the
8086, strings must not be in segment OFFFFH, in order that the run
time subroutines can distinguish between a string address and a
character on top of the stack.

4.3.4 Interrupt Procedures
Pascal/MT+ has a special procedure type to handle interrupts.

When an interrupt occurs, the procedure associated with that
particular interrupt is invoked; you do not call interrupt
procedures from the program. When the interrupt procedure finishes,
control returns to where it was interrupted. You select the vector
to be associated with each interrupt.

You declare an interrupt procedure as follows:

PROCEDURE INTERRUPT [<vec num>] <identifier> ;

Interrupt procedures are not restricted to the main program; modules
can also contain interrupt procedures.

The compiler generates code to push the registers on entering
an interrupt procedure, and to pop the registers and reenable
interrupts on exiting the procedure.

Note: you must initialize the interrupt vectors. The compiler does
not generate code to store in the absolute locations occupied by the
interrupt-vector table.

Interrupt procedures cannot have parameter lists, but can have
local variables and can access global variables.

Unlike most 8-bit implementations, the 8086 implementation of
Pascal/MT+ generates reentrant code. However, some language
facilities, specifically Console I/O, File I/O, COPY, and CONCAT,
require statically-allocated data. While you can access these
facilities from an interrupt procedure, nothing prevents
interrupting a program segment that uses these facilities.

DOS is not reentrant; therefore Console I/O and File I/O cannot
be used in an interrupt procedure. If you use CP/M-86, note that
I/O through the CP/M-86 BDOS reenables interrupts only if they were
enabled when BDOS was entered.

4-15 pcjs.org

Pascal/MT+ Programmer's Guide 4.3 Interface Features

To disable interrupts around sections of Pascal code, use
INLINE to place CLI ($FA) and STI ($FB) instructions around the
code.

The following program waits for an interrupt on one of four
switches, and then toggles the state of a light attached to the
switch. The I/O ports for the lights are 0 to 3, and the switches
use interrupts $22, $23, $24 and $25.

PROGRAM INT_DEMO;
CONST

LIGHT1 = 0;
LIGHT2 = 1;
LIGHT3 = 2;
LIGHT 4 = 3;

(* DEFINE I/O PORT CONSTANTS *)

SWITCH1 = $22 (* DEFINE INTERRUPT VECTORS *)
SWITCH2 = $23;
SWITCH3 = $24;
SWITCH4 = $25;

TYPE
PTR = "INTEGER; (* FOR USING ADDR FUNCTION *)

VAR (* define the low memory we want to use *)
VEC22 : ABSOLUTE [0:$88] PTR;
VEC23 : ABSOLUTE [0:$8C] PTR;
VEC24 : ABSOLUTE [0: $90] PTR;
VEC25 : ABSOLUTE [0 s $94] PTR;
LIGHT_STATE : ARRAY [LIGHTl..LIGHT4] OF BOOLEAN;
SWITCH_PUSH ; ARRAY [LIGHTl..LIGHT4] OF BOOLEAN;
I : LIGHTl .. LIGHT4;

PROCEDURE INTERRUPT [SWITCHl] INTI;
BEGIN

SWITCH_PUSH[LIGHTl] := TRUE
END;
PROCEDURE INTERRUPT [SWITCH2] INT2;
BEGIN

SWITCH_PUSH[LIGHT2] := TRUE
6 END;
PROCEDURE INTERRUPT [SWITCH3] INT3;
BEGIN

SWITCH_PUSH[LIGHT3] := TRUE
END;
PROCEDURE INTERRUPT [SWITCH4] INT4;
BEGIN

SWITCH_PUSH[LIGHT4] := TRUE
END;

Listing 4-7. Dsing Interrupt Procedures

4-16
pcjs.org

Pascal/MT+ Programmer's Guide 4.3 Interface Features

BEGIN (* MAIN PROGRAM *)
(* FIRST INITIALIZE THE INTERRUPT VECTORS *)
VEC22 := ADDR(INTl);
VEC23 := ADDR1INT2);
VEC24 := ADDR(INT3);
VEC25 := ADDR(INT4);
(* INITIALIZE BOTH ARRAYS *)
FOR I := LIGHT1 TO LIGHT4 DO
BEGIN

LIGHT_STATE[I] := FALSE; (* ALL LIGHTS OFF *)
SWITCH_PUSH[I] := FALSE; (* NO INTERRUPTS YET *)

END;
INLINE($FB); (* STI INSTRUCTION *) (* LET THE USERS HAVE AT IT! *)
REPEAT

REPEAT (* UNTIL INTERRUPT *)
UNTIL SWITCH_PUSH[LIGHT1] OR SWITCH_PUSH[LIGHT2) OR

SWITCH__PUSH [LIGHT3] OR SWITCHJPUSH [LIGHT4] ;
FOR I := LIGHT1 TO LIGHT4 DO (* SWITCH LIGHTS *)

IF SWITCH_PUSH[I] THEN
BEGIN

SWITCH_PUSH[I] := FALSE;
LIGHT_STATE[I] := NOT LIGHT_STATE[I]; (* TOGGLE IT *)
OUT[I) := LIGHT_STATE[I]

END
UNTIL FALSE; (* DO THIS LOOP FOREVER *)

END. (* OF MAIN PROGRAM *)

Listing 4-7. (continued)

4.3.5 Heap Management
You can manage the heap two ways.

1) Use the ISO standard routines as they are implemented in
FULLHEAP.R86. When you use this method,

• the NEW routine uses a standard heap.

• dynamic data goes to the smallest space that can hold the
requested item.

• the DISPOSE routine disposes the item passed to it.

4-17
pcjs.org

Pascal/MT+ Programmer's Guide 4.3 Interface Features

• when necessary, MAXAVAIL or NEW gathers free memory into
a free list, combines adjacent blocks, and reports the
largest available block of memory.

• MEMAVAIL returns the largest never-allocated memory
space.

2) Use NEW, DISPOSE, and MEMAVAIL, which are part of the
PASLIB.R86 run-time library. When you use this method.

• you treat the heap as a stack, and NEW puts the dynamic
data on top of the stack.

• the stack grows from the end of the static data towards
the hardware stack.

• DISPOSE performs no function, but is included for symbol-
table use.

• you can simulate the MARK and RELEASE routines of UCSD
Pascal™by using the built-in routines @MRK and @RLS, as
shown in this example:

MODULE UCSDHEAP;

EXTERNAL FUNCTION @MRK : LONGING-
EXTERNAL FUNCTION @RLS (L:LONGINT);

PROCEDURE MARK(VAR P:LONGINT);
BEGIN

P := @MRK
END;

PROCEDURE RELEASE(P:LONGINT);
BEGIN

@RLS(P)
END;

MODEND.

4.4 Recursion/Nonrecursion
Pascal/MT+ always produces recursive code, because degradation

in code size and execution speed is minimal on the 8086.

Return addresses and local variables for all procedures are
stored on the hardware stack. If recursion is deeply nested, and
the default stack size is too small, the program can overwrite local
or global data as recursion continues. You can solve this problem
by specifying a larger hardware stack, using the /Z linker option.

pcjs.org

Pascal/MT+ Programmer's Guide 4.5 Stand-alone Operation

4.5 Stand-alone Operation
If you want to run Pascal/MT+ programs in a ROM-based system,

perform the following steps:

1) Use the $Z compiler option to tell the compiler not to
initialize the hardware stack pointer.

2) If the program performs I/O you have three choices:

• Use redirected I/O for all READ and WRITE statements.
This replaces the run-time character I/O routines with
user-written I/O routines. Refer to the Pascal/MT+
Language Reference Manual.

• Rewrite GET and the run-time subroutines @RNC and @WNC.
@RNC is the read-next-character routine; @WNC is the
write-next-character routine.

You must rewrite GET because the read-integer and read-
real routines call it.

• Build a simulated DOS I/O system in your PROM. If you
are constructing your program to run in a totally stand
alone environment such as an Intel SBC-86/12 board, you
can write an assembly language module to link in front of
your program.

This routine can jump around the standard code that
simulates the BDOS and can simulate the CP/M-86 BDOS for
Functions 1: Console Input, 2: Console Output, and 5:
List Output.

The function number is in the CL register; the data for
output is in DL.

For input. Function 1, return the data in the AL
register. All registers are free to use, and the stack
contains nothing but the return address.

Note: this is just a suggestion; Digital Research does
not give detailed application support for this method.

3) If you use a ROM-based system, you might shorten or
eliminate the INPUT and OUTPUT FIB (File Information Block)
storage in the @INIPC module. You need this storage for
TEXT file I/O compatibility, but you might not need it in a
ROM-based environment.

4-19
pcjs.org

Pascal/MT+ Programmer's Guide 4.5 Stand-alone Operation

Make sure any changes to INPUT and OUTPUT are also handled
in @RST (read a string from a file) and @CWT (wait for EOLN
to be TRUE on a file).

The distribution disks include three outlines for the
0INIPC, 0RNC, GET, and @WNC routines that you can use in
ROM environments.

If your program does not do READLN or WRITELN calls and
does not use the heap or overlays, you can rewrite the
0INIPC procedure in your program as:

PROCEDURE @INIPC;
BEGIN
END;

4) In ROM environment, you cannot use the PROCEDURE INTERRUPT
[vector] construct to handle interrupts. You must
construct an assembly language module and link it as the
main program (first file). This module must contain JMP
instructions at the interrupt vector locations to jump to
the Pascal/MT+ interrupt routines.

Note: find the interrupt routines with the /M linker
option.

5) Link any changed run-time routines before you link
PASLIB.R86, the run-time library, to resolve the
references. Use the /S linker option, as in the following
example.

A>LINKMT USERPROG,MYWNC,MYRNC,MYGET,MYINI,PASLIB/S

4.6 Error and Range Checking
The Pascal/MT+ system supports two types of run-time checking:

range and exception. The default state of the compiler disables
range checks and enables exception checks.

Error checks and routines set Boolean flags. These flags,
along with an error code, load onto the stack and call the
predefined routine 0ERR that tests the Boolean flag.

If no error occurs, the flag is FALSE, so 0ERR exits to the
compiled code and continues execution. If an error occurs, 0ERR
takes appropriate action, as described in Table 4-2.

pcjs.org

Pascal/MT+ Programmer's Guide 4.6 Error and Range Checking

Table 4-2. @ERR Routine Error Codes
Value Meaning

1 divide by 0 check
2 heap overflow check (unused, see below)
3 string overflow check (unused, see below)

4 array and subrange check

5 floating point underflow

6 floating point overflow

4.6.1 Range Checking
Range checking monitors array subscripts and subrange

assignments. It does not check when you read into a subrange
variable.

When range checking is enabled, the compiler generates calls to
@CHK for each array subscript and subrange assignment. The @CHK
routine leaves a Boolean value on the stack and error code number 4.
The compiler generates calls to @ERR after the @CHK call. If an
error occurs, @ERR asks you whether it should continue or abort.

When range checking is disabled and an array subscript falls
outside the valid range, you get unpredictable results. For
subrange assignments, the value truncates at the byte level.

4.6.2 Exception Checking
Exception checking is enabled by default. The conditions

checked for are the following:

• integer and real numbers divided by 0
• real number underflow and overflow
• string overflow

In the current release, $X- does not disable exception checking.

The various exceptions produce the following results:

• Floating-point underflow: @ERR does not print a message. The
result of the operation is 0.0. •

• Floating-point overflow: @ERR prints FLOATING-POINT OVERFLOW.
The result of the operation is a large number.

4-21 pcjs.org

Pascal/MT+ Programmer's Guide 4.6 Error and Range Checking

• Division by zero: @ERR prints DIVIDE BY ZERO DETECTED. The
result is a representation of the largest-possible number.

• Heap overflow: nothing happens. You should test the value of
@HERR to detect heap overflow.

• String overflow: the string is truncated.

4.6.3 User-supplied Handlers
You can write your own @ERR routine instead of using the system

routine. Declare the routine as follows:

PROCEDURE @ERR(ERROR:BOOLEAN; ERRNUM:INTEGER);

Your version of @ERR should check the ERROR variable and exit
if it is FALSE. If the value is TRUE, you can decide what action to
take.

To use @ERR instead of the routine in PASLIB, link your routine
ahead of PASLIB to resolve the references to @ERR. The values of
ERRNUM are in Table 4-2.

4.6.4 I/O Error Handling
The run-time routine, 0IBMDOS, does not handle I/O errors.

However, it returns an error code in IORESULT. You can rewrite
0IBMDOS, using the supplied assembly language source, to check
further for disk I/O errors.

End of Section 4

4-22
pcjs.org

Section 5
Pascal/MT+ Programming Tools

Pascal/MT+ provides four programming tools designed to increase
programming productivity: an assembler, a disassembler, a debugger,
and a librarian.

• ASMT-86 is an assembler that is upward-compatible with the
Intel MCS-86™ assembler. The ASMT-86 assembly language is a
subset of the MCS-86 language, see Section 6.

• DIS-86 is a disassembler that combines a relocatable file with
a corresponding PRN file to produce a file showing the assembly
code for each Pascal/MT+ source line.

• LIB/MT+86 is a software librarian utility that concatenates
relocatable files into a searchable library file.

• The debugger is a relocatable file that you link into a
program, enabling you to step through the program as it runs.

5.1 ASMT-86, the Assembler
The ASMT-86 assembler supports a subset of the MCS-86 assembly

language. ASMT-86 does not provide codemacros, macros, records, or
structures. There are other restrictions to the ASMT-86 language
that are summarized at the end of Appendix F. For a detailed
description of the MCS-86 language, see the MCS-86 Macro Assembly
Language Reference Manual.

ASMT-86 consists of an executable command file and four
overlays. Your Pascal/MT+ distribution disk #4 contains the
following five files:

• ASMT86.EXE
• ASMT86.001
• ASMT86.002
0 ASMT86.003
• ASMT86.004
When assembling, all five files must be on one logged-in

logical drive. The assembler has an error-message file, ASMERS.TXT,
that you can place on any logical drive.

5-1 pcjs.org

Pascal/MT+ Programmer's Guide 5.1 Assembler, ASMT-86

5.1.1 Assembler Operation
ASMT-86 takes assembly language programs as input and generates

a relocatable object file and a print file. During assembly, ASMT-
86 creates the following temporary work files:

• ASMTMP.TOK
• ASMTMP.LST
• ASMTMP.ERS

ASMT-86 automatically erases these temporary files when the
assembly reaches a normal completion. ASMT-86 also erases the
temporary files if they are on disk before you start the assembly.

ASMT-86 generates a relocatable object file with filetype R86
and the same filename as the assembly language source file. If you
specify the P option in the command line, ASMT-86 generates a print
file with filetype PRN and the same filename as the source file.
Figure 5-1 illustrates the operation of ASMT-86.

TEMPORARY
WORK FILES

RELOCATABLE
OBJECT FILE

FILENAME.R86

OPTIONAL
PRINT FILE

FILENAME.PRN

Figure 5-1. ASMT-86 Operation
AN 042

pcjs.org

Pascal/MT+ Programmer's Guide 5.1 Assembler, ASMT-86

5.1.2 Invoicing ASMT-86
You invoke ASMT-86 with a command line of the following format:

ASMT86 <filespec> {$<options>}

where the <filespec> must be a standard filespec with filetype 186,
and <options> are optional parameters that control the assembly.

The assembler assumes an 186 filetype if you omit it in the
filespec. The dollar sign separates the <options> from the rest of
the command line. You can also use a pound sign, #, instead of the
dollar sign. You do not have to use either sign if you do not
specify any options.

5.1.3 ASMT-86 Command Line Options
The ASMT-86 supports six command line options, as described in

the following table.

Table 5-1. ASMT-86 Command Line Options
Option Meaning

C The assembler continues on errors. The default
is to wait for your response.

Ed The error list file ASMERS.TXT is on drive d.
The default is the logged-in drive.

Pd The print file goes on drive d. The default,
disk Z, produces no print file. X refers to the
console.

Q Quiet operation. The assembler writes fewer
messages to the console.

Rd The relocatable object file goes on drive d. The
default is the logged-in drive.

Td The temporary files ASMTMP.TOK, ASMTMP.LST, and
ASMTMP.ERS go on drive d. The default is the
logged-in drive.

5.2 DIS-86, the Disassembler
The Pascal/MT+ disassembler consists of one executable file,

DIS86.EXE which is on distribution disk #3.

5-3 pcjs.org

Pascal/MT+ Programmer's Guide 5.2 Disassembler, DIS-86

DIS-86 generates a file showing the assembly language for each
Pascal/MT+ source line. When you compile a program using the X
option, the Pascal/MT+ compiler generates an extended relocatable
file that contains assembly language coding interspersed with
Pascal/MT+ statements.

When you compile a program using the P option, the compiler
generates print files with filetype PRN. Used together, these files
enable the disassembler to investigate code the compiler produces.
The files provide the information necessary to debug the program at
the machine-code level. Appendix C contains a listing of a sample
disassembly. Figure 5-2 illustrates the operation of DIS-86.

Figure 5-2. DIS-86 Operation

You invoke the disassembler with a command line of the
following format:

DIS86 <filename> [<destination name>][,L=nnn]

You do not have to specify a filetype. The disassembler
searches for both the R86 and PRN files with the specified
<filename>. Note that both files must be on one logical disk drive.

The destination name> can be a filename or a Pascal/MT+
logical device, CON: or LST:. The default destination is CON:. The
L=nnn parameter enables you to specify the number of lines per page
for the output device. nnn is an integer value. The L=nnn
parameter requires that you specify a destination name>.

When the disassembler finds something unexpected in the R86
file, it generates an error message. Continuing at this point
produces more errors because the sequence is off. An R86 file
should have no errors. To correct errors, recompile the program.
Be sure you are disassembling Pascal code only.

5-4 pcjs.org

Pascal/MT+ Programmer's Guide 5.3 LIB/MT+86

5.3 LIB/MT+86, the Software Librarian
LIB/MT+86 is the Pascal/MT+ software librarian that logically

concatenates R86 files together to construct a searchable library
such as PASLIB.

5.3.1 Invoking LIB/MT+86
You invoke the librarian with a command of the form:

LIBMT <filename>

where <filename> contains only the name, not the type of the file.
LIB/MT+86 accepts an input file of type BLD. A filetype of BLD
contains an output filename followed by a list of input filenames,
with each name on a separate line.

Pascal/MT+ modules, libraries, and appropriate assembly
language modules are valid as input. You must specify the filetype
but it need not be R86. If the output file is to be processed by
LINK/MT+86, it must be of type R86.

Note: LIB/MT+86 cannot process a Pascal module compiled with the X
(EXTENDED Relocatable file) option. To process such a module, you
must recompile it without the X option.

The following is an example of a BLD file for creating a
LINK/MT+86 compatible library:

MYLIB.R86
MYMOD1.R86
MYMOD2.R86
MYMOD3.R86

This file first deletes any existing copy of MYLIB.R86. It
then concatenates the files MYMOD1.R86, MYMOD2.R86 and MYMOD3.R86
and places the output into the file MYLIB.R86.

5.3.2 Searching a Library
LINK/MT+86 is a one-pass linker, so when you use the /S option

to signify that a file is a library, the linker loads only those
modules that have been referenced by previous modules. Therefore,
the order of modules in your library is important. If the modules
are concatenated as A, B, C, then modules B and C cannot contain
references to module A unless they are guaranteed that module A is
loaded. Module A, however, can contain references to B or C because
this causes the linker to load them.

Remember that the linker can only extract entire modules from a
library. Single procedures from a module cannot be extracted. All
entry points, both code and data, are used as a basis for searching
when the /S option is used. Only one entry point in a module need
be referenced to force loading that entire module.

5-5 pcjs.org

Pascal/MT+ Programmer's Guide 5.3 LIB/MT+86

You cannot use LIB/MT+86 to alter PASLIB because of its special
construction. If you want to replace modules in PASLIB, link the
replacement modules before linking PASLIB. This resolves references
to those routines before PASLIB is searched. If the replacement
routines are in a library, it is a good idea not to search it
because the references to the replacement routines sometimes are not
made until PASLIB is processed.

5.4 Debugger
The Pascal/MT+ debugger simplifies program maintenance. The

debugger consists of one relocatable object file, DEBUGGER.R86,
which is on distribution disk #1.

To use the debugger, you must link the DEBUGGER.R86 file into a
source program along with the run-time subroutine library. The
debugger then takes charge of the source program execution. The
debugger can perform the following tasks:

• display variables
• set symbolic breakpoints
• step through the program one statement at a time
• display symbol tables
• display entry and exit points for procedures and functions

The debugger displays line numbers in trace mode. However, in
programs consisting of modules, line numbers repeat in each module.
The debugger only works on programs without overlays.

You can use the debugger in a stand-alone environment. When
the debugger requests the filename of the symbol table, press RETURN
to disable the symbolic facilities. The display-by-address
facilities remain in effect.

5.4.1 Debugging Programs
The compiler generates a PSY file containing debugger

information when you specify the D option in the command line. You
must compile all modules that you want to debug with the D option.
The compiler writes the PSY file onto the disk containing the
corresponding R86 file.

The PSY file contains records for each procedure, function, and
variable in the program. The compiler generates code at the
beginning and end of each procedure or function for debugger
breakpoint logic. Address fields for each item are module relative.

The linker uses the R86 and PSY file to create a SYP file that
contains absolute addresses for each procedure, function, and
variable. The debugger uses the SYP file to perform the various
debugging tasks.

5-6 pcjs.org

Pascal/MT+ Programmer's Guide 5.4 Debugger

You must place the DEBUGGER.R86 file first in the list of files
in the LINK/MT+86 command line. The following example links the
debugger, a user program, and run-time library into an executable
file named USERPROG.EXE.

A>LINKMT USERPROG=DEBUGGER,DSERPROG,PASLIB/S
The example above generates two undefined symbols required to write
real numbers, @XOP and @WRL. The undefined symbols cause no problem
if USERPROG does not use real numbers. If USERPROG uses real
numbers, you must link the real number run-time library file with
the other files in the command line.

To start the debugging session, run the program. The debugger
takes control of the program, and requests the name of the symbol
table file. You must enter the user program SYP file. You must
enter both the filename and filetype. Press RETURN if there is no
symbol table. The debugger then prompts you for the BEgin or TRace
command. You can then proceed to debug the program using
breakpoints and the other debugger commands.

5.4.2 Debugger Commands
Debugger commands use the following rules and syntax elements.

• <name> refers to a variable name, a procedure or function name,
or a prefixed variable name. A prefixed variable name is a
variable identifier prefixed with a procedure or function name.
Names are from 1 to 8 characters long and follow the same
syntax as the compiler.

• <num> refers to a decimal or hexadecimal number. Hexadecimal
numbers are prefixed with a $ and range from 0 to FFFF.
Decimal numbers range from 0 to 32767.

• <parm> refers to a parameter.

• Specify an offset from the primary address with a + or -. The
debugger assumes + if not specified in the command.

• The ~ is an indirection character used with pointer variables.
The ~ tells the debugger to display the data pointed to, not
the contents of the pointer itself. Pointers are 32-bit
segment pairs. For example, A refers to the four-byte pointer
at A, not just two bytes as in 8-bit versions of Pascal/MT+. •

• The debugger ignores underscores, _. Use underscores to make
commands easier to read.

5-7
pcjs.org

Pascal/MT+ Programmer's Guide 5.4 Debugger

Several commands require an additional parameter. Parameters
have the following syntax:

<parm> [<name> | <num> | $<numlA> : <numlB>] [A] ([+|-J <num2>}

If you do not use a <name>, you can specify an address in Data-
segment relative or absolute mode. A single <num> indicates an
address that is relative to the value of the DS register. If you
use two numbers, <numlA> is the segment number and <numlB> is the
offset from that segment. <num2> specifies the number of bytes to
add or subtract from the address already attained in the parameter.
Table 5-2 shows examples of parameters given the following
declarations:

TYPE
PAOC = ARRAY [1..40] OF CHAR;

VAR
ABC : INTEGER;
PTR : ''PAOC;

Table 5-2. Examples of Parameters
Parameter Meaning

ABC an integer
PTR contents of PTR
PTR" entire array
ABC+10 10 bytes past ABC location
PTR"+10 PTR"[11]
ABC-3 3 bytes before ABC
PTR"-3 3 bytes before the array, PAOC
$3FFD data segment relative location
$423B" 32 bytes pointed to by DS:$423B
$3FFD+$5B 32 bytes at DS:$4058
$423B"+49 32 bytes pointed to by contents of

DS:$423B + 49
$34F:2500 absolute location
PROC1:I local variable in PROC1
PR0C2:J"+9 offset from local pointer

The command to display a variable by <name> is
DV <parm>{"}

If <name> is a pointer variable, DV displays the contents of the
pointer. If you use <name>, DV displays the contents of the
location addressed by the pointer.

5-8
pcjs.org

Pascal/MT+ Programmer's Guide 5.4 Debugger

Table 5-3 shows commands used when symbols are not available or
when you want to display fields within record or array elements.

Table 5-3. Debugger Display Commands
Command Meaning

DI <parm> Display Integer
DC <parm> Display Character
DL <parm> Display Logical (Boolean)
DR <parm> Display Real
DB <parm> Display Byte
DW <parm> Display Word
DS <parm> Display String
DX <parm> { ,num} Display extended (structures) . This

is always displayed in HEX/ASCII
format. Num is the size, in bytes,
for memory dump. The default value
is 320 bytes.

The command to alter the contents of a memory address is

SE<parm>

The command displays the byte at the specified address in decimal.
Enter a new value in either decimal or hex, then press RETURN. The
new value replaces the displayed value, and the debugger displays
the next byte of memory. If you enter a value that does not fit in
two bytes, the debugger uses the last two digits. To end the
SE<parm> command, enter a period and press RETURN.

The following table describes the other commands that enable
control of your program in a debugging session.

5-9
pcjs.org

Pascal/MT+ Programmer's Guide 5.4 Debugger

Table 5-4. Debugger Control Commands
Command Syntax Meaning

BE BEgin execution, start program from
beginning.

E+ Enable display entry and exit of each
procedure or function during execution
(default on).

E- Disable entry / exit display.

GO Continue execution from a breakpoint.

PN Display procedure names from SYP file.

RB <name> Remove breakpoint at procedure <name>.

SB <name> Set breakpoint at beginning of procedure
<name>.

SE <parm> Modify contents of memory at <parm>. A
terminates this command.

TR or T Trace - Execute one line and return.

T<num> Trace <num> lines and return.

VN <name> Display variables associated with
procedure <name>.

?? HELP! List of commands found in
DBUGHELP.TXT.

End of Section 5

5-10
pcjs.org

Section 6
ASMT-86 Assembly Language

You can create assembly language source files using any text
editor or word processor that produces standard DOS text files.

Identifiers can be any length, but only the first 31 characters
distinguish one identifier from another. Lower-case characters are
equivalent to upper-case characters except when enclosed in single
apostrophes.

A source line cannot exceed 132 characters, and strings
enclosed in apostrophes must fit on one physical line

An assembly language program is a sequence of statements
followed by an end-of-file mark. Assembly language statements use
the following general format:

clabel identifier>[:]<opcode><arguments>

The <label identifier must begin in column 1. Certain
<opcodes> require a <label identifier and others require that you
do not specify one. Use the colon only when declaring a label for a
machine opcode.

ASMT-86 assembly language is a subset of the Intel MCS-86
assembly language. Appendix F lists the syntax and reserved words
for the ASMT-86 language.

6.1 Pseudo-opcodes
The symbolic opcode names are the instruction mnemonics used to

generate the corresponding bit patterns in the object file. Opcodes
that are not standard 8086 machine opcodes are called pseudo
opcodes .

ASMT-86 assembly language supports several pseudo-opcodes,
described as follows. Refer to Appendix F for the pseudo-opcode
syntax diagrams.

• SEGMENT/ENDS: the SEGMENT statement and the ENDS statement
control assembly-program segmentation. The SEGMENT directive
includes an optional alignment type, optional combine mode, and
a class name string. The following examples are commonly used
forms of the SEGMENT directive:

CODE SEGMENT PUBLIC
DATA SEGMENT PUBLIC
OTHER NAME SEGMENT AT <number>

6-1 pcjs.org

Pascal/MT+ Programmer's Guide 6.1 Pseudo-opcodes

The label on an ENDS statement must match the label on the
corresponding SEGMENT statement. You cannot nest segments.
However, you can code a portion of a segment, start and end a
second segment, then continue coding the first segment. The
resulting code does not actually contain nested segments; the
assembler puts the separate parts back together.

• ASSUME; the ASSUME statement indicates which segment register
points to a specified segment. Following the key word ASSUME,
enter the segment register and the segment name with an
optional variable.

• LABEL: the LABEL statement creates a label in the current
location of the program. Specify the type or distance of the
label following the keyword LABEL.

• PROC: the PROC statement enables procedure declarations. You
can specify the distance following the keyword PROC. The
distance defaults to NEAR. You must match each PROC statement
with an ENDP statement. The label preceding each ENDP
statement must match the label on the corresponding PROC
statement. Declaring procedures, as opposed to simply calling
labels, informs the assembler about the distance needed to
determine how to assemble the RET instruction.

• NAME: the NAME statement specifies a new name for the
assembled relocatable object file.

• PUBLIC: the PUBLIC statement declares certain labels PUBLIC.
Other modules can reference PUBLIC labels.

• EXTRN: the EXTRN statement can reference labels in other
modules that are PUBLIC. The EXTRN statement includes the
label followed by a type.

• END: the END directive establishes a starting address for the
program. The identifier following END must be a label in the
Code segment.

« ORG: the ORG directive establishes a new location counter
offset within the current segment. The expression must result
in a defined value.

• DB, DW, DD: the DB, DW, and DD statements allocate and
initialize data space. Place the initializing data after the
keyword. The following examples show the types of initializing
data.

?
expression
constant-expression DUP (expression or ?)

The question mark indicates that the data space is to be
allocated, but not initialized. An expression initializes the
data space with the value of the expression. The DUP form

6-2
pcjs.org

Pascal/MT+ Programmer's Guide 6.1 Pseudo-opcodes

enables space allocation to repeat the number of times
indicated by the constant-expression. The constant expression
can be any expression that evaluates to an absolute number.
Unlike MCS-86 assembly language, you cannot nest DUP
expressions.

DB accepts strings enclosed in single apostrophes. DW and DD
only accept strings enclosed in single apostrophes up to 2
characters. DB allocates characters in low-to-high order. DW
and DD allocate characters in high-to-low order.

Note that the linker currently permits only uninitialized data
in the Data segment.

• EQUATE: you can equate identifiers to expressions using the
EQUATE statement. The form using ON and OF is for conditional
assembly options in IF, ELSE, and ENDIF.

• IF, ELSE, ENDIF: IF, ELSE, and ENDIF let you assemble
conditionally. You must equate the identifier following IF
with ON or OFF. If the identifier equals on, the text up to
ELSE assembles and the text between ELSE and ENDIF is ignored.
If the identifier equals OFF, the text between ELSE and ENDIF
assembles and the text up to else is ignored. ELSE is
optional. IF, ELSE, and ENDIF sets cannot be nested.

• INCLUDE: you can textually include a separate file in the
assembly with INCLUDE. The string following INCLUDE is the
name of the file you want to include. If you do not specify a
drive name, the assembler uses that of the original filename.
If you do not specify a filetype, the original filetype is
used.
You cannot nest INCLUDE files, nor can an included file contain
other INCLUDE files. The following examples show proper
INCLUDE statements.

INCLUDE 'incfile' ,-drive and filetype are the
;same as the main input file.

INCLUDE 'b:2ndfile.txt' ,-drive is b and filetype is .txt

6.2 Fundamental Values
Fundamental values are expressed as numbers, character strings,

or variables. Numbers can be binary, decimal, octal, or
hexadecimal. •

• Decimal numbers must start and end with a digit from 0-9.
• Binary numbers end with B.
• Decimals end with D.
• Hexadecimals end with H.
• Octals end with 0 or Q.
• A $ is a break character that does not effect the number.

6-3
pcjs.org

Pascal/MT+ Programmer's Guide 6.2 Fundamental Values

All numbers are stored internally as 16-bit signed two's
complement numbers. Only the low-order 16-bits of their
representation is kept for numbers greater than 32767 or less than -
32768. The following examples show valid numbers:

1111$0000$0000$1101B = -4083
10000H = 0
65537 = 1
377777q = -1

You can use strings of 2 or fewer characters as numbers. The
characters convert to their ASCII numerical representation. For a
single-character string, the character goes in the low-order byte of
the word. The high-order byte is 0. For a 2-character string, the
first character goes in the high-order byte of the word and the
second goes in the low-order part. The following examples show
numbers expressed as literal character strings:

'A' = 0041H
'AB' = 4142H

Variables contain attribute information. A variable's length
is the number of units, not necessarily bytes, allocated for the
variable. This value derives from the repeat factor that declares
the variable in a DB, DW, or DD statement.

A variable's type is 1 if you declare it with DB, 2 with DW,
and 4 with DD. The size of a variable is the number of bytes
allocated for it. Variable size equals length times type. The
following examples show variable declarations:

Byte_variable DB 15 DUP

Word variable DW 'hi'

; For Byte_variable, TYPE = 1, LENGTH = 15, and SIZE = 15

; For Word_variable, TYPE = 2, LENGTH = 1, and SIZE = 2

You can use this information with expressions of the form TYPE
id, LENGTH id, or SIZE id.

When an identifier appears in an expression, its value is the
offset of a variable or label or the base value of a segment. If
the segment with the identifier declaration is relocatable, the
value is relocatable.

6-4
pcjs.org

Pascal/MT+ Programmer's Guide 6.3 Operators

6.3 Operators
You can use the value of a current assembly-location counter as

a fundamental value through the THIS operator. Follow THIS with a
type, BYTE, WORD, DWORD, NEAR, or FAR. The offset of the resulting
expression has the indicated type and an offset equal to the current
location counter. For example.

JMP THIS NEAR ;infinite loop
MOV AL,THIS BYTE ;moves a MOV opcode byte into

;AL (assuming DS points to
;this segment)

The $ operator is equivalent to THIS NEAR.

Logical operators operate only on absolute numbers. OR, XOR,
and AND are infix dyadic operators. NOT is a monadic operator. The
following examples show the use of logical operators.

DB 0 OR OFFH 7 result is OFFH
DB 0101B XOR 000IB ? result is 0100B
DW 'AB' AND 00FFH ; result is 42H =
8DW NOT 0 ; result is -1

Like the logicals, the shift and multiplicative operators
operate only on absolute numbers. These dyadic infix operators are
* , / MOD , SHL , and SHR. Examples of each

MOV AX,2*2 ;put 4 in AX
MOV AX,2/2 7 put 1 in AX
MOV AX,5 MOD 2 ; put 1 in AX
MOV AX,5 SHL 2 ;put 20 in AX
MOV AX,5 SHR 2 7 put 1 in AX

The operation of MOD is undefined for negative numbers.

You can compare expressions with the comparison operators LT,
LE, GE, GT, EQ, and NE. The expressions must be absolute numbers or
relocatable relative to the same segment. The following examples
show the use of comparison operators.

DW 0 LT 1 ; result is OFFH for TRUE
DW -1 GT 0 ; result is 0 for FALSE
DW A LT B ; result is TRUE since OFFSET A < OFFSET B

HIGH and LOW extract the high- or low-order byte from an
expression. You can evaluate absolute or relocatable expressions,
but the code generation cannot handle relocatable high or low bytes.
The following examples show the HIGH and LOW operators.

6-5 pcjs.org

Pascal/MT+ Programmer's Guide 6.3 Operators

A: DB HIGH 0FF00H ;result is OFFH
DW HIGH LOW OFFSET A ;result is 0

You can add and subtract expressions. At least one of the
expressions must be absolute or an index register in brackets, see
Section 6.6. To subtract, the second expression must be either
absolute or relocatable relative to the same base as the first. The
following examples show the addition and subtraction operators.

A: DW 5-3 ; resultB: DW A + 2 ; result
DW B - 2 ; result
DW B - A ; result

is 2
is relocatable and equivalent to B
is relocatable and equivalent to A
is 2

6.4 Expressions
A sequence of fundamental values and operators is an

expression. Operators connect fundamental values and expressions to
form new expressions. ASMT-86 classifies expressions by the kind of
information they represent; an expression is either a variable or a
number.

• The label on a LABEL statement or on a data-initialization
statement is a variable expression.

• A constant such as 2 is a number expression.

Whether an expression is a variable or a number, it can be
relocatable or absolute. To be absolute, a variable must be
declared in an absolute segment.

To be relocatable, a number must derive from a relocatable
number through OFFSET, HIGH, LOW, or SEG operators on a relocatable
variable or segment identifier. The expression computation allows
all these forms of relocatable numbers. The object format, however,
allows only offset relocatability.

6.5 Attribute Overrides
You can override the segment attribute of an expression two

ways.

• You can use a segment name to override the owner of an
expression. The offset of the resulting expression is the same
as in the original, but its relocation base is the named
segment. The form of this override is

segment-name ; expression.

6-6 pcjs.org

Pascal/MT+ Programmer's Guide 6.5 Attribute Overrides

• You can override a segment attribute with the form:

segment-register : expression

This form lets you choose which segment register to use in
accessing the expression. For example.

ASSUME ES:EXTRA_SEGMENT
EXTRA_SEGMENT SEGMENT AT OFFFOH
A_VARIABLE DW ?
EXTRA SEGMENT ENDS

CODE SEGMENT PUBLIC
MOV AX,EXTRA_SEGMENT
MOV ES,AX

; move 9999H into the word ES points to
; (in two slightly different ways)

MOV EXTRA_SEGMENT : WORD PTR O' , 9999H
MOV ES : WORD PTR 0 , 9999H

CODE ENDS

SEG lets you find the value of a segment with a variable or
label. In the example above, SEG A_VARIABLE returns OFFFOH.

OFFSET converts a variable or label to a number. It does not
change the relocatability of the expression.

PTR changes an expression's type or distance attribute. The
form is type or distance PTR expression. For example,

A_BYTE DB 0
B_BYTE DB 1

MOV AX,WORD PTR A_BYTE ;A goes to AL, B goes to AH
NEAR_LABEL:

CALL FAR PTR NEAR_LABEL generates a long call
;to NEAR_LABEL

6.6 Indexing Expressions
Put indexing expressions in brackets, []. They follow other

expressions to indicate an index or base register for accessing
those expressions. The form is

[expression]

6-7 pcjs.org

Pascal/MT+ Programmer's Guide 6.6 Indexing Expressions

An expression within brackets can contain BX, BP, SI, and DI. You
can use multiple indexing expressions. Only one base, BP or BX, and
one index, SI or DI, are allowed for each expression. For example,

A DB 200 DUP (0)

MOV A[BX],0 ;move a 0 into the BX'th byte of A
MOV A[BP+SI],0 ;move a 0 into the BP+SI 'th

;byte of A
MOV AL,A[DI+5] ;fetch the DI + 5 'th byte of A

Use parentheses to specify the precedence of operations in an
expression, as in the following example.

DB 2*(3+5) ?do the addition before the multiply
;result is 16

End of Section 6

6-8 pcjs.org

Appendix A
Compiler Error Messages

Table A—1. Compiler Error Messages

Message Meaning

Recursion stack overflow
Evaluation stack collision with symbol table.
Correct by reducing symbol table size,
simplifying expressions.

Error # 1
Error in simple type

Self-explanatory.

Error # 2
Identifier expected

Self-explanatory.

Error # 3
'PROGRAM' expected

Self-explanatory.

Error # 4
')' expected

Self-explanatory.

Error # 5
':' expected

Possibly a = used in a VAR declaration.

Error # 6
Illegal symbol (possibly missing ';' on line above)

Symbol encountered is not allowed in the
syntax at this point.

A-l
pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A—1. (continued)
Message Meaning

Error # 7
Error in parameter list

Syntactic error in parameter list
declaration.

Error # 8
'OF' expected

Self-explanatory.

Error # 9
'(' expected

Self-explanatory.

Error # 10
Error in type

Syntactic error in TYPE declaration.

Error # 11
1[' expected

Self-explanatory.

Error # 12
']' expected

Self-explanatory.

Error # 13
'END' expected

All procedures, functions, and blocks of
statements must have an 'END'. Check for
mismatched BEGIN/ENDs.

Error # 14
';' expected (possibly on line above)

Statement separator required here.

A-2
pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)
Message Meaning
Error # 15
Integer expected

Self-explanatory.

Error # 16
'=' expected

Possibly a : used in a TYPE or CONST
declaration.

Error # 17
'BEGIN' expected

Self-explanatory.

Error # 18
Error in declaration part

Typically an illegal backward reference to a
type in a pointer declaration.

Error # 19
error in <field-list>

Syntactic error in a record declaration.

Error # 20
'.' expected

Self-explanatory.

Error # 21
'*' expected

Self-explanatory.

Error # 50
Error in constant

Syntactic error in a literal constant, also
when using recursion and improperly using INP
and OUT.

A-3 pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A—1. (continued)
Message Meaning
Error # 51
' =' expected

Self-explanatory.

Error # 52
'THEN' expected

Self-explanatory.

Error # 53
'UNTIL' expected

Can result from mismatched begin/end
sequences.

Error # 54
'DO' expected

Syntactic error.

Error # 55
'TO' or 'DOWNTO' expected in FOR statement

Self-explanatory.

Error # 56
'IF' expected

Self-explanatory.

Error # 57
'FILE' expected

Probably an error in a TYPE declaration.

Error # 58
Error in <factor> (bad expression)

Syntactic error in expression at factor
level.

A-4
pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)
Message Meaning
Error # 59
Error in variable

Syntactic error in expression at variable
level.

Error # 99
MODEND expected

Each MODULE must end with MODEND.

Error # 101
Identifier declared twice

Name already in visible symbol table.

Error # 102
Low bound exceeds high bound

For subranges, the lower bound must be <=
high bound.

Error # 103
Identifier is not of the appropriate class

A variable name used as a type, or a type
used as a variable, etc. can cause this
error.

Error # 104
Undeclared identifier

The specified identifier is not in the
visible symbol table.

Error # 105
Sign not allowed

Signs are not allowed on noninteger/nonreal
constants.

A-5 pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)
Message Meaning
Error I 106
Number expected

This error often occurs from making the
compiler totally confused in an expression as
it checks for numbers after all other
possibilities have been exhausted.

Error # 107
Incompatible subrange types

(e.g. 'A'..'Z' is not compatible with 0..9).

Error # 108
File not allowed here

File comparison and assignment is not
allowed.

Error # 109
Type must not be real

Self-explanatory.

Error # 110
<tagfield> type must be scalar or subrange

Self-explanatory.

Error # 111
Incompatible with <tagfield> part

Selector in a CASE-variant record is not
compatible with the <tagfield> type.

Error # 112
Index type must not be real

An array cannot be declared with real
dimensions.

A-6 pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A—1. (continued)
Message Meaning
Error # 113
Index type must be a scalar or a subrange

Self-explanatory.

Error # 114
Base type must not be real

Base type of a set can be scalar or subrange.

Error # 115
Base type must be a scalar or a subrange

Self-explanatory.

Error # 116
Error in type of standard procedure parameter

Self-explanatory.

Error # 117
Unsatisfied forward reference

A forwardly declared pointer was never
defined.

Error # 118
Forward reference type identifier in variable declaration

You attempted to declare a variable as a
pointer to a type that was not yet declared.

Error # 119
Respecified params not OK for a forward declared
procedure

Self-explanatory.

Error # 120
Function result type must be scalar, subrange or pointer

A function was declared with a string or
other nonscalar type as its value. This is
not allowed.

A-7 pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)
Message Meaning
Error # 121
File value parameter not allowed

Files must be passed as VAR parameters.

Error # 122
A forward declared function's result type cannot be
respecified

Self-explanatory.

Error # 123
Missing result type in function declaration

Self-explanatory.

Error # 125
Error in type of standard procedure parameter

This is often caused by not having the
parameters in the proper order for built-in
procedures or by attempting to read/write
pointers, enumerated types, etc.

Error # 126
Number of parameters does not agree with declaration

Self-explanatory.

Error # 127
Illegal parameter substitution

Type of parameter does not exactly match the
corresponding formal parameter.

Error # 128
Result type does not agree with declaration

When assigning to a function result, the
types must be compatible.

A-8
pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)
Message Meaning
Error # 129
Type conflict of operands

Self-explanatory.

Error # 130
Expression is not of set type

Self-explanatory.

Error # 131
Tests on equality allowed only

Occurs when comparing sets for other than
equality.

Error # 133
File comparison not allowed

File Control Blocks cannot be compared
because they contain multiple fields that are
not available to the user.

Error # 134
Illegal type of operand(s)

The operands do not match those required for
this operator.

Error # 135
Type of operand must be boolean

The operands to AND, OR, and NOT must be
BOOLEAN.

Error # 136
Set element type must be scalar or subrange

Self-explanatory.

Error # 137
Set element types must be compatible

Self-explanatory.

A-9 pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)
Message Meaning
Error # 138
Type of variable is not array

A subscript was specified on a nonarray
variable.

Error # 139
Index type is not compatible with the declaration

Occurs when indexing into an array with the
wrong type of indexing expression.

Error # 140
Type of variable is not record

Attempting to access a nonrecord data
structure with the 'dot' form or the 'with'
statement.

Error # 141
Type of variable must be file or pointer

Occurs when an up arrow follows a variable
that is not of type pointer or file.

Error # 142
Illegal parameter solution

Self-explanatory.

Error # 143
Illegal type of loop control variable

Loop control variables can be only local
nonreal scalars.

Error # 144
Illegal type of expression

The expression used as a selecting expression
in a CASE statement must be a nonreal scalar.

A-10
pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)
Message Meaning
Error # 145
Type conflict

Case selector is not the same type as the
selecting expression.

Error # 146
Assignment of files not allowed

Self-explanatory.

Error # 147
Label type incompatible with selecting expression

Case selector is not the same type as the
selecting expression.

Error # 148
Subrange bounds must be scalar

Self-explanatory.

Error # 149
Index type must be integer

Self-explanatory.

Error # 150
Assignment to standard function is not allowed

Self-explanatory.

Error # 151
Assignment to formal function is not allowed

Self-explanatory.

Error # 152
No such field in this record

Self-explanatory.

A-11 pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A—1. (continued)
Message Meaning
Error # 153
Type error in read

Self-explanatory.

Error # 154
Actual parameter must be a variable

Occurs when attempting to pass an expression
as a VAR parameter.

Error # 155
Control variable cannot be formal or nonlocal

The control variable in a FOR loop must be
LOCAL.

Error # 156
Multidefined case label

Self-explanatory.

Error # 157
Too many cases in case statement

Occurs when jump table generated for case
overflows its bounds.

Error # 158
No such variant in this record

Self-explanatory.

Error # 159
Real or string tagfields not allowed

Self-explanatory.

Error # 160
Previous declaration was not forward

A-12 pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A-l. (continued)
Message Meaning

Error # 162
Parameter size must be constant

Error # 163
Missing variant in declaration

Occurs when using NEW/DISPOSE and a variant
does not exist.

Error # 165
Multidefined label

Label more than one statement with same
label.

Error # 166
Multideclared label

Declare same label more than once.

Error # 167
Undeclared label

Label on statement was not declared.

Error # 168
Undefined label

A declared label was not used to label a
statement.

Error # 169
Error in base set

Error # 170
Value parameter expected

A-13
pcjs.org

Pascal/MT+ Programmer 1s Guide A Compiler Error Messages

Table A-l. (continued)
Message Meaning

Error # 174 Pascal function or procedure expected
Self-explanatory.

Error # 183
External declaration not allowed at this nesting level

Self-explanatory.

Error # 201
Error in real number - digit expected

Self-explanatory.

Error # 202
String constant must not exceed source line

Error # 203
Integer constant exceeds range

Range on integer constants is -32768..32767

Error # 250
Too many scopes of nested identifiers

There is a limit of 15 nesting levels at
compile time. This includes WITH and
procedure nesting.

Error # 251
Too many nested procedures or functions

There is a limit of 15 nesting levels at
execution time. Also occurs when more than
200 routines are in one compiled module.

Error # 253
Procedure (or program body) too long

A procedure generated code that overflowed
the internal procedure buffer. Reduce the
size of the procedure and try again. The
limit is 4096 bytes.

A-14
pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

r

Table A-l. (continued)
Message Meaning
Error # 259
Expression too complicated

Your expression is too complicated (that is,
too many recursive calls needed to compile
it) . You should reduce the complication
using temporary variable.

Error # 397
Too many FOR or WITH statements in a procedure

Only 16 FOR or WITH statements are allowed in
a single procedure.

Error # 398
Implementation restriction

Normally used for arrays and sets that are
too big to be manipulated or allocated.

Error # 407
Symbol Table Overflow

Error # 496
Invalid operand to INLINE

Usually due to reference that requires
address calculation at run-time.

Error # 497
Error in closing code file.

An error occurred when the .R86 file was
closed. Make more room on the destination
disk and try again.

Error # 500
Non ISO Standard feature. Not fatal.

A-15 pcjs.org

Pascal/MT+ Programmer's Guide A Compiler Error Messages

Table A—1. (continued)
Message Meaning
Error # 999
Compiler confused due to previous errors.

Make some corrections and try again. It is
also possible that while your program is
syntactically correct, it can confuse the
compiler if semantic errors exist. The
compiler aborts early with this error number.
Look carefully at the line on which the
compilation halts.

End of Appendix A

A-16
pcjs.org

Appendix B
Library Routines

The Pascal/MT+ compiler generates native machine code. Each
processor requires a library of run-time routines to support files
and any other features that are not supported by the native
hardware, but that are required to implement the entire Pascal
language. The following information is specific to the 8086 version
of Pascal/MT+.

In Pascal/MT+, all I/O is performed and set variables are
manipulated with library routines. Only the run-time routines
needed for a particular program are actually loaded when you link
the program with LINK/MT+86 and use the /S option.

Note that console I/O is assumed by the initialization routine,
@INIPC. This causes the input/output routines to be loaded even
when you are not using them. If you want to avoid this, you can
write a replacement 0INIPC routine and link it before linking the
run-time library to resolve the 0INIPC reference.

The table below lists the names of the run-time library
routines and their purposes. This table clarifies what these
routines do, so that when you disassemble a program you have some
information about what is happening in your program. They are not
here so that you can call these routines from your program, because
Digital Research does not guarantee parameter list compatibility
between releases.

Table B-l. Run-time Library Routines
Routine Purpose
@CHN Program chaining routine

@MUL Long Integer multiply
@EQD String comparison routine for =
@NED String comparison routine for <>
@GTD String comparison routine for >
@LTD String comparison routine for <
@GED String comparison routine for >=
@LED String comparison routine for <=
@EQS Set equality
@NES Set inequality
@GES Set superset
@LES Set subset

B—1
pcjs.org

Pascal/MT+ Programmer's Guide B Library Routines

Table B-l. (continued)
Routine Purpose
@HLT End of program halt routine;

return to operating system

@SAD
@SSB
@SML
@SIN
@BST
@BSR

Set union
Set difference
Set intersection
Set membership
Build singleton set
Build subrange set

@EQA
@NEA
@GTA
@LTA
@GEA
@LEA

Array comparison routine for =
Array comparison routine for <>
Array comparison routine for >
Array comparison routine for <
Array comparison routine for >=
Array comparison routine for <=

@XJP Table case jump routine
@LBA
@ISB
@CNC
@CCH

Load concat string buffer address
Initialize string buffer
Concatenate a string to the buffer
Concatenate a character to the buffer

@RCH
@CRL
@CWT

Read a character from a file
Write a newline (CR) to a file
Read until EOLN is TRUE on a file

@WIN
@RST

Write an integer to a file
Read a string from a file

TSTBIT
SETBIT
CLRBIT

Test for a bit on
Turn a bit on
Turn a bit off

SHL
SHR

Shift a word left
Shift a word right

@SFB
@DWD
@SIA
@SOA
@DIO

Set global FIB address
Set default width and decimal places
Reset input vector
Reset output vector
Set I/O vectors to default addresses

@INIPC Run-time initialization

@STR String store

@WCH Write a string to a file

@DVL 32-bit DIV software routine

B-2 pcjs.org

Pascal/MT+ Programmer's Guide B Library Routines

Table B—1. (continued)
Routine Purpose

@MDL 32-bit MOD software routine

MOVELE Block move left end to left end

MOVERI Block move right end to right end

@CHW Write a character to a file

@EQR Real comparison for =
@NER Real comparison for <>
@GTR Real comparison for >
@LTR Real comparison for <
@GER Real comparison for >=
@LER Real compasison for <=
@RRL Read a real from a file
@WRL Write a real to a file

@RAD Real add
@RSB Real subtract
@RML Real multiply
@RDV Real divide
@RNG Real negate
@RAB Real absolute value

@RDL Read a long integer from a file
@RTL Write a long integer to a file

SQRT Real square root

TRUNC Pascal built-in truncate function
ROUND Pascal built-in round function

CHAIN Pascal interface for @CHN
OPEN File handling routine
BLOCKR File handling routine
BLOCKW File handling routine
CREATE File handling routine
CLOSE File handling routine
CLOSED File handling routine
GNB File handling routine
WNB File handling routine
PAGE File handling routine
EOLN File handling routine
EOF File handling routine
RESET File handling routine
REWRIT File handling routine
GET File handling routine

B-3
pcjs.org

Pascal/MT+ Programmer's Guide B Library Routines

Table B-l. (continued)
Routine Purpose

PUT
ASSIGN
PURGE
IORESU

File handling routine
File handling routine
File handling routine
File handling routine

COPY
INSERT
DELETE

File handling routine
File handling routine
File handling routine

POS Run-time support for strings

@WNC
@RNC
@RIN
@RNB
@WNB

Write next character to a file
Read next character from a file
Read integer from a file
Read n bytes from a file
Write n bytes to a file

0BDOS86
0IBMDOS

Call operating system directly
Call operating system directly

@NEW
@DSP
MEMAVA
MAXAVA

Allocate memory for NEW procedure
Deallocate memory for DISPOSE procedure
MEMAVAIL function
MAXAVAIL function

End of Appendix B

B-4
pcjs.org

Appendix C
Sample Disassembly

This appendix contains the Pascal/MT+ program, PPRIME, which
was compiled with /X and /P options and then disassembled, producing
the following output.

References to program locations are followed by a single
apostrophe (10001), and references to data locations are followed by
a quotation mark (0000").

The operand of instructions that reference external variables
points to the previous reference and the final reference contains
absolute 0000. The list of external chains follows the disassembly
of the program.

Note: the object code generated in this example does not
necessarily indicate the level of optimization present in the
current release of the Pascal/MT+ compiler. To determine the level
of optimization, compile programs yourself and use the disassembler
to examine the output.

C-l
pcjs.org

Pascal/MT+ Programmer 1s Guide C Sample Disassembly

Output from compiler:

Pascal/MT+86 Release 3.0 Copyright (c) 1982 Digital Research
Page # 1
Compilation of: PPRIME

Stmt Nest Source Statement

1 0
2 0 PROGRAM PPRIME;
3 0 (* USES SIEVE OF ERATOSTHENES *)
4 0 CONST
5 1 SIZE=8190;
6 1 VAR
7 1 FLAGS: ARRAY[0..SIZE] OF BOOLEAN
8 1 I,PRIME,K,ITER: INTEGER;
9 1 COUNT: INTEGER;

10 1
11 1 BEGIN
12 1 COUNT := 0;
13 1 writeln('10 iterations');
14 1 FOR ITER := 1 TO 10 DO
15 1 BEGIN
16 2 COUNT:=0;
17 2
18 2 FILLCHAR(FLAGS,SIZEOF(FLAGS) ,CHR(TRUE)) ;
19 2
20 2 FOR I:=0 TO SIZE DO
21 2 IF FLAGS[I] THEN
22 2 BEGIN
23 3 PRIME:=1+1+3;
24 3 K:=I+PRIME;
25 3 WHILE K<=SIZE DO
26 3 BEGIN
27 4 FLAGS[K]:=FALSE;
28 4 K:=K+PRIME;
29 4 END;
30 3 COUNT:=COUNT + 1;
31 3 END
32 3 END;
33 1 writeln (count,' primes');
34 1 END.
34 0
34 0 Normal End of Input Reached

Listing C-l. Compilation of PPRIME

C-2 pcjs.org

Pascal/MT+ Programmer's Guide C Sample Disassembly

Output from disassembler:

Pascal/MT+86 Release 3.1 Copyright (c) 1982 by Digital Research
Disassembly of: PPRIME

Stmt Nest Source Statement / Symbolic Object Code

FLAGS EQU 0000
ITER EQU 2000
K EQU 2002
PRIME EQU 2004
I EQU 2006
COUNT EQU 2008

1 0
2 0 PROGRAM PPRIME;

0000 DB 90,90,90,90,90,90,90,90
0008 DB 90,90,90,90,90,90,90,90
0010 JMP 0013

3 0 (* USES SIEVE OF ERATOSTHENES *)
4 0 CONST
5 1 SIZE=8190;
6 1 VAR
7 1 FLAGS: ARRAY[0..SIZE] OF
8 1 I,PRIME ,K,ITER: INTEGER;
9 1 COUNT: INTEGER;

10 1
11 1 BEGIN

0013 CALL 0000
0016 MOV BP, SP
0018 DEC BP
0019 DEC BP
001A PUSH BP

12 1 COUNT : = 0;
001B MOV WORD PTR 2008",0000

Listing C-2. Disassembly of PPRIME

C-3 pcjs.org

Pascal/MT+ Programmer's Guide C Sample Disassembly

13 1 writeln('10 iterations');

0021 PUSH DS
0022 MOVI AX,0000
0025 PUSH AX
0026 CALL 0000
0029 PUSH CS
002A CALL 000E
002D DB 0D,31,30,20,69,74,65,72
0035 DB 61,74,69,6F,6E,73
003B MOVI AX,FFFF
003E PUSH AX
003F MOVI AX,FFFF
0042 PUSH AX
0043 CALL 0000
0046 CALL 0000

14 1 FOR ITER := 1 TO 10 DO

0049 MOV WORD PTR 2000",0000
004F MOV WORD PTR 202A",000A
0055 INC WORD PTR 2000"
0059 DEC WORD PTR 202A"
005D JGE 0062
005F JMP 00E8

15 1 BEGIN
16 2 COUNT:=0;

0062 MOV WORD PTR 2008",0000

17 2
18 2 FILLCHAR(FLAGS,SIZEOF(FLAGS),CHR(TRUE))

0068 PUSH DS
0069 MOVI AX,0000"
006C PUSH AX
006D MOVI AX,1FFF
0070 PUSH AX
0071 MOVI AX,0001
0074 PUSH AX
0075 CALL 0000

Listing C-2. (continued)

C-4 pcjs.org

Pascal/MT+ Programmer's Guide C Sample Disassembly

19 2
20 2 FOR I:=0 TO SIZE DO

0078 MOV WORD PTR 2006",FFFF
007E MOV WORD PTR 202C",1FFF
0084 INC WORD PTR 2006"
0088 DEC WORD PTR 202C"
008C JGE 0091
008E JMP 00E5

21 2 IF FLAGS[I] THEN

0091 NOP
0092 MOVI AX,0000"
0095 ADD AX,2006"
0099 XCHG AX,DI
009A TEST BYTE [DI],01
009D JNZ 00A2
009F JMP OOE3

22 2 BEGIN
23 3 PRIME:=1+1+3;

00A2 MOV AX,2006"
00A5 ADD AX,2006"
00A9 ADDI AX,0003
00 AC MOV 2004",AX

24 3 K:=I+PRIME;

00AF MOV AX,2006”
00B2 ADD AX,2004"
00B6 MOV 2002",AX

25 3 WHILE K<=SIZE
00B9 CMP 2002" , 1FFE
00BF JLE 00C4
00C1 JMP 00DC

26 3 BEGIN
27 4 FLAGS[K]

00C4 NOP
00C5 MOVI AX,0000"
00C8 ADD AX,2002"oocc XCHG AX,DI
00CD MOVE BYTE PTR [DI],00

Listing C-2. (continued)

C-5 pcjs.org

Pascal/MT+ Programmer's Guide C Sample Disassembly

28 4 K:=K+PRIME;

00D0 MOV AX,2002"
00D3 ADD AX,2004"
00D7 MOV 2002",AX

29 4 END;

OODA JMPS 00B9

30 3 COUNT:=COUNT + 1

00 DC MOV AX,2008"
00DF INC AX
00E0 MOV 2008",AX

31 3 END
32 3 END;

00E3 JMPS 0084
00E5 JMP 0055

33 1 writeln(count,1 primes');

00E8 PUSH 2008"
00EC PUSH DS
OOED MOVI AX,0023'
00F0 PUSH AX
00F1 CALL 0027'
00F4 MOVI AX,FFFF
00F7 PUSH AX
00F8 MOVI AX,FFFF
OOFB PUSH AX
OOFC CALL 0000
OOFF PUSH CS
0100 CALL 0008
0103 DB 07,20,70,72,69,6D,
010B MOVI AX,FFFF
010E PUSH AX
010F MOVI AX,FFFF
0112 PUSH AX
0113 CALL 0044'
0116 CALL 0047'

34 1 END.

0119 CALL 0000

Listing C-2. (continued)

C-6 pcjs.org

Pascal/MT+ Programmer's Guide C Sample Disassembly

External reference chain @WIN -> OOFD
External reference chain @CRL -> 0117
External reference chain @SFB -> 00F2
External reference chain @ INI -> 0014
External reference chain @WRS -> 0114
External reference chain @HLT -> 011A
External reference chain OUTPUT -> 00EE
External reference chain FILLCH -> 0076

Listing C-2. (continued)

End of Appendix C

C-7 pcjs.org

Appendix D
Sample Debugging Session

This appendix supplies a sample debugging session that uses the
source file DEBUG.PAS, shown below.

Stmt Nest Source Statement

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

0
0 (* EXAMPLE TO ILLUSTRATE DEBUGGER *)
0
0 PROGRAM DEBUG;
0 VAR
1 HEXARR : STRING[16];
1 CH : CHAR;
1 I : INTEGER;
1
1 (* DUMMY PROC TO ALLOW SETTING BREAKPOINT *)
1
1 PROCEDURE BREAK;
1 BEGIN
2 END;
1
1 (* FUNCTION TO CONVERT FROM INTEGER TO HEX CHARACTER *)
1
1 FUNCTION CONVERT(I : INTEGER) : CHAR;
1 BEGIN
2 CONVERT := HEXARR[1] ;
2 END;
1
1 BEGIN
1 HEXARR:= '0123456789ABCDEF';
1
1 REPEAT
2 BEGIN
3 WRITELN('ENTER INTEGER TO CONVERT: '); READ(I);
3 CH:=CONVERT(I);
3 BREAK; (* BREAK ON RETURN FROM CONVERT *)
3 WRITELN('HEX DIGIT IS: ',CH);
3 END
3 UNTIL FALSE;
1
1 END.

Listing D-l. DEBUG.PAS Source File

D-l
pcjs.org

Pascal/MT+ Programmer's Guide D Sample Debugging Session

In the following sample session, you interactively debug a
simple program. Your input is shown in boldface print; the column
on the right provides an explanation of each step.

D-2 pcjs.org

Pa
sc

al
/M

T+
 P

ro
gr

am
me

r'
s

Gu
id

e
D

Sa
mp

le
 D

eb
ug

gi
ng

 S
es

si
on A>MTPLUS B:DEBUG $D

Pascal MT+ Release 5.5
(c) 1981 MT MicroSYSTEMS, Inc.

A>LINKMT B:DEBUG=DEBUGGER,B:DEBUG,PASLIB/S

Link/MT+ Release 5.5

A>B:DEBUG

Pascal/MT+ Symbolic Debugger, Release 5.5

Symbol table filename (<return> only for none)? B:DEBUG.SYP

Use BEgin or TRace to start a program
+ > SB BREAK
+ >BE

ENTER INTEGER TO CONVERT:
5
Breakpoint reached

+ >DV I
Address: 0272 Contains: 5

+>DV CH
Address: 0270 Contains: 0 == 30

+ > DC HEXARR+5
Address: 0263 Contains: 4 ==34

+ > DX HEXARR
Address: 025E Contains:
025E= 10 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 .0123456789ABCDE
026E= 46 00 30 00 05 00 00 00 00 00 00 00 00 00 00 00 F.O.............

+ >~C

Compile the program with the Debug option.

System displays banner.

Link the object file with the debugger.

System displays banner.
Note: the linker might display @WRL as an
undefined symbol. If your program does not
use real numbers, you can ignore it.

Run program.

System displays banner.

Load the symbols.

Set breakpoint, then
start the program.

Enter data.

Examine I. It is correct.

Examine CH. It is wrong. Why? Because
convert is not returning the correct value.
Reviewing the source shows that a 1 was typed
when an I was intended on line 16. Before
recompiling check for other errors.

Examine HEXARR[5). It is not 5.

Examine all of HEXARR. All the digits are
off by 1. Note that HEXARR is a string and
therefore HEXARR[0) is the length field. The
code for convert does not allow for this.

Now that you have determined the problem,
exit DEBUGGER, and go back to the source and
fix it.

pcjs.org

Appendix E
Interprocessor Portability

This appendix describes the features of Pascal/MT+ that are not
portable to versions for other microprocessors and operating
systems. A program without the following features should compile
with another Pascal/MT+ compiler with little or no changes to the
source code.

This does not mean that all of the features listed below are
not implemented on any other target processors. It only indicates
that they are hardware dependent and if implemented, are implemented
differently in different versions of the compiler. If you use any
of these hardware dependent features, isolate them so that they are
easy to modify when you port the program.

While every effort is made to support compatibility. Digital
Research does not guarantee complete portability to all
implementations. The guidelines that follow are subject to change
without notice. There is no additional information concerning
portability to other Pascal/MT+ compilers.

If you want to write portable programs, you should avoid the
following features:

• Avoid INLINE.

• Avoid I/O ports (hardware dependent).

• Avoid redirected I/O (hardware dependent).

• Avoid device names such as CON:, RDR:, etc.

• Avoid scattering calls to IORESULT throughout the program.
Isolate the calls. IORESULT values depend on the operating
system.

• Avoid ABSOLUTE addressing (hardware dependent).

• Avoid INTERRUPT procedures (hardware dependent).

• Avoid the use of variant records that circumvent type checking.

• Avoid chaining. Chaining is implementation dependent.

• Avoid having overlays call other overlays. This is not
possible on all operating systems.

E—1
pcjs.org

Pascal/MT+ Programmer's Guide E Interprocessor Portability

• Avoid direct calls to the operating system. Calls to @DOS may
not be compatible with calls to @BDOS86 or other operating
systems.

• Avoid dependence upon EOF for non-TEXT files because it is
implementation dependent. Some operating systems keep track of
how much information is in the file to the exact byte, while
others only keep track to the sector/block level, and the last
sector/block contains garbage information.

• Avoid using temporary files.

• Avoid BLOCKREAD/BLOCKWRITE because these might not be
implemented on all operating systems. Use SEEKREAD/SEEKWRITE
instead.

End of Appendix E

E-2 pcjs.org

Appendix F
Syntax of ASMT-86

F.l Syntax Diagrams
The following diagrams represent the complete syntax of ASMT-

86. The structure of each syntactic item listed on the left can be
determined by following the path, making decisions at each branch.

For example, a program is one or more statements followed by
the end of the file.

program

statement ■►end of file

statement {note l}

|
directive —■ end of line

directive

SEGMENT PARA —
BYTE
WORD
PAGE
INPAGE

---PUBLIC ------------j
-- COMMON ----------- -
— AT— expression —
— STACK ------------
— MEMORY-----------

string

ENDS —

ASSUME - segment register---- : —
SEG

— id —

-... P

GROUP

LABEL
“Ti“zr
-- NEAR ___
-- FAR --- l
-- BYTE ___
-- WORD ---
-- DWORD --

F-l pcjs.org

Pascal/MT+ Programmer's Guide F.l Syntax Diagrams

operand

register —
expression

F-2
pcjs.org

Pascal/MT+ Programmer's Guide F.l Syntax Diagrams

expression

--------exp2

--- OR -
-- XOR -

exp2

T exP3
I---AND

exp3

1 NOT

exp4

exp4

exp5

exp5

exp6

exp7 -
— * —
" / “
- MOD
- SHL
- SHR

exp7

exp8

-- HIGH --
-- LOW ---

F-3
pcjs.org

Pascal/MT+ Programmer's Guide F.l Syntax Diagrams

exp8 (attribute overrides)

SEG --
OFFSET

BYTE —
WORD -
DWORD •
NEAR —
FAR --

PTR

exp9

exp9 (fundamental values and indexing) {note 2}

(--- expression -

— id

LENGTH -
SIZE —
TYPE —

THIS

BX
BP
SI
DI

BYTE -
WORD -
DWORD
NEAR -
FAR —

■ constant■

string —

[expression]

string

F-4 pcjs.org

Pascal/MT+ Programmer's Guide F.l Syntax Diagrams

jump-operand {for all jump, call and loop instructions}

-------------------- t— operand---------------------------

---- SHORT-----
data-initializer

---—---- initializer--------------------------------------

.- - expression----DUP---- (---- initializer ----)

initializer

----------- expression
------ ■} ----

Note: label identifiers must start in column 1.

F.2 Reserved Words
The following are reserved words in the assembly language,

ASMT-86, and cannot be used as identifiers.

AH CS GE NEAR SHR
AL CX GT NOT SI
AND DH HIGH NOTHING SIZE
AT DI INPAGE OFFSET SP
AX DL LE OR SS
BH DS LENGTH PAGE STACK
BL DUP LOW PARA THIS
BP DWORD LT PTR TYPE
BYTE DX MASK PUBLIC WIDTH
BX EQ MEMORY SEG WORD
CH ES OD SHL XOR
CL FAR NE SHORT

F-5
pcjs.org

Pascal/MT+ Programmer's Guide F.2 Reserved Words

The following words are reserved for use in the operator field.
Although you can use these words as identifiers, it is not
recommended because of potential confusion.

AAA END JNB LOOPNZ ROL
AAD ENDS JNC LOOPZ ROR
AAM EQU JNBE MOV SAHF
AAS ESC JNE MOVS SAL
ADC EXTRN JNG MOVSB SAR
ADD GROUP JNGE MOVSW SBB
AND HLT JNL MUL SCAS
ASSUME IDIV JNLE NAME SCASB
CALL IF JNO NEG SCASW
CBW IMUL JNP NIL SEGMENT
CLC IN JNS NOP SHL
CLD INC JNZ NOT SHR
CLI INCLUDE JO OR STC
CMC I NT JP ORG STD
CMP INTO JPE OUT STI
CMPS I RET JPO POP STOS
CMPSB JA JS POPF STOSB
CMPSW JAE JZ PROC STOSW
COMMON JB LABEL PUBLIC STRUC
CWD JBE LAHF PUSH SUB
DAA JC LDS PUSHF TEST
DAS JCXZ LEA RCL WAIT
DB JEL LES RCR XCHG
DD JG LOCK RECORD XLAT
DEC JGE LODS REP XLATB
DIV JL LODSB REPE XOR
DWL JLE LODSW REPNE
ELSE JMP LOOP REPNZ
END JNA LOOPE REPZ
ENDIF JNAE LOOPNE RET

F.3 Object Format Restrictions
The relocatable object format output by the assembler has the

following restrictions: •

• Relocatable quantities must be words. That is, relocatable
segment base address, low-order bytes of words, or high-order
bytes of words are not allowed.

F-6 pcjs.org

Pascal/MT+ Programmer's Guide F.3 Object Restrictions

• The only segment that can have initialized data is the segment
named CODE. This means that all DB, DW, and DD directives in
the DATA, or any other segment must use the indeterminate
initializer ?. Furthermore, segments CODE and DATA must be
declared PUBLIC as in the sample program.

• A segment not declared PUBLIC is not combinable with other
segments of the same name because variables and labels are
assembled having absolute offsets within the segment.

End of Appendix F

F-7 pcjs.org

Appendix G
Comparison of I/O Methods

This appendix illustrates four different ways to implement a
single file procedure named TRANSFER. Listing G-l shows the main
statement body that calls the transfer routine in each of four
separate programs.

BEGIN
WRITE('Source? ');
READLN(NAME);
ASSIGN(A,NAME);
RESET(A);
IF IORESULT = 255 THEN

BEGIN
WRITELN('Cannot open ',NAME);
EXIT

END;

WRITE('Destination? ');
READLN(NAME);
ASSIGN(B,NAME);
REWRITE(B);
IF IORESULT = 255 THEN

BEGIN
WRITELN('Cannot open ’,NAME);
EXIT

END;

TRANSFER(A,B)
END.

Listing G-l. Main Program Body for File Transfer Programs

Listing G-2 shows a transfer program using the BLOCKREAD and
BLOCKWRITE procedures. This program uses untyped files, and a large
2K buffer to transfer data. Note that the program only works for
files whose size is an even multiple of 2K bytes. Thus, if the size
of the source file is 9K, the last IK is not written because the
variable RESULT is nonzero after the call to BLOCKREAD on line 25.
Using a 128-byte buffer guarantees that all the data is transferred.

The program shown in Listing G-3 uses the GNB and WNB routines
for byte-level access to the file.

G-l
pcjs.org

Pascal/MT+ Programmer's Guide G I/O Comparison

The program shown in Listing G-4 performs the file transfer
using the SEEKREAD and SEEKWRITE procedures. Notice that IORESULT
returns a 1 to indicate end-of-file if the last portion of data from
the source file does not fill the sector, just as in BLOCK I/O. In
this case, the 2K bytes that are the window variable for file
variable A do not fill the sector. However, the end portion of code
that does not fill up the 2K buffer is never written to the
destination file.

Listing G-5 uses GET and PUT to transfer files. This method is
slower than the buffered methods.

Table G-l shows the code, data size, and execution speed for
each of the file transfer procedures when run on a 4MHz Z80
processor with no wait states, and a single-density, single-sided,
8-inch floppy disk. The values reflected in Table G-l indicate the
approximate values you can expect from the 8086 implementation. The
sizes are in decimal bytes, the speed is in seconds, and the size of
the file is 8K bytes.

Note: these numbers are not identical for all releases of the
compiler. Your version might not produce the same size and speed.
However, the relative size and speed differences should be roughly
the same.

Table G-l. Size and Speed of Transfer Procedures
Transfer Method BLOCK I/O GNB/WNB SEEK I/O GET/PUT

Compiled Code 520 519 530 477
Compiled Data 2532 2534 4584 482

Total Code 7317 7161 9243 6764
Total Data 3576 3577 5697 1494

Total Size 10893 10738 14940 8258

Speed 00r- 18.4 8.6 35.1

G-2 pcjs.org

Pascal/MT+ Programmer's Guide G I/O Comparison

Stmt Nest Source Statement

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 2
21 2
22 2
23 2
24 2
25 3
26 3
27 3
28 4
29 4
30 4
31 4
32 3
33 3
34 2
35 2
36 2
37 2
38 1

PROGRAM FILE_TRANSFER;

(*--- *)
(* Transfer A to B using BLOCKREAD and BLOCKWRITE *)
(*--- *)
CONST

BUFSZ = 2047;
TYPE

PAOC = ARRAY[1..BUFSZ] OF CHAR;
FYLE = FILE;

VAR
A,B : FYLE;
NAME : STRING;
BUF : PAOC;

PROCEDURE TRANSFER(VAR SRC: FYLE; VAR DEST : FYLE);
VAR

RESULT,I : INTEGER;
QUIT : BOOLEAN;

BEGIN
I := 0;
REPEAT
BLOCKREAD(SRC,BUF,RESULT,SIZEOF(BUF), I) ;
IF RESULT = 0 THEN

BEGIN
BLOCKWRITE(DEST,BUF,RESULT,SIZEOF (BUF) ,1);
I := I + SIZEOF(BUF) DIV 128

END
ELSE

QUIT := TRUE;
UNTIL QUIT;
CLOSE(DEST,RESULT);
IF RESULT = 255 THEN

WRITELN(1 Error closing destination file')
END;

(* MAIN PROGRAM IN LISTING G-l *)

Listing G-2. File Transfer with BLOCKREAD and BLOCKWRITE

G-3 pcjs.org

Pascal/MT+ Programmer's Guide G I/O Comparison

Stmt Nest Source Statement

1 0 PROGRAM FILE TRANSFER;
2 0
3 0 (*---------------------------------------
4 0 (* Transfer file A to file B using GNB
5 0 (*---------------------------------------
6 0
7 0 CONST
8 1 BUFSZ = 2047;
9 1 TYPE

10 1 PAOC = ARRAY[1..BUFSZ] OF CHAR;
11 1 TFILE = FILE OF PAOC;
12 1 CHFILE = FILE OF CHAR;
13 1 VAR
14 1 A : TFILE;
15 1 B : CHFILE;
16 1 NAME : STRING;
17 1
18 1 PROCEDURE TRANSFER(VAR SRC: TFILE; VAR
19 1 VAR
20 2 CH : CHAR;
21 2 RESULT : INTEGER;
22 2 ABORT : BOOLEAN;
23 2 BEGIN
24 2 ABORT := FALSE;
25 2 WHILE (NOT EOF(SRC)) AND (NOT ABORT)
26 2 BEGIN
27 3 CH := GNB(SRC);
28 3 IF WNB(DEST,CH) THEN
29 3 BEGIN
30 4 WRITELN('Error writing char,
31 4 ABORT := TRUE;
32 4 END;
33 3 END;
34 2 CLOSE(DEST,RESULT);
35 2 IF RESULT = 255 THEN
36 2 WRITELN('Error closing ')
37 2 END;
38 1 (* MAIN PROGRAM IN LISTING <

-*)
*)

-*)

Listing G-3. File Transfer with GNB and WNB

G-4 pcjs.org

Pascal/MT+ Programmer's Guide G I/O Comparison

Stmt Nest Source Statement

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
3
3
3
3
4
4
4
3
3
2
2
2
2
2
1

PROGRAM FILE_TRANSFER;

(*-- *)
(* Transfer A to B using SEEKREAD and SEEKWRITE*)
(*--- *)
CONST

BUFSZ = 2047;

TYPE
PAOC = ARRAY[0..BUFSZ] OF CHAR;
TFILE = FILE OF PAOC;
CHFILE = FILE OF PAOC;

VAR
A : TFILE;
B ; TFILE;
NAME : STRING;

PROCEDURE TRANSFER(VAR SRC; TFILE; VAR DEST ; TFILE)
VAR

CH : CHAR;
RESULT2,RESULT,I : INTEGER;
ABORT : BOOLEAN;

BEGIN
CH := 'A';
RESULT := 0;
I := 0;
WHILE RESULT <> 1 DO

BEGIN
SEEKREAD(SRC,I);
RESULT := IORESULT;
IF RESULT = 0 THEN

BEGIN
DEST" := SRC";
SEEKWRITE(DEST,I);

END;
I := I + 1;

END;

CLOSE(DEST,RESULT);
IF RESULT = 255 THEN

WRITELN('Error closing destination file')
END;

(* MAIN PROGRAM IN LISTING G-l *)

Listing G-4. File Transfer with SEEKREAD and SEEKWRITE

G-5 pcjs.org

Pascal/MT+ Programmer's Guide G I/O Comparison

Stmt Nest Source Statement

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 1
9 1

10 1
11 1
12 1
13 1
14 1
15 2
16 2
17 2
18 2
19 3
20 3
21 3
22 3
23 2
24 2
25 2
26 2
27 2
28 1

PROGRAM FILE_TRANSFER;
(*---*)
(* Transfer file A to file B using GET and PUT *)
(*---*)

TYPE
CHFILE = FILE OF CHAR;

VAR
A,B ; CHFILE;
NAME : STRING;

PROCEDURE TRANSFER(VAR SRC; CHFILE; VAR DEST ; CHFILE)
VAR

RESULT ; INTEGER;
BEGIN
WHILE NOT EOF(SRC) DO

BEGIN
DEST" := SRC";
PUT(DEST);
GET(SRC);

END;
CLOSE(DEST,RESULT);
IF RESULT = 255 THEN

WRITELN('Error closing destination file')
END;

(* MAIN PROGRAM IN LISTING G-l *)

Listing G-5. File Transfer with GET and PUT

End of Appendix G

G-6 pcjs.org

Index

*, ASMT-86 operator, 6-5
/, ASMT-86 operator, 6-5

absolute variables, 4-14
in chained programs, 3-14

AND, ASMT-86 operator, 6-5
arrays

storage allocation for, 4-4
subscripts, 4-21

ASMT-86, 4-2, 5-1
command line options, 5-3
expressions in, 6-6/6-7
pseudo-opcodes, 6-1
relocating assembler, 1-1

assembly language routines
accessing from Pascal/MT+,
4-2

available memory space at
Phase 1, 2-2

BDOS
function calls, 4-10/4-12
function number, 4-10/4-12
functions, 4-19/4-20

binary numbers, 6-3
BLD, LIB/MT+86 input filetype,

5-5

calling an overlay from another
overlay, 3-7

chaining, 3-1, 3-14
@CHK array subscript checking

routine, 4-21
code size in the root program,

3-10
command line

compiler, 2-1
for linking a root program,

3-9
for linking an overlay, 3-10
LINK/MT+86, 2-9

command line options
compiler, 2-3

communication among chained
programs, 3-14

compilation data, 2-2
compiler

disk, 1-4
errors, 2-3
overlays, 2-3
passes, 2-1

converting object files, 2-15

D

D linker command line option,
2-12

Data segment, 4-3, 4-12/4-15,
5-8, 6-3

data size in the root program,
3- 10

debugger, 5-6
control commands, 5-10
display commands, 5-9
Pascal/MT+ programming tools,

1-1
debugging programs, 5-6
decimal numbers, 6-3
default value

size of Extra segment, 2-13
size of Stack segment, 2-13

default values
compiler command line options,

2-4
compiler source code options,

2-5
DIS-86, disassembler, 1-1/1-2,

5-3
disassembler. See DIS-86
division by zero, 4-22
DOS, 1-1, 1-5, 2-9, 2-12,

4- 2, 4-15, 4-19, 4-22, 6-1
dynamic debugger, 1-1
E

E option
compiler command line option,

4-3
compiler source code option,

2-5, 3-6
linker command line option,

2-12
entry-point records, 2-6, 4-2

Index-1
pcjs.org

EQ, ASMT-86 operator, 6-5
@EER error handling routine,

4-21, 4-22
error identification number, 2-3
expressions in ASMT-86, 6-6
EXTERNAL declaration directive,

3- 2, 4-3
Extra segment, 4-1

controlling the size of, 2-13
extracting a module from a

library, 5-5

P

F linker command line option,
2-12

filespec, 2-2, 2-6, 5-3
floating-point
overflow, 4-21
underflow, 4-21

functions, 3-2, 3-5/3-7, 3-11,
4- 12, 5-6

G
GE, ASMT-86 operator, 6-5
generating

a SYM file, 2-12
entry-point records, 2-6
recursive code, 4-18
stand-alone programs, 4-19

global variables, 3-2, 4-4, 4-13
GT, ASMT-86 operator, 6-5

H

handling interrupts, 4-15
hardware stack, 4-2, 4-5, 4-18,

4-19
header code, 4-2

for a module, 3-3
heap, 3-14, 4-1, 4-17, 4-20,

4-22
heap size in the root program,

3-10
hexadecimal

filetype, 3-5
numbers, 6-3

HIGH, ASMT-86 operator, 6-5

I

I compiler source code option,
2-6

I/O errors, 4-22

INCLUDE file, 2-6
indexed expressions in ASMT-86,

6-7
INLINE, 4-12
inserting code, 4-12
Intel

format object file, 2-15
MCS-86 assembler, 5-1
MCS-86 assembly language, 6-1

interrupt
procedures, 4-15
vector, 4-15, 4-20

invoking
ASMT-86, 5-1/5-2
DIS-86, 5-3
LIB/MT+86, 5-5
LINK/MT+86, 2-9
the assembler, 5-2
the compiler, 2-1
the disassembler, 5-4
the librarian, 5-5
the linker, 2-9

K
K compiler source code option,

2-7
KMD, linker input command file,

2-12
L

L option
linker command line option,

2-12
compiler source code option,

2-9
LE, ASMT-86 operator, 6-5
length of identifiers, 6-1
LIB/MT+86, 1-1, 2-11, 5-5
LINK/MT+86, 2-9/2-10
linkage editor, 2-9
linker, 2-9, 3-5
command line, 5-7
directing output to a file,

2- 13
error messages, 2-15
input command file, 2-12
overlay options, 2-14, 3-8

linking
a root program, 3-9
an overlay, 3-10
programs that use overlays,

3- 8
required files, 2-14

Index-2
pcjs.org

Load Maps, 2-12
local variables, 4-18
local-variable stack, 4-1 - 4-2
LOW, ASMT-86 operator, 6-5
LT, ASMT-86 operator, 6-5

M
M linker command-line option,

2- 11, 4-20
maximum code size of a program,

2-12
maximum data size of a program,

2-12
memory management, 4-18
Memory Map, 2-11
minimum size of a program, 1-1
MOD, ASMT-86 operator, 6-5
MODEND, reserved word, 3-1
MODULE, reserved word, 3-1
modules, 3-1
MT2INT, object file converison

utility, 2-15
multiple overlay areas, 3-5
N
NE, ASMT-86 operator, 6-5
nonrecursion, 4-18
nonsyntax error, 2-3
NOT, ASMT-86 operator, 6-5
numbering overlays, 3-6
numbers

binary, decimal, hexadecimal,
octal, 6-3

O

object file
conversion, 2-15
Intel format, 2-15

octal numbers, 6-3
opertors in ASMT-86, 6-5
OR, ASMT-86 operator, 6-5
overlay, 3-1/3-5, 4-20, 5-6

area, 3-4/3-5, 3-10/3-11
as assembly language modules,

3- 8
error messages, 3-11
manager, 3-5/3-6, 3-10
number, 3-6/3-11
reloading version, 3-7
source file, 3-6

overriding the segment
attribute, 6-6

@OVL overlay manager routine,
3-7

OVLMGR3.186, 3-6
@OVS overlay manager routine,

3-7, 3-11

P option
compiler command line option,

2- 8, 5-2, 5-4
linker command line option,

2-12
parameter passing in

Pascal/MT+, 4-6
PAS, 2-6

source filetype, 2-2
Pascal/MT+ compiler
command line, 2-1
command line options, 2-4
compilation data, 2-2
compiler errors, 2-3
controlling the listing, 2-8
object file, 2-2
organization of, 2-1
overlays, 2-1
source file, 2-2
source code options, 2-5

Pascal/MT+ overlay system, 3-5,
3- 6

Pascal/MT+ system, 1-1
distribution disks, 1-2/1-5,

2- 14
filetypes, 1-3
relocatable format, 4-2
suggested configuration, 1-5

PASLIB, 5-6
Pascal/MT+ run-time system

module, 2-11, 2-14, 3-6/3-7,
3- 13, 4-18/4-22

Phase 0, 2-1/2-2, 2-8
Phase 1, 2-1
Phase 2, 2-1/2-2
COPY, 1-6
PROCEDURE, reserved word, 3-2
procedures, 3-1/3-7, 3-11,

4- 12, 5-6
program

initialization, 4-2
PPRIME sample, 1-1
size, 1-1

PROGRAM, reserved word, 3-1
programming tools, 1-1, 5-1

Index-3
pcjs.org

pseudo-opcode
ASSUME, 6-2
DB, DW, and DD, 6-2
ELSE, 6-3
END, 6-2
ENDIF, 6-3
ENDS, 6-1
EQUATE, 6-3
EXTRN, 6-2
IF, 6-3
INCLUDE, 6-3
LABEL, 6-2
NAME, 6-2
ORG, 6-2
PROC, 6-2
PUBLIC, 6-2
SEGMENT, 6-1

R
R option

linker command line option,
2-12

compiler source code option,
2-8

range checking at run-time,
2- 8, 4-21

records
storage allocation for, 4-5

recursion, 4-18
reducing symbol table space, 2-7
relocatable object file, 2-2
relocating assembler
Pascal/MT+ programming tool,

1-1
ROM-based system, 4-19/4-20
root program, 2-14, 3-5,

3- 8/3-12
run-time
environment, 4-10
exception checking, 2-9, 4-21
library, 1-1, 2-11
range checking, 2-8, 4-21

S

setting the stack pointer, 2-9,
4-2, 4-19

shared global variables in
chained programs, 3-14

SHL, ASMT-86 operator, 6-5
SHR, ASMT-86 operator, 6-5
software development process, 1-1
software librarian, 2-11, 5-5
Pascal/MT+ programming tool,

1-1
source filetypes

SRC, PAS, 2-2, 2-6
SRC, 2-2, 2-6
stack frame allocation, 2-8
stack pointer, 2-9

initialization, 4-2, 4-19
Stack segment, 2-13, 4-1, 4-13
stand-alone environment, 5-6
static data, 3-5, 3-10/3-11
static variables in an overlay, 3-5
strict type checking, 2-8
SYM file, 2-15, 3-8/3-11
generation with the linker,

2-12
symbol table, 2-1/2-2, 2-7
syntax

error, 2-3
debugger commands, 5-7

T

T compiler source code option,
2-8

temporary work files
created by ASMT-86, 5-2

text editor, 1-5, 6-1
THIS, ASMT-86 operator, 6-5
type checking, 3-3

strict, weak, 2-8

U
underscore character, 4-2, 5-7
user-supplied error handlers,

4-22

S option
linker command line option,

2-11, 4-20, 5-5
compiler source code option,

2-8
searching a library, 5-5
with LIB/MT+86, 2-11

segmented programs, 3-1
set variables, 4-5

using the debugger, 5-6

variables
absolute, 4-14
global, 3-2, 4-3, 4-13
set, 4-5

Index-4
pcjs.org

w

W option
linker command line option,

2-12
compiler source code option,

2-8
weak type checking, 2-8
writing

error handlers, 4-22
large programs, 3-1

X option
compiler command line option,

5-4/5-5
compiler source code option,

2-9, 4-21
linker command line option,

2-13
XOR, ASMT-86 operator, 6-5

Y linker command line option,
2-13

Z option
compiler source code option,

2-9, 4-2, 4-19
linker command line option,

2-13, 4-2, 4-19

Index-5
pcjs.org

Reader Comment Card
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date First Edition: April 1983

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you fine1 errors in this manual? (Specify section and page number.)

Pascal/MT+™ Language Programmer’s Guide
for the IBM® Personal Computer Disk Operating System

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.pcjs.org

c r r
From:

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

m DIGITAL RESEARCH'
P.O. Box 579
Pacific Grove, California
93950

Attn: Publications Production

pcjs.org

pcjs.org

