* Reference

Microsoft, Macro
Assembler 5.0

Microsoft

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft Corporation. The software described in this docu-
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. The purchaser
may make one copy for backup purposes. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopy-
ing and recording, for any purpose other than the purchaser’s personal use without the
written permission of Microsoft Corporation.

© Copyright Microsoft Corporation, 1987. All rights reserved. Simultaneously
published in the U.S. and Canada.

Timings and encodings in this manual are used with permission of Intel and come from
the following publications:

Intel Corporation. iAPX 86, 88, 186, and 188 User’s Manual, Programmer’s Reference,
Santa Clara, Calif. 1986.

Intel Corporation. iAPX 286 Programmer’s Reference Manual including the iAPX 286
Numeric Supplement, Santa Clara, Calif. 1985.

Intel Corporation. 80386 Programmer’s Reference Manual, Santa Clara, Calif, 1986.
Intel Corporation. 80387 80-bit CHMOS III Numeric Processor Extension, Santa Clara,
Calif. 1987.

Microsofts, MS-DOS., and CodeViews are registered trademarks of Microsoft
Corporation.
Intels is a registered trademark of Intel Corporation.

Microsoft. Macro Assembler 5.0

Reference
TABLE OF CONTENTS
Notational CONVENLIONS..........cceuriiriirieieeierieriseieeierieeieeeessecseeane 2
Programs
IMASM .ottt 3
LTI o v i iresspnes snasassssonsssssnsassnsasssanssssnenssponsanonssnssnsn atsssns saasssnonsanten 4
Microsoft® CodeView® Debugger........ccceverceerieneeneenieeneannen. 5
MAKE ..ottt 10
LIB ettt 11
CREF ..ottt 12
SETENN cxcsniasissmisnssnmnsss isors s st s sssinsssss sisssasininsens 12
EXEPACK o550 ssssenssnsrssssassassonssisnsssssssssss srsisossins srssaasssmsasssns 12
EXEMOD.......ciiiiiiiieiietteeesse ettt 12
ERROUT........covsecrrmsommmeveomeresssrsssssosssasassessssesssvrsassbessarsasss sossonsen 12
Directives
DITECHIVES s r55 cvvsins v ea5in i35 hsencnsonssnpasnesnesnsansonss ponssanssnsassamnensarnns e 13
L 0] 0] £ 20
Processor
Interpreting Processor InStructions...........c.cvveeeerenereseneeneennenne. 23
INSITUCHIONS ..ttt 35
Coprocessor
Interpreting Coprocessor INStruCtions.........c.eeveveeeeeniesveeveennns 115
ATCRITCCHUTE, vssnnvsmsssss sosmsssiss messins sosssinsinsinsnnmrsonssnsssranson sossswnm rros 116
INSAUICHONS +cussmsovnommumsomsmssmsmsmsmms s aare ms e o ma ey 119
Tables
DOS Program Segment Prefix (PSP).......cccocveiiiiiiiiiiinn 143
ASCIL COUES: ... cunevevisvorssevssrenssssvonsnsssessessanissionissivay siassssisvssssimvass 144
KEY COUCS wrssisumiin s istinesssssinmanssns sns ssossansesissmaramnsonneensassnsnenserimon 146
Color Display AtriDULES . vouusisessusss crvssmsrumsssmsssmiosisinesas s 148
Hexadecimal-Binary-Decimal Conversion..............c..cccoceuvn..n. 148
FIGURES
Figure 1 Instruction Key ..., 23
Figure 2 Coprocessor Registers...........ccc.ccoooovvvvvovvoeeeeeeen. 116

Figure 3 Control Word and Status Word..............ccoo......... 117

Notational Conventions

KEY TERMS

placeholders

Examples

[optional items]

{choicel | choice2)}

Repeating
elements...

START

END

Bold type indicates text that must be typed
exactly as shown. This includes instructions,
directives, registers, commands, and program
names.

Italics indicate variable information supplied
by the user.

The typeface shown in the left column
simulates the appearance of source code as it
appears on a screen or printed listing.

Double brackets indicate that the enclosed item
is optional.

Braces indicate a choice between two or more
items. A vertical bar separates the choices. At
least one of the items must be chosen unless
all the items are enclosed in double brackets.

Ellipsis dots following an item indicate that
more items having the same form may be
typed.

Vertical ellipsis dots indicate that additional
lines may be added between the starting and
ending elements.

Programs

MASM
Command-Line Syntax
Options
Environment Variables
LINK
Command-Line Syntax
Options
Environment Variables
Microsoft® CodeView® Debugger

Command-Line Syntax
Options
Window Commands
Format Specifiers
Size Specifiers
Dialog Commands

MAKE
Command-Line Syntax
Options
Syntax for MAKE Files
Syntax for Macro Definitions
Syntax for Inference Rules
Syntax for Dependency Rules
Syntax for Using Macros
Special Macro Names
Environment Variable

LIB

Command-Line Syntax
Commands
CREF
Command-Line Syntax
SETENV
Command-Line Syntax
EXEPACK
Command-Line Syntax
EXEMOD
Command-Line Syntax
Options
ERROUT
Command-Line Syntax

r

-

E E K

-

r-

r

r

EEREER

MASM

Command-Line Syntax

MASM [options]l sourcefile [,[objectfile]l [,[listingfilelll,[crossreferencefile 111 [[;1

Options

Option Action

/A Writes segments in alphabetical order
/Bnumber Sets buffer size

/IC Specifies a cross-reference file

/D Creates a Pass 1 listing

/Dsymbol([=value]
/E

/H

Npath

/L

/ML
/MU
/MX

/N

/P

/S

/T

IV

/W {01112}
/X

IZ

/ZD

1Z1

Defines assembler symbol

Emulates floating-point instructions

Lists options and command-line syntax

Sets include-file search path

Specifies an assembly-listing file

Preserves case in names

Converts names to uppercase (default)
Preserves case in public and external names
Suppresses tables in listing file

Checks for impure code

Writes segments in sequential order (default)
Suppresses messages for successful assembly
Displays extra statistics

Sets error display level

Shows false conditional blocks in listings
Displays error lines on screen

Puts line number information in the object file

Puts symbolic and line number information in the
object file (for CodeView® debugger)

Environment Variables

Variable Description
INCLUDE Sets search path for include files
MASM Specifies default assembler options

MASM 3

LINK

Command-Line Syntax

LINK [options] objectfiles [,[executablefile]] [,Imapfile [, [libraryfilesT11T [:]

Options

Option Action

/B Prevents prompting when errors are encountered (for
make and batch files)

/CO Creates a special-format executable file containing
symbolic information needed by the CodeView
debugger

|CP:number Sets the program's maximum allocation to number
of paragraphs

/DO Orders segments in the default order used by
Microsoft high-level languages

/E Packs the executable file

/F Optimizes far calls

/HE Displays LINK options

/1 Displays linking information, including the name
of each input module as it is linked

/L Lists line numbers and addresses of source
statements in the map file

IM[[:number] Lists all public symbols in the map file (number is
the maximum number of symbols)

/NOD Ignores default libraries

INOF Disables far call optimization

/NOI Distinguishes between uppercase and lowercase
letters

INOP Disables code segment packing

/PAC Packs contiguous code segments

/PAU Pauses during the link session for disk changes

/Q Creates an in-memory (load-time) library for a
Quick language (such as QuickBASIC)

/ST:number Sets the stack size to number, which may be up to

65,536 bytes

Note: Several rarely used options not listed above are described in the CodeView®

and Utilities manual.

4 LINK

Environment Variables

Variable Description

LIB Sets search path for library files
LINK Specifies default linker options
TMP Sets path for the VM.TMP file

Microsofte CodeViewe Debugger

Command-Line Syntax

CV [loptions| executablefile [[arguments]

Options

Option Action

/2 Enables use with two monitors and two graphics
adapters

/43 Starts in 43-line mode on EGA

/B Starts in black-and-white mode

/Ccommands Executes commands on start-up

/D Turns off nonmaskable interrupt and 8259 interrupt
trapping (necessary for some compatibles)

/E Enables expanded memory support

/F Starts with screen flipping (exchanges screens by
flipping video pages)

/1 Forces the debugger to handle nonmaskable
interrupt and 8259 interrupt trapping (necessary for
some compatibles)

M Disables the mouse

/P Disables palette-register saving (necessary for some
EGA-compatible adapters)

/S Starts with screen swapping (exchanges screens by
changing buffers)

/T Starts in sequential mode

/W Starts in window mode (necessary for some

compatibles)

LINK/CODEVIEW 5

Window Commands

Action Keyboard Mouse

Open help screen F1 Help menu

Toggle register F2 Registers from View menu
window

Toggle display F3 Source, Mixed, or Assembly from
mode View menu

Switch to output F4 Output from View menu

screen

Go F5 Click left on Go

Switch Fé None

display/dialog
Execute to here
Trace through

Set breakpoint
here

Step over
Change flag
Scroll up line
Scroll up page
Scroll to top
Scroll down line
Scroll down page
Scroll to bottom
Scroll to location
Move cursor up
Move cursor down

Make window
grow

Make window
tiny

Find text
Add watch
expression

Delete watch
statement

6 CODEVIEW

F7 at cursor
F8
F9 at cursor

F10
None
None
PGUP
HOME
None
PGDN
END
None

UP arrow
DOWN arrow
CTRL+G

CTRL+T

CTRL+F
CTRL+W

CTRL+U

Click right at location
Click left on Trace
Click left at location

Click right on Trace
Click left on flag

Click left on up arrow
Click left above elevator
Drag elevator to top
Click left on down arrow
Click left below elevator
Drag elevator to bottom
Drag elevator to location
None

None

Drag line up or down

Drag line up or down

Find from Search menu
Add Watch from Watch menu

Delete Watch from Watch menu

Format Specifiers

Use with Display Expression, Watch Expression, and Tracepoint
Expression dialog commands.

Character Argument Type Output Format

dori Integer Signed decimal integer

u Integer Unsigned decimal integer

0 Integer Unsigned octal integer

x or X Integer Hexadecimal integer

f Floating point Signed value in floating-point
decimal format with six decimal
places

eor E Floating point Signed value in scientific-notation

format with up to six decimal places
(trailing zeros or decimal point
truncated)

gor G Floating point Signed value with floating-point
decimal or scientific notation,
whichever is more compact

c Character Single character

S String Characters printed up to the first
null (C null-terminated strings only)

Note: If appropriate for the language, the prefix 1 can be used with the integer
format specifiers (d, o, u, x, and X) to specify a four-byte integer. The prefix h can
be used with the same types to specify a two-byte integer.

Size Specifiers

Use with Dump, Enter, Watch Memory, and Tracepoint Memory dialog
commands.

Type Description

No type The current type (default is byte)

A (ASCII) ASCII (8-bit) characters

B (Byte) Byte (8-bit) hexadecimal values

I (Integer) Integer (16-bit) decimal values

U (Unsigned) Unsigned (8-bit) decimal values

W (Word) Word (16-bit) hexadecimal values

D (Doubleword) Doubleword (32-bit) hexadecimal values
S (Short Real) Short-real (32-bit) values

L (Long Real) Long-real (64-bit) values

T (10-Byte Real) 10-byte-real values

CODEVIEW 7

Dialog Commands

Name Syntax Description

8087 7 Displays coprocessor or
emulator status

Assemble A [laddr] Assembles mnemonics starting
at given address

Break Clear BC {listl*} Clears listed breakpoints

Break BD {listl*} Disables listed breakpoints

Disable

Break BE {listl*} Enables listed breakpoints

Enable

Break List BL Lists current breakpoints

Break Set BP [addr{[pc]["cmds"]]] Sets breakpoint at given address
with the specified pass count
(pc); given commands are
executed at each break

Comment * comment Displays explanatory text

Compare C range addr Compares bytes in range with

Memory bytes beginning at given
address; displays mismatches

Current Displays the current source line

Location

Delay : Delays redirected commands

Display ? exprlfmt] Displays expression in format

Dump D[type]l [rangel Dumps memory range in type
format

Enter Eltypel addr [list] Enters memory values in type
format

Examine X?mod'proc.{syml*} Displays symbols in given

Symbols module and procedure

Execute E Executes in slow motion

Fill F range list Fills range with the listed values

Memory

Go G [[addr] Executes to address or to end

Help H Displays on-line help

Load L [args] Restarts program with given
arguments

Move M range addr Copies values in range to the

Memory given address

Option O[FIBICI3[+I-T1 Toggles flip/swap, bytes coded,
case sense, or 386 option

Pause o Interrupts redirected commands
and waits for keystroke

Port Input I port Displays byte from port

8 CODEVIEW

Port Output

Program
Step

Quit
Radix
Redirection

Redraw
Register

Screen
Exchange

Search Text

Search
Memory

Set Mode
Shell

Escape
Stack Trace

Tab Set
Trace

Tracepoint

Unassemble

Use
View

Watch

Watch
Delete

Watch List
Watchpoint

O port value
P [[count]

Q

Nl radix]|
[T>[>]device
<device
=device

@

Rlregister[[[=]expr]l

\

lregexpr]l
S range list
S+ 1-1&]
Hcommand)
K

#number
T [[count]|

TP? expr(fmt]
TP type]l range

Ul[range]

USE[[language]
V [.Ifile:]line]

W? expr(fmt]
Wil type]l range

Y { numberl*)

W
WP? expr|,fmt]

Sends byte value to port

Executes, stepping over calls;
repeats count times

Exits to DOS
Sets input radix

Redirects input or output to or
from device

Redraws the screen R

Displays registers and flags, or
sets new registers and flags

Displays the output screen

Searches for a regular expression

Searches range for listed values,
and displays where values are
found

Toggles source, assembly, and
mixed modes

Escapes to a new DOS shell

Displays routines currently
active on the stack

Sets tab size to number

Executes, tracing into calls;
repeats count times

Breaks when given expression
or memory value changes;
displays in watch window

Displays unassembled
instructions

Switches expression evaluators

Displays specified source lines
of given file

Displays given expression or
memory range in watch window

Deletes (yanks) the given watch
statements

Lists watch statements

Breaks when given expression is
true; displays in watch window

CODEVIEW 9

MAKE

Command-Line Syntax

MAKE [options] [[macrodefinitions]| filename

Displays the last modification date of each file as

Ignores exit codes returned by programs called from
the MAKE description file; MAKE continues
execution of the next lines of the description file

Displays commands that would be executed by a
description file, but does not actually execute the

Options
Option Action
/D

the file is scanned
/1

despite the errors
/N

commands
/S

Executes in silent mode; lines are not displayed as

they are executed

Syntax for MAKE Files

[macrodefinitions]|
[inferencerules]
dependencyrules

Syntax for Macro Definitions

name=value

Syntax for Inference Rules

.inextension.outextension :
command
[[command]

Syntax for Dependency Rules

targetfile:dependentfiles[#comment]
[#comment]
command|#comment]|
[[command]|[#comment]|

10 MAKE

Syntax for Using Macros

$(name)

Special Macro Names

Name Value Substituted

$* Base-name portion of the outfile (no extension)
S@ Complete outfile name

$r# Complete list of infiles

Environment Variable

Variable Description

INIT Specifies location of the TOOLS.INI file, which
may contain inference rules

LIB

Command-Line Syntax
LIB oldlibrary [/PIAGESIZE|:number| [commands] [I,[listfile]] [,[newlibraryl 1] [;1

Commands

Code Task Description

+ Appends an object file or library file

- Deletes a module

-+ Replaces a module by deleting it and appending an
object file with the same name

* Copies an object module onto an independant
object file

- Moves a module out of the library by copying it to

an object file and then deleting it

MAKE/LIB 11

CREF

Command-Line Syntax

CREF crossreferencefile[[crossreferencelisting]|

SETENV

Command-Line Syntax
SETENY filename[environmentsize]|

EXEPACK

Command-Line Syntax
EXEPACK exefile packedfile

EXEMOD

Command-Line Syntax
EXEMOD exefile [options]

Options
Option Effect

ISTACK hexnum Sets the stack size by setting the initial value of
SP to hexnum

/MIN hexnum Sets the minimum allocation value to hexnum
paragraphs

/MAX hexnum Sets the maximum allocation value to hexnum
paragraphs

ERROUT

Command-Line Syntax
ERROUT [[/f stderrfile]] command [[> stdoutfile])

12 CREF/SETENV/EXEPACK/EXEMOD/ERROUT

- —

Directives

Directives
Operators

Topical Cross-Reference for Directives

Simplified
Segment
.MODEL
.CODE
.STACK
.DATA
.DATA?
.FARDATA
.FARDATA?
.CONST
DOSSEG

Segment
SEGMENT
ENDS
GROUP
ASSUME
DOSSEG
END
.ALPHA
.SEQ

Data Allocation

Code Labels

PROC
ENDP
LABEL
ALIGN
EVEN
ORG

Scope

PUBLIC
EXTRN
COMM
INCLUDELIB

Structure
and Record

RECORD
STRUC
ENDS

Macros
MACRO
ENDM
EXITM
LOCAL
PURGE

Equates

EQU

Repeat Blocks
REPT

IRP

IRPC

ENDM

Conditional
Assembl

IF1

IF2

IF

IFE

IFB

IFNB

IFDEF
IFNDEF
IFDIF/IFDIFI
IFIDN/IFIDNI
ELSE

ENDIF

Conditional Error
.ERR

.ERR1

.ERR2

.ERRE

.ERRNZ

.ERRB

.ERRNB

.ERRDEF
.ERRNDEF
.ERRDIF/.ERRDIFI
.ERRIDN/.ERRIDNI

Processor
.8086

.286

.286P

.386

.386P

.8087

287

387

Listing Control
TITLE
SUBTTL
PAGE
.LIST
XLIST
.LFCOND
.SFCOND
.TFCOND
.LALL
.SALL
XALL
.CREF
.XCREF

Miscellaneous
COMMENT
%OUT

.RADIX

END

INCLUDE
INCLUDELIB
NAME

Topical Cross-Reference for Operators

Arithmetic

2~ &

OD

Macro

<>

99

%

Logical
and Shift
AND

OR

XOR

NOT

SHL

SHR

Record

MASK
WIDTH

Type
HIGH
LOW
PTR
SHORT
SIZE
THIS
TYPE
.TYPE

Segment

SEG
OFFSET

Relational
EQ
NE
GT
GE
LT
LE

Miscellaneous

DUP

.

1

Directives

name = expression
Assigns the numeric value of expression to name. The symbol
may be redefined later.

.186
Enables assembly of instructions for the 80186 processor.
.286
Enables assembly of nonprivileged instructions for the 80286
processor.
.286P
Enables assembly of all instructions (including privileged) for
the 80286 processor.
.287
Enables assembly of instructions for the 80287 coprocessor.
.386
Enables assembly of nonprivileged instructions for the 80386
processor.
.386P

Enables assembly of all instructions (including privileged) for
the 80386 processor.

.387

Enables assembly of instructions for the 80387 coprocessor.

.8086
Enables assembly of 8086 instructions (and the identical 8088
instructions); disables assembly of instructions of later
processors. This is the default mode.

.8087
Enables assembly of 8087 instructions and disables assembly of
instructions available only with later coprocessors. This is the
default mode.

ALIGN number
Aligns the next variable or instruction on a byte that is a
multiple of number.
.ALPHA
Orders segments alphabetically.
ASSUME segregister:name([,segregister:namel])...
Selects segregister to be the default segment register for all

symbols in the named segment or group. If name is NOTHING,
no segment register is associated with the segment.

DIRECTIVES 13

.CODE [[name]
When used with .MODEL, indicates the start of a code segment,
which may have name for medium, large, and huge models
(default segment name _TEXT for small and compact models, or
module_TEXT for other models).

COMM definition[definition]]...
Creates a communal variable with the attributes specified in
definition. Each definition has the following form:

INEARIFAR] label:size[:count]
The label is the name of the variable. The size can be any size

specifier (BYTE, WORD, etc.). The count specifies the number
of data objects (one is the default).

COMMENT delimiter [text]

text

delimiter [[text]|
Treats all text between or on the same line as the delimiters as a
comment.

.CONST
When used with .MODEL, starts a constant data segment (with
segment name CONST).

.CREF

Restores listing of symbols in the cross-reference listing file.

.DATA
When used with .MODEL, starts a near data segment for
initialized data (segment name _DATA).

.DATA?
When used with .MODEL, starts a near data segment for
uninitialized data (segment name _BSS).

DOSSEG

Orders segments according to the DOS segment convention.

[name]] DB initializer [,initializer]...
Allocates and optionally initializes a byte of storage for each
initializer.

[name] DW initializer [,initializer]...
Allocates and optionally initializes a word (2 bytes) of storage
for each initializer.

[name] DD initializer [[,initializer]...
Allocates and optionally initializes a doubleword (4 bytes) of
storage for each initializer.

[name] DF initializer [,initializer]...
Allocates and optionally initializes a farword (6 bytes) of storage
for each initializer.

[name]] DQ initializer [[,initializer]...
Allocates and optionally initializes a quadword (8 bytes) of
storage for each initializer.

14 DIRECTIVES

[name]] DT initializer [,initializer]...
Allocates and optionally initializes 10 bytes of storage for each
initializer.

ELSE

Marks the beginning of an alternate block within a conditional
block. See IF.

END [startaddress]|
Marks the end of a module and, optionally, sets the program
entry point to startaddress.

ENDIF

Terminates a conditional block. See IF.

ENDM
Terminates a macro or repeat block. See MACRO, REPT, IRP,
or IRPC.

name ENDP
Marks the end of procedure name previously begun with PROC.
See PROC.

name ENDS
Marks the end of segment name or of structure name previously
begun with SEGMENT or STRUC. See SEGMENT and
STRUC.

name EQU [[<]lexpression[[>]
Assigns expression to name. If expression is enclosed in angle
brackets, it will be interpreted as a text expression. Numeric
equates defined with EQU cannot be redefined, but text equates
can be redefined.

.ERR

Generates an error.

.ERR1

Generates an error on Pass 1 only.

.ERR2

Generates an error on Pass 2 only.

.ERRB <argument>

Generates an error if argument is blank.

.ERRDEF name
Generates an error if name is a previously defined label, variable,
or symbol.

.ERRDIF[I] <argumentl>, <argument2>
Generates an error if the arguments are different. If I is given,
the argument comparison is case insensitive.

.ERRE expression

Generates an error if expression is false (0).

DIRECTIVES 15

ERRIDNII] <argumentl>, <argument2>
Generates an error if the arguments are identical. If I is given,
the argument comparison is case insensitive.

.ERRNB <argument>

Generates an error if argument is not blank.

ERRNDEF name

Generates an error if name has not been defined.

.ERRNZ expression

Generates an error if expressicn is true (nonzero).

EVEN

Aligns the next variable or instruction on an even byte.

EXITM
Terminates expansion of the current repeat or macro block and
begins assembly of the next statement outside the block.

EXTRN name:type [,name:type]l...
Defines one or more external variables, labels, or symbols called
name whose type is fype.

FARDATA [name]
When used with . MODEL, starts a far data segment for
initialized data (segment name FAR_DATA or name).

JFARDATA? [[name]
When used with .MODEL, starts a far data segment for
uninitialized data (segment name FAR_BSS or name).

name GROUP segment|,segment]...
Add the specified segments to the group called name.

IF expression
ifstatements
[ELSE
elsestatements]|
ENDIF

Grants assembly of ifstatements if expression is true (nonzero).
Optionally assembles elsestatements if expression is false (0).

IF1

Grants assembly on Pass 1 only. See IF for complete syntax.

IF2

Grants assembly on Pass 2 only. See IF for complete syntax.

IFB <argument>
Grants assembly if argument is blank. See IF for complete
syntax.

IFDEF name
Grants assembly if name is a previously defined label, variable,
or symbol. See IF for complete syntax.

16 DIRECTIVES

~a—

IFDIF[I] <argumentl>, <argument2>
Grants assembly if the arguments are different. If I is given, the
argument comparison is case insensitive.See IF for complete
syntax.

IFE expression
Grants assembly if expression is false (0). See IF for complete
syntax.

IFIDN[I] <argumentl>, <argument2>
Grants assembly if the arguments are identical. If I is given, the
argument comparison is case insensitive. See IF for complete
syntax.

IFNB <argument>
Grants assembly if argument is not blank. See IF for complete
syntax.

IFNDEF name
Grants assembly if name has not been defined. See IF for
complete syntax.

INCLUDE filespec
Inserts source code from the source file given by filespec into
the current source file during assembly.

INCLUDELIB library
Informs the linker that the current module should be linked with
library.

IRP parameter,<argument|,argument]...>

statements

ENDM
Marks a block that will be repeated for as many arguments as are
given, with the current argument replacing parameter on each
repetition.

IRPC parameter,string

statements

ENDM
Marks a block that will be repeated for as many characters as
there are in string, with the current character replacing parameter
on each repetition.

name LABEL type

Creates a new variable or label by assigning the current location-
counter value and the given type to name.

.LALL

Starts listing of all statements in macros.
.LFCOND

Starts listing of statements in false conditional blocks.
.LIST

Starts listing of statements. This is the default.

DIRECTIVES 17

LOCAL localname [[,localnamel]l...
Declares localname within a macro as a placeholder for an actual
name to be created when the macro is expanded.

name MACRO [[parameter [,parameter]...]

Sstatements

ENDM
Marks a macro block called name and establishes parameters as
placeholders for arguments passed when the macro is called.

.MODEL memorymodel
Initializes the program memory model. The memorymodel can be
SMALL, COMPACT, MEDIUM, LARGE, or HUGE.

NAME modulename
Ignored in Version 5.0. The module name is always the base
name of the source file.

ORG expression
Sets the location counter to expression.

% OUT text

Displays text to the standard output device (the screen).

PAGE [[[/ength],width]
Sets line length and character width of the program listing. If no
arguments are given, generates a page break.

PAGE +

Increments section-page numbering.

label PROC [NEARIFAR]

Statements

RET [[constant]

label ENDP
Marks start and end of a procedure block called label. The
statements the block can be called with the CALL instruction.

PUBLIC name [,name]...
Makes each variable, label, or absolute symbol specified as name
available to all other modules in the program.

PURGE macroname [[,macroname],...
Deletes the specified macros from memory.

.RADIX expression

Sets the input radix to the value of expression.

recordname RECORD field[,field]...
Declares a record type consisting of the specified fields. Each
field has the following form:

fieldname:width[[= expression]|

The fieldname names the field, width specifies the number of
bits, and expression gives its initial value.

18 DIRECTIVES

REPT expression
statements
ENDM

Marks a block that is to be repeated expression times.

.SALL

Suppresses listing of macro expansions.

name SEGMENT [align] [combine] [use] ['class']
statements
name ENDS
Defines a program segment called name having segment
attributes align, combine, use, and class.

.SEQ

Orders segments sequentially (the default order).

.SFCOND
Suppresses listing of conditional blocks whose condition
evaluates to false (0). This is the default.

STACK [size]
When used with .MODEL, indicates the start of a stack segment
(with segment name STACK). The optional size specifies the
number of bytes for the stack (default 1024).

name STRUC
fields
name ENDS

Declares a structure type having the specified fields. Each field
must be a valid data definition (using DB, DW, etc.).

SUBTTL text
Defines the listing subtitle.

.TFCOND

Toggles listing of false conditional blocks.
TITLE text

Defines the program listing title.
XALL

Starts listing of macro expansion statements that generate code
or data. This is the default.

XCREF [name[,name]...]
Suppresses listing of symbols in the cross-reference listing file.
If names are specified, only the given symbols will be
suppressed.

XLIST

Suppresses program listing.

DIRECTIVES 19

Operators

expressionl * expression2
Returns expressionl times expression2.

expressionl | expression2
Returns expressionl divided by expression2.

expressionl + expression2
Returns expressionl plus expression2.

expressionl - expression2
Returns expressionl minus expression2.

-expression
Reverses the sign of expression.

segment: expression
Overrides the default segment of expression with segment. The
segment may be a segment register, a group name, or a segment
name. The expression can be a constant, a memory expression,
or a SEG expression.

variable . field
Returns the offset of field plus the offset of variable.

[expressionl] [expression2]
Returns the offset of expressionl plus the offset of expression2.

<text>
Treats fext in a macro argument as a single literal element.

!character
Treats character in a macro argument as a literal character rather
than as an operator or symbol.

stext
Treats text as a comment.

sstext
Treats fext as a comment that will not be listed in expanded
macros.

Yotext
Treats text in a macro argument as an expression.

¶meter
Replaces parameter with its corresponding argument value.

expressionl AND expression2
Returns the result of a bitwise Boolean AND done on
expressionl and expression2.

count DUP (initialvalue,initialvalue]...)
Specifies count number of declarations of initialvalue.

20 OPERATORS

expressionl EQ expression2
Returns true (-1) if expressionl equals expression2, or returns
false (0) if it does not.

expressionl GE expression2
Returns true (-1) if expressionl is greater than or equal to
expression2, or returns false (0) if it is not.

expressionl GT expression2
Returns true (-1) if expressionl is greater than expression2, or
returns false (0) if it is not.

HIGH expression
Returns the high byte of expression.

expressionl LE expression2
Returns true (-1) if expressionl is less than or equal to
expression2, or returns false (0) if it is not.

LENGTH variable

Returns the number of data objects in variable if variable was
defined with the DUP operator.

LOW expression

Returns the low byte of expression.

expressionl LT expression2
Returns true (-1) if expressionl is less than expression2, or
returns false (0) if it is not.

MASK {recordfieldnamel|record}
Returns a bit mask in which the bits for recordfieldname or
record are set and all other bits are cleared.

expression] MOD expression2
Returns the remainder of dividing expressionl by expression2.

expressionl NE expression2
Returns true (-1) if expressionl does not equal expression2, or
returns false (0) if it does.

NOT expression
Returns expression with all bits reversed.

OFFSET expression

Returns the offset of expression.

expressionl OR expression2
Returns the result of a bitwise Boolean OR done on expressionl
and expression2.

type PTR expression
Forces the expression to be treated as having the specified type.

SEG expression
Returns the segment of expression.

expression SHL count
Returns the result of shifting the bits of expression left count
number of bits.

OPERATORS 21

SHORT label
Sets the type of label to short (having a distance less than 128
bytes from the start of the next instruction).

expression SHR count
Returns the result of shifting the bits of expression right count
number of bits.

SIZE variable
Returns the number of bytes allocated for variable if variable was
defined with the DUP operator.

THIS type
Returns an operand of specified type whose offset and segment
values are equal to the current location-counter value.

TYPE expression
Returns the type of expression.

.TYPE expression

Returns a byte defining the mode and scope of expression.

WIDTH {recordfieldname|record}

Returns the width in bits of the current recordfieldname or record.

expression] XOR expression2
Returns the result of a bitwise Boolean XOR done on
expressionl and expression2.

22 OPERATORS

I

1 71

R

R

1

Processor

Interpreting Processor Instructions
Flags
Syntax
Examples
Clock Speeds
Timings on the 8088 and 8086
Timings on the 80286 and 80386
Interpreting Encodings
Interpreting 80386 Encoding Extensions
80286 Encoding
80386 Encoding
Address-Size Prefix
Operand-Size Prefix
Encoding Differences for 32-bit Operations
Scaled Index Base Byte
Instructions

Topical Cross-Reference

Data Transfer String
MOV MOVS
MOVS LODS
MOVSX$ STOS
MOVZX$ SCAS
XCHG CMPS
LODS INS*
STOS OUTS*
LEA REP
LDS/LES REPE/REPZ
LFS/LGS/LSS$ REPNE/REPNZ
XLAT/XLATB
Arithmetic
Stack ADD
PUSH ADC
PUSHF INC
PUSHA* SUB
POP SBB
POPF DEC
POPA* NEG
IMUL
Input/Output MUL
= DIV
IDIV
INS* -
ouT 1
OUTS* Loqgical
AND
Type
Conversion NOT
CBW
CWD Bit Shift
CWDE?} Bit Shift
CDQ$ ROL
ROR
RCL
mg RCR
CLC SHL/SAL
CLD SHR
CLI SAR
CMC SHLDS
CLTS* SHRD?
STC BSF$
STD BSRY
STI
POPF
PUSHF
LAHF
SAHF

*80186/286/386 only.

Compare
CMP
CMPS
TEST

BTS

BTCS
BTR$
BTSS

Unconditional
Transfer

CALL

INT

IRET

RET
RETN/RETF
JMP
ENTER*
LEAVE*

Loop

LOOP
LOOPE/LOOPZ
LOOPNE/LOOPNZ
JCXZ/JECXZ

Conditional
Transfer

JB/JNAE
JAE/JNB
JBE/JNA
JA/JNBE
JENJZ
JNE/JNZ
JL/JNGE
JGE/JNL
JLE/JNG
JG/JNLE
JS

JP/JPE
JNP/JPO
JCXZ/JECXZ
INTO
BOUND*

+80286/386 only.

Conditional Set

SETB/SETNAES
SETAE/SETNBS
SETBE/SETNA?Y
SETA/SETNBES
SETE/SETZS
SETNE/SETNZ$
SETL/SETNGES
SETGE/SETNLS
SETLE/SETNGS$
SETG/SETNLES
SETS?Y

SETNS?

SETCS

SETNC?

SETO?$

SETNOS
SETP/SETPE$
SETNP/SETPOS

BCD Conversion

AAA
AAS
AAM
AAD
DAA
DAS

Processor
Control

NOP
ESC
WAIT
LOCK
HLT

Process Control

ARPLT

CLTS*

LART
LGDT/LIDT/LLDT*
LMSWi

LSL+

LTR*
SGDT/SIDT/SLDT*
SMSW+

STR*

VERRT

VERWf

MOV special’

§ 80386 only.

-l

a o

a d d d d

- o

ad d d d d d

Interpreting Processor Instructions

This section provides an alphabetical reference to the instructions for
the 8086, 8088, 80286, and 80386 processors. A key to each element
of the reference is given in Figure 1.

Mnemonic Name Restriction (optional)
BSF/BSR
Bit Scan Flags
80386 Only
Scans an operand to find the first set bit. If a set bit is found, the zero
flag is set and the destination operand is loaded with the bit index of the
first set bit encountered. If no set bit is found, the zero flag is cleared. — Description

Figure 1

Flags

BSF (Bit Scan Forward) scans from bit 0 to the most significant bit.
BSR (Bit Scan Reverse) scans from the most significant bit of an
operand to bit 0.

}——— Encoding

00001111 101TT104* mod. reg. rim disp (0.2.0r4)

bs¢ cx, bx B8/86 —
BSF regreg 28 —
BSR regaeg 386 10+3n
bsr ecx,bitmask B8/86 —
BSF reg.mem 286 -
BSR reg.mem 386 10+3n

* The dir¢ction bit is set for BSR or cleared for BSF.

Syntax Examples Clock Speeds

Instruction Key

The first row of the display has a one-character abbreviation for the flag
name. Only the flags common to all processors are shown.

O Overflow T Trap A Auxiliary carry
D Direction S Sign P Parity
I Interrupt Z Zero C Carry

The second line has codes indicating how the flag can be effected.

ank

H oo

Sets the flag

Clears the flag

May change the flag, but the value is not predictable
No effect on the flag

Modifies according to the rules associated with the flag

PROCESSOR INTRODUCTION 23

Syntax

Each encoding variation may have different syntaxes corresponding to
different addressing modes. The following abbreviations are used:

reg A general-purpose register of any size

segreg One of the segment registers: DS, ES, SS, or CS (also FS
or GS on the 80386)

accum An accumulator register of any size: AL or AX (also EAX
on the 80386)

mem A direct or indirect memory operand of any size

label A labeled memory location in the code segment

src,dest A source or destination memory operand used in a string
operation

immed A constant operand

In some cases abbreviations have numeric suffixes to specify that the
operand must be a particular size. For example, reg/6 means that only
a 16-bit (word) register is accepted.

Examples

One or more examples are shown for each syntax. The examples are
randomly chosen, and no significance should be attached to their order
or placement. They are valid examples of the associated syntax, but
there is no attempt to illustrate all possible operand combinations or to
show context. Their position is not related to the clock speeds in the
right column.

To avoid confusion by programmers who do not have an 80386
processor, examples do not use 32-bit registers unless the instruction is
available only on the 80386. However, 80386 programmers can
substitute 32-bit registers unless the description specifically states
otherwise.

24 PROCESSOR INTRODUCTION

Clock Speeds

Column 3 shows the clock speeds for each processor. Sometimes an

instruction may have more than one clock speed. Multiple speeds are
separated by commas. If several speeds are part of an expression, they
will be enclosed in parentheses. The following abbreviations are used
to specify variations:

EA Effective address. This applies only to the 8088 and 8086
processors, as described in the next section.

b,w.,d Byte, word, or doubleword operands.

pm Protected mode.

n Iterations. Repeated instructions may have a base number of

clocks plus a number of clocks for each iteration. For
example, 8+4n means eight clocks plus four clocks for each
iteration.

noj No jump. For conditional jump instructions, noj indicates
the speed if the condition is false and the jump is not taken.

m Next instruction components. Some control transfer
instructions take different times depending on the length of
the next instruction executed. On the 8088 and 8086, m is
never a factor. On the 80286, m is the number of bytes in
the instruction. On the 80386, m is the number of
components. Each byte of encoding is a component and the
displacement and data are separate components.

W88,88 8088 exceptions. See "Timings on the 8088 and 8086."

Clocks can be converted to nanoseconds by dividing one microsecond
by the number of megahertz (MHz) at which the processor is running.
For example, on a processor running at 8 MHz, one clock takes 125
nanoseconds (1000 MHz per nanosecond / 8§ MHz).

The clock counts are for best-case timings. Actual timings vary
depending wait states, alignment of the instruction, the status of the
prefetch queue, and other factors.

Timings on the 8088 and 8086

Because of its 8-bit data bus, the 8088 always requires two fetches to
get a 16-bit operand. Instructions that work on 16-bit memory operands
therefore take longer on the 8088 than on the 8086. Separate 8088
timings are shown in parentheses following the main timing. For
example, 9 (W88=13) means that the 8086 with any operands or the
8088 with byte operands take 9 clocks, but the 8088 with word
operands takes 13 clocks. Similarly, 16 (88=24) means that the 8086
takes 21 clocks, but the 8088 takes 29 clocks.

PROCESSOR INTRODUCTION 25

On the 8088 and 8086, the effective address (EA) value must be added
for instructions that operate on memory operands. A displacement is
any direct memory or constant operand, or any combination of the two.
Below are the number of clocks to add for the effective address.

Components EA Clocks Examples
Displacement 6 mov ax,stuff

mov ax,stuff+2
Base or index 5 mov ax, [bx]

mov ax, [di]
Displacement 9 mov ax, [bp+8]
plus base or index mov ax,stuff[di]
Base plus index 7 mov ax, [bx+si]
(BP+DI,BX+SI) mov ax, [bp+di]
Base plus index 8 mov ax, [bx+di]
(BP+SI,BX+DI) mov ax, [bp+si]
Base plus index 11 mov ax,stuff[bx+si]
plus displacement mov ax, [bp+di+8]
(BP+DI+disp,BX+SI+disp)
Base plus index 12 mov ax,stuff [bx+di]
plus displacement mov ax, [bp+si+20]
(BP+SI+disp,BX+DI+disp)
Segment override EA+2 mov ax,es:stuff

mov ax,ds: [bp+10]

Timings on the 80286 and 80386 Processors

On the 80286 and 80386 processors, the effective address calculation is
handled by hardware and is therefore not a factor in clock calculations
except in one case. If a memory operand includes all three possible
elements—a displacement, a base register, and an index register—then
add one clock. Examples are shown below.

mov ax, [bx+di] ;No extra
mov ax,array[bx+di] ;One extra
mov ax, [bx+di+6] ;One extra

Note: 80186 and 80188 timings are different from 8088, 8086, and
80286 timings. They are not shown in this manual. Timings are also
not shown for protected-mode transfers through gates or for the virtual
8086 mode available on the 80386 processor.

26 PROCESSOR INTRODUCTION

Interpreting Encodings

Encodings are shown for each variation of the instruction. This section
describes encoding for all processors except the 80386. The encodings
take the form of boxes filled with Os and 1s for bits that are constant
for the instruction variation, and abbreviations (in italics) for the
following variable bits or bitfields:

d Direction bit. If set, do memory to register or register to
register; the reg field is the destination. If cleared, do
register to memory; the reg field is the source.

w Word/byte bit. If set, use 16-bit operands. If cleared, use 8-
bit operands.

s Sign bit. If set, sign-extend 8-bit immediate data to 16 bits.
mod Mode. This two-bit field gives the register/memory mode

with displacement. The possible values are shown below.

mod Meaning
00 This value can have two meanings:
If r/m is 110, a direct memory operand is used.

If r/m is not 110, the displacement is 0 and an
indirect memory operand is used. The operand must
be based, indexed, or based indexed.

01 An indirect memory operand is used with an 8-bit
displacement.

10 An indirect memory operand is used with a 16-bit
displacement.

11 A two-register instruction is used; the reg field
specifies the destination and the r/m field specifies
the source.

reg Register. This three-bit field specifies one of the general-
purpose registers:

reg 16-bit if w=1 8-bit if w=0

000 AX AL

001 CX CL

010 DX DL

011 BX BL

100 SP AH

101 BP CH

110 SI DH

111 DI BH

The reg field is sometimes used to specify encoding
information rather than a register.

PROCESSOR INTRODUCTION 27

sreg Segment register. This field specifies one of the segment
registers.

sreg Register

000 ES
001 CS
010 SS
011 DS
rim Register/memory. This three-bit field specifies a memory or

register operand.

If the mod field is 11, r/m specifies the source register using
the reg field codes. Otherwise, the field has one of the
following values:

rim Operand Address
000 DS:[BX+SI+disp]
001 DS:[BX+DI+disp]
010 SS:[BP+SI+disp]
011 SS:[BP+DI+disp]
100 DS:[SI+disp]

101 DS:[DI+disp]

110 DS:[BP+disp]”*
111 DS:[BX+disp]

disp Displacement. These bytes give the offset for memory
operands. The possible lengths (in bytes) are shown in
parentheses.

data Data. These bytes gives the actual value for constant values.

The possible lengths (in bytes) are shown in parentheses.

If a memory operand has a segment override, the entire instruction has
one of the following bytes as a prefix:

Segment Prefix

CS 00101110 (2Eh)
DS 00111110 (3Eh)
ES 00100110 (26h)
SS 00110110 (36h)

* If mod is 00 and rim is 1 10, then the operand is treated as a direct memory operand. This means that
the operand [BP] is encoded as [BP+0] rather than having a short-form like other register indirect
operands. Encoding [BX] takes one byte, but encoding [BP] takes two.

28 PROCESSOR INTRODUCTION

E—

B Example

As an example, assume you want to calculate the encoding for the
following statement (where warray is a 16-bit variable):

add warray[bx+di],-3

First look up the encoding for the immediate to memory syntax of the
ADD instruction:

I 100000sw I |m()d,000,r/m I disp (0 or 2) data (1 or2)

Since the destination is a word operand, the w bit will be set. The 8-bit
immediate data must be sign-extended to 16 bits in order to fit into the
operand, so the s bit is also set. The first byte of the instruction is
therefore 10000011 (83h).

Since the memory operand can be anywhere in the segment, it must
have a 16-bit offset (displacement). Therefore the mod field is 10. The
reg field is 000, as shown in the encoding. The r/m coding for
[bx+di+disp] is 001. The second byte is 10000001 (81h).

The next two bytes are the offset of warray. The high byte of the
offset is stored first and the low byte second. For this example, assume
that warray is located at offset 10EFh

The last byte of the instruction is used to store the 8-bit immediate
value -3 (FDh). This value is encoded as 8 bits (but sign-extended to 16
bits by the processor).

The encoding is shown below in hexadecimal:
83 81 10 EF FD

You can confirm this by assembling the instruction and looking at the
resulting assembly listing.

Interpreting 80386 Encoding Extensions

This manual shows 80386 encodings for instructions that are available
only on the 80386 processor. For other instructions, encodings are
shown only for the 16-bit subset available on all processors. This
section tells how to convert the 80286 encodings shown in the manual
to 80386 encodings that use extensions such as 32-bit registers and
memory operands.

The extended 80386 encodings differ in that they can have additional
prefix bytes, a Scaled Index Base (SIB) byte, and 32-bit displacement
and immediate bytes. Use of these elements is closely tied to the

PROCESSOR INTRODUCTION 29

segment word size. The use type of the code segment determines
whether the instructions are processed in 32-bit mode (USE32) or 16-
bit mode (USE16). Current versions of MS-DOS® and announced
versions of OS/2 use 16-bit mode only.

The bytes that can appear in an instruction encoding are shown below.

80286 Encoding

Opcode mod-reg- disp immed
rim
a1-2) 0-1) 0-2) 0-2)

80386 Encoding

Address- Operand- Opcode mod-reg- Scaled disp immed
Size (67h) Size (66h) rim Index Base
(0-1) (0-1) (1-2) (0-1) (0-1) (0-4) (0-4)

Additional bytes may be added for a segment prefix, a repeat prefix, or
the LOCK prefix.

Address-Size Prefix

The address-size prefix determines the segment word size of the
operation. It can override the default size for calculating the
displacement of memory addresses. The address prefix byte is 67h.
MASM automatically inserts this byte where appropriate.

In 32-bit mode (USE32 code segment), displacements are calculated as
32-bit addresses. The effective address-size prefix must be used for any
instructions that must calculate addresses as 16-bit displacements. In
16-bit mode the defaults are reversed. The prefix must be used to
specify calculation of 32-bit displacements.

Operand-Size Prefix

The operand-size prefix determines the size of operands. It can override
the default size of registers or memory operands. The operand-size
prefix byte is 66h. MASM automatically inserts this byte where
appropriate.

In 32-bit mode, the default sizes for operands are 8 bits and 32 bits
(depending on the w bit). The operand-size prefix must be used for any
instructions that use 16-bit operands. In 16-bit mode, the default sizes
are 8 bits and 16 bits. The prefix must be used for any instructions that
use 32-bit operands.

30 PROCESSOR INTRODUCTION

Encoding Differences for 32-bit Operations

When 32-bit operations are performed, the meaning of certain bits or
fields are different than for 16-bit operations. The changes may affect
default operations in 32-bit mode, or 16-bit mode operations in which
the address-size prefix or the operand-size prefix is used. The following
fields may have a different meaning for 32-bit operations than the
meaning described in the Interpreting Encodings section:

w Word/byte bit. If set, use 32-bit operands. If cleared, use 8-
bit operands.

s Sign bit. If set, sign-extend 8-bit or 16-bit immediate data
to 32 bits.

mod Mode. This field indicates the register/memory mode. The
value 11 still indicates a register-to-register operation with
r/m containing the code for a 32-bit source register.
However, other codes have different meanings as shown in
the tables in the next section.

reg Register. The codes for 16-bit registers are extended to 32-
bit registers. For example, if the reg field is 000, EAX is
used instead of AX. Use of 8-bit registers is unchanged.

sreg Segment register. The 80386 has the following additional
segment registers:

sreg Register
100 FS
101 GS

rim Register/memory. If the r/m field is used for the source
register, 32-bit registers are used as for the reg field. If the
field is used for memory operands, the meaning is
completely different than for 16-bit operations, as shown in
the tables in the next section.

disp Displacement. This field is four bytes for 32-bit addresses.
data Data. Immediate data can be up to four bytes.

PROCESSOR INTRODUCTION 31

Scaled Index Base Byte

Many 80386 extended memory operands are too complex to be
represented by a single mod-reg-r/m byte. For these operands, a value
of 100 in the r/m field signals the presence of a second encoding byte
called the Scaled Index Base (SIB) byte. The SIB byte is made up of the

following fields:
ss Scaling Field. This two-bit field specifies one of the
following scaling factors:
S8 Factor
00 1
01 2
10 4
11 8
index Index Register. This three-bit field specifies one of the
following index registers:
index Register
000 EAX
001 ECX
010 EDX
011 EBX
100 no index
101 EBP
110 ESI
111 EDI

Note that ESP cannot be an index register. If the index field
is 100, then the ss field must be 00.

base Base Register. This three-bit field combines with the mod
field to specify the base register and the displacement. Note
that the base field only specifies the base when the r/m field
is 100. Otherwise the r/m field specifies the base.

32 PROCESSOR INTRODUCTION

The possible combinations of the mod, r/m, scale, index, and base
fields are shown below.

Fields for 32-bit

Nonindexed Operands

mod r/m Operand

00 000 DS:[EAX]

00 001 DS:[ECX]

00 010 DS:[EDX]

00 011 DS:[EBX]

00 100 SIB used————
00 101 DS:disp32+

00 110 DS:[ESI]

00 111 DS:[EDI]

01 000 DS:[EAX+disp8)

01 001 DS:[ECX+disp8]

01 010 DS:[EDX+disp8]

01 011 DS:[EBX+disp8]

01 100 SIB used—
01 101 SS:[EBP+disp8]

01 110 DS:[ESI+disp8]

01 111 DS:[EDI+disp8]

10 000 DS:[EAX+disp32]

10 001 DS:[ECX+disp32]

10 010 DS:[EDX+disp32]

10 011 DS:[EBX+disp32]

10 100 SIB used——
10 101 SS:[EBP+disp32]

10 110 DS:[ESI+disp32]

10 111 DS:[EDI+disp32]

Fields for 32-bit

Indexed Operands

mod r/m base Operand

00 100 000 DS:[EAX+(scale*index)]

00 100 001 DS:[ECX+(scale*index)]

00 100 010 DS:[EDX+(scale*index))

00 100 011 DS:[EBX+(scale*index))

00 100 100 SS:[ESP+(scale*index))

00 100 101 DS:[disp32+(scale*index)]t

00 100 110 DS:[ESI+(scale*index)]

00 100 111 DS:[EDI+(scale*index)]

01 100 000 DS:[EAX+(scale*index)+disp8]
01 100 001 DS:[ECX+(scalexindex)+disp8]
01 100 010 DS:[EDX+(scalexindex)+disp8]

01 100 011 DS:[EBX+(scale*index)+disp8]

0l 100 100 SS:[ESP+(scale*index)+dispS)

01 100 101 SS:[EBP+(scalexindex)+disp8§]

01 100 110 DS:[ESI+(scale*index)+disp8]

01 100 111 DS:[EDI+(scale*index)+disp8)

10 100 000 DS:[EAX+(scale*index)+disp32]
10 100 001 DS:[ECX+(scale*index)+disp32]
10 100 010 DS:[EDX+(scale*index)+disp32]
10 100 011 DS:[EBX+(scalexindex)+disp32)
10 100 100 SS:[ESP+(scale*index)+disp32]
10 100 101 SS:[EBP+(scale*index)+disp32)
10 100 110 DS:[ESI+(scale*index)+disp32]
10 100 111 DS:[EDI+(scale*index)+disp32]

+ The operand [EBP] must be encoded as [EBP+0] (the 0 is an 8-bit displacement).
Similarly, [EBP+(scale*index)] must be encoded as [EBP+(scale*index)+0]. The short
encoding form available with other base registers cannot be used with EBP.

If a memory operand has a segment override, the entire instruction has
one of the prefixes discussed earlier in the Interpreting Encodings
section or one of the following prefixes for the segment registers
available only on the 80386:

Segment

FS
GS

Prefix

01100100 (64h)
(65h)

01100101

PROCESSOR INTRODUCTION 33

B Example

Assume you want to calculate the encoding for the following statement
(where warray is a 16-bit variable). Assume also that the instruction
is used in 16-bit mode.

add warray[eaxtecx*2],-3

First look up the encoding for the immediate to memory syntax of the
ADD instruction:

[100000sw I |m0d,000.r/m I disp (0 or 2) data (1 or2)

This encoding must be expanded to account for 80386 extensions. Note
that the instruction operates on 16-bit data in a 16-bit mode program.
Therefore, the operand-size prefix is not needed. However, the
instruction does use 32-bit registers to calculate a 32-bit effective
address. Thus the first byte of the encoding must be the effective
address-size prefix, 01100111 (67h).

The opcode byte is the same (83h) as for the 80286 example described
in the Interpreting Encodings section.

The mod-reg-r/m byte must specify a based indexed operand with a
scaling factor of two. This operand cannot be specified with a single
byte, so the encoding must also use the SIB byte. The value 100 in the
r/m field specifies an SIB byte. The reg field is 000, as shown in the
encoding. The mod field is 10 for operands that have base and scaled
index registers and a 32-bit displacement. The combined mod, reg, and
r/m fields for the second byte are 10000100 (84h).

The SIB byte is next. The scaling factor is 2, so the ss field is 01. The
index register is ECX, so the index field is 001. The base register is
EAX, so the base field is 000. The SIB byte is 01001000 (48h).

The next four bytes are the offset of warray. The low bytes are stored
last. For this example, assume that warray is located at offset
10EFh. This offset only requires two bytes, but four must be supplied
because of the addressing mode. A 32-bit address can be safely used in
16-bit mode as long as the upper word is 0.

The last byte of the instruction is used to store the 8-bit immediate
value -3 (FDh).

The encoding is shown below in hexadecimal:

67 83 84 48 00 00 10 EF FD

34 PROCESSOR INTRODUCTION

“—

o[D[1 [T[S[Z[A[P[C AAA
? HEIKE ASCII Adjust After Addition

Adjusts the result of an addition to a decimal digit (0-9). The previous
addition instruction should place its 8-bit sum in AL. If the sum is
greater than 9h, AH is incremented and the carry and auxiliary carry
flags are set. Otherwise, the carry and auxiliary carry flags are cleared.

00110111
aaa 88/86 8
AAA 286 3
386 4

o[D[1[T[s[Z[A[P[C AAD

)
+
I+
>
I+
X

ASCII Adjust Before Division

Converts unpacked BCD digits in AH (most significant digit) and AL
(least significant digit) to a binary number in AX. The instruction is
often used to prepare an unpacked BCD number in AX for division by
an unpacked BCD digit in an 8-bit register.

| tioioto1 | | 00001010 |

aad 88/86 60
AAD 286 14
386 19

PROCESSOR INSTRUCTIONS 35

AAM o[D[1 [T[S[z[A[P]C
ASCII Adjust After Multiply ? LT £

I+
)

Converts an 8-bit binary number less than 100 decimal in AL to an
unpacked BCD number in AX. The most significant digit goes in AH
and the least significant in AL. This instruction is often used to adjust
the product after a MUL instruction that multiplies unpacked BCD
digits in AH and AL. It is also used to adjust the quotient after a DIV
instruction that divides a binary number less than 100 decimal in AX
by an unpacked BCD number.

| 11010100 | [00001010 |
aam 88/86 83
AAM 286 16
386 17
AAS o[D[1[T[S[Z[A[P]C
ASCII Adjust ? 212 2]+

After Subtraction

Adjusts the result of a subtraction to a decimal digit (0-9). The
previous subtraction instruction should place its 8-bit result in AL. If
the result is greater than Sh, then AH is decremented and the carry and
auxiliary carry flags are set. Otherwise, the carry and auxiliary carry
flags are cleared.

00111111
aas 88/86 8
AAS 286 3
386 4

36 PROCESSOR INSTRUCTIONS

olD[T [T]S|Z[A]P]C ADC
+ * Add with Carry

I+
+
I+
I+
+

Adds the source operand, the destination operand, and the value of the
carry flag. The result is assigned to the destination operand. This
instruction is used to add the more significant portions of numbers that
must be added in multiple registers.

[000100aw | [modyregrim | disp(0or2)

adc dx,cx 88/86
ADC reg,reg 286
386
adc WORD PTR m32([2],dx 88/86
ADC mem,reg 286
386
adc dx,WORD PTR m32[2] 88/86
ADC reg,mem 286
386

6+EA (W88=24+EA)

+EA (W88=13+EA)

A NOIN 9= o W

[100000sw | [mod, 010,r/m | disp (0 or 2) data (1 or2)

adc dx,12 88/86
ADC reg,immed 286
386
adc WORD PTR m32([2],16 88/86
ADC mem,immed 286
386

7+EA (W88=23+EA)

NN = WA

data(1 or2)

adc ax,5 88/86 4
ADC accum,immed 286 3
386 2

PROCESSOR INSTRUCTIONS 37

ADD

+[o
)
=
y-—]
+ [
+|N
H |
+ |~
+10

Add

Adds the source and destination operands and puts the sum in the
destination operand.

| 000000aw | | modreg,rim | disp (0 or 2)

add ax,bx 88/86 3
ADD reg,reg 286 2
386 2
add total,cx 88/86 16+EA (W88=24+EA)
ADD mem,reg add array[bx+di],dx 286 7
386 7
add cx,incr 88/86 9+EA (W88=13+EA)
ADD reg,mem add dx, [bp+6] 286 7
386 6
| 100000sw | [mod, 000,r/m | disp (0 or 2) data (1 or2)
add bx, 6 88/86 4
ADD reg,immed 286 3
386 2
add amount, 27 88/86 17+EA (W88=23+EA)
ADD mem,immed add pointers([bx] [si], 6 286 7
386 7

dara (1 or2)

add ax,10 88/86 4
ADD accum,immed 286 3
386 2

38 PROCESSOR INSTRUCTIONS

AND
Logical AND

Performs a bitwise logical AND on the source and destination operands
and stores the result in the destination operand. For each bit position in
the operands, if both bits are set, then the corresponding bit of the
result is set. Otherwise, the corresponding bit of the result is cleared.

| 001000dw | | modregrim | disp(0or2)
and dx, bx 88/86 3
AND reg,reg 286 2
38 2
and bitmask, bx 88/86 16+EA (W88=24+EA)
AND mem,reg and [bp+2],dx 286 7
386 7
and bx,masker 88/86 9+EA (W88=13+EA)
AND reg,mem and dx,marray [bx+di] 286 7
386 6
| 100000sw | | mod, 100,rim | disp(0or2) data (1 or2)
and dx, OF7h 88/86 4
AND reg,immed 286 3
386 2
and masker,1001b 88/86 17+EA (W88=23+EA)
AND mem,immed 286 7
386 7
0010010w data (1 or2)
and ax,0B6h 88/86 4
AND accum,immed 286 3
386 2

PROCESSOR INSTRUCTIONS 39

ARPL o[D[1 [T[s[z]AlP]C

I+

Adjust Requested

Privilege Level
80286/386 Protected Only

Verifies that the destination Requested Privileged Level (RPL) field
(bits 0 and 1 of a selector value) is less than the source RPL field. If it
is not, ARPL adjusts the destination RPL up to match the source
RPL. The destination operand should be a 16-bit memory or register
operand containing the value of a selector. The source operand should
be a 16-bit register containing the test value. The zero flag is set if the
destination is adjusted; otherwise the flag is cleared. ARPL can only
be used in 80286 and 80386 privileged mode. See Intel documentation
for details on selectors and privilege levels.

[otto0011 | [modregrim | disp(0or2)

arpl ax,cx 88/86 —
ARPL reg,reg 286 10
386 20

arpl selector,dx 88/86 —
ARPL mem,reg 286 11
386 21

40 PROCESSOR INSTRUCTIONS

o[D[T[T[S[Z[A[P|C BOUND

Check Array Bounds
80186/286/386 Only

Verifies that a signed index value is within the bounds of an array. The
destination operand can be any 16-bit register containing the index to
be checked. The source operand must then be a 32-bit memory operand
in which the low and high words contain the starting and ending
values, respectively, of the array. (On the 80386 processor, the
destination operand can be a 32-bit register; in this case, the source
operand must be a 64-bit operand made up of 32-bit bounds.) If the
source operand is less than the first bound or greater than the last
bound, then an Interrupt 5 is generated. The instruction pointer pushed
by the interrupt (and returned by IRET) points to the BOUND
instruction rather than to the next instruction.

I 01100010 J I mod,reg, rim] disp (2)
BOUND regl6,mem32 bound di,base-4 88/86 —
BOUND reg32,mem64* 286 noj=13+
386 noj=10t
* 80386 only.

+ See INT for timings if interrupt 5 is called.

PROCESSOR INSTRUCTIONS 41

BSF/BSR o[D[I[T[S[Z[A[P]C

Bit Scan
80386 Only

I+

Scans an operand to find the first set bit. If a set bit is found, the zero
flag is set and the destination operand is loaded with the bit index of the
first set bit encountered. If no set bit is found, the zero flag is cleared.
BSF (Bit Scan Forward) scans from bit 0 to the most significant bit.
BSR (Bit Scan Reverse) scans from the most significant bit of an
operand to bit 0.

| ooooiitt | | 10111100 | | mod,reg,rim | disp(0,2,0r4)

BSF regl6,regl6 bsf cx,bx 88/86 —
BSF reg32,reg32 286 —
386 10+3n
BSF regl6,meml6 bsf ecx,bitmask 88/86 —
BSF reg32,mem32 286 —
386 10+3n

| ooootitl | [10111101 | | mod,reg rim | disp(0,2,0r4)

BSR regl6,regl6 bsr cx,dx 88/86 —
BSR reg32,reg32 286 —
386 10+3n
BSR regl6,meml6 bsr eax,bitmask 88/86 —
BSR reg32,mem32 286 —
386 10+3n

42 PROCESSOR INSTRUCTIONS

o[D[T[T[s[Z[A]P]C BT/BTC/BTR/BTS

Bit Tests
80386 Only

I+

Copies the value of a specified bit into the carry flag where it can be
tested by a JC or JNC instruction. The destination operand specifies
the value in which the bit is located; the source operand specifies the
bit position. BT simply copies the bit to the flag. BTC copies the bit
and complements (toggles) it in the destination. BTR copies the bit
and resets (clears) it in the destination. BTS copies the bit and sets it
in the destination.

|_ooootitr | [10111010 | [mod, BBB*rim| disp(0,2,0r4) data (1)
bt ax,4 88/86 —
BT regl6,immed8t 286 —
386 3
BTC regl6,immedSt bts ax,4 88/86 —
BTR regl6,immed8+ btr bx,17 286 —
BTS regl6,immed8t btc edi,4 386 6
btr DWORD PTR [si],27 88/86 —
BT meml6,immed8t btc color([di],4 286 —_
386 6
BTC meml6,immedSt btc DWORD PTR [bx],27 88/86 —
BTR meml6,immed8t btc maskit,4 286 —
BTS meml6,immed8t btr color[di],4 386 8
| ooootitr | | 10BBBO11* | | mod,reg, rim | disp(0,2,0r4)
bt ax, bx 88/86 —
BT regl6,regl6t 286 —
386
BTC regl6,regl6 btc eax,ebx 88/86 —
BTR regl6,regl6t bts bx,ax 286 —
BTS regl6,regl6y btr cx,di 386
bt [bx],dx 88/86 —
BT meml6,regl67 286 —
386 12
BTC meml6,regl6t bts flags[bx],cx 88/86
BTR memli6,regl6t btr rotate,cx 286 —
BTS meml6,regl6t btc [bp+8],si 386 13

* BBB is 100 for BT, 111 for BTC, 110 for BTR, and 101 for BTS.
T Operands can also be 32 bits (reg32 and mem32).

PROCESSOR INSTRUCTIONS 43

CALL o[D[1[T[s[Z[A[P][C

Call Procedure

Calls a procedure. The instruction does this by pushing the address of
the next instruction onto the stack and transferring to the address
specified by the operand. For NEAR calls, SP is decreased by 2, the
offset (IP) is pushed, and the new offset is loaded into IP.

For FAR calls, SP is decreased by 2, the segment (CS) is pushed,
and the new segment is loaded into CS. Then SP is decreased by 2
again, the offset (IP) is pushed, and the new offset is loaded into IP. A
subsequent RET instruction can pop the address so that execution
continues with the instruction following the call.

11101000 disp (2)
call upcase 88/86 19 (88=23)
CALL label 286 7+m
386 7+m
10011010 disp (4)
call FAR PTR job 88/86 28 (88=36)
CALL label call distant 286 13+m,pm=26+m*
386 174+m,pm=34+m*
| 1uitnntt || mod,010,rm |
call ax 88/86 16 (88=20)
CALL reg 286 7+m
386 7+m
CALL meml6 call pointer 88/86 21+EA (88=29+EA)
CALL mem32t call [bx] 286 114+4m
386 10+m
| ittt || mod01l,rim |
CALL mem32 call far_table[di] 88/86 37+EA (88=53+EA)
CALL mem48t call DWORD PTR [bx] 286 16+m,pm=29+m*
386 22+m,pm=38+m*

* Timings for calls through call and task gates are not shown, since they are used primarily in
operating systems.

F 80386 32-bit addressing mode only.

44 PROCESSOR INSTRUCTIONS

CBW

Convert Byte to Word

Converts a signed byte in AL to a signed word in AX by extending
the sign bit of AL into all bits of AH.

10011000*
cbw 88/86 2
CBW 286 2
386 3

* CBW and CWDE have the same encoding except that in 32-bit mode CBW is greceded by the

operand-size byte (66h) but CWDE is not; in 16-bit mode CWDE is preceded

byte but CBW is not.

y the operand-size

cDQ

Convert Double to Quad

80386 Only

Converts the signed doubleword in EAX to a signed quadword in the
EDX:EAX register pair by extending the sign bit of EAX into all

bits of EDX.

10011001*

cdq
CDQ

88/86
286
386

2

* CWD and CDQ have the same encoding except that in 32-bit mode CWD is preceded by the
operand-size byte (66h) but CDQ is not; in 16-bit mode CDQ is preceded by the operand-size byte

but CWD is not.

PROCESSOR INSTRUCTIONS 45

CLC o[D[L[T[s[Z][A[P][C
Clear Carry Flag 0
Clears the carry flag.

cle 88/86 2
CLC 286 2

386 2

CLD o[D[1[T[s]z[A]P]C
Clear Direction Flag 0

Clears the direction flag. All subsequent string instructions will
process up (from low addresses to high addresses), by increasing the
appropriate index registers.

cld 88/86 2
CLD 286 2
386 2

46 PROCESSOR INSTRUCTIONS

CLI

Clear Interrupt Flag

Clears the interrupt flag. When the interrupt flag is cleared, maskable
interrupts are not recognized until the flag is set again with the STI
instruction. In privileged mode, CLI only clears the flag if the current
task's privilege level is less than or equal to the value of the IOPL flag.
Otherwise, a general protection fault is generated.

cli 88/86 2
CLI 286 3
386 3

o|D[I|T]S|Z[A[P]C CLTS

Clear Task Switched Flag
80286/386 Privileged Only

Clears the task switched flag in the Machine Status Word (MSW) of
the 80286 or the CRO register of the 80386. This instruction can be
used only in systems software executing at privilege level 0. See Intel
documentation for details on the task switched flag and other privileged-

mode concepts.

| oooortir | [00000110 |
clts 88/86 —
CLTS 286 2
38 5

PROCESSOR INSTRUCTIONS 47

cMC

Complement Carry Flag

Complements (toggles) the carry flag.

+|a

cmc

CMC

88/86
286
386

N

(IS)

48 PROCESSOR INSTRUCTIONS

CMP

Compare Two Operands

+[o
W)
.ﬁ
+ |
H N
H+ 5>
+
+|A

Compares two operands as a test for a subsequent conditional jump or
set instruction. CMP does this by subtracting the source operand from
the destination operand and setting the flags according to the result.
CMP is the same as the SUB instruction, except that the result is not
stored.

| 001110dw | [mod,reg,rim | disp(0or2)
cmp di,bx 88/86 3
CMP reg,reg cmp dl,cl 286 2
386 2
cmp maximum, dx 88/86 9+EA (W88=13+EA)
CMP mem,reg cmp array([si],bl 286 7
386 5
cmp dx,minimum 88/86 9+EA (W88=13+EA)
CMP reg,mem cmp bh,array([si] 286 6
386 6
I 100000sw l [mod, 111,r/m | disp (0 or 2) data (1 or2)
cmp ax,24 88/86 4
CMP reg,immed 286 3
386 2
cmp WORD PTR [di],4 88/86 10+EA (W88=14+EA)
CMP mem,immed cmp tester,4000 286 6
386 5
0011110w data (1 or2)
cmp ax, 1000 88/86 4
CMP accum,immed 286 8
386 2

PROCESSOR INSTRUCTIONS 49

CMPS/CMPSB/ o[D[1]T]s
CMPSW/CMPSD

Compare String

24 (@}

H+ N
>
H |

I+
it

Compares two strings. DS:SI must point to the source string and
ES:DI must point to the destination string (even if operands are
given). For each comparison, the destination element is subtracted from
the source element and the flags are updated to reflect the result
(although the result is not stored). DI and SI are adjusted according to
the size of the operands and the status of the direction flag. They are
increased if the direction flag has been cleared with CLD or decreased if
the direction flag has been set with STD.

If the CMPS form of the instruction is used, operands must be
provided to indicate the size of the data elements to be processed. A
segment override can be given for the source (but not for the
destination). If CMPSB (bytes), CMPSW (words), or CMPSD
(doublewords on the 80386 only) is used, the instruction determines the
size of the data elements to be processed. Operands are not allowed.

CMPS and its variations are usually used with repeat prefixes.
REPNE (or REPNZ) is used to find the first match between two
strings. REPE (or REPZ) is used to find the first nonmatch. Before
the comparison, CX should contain the maximum number of elements
to compare. After the comparison, CX will be 0 if no match (for
REPNE) or no nonmatch (for REPE) was found. Otherwise SI and
DI will point to the element after the first match or nonmatch.

1010011w

CMPS [segreg:lsrc,[ES:ldest | cmps source, es:dest 88/86 22 (W88=30)
CMPSB repne cmpsw 286 8
CMPSW repe cmpsb 386 10

50 PROCESSOR INSTRUCTIONS

CWD

Convert Word to Double

Converts the signed word in AX to a signed word in the DX:AX
register pair by extending the sign bit of AX into all bits of DX.

10011001*
cwd 88/86 5
CWD 286 2
386 2

* CWD and CDQ have the same encoding except that in 32-bit mode CWD is preceded by the
operand-size byte (66h) but CDQ is not; in 16-bit mode CDQ is preceded by the operand-size byte

but CWD is not.

CWDE

Convert Word to
Extended Double
80386 Only

Converts a signed word in AX to a signed doubleword in EAX by
extending the sign bit of AX into all bits of EAX.

cwde 88/86 —
CWDE 286 —
386 3

* CBW and CWDE have the same encoding except that in 32-bit mode CBW is greceded by the

operand-size byte (66h) but CWDE is not; in 16-bit mode CWDE is preceded

byte but CBW'is not.

y the operand-size

PROCESSOR INSTRUCTIONS 51

DAA o[D[1[T[s
Decimal Adjust After Addition ! *

+ [N
+ [>
+ |~
H+lA

X
I+

Adjusts the result of an addition to a packed BCD number (less than
100 decimal). The previous addition instruction should place its 8-bit
binary sum in AL. DAA converts this binary sum to packed BCD
format with the least significant decimal digit in the lower four bits and
the most significant digit in the upper four bits. If the sum is greater
than 99h after adjustment, then the carry and auxiliary carry flags are
set. Otherwise, the carry and auxiliary carry flags are cleared.

daa 88/86 4
DAA 286 3
386 4
DAS o[D[T[T[s[Zz[A]P[C
Decimal Adjust ? e) =) =
after Subtraction

Adjusts the result of a subtraction to a packed BCD number (less than
100 decimal). The previous subtraction instruction should place its 8-
bit binary result in AL. DAS converts this binary sum to packed
BCD format with the least significant decimal digit in the lower four
bits and the most significant digit in the upper four bits. If the sum is
greater than 99h after adjustment, then the carry and auxiliary carry
flags are set. Otherwise, the carry and auxiliary carry flags are cleared.

das 88/86 4
DAS 286 3
386 4

52 PROCESSOR INSTRUCTIONS

o[D[1[T[S[Z[A[P|C DEC
Decrement

I+
I+
I+
I+
I+

Subtracts 1 from the destination operand. Because the operand is treated

as an unsigned integer, the DEC instruction does not affect the carry
flag. If a signed borrow requires detection, use the SUB instruction.

| uitttiw | [mod, 001, | disp(0or2)
dec el 88/86 3
DEC reg8 286 2
386 2
dec counter 88/86 15+EA (W88=23+EA)
DEC mem 286 7
386 6
01001 reg
DEC regl6 dec ax 88/86 3
DEC reg32* 286 2
386 2
* 80386 only.

PROCESSOR INSTRUCTIONS 53

DIV o|D[1 [T[s[z]AlP]C
Unsigned Divide

~
~2
~2
-~
K
>

Divides an implied destination operand by a specified source operand.
Both operands are treated as unsigned numbers. If the source (divisor) is
16 bits wide, then the implied destination (dividend) is the DX:AX
register pair. The quotient goes into AX and the remainder into DX. If
the source is 8 bits wide, the implied destination operand is AX. The
quotient goes into AL and the remainder into AH. On the 80386, if
the source is EAX, the quotient goes into EAX and the divisor into
EDX.

[1inotiw] [mod, 1100im | disp(0or2)

div cx 88/86 b=80-90,w=144-162
DIV reg div dl 286 b=14,w=22
386 b=14,w=22,w=38
div [bx] 88/86 (b=86-96,w=150-168)+EA*
DIV mem div fsize 286 b=17,w=25
386 b=17,w=25,d=41

* Word memory operands on the 8088 take (158-176)+EA clocks.

54 PROCESSOR INSTRUCTIONS

o[D[1[T[s[z[A[P[C ENTER

Make Stack Frame
80186/286/386 Only

Creates a stack frame for a procedure that receives parameters passed on
the stack. The BP register is pushed and BP is set as the stack frame
through which parameters and local variables can be accessed. The first
operand of the ENTER instruction specifies the number of bytes to
reserve for local variables. The second operand specifies the nesting
level for the procedure. The nesting level should be O for languages that
do not allow access to local variables of higher level procedures (such
as C, BASIC, and FORTRAN). See the complementary instruction
LEAVE for a method of exiting from a procedure.

data (2) data (1)
enter 4,0 88/86 —
ENTER immedl6,0 286 11
386 10
enter 0,1 88/86 —_
ENTER immedl6,1 286 15
386 12
enter 6,4 88/86 —
ENTER immed]6,immed8 286 12+4(n-1)
386 15+4(n-1)

PROCESSOR INSTRUCTIONS 55

ESC o[pl1]T[s[z[A]P]C
Escape

Provides an instruction, and optionally a memory or register operand,
for use by a coprocessor (such as the 8087, 80287, or 80387). The first
operand must be a 6-bit constant that specifies the bits of the
coprocessor instruction. The second operand can be either a register or
memory operand to be used by the coprocessor instruction. The CPU
puts the specified information on the data bus where it can be accessed
by the coprocessor. MASM automatically inserts ESC instructions
in coprocessor instructions.

| 1tionrrr* | [mod, LLL*rim |

esc 5,al 88/86 2
ESC immed,reg 286 9-20
386 T
esc 29, [bx] 88/86 8+EA (W88=12+EA)
ESC immed,mem 286 9-20
38 1

* TTT specifies the top three bits of the coprocessor opcode and LLL specifies the lower three bits.
+ Timings vary. See the 80387 timings in the coprocessor section.

HLT o[D[1[T[S[Z]A[P]C
Halt

Stops CPU execution until an interrupt restarts execution at the
instruction following HLT.

hlt 88/86 2
HLT 286 2
38 5

56 _PROCESSOR INSTRUCTIONS

o[D[1[T[S[Zz[A[P[C IDIV
Signed Divide

Divides an implied destination operand by a specified source operand.
Both operands are treated as signed numbers. If the source (divisor) is
16 bits wide, then the implied destination (dividend) is the DX:AX
register pair. The quotient goes into AX and the remainder into DX. If
the source is 8 bits wide, the implied destination is AX. The quotient
goes into AL and the remainder into AH. On the 80386, if the source
is EAX, the quotient goes into EAX and the divisor into EDX.

| 1iotiw] [mod 1itm | disp0or2)
idiv bx 88/86 b=101-112,w=165-184
IDIV reg div dl 286 b=17,w=25
386 b=19,w=27,d=43
idiv itemp 88/86 (b=107-118,w=171-190)+EA*
IDIV mem 286 b=20,w=28
386 b=22,w=30,d=46

* Word memory operands on the 8088 take (175-194)+EA clocks.

PROCESSOR INSTRUCTIONS 57

IMUL
Signed Multiply

+|O
O
—3
17
N
>
2]
@

Multiplies an implied destination operand by a specified source
operand. Both operands are treated as signed numbers. If a single 16-bit
operand is given, the implied destination is AX and the product goes
into the DX:AX register pair. If a single 8-bit operand is given, the
implied destination is AL and the product goes into AX. On the
80386, if the operand is EAX, the product goes into the EDX:EAX
register pair. The carry and overflow flags are set if the product is sign
extended into DX for 16-bit operands, into AH for 8-bit operands, or
into EDX for 32-bit operands.

Two additional syntaxes are available on the 80186-80386 processors.
In the two-operand form, a 16-bit register gives one of the factors and
serves as the destination for the result; a source constant specifies the
other factor. In the three-operand form, the first operand is a 16-bit
register where the result will be stored, the second is a 16-bit register or
memory operand containing one of the factors, and the third is a
constant representing the other factor. With both variations, the
overflow and carry flags are set if the result is too large to fit into the
16-bit destination register. Since the low 16 bits of the product are the
same for both signed and unsigned multiplication, these syntaxes can
be used for either signed or unsigned numbers. On the 80386, the
operands can either 16 or 32 bits wide.

A fourth syntax is available on the 80386. Both the source and
destination operands can be given specifically. The source can be any
16- or 32-bit memory operand or general-purpose register. The
destination can be any general-purpose register of the same size. The
overflow and carry flags are set if the product does not fit in the
destination.

| 11oiiw | | mod, 101,rim | disp(0or2)

imul dx 88/86 b=80-98,w=128-154

IMUL reg 286 b=13,w=21

386 b=9-14,w=9-22,d=9-3871
imul factor 88/86 (b=86-104,w=134-160)+EA*
IMUL mem 286 b=16,w=24

386 b=12-17,w=12-25,d=12-41%

* Word memory operands on the 8088 take (138-164)+EA clocks.

1 The 80386 has an early-out multiplication alﬁorithm. Therefore multiplying an 8-bit or 16-bit value
in EAX takes the same time as multiplying the value in AL or AX.

CONTINUED...

58 PROCESSOR INSTRUCTIONS

| 011010s1 | [mod, reg, rim | disp (0 or 2) data (1 or2)
IMUL regl6,immed imul cx,25 88/86 —
IMUL reg32,immed* 286 21
386 b=9-14,w=9-22,d=9-38}
IMUL regl6,regl6,immed imul dx,ax,18 88/86 —
IMUL reg32,reg32,immed* 286 21
386 b=9-14,w=9-22,d=9-38}
IMUL regl6,meml6,immed imul bx, [si], 60 88/86 —
IMUL reg32,mem32 ,immed* 286 24
386 b=12-17,w=12-25,d=12-41}
| oooorttr | [1010111l | | mod, reg,rim | disp(0or2)
IMUL regl6,regl6 imul cx,ax 88/86 —
IMUL regl6,regl6 286 —
386 w=9-22,d=9-38
IMUL regl6,meml6 imul dx, [si] 88/86 —
IMUL reg32,mem32 286 —

386 w=12-25,d=12-41

* 80386 only.

T The variations depend on the source constant size; destination size is not a factor.

Transfers a byte or word (or doubleword on the 80386) from a port to

IN

Input from Port

the accumulator register. The port address is specified by the source
operand, which can be DX or an 8-bit constant. Constants can only be
used for ports numbers less than 255; use DX for higher port numbers.
In privileged mode, a general protection fault is generated if IN is used
when the current protection level is greater than the value of the IOPL

flag.

)
in ax, 60h 88/86 10 (W88=14)
IN accum,immed 286 5
386 12,pm=6,26*
1110110w
in ax,dx 88/86 8 (W88=12)
IN accum,DX in al,dx 286 S

386 13,pm=7,27*

* First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

PROCESSOR INSTRUCTIONS

59

INC

Increment

(0]
s

el Y

+
I+

Adds 1 to the destination operand. Because the operand is treated as an
unsigned integer, the INC instruction does not affect the carry flag. If a
signed carry requires detection, use the ADD instruction.

[1atitiw | [mod, 000,rim | disp(0or2)
ine ¢l 88/86 3
INC reg8 286 2
386 2
inc vpage 88/86 15+EA (W88=23+EA)
INC mem 286 7
386 6
01000 reg
INC regl6 inc bx 88/86 3
INC reg32* 286 2
386 2
* 80386 only.

60 PROCESSOR INSTRUCTIONS

o[D[1 [T[S[Z[A]P]C INS/INSB/INSW/INSD

Input from Port to String
80186/286/386 Only

Receives a string from a port. The string is considered the destination
and must be pointed to by ES:DI (even if an operand is given). The
input port is specified in DX. For each element received, DI is
adjusted according to the size of the operand and the status of the
direction flag. DI is increased if the direction flag has been cleared with
CLD or decreased if the direction flag has been set with STD.

If the INS form of the instruction is used, a destination operand must
be provided to indicate the size of the data elements to be processed and
DX must be specified as the source operand containing the port
number. A segment override is not allowed. If INSB (bytes), INSW
(words), or INSD (doublewords on the 80386 only) is used, the
instruction determines the size of the data elements to be received. No
operands are allowed.

INS and its variations are usually used with the REP prefix. Before
the repeated instruction is executed, CX should contain the number of
elements to be received. In privileged mode, a general protection fault
is generated if INS is used when the current protection level is greater
than the value of the IOPL flag.

0110110w
INS [ES:]ldest,DX rep insb 88/86 —
INSB ins es:instr,dx 286 5
INSW rep insw 386 15,pm=9,29*

* First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

PROCESSOR INSTRUCTIONS 61

—
1%
N
>
)
@

INT 0o[D

Interrupt 00

Generates a software interrupt. An 8-bit constant operand (0 to 255)
specifies the interrupt procedure to be called. The call is made by
indexing the interrupt number into the Interrupt Descriptor Table (IDT)
starting at segment 0, offset 0. In real mode, the IDT contains 4-byte
pointers to interrupt procedures. In privileged mode, the IDT contains
8-byte pointers. When an interrupt is called in real mode, the flags,
CS, and IP are pushed onto the stack (in that order) and the trap and
interrupt flags are cleared. STI can be used to restore interrupts. See
Intel documentation and the documentation for your operating system
for details on using and defining interrupts in privileged mode. To
return from an interrupt, use the IRET instruction.

)

int 25h 88/86 51 (88=71)
INT immed8 286 23+m,pm=(40,78)+m*
386 37,pm=59,99*

11001100

int 3 88/86 52 (88=72)
INT 3 286 23+m,pm=(40,78)+m*
386 33,pm=59,99*

* The first protected-mode timing is for interrupts to the same %rivile e level. The second is for
interrupts to a higher privilege level. Timings for interrupts through task gates are not shown.

62 PROCESSOR INSTRUCTIONS

o[p[1[T][s]zJAa[P]cC INTO

Interrupt on Overflow

I+
I+

Generates interrupt 4 if the overflow flag is set. The default DOS
behavior for interrupt 4 is to return without taking any action. You
must define an interrupt procedure for interrupt 4 in order for INTO to
have any effect.

11001110

into 88/86 53 (88=73),n0j=4
INTO 286 24+m,noj=3,pm=(40,78)+m*
386 35,n0j=3,pm=59,99*

* The first protected-mode timing is for interrupts to the same %rivile e level. The second is for
interrupts to a higher privilege level. Timings for interrupts through task gates are not shown.

IRET/IRETD

Interrupt Return

O
=)
w»n
H+ N
+ >
@)

I+ |
I+

H+
H
H [—
+
H

Returns control from an interrupt procedure to the interrupted code. In
real mode, the IRET instruction pops IP, CS, and the flags (in that
order) and resumes execution. See Intel documentation for details on
IRET operation in privileged mode. On the 80386, the IRETD
instruction should be used to pop a 32-bit instruction pointer when
returning from an interrupt called from a 32-bit segment.

11001111

IRET iret 88/86 32 (88=44)
IRETD¥ 286 17+m,pm=(31,55)+m*
386 22,pm=38,82*

* The first protected-mode timi_n%lis for interrupts to the same privilege level within a task. The
second is for interrupts to a higher privilege level within a task. Timings for interrupts through task
gates are not shown.

+ 80386 only.

PROCESSOR INSTRUCTIONS 63

Jcondition o[D[T[T[s[z[A]P]C

Jump Conditionally

Transfers execution to the specified label if the flags condition is true.
The condition is tested by checking the flags shown in the table on the
following page. If the condition is false, then no jump is taken and
program execution continues at the next instruction. On the 8088-
80286 processors, the label given as the operand must be short
(between -128 and 127 bytes from the instruction following the jump).
On the 80386, the label is near (between -32768 to +32767 bytes) by
default, but a short jump can be specified with the SHORT operator.

0111cond disp (1)

jg bigger 88/86 16,n0j=4
Jcondition label jo SHORT too_big 286 7+m,noj=3

jpe p even 386 7+m,noj=3
| _ooooitil | | 1000cond | disp (2)

je next 88/86 —
Jcondition label* jnae lesser 286 —

js negative 386 7+m,noj=3

* Near labels are only available on the 80386. They are the default.

CONTINUED...

64 PROCESSOR INSTRUCTIONS

JUMP CONDITIONS
Opcode Mnemonic Flags Checked Description
size 0010 JB/JNAE CF=1 Jump if below/not above or equal
p q
(unsigned comparisons)
size 0011 JAE/JNB CF=0 Jump if above or equal/not below
q
(unsigned comparisons)
size 0110 JBE/JNA CF=1 or ZF=1 Jump if below or equal/not above
(unsigned comparisons)
size 0111 JA/JNBE CF=0 and ZF=0 Jump if above/not below or equal
(unsigned comparisons)
JEJZ ZF=1 Jump if equal (zero)
size 0101 JNE/JNZ ZF=| Jump if not equal (not zero)
size 1100 Jump if less/not greater or equal (signe
JL/JNGE SF£OF if less/not g equal d
comparisons)
size 1101 JGE/JNL SF=OF Jump if greater or equal/not less (signed
comparisons)
size 1110 JLE/JNG ZF=1 or SF#OF Jump if less or equal/not greater (signed
comparisons)
size 1111 JG/JNLE ZF=0 or SF=0OF Jump if greater/not less or equal (signed
comparisons)
Js SF=1 Jump if sign
size 1001 JNS SF=0 Jump if not sign
size 0010 JC CF=1 Jump if carry
size 0011 JNC CF=0 Jump if not carry
JO OF=1 Jump if overflow
JNO OF=0 Jump if not overflow
size 1010 JP/JPE PF=1 Jump if parity/parity even
size 1011 JNP/JPO PF=0 Jump if no parity/parity odd

Note: The size bits are 0111 for short jumps or 1000 for 80386 near jumps.

PROCESSOR INSTRUCTIONS

65

JCXZ/JECXZ o[D[i[TIs[Z]A]P[C
Jump if CX is Zero

Transfers program execution to the specified label if CX is 0. On the
80386, JECXZ can be used to jump if ECX is 0. If the count register
is not 0, execution continues at the next instruction. The label given as
the operand must be short (between -128 and 127 bytes from the
instruction following the jump).

11100011 disp (1)
JCXZ label jexz notfound 88/86 18,n0j=6
JECXZ label* 286 8+m,noj=4
386 9+m,noj=5
* 80386 only.

66 PROCESSOR INSTRUCTIONS

o[p[1[T[s[z]A]P]C JMP
Jump Unconditionally

Transfers program execution to the address specified by the destination
operand. By default, jumps are near (between -32768 and 32767 bytes
from the instruction following the jump), but you can use an override
to make them short (between -128 and 127 bytes) or far (in a different
code segment). With near and short jumps, the operand specifies a new
IP address. With far jumps, the operand specifies new IP and CS
addresses.

11101011 disp (1)
jmp SHORT exit 88/86 15
JMP label 286 7+m
386 7+m
11101001 disp (2%)
jmp close 88/86 15
JMP label jmp NEAR PTR distant 286 7+m
386 7+m
11101010 disp (4%)
jmp FAR PTR close 88/86 15
JMP label jmp distant 286 11+m,pm=23+mf
386 124+m,pm=27+m7

| uattiin | | mod,100,rm |

JMP regl6 jmp ax 88/86 11
JMP reg32§ 286 7+m
386 7+m
JMP meml6 jmp WORD [bx] 88/86 18+EA
JMP mem32§ jmp table[di] 286 114+m
jmp DWORD ([si] 386 10+m

| tiitiiir | [mod,101,rm |

[IMP mem32 jmp _ fpointer([si] 88/86 24+EA
JMP mem48§ jmp DWORD PTR [bx] 286 15+m,pm=26+m
jmp FWORD PTR [di] 386 12+m,pm=27+m

* On the 80386, the displacement can be four bytes for near jumps or six bytes for far jumps.

+Timings for jumps through call or task gates are not shown, since they are normally used only in
operating systems.

§ 80386 only. You can use DWORD PTR to specify near register-indirect jumps or FWORD PTR
to specify far register-indirect jumps.

PROCESSOR INSTRUCTIONS 67

LAHF o[D[1[T[s[Z[A[P]C
Load Flags into AH Register

Transfers bits 0 to 7 of the flags register to AH. This includes the
carry, parity, auxiliary carry, zero, and sign flags, but not the trap,
interrupt, direction, or overflow flags.

10011111

lahf 88/86 4
LAHF 286 2
386 2
LAR o[D[I|T][s][z[A[P[C
Load Access Rights +

80286/386 Protected Only

Loads the access rights of a selector into a specified register. This
instruction is only available in privileged mode. The source operand
must be a register or memory operand containing a selector. The
destination operand must be a register that will receive the access rights
if the selector is valid and visible at the current privilege level. The
zero flag is set if the access rights are transferred, or cleared if they are
not. See Intel documentation for details on selectors, access rights, and
other privileged-mode concepts.

| ooootiil | | 00000010 | | mod,reg,rim | disp(0,2,0r4)
LAR regl6,regl6 lar ax,bx 88/86 —
LAR reg32,reg32* 286 14
386 15
LAR regl6,meml6 lar cx,selector 88/86 —_
LAR reg32,mem32* 286 16
386 16

* 80386 only.

68 PROCESSOR INSTRUCTIONS

LDS/LES/LFS/LGS/LSS

Load Far Pointer

Reads and stores the far pointer specified by the source memory
operand. The pointer's segment value is stored in the segment register
segment specified by the instruction name. The offset value is stored in
the register specified by the destination operand. The LDS and LES
instructions are available on all processors. The LFS, LGS, and LSS
instructions are available only on the 80386. On the 80386, the size of
the source and destination operand must match the current segment
word size.

|_11000101 | [mod, reg, rim | disp (2)
lds si,fpointer 88/86 16+EA (88=24+EA)
LDS regmem 286 7,pm=21
386 7,pm=22
11000100 | [mod, reg, rim | disp (2)
les di, fpointer 88/86 16+EA (88=24+EA)
LES reg,mem 286 7,pm=21
386 7,pm=22
|__ooooit1l | [10110100 | [“mod,reg,rim | disp(20r4)
1fs edi, fpointer 88/86 —
LFS regmem 286 —
386 7,pm=25
|_oooot111 | [10110101] [mod, reg, rim | disp (2 or 4)
lgs bx, fpointer 88/86 —
LGS reg,mem 286 —
386 7,pm=25
L_ooooit1l | [10110010 | [‘mod, reg, rim | disp (2 or4)
lss bp, fpointer 88/86 —
LSS reg,mem 286 —
386 7,pm=22

PROCESSOR INSTRUCTIONS 69

LEA

Load Effective Address

Calculates the effective address (offset) of the source memory operand
and stores the result into the destination register.

[10001101 | | mod, reg, rim | disp (2)
lea bx,npointer 88/86 2+EA
LEA reg,mem 286 3
386 2
LEAVE o[D[1[T[s]z]A[P]C

High Level Procedure Exit

80186/286/386 Only

Terminates the stack frame of a procedure. LEAVE reverses the action
of a previous ENTER instruction by restoring SP and BP to the
values they had before the procedure stack frame was initialized.

11001001

leave
LEAVE

88/86
286
386

LES/LFS/LGS

Load Far Pointer to Extra Segment

See LDS.

70 PROCESSOR INSTRUCTIONS

o[D[1[T[S[Z[A[P]C LGDT/LIDT/LLDT

Load Descriptor Table
80286/386 Privileged Only

Loads a value from an operand into a descriptor table register. LGDT
loads into the Global Descriptor Table, LIDT into the Interrupt
Descriptor Table, and LLDT into the Local Descriptor Table.These
instructions are available only in privileged mode. See Intel
documentation for details on descriptor tables and other privileged-mode
concepts.

| _oooortrr | [00000001 | [mod,010,/m | disp (2)
lgdt descriptor 88/86 —
LGDT mem64 286 11
386 11
| ooootitl | [00000001 | [mod,011,rim | disp (2)
lidt descriptor 88/86 —
LIDT mem64 286 12
386 11
|_oooori1ir | [00000000 | [mod,010,im | disp(0or2)
1l1dt ax 88/86 —
LLDT regl6 286 17
386 20
11dt selector 88/86 —
LLDT meml6 286 19
386 24

PROCESSOR INSTRUCTIONS 71

LMSW o[D[T [T[s[z[A[P[C

Load Machine Status Word

80286/386 Privileged Only

Loads a value from a memory operand into the Machine Status Word
(MSW). This instruction is available only in privileged mode. See
Intel documentation for details on the MSW and other privileged-mode
concepts.

[oooot111] [00000001 | [imod, 110.4/m | disp(0or2)

Imsw ax 88/86 —

LMSW regl6 286 3
386 10

lmsw machine 88/86 —

LMSW meml6 286 6
386 1

LOCK o[D[1[T[s[z[A[P]C

Lock the Bus

Locks out other processors during execution of the next instruction.
This instruction is a prefix. It usually precedes an instruction that
modifies a memory location that another processor might attempt to
modify at the same time. See Intel documentation for details on
multiprocessor environments.

11110000

lock xchg ax,sem 88/86 2
LOCK instruction 286 0
386 0

72 PROCESSOR INSTRUCTIONS

o[D[T[T[S|Z[A[P]C LODS/LODSB/

LODSW/LODSD
Load String Operand

Loads a string from memory into the accumulator register. The string
to be loaded is the source and must be pointed to by DS:SI (even if an
operand is given). For each source element loaded, SI is adjusted
according to the size of the operands and the status of the direction flag.
SI is increased if the direction flag has been cleared with CLD or
decreased if the direction flag has been set with STD.

If the LODS form of the instruction is used, an operand must be
provided to indicate the size of the data elements to be processed. A
segment override can be given. If LODSB (bytes), LODSW (words),
or LODSD (doublewords on the 80386 only) is used, the instruction
determines the size of the data elements to be processed and whether the
element will be loaded to AL, AX, or EAX. Operands are not
allowed.

LODS and its variations are not normally used with repeat prefixes,
since there is no reason to repeatedly load memory values to a register.

1010110w

LODS [segreg:lsrc lods es:source 88/86 12 (W88=16)
LODSB lodsw 286 5
LODSW 386 b

PROCESSOR INSTRUCTIONS 73

LOOP o[p[1]T]s[Z[A]P]C
Loop

Loops repeatedly to a specified label. LOOP decrements CX (without
changing any flags) and if the result is not 0, transfers execution to the
address specified by the operand. If CX is 0 after being decremented,
execution continues at the next instruction. The operand must specify a
short label (between -128 and 127 bytes from the instruction following
the LOOP instruction).

11100010 disp (1)
loop wend 88/86 17,n0j=5
LOOP label 286 8+m,noj=4
386 11+m
LOOPcondition o[D[1[T[S[Z]A[P]C
Loop If

Loops repeatedly to a specified label if condition is met and if CX is
not 0. The instruction decrements CX (without changing any flags)
and tests to see if the zero flag was set by a previous instruction (such
as CMP). With LOOPE and LOOPZ (they are synonyms),
execution is transferred to the label if the zero flag is set and CX is not
0. With LOOPNE and LOOPNZ (they are synonyms), execution is
transferred to the label if the zero flag is cleared and CX is not 0.
Execution continues at the next instruction if the condition is not met.
Before entering the loop, CX should be set to the maximum number
of repetitions desired.

11100001 disp (1)

LOOPE label loopz again 88/86 18,n0j=6

LOOPZ label 286 8+m,noj=4
386 11+m

dip (1)

LOOPNE label loopnz for_next 88/86 19,n0j=5

LOOPNZ label 286 8,noj=4
386 114m

74 PROCESSOR INSTRUCTIONS

]

o[D[1[T[S[Z[A]P]C LSL

Load Segment Limit
80286/386 Protected Only

H

Loads the segment limit of a selector into a specified register. The
source operand must be a register or memory operand containing a
selector. The destination operand must be a register that will receive the
segment limits if the selector is valid and visible at the current
privilege level. The zero flag is set if the segment limits are transferred,
or cleared if they are not. See Intel documentation for details on
selectors, segment limits, and other privileged-mode concepts.

|_ooooii1l | [00000011 | [mod, reg,rim | disp(0or2)
LSL regl6,regl6 1sl ax,ox 88/86 —
LSL reg32,reg32* 286 14
386 20,251
LSL regl6,meml6 1sl cx,seg_lim 88/86 —
LSL reg32,mem32* 286 16
386 21,26t
* 80386 only.

T The first value is for byte granular; the second is for page granular.

LSS

Load Far Pointer to Stack Segment

See LDS.

PROCESSOR INSTRUCTIONS 75

LTR o[D[1[T[s|z[A]P]C

Load Task Register
80286/386 Privileged Only

Loads a value from the specified operand to the current task register.
LTR is available only in privileged mode. See Intel documentation for
details on task registers and other privileged-mode concepts.

[ooooti11 | [00000000 | [imod,001./m | disp (0 or2)
ltr ax 88/86 —_
LTR regl6 286 7.
386 23
ltr task 88/86 —
LTR meml6 286 19
386 27

MOV olD[1 [T[s[z[A[P[C

Move Data

Copies the value in the source operand to the destination operand. If the
destination operand is SS, then interrupts are disabled until the next
instruction is executed (except on early versions of the 8088 and 8086).

[100010aw | [mod, reg.rim | disp(0or2)
mov dh, bh 88/86 2
MOV reg,reg mov dx,cx 286 2
mov bp, sp 386 2
mov array([di],bx 88/86 9+EA (W88=13+EA)
MOV mem,reg mov count, cx 286 3
386 2
mov bx,pointer 88/86 8+EA (W88=12+EA)
MOV reg,mem mov dx,matrix[bx+di] 286 5
386 4
CONTINUED...

76 PROCESSOR INSTRUCTIONS

| 11000tiw | | mod, 000,/m | disp(0or2) data (1 or2)
mov [bx],15 88/86 10+EA (W88=14+EA)
MOV mem,immed mov color, 7 286 3
386 2
a1
mov cx,256 88/86 4
MOV reg,immed mov dx,OFFSET string 286 2
386 2
disp (00r2)
mov total, ax 88/86 10 (W88=14)
MOV mem,accum mov [di],al 286 3
386 2
mov al,string[bx] 88/86 10 (W88=14)
MOV accum,mem mov ax, fsize 286 i)
386 4
| 10001140 | | mod,sreg, rim | disp (0 or 2)
mov ds, ax 88/86 2
MOV segreg,regl6 286 2,pm=17
386 2,pm=18
mov es,psp 88/86 8+EA (88=12+EA)
MOV segreg,meml6 286 5,pm=19
386 5,pm=19
mov ax,ds 88/86 2
MOV regl6,segreg 286 2
386 2
mov stack_save,ss 88/86 9+EA (88=13+EA)
MOV meml6,segreg 286)
386 2

PROCESSOR INSTRUCTIONS 77

MOV o|D[1[T[S|Z][AlP]C

Move to/from
Special Registers
80386 Only

~>
~
~2
~D
~>
~

Stores or loads a value from a special register to or from a 32-bit
general purpose register. The special registers include the control
registers CR0, CR2, and CR3; the debug registers DR0, DR1,
DR2, DR3, DR6, and DR7; and the test registers TR6 and TR7.
See Intel documentation for details on special registers.

[oooo1111] [001000d0 | | 11, reg*,rim |

mov eax,cr2 88/86 —
MOV 132, controlreg 286 —
386
mov cr0,ebx 88/86 —
MOV controlreg,r32 286 —
386 CR0=10,CR2=4,CR3=5

(=}

[ooootiir | [00100041 | [11,reg*, rim |

mov edx,dr3 88/86 —

MOV r32,debugreg 286 —
386 DRO-3=22,DR6-7=14

mov dr0,ecx 88/86 —

MOV debugreg,reg32 286 —

386 DRO0-3=22,DR6-7=16

[ooootiir | [001001d0 | | 1lreg* rim |

mov edx,tré6 88/86 —
MOV 132 testreg 286 —
386 12
mov tr7,eax 88/86 —
MOV testreg, r32 286 —
386 12

* The reg field contains the register number of the special register (for example, 000 for CRO, 011 for
DR7, or 111 for TR7).

78 PROCESSOR INSTRUCTIONS

o[D[1]T]S|Z[A[P][C MOVS/MOVSB/

MOVSW/MOVSD
Move String Data

Moves a string from one area of memory to another. The source string
must be pointed to by DS:SI and the destination address must be
pointed to by ES:DI (even if operands are given). For each element
moved, DI and SI are adjusted according to the size of the operands and
the status of the direction flag. They are increased if the direction flag
has been cleared with CLD, or decreased if the direction flag has been
set with STD.

If the MOYVS form of the instruction is used, operands must be
provided to indicate the size of the data elements to be processed. A
segment override can be given for the source operand (but not for the
destination). If MOVSB (bytes), MOVSW (words), or MOVSD
(doublewords on the 80386 only) is used, the instruction determines the
size of the data elements to be processed. Operands are not allowed.

MOYS and its variations are usually used with the REP prefix.
Before a move using a repeat prefix, CX should contain the number of
elements to move.

1010010w
MOVS [ES:]\dest [segreg:lisrc | rep movsb 88/86 18 (W88=26)
MOVSB movs dest,es:source 286 5
MOVSW 386 7

PROCESSOR INSTRUCTIONS 79

MOVSX o[D[T1[T[s|Z[A]P]C

Move with Sign-Extend
80386 Only

Copies and sign-extends the value of the source operand to the
destination register. MOVSX is used to copy a signed 8-bit or 16-bit
source operand to a larger 16-bit or 32-bit destination register.

| ooootitr | [1otiillw | | mod, reg,rim | disp(0,2,0r4)
movsx eax,bx 88/86 —

MOVSX reg,reg movsx ecx,bl 286 —
movsx bx,al 386 3
movsx cx,bsign 88/86 —

MOVSX reg,mem movsx edx,wsign 286 —
movsx eax,bsign 386 6

MOVZX o[D[1 [T[s[z[A[P]C

Move with Zero-Extend

80386 Only

Copies and zero-extends the value of the source operand to the
destination register. MOVZX is used to copy an unsigned 8-bit or 16-
bit source operand to a larger 16-bit or 32-bit destination register.

[ooooiiir | [101101lw | | mod,reg,rim | disp(0,2,0r4)
movzx eax,bx 88/86 —
MOVZX reg,reg movzx ecx,bl 286 —
movzx bx,al 386 3
movzx Cx,bunsign 88/86 —
MOVZX reg,mem movzx edx,wunsign 286 —
movzx eax,bunsign 386 6

80 PROCESSOR INSTRUCTIONS

O[D[1[T[S[Z[A[P]C MUL
& 2172 ? Unsigned Multiply

X}
X}
-~
X}
=+

Multiplies an implied destination operand by a specified source
operand. Both operands are treated as unsigned numbers. If a single 16-
bit operand is given, the implied destination is AX and the product
goes into the DX:AX register pair. If a single 8-bit operand is given,
the implied destination is AL and the product goes into AX. On the
80386, if the operand is EAX, the product goes into the EDX:EAX
register pair. The carry and overflow flags are set if DX is not O for 16-
bit operands or if AH is not zero for 8-bit operands.

| 11110tiw | | mod, 100,rim | disp(0or2)
mul bx 88/86 b=70-77,w=118-113
MUL reg mul dl 286 b=13,w=21
386 b=9-14,w=9-22,d=9-38+
mul factor 88/86 (b=76-83,w=124-139)+EA*
MUL mem mul WORD PTR ([bx] 286 b=16,w=24
386 b=12-17,w=12-25d=12-41t

* Word memory operands on the 8088 take (128-143)+EA clocks.

T The 80386 has an early-out multiplication alﬁorilhm. Therefore multiplying an 8-bit or 16-bit value
in EAX takes the same time as multiplying the value in AL or AX.

Z[A[P]C NEG

Two's Complement Negation

+[o
]
._]

[[

+

+

+

+

Replaces the operand with its two's complement. NEG does this by
subtracting the operand from 0. If the operand is 0, the carry flag is
cleared. Otherwise the carry flag is set. If the operand contains the
maximum possible negative value (-128 for 8-bit operands or -32768
for 16-bit operands), the value does not change, but the overflow and
carry flags are set.

| 1iiotiw | [mod,011,rim | disp(0or2)
neg ax 88/86 3
NEG reg 286 2
386 2
neg balance 88/86 16+EA (W88=24+EA)
NEG mem 286 7
38 6

PROCESSOR INSTRUCTIONS 81

NOP

No Operation

Performs no operation. NOP can be used for timing delays or

alignment.
10010000*
nop 88/86 3
NOP 286 3
386 3
* The encoding is the same as for XCHG AX,AX.
NOT o[D[1 [T[s[Z]A[P]C

One's Complement Negation

Toggles each bit of the operand by clearing set bits and setting cleared

bits.
| 1i1101tiw | | mod,010,0/m | disp(0or2)
not ax 88/86 3
NOT reg 286 2
386 2 il s
not masker 88/86 16+EA (W88=24+EA)
NOT mem 2867
386 6

82 PROCESSOR INSTRUCTIONS

+

~
I+
[}

OR

Inclusive OR

Performs a bitwise logical OR on the source and destination operands
and stores the result to the destination operand. For each bit position in
the operands, if either or both bits are set, the corresponding bit of the
result it set. Otherwise, the corresponding bit of the result is cleared.

I 000010dw I I mod, reg, rim I disp (0 or2)
or ax, dx 88/86 3
OR reg,reg 286 2
386 2
or [bp+6],cx 88/86 16+EA (W88=24+EA)
OR mem,reg or bits,dx 286 7
386 7
O bx,masker 88/86 9+EA (W88=13+EA)
OR reg,mem or dx,color([di] 286 7
386 6
| 100000sw | | mod001,rim | disp(0or2) data (1 or2)
or dx,110110b 88/86 4
OR reg,immed 286 3
386 2
or flag rec,8 88/86 (b=17,w=25)+EA
OR mem,immed 286 7
386 7
data(1 or2)
or ax, 40h 88/86 4
OR accum,immed 286 3
386 2

PROCESSOR INSTRUCTIONS 83

ouT
Output to Port

Transfers a byte or word (or a doubleword on the 80386) to a port from
the accumulator register. The port address is specified by the destination
operand, which can be DX or an 8-bit constant. In privileged mode, a
general protection fault is generated if OUT is used when the current

protection level is greater than the value of the IOPL flag.

1110011w data (1)
out 60h,al 88/86 10 (88=14)
OUT immed8,accum 286 3
386 10,pm=4,24*
1110111w
out dx,ax 88/86 8(88=12)
OUT DX,accum out dx,al 286 3
386 11,pm=5,25*

* First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

84 PROCESSOR INSTRUCTIONS

e

o[D[1[T[s[z[A[P[C OUTS/OUTSB/

OUTSW/OUTSD

Output String to Port
80186/286/386 Only

Sends a string to a port. The string is considered the source and must
be pointed to by DS:SI (even if an operand is given). The output port
is specified in DX. For each element sent, SI is adjusted according to
the size of the operand and the status of the direction flag. SI is
increased if the direction flag has been cleared with CLD or decreased if
the direction flag has been set with STD.

If the OUTS form of the instruction is used, an operand must be
provided to indicate the size of data elements to be sent. A segment
override can be given. If OUTSB (bytes), OUTSW (words), or
OUTSD (doublewords on the 80386 only) is used, the instruction
determines the size of the data elements to be sent. No operand is
allowed.

OUTS and its variations are usually used with the REP prefix. Before
the instruction is executed, CX should contain the number of elements
to send. In privileged mode, a general protection fault is generated if
OUTS is used when the current protection level is greater than the
value of the IOPL flag.

0110111w

OUTS DX, [[segreg:lsrc | rep outs dx,buffer 88/86 —
OUTSB outsb 286 5
OUTSW rep outw 386 14,pm=8,28*

* First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

PROCESSOR INSTRUCTIONS 85

POP
Pop

Pops the top of the stack into the destination operand. This means that
the value at SS:SP is copied to the destination operand and SP is
increased by 2. The destination operand can be a memory location, a
general purpose 16-bit register, or any segment register except CS.
Use RET to pop CS. On the 80386, 32-bit values can be popped by
giving a 32-bit operand. ESP is increased by 4 for 32-bit pops.

01011 reg
POP regl6 pop Cx 88/86 8 (88=12)
POP reg32* 286 5
386 4
| 10001111 | | mod, 000,r/m | disp (2)
POP meml6 pop param 88/86 17+EA (88=25+EA)
POP mem32* 286, -5
386 5
000,sreg,111
pop es 88/86 8(88=12)
POP segreg pop ds 286 5,pm=20
pop Ss 386 7,pm=21
[oo001111 | [10,sreg,001 |
pop fs 88/86 —
POP segreg* pop gs 286 —
386 7,pm=21

* 80386 only.

86 PROCESSOR INSTRUCTIONS

POPA/POPAD

Pop All
80186/286/386 Only

Pops the top 16 bytes on the stack into the eight general-purpose
registers. The registers are popped in the following order: DI, SI, BP,
SP, BX, DX, CX, AX. The value for the SP register is actually
discarded rather than copied to SP. POPA always pops into 16-bit
registers. On the 80386, use POPAD to pop into 32-bit registers.

POPA popa 88/86 —
POPAD* 286 19
386 24
* 80386 only.
o[D[1[T[s[Z[A[P[C POPF/POPFD
T2 2|2 2] 2] Pop Flags

Pops the value on the top of the stack into the flags register. POPF
always pops into the 16-bit flags register. On the 80386, use POPFD
to pop into the 32-bit flags register.

10011101
POPF popf 88/86 8(88=12)
POPFD* 286 S
386 5
* 80386 only.

PROCESSOR INSTRUCTIONS 87

PUSH
Push

Pushes the source operand onto the stack. This means that SP is
decreased by 2 and the source value is copied to SS:SP. The operand
can be a memory location, a general purpose 16-bit register, or a
segment register. On the 80186-80386 processors, the operand can also
be a constant. On the 80386, 32-bit values can be pushed by giving a
32-bit operand. ESP is decreased by 4 for 32-bit pushes. On the 8088
and 8086, PUSH SP copies the value of SP after the push. On the
80186-80386 processors, PUSH SP copies the value of SP before

the push.

PUSH regl6 push dx 88/86 11 (88=15)
PUSH reg32* 286 3
386 2
[tiinntin | | mod, 110,7/m | disp (2)
PUSH meml6 push [di] 88/86 16+EA (88=24+EA)
PUSH mem32* push fcount 286 5
386 .5
00,sreg,110
push es 88/86 10 (88=14)
PUSH segreg push ss 286 3
push cs 386 2
[ooootiil | [10,sreg,000 |
push fs 88/86 —
PUSH segreg push gs 286 —
386 2
01101050 data (1 or2)
push 'a' 88/86 —
PUSH immed push 15000 286 3
38 2
* 80386 only.

88 PROCESSOR INSTRUCTIONS

PUSHA/PUSHAD

Push All
80186/286/386 Only

Pushes the general-purpose registers onto the stack. The registers are

pushed in the following order: AX, CX, DX, BX, SP, BP, SI, DI.
The value pushed for SP is the value before the instruction. PUSHA
always pushes 16-bit registers. On the 80386, you can use PUSHAD
to push 32-bit registers.

PUSHA pusha 88/86 —
PUSHAD* 286 17
386 18
* 80386 only.
o[D[1|T[S|Z[A[P]C PUSHF/PUSHFD

Push Flags

Pushes the flags register onto the stack. PUSHF always pushes the
16-bit flags register. On the 80386, use PUSHFD to push the 32-bit

flags register.

10011100
PUSHF pushf 88/86 10 (88=14)
PUSHFD* 286 3
386 4
* 80386 only.

PROCESSOR INSTRUCTIONS 89

RCL/RCR/ROL/ROR o[D[1[T[s[Z[A]P

Rotate

+]a

Rotates the bits in the destination operand the number of times
specified in the source operand. RCL and ROL rotate the bits left;
RCR and ROR rotate right.

ROL and ROR rotate the number of bits in the operand. For each
rotation, the leftmost or rightmost bit is copied to the carry flag as
well as rotated. RCL and RCR rotate through the carry flag. The carry
flag becomes an extension of the operand so that a 9-bit rotation is
done for 8-bit operands, or a 17-bit rotation for 16-bit operands.

On the 8088 and 8086, the source operand can be either CL or 1. On
the 80186-80386, the source operand can be CL or an 8-bit constant.
On the 80186-80386, rotate counts larger than 31 are masked off, but
on the 8088 and 8086, larger rotate counts are performed despite the
inefficiency involved. The overflow flag is only modified by single-bit
variations of the instruction; for multiple-bit variations it is undefined.

| 1101000w | |mod, TTT*,rim | disp (0 or 2)
ROL reg,1 ror ax,l 88/86 2
ROR reg.1 rol di,1 286 2
386 3
RCL reg,1 rel dx;l 88/86 2
RCR reg1 rcr bl;1 286 2
386 9
ROL mem,1 ror bits,1 88/86 15+EA (W88=23+EA)
ROR mem,1 rol WORD PTR [bx],1 286 7
386 7
RCL mem,1 rcl WORD PTR [si],1 88/86 15+EA (W88=23+EA)
RCR mem,1 rcr WORD PTR m32[0],1 286 7
386 10

* Wﬁ?ﬁesents one of the following bit codes: 000 for ROL, 001 for ROR, 010 for RCL, or 011
or 1

CONTINUED...

90 PROCESSOR INSTRUCTIONS

| 1101001w | [mod, TTT*rim | disp (0 or 2)
ROL reg,CL ror ax,cl 88/86 8+4n
ROR reg,CL rol dx,cl 286 5+n
386 3
RCL reg,CL rcl dx,cl 88/86 8+4n
RCR reg,CL rer' bl,el 286 S5+n
386 9
ROL mem,CL ror color,cl 88/86 20+EA+4n (W88=28+EA+4n)
ROR mem,CL rol WORD PTR [bp+6],cl 286 8+n
386 7
RCL mem,CL rcr WORD PTR [bx+di],cl| 88/86 20+EA+4n (W88=28+EA+4n)
RCR mem,CL rcl masker 286 8+n
386 10
| 1100000w | [mod,TTT*,rim | disp (0 or2) data (1)
ROL reg,immed8 rol ax,13 88/86 —
ROR reg,immed8 ror bl,3 286 5+n
386 3
RCL reg,immed8 el bx;:5 88/86 —
RCR reg,immed8 rcr si,9 286 S5+n
386 9
ROL mem,immed8 rol BYTE PTR [bx],10 88/86 —
ROR mem,immed8 ror bits,6 286 8+n
386 7
RCL mem,immed8 rcl WORD PTR [bp+8],5 | 88/86 —
RCR mem,immed8 rcr masker,3 286 8+n
386 10

*TIT r?ﬁesems one of the following bit codes: 000 for ROL, 001 for ROR, 010 for RCL, or 011

for R

PROCESSOR INSTRUCTIONS 91

REP
Repeat String

Repeats the string instruction the number of times indicated by CX.
For each string element, the string instruction is performed and CX is
decremented. When CX reaches 0, execution continues with the next
instruction. REP is normally used with MOVS and STOS. (REP
LODS is legal, but has the same effect as LODS.) REP is
additionally used with INS and OUTS on the 80186-80386
processors. On all processors except the 80386, combining a repeat
prefix with a segment override may cause errors if an interrupt occurs

during a string operation.

| 11110010 | [1010010w |

REP MOVS dest,src rep movs source,destin | 88/86 9+17n (W88=9+25n)
REP MOVSB rep movsw 286 5+4n

REP MOVSW 386 8+4n

| 11110010 | [1010101w |

REP STOS dest rep stosb 88/86 9+10n (W88=9+14n)
REP STOSB rep stos destin 286 4+3n

REP STOSW 386 5+5n

| 11110010 | | otio1iow |

REP INS dest,DX rep insb 88/86 —

REP INSB rep ins destin,dx 286 5+4n

REP INSW 386 13+6n,pm=(7,27)+6n*
| 11110010 | | o110illw |

REP OUTS DX,src rep outs dx,source 88/86 —

REP OUTSB rep outsw 286 S5+4n

REP OUTSW 386 12+5n,pm=(6,26)+5n*

*# First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

92 PROCESSOR INSTRUCTIONS

o[D[1[T[S[Z[A[P[C REPcondition
t Repeat String Conditionally

Repeats a string instruction as long as condition is true and the
maximum count has not been reached. REPE and REPZ (the names
are synonyms) repeat while the zero flag is set. REPNE and REPNZ
(the names are synonyms) repeat while the zero flag is cleared. The
conditional repeat prefixes should only be used with SCAS and
CMPS, since these are the only string instructions that modify the
zero flag. Before executing the instruction, CX should be set to the
maximum allowable number of repetitions. For each string element,
the string instruction is performed, CX is decremented, and the zero
flag is tested. On all processors except the 80386, combining a repeat
prefix with a segment override may cause errors if an interrupt occurs
during a string operation.

| 1111001l | [1010011w |

REPE CMPS dest,src repz cmpsb 88/86 9+22n (W88=9+30n)
REPE CMPSB repe cmps destin,src 286 549n

REPE CMPSW 386 5+9n

|_1ittoo1r | [101011lw |

REPE SCAS dest repe scas destin 88/86 9+15n (W88=9+19n)
REPE SCASB repz scasw 286 5+8n

REPE SCASW 386 5+8n

|_11110010 | [1010011w |

REPNE CMPS dest,src repne cmpsw 88/86 9+22n (W88=9+30n)
REPNE CMPSB repnz cmps destin,src 286 549n
REPNE CMPSW 386 5+9n

| _1mioo11 | [o1o101iiw |

REPNE SCAS dest repne scas destin 88/86 9+15n (W88=9+19n)
REPNE SCASB repnz scasb 286 5+8n
REPNE SCASW 386 5+8n

PROCESSOR INSTRUCTIONS 93

RET/RETN/RETF o[D[1|T[s[z]A]P]C

Return from Procedure

Returns from a procedure by transferring control to an address popped
from the top of the stack. A constant operand can be given indicating
the number of additional bytes to release. The constant is normally
used to adjust the stack for arguments pushed before the procedure was
called. Under MASM, the size of a return (near or far) is the size of
the procedure in which the RET is defined with the PROC directive.
Starting with Version 5.0, RETN can be used to specify a near return,
RETF can specify a far return. A near return works by popping a word
into IP. A far return works by popping a word into IP and then
popping a word into CS. After the return, the number of bytes given
in the operand (if any) is added to SP.

11000011
RET ret 88/86 16 (88=20)
RETN retn 286 1l+m
386 10+m
11000010 data (2)
RET immed8 ret 2 88/86 20 (88=24)
RETN immed8 retn 8 286 1l4m
386 10+m
11001011
RET ret 88/86 26 (88=34)
RETF retf 286 15+m,pm=25+m,55*
386 18+m,pm=32+m,62*
11001010 data(2)
RET immedl6 ret 8 88/86 25 (88=33)
RETF immedl6 retf 32 286 15+m,pm=25+m,55*
386 18+m,pm=32+m,68*

* The first protected mode timing is for a return to the same privilege level; the second is for a return
to a lesser privilege level.

94 PROCESSOR INSTRUCTIONS

ROL/ROR

Rotate

See RCL/RCR

SAHF
Store AH into Flags

H 3>
H+ |0

I+
H1A

Transfers AH into bits O to 7 of the flags register. This includes the
carry, parity, auxiliary carry, zero, and sign flags, but not the trap,
interrupt, direction, or overflow flags.

10011110
sahf 88/86 4
SAHF 286 2
386 3

PROCESSOR INSTRUCTIONS 95

SAL/SAR/SHL/SHR o[p[1[T[s[z[A[P]C
Shift ? +

I+
-
I+
9
I+
+

Shifts the bits in the destination operand the number of times specified
by the source operand. SAL and SHL shift the bits left; SAR and
SHR shift right.

With SHL, SAL, and SHR, the bit shifted off the end of the operand
is copied into the carry flag and the leftmost or rightmost bit opened by
the shift is set to 0. With SAR, the bit shifted off the end of the
operand is copied into the carry flag and the leftmost bit opened by the
shift retains its previous value (thus preserving the sign of the
operand). SAL and SHL are synonyms; they have the same effect.

On the 8088 and 8086, the source operand can be either CL or 1. On
the 80186-80386 processors, the source operand can be CL or an 8-bit
constant. On the 80186-80386 processors, shift counts larger than 31
are masked off, but on the 8088 and 8086, larger shift counts are
performed despite the inefficiency involved. The overflow flag is only
modified by single-bit variations of the instruction; for multiple-bit
variations it is undefined.

I IlOlOOOM'J [mnd, TTT*rim] disp (0 or2)
sar di,1 88/86 2
SAR reg,1 sar el; 1 286 2
386 3
SAL reg,1 shr dh,1 88/86 2
SHL reg,1 shl si,1 286 2
SHR reg,1 sal bx, 1 386 3
sar count, 1 88/86 15+EA (W88=23+EA)
SAR mem,1 286 7
386 7
SAL mem,1 sal WORD PTR m32([0],1| 80/86 15+EA (W88=23+EA)
SHL mem,1 shl index,1 286 7
SHR mem,1 shr unsign[di],1 386 7

* TTT represents one of the following bit codes: 100 for SHL or SAL, 101 for SHR, or 111 for SAR.

CONTINUED...

96 PROCESSOR INSTRUCTIONS

| 1101001w | |mod, TTT*t/m | disp (O or2)
sar bx,cl 88/86 8+4n
SAR reg,CL sar dx,cl 286 5+n
386 3
SAL reg,CL shr dx,cl 88/86 8+4n
SHL reg,CL shl di,cl 286 5+n
SHR reg,CL sal ah,cl 386 3
sar sign,cl 88/86 20+EA+4n (W88=28+EA+4n)
SAR mem,CL sar WORD PTR [bp+8],cl| 286 8+n
386 7
SAL mem,CL shr WORD PTR m32([2],cl|88/86 20+EA+4n (W88=28+EA+4n)
SHL mem,CL sal BYTE PTR [di],cl 286 8+n
SHR mem,CL shl index,cl 386 7
I 1100000w] [mod,TIT*,r/m] disp (0 or2) data (1)
sar bx,5 88/86 —
SAR reg,immed8 sar cl,5 286 5+n
386 3
SAL reg,immed8 sal cx,6 88/86 —
SHL reg,immed8 shl di,2 286 5+n
SHR reg,immed8 shr bx,8 386 3
sar sign _count,3 88/86 —
SAR mem,immed8 sar WORD PTR [bx],5 286 8+n
386 7
SAL mem,immed8 shr memlé6,11 88/86 —
SHL mem,immed8 shl unsign,4 286 8+n
SHR mem,immed8 sal array(bx+di], 14 386 7

* TTT represents one of the following bit codes: 100 for SHL or SAL, 101 for SHR, or 111 for SAR.

PROCESSOR INSTRUCTIONS 97

SBB

Subtract with Borrow

—
H [N
+ [>
+ | v
+|a

Subtracts the source from the destination, then subtracts the the value
of the carry flag from the result. This result is assigned to the
destination. SBB is used to subtract the least significant portions of

numbers that must be processed in multiple registers.

| 000110aw | | mod, reg,rim | disp(0or2)
sbb dx,cx 88/86 3
SBB reg,reg 286! 2
386 2
sbb WORD PTR m32([2],dx | 88/86 16+EA (W88=24+EA)
SBB mem,reg 286 7
386 6
sbb dx,WORD PTR m32[2] | 88/86 9+EA (W88=13+EA)
SBB reg,mem 286 7
386 7
| 100000sw | [mod 011, rim | disp (0 or 2) data (1 or2)
sbb dx, 45 88/86 4
SBB reg,immed 286 3
386 2
sbb WORD PTR m32([2],40| 88/86 17+EA (W88=25+EA)
SBB mem,immed 286 7
386 7
0001110w data (1 or2)
sb ax,320 88/86 4
SBB accum,immed 286 3
38 2

98 PROCESSOR INSTRUCTIONS

olD[1[T]s|Z[A[P]C SCAS/SCASB/

SCASW/SCASD
Scan String Flags

+
+
+
+
+
+

Scans a string to find a value specified in the accumulator register. The
string to be scanned is considered the destination and must be pointed
to by ES:DI (even if an operand is specified). For each element, the
destination element is subtracted from the accumulator value and the
flags are updated to reflect the result (although the result is not stored).
DI is adjusted according to the size of the operands and the status of the
direction flag. DI is increased if the direction flag has been cleared with
CLD or decreased if the direction flag has been set with STD.

If the SCAS form of the instruction is used, an operand must be
provided to indicate the size of the data elements to be processed. No
segment override is allowed. If SCASB (bytes), SCASW (words), or
SCASD (doublewords on the 80386 only) is used, the instruction
determines the size of the data elements to be processed and whether the
element scanned for is in AL, AX, or EAX. No operand is allowed.

SCAS and its variations are usually used with repeat prefixes.
REPNE (or REPNZ) is used to find the first match of the
accumulator value. REPE (or REPZ) is used to find the first
nonmatch. Before the comparison, CX should contain the maximum
number of elements to compare. After the comparison, CX will be 0 if
no match or nonmatch was found. Otherwise SI and DI will point to
the element after the first match or nonmatch.

101011 1w
SCAS [ES:]\dest repne scasw 88/86 15 (W88=19)
SCASB repe scasb 286 7
SCASW scas es:destin 386 7

PROCESSOR INSTRUCTIONS 99

SETcondition
Set Conditionally

80386 Only

Sets the byte specified in the operand to 1 if condition is true or to O if
condition is false. The condition is tested by checking the flags shown
in the table on the following page. The instruction is used to

conditionally set Boolean flags.

| oooottil | | 100lcond | | mod,000,rim |
setc dh 88/86 —
SETcondition reg8 setz al 286 —
setae bl 386 4
seto BTYE PTR [bx] 88/86 —_
SETcondition mem8 setle flag 286 —
sete Booleans [di] 386 5

CONTINUED...

100 PROCESSOR INSTRUCTIONS

SET CONDITIONS

Opcode

10010110

=] = 1= =
S — = >

10010101

2
E

100

S

i

1111

:
:

g
g

S
s
(=)

gl I8
j [

g
g

1001101

!

10011011

Mnemonic

SETB/SETNAE

SETAE/SETNB

SETBE/SETNA

SETA/SETNBE

SETE/SETZ
SETNE/SETNZ

SETL/SETNGE

SETGE/SETNL

SETLE/SETNG

SETG/SETNLE

SETS

SETNS

SETC
SETNC

SETO
SETNO
SETP/SETPE

SETNP/SETPO

Flags Checked
CF=1
CF=0
CF=1 or ZF=1
CF=0 and ZF=0

ZF=1
ZF=0

SF#OF
SF=OF
ZF=1 or SF+OF
ZF=0 or SF=OF

SF=1

SF=0
CF=1
CF=0
OF=1
OF=0
PF=1

PF=0

Description

Set if below/not above or equal
(unsigned comparisons)

Set if above or equal/not below
(unsigned comparisons)

Set if below or equal/not above
(unsigned comparisons)

Set if above/not below or equal
(unsigned comparisons)

Set if equal/zero
Set if not equal/not zero

Set if less/not greater or equal
(signed comparisons)

Set if greater or equal/not less
(signed comparisons)

Set if less or equal/not greater or

equal (signed comparisons)

Set if greater/not less or equal
(signed comparisons)

Set if sign

Set if not sign

Set if carry

Set if not carry

Set if overflow

Set if not overflow

Set if parity/parity even

Set if no parity/parity odd

PROCESSOR INSTRUCTIONS

101

SGDT/SIDT/SLDT

Store Descriptor Table
80286/386 Privileged Only

Stores a Descriptor Table register into a specified operand. SGDT
stores the Global Descriptor Table; SIDT, the Interrupt Descriptor
Table; and SLDT, the Local Descriptor Table. These instructions are
available only in privileged mode. See Intel documentation for details
on descriptor tables and other privileged-mode concepts.

[oooortrr | [00000001 | [mod000.r/m | disp (2)
sgdt descriptor 88/86 —
SGDT mem64 286 11
386 9
[ooooriir | [00000001 | [mod.001.rim | disp (2)
sidt descriptor 88/86 —
SIDT mem64 286 12
386 9
[00001111 I I 00000000 | [mod, 000,r/m I disp (O or2)
sldt ax 88/86 —
SLDT regl6 286 2
386 2
sldt selector 88/86 —
SLDT meml6 286 3
386 2

SHL/SHR

Shift

See SAL/SAR

102 PROCESSOR INSTRUCTIONS

ey

X
+
I+
>

H+

SHLD/SHRD

Double Precision Shift
80386 Only

Shifts the bits of the second operand into the first operand. The number
of bits shifted is specified by the third operand. SHLD shifts the first
operand to the left by the number of positions specified in the count.
The positions opened by the shift are filled by the most significant bits
of the second operand. SHRD shifts the first operand to the right by
the number of positions specified in the count. The positions opened
by the shift are filled by the least significant bits of the second operand.
The count operand can be either CL or an 8-bit constant. If a shift
count larger than 31 is given, it will be adjusted by using the remainder
(modulus) of a division by 32.

| _oooortil | [10100100 | [modregrim | disp(0or2) data (1)
SHLD regl6,regl6,immed8 | shld ax,dx,10 88/86 —
SHLD reg32,reg32,immed 8 286 —
38 3
SHLD memli6,regl6,immed8| shld bits,cx,5 88/86 —
SHLD mem32,reg32,immed8 286 —
386 7
| _oooorirr | [10101100 | [mod,regrim | disp (0 or2) data (1)
SHRD regl6,regl6,immed 8 | shrd cx,si,3 88/86 —
SHRD reg32,reg32,immed 8 286 —
386
SHRD meml6,regl6,immed8| shrd [di],dx,13 88/86 —
SHRD mem32,reg32,immed8 286 —
386 7

| oooorr1l | | 10100101 |

| mod,reg,rim | disp (0 or 2)

SHLD regl6,regl6,CL shld ax,dx,cl 88/86 —
SHLD reg32,reg32,CL 286 —

38 3
SHLD meml6,regl6,CL shld masker,ax,cl 88/86
SHLD mem32,reg32,CL 286

386 7
|_ooooit1r | [10101101 | [modregrim | disp(0or2)
SHRD regl6,regl6,CL shrd bx,dx,cl 88/86 —
SHRD reg32,reg32,CL 286 —

386 3
SHRD meml6,regl6,CL shrd [bx],dx,cl 88/86
SHRD mem32,reg32,CL 286

386 7

PROCESSOR INSTRUCTIONS 103

SMSW o[D[1[T[s[Z]A

Store Machine Status Word

80286/386 Privileged Only

Stores the Machine Status Word (MSW) into a specified memory
operand. SMSW is available only in privileged mode. See Intel
documentation for details on the MSW and other privileged-mode
concepts.

[oooor1ir] [00000001 | [mod,100,/im | disp(0or2)
SmsSwWw ax 88/86 —
SMSW regl6 286 2
386 10
smsw machine 88/86 —
SMSW meml6 286 3
386 3,pm=2
STC o[D[1[T[s[z]A

Set Carry Flag

Sets the carry flag.

stc 88/86 2
STC 286 2
386 2

104 PROCESSOR INSTRUCTIONS

STD
Set Direction Flag

Sets the direction flag. All subsequent string instructions will process

down (from high addresses to low addresses).

std 88/86 2
STD 286 2
386 2

o[D[1 [T[s[zAlP STI

Set Interrupt Flag

Sets the interrupt flag. When the interrupt flag is set, maskable
interrupts are recognized. If interrupts were disabled by a previous CLI
instruction, pending interrupts will not be executed immediately; they
will be executed after the instruction following STI.

11111011
sti 88/86 2
STI 286 2
38 3

PROCESSOR INSTRUCTIONS 105

STOS/STOSB/ o[D[1]T]s]Z]A[P]C

STOSW/STOSD
Store String Data

Stores the value in the accumulator to a string. The string to be filled
is the destination and must be pointed to by ES:DI (even if an operand
is given). For each source element loaded, DI is adjusted according to
the size of the operands and the status of the direction flag. DI is
increased if the direction flag has been cleared with CLD or decreased if
the direction flag has been set with STD.

If the STOS form of the instruction is used, an operand must be
provided to indicate the size of the data elements to be processed. No
segment override is allowed. If STOSB (bytes), STOSW (words), or
STOSD (doublewords on the 80386 only) is used, the instruction
determines the size of the data elements to be processed and whether the
element will be from AL, AX, or EAX. No operand is allowed.

STOS and its variations are often used with the REP prefix. Before
the repeated instruction is executed, CX should contain the number of
elements to store.

1010101w

STOS [ES:]dest stos es:dstring 88/86 11 (W88=15)
STOSB rep stosw 286 3
STOSW rep stosb 386 4

106 PROCESSOR INSTRUCTIONS

o[D[1 [T[s[z[A[P[C STR

Store Task Register
80286/386 Privileged Only

Stores the current task register to the specified operand. This
instruction is only available in privileged mode. See Intel
documentation for details on task registers and other privileged-mode
concepts.

| ooootitl | | 00000000 | [mod,001,reg | disp (0 or 2)

str cx 88/86
STR regl6 286
386
str taslreg 88/86
STR meml6 286
386

PROCESSOR INSTRUCTIONS 107

SuUB o|D[T|T]s
Subtract

H N
H
+ |~

¢
+

I+
+

Subtracts the source operand from the destination operand and stores the
result in the destination operand.

| 001010dw | | mod, reg, rim | disp (0 or 2)
sub ax,bx 88/86 3
SUB reg,reg sub bh,dh 286 2
386 2
sub tally,bx 88/86 16+EA (W88=24+EA)
SUB mem,reg sub array[di],bl 286 7
386 6
sub cx,discard 88/86 9+EA (W88=13+EA)
SUB reg,mem sub al, [bx] 286 7
386 7
| 100000sw | | mod,101,r/im | disp (0 or 2) data (1 or2)
sub dx, 45 88/86 4
SUB reg,immed sub bl,7 286 3
386 2
sub total, 4000 88/86 17+EA (W88=25+EA)
SUB mem,immed sub BYTE PTR [bx+di],2 286 7
386 7
0010110w data (1 or2)
sub ax, 32000 88/86 4
SUB accum,immed 286 3
386 2

108 PROCESSOR INSTRUCTIONS

H N
S
a~]
@]

I+
()

TEST

Logical Compare

Tests specified bits of an operand and sets the flags for a subsequent
conditional jump or set instruction. One of the operands contains the
value to be tested. The other contains a bit mask indicating the bits to
be tested. TEST works by doing a logical bitwise AND on the source
and destination operands. The flags are modified according to the result,
but the destination operand is not changed. This instruction is the same
as the AND instruction, except that the result is not stored.

| 1000011w | | mod,reg,rim | disp(0or2)
test dx,bx 88/86 3
TEST reg,reg test bl,ch 286 2
L 386 2
TEST mem,reg* test dx,flags 88/86 9+EA (W88=13+EA)
TEST reg,mem test bl,bitarray[bx] 286 6
38 5
| 1iiiotiw | [mod,000,im | disp(0or2) data (1 or2)
test cx,30h 88/86 5
TEST reg,immed test ¢1,1011b 286 3
386 2
test masker,1 88/86 11+EA
TEST mem,immed test BYTE PTR [bx],03h 286 6
38 5
1010100w data (1 or2)
test ax,90h 88/86 -+
TEST accum,immed 286 3
386 2

* MASM transposes TEST mem,reg so that it is encoded as TEST reg,mem.

PROCESSOR INSTRUCTIONS

109

VERR/VERW o[D[1[T[s[z][A[P]C

Verify Read or Write
80286/386 Protected Only

+

Verifies that a specified segment selector is valid and can be read or
written to at the current privilege level. VERR verifies that the
selector is readable. VERW verifies that the selector can be written to.
If the segment is verified, the zero flag is set. Otherwise the zero flag is
cleared. These instructions are available only in privileged mode. See
Intel documentation for details on segment selectors and other
privileged-mode concepts.

[oooo1ii1] [00000000 | [mod, 100,rim | disp (0 or 2)
verr ax 88/86 —
VERR regl6 286 14
386 10
verr selector 88/86 —
VERR meml6 286 16
386 11

[oooorii1] [00000000 | [mod,101,rim | disp (0 or 2)
verw cx 88/86 —_
VERW regl6 286 14
386 15
verw selector 88/86 —
VERW meml6 286 16
386 16

110 PROCESSOR INSTRUCTIONS

o[D[1[T[S[Z[A[P]C WAIT
Wait

Suspends CPU execution until a signal is received that a coprocessor
has finished a simultaneous operation. It should be used to prevent a
coprocessor instruction from modifying a memory location that is
being modified at the same time by a processor instruction. WAIT is
the same as the coprocessor FWAIT instruction.

10011011
wait 88/86 4
WAIT 286 3
386 6

o[D[1[T[S[Z[A[P]C XCHG

Exchange

Exchanges the values of the source and destination operands.

| 1o000tiw | | modregrim | disp(0or2)
xchg cx,dx 88/86 4
XCHG reg,reg xchg 1,dh 286 3
xchg al,ah 386 3
XCHG reg,mem xchg [bx],ax 88/86 17+EA (W88=25+EA)
XCHG mem,reg xchg bx,pointer 286 5
386 5
10010 reg
XCHG accum,regl6* xchg ax,cx 88/86 3
XCHG regl6,accum* xchg cx,ax 286 3
386 3

* On the 80386, the accumulator may also be exchanged with a 32-bit register.

PROCESSOR INSTRUCTIONS 111

XLAT/XLATB o[D[1|T[s[z[A]P]C

Translate

Translates a value from one coding system to another by looking up
the value to be translated in a table stored in memory. Before the
instruction is executed, BX should point to a table in memory and AL
should contain the unsigned position of the value to be translated from
the table. After the instruction, AL will contain the table value with
the specified position. No operand is required, but one can be given in
order to specify a segment override. DS is assumed unless a segment
override is given. Starting with version 5.0, XLATB is recognized as
a synonym for XLAT. Either version allows an operand, but neither
requires one.

11010111

XLAT [[segregll:mem] xlat 88/86 11
XLATB [[[segregl:mem] | xlatb es:table 286 5
386 5

112 PROCESSOR INSTRUCTIONS

XOR

Exclusive OR

+ N
oq>
H+ |
S [@)

Performs a bitwise exclusive OR on the source and destination
operands, and stores the result to the destination. For each bit position
in the operands, if both bits are set or if both bits are cleared, the
corresponding bit of the result is cleared. Otherwise, the corresponding
bit of the result is set.

| 001100dw | | mod,reg,rim | disp(0or2)
xor cx,bx 88/86 3
XOR reg,reg xor ah,al 286 2
386 2
Xor [bp+10],cx 88/86 16+EA (W88=24+EA)
XOR mem,reg Xor masked, bx 286 7
386 6
xor cx, flags 88/86 9+EA (W88=13+EA)
XOR reg,mem xor bl,bitarray(di] 286 7
386 7
[100000sw | [mod,110,r/m I disp (0 or2) data (1 or2)
Xor bx, 10h 88/86 4
XOR reg,immed xor bl,1 286 3
386 2
xor Boolean, 1 88/86 17+EA (W88=25+EA)
XOR mem,immed xor switches[bx],101b 286 7
386 7
0011010w data (1l or2)
xor ax,01010101b 88/86 4
XOR accum,immed 286 3
386 2

PROCESSOR INSTRUCTIONS 113

FEFRFREFFRFEFEFEEREDREDREERERTE

pcjs.org

Coprocessor

Interpreting Coprocessor Instructions
Syntax
Examples
Clock Speeds
Instruction Size
Architecture
Instructions

Topical Cross-Reference

Load
FLD/FILD/FBLD
FXCH

FLDCW
FLDENV

FSTENV/FNSTENV

Store Data
FST/FIST

FSTP/FISTP/FBSTP

FSTCW/FNSTCW
FSTSW/FNSTSW
FSAVE/FNSAVE
FRSTOR

Load Constant
FLD1

FLDL2E
FLDL2T
FLDLG2
FLDLN2

FLDPI

FLDZ

* 80287 only.

Arithmetic
FADD/FIADD
FADDP
FSUB/FISUB
FSUBP
FSUBR/FISUBR
FSUBRP
FMUL/FIMUL
FMULP
FSCALE
FDIV/FIDIV
FDIVP
FDIVR/FIDIVR
FDIVRP
FABS

FCHS
FRNDINT
FSQRT
FPREM
FPREMI1
FXTRACT

180387 only.

Transcendental

FPTAN
FPATAN
FSIN 1
FCOS *
FSINCOS *
F2XM
FYL2X
FYL2PI
FPREEM
FPREMI t

ompare

FCOM/FICOM
FCOMP/FICOMP
FCOMPP
FUCOM *
FUCOMP ¥
FUCOMPP ¥
FTST

FXAM
FSTSW/FNSTSW

§ 8087 only.

Processor

Control

FINIT/FNINIT
FFREE

FNOP

FWAIT
FDECSTP
FINCSTP
FCLEX/FNCLEX
FSETPM *
FDISI/FNDISI §
FENI/FNENI §
FSAVE/FNSAVE
FLDCW
FRSTOR
FSTCW/FNSTCW
FSTSW/FNSTSW
FSTENV/FNSTENV

N

-l & d

-l

1

g

T—

Interpreting Coprocessor Instructions

This section provides an alphabetical reference to instructions of the
8087, 80287, and 80387 coprocessors. The format is the same as for
the processor instructions except that encodings are not provided.
Differences are noted below.

Syntax

Syntaxes in Column 1 use the following abbreviations for operand
types:

reg A coprocessor stack register

memreal A direct or indirect memory operand where a real number is
stored

memint A direct or indirect memory operand where a binary integer
is stored

membcd A direct or indirect memory operand where a BCD number is
stored

Examples

The examples in Column 2 are randomly chosen, and no significance
should be attached to their order or placement. They are valid examples
of the associated syntax, but there is no attempt to illustrate all
possible operand combinations or to show context. Their position is
not related to the clock speeds in Column 3.

Clock Speeds

Column 3 shows the clock speeds for each processor. Sometimes an
instruction may have more than one possible clock speed. The
following abbreviations are used to specify variations:

EA Effective address. This applies only to the 8087. See the
Processor Section, "Timings on the 8080 and 8086
Processors," for an explanation of effective address timings.

s,1,t Short real, long real. and 10-byte temporary real.
w,d,q Word. doubleword. and quadword binary integer.
t,f To or from stack top. On the 80387, the t clocks represent

timings when ST is the destination. The f clocks represent
timings when ST is the source.

COPROCESSOR INTRODUCTION 115

Instruction Size

The instruction size is always two bytes for instructions that do not
access memory. For instructions that do access memory, the size is
four bytes on the 8087 and 80287. On the 80387, the size for
instructions that access memory is four bytes in 16-bit mode or six
bytes in 32-bit mode.

On the 8087, each instruction must be preceded by the WAIT (also
called FWAIT) instruction, thereby increasing the instruction's size by
one byte. MASM inserts WAIT automatically by default, or with
the .8087 directive.

Architecture

The 8087, 80287, and 80387 coprocessors have several elements of
architecture in common. All have a register stack made up of eight 80-
bit data registers. These can contain floating-point numbers in the
temporary real format. The coprocessors also have 14 bytes of control
registers. The format of registers is shown in Figure 2.

Data Register Stack
79 63 0

ST

ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)
ST(7)

] 1
Sign Mantissa
Exponent

Control Registers

Control word
Status word
Tag word

Instruction pointer = — — — —

Operand pointer ~ f~ — — — —

Figure 2 Coprocessor Registers

116 COPROCESSOR INTRODUCTION

The most important control registers are the control word and the status

word. The format of these registers is shown in Figure 3.

Control Word
15

Z

[x o] 7o [7o [ie] [ru[onJou]ouom[][]

Status Word
15 7
Z Z
|B|cal ST |C2IC1|COIES'|SF'|PEIUE|OE|ZEIDE,IED

Abbreviations for Fields in Control Word and Status Word

IC - Infinity Control Exception Masks and Flags
0 = Projective (default on 8087 and 80287) PM/PE - Precision
1 = Affine UM/UE - Underflow
#8087 and 80287 only; 80387 OMY/OE - Overflow
uses affine regardless of setting ZM/ZE - Zero Divide
DM/DE - Denormalized Operand
RC - Rounding Control IM/IE - Invalid Operation
00 = Round to nearest or even (default) For masks,
01 = Round down toward -infinity 1 = masked; 0 = unmasked
10 = Round up toward +infinity For exceptions,
11 = Chop by truncating toward 0 1 = exception; 0 = no exception
PC - Precision Control B - Busy
00 = 24-bit mantissa (1 = exception control unit active)
10 = 53-bit mantissa
11 = 64-bit mantissa (default) C3
C2{ Condition Codes
IE - Interrupt Enable Mask Cl
* 8087 only; undefined on 80287 C0,
and 80387
ST - Stack Top Pointer
SF - Stack Flag (points to current top of stack)
* 80387 only; undefined on 8087
and 80287 ES - Error Summary (80287-387)

* IR - Interrupt Request on 8087

Figure 3 Control Word and Status Word

COPROCESSOR INTRODUCTION

117

FE P EREFERFREREREFERERERNRRERPRENERERR

pcjs.org

F2XM1
2X-1

Calculates Y = 2% - 1. X is taken from ST. The result, Y, is returned
in ST. X must be in the range 0 < X < 0.5 on the 8087 and 80287, or
in the range -1.0 < X < +1.0 on the 80387.

f2xml 87 310-630
F2XM1 287 310-630
387 211-476

FABS

Absolute Value

Converts the element in ST to its absolute value.

fabs 87 10-17
FABS 287 10-17
387 22

COPROCESSOR INSTRUCTIONS 119

FADD/FADDP/FIADD

Add

Adds the source to the destination and returns the sum in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the sum replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is added to ST(1) and the stack
is popped, returning the sum in ST. For FADDP, the source must be
ST; the sum is returned in the destination and ST is popped.

fadd st,st(2) 87 70-100
FADD [reg.regl fadd st(5),st 287 70-100
fadd 387 1=23-31,f=26-34
faddp st(6),st 87 75-105
FADDP reg ST 287 75-105
387 23-31
fadd QWORD PTR [bx] 87 (s=90-120,s=95 125)+EA
FADD memreal fadd shortreal 287 $=90-120,1=95-125
387 $=24-321=29-37
fiadd intl6 87 (w=102-137,d=108-143)+EA
FIADD memint fiadd warray[di] 287 w=102-137,d=108-143
fiadd double 387 w=71-85,d=57-72

FBLD

Load BCD

See FLD.

FBSTP

Store BCD and Pop

See FST.

120 COPROCESSOR INSTRUCTIONS

FCHS
Change Sign

Reverses the sign of the value in ST.

fchs 87 10-17
FCHS 287 10-17
387 24-25

FCLEX/FNCLEX

Clear Exceptions

Clears all exception flags, the busy flag and bit 7 in the status word.
Bit 7 is the interrupt request flag on the 8087 and the error status flag
on the 80287 and 80387. The instruction has wait and no-wait
versions.

FCLEX fclex 87
FNCLEX 287
387 11

I'\) [}
v
o0 oo

COPROCESSOR INSTRUCTIONS 121

FCOM/FCOMP/FCOMPP/
FICOM/FICOMP

Compare

Compares the specified source to ST and sets the condition codes of
the status word according to the result. The instruction works by
subtracting the source operand from ST without changing either
operand. Memory operands can be 32- or 64-bit real numbers or 16- or
32-bit integers. If no operand is specified or if two pops are specified,
ST is compared to ST(1) and the stack is popped. If one pop is
specified with an operand, the operand is compared to ST. If one of the
operands is a NAN, an invalid-operation exception is generated (see
FUCOM for an alternative method of comparing on the 80387).

fcom sti(2) 87 40-50
FCOM ([[regl fcom 287 40-50
387 24
fcomp st (7) 87 42-52
FCOMP [regl fcomp 287 42-52
387 26
fcompp 87 45-55
FCOMPP 287 45-55
387 26
fcom shortreals[di] 87 (s=60-70,1=65-75)+EA
FCOM memreal fcom longreal 287 s=60-70,1=65-75
387 s=26,1=31
fcomp longreal 87 (s=63-73,1=67-77)+EA
FCOMP memreal fcomp shorts(di] 287 s=63-73,1=67-77
387 s=26,1=31
ficom double 87 (w=72-86,d=78-91)+EA
FICOM memint ficom warray([di] 287 w=72-86,d=78-91
387 w=71-75,d=56-63
ficomp WORD PTR [bp+6]| 87 (w=74-88,d=80-93)+EA
FICOMP memint ficomp darray[di] 287 w=74-88,d=80-93
387 w=71-75,d=56-63

Condition Codes for FCOM

a3 (07 Cl €0 Meanin

0 0 2 0 ST > source

0 0 ? 1 ST < source

1 0 ? 0 ST = source

1 1 ? 1 ST is not comparable to source

122 COPROCESSOR INSTRUCTIONS

FCOS

Cosine
80387 Only

Replaces a value in radians in ST with its cosine. If ST is in the range
ISTI < 263, the C2 bit of the status word is cleared and the cosine is
calculated. Otherwise, C2 is set and no calculation is done. ST can be
reduced to the required range with FPREM or FPREMI1.

fcos 87 —
FCOS 287 —

387 123-772*

* For operands with an absolute value greater than /4, up to 76 additional clocks may be required.

FDECSTP

Decrement Stack Pointer

Decrements the stack top pointer in the status word. No tags or
registers are changed and no data are transferred. If the stack pointer is
0, FDECSTP changes it to 7.

fdecstp 87 6-12
FDECSTP 287 6-12
387 22

FDISI/FNDISI

Disable Interrupts
8087 Only

Disables interrupts by setting the interrupt enable mask in the control
word. This instruction has wait and no-wait versions. Since the 80287
and 80387 do not have an interrupt enable mask, the instruction is
recognized but ignored on these coprocessors.

FDISI fdisi 87 2-8
FNDISI 287 2
387 2

COPROCESSOR INSTRUCTIONS 123

FDIV/FDIVP/FIDIV
Divide

Divides the destination by the source, and returns the quotient in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the quotient replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is divided by ST(1) and the
stack is popped, returning the result in ST. For FDIVP, the source
must be ST; the quotient is returned in the destination register and ST
is popped.

fdiv st,st(2) 87 193-203
FDIV [reg,regl fdiv st (5),st 287 193-203

fdiv 387 1=88,f=91

fdivp st(6),st 87 197-207
FDIVP reg,ST 287 197-207

387 91

fdiv DWORD PTR [bx] 87 (s=215-225,1=220-230)+EA
FDIV memreal fdiv shortreal [di] 287 s=215-225,1=220-230

fdiv longreal 387 s=89,1=94

fidiv intlé 87 (w=224-238,d=230-243)+EA
FIDIV memint fidiv warray[di] 287 w=224-238,d=230-243

fidiv double 387 w=136-140,d=120-127

FDIVR/FDIVRP/FIDIVR

Divide Reversed

Divides the source by the destination and returns the quotient in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the quotient replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is divided by ST(1) and the
stack is popped, returning the result in ST. For FDIVRP, the source
must be ST; the quotient is returned in the destination register and ST
is popped.

fdivr st,st(2) 87 194-204
FDIVR [reg,regl fdivr st(5),st 287 194-204
fdivr 387 t=88,f=91
fdivrp st(6),st 87 198-208
FDIVRP reg ST 287 198-208
387 91
fdivr longreal 87 (s=216-226,1=221-231)+EA
FDIVR memreal fdivr shortreal([di] 287 $=216-226,1=221-231
387 s=89,1=94
fidivr double 87 (w=225-239,d=231-245)+EA
FIDIVR memint fidivr warray[di] 287 w=225-239,d=231-245
387 w=135-141,d=121-128

124 COPROCESSOR INSTRUCTIONS

FENI/FNENI

Enable Interrupts
8087 Only

Enables interrupts by clearing the interrupt enable mask in the control
word. This instruction has wait and no-wait versions. Since the 80287
and 80387 do not have an interrupt enable mask, the instruction is
recognized but ignored on these coprocessors.

FENI feni 87 2
FNENI 287 2
2

FFREE

Free Register

Changes the specified register's tag to empty without changing the
contents of the register.

ffree st(3) 87 9-16
FFREE ST(i) 287 9-16
387 18

FIADD/FISUB/FISUBR/
FIMUL/FIDIV/FIDIVR

Integer Arithmetic

See FADD, FSUB, FSUBR, FMUL, FDIV, and FDIVR.

FICOM/FICOMP

Compare Integer

See FCOM.

COPROCESSOR INSTRUCTIONS 125

FILD

Load Integer

See FLD.

FINCSTP

Increment Stack Pointer

Increments the stack top pointer in the status word. No tags or registers
are changed and no data are transferred. If the stack pointer is 7, then
FINCSTP changes it to 0.

fincstp 87 6-12
FINCSTP 287 6-12
387 21
FINIT/FNINIT

Initialize Coprocessor

Initializes the coprocessor and resets all the registers and flags to their
default values. The instruction has wait and no-wait versions. On the
80387, the condition codes of the status word are cleared. On the 8087
and 80287, they are unchanged.

FINIT finit 87 2-8
FNINIT 287 2-8
387 33

FIST/FISTP

Store Integer

See FST.

126 COPROCESSOR INSTRUCTIONS

FLD/FILD/FBLD

Load

Pushes the specified operand onto the stack. All memory operands are
automatically converted to temporary real numbers before being loaded.

fld st (3) 87 17-22
FLD reg 287 17-22
387 14
fld longreal 87 (s=38-56,1=40-60,t=53-65)+EA
FLD memreal fld shortarray(bx+di]| 287 $=38-56,1=40-60,t=53-65
fld tempreal 387 s=20,1=25,t=44
fld memlé6 87 (w=46-54,d=52-60,q=60-68)+EA
FILD memint fld DWORD PTR [bx] 287 w=46-54,d=52-60,g=60-68
fld quads([si] 387 w=61-65,d=45-52,q=56-67
fld packbcd 87 (290-310)+EA
FBLD membcd 287 290-310
387 266-275

COPROCESSOR INSTRUCTIONS 127

FFLD1/FLDZ/FLDPI/FLDL2E/
FLDL2T/FLDLG2/FLDLN2

Load Constant

Pushes a constant onto the stack. The following constants can be
loaded:

Instruction Constant Loaded
FLD1 +1.0
FLDZ +0.0
FLDPI b4
FLDL2E Logo(e)
FLDL2T Logp(10)
FLDLG2 Logi10(2)
FLDLN2 Loge(2)
f1d1l 87 15-21
FLD1 287 15-21
387 24
fldz 87 11-17
FLDZ 287 11-17
387 20
fldpi 87+ 116222
FLDPI 287 16-22
387 40
fldl2e 87 15-21
FLDL2E 287 15-21
387 40
f1dl2t 87 16-22
FLDL2T 287 16-22
387 40
fldlg2 87 1824
FLDLG2 287 18-24
387 41
£1d1ln2 87 1723
FLDLN2 287 17-23
387 41

FLDCW
Load Control Word

Loads the the specified word into the coprocessor control word. The
format of the control word is shown in the Interpreting Coprocessor
Instruction section.

fldcw ctrlword 87 (7-14)+EA
FLDCW mem32 287 7-14
387 19

128 COPROCESSOR INSTRUCTIONS

FLDENV

Load Environment State

Loads the 14-byte coprocessor environment state from a specified
memory location. The environment includes the control word, status
word, tag word, instruction pointer, and operand pointer. On the 80387
in 32-bit mode, the environment state is made up of 28 bytes.

fldenv [bp+10] 87 (35-45)+EA
FLDENV mem 287 35-45
387 71

FMUL/FMULP/FIMUL
Multiply

Multiplies the source by the destination and returns the product in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the product replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST(1) is multiplied by ST and the
stack is popped, returning the product in ST. For FMULP, the source
must be ST; the product is returned in the destination register and ST
is popped.

fmul st, st (2) 87 130-145 (90-105)*
FMUL [[reg,regl fmul sti(5) st 287 130-145 (90-105)*
fmul 387 1=46-54 (49),f=29-57 (52)7
fmulp st(6),st 87 134-148 (94-108)*
FMULP reg ST 287 134-148 (94-108)*

387 29-57 (52)F

fmul DWORD PTR [bx] 87 (s=110-125,1=154-168)+EA§

FMUL memreal fmul shortreal [di+3]] 287 s=110-125,=154-168§
frul longreal 387 s=27-35,1=32-57
fimul intl6 87 (w=124-138,d=130-144)+EA
FIMUL memint fimul warray([di] 287 w=124-138,d=130-144
fimul double 387 w=76-87,d=61-82

* The clocks in parentheses show times for short values—those with 40 trailing zeros in their fraction
because they were loaded from a short-real memory operand.

+ The clocks in parentheses show typical speeds.

§ If the register operand is a short value—having 40 lra_ilin{; zeros in its fraction because it was loaded
f}r]or§617%7on—real memory operand—then the timing is (T12-126)+EA on the 8087 or 112-126 on
the 802s/.

COPROCESSOR INSTRUCTIONS 129

FNinstuction
No-Wait Instructions

Instructions that have no-wait versions include FCLEX, FSAVE,
FSTCW, FSTENYV, and FSTSW. Wait versions of instructions
check for unmasked numeric errors; no-wait versions do not. When the
.8087 directive is used, MASM puts a WAIT instruction before the
wait versions and a NOP instruction before the no-wait versions.

FNOP

No Operation

Performs no operation. FNOP can be used for timing delays or
alignment.

fnop 87 10-16
FNOP 287 10-16
87 12

FPATAN

Partial Arctangent

Finds the partial tangent by calculating Z = ARCTAN(Y / X). X is
taken from ST and Y from ST(1). On the 8087 and 80287, Y and X
must be in the range 0 <Y < X < oo, On the 80387, there is no
restriction on X and Y. X is popped from the stack and Z replaces Y in
ST.

fpatan 87 250-800
FPATAN 287 250-800
387 314-487

130 COPROCESSOR INSTRUCTIONS

FPREM

Partial Remainder

Calculates the remainder of ST divided by ST(1), returning the result
in ST. The remainder retains the same sign as the original dividend.
The calculation uses the following formula:

remainder = ST - ST(1) * quotient

The quotient is the exact value obtained by chopping ST / ST(1)
toward 0. The instruction is intended to be used in a loop that repeats
until the reduction is complete, as indicated by the condition codes of
the status word.

fprem 87 15-190
FPREM 287 15-190
387 74-155

Condition Codes for FPREM and FPREM1

Meaning

Incomplete reduction
quotient MOD 8 =0
quotient MOD 8 = 4
quotient MOD 8 = 1
quotient MOD 8 =5
quotient MOD 8 =2
quotient MOD 8 = 6
quotient MOD 8 =3
quotient MOD 8 =7

N £
eewes=EE g
'—'—‘OO-——OOQIQ
—eT-eTeTerg

COPROCESSOR INSTRUCTIONS 131

FPREMA1

Partial Remainder (IEEE Compatible)
80387 Only

Calculates the remainder of ST divided by ST(1), returning the result
in ST. The remainder retains the same sign as the original dividend.
The calculation uses the following formula:

remainder = ST - ST(1) * quotient

The quotient is the integer nearest to the exact value ST / ST(1). If
there are two integers equally close, the even integer is used. The
instruction is intended to be used in a loop that repeats until the
reduction is complete, as indicated by the condition codes of the status
word. See FPREM for the possible condition codes.

fpreml 87 —
FPREM1 287 —
387 95-185

FPTAN

Partial Tangent

Finds the partial tangent by calculating Y / X = TAN(Z). Z is taken
from ST. Z must be in the range 0 <Z <7 / 4 on the 8087 and
80287. On the 80387, IZI must be less than 263, The result is the ratio
Y / X. Y replaces Z, and X is pushed into ST. Thus Y is returned in
ST(1) and X in ST.

fptan 87 30-540
FPTAN 287 30-540
387 191-497*

* For operands with an absolute value greater than 7/4, up to 76 additional clocks may be required.

132 COPROCESSOR INSTRUCTIONS

FRNDINT

Round to Integer

Rounds ST from a real number to an integer. The rounding control
(RC) field of the control word specifies the rounding method, as shown
in the introduction to this section.

frndint 87 16-50
FRNDINT 287 16-50
387 66-80

FRSTOR

Restore Saved State

Restores the 94-byte coprocessor state to the coprocessor from the
specified memory location. In 32-bit mode on the 80387, the
environment state takes 108 bytes.

frstor [bp-94] 87 (197-207)+EA
FRSTOR mem94 287 *
387 308

* Clock counts are not meaningful in determining overall execution time of this instruction. Timing is
determined by operand transfers.

FSAVE/FNSAVE

Save Coprocessor State

Stores the 94-byte coprocessor state to the specified memory location.
In 32-bit mode on the 80387, the environment state takes 108 bytes.
This instruction has wait and no-wait versions. After the save, the
coprocessor is initialized as if FINIT had been executed.

FSAVE m9%4 fsave [bp-94] 87 (197-207)+EA
FNSAVE m94 fsave cobuffer 287
387 375-376

* Clock counts are not meaningful in determining overall execution time of this instruction. Timing is
determined by operand transfers.

COPROCESSOR INSTRUCTIONS 133

FSCALE

Scale

Scales by powers of two by computing the function Y =Y * 2X X is
the scaling factor taken from ST(1), and Y is the value to be scaled
from ST. The scaled result replaces the value in ST. The scaling factor
remains in ST(1). If the scaling factor is not an integer, it will be
truncated toward zero before the scaling.

The 80387 has no restrictions on the range of operands, but on the
8087 and 80287, if X is not in the range -215 < X <215 or if X is in
the range 0 < X < 1, the result will be undefined.

fscale 87 32-38
FSCALE 287 32-38
387 67-86

FSETPM

Set Protected Mode
80287 Only

Sets the 80287 to protected mode. The instruction and operand pointers
are in the protected mode format after this instruction. On the 80387,
FSETPM is recognized but interpreted as FNOP, since the 80386
handles addressing identically in real and protected mode.

fsetpm 87 —
FSETPM 287 2-8
387 12

134 COPROCESSOR INSTRUCTIONS

FSIN
Sine
80387 Only

Replaces a value in radians in ST with its sine. If ST is in the range
ISTI < 263, then the C2 bit of the status word is cleared and the sine is
calculated. Otherwise, C2 is set and no calculation is done. ST can be
reduced to the required range with FPREM or FPREM1.

fsin 87 —
FSIN 287 —

387 122-771*

* For operands with an absolute value greater than /4, up to 76 additional clocks may be required.

FSINCOS

Sine and Cosine
80387 Only

Computes the sine and cosine of a radian value in ST. The sine
replaces the value in ST and then the cosine is pushed onto the stack.
If ST is in the range ISTI < 293, the C2 bit of the status word is
cleared and the sine and cosine are calculated. Otherwise, C2 is set and
no calculation is done. ST can be reduced to the required range with
FPREM or FPREM1.

fsincos 87 —
FSINCOS 287 —
387 194-809*

* For operands with an absolute value greater than 7/4, up to 76 additional clocks may be required.

COPROCESSOR INSTRUCTIONS 135

FSQRT

Square Root

Replaces the value of ST with its square root. (The square root of -0

is -0.)
fsqrt 87 180-186
FSQRT 287 180-186
387 122-129

FST/FSTP/FIST/FISTP/FBSTP

Store

Stores the value in ST to the specified memory location or register.
Temporary real values in registers are converted to the appropriate

integer, BCD, or floating-point format as they are stored. With FSTP,

FISTP, and FBSTP, the ST register value is popped off the stack.

fst st (6) 87 15-22
FST reg fst st 287 15-22
387 11
fstp st 87 17-24
FSTP reg £5tp! |Vsti(3) 287 17-24
387 12
fst shortreal 87 (s=84-90,1=96-104)+EA
FST memreal fst longs [bx] 287 $=84-90,1=96-104
387 s=44,=45
fstp longreal 87 (s=86-92,1=98-106,t=52-58)+EA
FSTP memreal fstp tempreals([bx] 287 $=86-92,1=98-106,t=52-58
387 s=44,=45,=53
fist intlé 87 (w=80-90,d=82-92)+EA
FIST memint fist doubles[8] 287 w=80-90,d=82-92
387 w=82-95,d=79-93
fistp longint 87 (w=82-92,d=84-94,q=94-105)+EA
FISTP memint fistp doubles[bx] 287 w=82-92,d=84-94,q=94-105
387 w=82-95,d=79-93,q=80-97
fbstp beds [bx] 87 (520-540)+EA
FBSTP membcd 287 520-540
387 512-534

136 COPROCESSOR INSTRUCTIONS

Stores the control word to a specified 16-bit memory operand. This

FSTCW/FNSTCW
Store Control Word

instruction has wait and no-wait versions.

FSTCW
FNSTCW

fstcw

ctrlword

87
287
387

12-18
12-18
15

FSTENV/FNSTENV

Stores the 14-byte coprocessor environment state to a specified

memory location. The environment state includes the control word,

Store Environment State

status word, tag word, instruction pointer, and operand pointer. On the
80387 in 32-bit mode, the environment state is made up of 28 bytes.

FSTENV mem
FNSTENV mem

fstenv [bp-14]

87
287
387

(40-50)+EA
40-50
103-104

FSTSW/FNSTSW
Store Status Word

Stores the status word to a specified 16-bit memory operand. On the
80287 and 80387, the status word can be stored also to the processor's
AX register. This instruction has wait and no-wait versions.

FSTSW mem fstsw statword 87 12-18
FNSTSW mem 287 12-18
387 15
FSTSW AX fstsw ax 87 —
FNSTSW AX 287 10-16

387

13

COPROCESSOR INSTRUCTIONS

137

FSUB/FSUBP/FISUB

Subtract

Subtracts the source from the destination and returns the difference in
the destination. If two register operands are specified, one must be ST.
If a memory operand is specified, the result replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is subtracted from ST(1) and
the stack is popped, returning the difference in ST. For FSUBP, the
source must be ST; the difference (destination minus source) is
returned in the destination register and ST is popped.

fsub St SE(Z) 87 70-100
FSUB [reg,regll fsub st (5) st 287 70-100
fsub 387 1=29-37,f=26-34
fsubp st (6),st 87 75-105
FSUBP reg,ST 287 75-105
387 26-34
fsub longreal 87 (s=90-120,s=95-125)+EA
FSUB memreal fsub shortreals([di] | 287 s=90-120,1=95-125
387 s=24-32,1=28-36
fisub double 87 (w=102-137,d=108-143)+EA
FISUB memint fisub warray[di] 287 w=102-137,d=108-143
387 w=71-83,d=57-82

138 COPROCESSOR INSTRUCTIONS

ram

FSUBR/FSUBRP/FISUBR

Subtract Reversed

Subtracts the destination operand from the source operand, and returns
the result in the destination operand. If two register operands are
specified, one must be ST. If a memory operand is specified, the result
replaces the value in ST. Memory operands can be 32- or 64-bit real
numbers or 16- or 32-bit integers. If no operand is specified, ST(1) is
subtracted from ST and the stack is popped, returning the difference in
ST. For FSUBRP, the source must be ST; the difference (source
minus destination) is returned in the destination register and ST is

popped.
fsubr st,st(2) 87 70-100
FSUBR [reg,regl fsubr st (5),st 287 70-100
fsubr 387 t=29-37,f=26-34
fsubrp st(6),st 87 75-105
FSUBRP reg ST 287 75-105
387 26-34
fsubr QWORD PTR [bx] 87 (s=90-120,5=95-125)+EA
FSUBR memreal fsubr shortreal([di] 287 s=90-120,1=95-125
fsubr longreal 387 $=25-33,1=29-37
fisubr intlé6 87 (w=103-139,d=109-144)+EA
FISUBR memint fisubr warray[di] 287 w=103-139,d=109-144
fisubr double 387 w=72-84,d=58-83

FTST

Test for Zero

Compares ST with +0.0 and sets the condition of the status word

according to the result.

FTST

ftst

87
287
387

38-48
38-48
28

Condition Codes for FTST

~-eep
“meep
2
-e-°g

Meanin,
ST is positive
ST is negative
STis0

ST is not comparable (NAN or projective infinity)

COPROCESSOR INSTRUCTIONS 139

FUCOM/FUCOMP/FUCOMPP

Unordered Compare
80387 Only

Compares the specified source to ST and sets the condition codes of
the status word according to the result. The instruction works by
subtracting the source operand from ST without changing either
operand. Memory operands are not allowed. If no operand is specified or
if two pops are specified, ST is compared to ST(1). If one pop is
specified with an operand, the given register is compared to ST.

FUCOM differs from FCOM in that it does not cause an invalid-
operation exception if one of the operands is a NAN. Instead, the result
is set to unordered.

fucom st (2) 87 —

FUCOM [[regl fucom 287 —
387 24

fucomp st (7) 87 —

FUCOMP [[reg] fucomp 287 —
387 26

fucompp 87 —

FUCOMPP 287 —
387 26

Condition Codes for FUCOM

c3 {694 €l Co Meaning

0 0 2 0 ST > source
0 0 2 1 ST < source
1 0 2 0 ST = source
1 1 ? 1 Unordered

FWAIT
Wait

Suspends execution of the processor until the coprocessor is finished
executing. This is an alternate mnemonic for the processor WAIT
instruction.

fwait 87 4
FWAIT 287 3
387 6

140 COPROCESSOR INSTRUCTIONS

FXAM

Examine

Reports the contents of ST in the condition flags of the status word.

fxam

FXAM

87 12-23
287 12-23
387 30-38

Condition Codes for FXAM

)
[§]
Q

Interpretation
+ Unnormal*
+NAN

- Unnormal*

- NAN

+ Normal

OO|

(=}

+ Infinity

- Normal

- Infinity
+0

Empty

-0

Empty

+ Denormal
Empty*

- Denormal

OIS E S SO H Ha o o S g
—O-—O—O'—O—O—-O-—-O-—‘O|

—_—m om0 O O O o= o= O

Empty*

* Not used on the 80387. Unnormals are not supported by the 80387. Also, the 80387 uses two codes

instead of four to identify empty registers.

FXCH

Exchange Registers

Exchanges the specified (destination) register and ST. If no operand is

specified, ST and ST(1) are exchanged.

fxch st (3)
FXCH [regl fxch

87 10-15
287 10-15
387 18

COPROCESSOR INSTRUCTIONS 141

FXTRACT

Extract Exponent and Significand

Extracts the exponent and significand fields of ST. The exponent
replaces the value in ST, and then the significand is pushed onto the
stack.

fxtract 87 27-55
FXTRACT 287 27-55
387 70-76

FYL2X
Y loga(X)

Calculates Z = Y logy(X). X is taken from ST and Y from ST(1).
The stack is popped and the result, Z, replaces Y in ST. X must be in
the range 0 < X < oo and Y in the range -00 <Y < oo,

fyl2x 87 900-1100
FYL2X 287 900-1100
387 120-538

FYL2XP1
Y loga(X+1)

Calculates Z = Y loga(X + 1). X is taken from ST and Y from
ST(1). The stack is popped once and the result, Z, replaces Y in ST.
X must be in the range 0 < IXI < (1 - (\/2 /2). Y must be in the range
-0 <Y < oo,

fyl2xpl 87 700-1000
FYL2XP1 287 700-1000
387 257-547

142 COPROCESSOR INSTRUCTIONS

Tables

DOS Program Segment Prefix (PSP)
ASCII Chart

Key Codes

Color Display Attributes
Hexadecimal-Binary-Decimal Conversion

DOS Program Segment Prefix (PSP)

00h
10h
20h
30h
40h
50h
60h
70h
80h
90h
AOh
BOh
Coh
DoOh
EOh
Foh

8]

(eI Bie NNV I

11
12
13

0 1 2 3 4 5 6 7 8 9 A B C D E F
4 5
2 |13l 3 l P csl P

Ol =
()]

8 9
9 10
10 13

12 1

Opcode for INT 20h

Segment of first allocatable address following the program (useful for
memory allocation)

Opcode for far call to DOS function dispatcher
Vector for terminate routine

Vector for CTRL+BREAK routine

Vector for error routine

Segment of program's copy of the environment

Opcode for DOS INT 21h and far return (you can do a far call to this
address to execute DOS calls)

First command-line argument (formatted as uppercase 11-character file
name)

Second command-line argument (formatted as uppercase 11-character file
name)

Number of bytes in command line argument
Unformatted command line and/or default Disk Transfer Area (DTA)
Reserved or used by DOS

PROGRAM SEGMENT PREFIX 143

ASCIl Codes

Ctrl Dec Hex Char Code Dec Hex Char Dec Hex Char Dec Hex Char
“@| ofoo| [NUL 32[20 64|40 | @ 96[60 | *
"A| 1o1| @ |SOH 33[21| ¢ 65|41 | A 97|61 a
"B | 2|02|B8|sTX 34[22(" 66/42| B 9862 | b
“c| 3|o3| ¥ |ETX 35023 | # 67(43| C 99|63 | €
"D| 4|04| 4 |[EOT 36124 | § 68|44 D 100{64 | d
"E| s|os| ¢ |ENQ 37125 4 69(45 | E 101|65| @
"F | 6|06] ¢ |ACK 38|26 | & 70|46 | F 10266 | £
"G| 7|07 ¢ |BEL 3927 * 71147 | G 10367 | 4
"H| sl|os|O|Bs 40(28 | 72[48 | H 104[68 | h
1| 9{09| 0 [HT 41291) 73[49| 1 105[69 | 1
"7 | 10]0A| [|LF 42[2A * 74(4A| J 106|6A | J
"k | t1joB| d | VT 43(2B| + 75148 | K 107|6B | k
"L | 12|oC| § |FF 44(2C| 76/4C| L 108]6C| 1
"M| 13{oD| J! [CR 45(2D| - 77|14D| M 109|6D| W
"N | 14|0E| i [SO 46(2E| 78|4E | N 110[6E | N
"O| IS|OF | % |SI 47(2F | / 79|4F | O 111[6F | 0
P | 16[10| p |DLE 48|30 @ 80(50 | P 112(70 | P
“Q| 17|11 |4 [DC1 49(32(1 81|51 | Q 11371 | 4
"R| 18]12] $ |DC2 50(32 2 82(52 | R 11472 | p
“s | 1913 I {DC3 51133 3 83(53 | § 11573 | &
"1 20]14| 9 |DC4 52134 | 4 84(54 | T 116[74 | t
“U| 21|15 § |NAK 533519 85155 1l 117|175 | u
“v|22|16| m |SYN 54[36 | 6 8656 | U 118(76 | V
“w| 23(17| § |ETB ssi37| 1 87(57 | W 11977 | W
"X | 24|18 | t |CAN s6(38 | 8 8858 | X 120(78 | X
Y| 2519 ¢ |[EM 57391 9 8959 | ¥ 12179 | Y
"7 | 26[1A] ? |SUB s8|3A] 1 90(5A| Z 122|7A| Z
[| 27[1B] € |ESC 59381 3 91|5B | [123|178 | {
"\ | 28]1C| L |FS 60 [3C| £ 9215C| \ 124|7C| §
"1 | 291D # |GS 613D} 93|5D| 1 125|7D| ¥
"7 | 30|1E| & |RS 6213E|) 94 (SE | A 126(7E | ~
" | 31|ie| w|us 633F | ? 95|5F | - 127[7F | &

+ ASCII code 127 has the code DEL. Under DOS, this code has the same effect as ASCII
8 (BS). The DEL code can be generated by the CTRL-BKSP key.

144 ASCII CODES

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
12880 | § 160 A0 & 192|Co| L 224|E0 | &
129(81 | U 161{A1] 1 193(C1| L 225|E1| B
130/82 | @ 162|A2| 6 194/C2| T 226[E2| T
1318342 163|A3| 195|c3| F 227|E3 | W
132(84 | @ 164|A4| 196(C4 | - 228(E4| &
13385 a 165|AS| N 197(cs | + 229(ES | @
134[86 | & 166|A6| & 198(Ce| | [230[E6 | P
135|187 | § 167|A7| 2 199(C7 | |} 232|E7| ¥
13688 | B 168|A8| & 200(C8 | It 232|E8 | §
13789 | @ 169|A9| 201|C9| 233[E9 | @
138(8A| 170|AA| 202|CA| & 234[EA| f
139(8B | 1 171|AB| % 203|CB| 7 235|EB| &
140(8C| T 172(aC| Y| [204{cC| | [236[EC| @
141[8D| 1 173|AD| § 205|CD| = 237|ED| ¢
142|8E | A 174|AE| « 206|CE| 3 238(EE| €
143(8F | A 17S|AF| »| |207|CF| | |239|EF| Nl
14490 | E 176|B0 | # 208|D0| I 240|F0 | 2
145091 | & 1771 | # 209|D1| F 241|F1 | ¥
14692 | f 178(B2 | B 210[D2| W 242(F2 | }
147193 | o 179(B3 | | 211(D3| U 243|F3 | &
148 (94 | @ 180|B4 | 4 212|D4| E 244(F4 | [
14995 | @ 181(BS | § 213|DS| F 245|F5 | |}
15096 | & 182(B6 | | 214[D6| m 246|F6 | T
15197 | u 183|B7 [m 215|D7| § 247(F7 | %
152198 | 4 184/B8 | 1 216|D8| # 248|F8 | 0
153099 | & 185(B9| 3 217/D9| 4 249(F9 |
1549A | U 186(BA| Il 218|DA| T 250|FA| -
155 |98 | & 187|BB | 219(pB| M| |2st|eB |
156 9C| & 188|BC| 4 220(DC| m 252|FC| N
157|9D| ¥ 189|BD| 4 221|pD| | 253(FD| 2
158 |9E | R 190|BE | 4 222|DE| | 254|FE| 8
1599F | § 191|BF| 1 223|DF| ® 255|FF

ASCII CODES 145

Key Codes

Key Scan ASCII or ASCII or ASCII or ASCII or
Code Extended® Extended” Extended® Extended*
with Shift with Ctrl with Alt
Dec Hex| Dec Hex Char | Dec Hex Char | Dec Hex Char | Dec Hex Char
ESC v 01 27" 1B 271 ¢4 B 27 1B
1% 2 02| 49 31 1 33 , 21 ! 120 78 NUL
2@ 3 03] 50 32 2 64 40 @ 3 03 NUL]I121 79 NUL
3# 4° 04| 51 33 i3 33 23 # 122 7A NUL
49 5 05| 52 34 4 36 24 § 123 7B NUL
5% 6. 06 |.53 35 .5 37 25 % 124 7C NUL
6N 7 07| 54 36 6 94 S5E ~ 30 1E 125 7D NUL
7& 8 085537 |7 38 26 & 126 7E NUL
8 94 091156 .38 |8 42 2A * 127 7F NUL
9(10 OA| 57 39 9 40 28 (128 80 NUL
0) 11 OB| 48 30 O 41 29) 129 81 NUL
-_ 12: 0C | 45 2D "= 95/ 'SF = 3 IF 130 82 NUL
=+ 13 OD| 61 3D = 43 2B + 131 83 NUL
BKSP 14 OE 8 08 8 08 127 7F
TAB I5F 10F 9 09 15 OF NUL
Q 16 10 1113 71 'q 8l 151 © 17 Nl 16 10 NUL
w 17 11119 77 'w 87 57 W 23 | 17 17 11 NUL
E 18 12 [101 65 e 69 45 E 5 05 18 12 NUL
R 19° 131114 ‘72 = 82 52 R 18 12 19 13 NUL
T 20 141116 74 t 84 54 T 20 14 20 14 NUL
Y 21 A5 021 79 Ly 89 59 Y 25 19 21 15 NUL
U 22. 46 117 75 'm 8 55 U 2115 22 16 NUL
| 23 17| 105. 69 @i 73 49 1 9 09 23% 113 NUL;
(0] 24 821l 1i6F Lo 79 4F o© 1S;. JOF 24 18 NUL
P 25 191112 70 p 80 50 P 16 10 25 19 NUL
[26 1A] 91 5B [|123 B ¢ [i27 1B
1} 27 IB| 93 5D] 125 7D } 295511D);
ENTER 28 IC 13 0D CR 13 0D CR 10" “0A: LF
CTRL 29 ID
A 30 AE |97 6] @& 65 41 A 1 01 30 1E NUL
S 31 UF LIS 73 s 83 53 s 19 13 31 |1F NUL:
D 32 20 (100 64 d 68 44 D 4 04 32 20 NUL
F 33, 21 1102 66 £ 70 46 F 6 06 33 21 NUL
G 34 221103 67 g 71 47 G 7 07 34 22 NUL
H 35 23 (104 68 h 72 48 H 8 08 35 23 NUL
J 36 241106 6A 3 74 4A T 10 0A 36 24 NUL
K 37 25107 6B k 75 4B K 11 OB 37 25 NUL
12 38 26 (108 6C 1 76 4C L 12 0C 38 26 NUL
39 27 |89 3B ; 58 3A
40 28 39 27 34 22 v
o~ 41 29| 96 60 126 7E ~

+ Extended codes return NUL (ASCII 0) as the initial character. This is a signal that a second
(extended) code is available in the keystroke buffer.

146 KEY CODES

Key Scan ASCII or ASCII or ASCII or ASCII or
Code Extended? Extended* Extendedt Extended?’
with Shift with Ctrl with Alt

Dec Hex| Dec Hex Char | Dec Hex Char | Dec Hex Char | Dec Hex Char

L SHIFT |42 2A

A\l 43 2B| 92 5C \ [124 7C | 28 1C

Z 44 2C 122 TA =z 90 S5A z 26 1A 44 2C NUL

X 45 2D 120 78 «x 88 58 X 24 18 45 2D NUL

C 46 2E[99 63 ¢ 67 43 C 3 03 46 2E NUL

\% 47 2F|118 76 v 8 56 V 22 16 47 2F NUL

B 48 30| 98 62 b 66 42 B 2 02 48 30 NUL

N 49 31110 6E n 78 4E N 14 OE 49 31 NUL

M 50 32109 6D m 77 4D M 13 0D 50 32 NUL

2 51 33| 4 2C , 60 3C <

> 52 34| 46 2E . 62 3E >

/? 53 35| 47 2F / 63 3F 2

R SHIFT |54 36

*PRTSC |55 37| 42 2A = INT 58§ 16 10

ALT 56 38

SPACE 57 39| 32 20 sec | 32 20 sec | 32 20 sec | 32 20 sec

CAPS 58 3A

F1 59 3B | 59 3BNUL| 8 54 NUL| 94 SE NUL|104 68 NUL

F2 60 3C| 60 3CNUL| 8 55 NUL| 95 5F NUL|105 69 NUL

F3 61 3D| 61 3DNUL| 8 56 NUL| 96 60 NUL|106 6A NUL

F4 62 3E| 62 3ENUL| 87 57 NUL| 97 61 NUL|107 6B NUL

126 63 3F| 63 3F NUL| 88 58 NUL| 98 62 NUL|108 6C NUL

F6 64 40| 64 40 NUL| 89 59 NUL| 99 63 NUL|109 6D NUL

F7 65 41| 65 41 NUL| 90 SANUL|100 64 NUL|110 6E NUL

F8 66 42| 66 46 NUL| 91 SB NUL|10l 65 NUL|111 6F NUL

F9 67 43| 67 43 NUL| 92 SCNUL|102 66 NUL|112 70 NUL

F10 68 44 | 68 44 NUL| 93 SDNUL|[103 67 NUL|[113 71 NUL

NUM 69 45

SCROLL |70 46

HOME 71 47| 71 47 NUL| S5 37 7 |119 77 NUL

UP 72 48| 72 48 NUL| 56 38 8

PGUP 73 49| 73 49 NUL| 57 39 9 |132 84 NUL

GREY - 74 4A| 45 2D - 45 2D -

LEFT 75 4B| 75 4B NUL| 52 34 4 |115 73 NUL

CENTER |76 4C 53 35 5

RIGHT 77 4D| 77 4DNUL| 54 36 6 |116 74 NUL

GREY+ |78 4E| 43 2B + 43 2B +

END 79 4F| 79 4F NUL| 49 31 1 |117 75 NUL

DOWN 80 50| 80 S50 NUL| s0 32 2

PGDN 81 51 81 51 NUL| 51 33 3 118 76 NUL

INS 82 52| 8 52 NUL| 48 30 o

DEL 83 53] 8 53 NUL| 46 2E

+ Extended codes return NUL (ASCII 0) as the initial character. This is a signal that a second
(extended) code is available in the keystroke buffer.

§ Under DOS, Shift-PtrScr causes interrupt 5, which prints the screen unless an interrupt handler

has been defined to replace the default interrupt 5 handler.

KEY CODES 147

Color Display Attributes

Background Foreground

Bits Num_Color Bits* Num_Color
ERGB IRGB

0000 O Black 0000 0 Black
0001 1 Blue 0001 1 Blue
0010 2 Green 0010 2 Green

a0 1.1 3 Cyan 0 0.1 1 3 Cyan

01 00 4 Red 0100 4 Red

O 04 1 5 Magenta 0101 5 Magenta
0110 6 Brown 0110 6 Brown
0111 7 White 0111 7 White

1 .0::0,0 .8 Black blink 1000 8 Dark grey
1 001 9 Blue blink 1 001 9 Light blue
1 01 0 A Green blink 1010 A Light green
1 01 1 B Cyan blink 1011 B Light cyan
1 1 00 C Redblink 1100 C Light red

1 101 D Magentablink 1 1 0 1 D Light magenta
1 110 E Brown blink 1110 E Yellow

1 111 F White blink 1111 F Bright white
I Intensity bit G Green bit F Flashing bit

R Red bit B Blue bit

* On monochrome monitors, the blue bit is set and the red and green bits are cleared (001) for
underline; all color bits are set (111) for normal text.

Hexadecimal-Binary-Decimal Conversion

Hex Binary Decimal Decimal Decimal Decimal
Number Number Digit 000X Digit 00X0 Digit 0X00 Digit X000
0 0000 0 0 0 0
1 0001 1 16 256 4,096
2 0010 2 32 512 8,192
3 0011 3 48 768 12,288
4 0100 4 64 1,024 16,384
5 0101 5 80 1,280 20,480
6 0110 6 96 1,536 24,576
7 0111 7 112 1,792 28,672
8 1000 8 128 2,048 32,768
9 1001 9 144 2,304 36,864
A 1010 0 160 2,560 40,960
B 1011 11 176 2,816 45,056
€ 1100 12 192 3,072 49,152
D 1101 13 208 3,328 53,248
E 1110 14 224 3,584 57,344
F 1111 15 240 3,840 61,440

148 COLOR DISPLAY/CONVERSION CHART

H E B B EEANN

HE B B EEEN

o

Document No. 410610002-500-R01-0787

pcjs.org

