
Reference

Microsoft Macro
Assembler 5.0

Microsoft
pcjs.org

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft Corporation. The software described in this docu
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. The purchaser
may make one copy for backup purposes. No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopy
ing and recording, for any purpose other than the purchaser's personal use without the
written permission of Microsoft Corporation.
© Copyright Microsoft Corporation, 1987. All rights reserved. Simultaneously
published in the U.S. and Canada.

Timings and encodings in this manual are used with permission of Intel and come from
the following publications:
Intel Corporation. iAPX86, 88,186, andl88 User's Manual, Programmer's Reference,
Santa Clara, Calif. 1986.
Intel Corporation. iAPX286Programmer's Reference Manual including the IAPX286
Numeric Supplement, Santa Clara, Calif. 1985.
Intel Corporation. 80386Programmer's Reference Manual, Santa Clara, Calif. 1986.
Intel Corporation. 80387 80-bit CHMOS HI Numeric Processor Extension, Santa Clara,
Calif. 1987.

Microsoft̂ , MS-DOS», and CodeViews are registered trademarks of Microsoft
Corporation.
Intel* is a registered trademark of Intel Corporation.

1
1

1

1
n
"i
-1

pcjs.org

Microsoft® Macro Assembler 5.0
Reference

Table of Contents

N o t a t i o n a l C o n v e n t i o n s 2
Programs

M A S M 3
L I N K 4
M i c r o s o f t ® C o d e V i e w ® D e b u g g e r 5
M A K E 1 0
L I B 1 1
C R E F 1 2
S E T E N V 1 2
E X E P A C K 1 2
E X E M O D 1 2
E R R O U T 1 2

Directives
D i r e c t i v e s 1 3
O p e r a t o r s 2 0

Processor
I n t e r p r e t i n g P r o c e s s o r I n s t r u c t i o n s 2 3
I n s t r u c t i o n s 3 5

Coprocessor
I n t e r p r e t i n g C o p r o c e s s o r I n s t r u c t i o n s 11 5
A r c h i t e c t u r e 1 1 6
I n s t r u c t i o n s 1 1 9

Tables
D O S P r o g r a m S e g m e n t P r e fi x (P S P) 1 4 3
A S C I I C o d e s 1 4 4
K e y C o d e s 1 4 6
C o l o r D i s p l a y A t t r i b u t e s 1 4 8
H e x a d e c i m a l - B i n a r y - D e c i m a l C o n v e r s i o n 1 4 8

FIGURES

F i g u r e 1 I n s t r u c t i o n K e y 2 3
F i g u r e 2 C o p r o c e s s o r R e g i s t e r s 1 1 6
Figure 3 Control Word and Status Word 117

pcjs.org

Notational Conventions

KEY TERMS

placeholders

Examples

^optional items^

I choice! I choice! \

Repeating
elements...

START

END

Bold type indicates text that must be typed
exactly as shown. This includes instructions,
directives, registers, commands, and program
names.

Italics indicate variable information supplied
by the user.

The typeface shown in the left column
simulates the appearance of source code as it
appears on a screen or printed listing.

Double brackets indicate that the enclosed item
is optional.

Braces indicate a choice between two or more
items. A vertical bar separates the choices. At
least one of the items must be chosen unless
all the items are enclosed in double brackets.

Ellipsis dots following an item indicate that
more items having the same form may be
typed.

Vertical ellipsis dots indicate that additional
lines may be added between the starting and
ending elements.

1

pcjs.org

Programs

MASM
Command-Line Syntax
Options
Environment Variables

LINK
Command-Line Syntax
Options
Environment Variables

Microsoft® CodeView® Debugger
Command-Line Syntax
Options
Window Commands
Format Specifiers
Size Specifiers
Dialog Commands

MAKE
Command-Line Syntax
Options
Syntax for MAKE Files
Syntax for Macro Definitions
Syntax for Inference Rules
Syntax for Dependency Rules
Syntax for Using Macros
Special Macro Names
Environment Variable

LIB
Command-Line Syntax
Commands

CREF
Command-Line Syntax

SETENV
Command-Line Syntax

EXEPACK
Command-Line Syntax

EXEMOD
Command-Line Syntax
Options

ERROUT
Command-Line Syntax

pcjs.org

n
"i
i

-

n
pcjs.org

< — M A S M
Command-Line Syntax
MASM loptionsj source/He U&pbjectfileJ UlistingfileJUcrossreferencefileJ

Opt ions
O p t i o n A c t i o n
/ A W r i t e s s e g m e n t s i n a l p h a b e t i c a l o r d e r
l l i m t m b e r S e t s b u f f e r s i z e
/ C S p e c i fi e s a c r o s s - r e f e r e n c e fi l e
/ D C r e a t e s a P a s s 1 l i s t i n g
IDsymbolfczvalueJ Defines assembler symbol
/ E E m u l a t e s fl o a t i n g - p o i n t i n s t r u c t i o n s
/ H L i s t s o p t i o n s a n d c o m m a n d - l i n e s y n t a x
Upa th Se ts i nc lude -fi le sea rch pa th
/ L S p e c i fi e s a n a s s e m b l y - l i s t i n g fi l e
/ M L P r e s e r v e s c a s e i n n a m e s
/ML Conver ts names to uppercase (defau l t)
/MX Preserves case in public and external names
/ N S u p p r e s s e s t a b l e s i n l i s t i n g fi l e
/ P C h e c k s f o r i m p u r e c o d e
/S Wri tes segments in sequent ia l order (defaul t)
/T Suppresses messages for successful assembly
/ V D i s p l a y s e x t r a s t a t i s t i c s
/W { Oil 12) Sets error display level
I X S h o w s f a l s e c o n d i t i o n a l b l o c k s i n l i s t i n g s
/ Z D i s p l a y s e r r o r l i n e s o n s c r e e n
/ZD Puts l ine number information in the object fi le
/ZI Puts symbol ic and l ine number information in the

object file (for CodeView® debugger)

Environment Variables
V a r i a b l e D e s c r i p t i o n
INCLUDE Sets search path for include files
MASM Specifies defaul t assembler opt ions

MASM 3

pcjs.org

LINK
Command-Line Syntax
LINK loptionsi objecfiles Uexecutableftlei Ui>mpfilen,llihrar\filesnM [;]

Op t ions
Option Act ion

/B Prevents prompting when errors are encountered (for
make and batch files)

/CO Creates a special-format executable file containing
symbolic information needed by the CodeView
debugger

ICV'.number Sets the program's maximum allocation to number
of paragraphs

/DO Orders segments in the default order used by
Microsoft high-level languages

I E P a c k s t h e e x e c u t a b l e fi l e
/ F O p t i m i z e s f a r c a l l s
/ H E D i s p l a y s L I N K o p t i o n s
/ I D i s p l a y s l i n k i n g i n f o r m a t i o n , i n c l u d i n g t h e n a m e

of each input module as it is linked
/L Lists l ine numbers and addresses of source

statements in the map file
/MfcnumberJ Lists all public symbols in the map file (number is

the maximum number of symbols)
/ N O D I g n o r e s d e f a u l t l i b r a r i e s
/ N O F D i s a b l e s f a r c a l l o p t i m i z a t i o n
/NOI Distinguishes between uppercase and lowercase

letters
/NOP D i sab les code segmen t pack i ng
/PAC Packs con t iguous code segments
/PAU Pauses during the link session for disk changes
/Q Creates an in-memory (load- t ime) l ibrary for a

Quick language (such as QuickBASIC)
ISTinumber Sets the stack size to number, which may be up to

65,536 bytes

Note: Several rarely used options not listed above are described in the CodeView®
and Utilities manual.

4 LINK

1
1
1
1
1

pcjs.org

Environment Variables
V a r i a b l e D e s c r i p t i o n

L I B S e t s s e a r c h p a t h f o r l i b r a r y fi l e s
L I N K S p e c i fi e s d e f a u l t l i n k e r o p t i o n s
T M P S e t s p a t h f o r t h e V M . T M P fi l e

Microsoft® CodeView® Debugger
Command-Line Syntax
CV loprionŝ e.xccMablefile fiargumentsj

Options
O p t i o n A c t i o n
/2 Enables use wi th two moni tors and two graphics

adapters
/ 4 3 S t a r t s i n 4 3 - l i n e m o d e o n E G A
/ B S t a r t s i n b l a c k - a n d - w h i t e m o d e
ICcommands Executes commands on start-up
/D Turns off nonmaskable interrupt and 8259 interrupt

trapping (necessary for some compatibles)
/ E E n a b l e s e x p a n d e d m e m o r y s u p p o r t
/F Starts wi th screen flipping (exchanges screens by

flipping video pages)
/ I Forces the debugger to hand le nonmaskab le

interrupt and 8259 interrupt trapping (necessary for
some compatibles)

/ M D i s a b l e s t h e m o u s e
/P Disables palette-register saving (necessary for some

EGA-compatible adapters)
/S Starts with screen swapping (exchanges screens by

changing buffers)
/ T S t a r t s i n s e q u e n t i a l m o d e
/W Star ts in window mode (necessary for some

compatibles)

LINK/CODEVIEW 5

pcjs.org

Window Commands
A c t i o n K e y b o a r d Mouse

Open help screen F l Help menu
Toggle register F2 Registers from View menu
window
Toggle display F3 Source, Mixed, or Assembly from
mode View menu
Switch to output F4 Output from View menu
screen
Go F5 Click left on Go
Switch F6 None
display/dialog
Execute to here F7 at cursor Click right at location
Trace through F8 Click left on Trace
Set breakpoint F9 at cursor Click left at location
here
Step over F10 Click right on Trace
Change flag None Click left on flag
Scroll up line None Click left on up arrow
Scroll up page PGUP Click left above elevator
Scroll to top HOME Drag elevator to top
Scroll down line None Click left on down arrow
Scroll down page PGDN Click left below elevator
Scroll to bottom END Drag elevator to bottom
Scroll to location None Drag elevator to location
Move cursor up UP arrow None
Move cursor down DOWN arrow None
Make window CTRL+G Drag line up or down
grow
Make window CTRL+T Drag line up or down
tiny
Find text CTRL+F Find from Search menu
Add watch CTRL+W Add Watch from Watch menu
expression
Delete watch CTRL+U Delete Watch from Watch menu
statement

6 CODEVIEW

pcjs.org

Format Specifiers
Use with Display Expression, Watch Expression, and Tracepoint
Expression dialog commands.
Character Argument Type Output Format

Signed decimal integer
Unsigned decimal integer
Unsigned octal integer
Hexadecimal integer
Signed value in floating-point
decimal format with six decimal
places
Signed value in scientific-notation
format with up to six decimal places
(trailing zeros or decimal point
truncated)
Signed value with floating-point
decimal or scientific notation,
whichever is more compact
Single character
Characters printed up to the first
null (C null-terminated strings only)

d or i Integer
u Integer
0 Integer
x or X Integer
f Floating point

e or E Floating point

g or G Float ing point

Character
String

Note: If appropriate for the language, the prefix 1 can be used with the integer
format specifiers (d, o, u, x, and X) to specify a four-byte integer. The prefix h can
be used with the same types to specify a two-byte integer.

Size Specifiers
Use with Dump, Enter, Watch Memory, and Tracepoint Memory dialog
commands.

T-yPe Descr ipt ion
No type
A (ASCII)
B (Byte)
I (Integer)
U (Unsigned)
W (Word)
D (Doubleword)
S (Short Real)
L (Long Real)
T (10-Byte Real)

The current type (default is byte)
ASCII (8-bit) characters
Byte (8-bit) hexadecimal values
Integer (16-bit) decimal values
Unsigned (8-bit) decimal values
Word (16-bit) hexadecimal values
Doubleword (32-bit) hexadecimal values
Short-real (32-bit) values
Long-real (64-bit) values
10-byte-reaI values

CODEVIEW 7

pcjs.org

Dialog Commands
N a m e S y n t a x Descr ipt ion
8087 Displays coprocessor or

emulator status
Assemble A laddrj Assembles mnemonics starting 1at given address
Break Clear BC [list*\ Clears listed breakpoints
Break BD [listi*] Disables listed breakpoints 1Disable
Break BE {listi*} Enables listed breakpoints
Enable
Break List BL Lists current breakpoints 1Break Set BF laddr$pcW'cmds"M Sets breakpoint at given address

with the specified pass count
(pc); given commands are

— '
executed at each break \

Comment * comment Displays explanatory text
Compare C range addr Compares bytes in range with 1Memory bytes beginning at given

address; displays mismatches
Current Displays the current source line SLocation
Delay Delays redirected commands
Display ? exprljmtj Displays expression in format 1Dump OltypeJ IrangeJ Dumps memory range in type

format
Enter EltypeJ addr 11 istJ Enters memory values in type 1format
Examine Xlmodlproc.{syni*} Displays symbols in given
Symbols module and procedure _
Execute E Executes in slow motion
Fill F range list Fills range with the listed values
Memory nGo G laddrj Executes to address or to end
Help H Displays on-line help
Load L largsj Restarts program with given iarguments
Move M range addr Copies values in range to the
Memory given address nOption OIFIBICI3I+I-H Toggles flip/swap, bytes coded,

case sense, or 386 option
Pause i t Interrupts redirected commands

and waits for keystroke iPort Input I port Displays byte from port

8 CODEVIEW ~i
pcjs.org

Port Output O port value
Program
Step

F fcountj

Quit Q
Radix NfradixJ
Redirection flj>l>jdevice

<device
=device

Redraw @
Register Mregisteifl=Jexpr

Screen
Exchange

\

Search Text llregexprj
Search
Memory

S range list

Set Mode SI I+ l - l&H

Shell
Escape
Stack Trace

llcommandj

K

Tab Set #number
Trace T leountj

Tracepoint TP? exprljmtj
TFltypeJ range

Unassemble MlrangeJ

Use USEllanguageJ
View V Ufile-.JIineJ

Watch W? exprljmtj
W[/v/Jt?J range

Watch
Delete

Y{number*\

Watch List W
Watchpoint WP? exprljmtj

Sends byte value to port
Executes, stepping over calls;
repeats count times
Exits to DOS
Sets input radix
Redirects input or output to or
from device

Redraws the screen ,
Displays registers and flags, or
sets new registers and flags
Displays the output screen

Searches for a regular expression
Searches range for listed values,
and displays where values are
found
Toggles source, assembly, and
mixed modes
Escapes to a new DOS shell

Displays routines currently
active on the stack
Sets tab size to number
Executes, tracing into calls;
repeats count times
Breaks when given expression
or memory value changes;
displays in watch window
Displays unassembled
instructions
Switches expression evaluators
Displays specified source lines
of given file
Displays given expression or
memory range in watch window
Deletes (yanks) the given watch
statements
Lists watch statements
Breaks when given expression is
true; displays in watch window

CODEVIEW 9

pcjs.org

MAKE
Command-Line Syntax
MAKE [options^ ^maaodefmitions^ filename

Opt ions
O p t i o n A c t i o n

Syntax for MAKE Files
ImacrodefinitionsJ
linferencerulesj
dependencyrules

Syntax for Macro Definitions
name=value

Syntax for Inference Rules
.inextension.outextension :

command
IcommandJ

Syntax for Dependency Rules
targetfile:dependentfilesl#commentJ
l#commentJ

commandl#commentj
lcommandJl#commentJ

10 MAKE

1

1

1
/D Displays the last modification date of each file as

the file is scanned
/I Ignores exit codes returned by programs called from

the MAKE description file; MAKE continues
execution of the next lines of the description file ^^
despite the errors

/N Displays commands that would be executed by a
description file, but does not actually execute the
commands

/S Executes in silent mode; lines are not displayed as
they are executed

~

1

1

"I
1

pcjs.org

Syntax for Using Macros
%{name)

Special Macro Names
N a m e V a l u e S u b s t i t u t e d

$ * Base-name port ion of the outfile (no extension)
$ @ C o m p l e t e o u t fi l e n a m e
$ * * C o m p l e t e l i s t o f i n fi l e s

Environment Variable
V a r i a b l e D e s c r i p t i o n

INIT Spec ifies loca t ion o f the TOOLS. INI fi le , wh ich
may contain inference rules

w L I B
Command-Line Syntax
LIB oldlibrary [/P[AGESIZE|:««mferI lcommands\ W'StfileJ WiewlibraryJB IUII

Commands
C o d e T a s k D e s c r i p t i o n

+ A p p e n d s a n o b j e c t fi l e o r l i b r a r y fi l e
^ _ - D e l e t e s a m o d u l e

-+ Replaces a module by deleting it and appending an
object file with the same name

* Cop ies an ob jec t modu le on to an independan t
object file

-* Moves a module out of the l ibrary by copying it to
an object file and then deleting it

MAKE/LIB 11

pcjs.org

CREF
Command-Line Syntax
CREF crossreferencefile\[crossreferenceIistingl

SETENV
Command-Line Syntax
SETENV filenameftenvirwtmentsize^

EXEPACK
Command-Line Syntax
EXEPACK exefile packedfrie

EXEMOD
Command-Line Syntax
EXEMOD exefile ^options]

O p t i o n s

O p t i o n E f f e c t

/STACK hexnum Sets the stack size by setting the initial value of
SP to hexnum

/MIN hexnum Sets the minimum allocation value to hexnum
paragraphs

/MAX hexnum Sets the maximum allocation value to hexnum
paragraphs

ERROUT
Command-Line Syntax
ERROUT lit stdenfilej command [> stdoutflle

12 CREF/SETENV/EXEPACK/EXEMOD/ERROUT

1
"I
1

1
"I
1
1
i

pcjs.org

Directives

Directives
Operators

"

pcjs.org

Topical Cross-Reference for Directives
Simplified Code Labels Repeat Blocks Processor
Seament PROC REPT .8086
.MODEL ENDP IRP .286
.CODE LABEL IRPC .286P
.STACK ALIGN ENDM .386
.DATA EVEN .386P
.DATA? ORG Conditional .8087
.FARDATA Assembly .287.FARDATA? Scope I F l 387 " ™ *
.CONST PUBLICDOSSEG EXTRN

COMM
IF
IFF Listina Control

Seament INCLUDELIB IFB TITLE 1SEGMENT IFNB SUBTTL
ENDS Structure IFDEF PAGE
GROUP and Record IFNDEF .LIST
ASSUME IFDIF/IFDIFI .XLIST 1DOSSEG
END
.ALPHA
.SEQ

Data Allocation
DB
DW

RECORD
STRUC
ENDS

IFIDN/IFIDNI
ELSE
ENDIF

.LFCOND

.SFCOND

.TFCOND
Macros
MACRO
ENDM
EXITM

Conditional Error
.ERR
.ERR1
.ERR2

.LALL

.SALL

.XALL

.CREF

1
DD LOCAL .ERRE .XCREF

DF PURGE .ERRNZ
DQ .ERRB Miscellaneous
DT Equates .ERRNB COMMENTLABEL
ALIGN
EVEN

EQU .ERRDEF
.ERRNDEF
.ERRDIF/.ERRDIFI

%OUT
.RADIX 1

ORG .ERRIDN/.ERRIDNI END
INCLUDE
INCLUDELIB
NAME

Topical Cross-Reference for Operators
Arithmetic Logical Type
+ and Shift HIGH- AND LOW* OR PTR
/ XOR SHORT
MOD NOT SIZE

SHL THIS
11 SHR TYPE

.TYPE
Macro Record
<>
i

MASK
WIDTH

Seament

SEG
% OFFSET

Relational
EQ
NE
GT
GE
LT
LE

Miscellaneous

dup

1

1
1

pcjs.org

Directives
name = expression

Assigns the numeric value of expression to name. The symbol
may be redefined later.

.186
Enables assembly of instructions for the 80186 processor.

.286
Enables assembly of nonprivileged instructions for the 80286
processor.

.286P
Enables assembly of all instructions (including privileged) for
the 80286 processor.

.287
Enables assembly of instructions for the 80287 coprocessor.

.386
Enables assembly of nonprivileged instructions for the 80386
processor.

.386P
Enables assembly of all instructions (including privileged) for
the 80386 processor.

.387
Enables assembly of instructions for the 80387 coprocessor.

.8086
Enables assembly of 8086 instructions (and the identical 8088
instructions); disables assembly of instructions of later
processors. This is the default mode.

.8087
Enables assembly of 8087 instructions and disables assembly of
instructions available only with later coprocessors. This is the
default mode.

ALIGN number
Aligns the next variable or instruction on a byte that is a
multiple of number.

. A L P H A
Orders segments alphabetically.

ASSUME segregister:namel,segregister:namej...
Selects segregister to be the default segment register for all
symbols in the named segment or group. If name is NOTHING,
no segment register is associated with the segment.

DIRECTIVES 13

pcjs.org

.CODE InameJ
When used with .MODEL, indicates the start of a code segment,
which may have name for medium, large, and huge models
(default segment name _TEXT for small and compact models, or
module_TEXT for other models).

COMM definitionl,definitionJ...
Creates a communal variable with the attributes specified in
definition. Each definition has the following form:
[NEARIFAR] labeksizelicountj
The label is the name of the variable. The size can be any size
specifier (BYTE, WORD, etc.). The count specifies the number
of data objects (one is the default).

COMMENT delimiter ItextJ
text
delimiter l_textj

Treats all text between or on the same line as the delimiters as a
comment.

.CONST
When used with .MODEL, starts a constant data segment (with
segment name CONST).

. C R E F
Restores listing of symbols in the cross-reference listing file.

. D A T A
When used with .MODEL, starts a near data segment for
initialized data (segment name _DATA).

. D ATA ?
When used with .MODEL, starts a near data segment for
uninitialized data (segment name _BSS).

DOSSEG
Orders segments according to the DOS segment convention.

InameJ DB initializer ^initializer^...
Allocates and optionally initializes a byte of storage for each
initializer.

piamej DW initializer ^initializer]...
Allocates and optionally initializes a word (2 bytes) of storage
for each initializer.

InameJ DD initializer ^initializer%..
Allocates and optionally initializes a doubleword (4 bytes) of
storage for each initializer.

InameJ DF initializer ^initializer]...
Allocates and optionally initializes a farword (6 bytes) of storage
for each initializer.

InameJ DQ initializer ^initializer].

1
1
1

1
1
1
"I
1
1

1
1
1

j | u ^ l i n i t i a l i z e r] i , i m i i u u z e i j | . . . — —
Allocates and optionally initializes a quadword (8 bytes) of
storage for each initializer.

14 DIRECTIVES
. _

pcjs.org

^namej DT initializer ^initializer]...
Allocates and optionally initializes 10 bytes of storage for each
initializer.

E L S E
Marks the beginning of an alternate block within a conditional
block. See IF.

END Istartaddress]
Marks the end of a module and, optionally, sets the program
entry point to startaddress.

ENDIF
Terminates a conditional block. See IF.

E N D M
Terminates a macro or repeat block. See MACRO, REPT, IRP,
or IRPC.

name ENDP
Marks the end of procedure name previously begun with PROC.
See PROC.

name ENDS
Marks the end of segment name or of structure name previously
begun with SEGMENT or STRUC. See SEGMENT and
STRUC.

name EQU \<Jexpressionl>J
Assigns expression to name. If expression is enclosed in angle
brackets, it will be interpreted as a text expression. Numeric
equates defined with EQU cannot be redefined, but text equates
can be redefined.

. E R R
Generates an error.

. E R R 1
Generates an error on Pass 1 only.

. E R R 2
Generates an error on Pass 2 only.

.ERRB <argument>
Generates an error if argument is blank.

.ERRDEF name
Generates an error if name is a previously defined label, variable,
or symbol.

.ERRDIFJI] <argumentl>, <argument2>
Generates an error if the arguments are different. If I is given,
the argument comparison is case insensitive.

.ERRE expression
Generates an error if expression is false (0).

DIRECTIVES 15

pcjs.org

.ERRIDNP]) <argumentl>, <argument2>
Generates an error if the arguments are identical. If I is given,
the argument comparison is case insensitive.

.ERRNB <argument>
Generates an error if argument is not blank.

.ERRNDEF name
Generates an error if name has not been defined.

.ERRNZ expression
Generates an error if expression is true (nonzero).

E V E N
Aligns the next variable or instruction on an even byte.

E X I T M
Terminates expansion of the current repeat or macro block and
begins assembly of the next statement outside the block.

EXTRN nameitype \,name:type]...
Defines one or more external variables, labels, or symbols called
name whose type is type.

.FARDATA gnome]
When used with .MODEL, starts a far data segment for
initialized data (segment name FAR_DATA or name).

.FARDATA? fname]
When used with .MODEL, starts a far data segment for
uninitialized data (segment name FAR_BSS or name).

name GROUP segment̂ segmenij...
Add the specified segments to the group called name.

IF expression
ifstatements
[E L S E
elsestatementsj
E N D I F

Grants assembly of ifstatements if expression is true (nonzero).
Optionally assembles elsestatements if expression is false (0).

I F 1

IF2
Grants assembly on Pass 1 only. See IF for complete syntax.

Grants assembly on Pass 2 only. See IF for complete syntax.
IFB <argument>

Grants assembly if argument is blank. See IF for complete
syntax.

IFDEF name
Grants assembly if name is a previously defined label, variable,
or symbol. See IF for complete syntax.

16 DIRECTIVES

pcjs.org

IFDIF([IJ <argumentl>, <argument2>
Grants assembly if the arguments are different. If I is given, the
argument comparison is case insensitive.See IF for complete
syntax.

IFE expression
Grants assembly if expression is false (0). See IF for complete
syntax.

IFIDNP]] <argumentl>, <argument2>
Grants assembly if the arguments are identical. If I is given, the
argument comparison is case insensitive. See IF for complete
syntax.

IFNB <argument>
Grants assembly if argument is not blank. See IF for complete
syntax.

IFNDEF name
Grants assembly if name has not been defined. See IF for
complete syntax.

INCLUDE filespec
Inserts source code from the source file given by filespec into
the current source file during assembly.

INCLUDELIB library
Informs the linker that the current module should be linked with
library.

IRP parameter,<argument\,argument\ ...>
statements
E N D M

Marks a block that will be repeated for as many arguments as are
given, with the current argument replacing parameter on each
repetition.

IRPC parameter,string
statements
E N D M

Marks a block that will be repeated for as many characters as
there are in string, with the current character replacing parameter
on each repetition.

name LABEL type
Creates a new variable or label by assigning the current location-
counter value and the given type to name.

. L A L L
Starts listing of all statements in macros.

. L F C O N D
Starts listing of statements in false conditional blocks.

. L I S T
Starts listing of statements. This is the default.

DIRECTIVES 17

pcjs.org

LOCAL local name 1,1 oca I name J...
Declares localname within a macro as a placeholder for an actual
name to be created when the macro is expanded.

name MACRO ^parameter [^parameter]...]
statements
E N D M

Marks a macro block called name and establishes parameters as
placeholders for arguments passed when the macro is called.

.MODEL memorymodel
Initializes the program memory model. The memorymodel can be
SMALL, COMPACT, MEDIUM, LARGE, or HUGE.

NAME modulename
Ignored in Version 5.0. The module name is always the base
name of the source file.

ORG expression
Sets the location counter to expression.

%OUT text
Displays text to the standard output device (the screen).

PAGE UIength],width]
Sets line length and character width of the program listing. If no
arguments are given, generates a page break.

PAGE +
Increments section-page numbering.

label PROC [NEARIFARJ
statements
RET Iconstant]
label ENDP

Marks start and end of a procedure block called label. The
statements the block can be called with the CALL instruction.

PUBLIC name _,name]...
Makes each variable, label, or absolute symbol specified as name
available to all other modules in the program.

PURGE macroname f,macroname]...
Deletes the specified macros from memory.

.RADIX expression
Sets the input radix to the value of expression.

recordname RECORDfieldljieldj...
Declares a record type consisting of the specified fields. Each
field has the following form:
fieldname:widthl= expression^
The fieldname names the field, width specifies the number of
bits, and expression gives its initial value.

18 DIRECTIVES

pcjs.org

REPT expression
statements
E N D M

Marks a block that is to be repeated expression times.
. S A L L

Suppresses listing of macro expansions.
name SEGMENT lalign] icombinej fuse] l* class']
statements
name ENDS

Defines a program segment called name having segment
attributes align, combine, use, and class.

.SEQ
Orders segments sequentially (the default order).

.SFCOND
Suppresses listing of conditional blocks whose condition
evaluates to false (0). This is the default.

.STACK Isize]
When used with .MODEL, indicates the start of a stack segment
(with segment name STACK). The optional size specifies the
number of bytes for the stack (default 1024).

name STRUC
fields
name ENDS

Declares a structure type having the specified fields. Each field
must be a valid data definition (using DB, DW, etc.).

SUBTTL text
Defines the listing subtitle.

. T F C O N D
Toggles listing of false conditional blocks.

TITLE text
Defines the program listing title.

. X A L L
Starts listing of macro expansion statements that generate code
or data. This is the default.

.XCREF lnamel,name]...]
Suppresses listing of symbols in the cross-reference listing file.
If names are specified, only the given symbols will be
suppressed.

.XLIST
Suppresses program listing.

DIRECTIVES 19

pcjs.org

Operators
expression! * expression2

Returns expression! times expression!.

expression! I expression!
Returns expression! divided by expression!.

expression! + expression!
Returns expression! plus expression!.

expression! - expression!
Returns expression! minus expression!.

-expression
Reverses the sign of expression.

segment: expression
Overrides the default segment of expression with segment. The
segment may be a segment register, a group name, or a segment
name. The expression can be a constant, a memory expression,
or a SEG expression.

variable .field
Returns the offset of field plus the offset of variable.

^expression 1] [expression!]
Returns the offset of expression! plus the offset of expression!.

<text>
Treats text in a macro argument as a single literal element.

'.character
Treats character in a macro argument as a literal character rather
than as an operator or symbol.

;text
Treats text as a comment.

;;text
Treats text as a comment that will not be listed in expanded
macros.

%text
Treats text in a macro argument as an expression.

¶meter
Replaces parameter with its corresponding argument value.

expression! AND expression!
Returns the result of a bitwise Boolean AND done on
expression! and expression!.

count DUP (initialvalue^Jnitialvalue]...)
Specifies count number of declarations of initialvalue.

20 OPERATORS

pcjs.org

expression! EQ expression!
Returns true (-1) if expression! equals expression!, or returns
false (0) if it does not.

expression! GE expression!
Returns true (-1) if expression! is greater than or equal to
expression!, or returns false (0) if it is not.

expression! GT expression!
Returns true (-1) if expression! is greater than expression!, or
returns false (0) if it is not.

HIGH expression
Returns the high byte of expression.

expression! LE expression!
Returns true (-1) if expression! is less than or equal to
expression!, or returns false (0) if it is not.

LENGTH variable
Returns the number of data objects in variable if variable was
defined with the DUP operator.

LOW expression
Returns the low byte of expression.

expression! LT expression!
Returns true (-1) if expression! is less than expression!, or
returns false (0) if it is not.

MASK {recordfieldname\record}
Returns a bit mask in which the bits for recordfieldname or
record are set and all other bits are cleared.

expression! MOD expression!
Returns the remainder of dividing expression! by expression!.

expression! NE expression!
Returns true (-1) if expression! does not equal expression!, or
returns false (0) if it does.

NOT expression
Returns expression with all bits reversed.

OFFSET expression
Returns the offset of expression.

expression! OR expression!
Returns the result of a bitwise Boolean OR done on expression!
and expression!.

type PTR expression
Forces the expression to be treated as having the specified type.

SEG expression
Returns the segment of expression.

expression SHL count
Returns the result of shifting the bits of expression left count
number of bits.

OPERATORS 21

pcjs.org

SHORT label
Sets the type of label to short (having a distance less than 128
bytes from the start of the next instruction).

expression SHR count
Returns the result of shifting the bits of expression right count
number of bits.

1

1SIZE variable
Returns the number of bytes allocated for variable if variable was
defined with the DUP operator.

THIS type
Returns an operand of specified type whose offset and segment
values are equal to the current location-counter value.

TYPE expression
Returns the type of expression.

.TYPE expression
Returns a byte defining the mode and scope of expression.

WIDTH {recordfieldname\record}
Returns the width in bits of the current recordfieldname or record.

expression! XOR expression!
Returns the result of a bitwise Boolean XOR done on
expression! and expression!.

22 OPERATORS

"1
1
1
1
H
1
1
~

n
1

pcjs.org

Processor

Interpreting Processor Instructions
Flags
Syntax
Examples
Clock Speeds

Timings on the 8088 and 8086
Timings on the 80286 and 80386

Interpreting Encodings
Interpreting 80386 Encoding Extensions

80286 Encoding
80386 Encoding
Address-Size Prefix
Operand-Size Prefix
Encoding Differences for 32-bit Operations
Scaled Index Base Byte

Instructions

-

pcjs.org

Topical Cross-Reference 1
Data Transfer Strina Compare Conditional Set "1
MOV MOVS CMP SETB/SETNAE§
MOVS LODS CMPS SETAE/SETNB* 1MOVSX5 STOS TEST SETBE/SETNAS
MOVZX§ SCAS BT§ SETA/SETNBE5
XCHG CMPS BTC§ SETE/SETZ§
LODS INS* BTRS SETNE/SETNZ?
STOS OUTS* BTSS SETL/SETNGE§

~ \LEA REP SETGE/SETNL§
LDS/LES REPE/REPZ Unconditional SETLE/SETNG§
LFS/LGS/LSSS R E P N E / R E P N Z Tr a n < - (Q , SETG/SETNLES
XLAT/XLATB SETS§

~]Arithmetic CALL SETNS§
Stack INT SETC§ADD IRET SETNC§
PUSH ADC RET SETO§
PUSHF INC RETN/RETF SETNO§ 1PUSHA* SUB JMP SETP/SETPE§POP SBB ENTER* SETNP/SETPO^POPF DEC LEAVE*
POPA* NEG

I M U L Loop
LOOP

BCD Conversion 1Input/Output M U L
DIV

AAA
AASIN IDIV LOOPE/LOOPZ AAMINS* LOOPNE/LOOPNZ AAD "1OUT

OUTS* Loqical JCXZ/JECXZ DAA
DASAND Conditional

Type
Conversion

OR
XOR Transfer Processor —1
NOT JB/JNAE Control

CBW JAE/JNB NOPCWD
CWDE§
CDOj

Bit Shift
ROL
ROR
RCL

JBE/JNA
JA/JNBE
JE/JZ
JNE/JNZ

ESC
WAIT
LOCK
H LT H

Flag RCR JL/JNGE
CLC
CLD
C L I
CMC
CLTS*
STC
STD

SHL/SAL
SHR
SAR
SHLDS
SHRD§
BSF§
BSRS

JGE/JNL
JLE/JNG
JG/JNLE
JS
JNS
JC
JNC
JO

Process Control
ARPLt
CLTSt
LARt
LGDT/LIDT/LLDTt
LMSWt
LSLtSTI

POPF
PUSHF
LAHF
SAHF

JNO
JP/JPE
JNP/JPO
JCXZ/JECXZ

LT R t
SGDT/SIDT/SLDTt
SMSWt
STRt 1

INTO VERRt
BOUND* VERWt

MOV special 1
1

* 80186/286/386 o n l y . t 80286/386 only. § 80386 only. 1
pcjs.org

Interpreting Processor Instructions
This section provides an alphabetical reference to the instructions for
the 8086, 8088, 80286, and 80386 processors. A key to each element
of the reference is given in Figure 1.

Mnemonic Name Restriction (optional)

0 D 1 T s /. A P c
±

BSF/BSFL
Bit Scan -
80386 Only

Scans an operand to find the first sel bit. If a set bit is found, the zero
flag is set and the destination operand is loaded with the bit index of the Ifirst set bit encountered. If no set bit is found, the zero flag is cleared.
BSF(Bit Scan Forward)scans from bit 0 to the most significant bit.
BSR (Bit Scan Reverse) scans from the most significant bit of an
operand lo bit 0.

lisp (0.2. t 4 \| (MXKH 111 1 i° 11 l(W* 1 «.«.*. 1

BSK regseH
BSR n-gje.K

b s l c . x . b y . HhVKfi

386 l()+3n

BSF rtgjncm
HSR regjnem

386
3Kfi IO+3n

* The din clion bt I for BS ft or cleared for BSF.

Flags

Description

Encoding

S y n t a x E x a m p l e s C l o c k S p e e d s

Figure 1 Instruction Key

Flags
The first row of the display has a one-character abbreviation for the flag
name. Only the flags common to all processors are shown.

0 O v e r fl o w T T r a p
D D i r e c t i o n S S i g n
1 I n t e r r u p t Z Z e r o

A Auxiliary carry
P Parity
C Carry

The second line has codes indicating how the flag can be effected.

I
0
?
blank
+

Sets the flag
Clears the flag
May change the flag, but the value is not predictable
No effect on the flag
Modifies according to the rules associated with the flag

PROCESSOR INTRODUCTION 23

pcjs.org

Syntax
Each encoding variation may have different syntaxes corresponding to
different addressing modes. The following abbreviations are used:

reg A general-purpose register of any size
segreg One of the segment registers: DS, ES, SS, or CS (also FS

or GS on the 80386)
accum An accumulator register of any size: AL or AX (also EAX

on the 80386)
mem A direct or indirect memory operand of any size
label A labeled memory location in the code segment
src.dest A source or destination memory operand used in a string

operation
immed A constant operand
In some cases abbreviations have numeric suffixes to specify that the
operand must be a particular size. For example, reg!6 means that only
a 16-bit (word) register is accepted.

1

1Examples
One or more examples are shown for each syntax. The examples are
randomly chosen, and no significance should be attached to their order
or placement. They are valid examples of the associated syntax, but
there is no attempt to illustrate all possible operand combinations or to
show context. Their position is not related to the clock speeds in the
right column.
To avoid confusion by programmers who do not have an 80386
processor, examples do not use 32-bit registers unless the instruction is
available only on the 80386. However, 80386 programmers can
substitute 32-bit registers unless the description specifically states
otherwise.

~

24 PROCESSOR INTRODUCTION

1

pcjs.org

Clock Speeds
Column 3 shows the clock speeds for each processor. Sometimes an
instruction may have more than one clock speed. Multiple speeds are
separated by commas. If several speeds are part of an expression, they
will be enclosed in parentheses. The following abbreviations are used
to specify variations:

EA Effective address. This applies only to the 8088 and 8086
processors, as described in the next section.

b,w,d Byte, word, or doubleword operands.

p m P r o t e c t e d m o d e .
n Iterations. Repeated instructions may have a base number of

clocks plus a number of clocks for each iteration. For
example, 8+4n means eight clocks plus four clocks for each
iteration.

noj No jump. For conditional jump instructions, noj indicates
the speed if the condition is false and the jump is not taken.

m Next instruction components. Some control transfer
instructions take different times depending on the length of
the next instruction executed. On the 8088 and 8086, m is
never a factor. On the 80286, m is the number of bytes in
the instruction. On the 80386, m is the number of
components. Each byte of encoding is a component and the
displacement and data are separate components.

W88,88 8088 exceptions. See "Timings on the 8088 and 8086."

Clocks can be converted to nanoseconds by dividing one microsecond
by the number of megahertz (MHz) at which the processor is running.
For example, on a processor running at 8 MHz, one clock takes 125
nanoseconds (1000 MHz per nanosecond / 8 MHz).

The clock counts are for best-case timings. Actual timings vary
depending wait states, alignment of the instruction, the status of the
prefetch queue, and other factors.

Timings on the 8088 and 8086
Because of its 8-bit data bus, the 8088 always requires two fetches to
get a 16-bit operand. Instructions that work on 16-bit memory operands
therefore take longer on the 8088 than on the 8086. Separate 8088
timings are shown in parentheses following the main timing. For
example, 9 (W88=13) means that the 8086 with any operands or the
8088 with byte operands take 9 clocks, but the 8088 with word
operands takes 13 clocks. Similarly, 16 (88=24) means that the 8086
takes 21 clocks, but the 8088 takes 29 clocks.

PROCESSOR INTRODUCTION 25

pcjs.org

On the 8088 and 8086, the effective address (EA) value must be added
for instructions that operate on memory operands. A displacement is
any direct memory or constant operand, or any combination of the two.
Below are the number of clocks to add for the effective address.

Components EA Clocks Exam]Dies

Displacement 6 mov
mov

ax,
ax,

s t u f f
s t u f f + 2

Base or index 5 mov a x , [bx]
mov a x , [d i]

Displacement
plus base or index

9 mov
mov

a x ,
ax,

[bp+8]
. s t u f f [d i]

Base plus index
(BP+DI,BX+SI)

7 mov
mov

ax,
ax,

[b x + s i]
[b p + d i]

Base plus index
(BP+SI.BX+DI)

8 mov
mov

ax,
ax,

[b x + d i]
[b p + s i]

Base plus index
plus displacement
(BP+Dl+disp,BX+SI+disp)

11 mov
mov

ax,
ax.

, s t u f f [b x + s i
. [b p + d i + 8]

Base plus index
plus displacement
(BP+Sl+disp,BX+D\+disp)

12 mov
mov

ax
ax,

, s t u f f [b x + d i
, [b p + s i + 2 0]

Segment override EA+2 mov
mov

ax,
ax,

e s : s t u f f
, d s : [b p + 1 0]

Timings on the 80286 and 80386 Processors
On the 80286 and 80386 processors, the effective address calculation is
handled by hardware and is therefore not a factor in clock calculations
except in one case. If a memory operand includes all three possible
elements—a displacement, a base register, and an index register—then
add one clock. Examples are shown below.

mov ax, [bx+di] ;No extra
mov ax, a r ray [bx+d i] ;One extra
mov ax, [bx+di+6] ;One extra

Note: 80186 and 80188 timings are different from 8088, 8086, and
80286 timings. They are not shown in this manual. Timings are also
not shown for protected-mode transfers through gates or for the virtual
8086 mode available on the 80386 processor.

26 PROCESSOR INTRODUCTION

pcjs.org

Interpreting Encodings
Encodings are shown for each variation of the instruction. This section
describes encoding for all processors except the 80386. The encodings
take the form of boxes filled with 0s and Is for bits that are constant
for the instruction variation, and abbreviations (in italics) for the
following variable bits or bitfields:
d Direction bit. If set, do memory to register or register to

register; the reg field is the destination. If cleared, do
register to memory; the reg field is the source.

w Word/byte bit. If set, use 16-bit operands. If cleared, use 8-
bit operands.

^ Sign bit. If set, sign-extend 8-bit immediate data to 16 bits.

mod Mode. This two-bit field gives the register/memory mode
with displacement. The possible values are shown below.

mod Mean ing
00 This value can have two meanings:

If r/m is 110, a direct memory operand is used.
If r/m is not 110, the displacement is 0 and an
indirect memory operand is used. The operand must
be based, indexed, or based indexed.

01 An indirect memory operand is used with an 8-bit
displacement.

10 An indirect memory operand is used with a 16-bit
displacement.

11 A two-register instruction is used; the reg field
specifies the destination and the r/m field specifies
the source.

reg Register. This three-bit field specifies one of the general-
purpose registers:
reg 16-bit if w=l 8-bit if w=0
000 AX AL
001 CX CL
010 DX DL
011 BX BL
100 SP AH
101 BP CH
110 SI DH
111 DI BH

The reg field is sometimes used to specify encoding
information rather than a register.

PROCESSOR INTRODUCTION 27

pcjs.org

sreg Segment register. This field specifies one of the segment
registers.
sreg Register
0 0 0 E S
0 0 1 c s
0 1 0 s s
O i l D S

r/m Register/memory. This three-bit field specifies a memory or
register operand.
If the mod field is 11, r/m specifies the source register using
the reg field codes. Otherwise, the field has one of the
following values:

1

1
disp Displacement. These bytes give the offset for memory

operands. The possible lengths (in bytes) are shown in
parentheses.

r/m Operand Address
000 DS:[BX+SI+rfwp]
001 DS:[BX+m+disp]
010 SS:[BP+Sl+disp]
on SS:[BP+Dl+disp]
100 DS:[Sl+disp]
101 DS:[Dl+disp]
110 DS:[BF+disp]*
111 BS:[BX+disp]

Data. These bytes gives the actual value for constant values.
The possible lengths (in bytes) are shown in parentheses.

If a memory operand has a segment override, the entire instruction has
one of the following bytes as a prefix:

Segment Prefix
CS 00101110 (2Eh)
DS 00111110 (3Eh)
ES 00100110 (26h)
SS 00110110 (36h)

If mod is 00 and r/m is 110, then the operand is treated as a direct memory operand. This means that
the operand [BP] is encoded as [BP+0] rather than having a short-form like other register indirect
operands. Encoding [BX] takes one byte, but encoding [BP] takes two.

-

1

1

28 PROCESSOR INTRODUCTION

pcjs.org

■ Example

As an example, assume you want to calculate the encoding for the
following statement (where warray is a 16-bit variable):
a d d w a r r a y [b x + d i] , - 3

First look up the encoding for the immediate to memory syntax of the
ADD instruction:

j l O O O O O . v i v 1 I m o d . O O O . i l m \ d i s p (0 o r 2) d a t a (1 o r 2)

Since the destination is a word operand, the w bit will be set. The 8-bit
immediate data must be sign-extended to 16 bits in order to fit into the
operand, so the s bit is also set. The first byte of the instruction is
therefore 10000011 (83h).

Since the memory operand can be anywhere in the segment, it must
have a 16-bit offset (displacement). Therefore the mod field is 10. The
reg field is 000, as shown in the encoding. The r/m coding for
[bx+di+disp] is 001. The second byte is 10000001 (81h).

The next two bytes are the offset of warray. The high byte of the
offset is stored first and the low byte second. For this example, assume
that warray is located at offset lOEFh

The last byte of the instruction is used to store the 8-bit immediate
value -3 (FDh). This value is encoded as 8 bits (but sign-extended to 16
bits by the processor).

The encoding is shown below in hexadecimal:

83 81 10 EFFD

You can confirm this by assembling the instruction and looking at the
resulting assembly listing.

Interpreting 80386 Encoding Extensions
This manual shows 80386 encodings for instructions that are available
only on the 80386 processor. For other instructions, encodings are
shown only for the 16-bit subset available on all processors. This
section tells how to convert the 80286 encodings shown in the manual
to 80386 encodings that use extensions such as 32-bit registers and
memory operands.
The extended 80386 encodings differ in that they can have additional
prefix bytes, a Scaled Index Base (SIB) byte, and 32-bit displacement
and immediate bytes. Use of these elements is closely tied to the

PROCESSOR INTRODUCTION 29

pcjs.org

segment word size. The use type of the code segment determines
whether the instructions are processed in 32-bit mode (USE32) or 16-
bit mode (USE16). Current versions of MS-DOS®) and announced
versions of OS/2 use 16-bit mode only.

The bytes that can appear in an instruction encoding are shown below.

80286 Encoding

Opcode

(1-2)

mod-reg-
rlm

(0-1)

disp

(0-2)

immed

(0-2)

80386 Encoding

Address-
Size (67h)

(0-1)

Operand-
Size (66h)

(0-1)

Opcode

(1-2)

mod-reg-
rlm
(0-1)

Scaled
Index Base

(0-1)

disp

(0-4)

immed

(0-4)

Additional bytes may be added for a segment prefix, a repeat prefix, or
the LOCK prefix.

Address-Size Prefix

The address-size prefix determines the segment word size of the
operation. It can override the default size for calculating the
displacement of memory addresses. The address prefix byte is 67h.
MASM automatically inserts this byte where appropriate.

In 32-bit mode (USE32 code segment), displacements are calculated as
32-bit addresses. The effective address-size prefix must be used for any
instructions that must calculate addresses as 16-bit displacements. In
16-bit mode the defaults are reversed. The prefix must be used to
specify calculation of 32-bit displacements.

Operand-Size Prefix
The operand-size prefix determines the size of operands. It can override
the default size of registers or memory operands. The operand-size
prefix byte is 66h. MASM automatically inserts this byte where
appropriate.
In 32-bit mode, the default sizes for operands are 8 bits and 32 bits
(depending on the w bit). The operand-size prefix must be used for any
instructions that use 16-bit operands. In 16-bit mode, the default sizes
are 8 bits and 16 bits. The prefix must be used for any instructions that
use 32-bit operands.

30 PROCESSOR INTRODUCTION

"1
1
1

H
1
1
1

1
1

"J
1

pcjs.org

Encoding Differences for 32-bit Operations
When 32-bit operations are performed, the meaning of certain bits or
fields are different than for 16-bit operations. The changes may affect
default operations in 32-bit mode, or 16-bit mode operations in which
the address-size prefix or the operand-size prefix is used. The following
fields may have a different meaning for 32-bit operations than the
meaning described in the Interpreting Encodings section:
w Word/byte bit. If set, use 32-bit operands. If cleared, use 8-

bit operands.

s Sign bit. If set, sign-extend 8-bit or 16-bit immediate data
to 32 bits.

mod Mode. This field indicates the register/memory mode. The
value 11 still indicates a register-to-register operation with
r/m containing the code for a 32-bit source register.
However, other codes have different meanings as shown in
the tables in the next section.

reg Register. The codes for 16-bit registers are extended to 32-
bit registers. For example, if the reg field is 000, EAX is
used instead of AX. Use of 8-bit registers is unchanged.

sreg Segment register. The 80386 has the following additional
segment registers:

sreg Register
1 0 0 F S
1 0 1 G S

r/m Register/memory. If the r/m field is used for the source
register, 32-bit registers are used as for the reg field. If the
field is used for memory operands, the meaning is
completely different than for 16-bit operations, as shown in
the tables in the next section.

disp Displacement. This field is four bytes for 32-bit addresses.
data Data. Immediate data can be up to four bytes.

PROCESSOR INTRODUCTION 31

pcjs.org

1Scaled Index Base Byte

Many 80386 extended memory operands are too complex to be m^
represented by a single mod-reg-r/m byte. For these operands, a value
of 100 in the r/m field signals the presence of a second encoding byte
called the Scaled Index Base (SIB) byte. The SIB byte is made up of the
following fields:

V i s i n d e x b a s e j i

ss Scaling Field. This two-bit field specifies one of the
following scaling factors:
S F a c t o r
0 0 1
0 1 2
1 0 4
1 1 8

index Index Register. This three-bit field specifies one of the
following index registers:

1
1
1
1
1
1

base Base Register. This three-bit field combines with the mod
field to specify the base register and the displacement. Note
that the. hasp fiplft onlv sne.rifips the hasp when thp r/m fiplH

index Register
000 EAX
001 ECX
010 EDX
011 EBX
100 no index
101 EBP
110 ESI
111 EDI

Note that ESP cannot be an index register. If the index field
is 100, then the js field must be 00.

that the base field only specifies the base when the r/m field
is 100. Otherwise the r/m field specifies the base.

32 PROCESSOR INTRODUCTION

"1
"1

pcjs.org

The possible combinations of the mod, r/m, scale, index, and base
fields are shown below.

Fie lds for 32-b i t
Nonindexed Operands

mod rim Operand

00
00
00
00
00
00
00
oo
01
0 1
01
01
01
01
01
01

10
10
10
10
10
10
10
10

000
001
010
01 I
100
10!
1 10
111

000
001
010
01 I
100
101
1 10
111

000
001
010
011
100
101
1 10
111

DS:|EAX|
DS:[ECX]
DS:[EDX]
DS:[EBX]
SIB used
DS:disp32i
DS:[ESI]
DS:|EDI]

DS:[EAX+disp8]
DS:[ECX+disp8\
DS:[EDX+disp8)
DS:[EBX+d/spc?]
SIB used
SS:[EBP+di.ip8]
DS:[ESl+disp8]
DS:[EDI+disp8]

DS:[E\X+disp32]
DS:[ECX+disp32\
DS:[EDX+disp32]
DS:[EBX+disp32]
SIB used
SS:[EBP+tf;'.spi2]
DS:[ESI+dwpi2]
DS:[EDI+di'.vp32]

Fie lds for 32-b i t
Indexed Operands

mod r/m base Operand

00 100 000 DS:[E\X+(scale*index)]
00 100 001 DS:[ECXHscale*index)]
00 100 010 DS:|EDX+(.v<«/r*;n<fev)]
00 100 011 DS:[EBXHscale*indes))
00 100 100 SS:|ESP+(.v£u/('*/«^.\)]
00 100 101 DS:[disp32+(scaIe*index)]t
00 100 110 DS:[ESl+(scale*index)]
00 100 111 BS:[EDlHscale*index)]

(01 100 000 DS:\EAX+(scale*index)+disp8]
01 100 001 DS:[ECX+Ucale*index)+disp8\
01 100 010 DS:[EDX+(scale*inde.\)+dispS]
01 100 011 VS:\EBX+(scale*index)+disp8]
01 100 100 SS:[E,SP+(scale*index)+disp8]
01 100 101 SS:[EBP+(scale*inde.\)+disp8\
01 100 110 DS:[ESU(.scale*index)+disp8]
01 100 111 DS:[EX)l+(.scale*index)+disp8)

10 100 000 DS:[EAX+(scale*index)+disp32]
10 100 001 DS:[ECX+(scale*index)+disp32)
10 100 010 DS:[EDX+(scale*inde.\)+disp32]
10 100 011 DS:[EBX+(scale*index)+disp32\
10 100 100 SS:[ESP+(scale*index)+disp32]
10 100 101 SS:[EBP+{scale*index)+disp32]
10 100 110 DS:[ESl+(scale*index)+disp32\

,10 100 111 DS:[Ei)l+{scale*index)+disp32]

The operand [EBP] must be encoded as [EBP + 0) (the 0 is an 8-bit displacement).
Similarly, [EBP+ (scale*index)] must be encoded as [EBP + (scale*index) + 0]. The short
encoding form available with other base registers cannot be used with EBP.

If a memory operand has a segment override, the entire instruction has
one of the prefixes discussed earlier in the Interpreting Encodings
section or one of the following prefixes for the segment registers
available only on the 80386:

Segment Prefix
FS 01100100 (64h)
GS 01100101 (65h)

PROCESSOR INTRODUCTION 33

pcjs.org

■ Example
Assume you want to calculate the encoding for the following statement
(where warray is a 16-bit variable). Assume also that the instruction
is used in 16-bit mode.

a d d w a r r a y [e a x + e c x * 2] , - 3

First look up the encoding for the immediate to memory syntax of the
ADD instruction:

I IOOQOOct' I mod,000.iim~~\ disp (0 or 2) data (1 or2)

The encoding is shown below in hexadecimal:

67 83 84 48 00 00 10 EF FD

34 PROCESSOR INTRODUCTION

1

1This encoding must be expanded to account for 80386 extensions. Note
that the instruction operates on 16-bit data in a 16-bit mode program.
Therefore, the operand-size prefix is not needed. However, the
instruction does use 32-bit registers to calculate a 32-bit effective
address. Thus the first byte of the encoding must be the effective
address-size prefix, 01100111 (67h). ~
The opcode byte is the same (83h) as for the 80286 example described
in the Interpreting Encodings section.

The mod-reg-rlm byte must specify a based indexed operand with a
scaling factor of two. This operand cannot be specified with a single
byte, so the encoding must also use the SIB byte. The value 100 in the
r/m field specifies an SIB byte. The reg field is 000, as shown in the
encoding. The mod field is 10 for operands that have base and scaled
index registers and a 32-bit displacement. The combined mod, reg, and
r/m fields for the second byte are 10000100 (84h).

1
1The SIB byte is next. The scaling factor is 2, so the ss field is 01. The

index register is ECX, so the index field is 001. The base register is
EAX, so the base field is 000. The SIB byte is 01001000 (48h).
The next four bytes are the offset of warray. The low bytes are stored
last. For this example, assume that warray is located at offset
lOEFh. This offset only requires two bytes, but four must be supplied
because of the addressing mode. A 32-bit address can be safely used in
16-bit mode as long as the upper word is 0.

The last byte of the instruction is used to store the 8-bit immediate
value -3 (FDh).

1
1

pcjs.org

0 D I T S Z A P C
? ? 9 + ? +

AAA
ASCII Adjust After Addition

Adjusts the result of an addition to a decimal digit (0-9). The previous
addition instruction should place its 8-bit sum in AL. If the sum is
greater than 9h, AH is incremented and the carry and auxiliary carry
flags are set. Otherwise, the carry and auxiliary carry flags are cleared.

j 00110111 1

AAA
aaa 8 8 / 8 6 8

2 8 6 3
3 8 6 4

O D I T S Z A P C
? + + ■) + •'

AAD
ASCII Adjust Before Division

Converts unpacked BCD digits in AH (most significant digit) and AL
(least significant digit) to a binary number in AX. The instruction is
often used to prepare an unpacked BCD number in AX for division by
an unpacked BCD digit in an 8-bit register.

11010101 i j 00001010 i

AAD
a a d 88 /86 60

2 8 6 1 4
3 8 6 1 9

PROCESSOR INSTRUCTIONS 35

pcjs.org

o D I T S z A P C
7 + + ? + 9

AAM
ASCII Adjust After Multiply

Converts an 8-bit binary number less than 100 decimal in AL to an
unpacked BCD number in AX. The most significant digit goes in AH
and the least significant in AL. This instruction is often used to adjust
the product after a MUL instruction that multiplies unpacked BCD
digits in AH and AL. It is also used to adjust the quotient after a DIV
instruction that divides a binary number less than 100 decimal in AX
by an unpacked BCD number.

! 11010100 I | 00001010 |

AAM
aam 88/86 83

2 8 6 1 6
3 8 6 1 7

0 D I T S Z A P C
? 7 ? ± 7 +

AAS
ASCII Adjust
After Subtraction

Adjusts the result of a subtraction to a decimal digit (0-9). The
previous subtraction instruction should place its 8-bit result in AL. If
the result is greater than 9h, then AH is decremented and the carry and
auxiliary carry flags are set. Otherwise, the carry and auxiliary carry
flags are cleared.

| 00111111

AAS
aas 8 8 / 8 6 8

2 8 6 3
3 8 6 4

36 PROCESSOR INSTRUCTIONS

1
1
1
1
1
1
1
1
1
1

1

1

1
pcjs.org

0 D I T S z A P C
± + + + + +

ADC
Add with Carry

Adds the source operand, the destination operand, and the value of the
carry flag. The result is assigned to the destination operand. This
instruction is used to add the more significant portions of numbers that
must be added in multiple registers.

| OOOlOOdH' I [mod,reg,rlm \ disp (0 or2}

ADC reg,reg
adc dx,cx 88/86

286
386

3
2
2

ADC mem,reg
adc WORD PTR m32[2],dx 88/86

286
386

16+EA(W88=24+EA)
7
7

ADC reg.mem
adc dx,WORD PTR m32[2] 88/86

286
386

9+EA(W88=13+EA)
7
6

data (1 ot 2)! lOOOOQsw | mod.OW.rlm \ disp (0or2)

ADC reg.immed
adc dx, 12 88/86

286
386

4
3
2

ADC mem.immed
adc WORD PTR m32[2],16 88/86

286
386

17+EA(W88=23+EA)
7
7

data (1 or 2)| OOOlOlOw j

ADC accum.immed
adc ax,5 88/86

286
386

4
3
2

PROCESSOR INSTRUCTIONS 37

pcjs.org

0 D 1 T S Z A P C
+ + + + + +

ADD
Add

Adds the source and destination operands and puts the sum in the
destination operand.

1 (XXXXXWw mod.reg.r/m \ disp (0 or 2)

ADD reg,reg
add ax,bx 88/86

286
386

3
2
2

ADD mem,reg
a d d t o t a l , e x
add a r ray [bx+d i] ,dx

88/86
286
386

16+EA(W88=24+EA)
7
7

ADD reg.mem
add ex , inc r
add dx,[bp+6]

88/86
286
386

9+EA(W88=13+EA)
7
6

data (1 or 2)1 iooooo™> mod.OOO.rlm \ disp (0 or 2)

ADD reg.immed
add bx, 6 88/86

286
386

4
3
2

ADD mem.immed
add amount,27
a d d p o i n t e r s [b x] [s i] , 6

88/86
286
386

17+EA (W88=23+EA)
7
7

data (1 or 2)| 000001 On-

ADD accum.immed
add ax,10 88/86

286
386

4
3
2

38 PROCESSOR INSTRUCTIONS

1
1
1
1
1
1
1
1
~

1
" !

"I
1
1
1

pcjs.org

0 D I T S Z A P C
0 + ± 7 + 0

AND
Logical AND

Performs a bitwise logical AND on the source and destination operands
and stores the result in the destination operand. For each bit position in
the operands, if both bits are set, then the corresponding bit of the
result is set. Otherwise, the corresponding bit of the result is cleared.

1 OOlOOOrfw i mod,reg,rlm disp (0 or 2)

AND reg.reg
and dx,bx 88/86

286
386

3
2
2

AND mem,reg
and
and

bi tmask,bx
[bp+2] ,dx

88/86
286
386

16+EA(W88=24+EA)
7
7

AND reg.mem
and
and

bx,masker
dx,marray [bx+di]

88/86
286
386

9+EA(W88=13+EA)
7
6

data (1 ot 2)100000.SH. mod, 100, rim disp (0 or 2)

AND reg,immed
and dx,0F7h 88/86

286
386

4
3
2

AND mem.immed
and masker,1001b 88/86

286
386

17+EA(W88=23+EA)
7
7

data {I or 2)| OOlOOlOiv

AND accum.immed
and ax,0B6h 88/86

286
386

4
3
2

PROCESSOR INSTRUCTIONS 39

pcjs.org

o D I T S z A P C
+

ARPL
Adjust Requested
Privilege Level
80286/386 Protected Only

Verifies that the destination Requested Privileged Level (RPL) field
(bits 0 and 1 of a selector value) is less than the source RPL field. If it
is not, ARPL adjusts the destination RPL up to match the source
RPL. The destination operand should be a 16-bit memory or register
operand containing the value of a selector. The source operand should
be a 16-bit register containing the test value. The zero flag is set if the
destination is adjusted; otherwise the flag is cleared. ARPL can only
be used in 80286 and 80386 privileged mode. See Intel documentation
for details on selectors and privilege levels.

| 01100011 | | mod,reg.r/m \ disp (0 or2)

ARPL reg.reg
arpl ax, ex 88/86

286
386

10
20

ARPL mem.reg
a r p l s e l e c t o r , d x 88/86

286
386

11
21

40 PROCESSOR INSTRUCTIONS

1

1
1
1
1
"I
1

pcjs.org

0 D I T S Z A P C BOUND
Check Array Bounds

80186/286/386 Only

Verifies that a signed index value is within the bounds of an array. The
destination operand can be any 16-bit register containing the index to
be checked. The source operand must then be a 32-bit memory operand
in which the low and high words contain the starting and ending
values, respectively, of the array. (On the 80386 processor, the
destination operand can be a 32-bit register; in this case, the source
operand must be a 64-bit operand made up of 32-bit bounds.) If thesource operand is less than the first bound or greater than the last
bound, then an Interrupt 5 is generated. The instruction pointer pushed
by the interrupt (and returned by IRET) points to the BOUND
instruction rather than to the next instruction.

| d i s p (2)1 01100010 i | mod reg, r/m

BOUND reg!6,mem32
BOUND reg32,mem64*

bound di ,base-4 88/86
286
386

noj=13t
noj=10t

* 80386 only.
t See INT for timings if interrupt 5 is called.

PROCESSOR INSTRUCTIONS 41

pcjs.org

o D I T S Z A P C
+

BSF/BSR
Bit Scan
80386 Only

Scans an operand to find the first set bit. If a set bit is found, the zero
flag is set and the destination operand is loaded with the bit index of the
first set bit encountered. If no set bit is found, the zero flag is cleared.
BSF (Bit Scan Forward) scans from bit 0 to the most significant bit.
BSR (Bit Scan Reverse) scans from the most significant bit of an
operand to bit 0.

iisp (0,2, or 4)j 00001111 10111100 | mod, reg, r/m |

BSF reg!6,regl6
BSF reg32,reg32

bsf cx,bx 88/86
286
386 10+3n

BSF regl6,memI6
BSF reg32,mem32

bsf ecx,bitmask 88/86
286
386 10+3n

disp (0,2, or 4)| 00001111 10111101 ; 1 mod, reg, r/m 1

BSR regl6,regl6
BSR reg32,reg32

bsr ex, dx 88/86
286
386 10+3n

BSR regl6,mem!6
BSR reg32,mem32

b s r eax,bitmask 88/86
286
386 10+3n

42 PROCESSOR INSTRUCTIONS

1
1
1
1

1
"1

1

"1
n

pcjs.org

0 D I T S Z A P C
+

BT/BTC/BTR/BTS
Bit Tests

80386 Only

Copies the value of a specified bit into the carry flag where it can be
tested by a JC or JNC instruction. The destination operand specifies
the value in which the bit is located; the source operand specifies the
bit position. BT simply copies the bit to the flag. BTC copies the bit
and complements (toggles) it in the destination. BTR copies the bit
and resets (clears) it in the destination. BTS copies the bit and sets it
in the destination.

disp (0,2, or 4) data(l)| o o o o n i i ! I l o i i i o i o j | mod. BBB*,iim \

BT regl6,immed8~t
b t ax, 4 88/86

286
386 3

BTC regI6,immed81
BTR regl6,immed8^
BTS reg!6,immed8~t

b t s
b t r
b t c

ax, 4
b x , 1 7
edi, 4

88/86
286
386 6

BT meml6.immed8t
b t r
b t c

DWORD PTR [s i] ,27
c o l o r [d i] , 4

88/86
286
386 6

BTC meml6,immed8\
BTR meml6,immed8-\
BTS mem/6,immed8t

b t c
b t c
b t r

DWORD PTR [bx],27
m a s k i t , 4
c o l o r [d i] , 4

88/86
286
386 8

disp (0,2, or 4)| 0 0 0 0 1 1 1 1 j | 1 Q B BB011 | mod, reg, rim \

BT reg!6,regl6t
b t ax,bx 88/86

286
386 3

BTC regl6,regl6f
BTR regl6,regI6i
BTS regl6,reg/6i

b t c
b t s
b t r

eax,ebx
bx, ax
ex, di

88/86
286
386 6

BT meml6,reg!6'\
b t [bx] ,dx 88/86

286
386 12

BTC meml6,regl6j
BTR meml6,regl6^
BTS mem!6.regl6i

b t s
b t r
b t c

flags [bx] , ex
r o t a t e , e x
[bp+8] , s i

88/86
286
386 13

* BBB is 100 for BT. 111 for BTC, 110 for BTR, and 101 for BTS.
t Operands can also be 32 bits (reg32 and mem32).

PROCESSOR INSTRUCTIONS 43

pcjs.org

CALL
Call Procedure

0 D I T S Z A P C

Calls a procedure. The instruction does this by pushing the address of
the next instruction onto the stack and transferring to the address
specified by the operand. For NEAR calls, SP is decreased by 2, the
offset (IP) is pushed, and the new offset is loaded into IP.
For FAR calls, SP is decreased by 2, the segment (CS) is pushed,
and the new segment is loaded into CS. Then SP is decreased by 2
again, the offset (IP) is pushed, and the new offset is loaded into IP. A
subsequent RET instruction can pop the address so that execution
continues with the instruction following the call.

j 111 0 1 0 0 0 j d i s p (2)

CALL label
c a l l u p c a s e 88/86 19 (88=23)

286 7+m
386 7+m

i 1 0 0 1 1 0 1 0 d i s p (4)

CALL label
call FAR PTR job
c a l l d i s t a n t

88/86 28 (88=36)
286 13+m,pm=26+m*
386 17+m,pm=34+m*

j 11111111 ; | moo .OlO.Wrn |

CALL reg
c a l l a x 88/86 16(88=20)

286 7+m
386 7+m

CALL mem/6
CALL mem32'\

c a l l p o i n t e r
c a l l [b x]

88/86 21+EA(88=29+EA)
286 11+m
386 10+m

j 11111111 ! | moi ,011.i7m |

CALL mem32
CALL mem48t

c a l l f a r t a b l e [d i]
ca l l DWORD PTR [bx]

88/86 37+EA (88=53+EA)
286 16+m,pm=29+m*
386 22+m,pm=38+m*

" Timings for calls through call and task gates are not shown,
operating systems.

\ 80386 32-bit addressing mode only.

since they are used primarily in

44 PROCESSOR INSTRUCTIONS

pcjs.org

0 D 1 T S Z A P C CBW
Convert Byte to Word

Converts a signed byte in AL to a signed word in AX by extending
the sign bit of AL into all bits of AH.

i 1 (Kill (MX)* |

CBW
cbw 8 8 / 8 6 2

2 8 6 2
3 8 6 3

' CBW and CWDE have the same encoding except that in 32-bit mode CBW is preceded by the
operand-size byte (66h) but CWDE is not; in 16-bit mode CWDE is preceded by the operand-size
byte but CBW is not.

0 D I T S Z A P C CDQ
Convert Double to Quad

80386 Only

Converts the signed doubleword in EAX to a signed quadword in the
EDX:EAX register pair by extending the sign bit of EAX into all
bitsofEDX.

I 10011001* |

CDQ
cdq 8 8 / 8 6 —

2 8 6 —
3 8 6 2

! CWD and CDQ have the same encoding except that in 32-bit mode CWD is preceded by the
operand-size byte (66h) but CDQ is not; in 16-bit mode CDQ is preceded by the operand-size bytebut CWD is not.

PROCESSOR INSTRUCTIONS 45

pcjs.org

CLC
Clear Carry Flag

Clears the carry flag.

0 D I T S z A P C
0

| 11111000

CLC
c l c 8 8 / 8 6 2

2 8 6 2
3 8 6 2

0 D I T S z A P C
0

CLD
Clear Direction Flag

Clears the direction flag. All subsequent string instructions will
process up (from low addresses to high addresses), by increasing the
appropriate index registers.

; 11111100 |

CLD
e l d 8 8 / 8 6 2

2 8 6 2
3 8 6 2

46 PROCESSOR INSTRUCTIONS

1
1
1

1
1

1
1
1

1
1
1

pcjs.org

0 D I T S Z A P C
0

CLI
Clear Interrupt Flag

Clears the interrupt flag. When the interrupt flag is cleared, maskable
interrupts are not recognized until the flag is set again with the STI
instruction. In privileged mode, CLI only clears the flag if the current
task's privilege level is less than or equal to the value of the IOPL flag.
Otherwise, a general protection fault is generated.

11111010 j

CLI
c l i 8 8 / 8 6 2

2 8 6 3
3 8 6 3

0 D I T s Z A P C CLTS
Clear Task Switched Flag
80286/386 Privileged Only

Clears the task switched flag in the Machine Status Word (MSW) of
the 80286 or the CRO register of the 80386. This instruction can be
used only in systems software executing at privilege level 0. See Intel
documentation for details on the task switched flag and other privileged-
mode concepts.

| 00001111 !] 00000110 j

CLTS
c i t s 8 8 / 8 6 —

2 8 6 2
3 8 6 5

PROCESSOR INSTRUCTIONS 47

pcjs.org

CMC
Complement Carry Flag

o D I T S Z A P C
+

Complements (toggles) the carry flag.

| 11110101

CMC
erne 8 8 / 8 6 2

2 8 6 2
3 8 6 2

48 PROCESSOR INSTRUCTIONS

pcjs.org

0 D I T S Z A P C
+ + + + + +

CMP
Compare Two Operands

Compares two operands as a test for a subsequent conditional jump or
set instruction. CMP does this by subtracting the source operand from
the destination operand and setting the flags according to the result.
CMP is the same as the SUB instruction, except that the result is not
stored.

1 OOlUOdw | | mod. reg, r/m j disp (0 or 2)

CMP reg.reg
cmp
cmp

di, bx
d l , c l

88/86
286
386

3
2
2

CMP mem.reg
crap
crap

maximum,dx
a r ray [s i] , b l

88/86
286
386

9+EA(W88=13+EA)
7
5

CMP reg,mem
cmp
cmp

dx,minimum
bh,array[si]

88/86
286
386

9+EA(W88=13+EA)
6
6

data (1 oi 2)j lOOOOQsM' 1 i mod, 111 ,rlm j disp (0 or 2)

CMP reg,immed
cmp ax, 24 88/86

286
386

4
3
2

CMP memjmmed
cmp
cmp

WORD PTR [di],4
t e s t e r, 4 0 0 0

88/86
286
386

10+EA (W88=14+EA)
6
5

data (I or 2)| OOl l l lOw j

CMP accitmjmmed
cmp ax,1000 88/86

286
386

4
3
2

PROCESSOR INSTRUCTIONS 49

pcjs.org

CMPS/CMPSB/
CMPSW/CMPSD
Compare String

0 D I T S Z A P C
+ + + + + +

Compares two strings. DS:SI must point to the source string and
ES:DI must point to the destination string (even if operands are
given). For each comparison, the destination element is subtracted from
the source element and the flags are updated to reflect the result
(although the result is not stored). DI and SI are adjusted according to
the size of the operands and the status of the direction flag. They are
increased if the direction flag has been cleared with CLD or decreased if
the direction flag has been set with STD.
If the CMPS form of the instruction is used, operands must be
provided to indicate the size of the data elements to be processed. A
segment override can be given for the source (but not for the
destination). If CMPSB (bytes), CMPSW (words), or CMPSD
(doublewords on the 80386 only) is used, the instruction determines the
size of the data elements to be processed. Operands are not allowed.
CMPS and its variations are usually used with repeat prefixes.
REPNE (or REPNZ) is used to find the first match between two
strings. REPE (or REPZ) is used to find the first nonmatch. Before
the comparison, CX should contain the maximum number of elements
to compare. After the comparison, CX will be 0 if no match (for
REPNE) or no nonmatch (for REPE) was found. Otherwise SI and
DI will point to the element after the first match or nonmatch.

i 101001 lw |

CMPS lsegreg:lsrc,lES:Vest
CMPSB
CMPSW

cmps sou rce ,es :des t
repne cmpsw
repe cmpsb

88/86 22 (W88=30)
2 8 6 8
3 8 6 1 0

50 PROCESSOR INSTRUCTIONS

pcjs.org

0 D I T S Z A P C CWD
Convert Word to Double

Converts the signed word in AX to a signed word in the DX:AX
register pair by extending the sign bit of AX into all bits of DX.

j 10011001* |

CWD
cwd 8 8 / 8 6 5

2 8 6 2
3 8 6 2

' CWD and CDQ have the same encoding except that in 32-bit mode CWD is preceded by the
operand-size byte (66h) but CDQ is not; in 16-bit mode CDQ is preceded by the operand-size bytebut CWD is not.

0 D I T S Z A P C CWDE
Convert Word to

Extended Double
80386 Only

Converts a signed word in AX to a signed doubleword in EAX by
extending the sign bit of AX into all bits of EAX.

! iooiicoo* |

CWDE
cwde 8 8 / 8 6 —

2 8 6 —
3 8 6 3

* CBW and CWDE have the same encoding except that in 32-bit mode CBW is preceded by the
operand-size byte (66h) but CWDE is not; in 16-bit mode CWDE is preceded by the operand-size
byte but CBWis not.

PROCESSOR INSTRUCTIONS 51

pcjs.org

DAA
Decimal Adjust After Addition

0 D I T S Z A P C
7 + + + + +

Adjusts the result of an addition to a packed BCD number (less than
100 decimal). The previous addition instruction should place its 8-bit
binary sum in AL. DAA converts this binary sum to packed BCD
format with the least significant decimal digit in the lower four bits and
the most significant digit in the upper four bits. If the sum is greater
than 99h after adjustment, then the carry and auxiliary carry flags are
set. Otherwise, the carry and auxiliary carry flags are cleared.

| 00100111 \

DAA
daa 8 8 / 8 6 4

2 8 6 3
3 8 6 4

DAS
Decimal Adjust
after Subtraction

0 D I T S Z A P C
? + + + + +

Adjusts the result of a subtraction to a packed BCD number (less than
100 decimal). The previous subtraction instruction should place its 8-
bit binary result in AL. DAS converts this binary sum to packed
BCD format with the least significant decimal digit in the lower four
bits and the most significant digit in the upper four bits. If the sum is
greater than 99h after adjustment, then the carry and auxiliary carry
flags are set. Otherwise, the carry and auxiliary carry flags are cleared.

1 oo io i in ;

DAS
das 8 8 / 8 6 4

2 8 6 3
3 8 6 4

52 PROCESSOR INSTRUCTIONS

pcjs.org

0 D 1 T S Z A P C
± + + ± ±

DEC
Decrement

Subtracts 1 from the destination operand. Because the operand is treated
as an unsigned integer, the DEC instruction does not affect the carry
flag. If a signed borrow requires detection, use the SUB instruction.

1 tnmiw | | mod, 001,rim \ disp (0 or 2)

DEC reg8
d e c c l 88/86 3

286 2
386 2

DEC mem
d e c c o u n t e r 88/86 15+EA(W88=23+EA)

286 7
386 6

j 01001 reg j

DEC regie
DEC reg32*

d e c a x 88/86 3
286 2
386 2

' 80386 only.

PROCESSOR INSTRUCTIONS 53

pcjs.org

DIV
Unsigned Divide

o D I T S Z A P C
? 7 7 1 7 •}

Divides an implied destination operand by a specified source operand.
Both operands are treated as unsigned numbers. If the source (divisor) is
16 bits wide, then the implied destination (dividend) is the DX:AX
register pair. The quotient goes into AX and the remainder into DX. If
the source is 8 bits wide, the implied destination operand is AX. The
quotient goes into AL and the remainder into AH. On the 80386, if
the source is EAX, the quotient goes into EAX and the divisor into
EDX.

i 111101 hv | mod, WOjIm disp (0 or 2)

DIV reg
d i v
d i v

CX
d l

88/86
286
386

b=80-90,w=I44-162
b=14,w=22
b=14,w=22,w=38

DIV mem
d i v
d i v

[bx]
f size

88/86
286
386

(b=86-96,w= 150-168)+EA*
b=17,w=25
b=17,w=25,d=41

* Word memory operands on the \ I take (158-176)+EA clocks.

54 PROCESSOR INSTRUCTIONS

1
1
1
H
1

"1
1
"1
1

pcjs.org

0 D I T S Z A P C ENTER
Make Stack Frame

80186/286/386 Only

Creates a stack frame for a procedure that receives parameters passed on
the stack. The BP register is pushed and BP is set as the stack frame
through which parameters and local variables can be accessed. The first
operand of the ENTER instruction specifies the number of bytes to
reserve for local variables. The second operand specifies the nesting
level for the procedure. The nesting level should be 0 for languages that
do not allow access to local variables of higher level procedures (such
as C, BASIC, and FORTRAN). See the complementary instruction
LEAVE for a method of exiting from a procedure.

1(2) data (I)j 1 1 0 0 1 0 0 0 | | d o t

ENTER immedld.O
enter 4,0 88/86

286
386

11
10

ENTER immedl6,l
enter 0,1 88/86

286
386

15
12

ENTER immedl6,immed8
enter 6,4 88/86

286
386

12+4(n-l)
15+4(n-l)

PROCESSOR INSTRUCTIONS 55

pcjs.org

ESC
Escape

0 D I T S Z A P C

Provides an instruction, and optionally a memory or register operand,
for use by a coprocessor (such as the 8087, 80287, or 80387). The first
operand must be a 6-bit constant that specifies the bits of the
coprocessor instruction. The second operand can be either a register or
memory operand to be used by the coprocessor instruction. The CPU
puts the specified information on the data bus where it can be accessed
by the coprocessor. MASM automatically inserts ESC instructions
in coprocessor instructions.

| 11011/77* | \mod.LLL*,rlm \

ESC immed,reg
e s c 5 , a l 88 /86 2

286 9-20
3 8 6 t

ESC immed,mem
e s c 2 9 , [b x] 88/86 8+EA(W88=l2+EA)

286 9-20
3 8 6 t

* TTT specifies the top three bits of the coprocessor opcode and LLL specifies the lower three bits,
f Timings vary. See the 80387 timings in the coprocessor section.

HLT
Halt

0 D I T S Z A P C

Stops CPU execution until an interrupt restarts execution at the
instruction following HLT.

1 11110100 i

H LT
h i t 8 8 / 8 6 2

2 8 6 2
3 8 6 5

56 PROCESSOR INSTRUCTIONS

pcjs.org

0 D I T S z A P C
7 ■) 9 ■} 7 ■> IDIV

Signed Divide

Divides an implied destination operand by a specified source operand.
Both operands are treated as signed numbers. If the source (divisor) is
16 bits wide, then the implied destination (dividend) is the DX:AX
register pair. The quotient goes into AX and the remainder into DX. If
the source is 8 bits wide, the implied destination is AX. The quotient
goes into AL and the remainder into AH. On the 80386, if the source
is EAX, the quotient goes into EAX and the divisor into EDX.

HI lO l lw ; | mod \l\,r/m 1 disp (0 or 2)

IDIV reg
i d i v b x
d i v d l

88/86 b=101-112,w=165-!84
286 b=17,w=25
386 b=l9,w=27,d=43

IDIV mem
i d i v i t e m p 88/86 (b=107-118,w=171-l90)+EA*

286 b=20,w=28
386 b=22,w=30,d=46

: Word memory operands on the 8088 take (175-I94)+EA clocks.

PROCESSOR INSTRUCTIONS 57

pcjs.org

IMUL
Signed Multiply

o D I T S Z A P c
± •) 7 9 9 +

Multiplies an implied destination operand by a specified source
operand. Both operands are treated as signed numbers. If a single 16-bit
operand is given, the implied destination is AX and the product goes
into the DX:AX register pair. If a single 8-bit operand is given, the
implied destination is AL and the product goes into AX. On the
80386, if the operand is EAX, the product goes into the EDX:EAX
register pair. The carry and overflow flags are set if the product is sign
extended into DX for 16-bit operands, into AH for 8-bit operands, or
into EDX for 32-bit operands.
Two additional syntaxes are available on the 80186-80386 processors.
In the two-operand form, a 16-bit register gives one of the factors and
serves as the destination for the result; a source constant specifies the
other factor. In the three-operand form, the first operand is a 16-bit
register where the result will be stored, the second is a 16-bit register or
memory operand containing one of the factors, and the third is a
constant representing the other factor. With both variations, the
overflow and carry flags are set if the result is too large to fit into the
16-bit destination register. Since the low 16 bits of the product are the
same for both signed and unsigned multiplication, these syntaxes can
be used for either signed or unsigned numbers. On the 80386, the
operands can either 16 or 32 bits wide.
A fourth syntax is available on the 80386. Both the source and
destination operands can be given specifically. The source can be any
16- or 32-bit memory operand or general-purpose register. The
destination can be any general-purpose register of the same size. The
overflow and carry flags are set if the product does not fit in the
destination.

j l l l l O l l t v | mod, 101. r/m | disp (0 or 2)

IMUL reg
i m u l d x 88/86 b=80-98,w=128-154

286 b=13,w=21
386 b=9-14,w=9-22,d=9-38t

IMUL mem
i m u l f a c t o r 88/86 (b=86-104,w=134-160)+EA*

286 b=16,w=24
386 b=12-17,w=12-25,d=12-41t

* Word memory operands on the X 1 take (138-164J+EA clocks.
t The 80386 has an early-out multiplication algorithm. Therefore multiplying an 8-bit or 16-bit valuein EAX takes the same time as multiplying the value in AL or AX.

CONTINUED.

58 PROCESSOR INSTRUCTIONS

1
"1
"1
1
1
1

pcjs.org

disp (0 or 2) data (J or 2 j011010.91 j | mod, reg r/m |

IMUL reg!6,immed
IMUL reg32,immed*

imul ex, 25 88/86 —
286 21
386 b=9-14,w=9-22,d=9-38t

IMUL regl6,regl6,immed
IMUL reg32,reg32,immed*

imul dx,ax,18 88/86 —
286 21
386 b=9-14,w=9-22,d=9-38t

IMUL reg!6,meml6,immed
IMUL reg32,mem32,immed*

imul b x , [s i] , 6 0 88/86 —
286 24
386 b=12-17,w=12-25,d=12-41t

disp (0 or 2)1 00001111 : i 10101111 i | mod, reg, r/m \

IMUL regl6,regl6
IMUL reg!6,regl6

imul ex, ax 88/86 —
286 —
386 w=9-22,d=9-38

IMUL reg!6,meml6
IMUL reg32,mem32

imul d x , [s i] 88/86 —
286 —
386 w=12-25,d=12-41

* 80386 only.
t The variations depend on the source constant size; destination size is not a factor.

0 D I T S Z A P C IN
Input from Port

Transfers a byte or word (or doubleword on the 80386) from a port to
the accumulator register. The port address is specified by the source
operand, which can be DX or an 8-bit constant. Constants can only beused for ports numbers less than 255; use DX for higher port numbers.
In privileged mode, a general protection fault is generated if IN is used
when the current protection level is greater than the value of the IOPL
flag.

| i h o o i o h ' i data (I)

IN accumjmmed
i n ax,60h 88/86

286
386

10 (W88=14)
5
12,pm=6,26*

j 1110110m'

IN accum.DX
i n
i n

ax, dx
a l , d x

88/86
286
386

8 (W88=12)
5
13,pm=7,27*

* First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

PROCESSOR INSTRUCTIONS 59

pcjs.org

INC
Increment

0 D I T S Z A P C
+ + + + +

Adds 1 to the destination operand. Because the operand is treated as an
unsigned integer, the INC instruction does not affect the carry flag. If a
signed carry requires detection, use the ADD instruction.

| l l l l l l l H - j | mod.OOO.r/m) disp (0 or 2)

INC regH
i n c c l 88/86

286
386

3
2
2

INC mem
i n c vpage 88/S6

286
386

15+EA(W88=23+EA)
7
6

J 01000 reg

INC regl6
INC reg32*

i n c bx 88/86
286
386

3
2
2

• 80386 only.

60 PROCESSOR INSTRUCTIONS

1
1

"1
pcjs.org

0 D I T S Z A P C INS/INSB/INSW/INSD
Input trom Port to String

80186/286/386 Only

Receives a string from a port. The string is considered the destination
and must be pointed to by ES:DI (even if an operand is given). The
input port is specified in DX. For each element received, DI is
adjusted according to the size of the operand and the status of the
direction flag. DI is increased if the direction flag has been cleared with
CLD or decreased if the direction flag has been set with STD.
If the INS form of the instruction is used, a destination operand must
be provided to indicate the size of the data elements to be processed and
DX must be specified as the source operand containing the port
number. A segment override is not allowed. If INSB (bytes), INSW
(words), or INSD (doublewords on the 80386 only) is used, the
instruction determines the size of the data elements to be received. No
operands are allowed.
INS and its variations are usually used with the REP prefix. Before
the repeated instruction is executed, CX should contain the number of
elements to be received. In privileged mode, a general protection fault
is generated if INS is used when the current protection level is greater
than the value of the IOPL flag.

j O l lO l lOw i

INS [ES:]<feji,DX
INSB
INSW

r e p i n s b
i n s e s : i n s t r , d x
r e p i n s w

8 8 / 8 6 —
2 8 6 5
386 I5,pm=9,29*

' First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

PROCESSOR INSTRUCTIONS 61

pcjs.org

0 D I T S Z A P C
0 0

INT
Interrupt

Generates a software interrupt. An 8-bit constant operand (0 to 255)
specifies the interrupt procedure to be called. The call is made by
indexing the interrupt number into the Interrupt Descriptor Table (IDT)
starting at segment 0, offset 0. In real mode, the IDT contains 4-byte
pointers to interrupt procedures. In privileged mode, the IDT contains
8-byte pointers. When an interrupt is called in real mode, the flags,
CS, and IP are pushed onto the stack (in that order) and the trap and
interrupt flags are cleared. STI can be used to restore interrupts. See
Intel documentation and the documentation for your operating system
for details on using and defining interrupts in privileged mode. To
return from an interrupt, use the IRET instruction.

ata(l)1 1 0 0 1 1 0 1 d

INT immed8
i n t 2 5 h 88/86

286
386

51 (88=71)
23+m,pm=(40,78)+m*
37,pm=59,99*

\ 11001100

INT 3
i n t 3 88/86

286
386

52 (88=72)
23+m,pm=(40,78)+m*
33,pm=59,99*

* The first protected-mode timing is for interrupts to the same privilege level. The second is for
interrupts to a higher privilegelevel. Timings for interrupts through task gates are not shown.

62 PROCESSOR INSTRUCTIONS

1
1
1
1
1
1

-

"I
" !

"1
1
1
"1

1
pcjs.org

0 D I T S Z A P C
+ +

INTO
Interrupt on Overflow

Generates interrupt 4 if the overflow flag is set. The default DOS
behavior for interrupt 4 is to return without taking any action. You
must define an interrupt procedure for interrupt 4 in order for INTO to
have any effect.

11001110

88/86 53 (88=73),noj=4
INTO 286 24+m,noj=3,ptn=(40,78)+m*

386 35,noj=3,pm=59,99*

* The first protected-mode timing is for interrupts to the same privilege level. The second is for
interrupts to a higher privilege level. Timings for interrupts through task gates are not shown.

0 D I T S z A P C
+ + + + + + + + +

IRET/IRETD
Interrupt Return

Returns control from an interrupt procedure to the interrupted code. In
real mode, the IRET instruction pops IP, CS, and the flags (in that
order) and resumes execution. See Intel documentation for details on
IRET operation in privileged mode. On the 80386, the IRETD
instruction should be used to pop a 32-bit instruction pointer when
returning from an interrupt called from a 32-bit segment.

11001111

IRET
IRETDt

i r e t 88/86 32 (88=44)
286 17+m,pm=(31,55)+m*
386 22,pm=38,82*

* The first protected-mode timing is for interrupts to the same privilege level within a task. The
second is for interrupts to a higher privilege level within a task. Timings for interrupts through task
gates are not shown.

t 80386 only.

PROCESSOR INSTRUCTIONS 63

pcjs.org

J condition
Jump Conditionally

o D I T S z A P C

Transfers execution to the specified label if the flags condition is true.
The condition is tested by checking the flags shown in the table on the
following page. If the condition is false, then no jump is taken and
program execution continues at the next instruction. On the 8088-
80286 processors, the label given as the operand must be short
(between -128 and 127 bytes from the instruction following the jump).
On the 80386, the label is near (between -32768 to +32767 bytes) by
default, but a short jump can be specified with the SHORT operator.

OUlcond disp(l)

^condition label
j g
j o
jpe

b igger
SHORT too_big
p even

88/86
286
386

16,noj=4
7-t-m,noj=3
7+m,noj=3

J 00001111 \000cond disp (2)

^condition label*
j e
jnae
Js

next
l e s s e r
negat ive

88/86
286
386 7+m,noj=3

'• Near labels are only available on the 80386. They are the default.

CONTINUED. . .

64 PROCESSOR INSTRUCTIONS

pcjs.org

JUMP CONDITIONS

Opcode

size 0010

size 0011

size 0110

size 0111

size 0100

sizeOWl

size 1100

size 1101

size 1110

size 1111

size 1000

size 1001

s/zeOOlO

size 0011

size 0000

size 0001

size 1010

size 1011

Mnemonic Flags Checked Description

JB/JNAE CF=1 Jump if below/not above or equal
(unsigned comparisons)

JAE/JNB CF=0 Jump if above or equal/not below
(unsigned comparisons)

JBE/JNA CF=1 oi ZF=1 Jump if below or equal/not above
(unsigned comparisons)

JA/JNBE CF=0 and ZF=0 Jump if above/not below or equal
(unsigned comparisons)

JE/JZ ZF=1 Jump if equal (zero)

JNE/JNZ ZF=0 Jump if not equal (not zero)

JL/JNGE SF*OF Jump if less/not greater or equal (signed
comparisons)

JGE/JNL SF=OF Jump if greater or equal/not less (signed
comparisons)

JLE/JNG ZF=1 or SF*OF Jump if less or equal/not greater (signed
comparisons)

JG/JNLE ZF=0 or SF=OF Jump if greater/not less or equal (signed
comparisons)

JS SF=1 Jump if sign

JNS SF=0 Jump if not sign

JC CF=1 Jump if carry

JNC CF=0 Jump if not carry

JO OF=l Jump if overflow

JNO OF=0 Jump if not overflow

JP/JPE PF=1 Jump if parity/parity even

JNP/JPO PF=0 Jump if no parity/parity odd

Note: The size bits are 0111 for short jumps or 1000 for 80386 near jumps.

PROCESSOR INSTRUCTIONS 65

pcjs.org

0 D I T S Z A P CJCXZ/JECXZ
Jump if CX is Zero

Transfers program execution to the specified label if CX is 0. On the
80386, JECXZ can be used to jump if ECX is 0. If the count register
is not 0, execution continues at the next instruction. The label given as
the operand must be short (between -128 and 127 bytes from the
instruction following the jump).

sp(l)1 1 1 0 0 0 1 1 d

JCXZ label
JECXZ label*

jcxz notfound 88/86
286
386

18,noj=6
8+m,noj=4
9+m,noj=5

* 80386 only.

66 PROCESSOR INSTRUCTIONS

"1
1
1

1
1
"1
1
1
1
1
1
1
1

pcjs.org

0 D I T S z A P C JMP
Jump Unconditionally

Transfers program execution to the address specified by the destination
operand. By default, jumps are near (between -32768 and 32767 bytes
from the instruction following the jump), but you can use an override
to make them short (between -128 and 127 bytes) or far (in a different
code segment). With near and short jumps, the operand specifies a new
IP address. With far jumps, the operand specifies new IP and CS
addresses.

11101011 disp (1)

JMP label
jmp SHORT exit 88/86

286
386

15
7+m
7+m

disp (2*)11101001

JMP label
jmp
jmp

c l o s e
N E A R P T R d i s t a n t

88/86
286
386

15
7+m
7+m

disp (4*)11101010

JMP label
jmp
jmp

FAR PTR close
d i s t a n t

88/86
286
386

15
l l+m,pm=23+mt
12+m,pm=27+mt

11111111 | mod,\00,rlm1
JMP reg!6
JMP reg32§

jmp ax 88/86
286
386

11
7+m
7+m

JMP meml6
JMP mem32§

jmp
jmp
jmp

WORD [bx]
t a b l e [d i]
DWORD [si]

88/86
286
386

18+EA
11+m
10+m

11111111 | mod,\0\,r lm1
JMP mem32
JMP mem48§

jmp
jmp
jmp

f p o i n t e r [s i]
DWORD PTR [bx]
FWORD PTR [di]

88/86
286
386

24+EA
15+m,pm=26+m
12+m,pm=27+m

* On the 80386, the displacement can be four bytes for near jumps or six bytes for far jumps.
tTimings for jumps through call or task gates are not shown, since they are normally used only in

operating systems.
§ 80386 only. You can use DWORD PTR to specify near register-indirect jumps or FWORD PTRto specify far register-indirect jumps.

PROCESSOR INSTRUCTIONS 67

pcjs.org

LAHF
Load Flags into AH Register

0 D I T S Z A P C

Transfers bits 0 to 7 of the flags register to AH. This includes the
carry, parity, auxiliary carry, zero, and sign flags, but not the trap,
interrupt, direction, or overflow flags.

10011111

LAHF
l a h f 8 8 / 8 6 4

2 8 6 2
3 8 6 2

LAR
Load Access Rights
80286/386 Protected Only

0 D I T S Z A P C
±

Loads the access rights of a selector into a specified register. This
instruction is only available in privileged mode. The source operand
must be a register or memory operand containing a selector. The
destination operand must be a register that will receive the access rights
if the selector is valid and visible at the current privilege level. The
zero flag is set if the access rights are transferred, or cleared if they are
not. See Intel documentation for details on selectors, access rights, and
other privileged-mode concepts.

disp (0,2, or 4)| 00001111 i 00000010 j 1 mod, reg, r/m 1

LAR regl6,regl6
LAR reg32,reg32*

l a r ax, bx 8 8 / 8 6 —
2 8 6 1 4
3 8 6 1 5

LAR regl6,meml6
LAR reg32,mem32*

l a r ex,selector 8 8 / 8 6 —
2 8 6 1 6
3 8 6 1 6

* 80386 only.

68 PROCESSOR INSTRUCTIONS

pcjs.org

0 D I T S Z A P C LDS/LES/LFS/LGS/LSS
Load Far Pointer

Reads and stores the far pointer specified by the source memory
operand. The pointer's segment value is stored in the segment register
segment specified by the instruction name. The offset value is stored in
the register specified by the destination operand. The LDS and LES
instructions are available on all processors. The LFS, LGS, and LSS
instructions are available only on the 80386. On the 80386, the size of
the source and destination operand must match the current segment
word size.

! 11000101 | mod, reg, rim ~ | d i s p (2)

LDS reg,mem
Ids s i , f po in te r 88/86 16+EA (88=24+EA)

286 7,pm=21
386 7,pm=22

11000100 j | mod, reg, rim disp (2)

LES reg,mem
les d i , fpo in te r 88/86 16+EA (88=24+EA)

286 7,pm=21
386 7,pm=22

disp (2 or 4)| 00001111 j i 10110100 | mod, reg, rim 1

LFS reg,mem
l f s edi , fpo inter 88 /86 —

2 8 6 —
386 7,pm=25

disp (2 or 4)| 00001 111 i! ii 10110101 | mod, reg, rim |

LGS reg,mem
l g s bx, fpointer 8 8 / 8 6 —

2 8 6 —
386 7,pm=25

disp (2 or 4)j 00001111 1 1 10110010 j | mod, reg, rim J

LSS reg,mem
l s s b p , f p o i n t e r 8 8 / 8 6 —

2 8 6 —
386 7,pm=22

PROCESSOR INSTRUCTIONS 69

pcjs.org

LEA
Load Effective Address

o D I T S z A P C

Calculates the effective address (offset) of the source memory operand
and stores the result into the destination register.

10001101 | mod, reg, rim \ disp (2)

LEA reg,mem
l e a b x , n p o i n t e r 88/86

286
386

2+EA
3
2

0 D I T S z A P CLEAVE
High Level Procedure Exit
80186/286/386 Only

Terminates the stack frame of a procedure. LEAVE reverses the action
of a previous ENTER instruction by restoring SP and BP to the
values they had before the procedure stack frame was initialized.

11001001

LEAVE
leave 8 8 / 8 6 —

2 8 6 5
3 8 6 4

LES/LFS/LGS
Load Far Pointer to Extra Segment

See LDS.

70 PROCESSOR INSTRUCTIONS

n
1
1
1

- \

1
1
1
~1

pcjs.org

0 D 1 T S z A P C LGDT/LIDT/LLDT
Load Descriptor Table

80286/386 Privileged Only

Loads a value from an operand into a descriptor table register. LGDT
loads into the Global Descriptor Table, LIDT into the Interrupt
Descriptor Table, and LLDT into the Local Descriptor Table.These
instructions are available only in privileged mode. See Intel
documentation for details on descriptor tables and other privileged-mode
concepts.

disp (2)| 00001111 J 00000001 | mod, 010.r/m \

LGDT mem64
l g d t descriptor 8 8 / 8 6 —

2 8 6 11
3 8 6 11

disp (2)] ooooiiii ! 1 00000001 i | mod, 011,rim |

LIDT memM
l i d t descriptor 8 8 / 8 6 —

2 8 6 1 2
3 8 6 11

disp (0 or 2)[00001111 |! | 00000000 .! | mod,0l0,r/m |

LLDT reg!6
l l d t ax 8 8 / 8 6 —

2 8 6 1 7
3 8 6 2 0

LLDT meml6
l l d t selector 8 8 / 8 6 —

2 8 6 1 9
3 8 6 2 4

PROCESSOR INSTRUCTIONS 71

pcjs.org

LMSW
Load Machine Status Word
80286/386 Privileged Only

o D I T S Z A P C

Loads a value from a memory operand into the Machine Status Word
(MSW). This instruction is available only in privileged mode. See
Intel documentation for details on the MSW and other privileged-mode
concepts.

disp (0 or 2)j 00001111 1 00000001 ! | mod, 110,/7m |

LMSW regl6
lmsw ax 8 8 / 8 6 —

2 8 6 3
3 8 6 1 0

LMSW memie
lmsw machine 8 8 / 8 6 —

2 8 6 6
3 8 6 1 3

LOCK
Lock the Bus

0 D I T S Z A P C

Locks out other processors during execution of the next instruction.
This instruction is a prefix. It usually precedes an instruction that
modifies a memory location that another processor might attempt to
modify at the same time. See Intel documentation for details on
multiprocessor environments.

| 111 10000

LOCK instruction
lock xchg ax,sem 8 8 / 8 6 2

2 8 6 0
3 8 6 0

72 PROCESSOR INSTRUCTIONS

pcjs.org

0 D I T S Z A P C LODS/LODSB/
LODSW/LODSD
Load String Operand

Loads a string from memory into the accumulator register. The string
to be loaded is the source and must be pointed to by DS:SI (even if an
operand is given). For each source element loaded, SI is adjusted
according to the size of the operands and the status of the direction flag.
SI is increased if the direction flag has been cleared with CLD or
decreased if the direction flag has been set with STD.
If the LODS form of the instruction is used, an operand must be
provided to indicate the size of the data elements to be processed. A
segment override can be given. If LODSB (bytes), LODSW (words),
or LODSD (doublewords on the 80386 only) is used, the instruction
determines the size of the data elements to be processed and whether the
element will be loaded to AL, AX, or EAX. Operands are not
allowed.
LODS and its variations are not normally used with repeat prefixes,
since there is no reason to repeatedly load memory values to a register.

j I O I O I I O w ;

LODS ftsegregl̂ src
LODSB
LODSW

lods es :source
lodsw

88/86
286
386

I2(W88=I6)
5
5

PROCESSOR INSTRUCTIONS 73

pcjs.org

o D I T S Z A P CLOOP
Loop

Loops repeatedly to a specified label. LOOP decrements CX (without
changing any flags) and if the result is not 0, transfers execution to the
address specified by the operand. If CX is 0 after being decremented,
execution continues at the next instruction. The operand must specify a
short label (between -128 and 127 bytes from the instruction following
the LOOP instruction).

isp(l)! 1 1 1 0 0 0 1 0 d

LOOP label
loop wend 88/86

286
386

17,noj=5
8+m,noj=4
11+m

0 D I T S z A P CLOOP condition
Loop If

Loops repeatedly to a specified label if condition is met and if CX is
not 0. The instruction decrements CX (without changing any flags)
and tests to see if the zero flag was set by a previous instruction (such
as CMP). With LOOPE and LOOPZ (they are synonyms),
execution is transferred to the label if the zero flag is set and CX is not
0. With LOOPNE and LOOPNZ (they are synonyms), execution is
transferred to the label if the zero flag is cleared and CX is not 0.
Execution continues at the next instruction if the condition is not met.
Before entering the loop, CX should be set to the maximum number
of repetitions desired.

i 11100001 disp(l)

LOOPE label
LOOPZ label

l o o p z a g a i n 88/86
286
386

18,noj=6
8+m,noj=4
11+m

disp(l)11100000 |

LOOPNE label
LOOPNZ label

loopnz fo r nex t 88/86
286
386

19,noj=5
8,noj=4
11+m

74 PROCESSOR INSTRUCTIONS

1
~

1

pcjs.org

0 D I T S z A P C
+

LSL
Load Segment Limit

80286/386 Protected Only

Loads the segment limit of a selector into a specified register. The
source operand must be a register or memory operand containing a
selector. The destination operand must be a register that will receive the
segment limits if the selector is valid and visible at the current
privilege level. The zero flag is set if the segment limits are transferred,
or cleared if they are not. See Intel documentation for details on
selectors, segment limits, and other privileged-mode concepts.

disp (0 or 2)1_ 00001111 | i 00000011 | mod, reg, rim |

LSL regl6,regI6
LSL reg32,reg32*

l s l ax, bx 8 8 / 8 6 —
2 8 6 1 4
386 20,25t

LSL regl6,meml6
LSL reg32,mem32*

l s l cx,seg lim 8 8 / 8 6 —
2 8 6 1 6
386 21,26t

* 80386 only.
t The first value is for byte granular; the second is for page granular.

LSS
Load Far Pointer to Stack Segment

See LDS.

PROCESSOR INSTRUCTIONS 75

pcjs.org

LTR
Load Task Register
80286/386 Privileged Only

0 D I T S Z A P C

Loads a value from the specified operand to the current task register.
LTR is available only in privileged mode. See Intel documentation for
details on task registers and other privileged-mode concepts.

MOV
Move Data

disp (0 or 2)| 00001111 i | 00000000 > | mod. 001,r/m \

LTR regl6
l t r ax 88/86

286 17
386 23

LTR memie
l t r task 8 8 / 8 6 —

2 8 6 1 9
3 8 6 2 7

O D I T S Z A P C

Copies the value in the source operand to the destination operand. If the
destination operand is SS, then interrupts are disabled until the next
instruction is executed (except on early versions of the 8088 and 8086).

: lOOOlMw | | mod reg, rim 1 disp (0 or 2)

MOV reg,reg
m o v d h , b h
m o v d x , c x
mov bp, sp

88 /86 2
2 8 6 2
3 8 6 2

MOV mem,reg
m o v a r r a y [d i] , b x
m o v c o u n t , e x

88/86 9+EA(W88=13+EA)
2 8 6 3
3 8 6 2

MOV reg,mem
m o v b x , p o i n t e r
m o v d x , m a t r i x [b x + d i]

88/86 8+EA (W88=12+EA)
2 8 6 5
3 8 6 4

CONTINUED. . .

76 PROCESSOR INSTRUCTIONS

pcjs.org

data {I oi 2)11 0 0 0 1 l w ! mod, 000,r/m disp (0 or 2)

MOV mem.immed
mov
mov

[b x] , 1 5
c o l o r , 7

88/86
286
386

10+EA(W88=I4+EA)
3
2

data (1 or 2)j 101 \w reg 1

MOV regjmmed
mov
mov

ex,256
dx,OFFSET string

88/86
286
386

4
2
2

disp (0 or 2)j IOIOCXWiv !

MOV mem,accum
mov
mov

t o t a l , a x
[d i] , a l

88/86
286
386

10(W88=14)
3
2

MOV accum,mem
mov
mov

a l , s t r i n g [b x]
a x , f s i z e

88/86
286
386

10(W88=14)
5
4

| 1 0 0 0 1 \d 0 | i mod,sreg, rim ! disp (0 or 2)

MOV segreg,regl.6
mov ds, ax 88/86

286
386

2
2,pm=17
2,pm=18

MOV segreg,memI6
mov es,psp 88/86

286
386

8+EA(88=12+EA)
5,pm=19
5,pm=19

MOV reg/6,segreg
mov ax, ds 88/86

286
386

2
2
2

MOV meml6,segreg
mov stack save,ss 88/86

286
386

9+EA(88=13+EA)
3
2

PROCESSOR INSTRUCTIONS 77

pcjs.org

MOV
Move to/from
Special Registers
80386 Only

o D I T S z A P c
? 9 9 9 9 9

Stores or loads a value from a special register to or from a 32-bit
general purpose register. The special registers include the control
registers CRO, CR2, and CR3; the debug registers DRO, DR1,
DR2, DR3, DR6, and DR7; and the test registers TR6 and TR7.
See Intel documentation for details on special registers.

1 00001111 j j OOlOOOdO ; | 11, reg*, rim |

MOV r32, controlreg
m o v e a x , c r 2 88 /86 —

2 8 6 —
3 8 6 6

MOV controlreg,r32
m o v c r O , e b x 88 /86 —

2 8 6 —
386 CR0=10,CR2=4,CR3=5

| 00001111 j 00100M1 i | 11, reg*, r/m

MOV r32,debugreg
m o v e d x , d r 3 8 8 / 8 6 —

2 8 6 —
386 DR0-3=22,DR6-7=14

MOV debugreg,reg32
m o v d r O , e c x 8 8 / 8 6 —

2 8 6 —
386 DR0-3=22,DR6-7=16

j 00001111 j j OC 100 WO | | 11, reg*, r/m

MOV r32,testreg
m o v e d x , t r 6 8 8 / 8 6 —

2 8 6 —
3 8 6 1 2

MOV testreg, r32
m o v t r 7 , e a x 8 8 / 8 6 —

2 8 6 —
3 8 6 1 2

* The reg field contains Ihe register number of the special register (for example, 000 for CRO, 011 for
DR7, or 111 for TR7).

78 PROCESSOR INSTRUCTIONS

1
"I
1

1
pcjs.org

0 D I T S z A P C MOVS/MOVSB/
MOVSW/MOVSD

Move String Data

Moves a string from one area of memory to another. The source string
must be pointed to by DS:SI and the destination address must be
pointed to by ES:DI (even if operands are given). For each element
moved, DI and SI are adjusted according to the size of the operands and
the status of the direction flag. They are increased if the direction flag
has been cleared with CLD, or decreased if the direction flag has been
set with STD.
If the MOVS form of the instruction is used, operands must be
provided to indicate the size of the data elements to be processed. A
segment override can be given for the source operand (but not for the
destination). If MOVSB (bytes), MOVSW (words), or MOVSD
(doublewords on the 80386 only) is used, the instruction determines the
size of the data elements to be processed. Operands are not allowed.
MOVS and its variations are usually used with the REP prefix.
Before a move using a repeat prefix, CX should contain the number of
elements to move.

lOlOOlOw ||

MOVS lES:Jdest,lsegreg:lsrc
MOVSB
MOVSW

r e p m o v s b
movs des t ,es : sou rce

88/86 18 (W88=26)
2 8 6 5
3 8 6 7

PROCESSOR INSTRUCTIONS 79

pcjs.org

MOVSX
Move with Sign-Extend
80386 Only

o D I T S Z A P C

Copies and sign-extends the value of the source operand to the
destination register. MOVSX is used to copy a signed 8-bit or 16-bit
source operand to a larger 16-bit or 32-bit destination register.

disp (0,2, or 4)| 00001111 l O l l l l l w | mod, reg, r/m |

MOVSX reg.reg
movsx
movsx
movsx

eax,bx
ecx,bl
bx, al

88/86
286
386 3

MOVSX reg,mem
movsx
movsx
movsx

ex,bsign
edx,wsign
eax,bsign

88/86
286
386 6

O D 1 T S Z A P CMOVZX
Move with Zero-Extend
80386 Only

Copies and zero-extends the value of the source operand to the
destination register. MOVZX is used to copy an unsigned 8-bit or 16-
bit source operand to a larger 16-bit or 32-bit destination register.

] 00001111 | lOHOl l i v j | mod , reg , r lm \ disp(0,2, or4)

MOVZX reg,reg
movzx eax,bx
movzx ecx,bl
movzx bx,al

8 8 / 8 6 —
2 8 6 —
3 8 6 3

MOVZX reg,mem
movzx cx,bunsign
movzx edx,wunsign
movzx eax,bunsign

8 8 / 8 6 —
2 8 6 —
3 8 6 6

80 PROCESSOR INSTRUCTIONS

pcjs.org

0 D I T S Z A P c
± 9 9 9 9 +

MUL
Unsigned Multiply

Multiplies an implied destination operand by a specified source
operand. Both operands are treated as unsigned numbers. If a single 16-
bit operand is given, the implied destination is AX and the product
goes into the DX:AX register pair. If a single 8-bit operand is given,
the implied destination is AL and the product goes into AX. On the
80386, if the operand is EAX, the product goes into the EDX:EAX
register pair. The carry and overflow flags are set if DX is not 0 for 16-
bit operands or if AH is not zero for 8-bit operands.

l l l l O l l i v ! | m o d lOO.r/m | disp (0 or 2)

MUL reg
m u l b x
m u l d l

88/86 b=70-77,w=l 18-113
286 b=13,w=21
386 b=9-14,w=9-22,d=9-38t

MUL mem
m u l f a c t o r
mul WORD PTR [bx]

88/86 (b=76-83,w=124-139)+EA*
286 b=16,w=24
386 b=12-17,w=12-25,d=12-41t

* Word memory operands on the } t take (128-143)+EA clocks.
t The 80386 has an early-out multiplication algorithm. Therefore multiplying an 8-bit or 16-bit valuein EAX takes the same time as multiplying the value in AL or AX.

0 D I T S Z A P C
± + + + + +

NEG
Two's Complement Negation

Replaces the operand with its two's complement. NEG does this by
subtracting the operand from 0. If the operand is 0, the carry flag iscleared. Otherwise the carry flag is set. If the operand contains the
maximum possible negative value (-128 for 8-bit operands or -32768
for 16-bit operands), the value does not change, but the overflow and
carry flags are set.

, l l l lO l lw , ! | mod,0 \ \ , r lm | d isp(0or2)

NEG reg
n e g a x 88 /86 3

2 8 6 2
3 8 6 2

NEG mem
n e g b a l a n c e 88/86 16+EA (W88=24+EA)

2 8 6 7
3 8 6 6

PROCESSOR INSTRUCTIONS 81

pcjs.org

0 D I T S z A P CNOP
No Operation

Performs no operation. NOP can be used for timing delays or
alignment.

| 10010000* |

NOP
nop 88 /86 3

2 8 6 3
3 8 6 3

* The encoding is the same as for XCHG AX,AX.

0 D I T S z A P CNOT
One's Complement Negation

Toggles each bit of the operand by clearing set bits and setting cleared
bits.

j l l l lOl lw i | mod, 010,r /m | disp(0or2)

NOT reg
n o t a x 88 /86 3

2 8 6 2
3 8 6 2

NOT mem
n o t m a s k e r 88/86 16+EA (W88=24+EA)

2 8 6 7
3 8 6 6

82 PROCESSOR INSTRUCTIONS

71
-

"1

1
1
"I
3
- \

1
pcjs.org

0 D I T S Z A P c
0 + ± 9 + 0

OR
Inclusive OR

Performs a bitwise logical OR on the source and destination operands
and stores the result to the destination operand. For each bit position in
the operands, if either or both bits are set, the corresponding bit of the
result it set. Otherwise, the corresponding bit of the result is cleared.

| OOOOKWw | mod, reg, r/m | disp (0 or 2)

OR reg.reg
o r a x , d x 88/86

286
386

3
2
2

OR mem,reg
o r [b p + 6] , e x
o r b i t s , d x

88/86
286
386

16+EA (W88=24+EA)
7
7

OR reg,mem
o r b x , m a s k e r
o r d x , c o l o r [d i]

88/86
286
386

9+EA(W88=13+EA)
7
6

data (1 oi 2)j lOOOOOsiv \ mod,00\,r/m \ disp (0 or2)

OR reg,immed
o r d x , 1 1 0 1 1 0 b 88/86

286
386

4
3
2

OR mem,imrned
o r fl a g r e c , 8 88/86

286
386

(b=17,w=25)+EA
7
7

datafl or 2)| 0000110»'

OR acatm,immed
o r a x , 4 0 h 88/86

286
386

4
3
2

PROCESSOR INSTRUCTIONS 83

pcjs.org

o D I T S z A P COUT
Output to Port

Transfers a byte or word (or a doubleword on the 80386) to a port from
the accumulator register. The port address is specified by the destination
operand, which can be DX or an 8-bit constant. In privileged mode, a
general protection fault is generated if OUT is used when the current
protection level is greater than the value of the IOPL flag.

ata(l)1 1 1 0 0 1 l w d

OUT immed8,accum
out 60h,a l 88/86

286
386

10(88=14)
3
10,pm=4,24*

uioi i lw !

OUT DX,accum
out
out

dx ,ax
dx, al

88/86
286
386

8 (88=12)
3
ll,pm=5,25*

* First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

84 PROCESSOR INSTRUCTIONS

"1
1

1
1
1

pcjs.org

0 D I T S Z A P C OUTS/OUTSB/
OUTSW/OUTSD
Output String to Port

80186/286/386 Only

Sends a string to a port. The string is considered the source and must
be pointed to by DS:SI (even if an operand is given). The output port
is specified in DX. For each element sent, SI is adjusted according to
the size of the operand and the status of the direction flag. SI is
increased if the direction flag has been cleared with CLD or decreased if
the direction flag has been set with STD.
If the OUTS form of the instruction is used, an operand must be
provided to indicate the size of data elements to be sent. A segmentoverride can be given. If OUTSB (bytes), OUTSW (words), or
OUTSD (doublewords on the 80386 only) is used, the instruction
determines the size of the data elements to be sent. No operand is
allowed.
OUTS and its variations are usually used with the REP prefix. Before
the instruction is executed, CX should contain the number of elements
to send. In privileged mode, a general protection fault is generated if
OUTS is used when the current protection level is greater than the
value of the IOPL flag.

| 011011 Ih-

OUTS DX, isegreg-.^src
OUTSB
OUTSW

r e p o u t s d x , b u f f e r
outsb
r e p o u t w

8 8 / 8 6 —
2 8 6 5
386 14,pm=8,28*

* First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

PROCESSOR INSTRUCTIONS 85

pcjs.org

POP
Pop

0 D I T S Z A P C

Pops the top of the stack into the destination operand. This means that
the value at SS:SP is copied to the destination operand and SP is
increased by 2. The destination operand can be a memory location, a
general purpose 16-bit register, or any segment register except CS.
Use RET to pop CS. On the 80386, 32-bit values can be popped by
giving a 32-bit operand. ESP is increased by 4 for 32-bit pops.

| 0101 \reg

POP regl6
POP reg32*

p o p C X 88/86 8(88=12)
2 8 6 5
3 8 6 4

10001111 | mod 000,/-/m | disp (2)

POP memie
POP mem32*

p o p p a r a m 88/86 17+EA (88=25+EA)
2 8 6 5
3 8 6 5

| 000,sre.(;,lll |

POP segreg
p o p e s
p o p d s
p o p s s

88/86 8(88=12)
286 5,pm=20
386 7,pm=21

00001111 | 10,«e,?,001 |

POP segreg*
pop f s
p o p g s

8 8 / 8 6 —
2 8 6 —
386 7,pm=21

' 80386 only.

86 PROCESSOR INSTRUCTIONS

-

1
"I

1
pcjs.org

o D 1 T S Z A P C POPA/POPAD
Pop All

80186/286/386 Only

Pops the top 16 bytes on the stack into the eight general-purpose
registers. The registers are popped in the following order: DI, SI, BP,
SP, BX, DX, CX, AX. The value for the SP register is actually
discarded rather than copied to SP. POPA always pops into 16-bit
registers. On the 80386, use POPAD to pop into 32-bit registers.

01100001

POPA
POPAD*

popa 8 8 / 8 6 —
2 8 6 1 9
3 8 6 2 4

' 80386 only.

o D I T S z A P C
+ + + + + + + + +

POPF/POPFD
Pop Flags

Pops the value on the top of the stack into the flags register. POPF
always pops into the 16-bit flags register. On the 80386, use POPFD
to pop into the 32-bit flags register.

10011101

POPF
POPFD*

popf 88/86 8(88=12)
2 8 6 5
3 8 6 5

• 80386 only.

PROCESSOR INSTRUCTIONS 87

pcjs.org

PUSH
Push

o D I T S Z A P C

Pushes the source operand onto the stack. This means that SP is
decreased by 2 and the source value is copied to SS:SP. The operand
can be a memory location, a general purpose 16-bit register, or a
segment register. On the 80186-80386 processors, the operand can also
be a constant. On the 80386, 32-bit values can be pushed by giving a
32-bit operand. ESP is decreased by 4 for 32-bit pushes. On the 8088
and 8086, PUSH SP copies the value of SP after the push. On the
80186-80386 processors, PUSH SP copies the value of SP before
the push.

[01010 reg —■

PUSH regie
PUSH reg32*

push dx 88/86
286
386

11(88=15)
3
2 "1

11111111 | mod, HO.r/m disp (2)

PUSH meml6
PUSH mem32*

push
push

[d i]
f c o u n t

88/86
286
386

16+EA (88=24+EA)
5
5 3

1
m ^ m

00,sreg,\\0

PUSH segreg
push
push
push

es
ss
cs

88/86
286
386

10(88=14)
3
2 n_ !

| 00001111 | I0,sreg,000 H
■^1

PUSH segreg
push
push

f s
gs

88/86
286
386 2

data (J or 2) hiOllOlOiO

PUSH immed
push
push

'a '
15000

88/86
286
386

3
2

-

1 80386 only.

88 PROCESSOR INSTRUCTIONS

1

"1
pcjs.org

0 D 1 T s z A P C PUSHA/PUSHAD
Push All

80186/286/386 Only

Pushes the general-purpose registers onto the stack. The registers are
pushed in the following order: AX, CX, DX, BX, SP, BP, SI, DI.
The value pushed for SP is the value before the instruction. PUSHA
always pushes 16-bit registers. On the 80386, you can use PUSH AD
to push 32-bit registers.

01100000

PUSHA
PUSHAD*

pus ha 8 8 / 8 6 —
2 8 6 1 7
3 8 6 1 8

' 80386 only.

0 D 1 T S Z A P C PUSHF/PUSHFD
Push Flags

Pushes the flags register onto the stack. PUSHF always pushes the
16-bit flags register. On the 80386, use PUSHFD to push the 32-bit
flags register.

10011100

PUSHF
PUSHFD*

pushf 88/86 10(88=14)
2 8 6 3
3 8 6 4

! 80386 only.

PROCESSOR INSTRUCTIONS 89

pcjs.org

RCL/RCR/ROL/ROR
Rotate

0 D I T S Z A P C
+ +

Rotates the bits in the destination operand the number of times
specified in the source operand. RCL and ROL rotate the bits left;
RCR and ROR rotate right.
ROL and ROR rotate the number of bits in the operand. For each
rotation, the leftmost or rightmost bit is copied to the carry flag as
well as rotated. RCL and RCR rotate through the carry flag. The carry
flag becomes an extension of the operand so that a 9-bit rotation is
done for 8-bit operands, or a 17-bit rotation for 16-bit operands.
On the 8088 and 8086, the source operand can be either CL or 1. On
the 80186-80386, the source operand can be CL or an 8-bit constant.
On the 80186-80386, rotate counts larger than 31 are masked off, but
on the 8088 and 8086, larger rotate counts are performed despite the
inefficiency involved. The overflow flag is only modified by single-bit
variations of the instruction; for multiple-bit variations it is undefined.

1 IOIOOOiv | mo 1, TTT*,r/m\ disp (0 or 2)

ROL reg.l
ROR reg,l

r o r a x , 1
r o l d l , l

88/86 2
286 2
386 3

RCL reg.l
RCR reg,l

rcl dx, 1
r c r b l , l

88/86 2
286 2
386 9

ROL mem.l
ROR mem.l

r o r b i t s , l
rol WORD PTR [bx] , 1

88/86 15+EA (W88=23+EA)
286 7
386 7

RCL mem.l
RCR mem,l

rcl WORD PTR [si],1
rcr WORD PTR m32[0],1

88/86 15+EA (W88=23+EA)
286 7
386 10

* TTT represents one of the following bit codes: 000 for ROL, 001 for ROR, 010 for RCL, or 011
for RCR.

CONTINUED. . .

90 PROCESSOR INSTRUCTIONS

1
"1

pcjs.org

H O I O O l w | mod, TTT* ,rlm | d/sp (0 or 2j

ROL reg.CL
ROR ;ej>,CL

r o r a x , c l
r o l d x , c l

88/86 8+4n
286 5+n
386 3

RCL re.?,CL
RCR reg,CL

r c l d x , c l
r c r b l , c l

88/86 8+4n
286 5+n
386 9

ROL mem.CL
ROR mem.CL

r o r c o l o r , c l
rol WORD PTR [bp+6],cl

88/86 20+EA+4n (W88=28+EA+4n)
286 8+n
386 7

RCL mem.CL
RCR mem.CL

rcr WORD PTR [bx+di],cl
rc l masker

88/86 20+EA+4n (W88=28+EA+4n)
286 8+n
386 10

data (1)1 lOOOOOw | trod,l 1l*,r/m | disp(0or2)

ROL reg,immed8
ROR reg,immed8

ro l ax ,13
r o r b l , 3

88/86 —
286 5+n
386 3

RCL reg.immedS
RCR reg,immed8

rcl bx, 5
r c r s i , 9

88/86 -
286 5+n
386 9

ROL mem,immed8
ROR mem,immed8

rol BYTE PTR [bx],10
r o r b i t s , 6

88/86 —
286 8+n
386 7

RCL mem,immed8
RCR mem,immed8

rcl WORD PTR [bp+8],5
rcr masker,3

88/86 —
286 8+n
386 10

* TTT represents one of the following bit codes: 000 for ROL, 001 for ROR, 010 for RCL, or 011
for RCR.

PROCESSOR INSTRUCTIONS 91

pcjs.org

REP
Repeat String

o D I T S z A P C

Repeats the string instruction the number of times indicated by CX.
For each string element, the string instruction is performed and CX is
decremented. When CX reaches 0, execution continues with the next
instruction. REP is normally used with MOVS and STOS. (REP
LODS is legal, but has the same effect as LODS.) REP is
additionally used with INS and OUTS on the 80186-80386
processors. On all processors except the 80386, combining a repeat
prefix with a segment override may cause errors if an interrupt occurs
during a string operation.

1 11110010 , | 10100KV

REP MOVS de.it.src
REP MOVSB
REP MOVSW

r e p m o v s s o u r c e , d e s t i n
rep movsw

88/86 9+17n (W88=9+25n)
286 5+4n
386 8+4n

! 11110010 | | 10101011V j

REP STOS dest
REP STOSB
REP STOSW

r e p s t o s b
r e p s t o s d e s t i n

88/86 9+10n(W88=9+14n)
286 4+3n
386 5+5n

j 11110010 | | OI IOHOh- j

REP INSdest.DX
REP INSB
REP INSW

r e p i n s b
r e p i n s d e s t i n , d x

88/86 —
286 5+4n
386 13+6n,pm=(7,27)+6n*

! 11110010 | | 011011 l.v |

REP OUTSDX.sre
REP OUTSB
REP OUTSW

r e p o u t s d x , s o u r c e
r e p o u t s w

88/86 —
286 5+4n
386 12+5n,pm=(6,26)+5n*

: First protected-mode timing: CPL < IOPL. Second timing: CPL > IOPL.

92 PROCESSOR INSTRUCTIONS

pcjs.org

0 D I T S Z A P C
+

REP condition
Repeat String Conditionally

Repeats a string instruction as long as condition is true and the
maximum count has not been reached. REPE and REPZ (the names
are synonyms) repeat while the zero flag is set. REPNE and REPNZ
(the names are synonyms) repeat while the zero flag is cleared. The
conditional repeat prefixes should only be used with SCAS and
CMPS, since these are the only string instructions that modify the
zero flag. Before executing the instruction, CX should be set to the
maximum allowable number of repetitions. For each string element,
the string instruction is performed, CX is decremented, and the zero
flag is tested. On all processors except the 80386, combining a repeat
prefix with a segment override may cause errors if an interrupt occurs
during a string operation.

11110011 , 101001 lie

REPE CMPS dest,src
REPE CMPSB
REPE CMPSW

repz cmpsb
repe cmps des t i n , s r c

88/86 9+22n (W88=9+30n)
286 5+9n
386 5+9n

1111 0 0 11 1 0 1 0 11 l i v

REPE SCAS dest
REPE SCASB
REPE SCASW

r e p e s e a s d e s t i n
r e p z s c a s w

88/86 9+15n (W88=9+19n)
286 5+8n
386 5+8n

i uiiooio ; | loiooi iw i

REPNE CMPS dest,src
REPNE CMPSB
REPNE CMPSW

repne empsw
repnz cmps destin, src

88/86 9+22n (W88=9+30n)
286 5+9n
386 5+9n

1111 0 0 11 1 l O l O l l l w

REPNE SCAS dest
REPNE SCASB
REPNE SCASW

repne seas dest in
repnz scasb

88/86 9+15n (W88=9+19n)
286 5+8n
386 5+8n

PROCESSOR INSTRUCTIONS 93

pcjs.org

RET/RETN/RETF
Return from Procedure

0 D I T S Z A P C

Returns from a procedure by transferring control to an address popped
from the top of the stack. A constant operand can be given indicating
the number of additional bytes to release. The constant is normally
used to adjust the stack for arguments pushed before the procedure was
called. Under MASM, the size of a return (near or far) is the size of
the procedure in which the RET is defined with the PROC directive.
Starting with Version 5.0, RETN can be used to specify a near return;
RETF can specify a far return. A near return works by popping a word
into IP. A far return works by popping a word into IP and then
popping a word into CS. After the return, the number of bytes given
in the operand (if any) is added to SP.

11000011

RET
RETN

r e t
r e t n

88/86
286
386

16(88=20)
11+m
10+m

ita(2)1 1 0 0 0 0 1 0 d

RET immed8
RETN rnmedS

r e t 2
retn 8

88/86
286
386

20 (88=24)
11+m
10+m

11001011

RET
RETF

ret
r e t f

88/86
286
386

26 (88=34)
15+m,pm=25+m,55*
18+m,pm=32+m,62*

ata (2)1 1 0 0 1 0 1 0 a

RET immedl6
RETF immedie

r e t 8
r e t f 3 2

88/86
286
386

25(88=33)
15+m,pm=25+m,55*
18+m,pm=32+m,68*

* The first protected mode timing is for a return to the same privilege level; the second is for a return
to a lesser privilege level.

1
1

94 PROCESSOR INSTRUCTIONS

1

"J
1

pcjs.org

See RCL/RCR

ROL/ROR
Rotate

0 D I T S z A P C
+ + + ± ±

SAHF
Store AH into Flags

Transfers AH into bits 0 to 7 of the flags register. This includes the
carry, parity, auxiliary carry, zero, and sign flags, but not the trap,
interrupt, direction, or overflow flags.

10011110

SAHF
sahf 8 8 / 8 6 4

2 8 6 2
3 8 6 3

PROCESSOR INSTRUCTIONS 95

pcjs.org

SAL/SAR/SHL/SHR
Shift

o D I T S z A P C
± + + ? ± ±

Shifts the bits in the destination operand the number of times specified
by the source operand. SAL and SHL shift the bits left; SAR and
SHR shift right.
With SHL, SAL, and SHR, the bit shifted off the end of the operand
is copied into the carry flag and the leftmost or rightmost bit opened by
the shift is set to 0. With SAR, the bit shifted off the end of the
operand is copied into the carry flag and the leftmost bit opened by the
shift retains its previous value (thus preserving the sign of the
operand). SAL and SHL are synonyms; they have the same effect.
On the 8088 and 8086, the source operand can be either CL or 1. On
the 80186-80386 processors, the source operand can be CL or an 8-bit
constant. On the 80186-80386 processors, shift counts larger than 31
are masked off, but on the 8088 and 8086, larger shift counts are
performed despite the inefficiency involved. The overflow flag is only
modified by single-bit variations of the instruction; for multiple-bit
variations it is undefined.

HOlOOOir | mod, TTT*.r/m | disp (0 or 2)

SAR reg.l
s a r d i , l
s a r c l , 1

88 /86 2
2 8 6 2
3 8 6 3

SAL reg.l
SHL reg.l
SHR reg.l

s h r d h , l
s h l s i , 1
s a l b x , 1

88 /86 2
2 8 6 2
3 8 6 3

SAR mem.l
s a r c o u n t , 1 88/86 15+EA (W88=23+EA)

2 8 6 7
3 8 6 7

SAL mem,l
SHL mem.l
SHR mem.l

sal WORD PTR m32[0],1
s h l i n d e x , 1
s h r u n s i g n [d i] , 1

80/86 15+EA (W88=23+EA)
2 8 6 7
3 8 6 7

* TTT represents one of the following bit codes: 100 for SHL or SAL, 101 for SHR. or 111 for SAR.

CONTINUED. . .

96 PROCESSOR INSTRUCTIONS

1
1
1
1
1

pcjs.org

H O l O O l i v \ n od, TTT*,rim | </«/? (0 or 2)

SAR reg,CL
s a r b x , c l
s a r d x , c l

88/86
286
386

8+4n
5+n
3

SAL reg,CL
SHL reg,CL
SHR reg.CL

s h r d x , c l
s h l d i , c l
s a l a h , c l

88/86
286
386

8+4n
5+n
3

SAR mem.CL
s a r s i g n , c l
sar WORD PTR [bp+8],cl

88/86
286
386

20+EA+4n (W88=
8+n
7

=28+EA+4n)

SAL mem.CL
SHL mem,CL
SHR mem.CL

shr WORD PTR m32[2],cl
sal BYTE PTR [di],cl
s h l i n d e x , c l

88/86
286
386

20+EA+4n (W88=
8+n
7

=28+EA+4n)

data (1)1 lOOOOOw | » od,TTT*slm | disp (0 or 2)

SAR reg,immed8
sar bx,5
s a r c l , 5

88/86
286
386

5+n
3

SAL reg,immed8
SHL reg,immed8
SHR reg,immed8

sal ex ,6
sh l d i , 2
shr bx,8

88/86
286
386

5+n
3

SAR memJmmedS
sar s ign count ,3
sar WORD PTR [bx],5

88/86
286
386

8+n
7

SAL mem,immed8
SHL mem.immedH
SHR mem,immed8

shr meml6,11
shl unsign,4
s a l a r r a y [b x + d i] , 1 4

88/86
286
386

8+n
7

' TTT represents one of the following bit codes: 100 for SHL or SAL, 101 for SHR, or 111 for SAR.

PROCESSOR INSTRUCTIONS 97

pcjs.org

SBB o D I T S Z A P C
Subtract with Borrow ± + + + + +

Subtracts the source from the destination, then subtracts the the value
of the carry flag from the result. This result is assigned to the
destination. SBB is used to subtract the least significant portions of
numbers that must be processed in multiple registers.

| 0001lOdw mod, reg, rim \ disp (0 or 2)

SBB reg,reg
sbb dx,cx 88/86

286
386

3
2
2

SBB mem,reg
sbb WORD PTR m32[2] dx 88/86

286
386

16+EA (W88=24+EA)
7
6

SBB reg,mem
sbb dx,WORD PTR m32[2] 88/86

286
386

9+EA(W88=13+EA)
7
7

data (1 ot 2)iooooo™- mod,Oil, rim | disp(0or2)

SBB reg,immed
sbb dx,45 88/86

286
386

4
3
2

SBB memjmmed
sbb WORD PTR m32[2] 40 88/86

286
386

17+EA(W88=25+EA)
7
7

datafl or 2)| OOOlllOw

SBB accumjmmed
s b a x , 3 2 0 88/86

286
386

4
3
2

98 PROCESSOR INSTRUCTIONS

1
1
1
"I
1

pcjs.org

o D I T S z A P C
± + + + + +

SCAS/SCASB/
SCASW/SCASD

Scan String Flags

Scans a string to find a value specified in the accumulator register. The
string to be scanned is considered the destination and must be pointed
to by ES:DI (even if an operand is specified). For each element, the
destination element is subtracted from the accumulator value and the
flags are updated to reflect the result (although the result is not stored).
DI is adjusted according to the size of the operands and the status of the
direction flag. DI is increased if the direction flag has been cleared with
CLD or decreased if the direction flag has been set with STD.
If the SCAS form of the instruction is used, an operand must be
provided to indicate the size of the data elements to be processed. No
segment override is allowed. If SCASB (bytes), SCASW (words), or
SCASD (doublewords on the 80386 only) is used, the instruction
determines the size of the data elements to be processed and whether the
element scanned for is in AL, AX, or EAX. No operand is allowed.
SCAS and its variations are usually used with repeat prefixes.
REPNE (or REPNZ) is used to find the first match of the
accumulator value. REPE (or REPZ) is used to find the first
nonmatch. Before the comparison, CX should contain the maximum
number of elements to compare. After the comparison, CX will be 0 if
no match or nonmatch was found. Otherwise SI and DI will point to
the element after the first match or nonmatch.

lOlOlllw

SCAS lES:ldest
SCASB
SCASW

repne scasw
r e p e s c a s b
s e a s e s : d e s t i n

88/86 15(W88=I9)
2 8 6 7
3 8 6 7

PROCESSOR INSTRUCTIONS 99

pcjs.org

0 D I T S Z A P CSETcondition
Set Conditionally
80386 Only

Sets the byte specified in the operand to 1 if condition is true or to 0 if
condition is false. The condition is tested by checking the flags shown
in the table on the following page. The instruction is used to
conditionally set Boolean flags.

\
| 00001111 \00\cond | mod.OOO.rlm |

SETcondition reg8
setc
setz
setae

dh
a l
b l

88/86
286
386 4

SETcondition mem8
seto
setle
sete

BTYE PTR [bx]
fl a g
Booleans[d i]

88/86
286
386 5

CONTINUED.

100 PROCESSOR INSTRUCTIONS

"1
1
"1
s
1
1

pcjs.org

SET CONDITIONS

Opcode Mnemonic

SETB/SETNAE

SETAE/SETNB

SETBE/SETNA

SETA/SETNBE

SETE/SETZ

SETNE/SETNZ

SETL/SETNGE

SETGE/SETNL

SETLE/SETNG

SETG/SETNLE

SETS

SETNS

SETC

SETNC

SETO

SETNO

SETP/SETPE

SETNP/SETPO

Flags Checked

CF=1

CF=0

CF=1 orZF=l

CF=0 and ZF=0

ZF=1

ZF=0

SF̂ tOF

SF=OF

ZF=lorSF*OF

ZF=0 or SF=OF

SF=1

SF=0

CF=1

CF=0

OF=l

OF=0

PF=1

PF=0

Description

| 10010010 Set if below/not above or equal
(unsigned comparisons)

| 10010011 Set if above or equal/not below
(unsigned comparisons)

| 10010110 Set if below or equal/not above
(unsigned comparisons)

| 10010111 Set if above/not below or equal
(unsigned comparisons)

| 10010100 Set if equal/zero

| 10010101 Set if not equal/not zero

| 10011100 Set if less/not greater or equal
(signed comparisons)

| 10011101 Set if greater or equal/not less
(signed comparisons)

| 10011110 Set if less or equal/not greater or
equal (signed comparisons)

| 10011111 Set if gTeater/not less or equal
(signed comparisons)

| 10011000 Set if sign

| 10011001 Set if not sign

|10010010 Set if carry

| 10010011 Set if not carry

| 10010000 Set if overflow

| 10010001 Set if not overflow

| 10011010 Set if parity/parity even

| 10011011 Set if no parity/parity odd

PROCESSOR INSTRUCTIONS 101

pcjs.org

SGDT/SIDT/SLDT
Store Descriptor Table
80286/386 Privileged Only

0 D I T S z A P C

Stores a Descriptor Table register into a specified operand. SGDT
stores the Global Descriptor Table; SIDT, the Interrupt Descriptor
Table; and SLDT, the Local Descriptor Table. These instructions are
available only in privileged mode. See Intel documentation for details
on descriptor tables and other privileged-mode concepts.

disp 12)| 00001111 00000001 | mod,00O.rlni \

SGDT mem64
sgdt descriptor 8 8 / 8 6 —

2 8 6 11
3 8 6 9

disp (2)00001111 | 00000001 | mod,00\,r/m \

SIDT mem64
s i d t descriptor 88/86

2 8 6 1 2
3 8 6 9

disp (0 or 2)00001111 00000000 | mod,000,rlm \

SLDT regie
si :1c ax 88 /86 —

2 8 6 2
3 8 6 2

SLDT meml6
s l d t selector 8 8 / 8 6 —

2 8 6 3
3 8 6 2

SHL/SHR
Shi f t

See SAL/SAR

102 PROCESSOR INSTRUCTIONS

1
1
1
1
1

pcjs.org

o D I T S Z A P C
? + + 7 + +

SHLD/SHRD
Double Precision Shift

80386 Only

Shifts the bits of the second operand into the first operand. The number
of bits shifted is specified by the third operand. SHLD shifts the first
operand to the left by the number of positions specified in the count.
The positions opened by the shift are filled by the most significant bits
of the second operand. SHRD shifts the first operand to the right by
the number of positions specified in the count. The positions opened
by the shift are filled by the least significant bits of the second operand.
The count operand can be either CL or an 8-bit constant. If a shift
count larger than 31 is given, it will be adjusted by using the remainder
(modulus) of a division by 32.

disp (0 or 2) data(l)| 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 | mod,reg,rlm \

SHLD regl6,reg!6,immed 8
SHLD reg32,reg32,immed 8

shld ax,dx,10 8 8 / 8 6 —
2 8 6 —
3 8 6 3

SHLD meml6,regie,immed8
SHLD mem32,reg32,immed8

shld b i t s , e x , 5 8 8 / 8 6 —
2 8 6 —
3 8 6 7

disp (0 or 2) data(l)0 0 0 0 1111 1 0 1 0 11 0 0 | mod,reg,r/m \

SHRD regl6,regl6,immed 8
SHRD reg32,reg32,immed 8

shrd e x , s i , 3 8 8 / 8 6 —
2 8 6 —
3 8 6 3

SHRD meml 6,regl6,immed8
SHRD mem32,reg32,immed8

shrd [d i] , d x , 1 3 88/86
2 8 6 —
3 8 6 7

disp (0 or 2)0 0 0 0 1 1 1 1 1 0 1 0 0 01 | mod,reg,r/m \

SHLD regl6,regl6,CL
SHLD reg32,reg32,CL

shld a x , d x , c l 8 8 / 8 6 —
2 8 6 —
3 8 6 3

SHLD meml6,regl6,CL
SHLD mem32,reg32,CL

shld maske r,ax ,c l 88/86
286
3 8 6 7

disp (0 or 2)| 0 0 0 0 1111 1 0 1 0 11 0 1 | mod,reg,r/m |

SHRD regie,regl6,CL
SHRD reg32.reg32,CL

shrd b x , d x , c l 88 /86 —
2 8 6 —
3 8 6 3

SHRD meml6,regl6,CL
SHRD mem32,reg32,CL

shrd [b x] , d x , c l 88/86
286
3 8 6 7

PROCESSOR INSTRUCTIONS 103

pcjs.org

SMSW
Store Machine Status Word
80286/386 Privileged Only

0 D I T S Z A P C

Stores the Machine Status Word (MSW) into a specified memory
operand. SMSW is available only in privileged mode. See Intel
documentation for details on the MSW and other privileged-mode
concepts.

disp (0 or 2)| 00001 111] 00000001 | mod.\00.rim \

SMSW reg!6
smsw ax 88 /86 —

2 8 6 2
386 10

SMSW mem/6
smsw machine 8 8 / 8 6 —

2 8 6 3
386 3,pm=2

STC
Set Carry Flag

0 D 1 T S z A P C
1

Sets the carry flag.

11111001

STC
s t c 8 8 / 8 6 2

2 8 6 2
3 8 6 2

104 PROCESSOR INSTRUCTIONS

pcjs.org

0 D I T S Z A P C
1

STD
Set Direction Flag

Sets the direction flag. All subsequent string instructions will process
down (from high addresses to low addresses).

11111101

STD
std 8 8 / 8 6 2

2 8 6 2
3 8 6 2

0 D I T S z A P C
1

STI
Set Interrupt Flag

Sets the interrupt flag. When the interrupt flag is set, maskable
interrupts are recognized. If interrupts were disabled by a previous CLI
instruction, pending interrupts will not be executed immediately; they
will be executed after the instruction following STI.

11111011

STI
s t i 8 8 / 8 6 2

2 8 6 2
3 8 6 3

PROCESSOR INSTRUCTIONS 105

pcjs.org

0 D I T S z A P CSTOS/STOSB/
STOSW/STOSD
Store String Data

Stores the value in the accumulator to a string. The string to be filled
is the destination and must be pointed to by ES:DI (even if an operand
is given). For each source element loaded, DI is adjusted according to
the size of the operands and the status of the direction flag. DI is
increased if the direction flag has been cleared with CLD or decreased if
the direction flag has been set with STD.
If the STOS form of the instruction is used, an operand must be
provided to indicate the size of the data elements to be processed. No
segment override is allowed. If STOSB (bytes), STOSW (words), or
STOSD (doublewords on the 80386 only) is used, the instruction
determines the size of the data elements to be processed and whether the
element will be from AL, AX, or EAX. No operand is allowed.
STOS and its variations are often used with the REP prefix. Before
the repeated instruction is executed, CX should contain the number of
elements to store.

! IOIOIOIw

STOS [ES:]]<fcrf
STOSB
STOSW

s t o s e s : d s t r i n g
r e p s t o s w
r e p s t o s b

88/86 11(W88=15)
2 8 6 3
3 8 6 4

106 PROCESSOR INSTRUCTIONS

1

1

"I
1
1

1
1

1
pcjs.org

0 D I T S Z A P C STR
Store Task Register

80286/386 Privileged Only

Stores the current task register to the specified operand. This
instruction is only available in privileged mode. See Intel
documentation for details on task registers and other privileged-mode
concepts.

disp (0 or 2)00001111 | 00000000 | mod,00\,reg \

STR regie
s t r e x 88 /86 —

2 8 6 2
3 8 6 2

STR memie
s t r t as ' . reg 88/86

2 8 6 3
3 8 6 2

PROCESSOR INSTRUCTIONS 107

pcjs.org

SUB
Subtract

0 D I T S Z A P C
+ + + + + +

Subtracts the source operand from the destination operand and stores the
result in the destination operand.

| OOlOlCWiv mod, reg, r/m | disp (0or2)

SUB reg,reg
sub ax, bx
sub bh,dh

88/86
286
386

3
2
2

SUB mem,reg
s u b t a l l y, b x
s u b a r r a y [d i] , b l

88/86
286
386

16+EA (W88=24+EA)
7
6

SUB reg,mem
sub ex ,d iscard
sub al, [bx]

88/86
286
386

9+EA(W88=13+EA)
7
7

data (1 ot 2)j lOOOOOsiv mod, 101,r/m \ disp (0 or 2)

SUB reg,immed
sub dx,45
sub b l ,7

88/86
286
386

4
3
2

SUB mem,immed
sub to ta l ,4000
sub BYTE PTR [bx+di],2

88/86
286
386

17+EA(W88=25+EA)
7
7

data (1 or 2)| 00101lOw

SUB accumjmmed
sub ax,32000 88/86

286
386

4
3
2

1
_

108 PROCESSOR INSTRUCTIONS

1
1

1

pcjs.org

0 D I T S Z A P C
0 + + 7 + 0

TEST
Logical Compare

Tests specified bits of an operand and sets the flags for a subsequent
conditional jump or set instruction. One of the operands contains the
value to be tested. The other contains a bit mask indicating the bits to
be tested. TEST works by doing a logical bitwise AND on the source
and destination operands. The flags are modified according to the result,
but the destination operand is not changed. This instruction is the same
as the AND instruction, except that the result is not stored.

100001lw mod, reg, r/m disp (0 or 2)

TEST reg.reg
test
test

dx, bx
bl,ch

88/86
286
386

3
2
2

TEST mem,reg*
TEST reg,mem

test
test

dx,flags
bl ,b i tarray[bx]

88/86
286
386

9+EA (W88=13+EA)
6
5

data (1 oi 2)l l l l O l l n ' I : mod,000,rlm disp (0 or 2)

TEST regjmmed
test
test

ex,30h
c l ,1011b

88/86
286
386

5
3
2

TEST memjmmed
test
test

masker,1
BYTE PTR [bx],03h

88/86
286
386

11+EA
6
5

data (lor 2)1010100m' j

TEST accumjmmed
test ax,90h 88/86

286
386

4
3
2

* MASM transposes TEST mem,reg so that it is encoded as TEST reg^nem.

PROCESSOR INSTRUCTIONS 109

pcjs.org

VERR/VERW
Verify Read or Write80286/386 Protected Only

0 D I T S Z A P C
±

Verifies that a specified segment selector is valid and can be read or
written to at the current privilege level. VERR verifies that the
selector is readable. VERW verifies that the selector can be written to.
If the segment is verified, the zero flag is set. Otherwise the zero flag is
cleared. These instructions are available only in privileged mode. See
Intel documentation for details on segment selectors and other
privileged-mode concepts.

disp (0 or 2)| 00001111 j 00000000 1 | mod, 100,r/m |

VERR regl6
v e r r ax 8 8 / 8 6 —

286 14
386 10

VERR memie
v e r r se lec to r 8 8 / 8 6 —

286 16
386 11

disp (0 or 2)| 00001111 | 00000000 | mod, 101,rim |

VERW regl6
verw CX 8 8 / 8 6 —

2 8 6 1 4
386 15

VERW mem76
verw selector 8 8 / 8 6 —

2 8 6 1 6
3 8 6 1 6

110 PROCESSOR INSTRUCTIONS

1
1

"I
pcjs.org

0 D I T S Z A P C WAIT
Wait

Suspends CPU execution until a signal is received that a coprocessor
has finished a simultaneous operation. It should be used to prevent a
coprocessor instruction from modifying a memory location that is
being modified at the same time by a processor instruction. WAIT is
the same as the coprocessor FWAIT instruction.

10011011

WAIT
wai t 8 8 / 8 6 4

2 8 6 3
3 8 6 6

0 D I T S Z A P C XCHG
Exchange

Exchanges the values of the source and destination operands.

100001 \w | motl,reg,rlm disp (0 or 2)

XCHG reg.reg
xchg
xchg
xchg

ex, dx
l , d h
al, ah

88/86
286
386

4
3
3

XCHG reg,mem
XCHG mem,reg

xchg
xchg

[b x] , a x
b x , p o i n t e r

88/86
286
386

17+EA (W88=25+EA)
5
5

10010 reg

XCHG accum,regl6*
XCHG reg!6,accum*

xchg
xchg

ax, ex
ex, ax

88/86
286
386

3
3
3

* On the 80386, the accumulator may also be exchanged with a 32-bit register.

PROCESSOR INSTRUCTIONS 111

pcjs.org

XLAT/XLATB
Translate

0 D I T S z A P C

Translates a value from one coding system to another by looking up
the value to be translated in a table stored in memory. Before the
instruction is executed, BX should point to a table in memory and AL
should contain the unsigned position of the value to be translated from
the table. After the instruction, AL will contain the table value with
the specified position. No operand is required, but one can be given in
order to specify a segment override. DS is assumed unless a segment
override is given. Starting with version 5.0, XLATB is recognized as
a synonym for XLAT. Either version allows an operand, but neither
requires one.

11010111

XLAT Usegregf.meml
XLATB Usegregf.meml

x l a t
x l a t b e s : t a b l e

88/86 11
2 8 6 5
3 8 6 5

112 PROCESSOR INSTRUCTIONS

1
1
1
1
1
1
1
"I
1

pcjs.org

0 D I T S Z A P C
0 + + ? ± 0

XOR
Exclusive OR

Performs a bitwise exclusive OR on the source and destination
operands, and stores the result to the destination. For each bit position
in the operands, if both bits are set or if both bits are cleared, the
corresponding bit of the result is cleared. Otherwise, the corresponding
bit of the result is set.

| 001lOOdw mod, reg, r/m disp (0 or 2)

XOR reg.reg
xor
xor

ex, bx
ah, al

88/86
286
386

3
2
2

XOR mem,reg
xor
xor

[bp+10],ex
masked,bx

88/86
286
386

16+EA (W88=24+EA)
7
6

XOR reg,mem
xor
xor

e x , fl a g s
b l , b i t a r r a y [d i]

88/86
286
386

9+EA(W88=13+EA)
7
7

data (1 ot 2)lOOOOOsw mod,\ \0,r/m disp (0 or 2)

XOR reg,immed
xor
xor

bx,10h
b l , l

88/86
286
386

4
3
2

XOR memdmmed
xor
xor

Boolean,1
sw i t ches [bx] ,101b

88/86
286
386

17+EA(W88=25+EA)
7
7

data (lor 2)| OOllOlOw

XOR accumdmmed
xor ax,01010101b 88/86

286
386

4
3
2

PROCESSOR INSTRUCTIONS 113

pcjs.org

—

1
1
1
1
1
1
1
1
1
- }

1
1

pcjs.org

Coprocessor

Interpreting Coprocessor Instructions
Syntax
Examples
Clock Speeds
Instruction Size

Architecture
Instructions

pcjs.org

Topical Cross-Reference 1
Load Arithmetic Transcendental Processor 1
FLD/FILD/FBLD FADD/FIADD FPTAN Control
FXCH FADDP FPATAN FINIT/FNINIT 1FLDCW FSUB/FISUB FSINt FFREE
FLDENV FSUBP FCOSt FNOP
FSTENV/FNSTENV FSUBR/FISUBR FSINCOS t FWAIT

FSUBRP F2XM FDECSTP 1Store Data FMUL/FIMUL FYL2X FINCSTP
FST/FIST FMULP FYL2PI FCLEX/FNCLEX

FSCALE FPREEM FSETPM *FSTP/FISTP/FBSTP
FSTCW/FNSTCW
FSTSW/FNSTSW
FSAVE/FNSAVE
FRSTOR

FDIV/FIDIV
FDIVP
FDIVR/FIDIVR
FDIVRP
FABS

FPREMI t

Compare
FCOM/FICOM

FDISI/FNDISI §
FENI/FNENI §
FSAVE/FNSAVE
FLDCW 1

FCOMP/FICOMP FRSTOR

Load Constant
F L D l
FLDL2E
FLDL2T

FCHS
FRNDINT
FSQRT
FPREM
FPREM1 t

FCOMPP
FUCOM t
FUCOMP t
FUCOMPP t
FTST
FXAM

FSTCW/FNSTCW
FSTSW/FNSTSW
FSTENV/FNSTENV

~

FLDLG2 FXTRACT 1FLDLN2 FSTSW/FNSTSWFLDPI
FLDZ

1
1
1

* 80287 only. t 80387 only. §8087 only.

1

pcjs.org

Interpreting Coprocessor Instructions
This section provides an alphabetical reference to instructions of the
8087, 80287, and 80387 coprocessors. The format is the same as for
the processor instructions except that encodings are not provided.
Differences are noted below.

Syntax
Syntaxes in Column 1 use the following abbreviations for operand
types:

reg A coprocessor stack register
memreal A direct or indirect memory operand where a real number is

stored
memint A direct or indirect memory operand where a binary integer

is stored
membcd A direct or indirect memory operand where a BCD number is

stored

Examples
The examples in Column 2 are randomly chosen, and no significance
should be attached to their order or placement. They are valid examples
of the associated syntax, but there is no attempt to illustrate all
possible operand combinations or to show context. Their position is
not related to the clock speeds in Column 3.

Clock Speeds
Column 3 shows the clock speeds for each processor. Sometimes an
instruction may have more than one possible clock speed. The
following abbreviations are used to specify variations:
EA Effective address. This applies only to the 8087. See the

Processor Section, "Timings on the 8080 and 8086
Processors," for an explanation of effective address timings.

s,l,t Short real, long real, and 10-byte temporary real.

w,d,q Word, doubleword. and quadword binary integer.
t,f To or from stack top. On the 80387, the t clocks represent

timings when ST is the destination. The f clocks represent
timings when ST is the source.

COPROCESSOR INTRODUCTION 115

pcjs.org

Instruction Size

The instruction size is always two bytes for instructions that do not
access memory. For instructions that do access memory, the size is
four bytes on the 8087 and 80287. On the 80387, the size for
instructions that access memory is four bytes in 16-bit mode or six
bytes in 32-bit mode.

On the 8087, each instruction must be preceded by the WAIT (also
called FWAIT) instruction, thereby increasing the instruction's size by
one byte. MASM inserts WAIT automatically by default, or with
the .8087 directive.

Architecture

The 8087, 80287, and 80387 coprocessors have several elements of
architecture in common. All have a register stack made up of eight 80-
bit data registers. These can contain floating-point numbers in the
temporary real format. The coprocessors also have 14 bytes of control
registers. The format of registers is shown in Figure 2.

Data Register Stack
63

ST
ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)
ST(7)

ZZZ

Sign |
Exponent

Control Registers

Mantissa

Control word
Status word
Tag word
Instruction pointer

Operand pointer

Figure 2 Coprocessor Registers

116 COPROCESSOR INTRODUCTION "1
pcjs.org

The most important control registers are the control word and the status
word. The format of these registers is shown in Figure 3.

Control Word
15

/ / / y / ; / / s / 7 — 7 —
X X X IC* RC PC IE* PM UM OM ZM DM IM

Status Word
15

/ / s s > ; ; ; ; / ; ; ; s / —
B C3 ST C2 C1 CO ES' SF- PE UE OE ZE DE IE D
Abbreviations for Fields in Control Word and Status Word

IC - Infinity Control
0 = Projective (default on 8087 and 80287)
1 = Affine
*8087 and 80287 only; 80387
uses affine regardless of setting

RC - Rounding Control
00 = Round to nearest or even (default)
01 = Round down toward -infinity
10 = Round up toward +infinity
11 = Chop by truncating toward 0

PC - Precision Control
00 = 24-bit mantissa
10 = 53-bit mantissa
11 = 64-bit mantissa (default)

IE - Interrupt Enable Mask
* 8087 only; undefined on 80287
and 80387

SF - Stack Flag
* 80387 only; undefined on 8087
and 80287

Exception Masks and Flags
PM/PE - Precision
UM/UE - Underflow
OM/OE - Overflow
ZM/ZE - Zero Divide
DM/DE - Denormalized Operand
IM/IE - Invalid Operation
For masks.

1 = masked; 0 = unmasked
For exceptions,

1 = exception; 0 = no exception

B - Busy
(1 = exception control unit active)

C3\
C21 Condition Codes

C.[CO/

ST - Stack Top Pointer
(points to current top of stack)

ES - Error Summary (80287-387)
* IR - Interrupt Request on 8087

Figure 3 Control Word and Status Word

COPROCESSOR INTRODUCTION 117

pcjs.org

1

1
pcjs.org

F2XM1
2X-1

Calculates Y = 2X - 1. X is taken from ST. The result, Y, is returned
in ST. X must be in the range 0 < X < 0.5 on the 8087 and 80287, or
in the range -1.0 < X < +1.0 on the 80387.

F2XM1
f2xml 87 310-630

287 310-630
387 211-476

FABS
Absolute Value

Converts the element in ST to its absolute value.

FABS
fabs 87 10-17

287 10-17
387 22

-

COPROCESSOR INSTRUCTIONS 119

pcjs.org

FADD/FADDP/FIADD
Add

Adds the source to the destination and returns the sum in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the sum replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is added to ST(1) and the stack
is popped, returning the sum in ST. For FADDP, the source must be
ST; the sum is returned in the destination and ST is popped.

fadd s t , s t (2) 87 70-100
FADD IregsegJ fadd st (5) ,st 287 70-100

fadd 387 1=23-31,1=26-34
faddp s t (6) , s t 87 75-105

FADDP reg,ST 287
387

75-105
23-31

fadd QWORD PTR [bx] 87 (s=90-120.s=95 125)+EA
FADD memreal fadd sho r t r ea l 287

387
s=90-120.l=95-125
8=24-32,1=29-37

fi a d d i n t l 6 87 (w=102-137,d=!08-143)+EA
FIADD memint fi a d d war ray [d i] 287 w=102-137,d=108-143

fi a d d double 387 w=7l-85.d=57-72

FBLD
Load BCD

See FLD.

FBSTP
Store BCD and Pop

See FST.

120 COPROCESSOR INSTRUCTIONS

-

3
1

-

1
1
1

pcjs.org

FCHS
Change Sign

Reverses the sign of the value in ST.

FCHS
f chs 87 10-17

287 10-17
387 24-25

FCLEX/FNCLEX
Clear Exceptions

Clears all exception flags, the busy flag and bit 7 in the status word.
Bit 7 is the interrupt request flag on the 8087 and the error status flag
on the 80287 and 80387. The instruction has wait and no-wait
versions.

FCLEX
FNCLEX

f c l e x 87 2-8
287 2-8
387 11

COPROCESSOR INSTRUCTIONS 121

pcjs.org

FCOM/FCOMP/FCOMPP/
FICOM/FICOMP
Compare

Compares the specified source to ST and sets the condition codes of
the status word according to the result. The instruction works by
subtracting the source operand from ST without changing either
operand. Memory operands can be 32- or 64-bit real numbers or 16- or
32-bit integers. If no operand is specified or if two pops are specified,
ST is compared to ST(1) and the stack is popped. If one pop is
specified with an operand, the operand is compared to ST. If one of the
operands is a NAN, an invalid-operation exception is generated (see
FUCOM for an alternative method of comparing on the 80387).

FCOM Iregl
f c o m s t (2)
fcom

87 40-50
287 40-50
387 24

FCOMP IregJ
fcomp st (7)
f comp

87 42-52
287 42-52
387 26

FCOMPP
fcompp 87 45-55

287 45-55
387 26

FCOM memreal
f c o m s h o r t r e a l s [d i]
f c o m l o n g r e a l

87 (s=60-70,l=65-75)+EA
287 s=60-70,l=65-75
387 8=26,1=31

FCOMP memreal
f c o m p l o n g r e a l
f c o m p s h o r t s [d i]

87 (s=63-73,l=67-77)+EA
287 s=63-73,l=67-77
387 s=26,l=31

FICOM memint
fi c o m d o u b l e
ficom war ray [d i]

87 (w=72-86.d=78-91)+EA
287 w=72-86,d=78-91
387 w=71-75,d=56-63

FICOMP memint
ficomp WORD PTR [bp+6]
ficomp da r ray fd i]

87 (w=74-88,d=80-93)+EA
287 w=74-88,d=80-93
387 w=71-75,d=56-63

Condition Codes for FCOM

£3 C2 CL co Meaning
0 0 ? 0 ST > source
0 0 *? 1 ST < source
1
1

0
1

7
7

0
1

ST = source
ST is not comparable to source

122 COPROCESSOR INSTRUCTIONS

"1

1
pcjs.org

FCOS
Cosine

80387 Only

Replaces a value in radians in ST with its cosine. If ST is in the range
ISTl < 263, the C2 bit of the status word is cleared and the cosine is
calculated. Otherwise, C2 is set and no calculation is done. ST can be
reduced to the required range with FPREM or FPREM1.

f cos 87 —
FCOS 287 —

387 123-772*

* For operands with an absolute value greater than tt/4, up to 76 additional clocks may be required.

FDECSTP
Decrement Stack Pointer

Decrements the stack top pointer in the status word. No tags or
registers are changed and no data are transferred. If the stack pointer is
0, FDECSTP changes it to 7.

fdecstp 87 6-12
FDECSTP 287 6-12

387 22

FDISI/FNDISI
Disable Interrupts

8087 Only

Disables interrupts by setting the interrupt enable mask in the control
word. This instruction has wait and no-wait versions. Since the 80287
and 80387 do not have an interrupt enable mask, the instruction is
recognized but ignored on these coprocessors.

FDISI f d i s i 87 2-8
FNDISI 287 2

387 2

COPROCESSOR INSTRUCTIONS 123

pcjs.org

FDIV/FDIVP/FIDIV
Divide

Divides the destination by the source, and returns the quotient in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the quotient replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is divided by ST(1) and the
stack is popped, returning the result in ST. For FDIVP, the source
must be ST; the quotient is returned in the destination register and ST
is popped.

f d i v st,st (2) 87 193-203
FDIV lreg,regj f d i v s t (5) , s t 287 193-203

f d i v 387 t=88,f=91
f d i v p st (6) ,s t 87 197-207

FDIVP reg,ST 287
387

197-207
91

f d i v DWORD PTR [bx] 87 (s=215-225,l=220-230)+EA
FDIV memreal f d i v s h o r t r e a l [d i] 287 s=215-225,1=220-230

f d i v l o n g r e a l 387 s=89,l=94
f idiv i n t l 6 87 (w=224-238,d=230-243)+EA

FIDIV memint fi d i v war ray [d i] 287 w=224-238,d=230-243
fi d i v double 387 w=136-140.d=120-127

FDIVR/FDIVRP/FIDIVR
Divide Reversed

Divides the source by the destination and returns the quotient in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the quotient replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is divided by ST(1) and the
stack is popped, returning the result in ST. For FDIVRP, the source
must be ST; the quotient is returned in the destination register and ST
is popped.

f d i v r St,St (2) 87 194-204
FDIVR l>eg,regl f divr st (5) , st 287 194-204

f d i v r 387 t=88,f=91
f d i v r p s t (6) , s t 87 198-208

FDIVRP reg,Sv 287
387

198-208
91

f d i v r longrea l 87 (8=216-226,1=221-231)+EA
FDIVR memreal f d i v r s h o r t r e a l [d i] 287

387
s=216-226,1=221-231
s=89,l=94

fi d i v r double 87 (w=225-239,d=231-245)+EA
FIDIVR memint fi d i v r war ray [d i] 287

387
w=225-239,d=231-245
w=135-14I,d=121-128

124 COPROCESSOR INSTRUCTIONS

1

"1

pcjs.org

FENI/FNENI
Enable Interrupts

8087 Only

Enables interrupts by clearing the interrupt enable mask in the control
word. This instruction has wait and no-wait versions. Since the 80287
and 80387 do not have an interrupt enable mask, the instruction is
recognized but ignored on these coprocessors.

FENI
FNENI

f e n i 87 2-8
287 2
387 2

FFREE
Free Register

Changes the specified register's tag to empty without changing thecontents of the register.

f free s t (3) 87 9-16
FFREE ST(i) 287

387
9-16
18

FIADD/FISUB/FISUBR/
FIMUL/FIDIV/FIDIVR

Integer Arithmetic

See FADD, FSUB, FSUBR, FMUL, FDIV, and FDIVR.

FICOM/FICOMP
Compare Integer

See FCOM.

COPROCESSOR INSTRUCTIONS 125

pcjs.org

FILD
Load Integer

See FLD.

FINCSTP
Increment Stack Pointer

Increments the stack top pointer in the status word. No tags or registers
are changed and no data are transferred. If the stack pointer is 7, then
FINCSTP changes it to 0.

FINCSTP
fi n c s t p 87 6-12

287 6-12
387 21

FINIT/FNINIT
Initialize Coprocessor

Initializes the coprocessor and resets all the registers and flags to their
default values. The instruction has wait and no-wait versions. On the
80387, the condition codes of the status word are cleared. On the 8087
and 80287, they are unchanged.

FINIT fi n i t 87 2-8
FNINIT 287 2-8

387 33

FIST/FISTP
Store Integer

See FST.

126 COPROCESSOR INSTRUCTIONS

1
1
1
1

pcjs.org

FLD/FILD/FBLD
Load

Pushes the specified operand onto the stack. All memory operands are
automatically converted to temporary real numbers before being loaded.

fi d st(3) 87 17-22
FLD reg 287

387
17-22
14

fi d longrea l 87 (s=38-56,l=40-60,t=53-65)+EA
FLD memreal fi d s h o r t a r r a y [b x + d i] 287 s=38-56,l=40-60,t=53-65

fi d tempreal 387 s=20,l=25,t=44
fi d meml6 87 (w=46-54,d=52-60,q=60-68)+EA

FILD memint fi d DWORD PTR [bx] 287 w=46-54,d=52-60,q=60-68
fi d quads [s i] 387 w=61-65,d=45-52,q=56-67
fi d packbcd 87 (290-310)+EA

FBLD membcd 287
387

290-310
266-275

COPROCESSOR INSTRUCTIONS 127

pcjs.org

FFLD1/FLDZ/FLDPI/FLDL2E/
FLDL2T/FLDLG2/FLDLN2
Load Constant

Pushes a constant onto the stack. The following constants can be
loaded:
Instruction Constant Loaded
F L D l + 1.0
FLDZ +0.0
FLDPI K
FLDL2E Log2(e)
FLDL2T Log2(10)
FLDLG2 Log io(2)
FLDLN2 Loge(2)

F L D l
fl d l 87

287
387

15-21
15-21
24

F L D Z
fl d z 87

287
387

11-17
11-17
20

F L D P I
fl d p i 87

287
387

16-22
16-22
40

F L D L 2 E
fl d l 2 e 87

287
387

15-21
15-21
40

F L D L 2 T
fl d l 2 t 87

287
387

16-22
16-22
40

F L D L G 2
fl d l g 2 87

287
387

18-24
18-24
41

F L D L N 2
fl d l n 2 87

287
387

17-23
17-23
41

FLDCW
Load Control Word

Loads the the specified word into the coprocessor control word. The
format of the control word is shown in the Interpreting Coprocessor
Instruction section.

fl d c w c t r l w o r d 87 (7-14)+EA
FLDCW mem32 287

387
7-14
19

128 COPROCESSOR INSTRUCTIONS

1
-

1

pcjs.org

FLDENV
Load Environment State

Loads the 14-byte coprocessor environment state from a specified
memory location. The environment includes the control word, status
word, tag word, instruction pointer, and operand pointer. On the 80387
in 32-bit mode, the environment state is made up of 28 bytes.

fl d e n v [bp+10] 87 (35-45HEA
FLDENV mem 287

387
35-45
71

FMUL/FMULP/FIMUL
Multiply

Multiplies the source by the destination and returns the product in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the product replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST(1) is multiplied by ST and the
stack is popped, returning the product in ST. For FMULP, the source
must be ST; the product is returned in the destination register and ST
is popped.

fmul St,St (2) 87 130-145(90-105)*
FMUL IregsegJ fmul s t (5) , s t 287 130-145(90-105)*

fmul 387 1=46-54 (49),1=29-57 (52)t
fmulp s t (6) , s t 87 134-148(94-108)*

FMULP regSr 287
387

134-148(94-108)*
29-57 (52)t

fmul DWORD PTR [bx] 87 (s=l 10-125.1=I54-168)+EA§
FMUL memreal fmul s h o r t r e a l [d i + 3] 287 s=110-125,l=154-168§

fmul longrea l 387 s=27-35,l=32-57
f imul i n t l 6 87 (w= 124-138,d= 130-144)+EA

FIMUL memint f imul wa r ray [d i] 287 w=124-l38,d=130-144
f imul double 387 w=76-87,d=6I-82

* The clocks in parentheses show times for short values—those with 40 trailing zeros in their fraction
because they were loaded from a short-real memory operand.

t The clocks in parentheses show typical speeds.
§ If the register operand is a short value—having 40 trailing zeros in its fraction because it was loaded

from a short-real memorv operand—then the timing is (112-126)+EA on the 8087 or 112-126 onthe 80287.

COPROCESSOR INSTRUCTIONS 129

pcjs.org

FN instuction
No-Wait Instructions

Instructions that have no-wait versions include FCLEX, FSAVE,
FSTCW, FSTENV, and FSTSW. Wait versions of instructions
check for unmasked numeric errors; no-wait versions do not. When the
.8087 directive is used, MASM puts a WAIT instruction before the
wait versions and a NOP instruction before the no-wait versions.

FNOP
No Operation

Performs no operation. FNOP can be used for timing delays or
alignment.

FNOP
fnop 87 10-16

287 10-16
387 12

FPATAN
Partial Arctangent

Finds the partial tangent by calculating Z = ARCTAN(Y / X). X is
taken from ST and Y from ST(1). On the 8087 and 80287, Y and X
must be in the range 0 < Y < X < °°. On the 80387, there is no
restriction on X and Y. X is popped from the stack and Z replaces Y in
ST

FPATAN
fpatan 87 250-800

287 250-800
387 314-487

130 COPROCESSOR INSTRUCTIONS

1
1

i

n
pcjs.org

FPREM
Partial Remainder

Calculates the remainder of ST divided by ST(1), returning the result
in ST. The remainder retains the same sign as the original dividend.
The calculation uses the following formula:

remainder = ST - ST(1) * quotient
The quotient is the exact value obtained by chopping ST / ST(1)
toward 0. The instruction is intended to be used in a loop that repeats
until the reduction is complete, as indicated by the condition codes of
the status word.

FPREM
fprem 87 15-190

287 15-190
387 74-155

Condition Codes for FPREM and FPREM1

C3 C2 Cl co Meaning
7 1 ? 7 Incomplete reduction
0 0 0 0 quotient MOD 8 = 0
0 0 0 1 quotient MOD 8 = 4
0 0 1 0 quotient MOD 8 = 1
0 0 1 1 quotient MOD 8 = 5
I 0 0 0 quotient MOD 8 = 2
1 0 0 i quotient MOD 8 = 6
1 0 1 0 quotient MOD 8 = 3
1 0 1 1 quotient MOD 8 = 7

COPROCESSOR INSTRUCTIONS 131

pcjs.org

FPREM1
Partial Remainder (IEEE Compatible)
80387 Only

Calculates the remainder of ST divided by ST(1), returning the result
in ST. The remainder retains the same sign as the original dividend.
The calculation uses the following formula:

remainder = ST - ST(1) * quotient
The quotient is the integer nearest to the exact value ST / ST(1). If
there are two integers equally close, the even integer is used. The
instruction is intended to be used in a loop that repeats until the
reduction is complete, as indicated by the condition codes of the status
word. See FPREM for the possible condition codes.

FPREMl
fp reml 8 7 —

2 8 7 —
387 95-185

FPTAN
Partial Tangent

Finds the partial tangent by calculating Y / X = TAN(Z). Z is taken
from ST. Z must be in the range 0 < Z < ji / 4 on the 8087 and
80287. On the 80387, IZI must be less than 263. The result is the ratio
Y / X. Y replaces Z, and X is pushed into ST. Thus Y is returned in
ST(1) and X in ST.

FPTAN
fp tan 87 30-540

287 30-540
387 191-497*

* For operands with an absolute value greater than jt/4, up to 76 additional clocks may be required.

1

132 COPROCESSOR INSTRUCTIONS

pcjs.org

FRNDINT
Round to Integer

Rounds ST from a real number to an integer. The rounding control
(RC) field of the control word specifies the rounding method, as shown
in the introduction to this section.

FRNDINT
f r n d i n t 87 16-50

287 16-50
387 66-80

FRSTOR
Restore Saved State

Restores the 94-byte coprocessor state to the coprocessor from the
specified memory location. In 32-bit mode on the 80387, the
environment state takes 108 bytes.

FRSTOR mcm94
f r s t o r [b p - 9 4] 87

287
387

(197-207)+EA*
308

* Clock counts are not meaningful in determining overall execution time of this instruction. Timing is
determined by operand transfers.

FSAVE/FNSAVE
Save Coprocessor State

Stores the 94-byte coprocessor state to the specified memory location.
In 32-bit mode on the 80387, the environment state takes 108 bytes.
This instruction has wait and no-wait versions. After the save, the
coprocessor is initialized as if FINIT had been executed.

FSAVE m94 f save [bp-94] 87 (197-207J+EA
FNSAVE m94 f save c o b u f f e r 287

387 375-376

'f Clock counts are not meaningful in determining overall execution time of this instruction. Timing is
determined by operand transfers.

COPROCESSOR INSTRUCTIONS 133

pcjs.org

FSCALE
Scale

Scales by powers of two by computing the function Y = Y * 2X. X is
the scaling factor taken from ST(1), and Y is the value to be scaled
from ST. The scaled result replaces the value in ST. The scaling factor
remains in ST(1). If the scaling factor is not an integer, it will be
truncated toward zero before the scaling.
The 80387 has no restrictions on the range of operands, but on the
8087 and 80287, if X is not in the range -215 < X <2l5 or if X is in
the range 0 < X < 1, the result will be undefined.

FSCALE
fscale 87 32-38

287 32-38
387 67-86

FSETPM
Set Protected Mode
80287 Only

Sets the 80287 to protected mode. The instruction and operand pointers
are in the protected mode format after this instruction. On the 80387,
FSETPM is recognized but interpreted as FNOP, since the 80386
handles addressing identically in real and protected mode.

FSETPM
fsetpm 8 7 —

287 2-8
387 12

"I

-

1
134 COPROCESSOR INSTRUCTIONS

pcjs.org

FSIN
Sine

80387 Only

Replaces a value in radians in ST with its sine. If ST is in the range
ISTI < 263, then the C2 bit of the status word is cleared and the sine is
calculated. Otherwise, C2 is set and no calculation is done. ST can be
reduced to the required range with FPREM or FPREM1.

FSIN
f sin 8 7 —

2 8 7 —
387 122-771*

* For operands with an absolute value greater than ji/4, up to 76 additional clocks may be required.

FSINCOS
Sine and Cosine

80387 Only

Computes the sine and cosine of a radian value in ST. The sine
replaces the value in ST and then the cosine is pushed onto the stack.
If ST is in the range ISTI < 263, the C2 bit of the status word is
cleared and the sine and cosine are calculated. Otherwise, C2 is set and
no calculation is done. ST can be reduced to the required range with
FPREM orFPREMl.

FSINCOS
f s i n c o s 8 7 —

2 8 7 —
387 194-809*

: For operands with an absolute value greater than n/4, up to 76 additional clocks may be required.

COPROCESSOR INSTRUCTIONS 135

pcjs.org

FSQRT
Square Root

Replaces the value of ST with its square root. (The square root of -0
is -0.)

FSQRT
f s q r t 87 180-186

287 180-186
387 122-129

FST/FSTP/FIST/FISTP/FBSTP
Store

Stores the value in ST to the specified memory location or register.
Temporary real values in registers are converted to the appropriate
integer, BCD, or floating-point format as they are stored. With FSTP,
FISTP, and FBSTP, the ST register value is popped off the stack.

f s t s t (6) 87 15-22
FST reg f s t s t 287

387
15-22
11

f s t p s t 87 17-24
FSTP reg f s t p s t (3) 287

387
17-24
12

f s t s h o r t r e a l 87 (s=84-90,l=96-104)+EA
FST memreal f s t longs[bx] 287

387
s=84-90,l=96-104
s=44,l=45

f s t p longrea l 87 (s=86-92,l=98-106,t=52-58)+EA
FSTP memreal f s t p temprea ls [bx] 287

387
s=86-92,l=98-106,t=52-58
s=44,l=45,t=53

fi s t i n t l 6 87 (w=80-90,d=82-92)+EA
FIST memint fi s t doubles[8] 287

387
w=80-90,d=82-92
w=82-95.d=79-93

fi s t p l o n g i n t 87 (w=82-92,d=84-94,q=94-105)+EA
FISTP memint f istp doub les [bx] 287

387
w=82-92,d=84-94,q=94-105
w=82-95,d=79-93,q=80-97

fbs tp beds[bx] 87 (520-540)+EA
FBSTP membcd 287

387
520-540
512-534

136 COPROCESSOR INSTRUCTIONS

1
1
1
1
1
1
1
1
"I
"I

1

pcjs.org

FSTCW/FNSTCW
Store Control Word

Stores the control word to a specified 16-bit memory operand. This
instruction has wait and no-wait versions.

FSTCW fstcw c t r l w o r d 87 12-18
FNSTCW 287

387
12-18
15

FSTENV/FNSTENV
Store Environment State

Stores the 14-byte coprocessor environment state to a specified
memory location. The environment state includes the control word,
status word, tag word, instruction pointer, and operand pointer. On the
80387 in 32-bit mode, the environment state is made up of 28 bytes.

FSTENV mem fs tenv [bp -14] 87 (40-50)+EA
FNSTENV mem 287 40-50

387 103-104

FSTSW/FNSTSW
Store Status Word

Stores the status word to a specified 16-bit memory operand. On the
80287 and 80387, the status word can be stored also to the processor's
AX register. This instruction has wait and no-wait versions.

FSTSW mem f stsw statword 87 12-18
FNSTSW mem 287

387
12-18
15

FSTSW AX fstsw ax 87 —
FNSTSW AX 287

387
10-16
13

COPROCESSOR INSTRUCTIONS 137

pcjs.org

FSUB/FSUBP/FISUB
Subtract

Subtracts the source from the destination and returns the difference in
the destination. If two register operands are specified, one must be ST.
If a memory operand is specified, the result replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is subtracted from ST(1) and
the stack is popped, returning the difference in ST. For FSUBP, the
source must be ST; the difference (destination minus source) is
returned in the destination register and ST is popped.

f sub st,st (2) 87 70-100
FSUB IregsegJ fsub st(5), st 287 70-100

f sub 387 t=29-37,f=26-34
fsubp st (6) ,st 87 75-105

FSUBP reg,ST 287
387

75-105
26-34

fsub longrea l 87 (s=90-120,s=95-125)+EA
FSUB memreal fsub s h o r t r e a l s [d i] 287

387
s=90-120,l=95-125
s=24-32,l=28-36

fi s u b double 87 (w=102-137,d=108-143)+EA
FISUB memint fi s u b war ray [d i] 287

387
w=102-137,d=108-143
w=71-83,d=57-82

138 COPROCESSOR INSTRUCTIONS

1
1

1
1

_

1
1
1

1
1

pcjs.org

FSUBR/FSUBRP/FISUBR
Subtract Reversed

Subtracts the destination operand from the source operand, and returns
the result in the destination operand. If two register operands are
specified, one must be ST. If a memory operand is specified, the result
replaces the value in ST. Memory operands can be 32- or 64-bit real
numbers or 16- or 32-bit integers. If no operand is specified, ST(1) is
subtracted from ST and the stack is popped, returning the difference in
ST. For FSUBRP, the source must be ST; the difference (source
minus destination) is returned in the destination register and ST is
popped.

FSUBR Iregjregl
fsubr
f subr
fsubr

st, st(2)
s t (5) , s t

87
287
387

70-100
70-100
t=29-37,f=26-34

FSUBRP re^.ST
fsubrp s t (6) , s t 87

287
387

75-105
75-105
26-34

FSUBR memreal
fsubr
fsubr
fsubr

QWORD PTR [bx]
s h o r t r e a l [d i]
l ongrea l

87
287
387

(s=90-120,s=95-125)+EA
s=90-120,1=95-125
s=25-33,l=29-37

FISUBR memint
fi s u b r
fi s u b r
fi s u b r

int 16
wa r ray [d i]
double

87
287
387

(w=103-139,d=109-144)+EA
w=103-139,d=109-144
w=72-84,d=58-83

FTST
Test for Zero

Compares ST with +0.0 and sets the condition of the status word
according to the result.

FTST
f t s t 87 38-48

287 38-48
387 28

Condition Codes for FTST

C3 C2 Cl CO Meaning
0 0 0 ST is positive
0 0 1 ST is negative
I
1

0
1 ?

0
1

STisO
ST is not comparable (NAN or projective infinity)

COPROCESSOR INSTRUCTIONS 139

pcjs.org

FUCOM/FUCOMP/FUCOMPP
Unordered Compare
80387 Only

Compares the specified source to ST and sets the condition codes of
the status word according to the result. The instruction works by
subtracting the source operand from ST without changing either
operand. Memory operands are not allowed. If no operand is specified or
if two pops are specified, ST is compared to ST(1). If one pop is
specified with an operand, the given register is compared to ST.
FUCOM differs from FCOM in that it does not cause an invalid-
operation exception if one of the operands is a NAN. Instead, the result
is set to unordered.

fucom st (2) 87 —
FUCOM Iregl fucom 287 —

387 24
fucomp st(7) 87 —

FUCOMP IregJ fucomp 287 —
387 26

fucompp 87 —
FUCOMPP 287 —

387 26

Condition Codes for FUCOM

C3
0
0
1
1

C2
0
0
0
1

C l CO
0
1
0
1

Meaning
ST > source
ST < source
ST = source
Unordered

FWAIT
Wai t

Suspends execution of the processor until the coprocessor is finished
executing. This is an alternate mnemonic for the processor WAIT
instruction.

FWAIT
fwa i t 8 7 4

287 3
387 6

140 COPROCESSOR INSTRUCTIONS

1
"I

1
1
"I

1

1
1
1
1
1
1

pcjs.org

FXAM
Examine

Reports the contents of ST in the condition flags of the status word.

FXAM
fxam 87 12-23

287 12-23
387 30-38

Condition Codes for FXAM

£3 £2 Cl CO Interpretation
0 0 0 0 + Unnormal*
0 0 0 1 + NAN
0 0 1 0 - Unnonnal*
0 0 1 1 -NAN
0 1 0 0 + Norma]
0 I 0 1 + Infinity
0 1 1 0 - Normal
0 1 1 1 - Infinity

0 0 0 + 0
0 0 1 Empty
0 I 0 -0
0 1 1 Empty
1 0 0 + Denormal
1
1
1

0
1
1

1
0
1

Empty*
- Denormal

Empty*

! Not used on the 80387. Unnormals are not supported by the 80387. Also, the 80387 uses two codes
instead of four to identify empty registers.

FXCH
Exchange Registers

Exchanges the specified (destination) register and ST. If no operand is
specified, ST and ST(1) are exchanged.

fxch s t (3) 87 10-15
FXCH IregJ fxch 287

387
10-15
18

COPROCESSOR INSTRUCTIONS 141

pcjs.org

FXTRACT
Extract Exponent and Significand

Extracts the exponent and significand fields of ST. The exponent
replaces the value in ST, and then the significand is pushed onto the
stack.

f x t r a c t 87 27-55
FXTRACT 287 27-55

387 70-76

FYL2X
Y log2(X)

Calculates Z = Y log2(X). X is taken from ST and Y from ST(1).
The stack is popped and the result, Z, replaces Y in ST. X must be in
the range 0 < X < °° and Y in the range -°° < Y < «.

FYL2X
f y l 2 x 87 900-1100

287 900-1100
387 120-538

FYL2XP1
Ylog2(X+1)

Calculates Z = Y log2(X + 1). X is taken from ST and Y from
ST(1). The stack is popped once and the result, Z, replaces Y in ST.
X must be in the range 0 < IXI < (1 - (V2 / 2). Y must be in the range
-oo < Y < °°.

FYL2XP1
f y l 2 x p l 87 700-1000

287 700-1000
387 257-547

142 COPROCESSOR INSTRUCTIONS

pcjs.org

-

Tables

DOS Program Segment Prefix (PSP)
ASCII Chart
Key Codes
Color Display Attributes
Hexadecimal-Binary-Decimal Conversion

pcjs.org

1
1
1
1
1
1
1
1
1

"I
1

"I
1
1

pcjs.org

DOS Program Segment Prefix (PSP)

0 1 2 3 4 5 6 7 8 9 A B C D E F

00h 1 2 13 3 4
I P i c s

5
IP

10h 5
CS

6
I P | C S

20h 7

30h

40h

50h 8 9

60h 9 10

70 h 10 13

80h

90h

AOh

BOh

COh

DOh

EOh

FOh

12 11

1 Opcode for INT 20h
2 Segment of first allocatable address following the program (useful for

memory allocation)
3 Opcode for far call to DOS function dispatcher
4 Vector for terminate routine
5 Vector for CTRL+BREAK routine
6 Vector for error routine
7 Segment of program's copy of the environment
8 Opcode for DOS INT 2lh and far return (you can do a far call to this

address to execute DOS calls)
9 First command-line argument (formatted as uppercase 11-character file

name)
10 Second command-line argument (formatted as uppercase 11-character file

name)
1 1 Number of bytes in command line argument
12 Unformatted command line and/or default Disk Transfer Area (DTA)
13 Reserved or used by DOS

PROGRAM SEGMENT PREFIX 143

pcjs.org

ASCII Codes

Ctrl Dec Hex Char Code Dec Hex Char Dec Hex Char Dec Hex Char

"@ 0 00 NUL 32 20 64 40 0 96 60 i

" A 1 01 @ SOH 33 21 t 65 41 A 97 61 a
"b 2 02 0 STX 34 22 ii 66 42 B 98 62 b
~C 3 03 ¥ ETX 35 23 it 67 43 C 99 63 c
"d 4 04 ♦ EOT 36 24 s 68 44 D 100 64 A
~E 5 05 t ENQ 37 25 7. 69 45 E 101 65 e
" f 6 06 * ACK 38 26 & 70 46 F 102 66 f
"g 7 07 * BEL 39 27 i 71 47 G 103 67 9
~h 8 08 D BS 40 28 (72 48 H 104 68 h
"i 9 09 0 HT 41 29) 73 49 I 105 69 i
"J 10 0A S LF 42 2A * 74 4A J 106 6A j
K 11 OB «f VT 43 2B + 75 4B K 107 6B k

" l 12 OC 2 FF 44 2C i 76 4C L 108 6C 1
"m 13 OD f CR 45 2D - 77 4D M 109 6D M
*N 14 OE n SO 46 2E ■ 78 4E N 110 6E n
* 0 15 OF K SI 47 2F / 79 4F 0 111 6F 0
"P 16 10 ▶ DLE 48 30 0 80 50 P 112 70 P
"Q 17 11 ^ DC1 49 32 1 81 51 Q 113 71 q
R 18 12 t DC2 50 32 2 82 52 R 114 72 r

"s 19 13 ii DC3 51 33 3 83 53 S 115 73 s
~T 20 14 ii DC4 52 34 4 84 54 T 116 74 t
"u 21 15 ff NAK 53 35 5 85 55 U 117 75 u
"v 22 l b ■ SYN 54 36 6 86 56 u 118 76 y
~w 23 17 i ETB 55 37 7 87 57 u 119 77 w
"X 24 18 t CAN 56 38 8 88 58 X 120 78 X
"y 25 19 ; EM 57 39 9 89 59 V 121 79 y
"z 26 1A 4 SUB 58 3 A i 90 5A z 122 7A z
"[27 IB f ESC 59 3B ■ 91 5B [123 7B {
\ 28 IC L FS 60 3C < 92 5C \ 124 7C 1

Ii 29 ID « GS 61 3D ™ 93 5D] 125 7D }
30 IE A RS 62 3E > 94 5E A 126 7E w

31 IF ? US 63 3F ? 95 5F - 127 7F A+l
t ASCII code 127 has the code DEL. Under DOS, this code has the same effect as ASCII

8 (BS). The DEL code can be generated by the CTRL-BKSP key.

144 ASCII CODES

pcjs.org

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
128 80 5 160 A0 a 192 CO L 224 EO CC
129 81 ii 161 Al i 193 C l ± 225 El P
130 82 e 162 A2 6 194 C2 v 226 E2 r
131 83 2 163 A3 u 195 C3 r 22" E3 n
132 84 a 164 A4 n 196 C4 - 22S E4 I
133 85 a 165 A5 N 197 C5 + 229 E5 tr
134 86 a 166 A6 a 198 C6 r 230 E6 P
135 87 S 167 A7 5 199 C7 II 232 E7 T
136 88 ? 168 A8 I 200 C8 li 232 E8 5
137 89 e 169 A9 r 201 C9 It 233 E9 e
138 8A e 170 AA i 202 CA j i 234 EA (i
139 8B i 171 AB Vl 203 CB ir 235 EB 8
140 8C T 172 AC % 204 CC If 236 i-x: m
141 8D i 173 AD ■

i 205 CD = 237 ED t
142 8E r\ 174 AE « 206 CE j i

V 238 EE i
143 8F 1

A 175 AF » 207 CF X 239 EF n
144 90 E 176 BO 208 DO JI 240 FO s
145 91 2 177 Bl I 209 Dl T 241 FT +
146 92 ft 178 B2 Si 210 D2 11 242 F2 >
147 93 0 179 B3 i 211 D3 U 243 F3 <
148 94 0 180 B4 \ 212 D4 b 244 F4 r
149 95 b 181 B5 1 213 D5 F 245 F5 j
150 96 A

U 182 B6 w 214 D6 IT 246 F6 7
151 97 ii 183 B7 V 215 D7 « 247 F7 AT

152 98 y 184 B8 =1 216 D8 * 248 F8 0

153 99 a 185 B9 il 217 D9 J 249 F9 ■
154 9A u 186 BA II 218 DA r 250 FA
155 9B * 187 BB il 219 DB 1 251 FB i
156 9C £ 188 BC il 220 DC ■ 252 EC n
157 9D ¥ 189 BD il 221 DD 1 253 FD 2
158 9E A 190 BE i 222 DE 1 254 FE ■
159 9F / 191 BE i 223 DF ■ 255 FF

ASCII CODES 145

pcjs.org

Key Codes

Key Scan ASCII or ASCII or ASCII or ASCII or
Code E> tended' Extended* E(tended' Extended*

w th Shift with Ctrl with Alt

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec- Hex Char

ESC 1 01 27 IB 27 IB 27 IB
1 ! 2 02 49 31 1 33 21 (nO 78 NUL
2 @ 3 03 50 32 2 64 40 8 3 03 NUL 121 79 NUL
3# 4 04 51 33 3 35 23 # 122 7A NUL
4S 5 05 52 34 4 36 24 $ 123 7B NUL
5 7r 6 06 53 35 5 37 25 % 124 7C NUL
6A 7 07 54 36 6 94 5E A 30 IE 125 7D NUL
7 & 8 08 55 37 7 38 26 & 126 7E NUL
8 * 9 09 56 38 8 42 2A * 127 7F NUL
9(10 0A 57 39 9 40 28 (128 80 NUL
0) 11 OB 48 30 0 41 29) 129 81 NUL
-_ 12 OC 45 2D - 95 5F - 31 IF 130 82 NUL
= + 13 OD 61 3D = 43 2B + 131 83 NUL
BKSP 14 OE 8 08 8 08 127 7F
TAB 15 OF 9 09 15 OF NUL
Q 16 10 113 71 q 81 51 Q 17 11 16 10 NUL
W 17 11 119 77 w 87 57 w 23 17 17 11 NUL
E 18 12 101 65 e 69 45 E 5 05 18 12 NUL
R 19 13 114 72 r 82 52 R 18 12 19 13 NUL
T 20 14 116 74 t 84 54 T 20 14 20 14 NUL
Y 21 15 121 79 y 89 59 Y 25 19 21 15 NUL
U 22 16 117 75 u 85 55 U 21 15 27 16 NUL
I 23 17 105 69 i 73 49 I 9 09 23 17 NUL
0 24 18 111 6F o 79 4F 0 15 OF 24 18 NUL
p 25 19 112 70 P 80 50 p 16 10 25 19 NUL
11 26 1A 91 5B [123 7B < 27 IB
] 1 27 IB 93 5D] 125 7D) 29 ID
ENTER 28 IC 13 OD CR 13 OD CR 10 OA LF
CTRL 29 I D

A 30 IE 97 61 a 65 41 A 1 01 30 IE NUL
S 31 IF 115 73 s 83 53 S 19 13 31 IF NUL
D 32 20 100 64 d 68 44 D 4 04 32 20 NUL
F 33 21 102 66 f 70 46 F 6 06 33 21 NUL
G 34 22 103 67 g 71 47 G 7 07 34 22 NUL
H 35 23 104 68 h 72 48 H 8 08 35 23 NUL
J 36 24 106 6A j 74 4A J 10 OA 36 24 NUL
K 37 25 107 6B k 75 4B K 11 OB 37 25 NUL
L 38

39
40

26
27
28

108
59
39

6C
3B
27

l 76
58
34

4C
3 A
22

L 12 OC 38 26 NUL

41 29 96 60 126 7E ~

Extended codes return NUL (ASCII 0) as the initial character. This is a signal that a second
(extended) code is available in the keystroke buffer.

146 KEY CODES

pcjs.org

Key Scan ASCII or ASCII or ASCII or ASCII or
Code Extended* E> tended* Extended* Extended*

w th Shift w th Ctrl with Alt

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

L SHIFT 42 2A
\ l 43 2B 92 5 C \ 124 7 C | 28 IC
Z 44 2C 122 7 A z 90 5 A Z 26 1A 44 2C NUL
X 45 2D 120 7 8 x 88 5 8 X 24 18 45 2D NUL
c 46 2E 99 6 3 c 67 4 3 C 3 03 46 2E NUL
v 47 2F 118 7 6 v 86 5 6 V 22 16 47 2F NUL
B 48 30 98 6 2 b 66 4 2 B 2 02 48 30 NUL
N 49 31 110 6 E n 78 4 E N 14 0E 49 31 NUL
M 50 32 109 6 D m 77 4D M 13 0D 50 32 NUL
, < 51 33 44 2 C , 60 3 C <. > 52 34 46 2 E . 62 3 E >
11 53 35 47 2 F / 63 3 F ?
R SHIFT 54 36
* PRTSC 55 37 42 2 A * INT5§ 16 10
ALT 56 38
SPACE 57 39 32 20 SPC 32 20 SPC 32 20 spc 32 20 spc
CAPS 58 3A
Fl 59 3B 59 3B NUL 84 54 NUL 94 5E NUL 104 68 NUL
F2 60 3C 60 3C NUL 85 55 NUL 95 5F NUL 105 69 NUL
F3 61 3D 61 3D NUL 86 56 NUL 96 60 NUL 106 6A NUL
F4 62 3E 62 3E NUL 87 57 NUL 97 61 NUL 107 6B NUL
F5 63 3F 63 3F NUL 88 58 NUL 98 62 NUL 108 6C NUL
F6 64 40 64 40 NUL 89 59 NUL 99 63 NUL 109 6 D N U L
F7 65 41 65 41 NUL 90 5A NUL 100 64 NUL 110 6E NUL
F8 66 42 66 46 NUL 91 5B NUL 101 65 NUL 111 6F NUL
F9 67 43 67 43 NUL 92 5C NUL 102 66 NUL 112 70 NUL
F10 68 44 68 44 NUL 93 5D NUL 103 67 NUL 113 71 NUL
NUM 69 45
SCROLL 70 46

HOME 71 47 71 47 NUL 55 3 7 7 119 77 NUL
UP 72 48 72 48 NUL 56 3 8 8
PGUP 73 49 73 49 NUL 57 3 9 9 132 84 NUL
GREY- 74 4A 45 2 D - 45 2 D -

LEFT 75 4B 75 4B NUL 52 3 4 4 115 73 NUL
CENTER 76 4C 53 3 5 5
RIGHT 77 4D 77 4 D N U L 54 3 6 6 116 74 NUL
GREY + 78 4E 43 2 B + 43 2 B +
END 79 4F 79 4F NUL 49 3 1 1 117 75 NUL
DOWN 80 50 80 50 NUL 50 3 2 2
PGDN 81 51 81 51 NUL 51 3 3 3 118 76 NUL

INS 82 52 82 52 NUL 48 3 0 0
DEL 83 53 83 53 NUL 46 2 E .

f Extended codes return NUL (ASCII 0) as the initial character. This is a signal that a second
(extended) code is available in the keystroke buffer.

§ Under DOS, Shift-PtrScr causes interrupt 5, which prints the screen unless an interrupt handler
has been defined to replace the default interrupt 5 handler.

"
KEY CODES 147

pcjs.org

Color Display Attributes
Background Foreground ——
Bits Num Color Bits* Num Color

F R Q B I E G B
- "

0 0 0 0 0 Black 0 0 0 0 0 B l a c k
0 0 0 1 1 Blue 0 0 0 1 1 B lue
0 0 1 0 2 Green 0 0 1 0 2 Green • - -*
0 0 1 1 3 Cyan 0 0 1 1 3 C y a n
0 1 0 0 4 Red 0 1 0 0 4 R e d " " •
0 1 0 1 5 Magenta 0 1 0 1 5 Magenta
0 1 1 0 6 Brown 0 1 1 0 6 B r o w n.
0 1 1 1 7 White 0 1 1 1 7 W h i t e —̂m
1 0 0 0 8 Black blink 1 0 0 0 8 Dark grey
1 0 0 1 9 Blue blink 1 0 0 i 9 Light blue . -1
1 0 1 0 A Green blink 1 0 1 0 A L i g h t green
1 0 1 1 B Cyan blink 1 0 1 1 B L i g h t cyan —
1 1 0 0 C Red blink 1 1 0 0 C Light red 1
1 1 0 1 D Magenta blink 1 1 0 1 D L i g h t magenta
1 1 1 0 E Brown blink 1 1 1 0 E Ye l l o w
1 1 1 1 F White blink 1 1 1 1 F B r i g h t white 1
I Intensity bit G Green bit F Flashing bit
R Red bit B Blue bit

* On monochrome monitors, the blue bit is set and the red and green bits are cleared (001) for n
underline; all color bits are set (111) for normal text.

i
Hexadecimal-Binary ■Decima 1 Conversion i
Hex Binary Decimal Decimal Decimal Decimal
Number Number Digit 000X DiaitOOXO Digit 0X00 Digit X000 10 0000 0 0 0 0
1 0001 1 16 256 4,096
2 0010 2 32 512 8,192 "i3 0011 3 48 768 12,288
4 0100 4 64 1,024 16,384
5 0101 5 80 1,280 20,480
6 0110 6 96 1,536 24,576 i7 0111 7 112 1,792 28,672
8 1000 8 128 2,048 32,768
9 1001 9 144 2,304 36,864
A 1010 0 160 2,560 40,960

- \B 1011 11 176 2,816 45,056
C 1100 12 192 3,072 49,152
D 1101 13 208 3,328 53,248 iE 1110 14 224 3,584 57,344
F m i 15 240 3,840 61,440

148 COLOR DISPLAY/CONVERSION CHART i
pcjs.org

r
r
r

r
r
r
r
r
r

Document No. 410610002-500-R01-0787

pcjs.org

Microsoft Corporation
16011 NE 36th Way
Box 97017
Redmond, WA 98073-9717

0887 Part No. 016-014-043

pcjs.org

