
McrosoftQuickPascal

Pascal by Example

Microsoft
pcjs.org

Microsoft. QuickPascal

PASCAL BYEXAMPLE

MICROSOFT CORPORA TION

pcjs.org

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this docu­
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the li­
cense or nondisclosure agreement. No part of this manual may be reproduced or trans­
mitted in any form or by any means, electronic or mechanical, including photocopying
and recording, for any purpose without the express written permission of Microsoft.

©Copyright Microsoft Corporation, 1989. All rights reserved.
Simultaneously published in the U.S. and Canada.

Printed and bound in the United States of America.

Microsoft, MS, MS-DOS and QuickC are registered trademarks of Microsoft
Corporation.

AT & T is a registered trademark of American Telephone and Telegraph Company.

Hercules is a registered trademark of Hercules Computer Technology.

IBM is a registered trademark of International Business Machines Corporation.

Olivetti is a registered trademark of Ing. C. Olivetti.

Document No. LN0104-500-R00-0489
Part No. 06396
10 987654321

pcjs.org

Table of Contents Overview

Introduction... xvii

Part One Pascal Basics
Chapter 1 Your First Pascal Program .. 5
Chapter 2 Programming Basics.. 13
Chapter 3 Procedures and Functions .. 29
Chapter 4 Controlling Program Flow .. 45
Chapter 5 User-Defined Data Types .. 57
Chapter 6 Arrays and Records .. 73
Chapter 7 Units.. 87

Part Two Programming Topics
Chapter 8 The Keyboard and Screen .. 99
Chapter 9 Text Files.. 113
Chapter 10 Binary Files .. 123
Chapter 11 Pointers and Dynamic Memory...131
Chapter 12 Advanced Topics.. 147

Part Three Graphics and Objects
Chapter 13 Using Graphics .. 171
Chapter 14 Using Fonts .. 215
Chapter 15 Object-Oriented Programming .. 225

Appendixes
Appendix A ASCII Character Codes and Extended Key Codes .. 239
Appendix B Compiler Directives ... 245
Appendix C Summary of Standard Units ..253
Appendix D Quick Reference Guide ..255

Index ... 279

pcjs.org

Table of Contents V

Introduction
About This Book...xvii

Using the Example Programs ..xviii

Key to Document Conventions ... xix

Other Books on Pascal Programming ..xx

Getting Assistance or Reporting Problems.. xxi

PART 1 Pascal Basics

Chapter 1 Your First Pascal Program...5

1.1 Sample Pascal Program .. 5

1.2 Parts of a Pascal Program.. 6

1.3 Some Terms You Should Know.. 8

1.3.1 Keywords.. 8

1.3.2 Identifiers.. 9

1.3.3 Constants and Variables ..10

1.3.4 Data Types ... 10

1.3.5 Operators and Expressions..11

1.4 Input and Output... 11

1.5 Moving On .. 12

Chapter 2 Programming Basics.. 13

2.1 Data Types ... 13

2.1.1 Integer Types... 14

2.1.2 Floating-Point Types ...15

2.1.3 Character Type .. 16

pcjs.org

vi Contents

2.1.4 String Types .. 16

2.1.5 Boolean Type .. 18

2.2 Constants .. 19

2.2.1 Simple Constants... 19

2.2.2 Typed Constants ... 20

2.3 Simple Variables.. 21

2.4 Pascal Operators .. 22

2.4.1 Kinds of Operators .. 23

2.4.2 Operator Precedence.. 24

2.5 Simple Pascal Expressions... 26

2.5.1 Arithmetic Expressions ... 26

2.5.2 String Expressions... 27

Chapter 3 Procedures and Functions.. 29

3.1 Overview .. 29

3.2 Procedures.. 30

3.2.1 Calling Procedures .. 31

3.2.2 Declaring Procedures.. 31

3.2.3 Declaring Local Variables .. 33

3.2.4 Passing Arguments .. 34

3.3 Functions .. 39

3.3.1 Calling Functions ... 40

3.3.2 Returning Values from Functions.. 40

3.3.3 Declaring Functions .. 40

3.4 Nested Procedures.. 41

3.5 Recursion .. 42

pcjs.org

Contents vii

Chapter 4 Controlling Program Flow.. 45

4.1 Relational and Boolean Operators ... 45

4.2 Looping Statements..47

4.2.1 WHILE Loops ..47

4.2.2 REPEAT Loops..48

4.2.3 FOR Loops ...49

4.3 Decision-Making Statements... 51

4.3.1 IF Statements... 51

4.3.2 ELSE Clauses... 52

4.3.3 CASE Statements ... 53

Chapter 5 User-Defined Data Types .. 57

5.1 Enumerated Data Types .. 57

5.1.1 The First Function ... 58

5.1.2 The Last Function ... 59

5.1.3 The Succ Function ... 59

5.1.4 The Pred Function ... 60

5.1.5 The Inc Procedure ... 60

5.1.6 The Dec Procedure... 61

5.1.7 The Ord Function ... 61

5.2 Subrange Types... 62

5.2.1 Integer Subranges ... 63

5.2.2 Character Subranges .. 64

5.2.3 Enumerated Subranges.. 64

5.3 Sets... 64

5.3.1 Declaring Set Types... 65

5.3.2 Assigning Set Elements to Variables ..66

5.3.3 Set Operators... 66

pcjs.org

via Contents

Chapter 6 Arrays and Records ... 73

6.1 Arrays ... 73

6.1.1 Declaring Arrays ... 74

6.1.2 Accessing Array Elements .. 75

6.1.3 Declaring Constant Arrays.. 76

6.1.4 Passing Arrays as Parameters ... 77

6.1.5 Using the Debugger with Arrays .. 78

6.2 Records... 78

6.2.1 Declaring Records... 79

6.2.2 Accessing Record Fields... 80

6.2.3 Using the WITH Statement to Access Fields .. 81

6.2.4 Constant Records... 82

6.2.5 Assigning Records to Record Variables.. 83

6.2.6 Using the Debugger with Records.. 83

6.3 Variant Records .. 83

6.3.1 Declaring Variant Records.. 84

6.3.2 Accessing Variant Record Fields.. 84

Chapter 7 Units... 87

7.1 Understanding Units... 87

7.2 Using Units in a Program ... 88

7.3 Standard QuickPascal Units .. 88

7.4 Creating Your Own Units ... 89

7.4.1 Writing a New Unit .. 89

7.4.2 Compiling a Unit... 92

7.4.3 Tips for Programming with Units.. 93

pcjs.org

Contents ix

PART 2 Programming Topics

Chapter 8 The Keyboard and Screen ..99

8.1 Basic Input and Output...99

8.1.1 Read and Readln Procedures...100

8.1.2 Write and Writeln Procedures ..101

8.1.3 Formatted Output with Write and Writeln... 102

8.1.4 DOS Redirection: Input and Output Files... 104

8.2 The Crt Unit.. 105

8.2.1 Using the Crt Unit ..105

8.2.2 Character Input .. 109

8.2.3 Cursor and Screen Control..Ill

8.2.4 Using Windows.. Ill

Chapter 9 Text Files .. 113

9.1 Working with Text Files .. 113

9.1.1 Declaring a File Variable and File Name ... 114

9.1.2 Opening a Text File... 115

9.1.3 Writing Text to a File ...116

9.1.4 Reading Text from a File ..117

9.1.5 Closing a Text File..118

9.2 Increasing the Speed for Input and Output ...118

9.3 Redirecting Text Output ...119

9.4 Standard Procedures and Functions for Input and Output... 121

pcjs.org

x Contents

Chapter 10 Binary Files... 123

10.1 Typed Files... 123

10.1.1 Declaring Typed Files .. 124

10.1.2 Accessing Data in a Typed File ..124

10.1.3 Using Random Access .. 126

10.2 Untyped Files ..127

Chapter 11 Pointers and Dynamic Memory131

11.1 Declaring and Accessing Pointers.. 132

11.1.1 Declaring Pointers..132

11.1.2 Initializing Pointers ...132

11.1.3 Manipulating Pointers .. 133

11.2 Dynamic-Memory Allocation... 134

11.2.1 Allocating a Single Object ... 135

11.2.2 Allocating a Memory Block... 136

11.3 Linked Lists ..138

11.4 Binary Trees ..143

Chapter 12 Advanced Topics .. 147

12.1 The Bitwise Operators ...147

12.2 QuickPascal Memory Map..149

12.3 Managing the Heap ..152

12.3.1 Using Mark and Release to Free Memory ... 152

12.3.2 Determining Free Memory and Size of the Free List.. 153

12.3.3 Preventing Deadlock with the Free List... 154

12.3.4 Writing a Heap-Error Function.. 154

12.4 Internal Data Formats ...155

12.4.1 Non-Floating-Point Data Types ... 156

12.4.2 Floating-Point Data Types ...158

pcjs.org

Contents xi

12.5 Linking to Assembly Language..159

12.5.1 Setting Up a Link to Assembly Language...160

12.5.2 Segment and Data Conventions... 160

12.5.3 Entering the Procedure.. 161

12.5.4 Accessing Parameters .. 161

12.5.5 Returning a Value ... 164

12.5.6 Exiting the Procedure .. 164

12.5.7 A Complete Example .. 165

PART 3 Graphics and Objects

Chapter 13 Using Graphics... 171

13.1 Getting Started with Graphics .. 171

13.1.1 Graphics Terms .. 172

13.1.2 For More Information .. 172

13.2 Writing Your First Graphics Program.. 173

13.3 Using Video Modes ...179

13.3.1 Selecting a Video Mode ... 180

13.3.2 CGA Color Graphics Modes.. 184

13.3.3 EGA, MCGA, and VGA Palettes ...185

13.3.4 EGA Color Graphics Modes...186

13.3.5 VGA Color Graphics Modes.. 188

13.3.6 Using the Color Video Text Modes...190

13.4 Understanding Coordinate Systems... 193

13.4.1 Text Coordinates.. 193

13.4.2 Physical Screen Coordinates.. 194

13.4.3 Viewport Coordinates .. 197

13.4.4 Real Coordinates in a Window ... 198

pcjs.org

xii Contents

13.5 Animation ... 207

13.5.1 Video-Page Animation ..207

13.5.2 Bit-Mapped Animation ... 210

Chapter 14 Using Fonts.. 215

14.1 Overview of QuickPascal Fonts ... 215

14.2 Using Fonts in QuickPascal... 217

14.2.1 Registering Fonts... 218

14.2.2 Setting the Current Font... 218

14.2.3 Displaying Text Using the Current Font...221

14.3 A Few Hints on Using Fonts .. 221

14.4 Example Program..222

Chapter 15 Object-Oriented Programming....................................... 225

15.1 Overview .. 225

15.2 Object Programming Concepts.. 226

15.3 Using Objects... 226

15.3.1 Setting the Method Compiler Directive...227

15.3.2 Creating Classes ... 227

15.3.3 Creating Subclasses .. 228

15.3.4 Defining Methods... 229

15.3.5 Using INHERITED .. 230

15.3.6 Declaring Objects... 231

15.3.7 Allocating Memory .. 231

15.3.8 Calling Methods ... 231

15.3.9 Testing Membership.. 231

15.3.10 Disposing of Objects.. 232

pcjs.org

Contents xia

15.4 Object Programming Strategies.. 232

15.4.1 Object Style Conventions... 232

15.4.2 Object Reusability ... 233

15.4.3 Modularity..233

15.4.4 Methods ..233

15.4.5 Data Fields ...233

15.5 Example Program ..234

Appendixes

Appendix A ASCII Character Codes and
Extended Key Codes ... 239

A.l ASCII Character Codes ... 239

A. 2 Extended-Key Codes .. 242

Appendix B Compiler Directives .. 245

B. l Switch Directives ... 245

B.2 Parameter Directives .. 249

B.3 Conditional Directives.. 250

Appendix C Summary of Standard Units .. 253

Appendix D Quick Reference Guide .. 255

D.l Keywords, Procedures, and Functions..255

D.2 Crt Procedures and Functions...267

D.3 Dos Procedures and Functions ..268

D.4 Printer Unit Interface .. 270

D.5 MSGraph Procedures and Functions ..271

pcjs.org

Figures*

Figure 1.1 Parts of a Pascal Program.. 6

Figure 5.1 Set Operators.. 68

Figure 11.1 The Push Procedure..141

Figure 11.2 The Pop Procedure..142

Figure 11.3 A Binary Tree ...143

Figure 12.1 QuickPascal Memory Map ...150

Figure 12.2 QuickPascal Data Formats..158

Figure 13.1 Text Screen Coordinates ..193

Figure 13.2 Physical Screen Coordinates...194

Figure 13.3 Coordinates Changed by _SetViewOrg ... 195

Figure 13.4 Line Drawn on a Full Screen...196

Figure 13.5 Line Drawn within a Clipping Region.. 197

Figure 13.6 Window Coordinates ...198

Figure 13.7 REALG .PAS Program.. 202

pcjs.org

Tables XV

Table 2.1 Integer Data Types ... 14

Table 2.2 Floating-Point Data Types ... 15

Table 2.3 Arithmetic Operators...23

Table 2.4 Relational Operators...24

Table 2.5 Operator Precedence...25

Table 4.1 Relational Operators...46

Table 4.2 Boolean Operators..46

Table 5.1 Relational Operators...67

Table 8.1 Crt Text-Mode Constants ... 106

Table 8.2 Crt Color Constants ... 106

Table 8.3 Variables Provided by the Crt Unit ...107

Table 8.4 Procedures and Functions Provided by the Crt Unit ..108

Table 8.6 Statement Effects.. Ill

Table 9.1 Standard Procedures and Functions for All File Types ... 121

Table 9.2 Standard Procedures and Functions for Text Files... 121

Table 11.1 Pointer Procedures.. 137

Table 13.1 Constants Set by _SetVideoMode..175

Table 13.2 Constants for Graphics Adapters .. 180

Table 13.3 Constants for Monitors .. 180

Table 13.4 Available CGA Colors ...184

Table 13.5 CGA Colors: _MResNoColor Mode...184

Table 13.6 Text Colors.. 191

Table 14.1 Typefaces and Type Sizes in QuickPascal .. 217

Table B.l Minimum and Maximum Memory Allocation Parameters ... 249

Table B.2 QuickPascal Predefined Conditional Identifiers .. 250

pcjs.org

Introduction

Congratulations on your purchase of Microsoft ® QuickPascal. By now you
should have read the other book in this package. Up and Running, and installed
the software. And you’re getting a feel for the many features of the product and
the power that QuickPascal places at your fingertips. Now you’re ready to use
that power as you learn how to program in Pascal. QuickPascal makes learning
easy with

■ An integrated programming environment. You can write and edit code with
the built-in editor, and then compile, run, and save your programs with easy-
to-use menus.

■ A powerful on-line help system, the QuickPascal Advisor. By pressing one
key, the Ft key, you can access everything you need to know about the Quick­
Pascal environment and about the Pascal language itself.

■ An excellent debugger. You can find out exactly where a syntax error oc­
curred, or trace through a program to find errors in logic.

■ Object-oriented extensions. You can use QuickPascal to learn and use the
newest concept in programming: object-oriented programming.

About This Book
This book, Pascal by Example, complements the on-line features of QuickPascal
to teach you how to program in this language. In discussing programming terms
and processes, this book refers frequently to example programs that are located
on-line. Fragments of the example code are often quoted in text, thus teaching
you as you read along. You can also load the whole example, so you can com­
pile and experiment with working code.

As you read the book and run the example programs, you’ll learn about these
QuickPascal programming features:

■ Programming basics such as variables, operators, and expressions

■ Specific programming features such as strings, loops, units, procedures, data
types, and input/output

■ Powerful graphics capabilities and object-oriented programming

pcjs.org

xviii Pascal by Example

Pascal by Example makes certain assumptions about your knowledge. It does
not explain programming concepts and terms in their simplest form. This book
assumes you have programmed in other programming languages but are not
familiar with Pascal. The following list summarizes the book’s contents:

■ Part 1, “Pascal Basics,” covers basic Pascal language fundamentals such as
procedures and data types. These chapters are designed to be read in order,
from beginning to end.

■ Part 2, “Programming Topics,” covers practical programming topics such as
using pointers and files. An advanced topics chapter discusses bitwise opera­
tors, calling assembly language routines, and similar problems.

■ Part 3, “Graphics and Objects,” covers QuickPascal graphics, which include
graphics primitives and font support. The final chapter introduces you to the
object extensions in QuickPascal. If you’ve never seen object-oriented pro­
gramming before, this will get you started.

■ Appendix A, “ASCII Character Codes and Extended Key Codes,” provides
valuable reference information on ASCII codes and the extended key codes
returned by the Crt unit function ReadKey.

■ Appendix B, “Compiler Directives,” lists all QuickPascal directives.

■ Appendix C, “Summary of Standard Units,” briefly describes each unit pro­
vided with QuickPascal.

■ Appendix D, “Quick Reference Guide,” lists all QuickPascal keywords and
the standard units’ procedures and functions.

NOTE Microsoft documentation uses the term “DOS" to refer to both the MS-DOS ® and IBM
Personal Computer DOS operating systems. The name of a specific operating system is used when
it is necessary to note features that are unique to that system.

Using the Example Programs
The QuickPascal Advisor includes all of the significant program examples in
this book (although it doesn’t include all of the code fragments). This feature al­
lows you to load, run, and experiment with example programs as you read.

Every complete program in this book starts with a comment of this general form:

{ FTOC.PAS: converts temperatures }

The comment contains the program’s name and a brief description of what it
does. This program can be found in the QP Advisor as FTOC.PAS.

You must be using the QuickPascal environment to load an example. To load the
example program, open the Help menu and choose the Contents command.
Choose the tide of this book from within the Contents screen. Then find the

pcjs.org

Introduction xix

desired program in the list of Pascal by Example programs, and copy it into the
source window using the Copy and Paste commands from the Edit menu.

After you copy an example program into the QuickPascal source window, treat
it as you would any Pascal source program. You can compile or edit the pro­
gram, save it on disk, and so on.

Note that you can easily print out an example program, in whole or in part, from
Help or from your file, by choosing the Print command from the File menu.

Key to Document Conventions
This book uses the following document conventions:

Example

COPY TEST.OBJ C:

BEGIN

PROGRAM FtoC;
CONST
Factor = 32.0

ArrayName

[OptionI

{Choicel I Choice2]

Repeating elements...

REPEAT

Description

Uppercase type represents DOS commands and file
names.

Boldface type (whether in all uppercase or in both
upper- and lowercase letters) indicates standard fea­
tures of the QuickPascal language: keywords, opera­
tors, and standard procedures and functions.

This typeface is used for example programs, pro­
gram fragments, and the names of user-defined pro­
cedures, functions and variables. It also indicates
user input and screen output.

Words in italics indicate placeholders for informa­
tion that you must supply. A file name is an exam­
ple of this kind of information.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among
two or more items. You must choose one of the
items unless all of the items are also enclosed in
double square brackets.

Three dots following an item indicate that more
items having the same form may be entered.

A column of three dots indicates that part of the ex­
ample program has intentionally been omitted.

UNTIL

pcjs.org

xx Pascal by Example

Fl Small capital letters denote names of keys on the
keyboard. A plus (+) indicates a combination of
keys. For example, SHIFT+F5 tells you to hold down
the SHIFT key while pressing the F5 key.

“array pointer” The first time a new term is defined, it is enclosed
in quotation marks. Since some knowledge of pro­
gramming is assumed, common terms such as
memory or branch are not defined.

American National An acronym is spelled out the first time it appears.
Standards Institute
(ANSI)

Other Books on Pascal Programming
This book introduces the Pascal language and some practical programming top­
ics. It does not attempt to teach you basic computer programming or advanced
Pascal programming techniques. The following books cover a variety of topics
that you may find useful. They are listed only for your convenience. With die ex­
ception of its own publications, Microsoft does not endorse these books or rec­
ommend them over others on the same subject.

Cooper, Doug. Standard Pascal: User Reference Manual. New York, NY:
W.W. Norton & Company, 1983.
A complete and concise reference manual to standard Pascal.

Cooper, Doug and Michael Clancy. Oh! Pascal! 2d ed. New York, NY: W. W.
Norton & Company, 1985.
A beginner’s introduction to standard Pascal.

Craig, John Clark. Microsoft QuickPascal Programmer’s Toolbox. Redmond,
WA: Microsoft Press. In press.
A sourcebook that beginners will find useful for learning by example. Sea­
soned professionals using QuickPascal as a development system will find the
routines to be valuable and immediately useful extensions to the Pascal lan­
guage.

Grogono, Peter. Programming in Pascal, rev. ed. Menlo Park, CA: Addison-
Wesley, 1980.
A good teaching source, but one that also covers sophisticated topics.

pcjs.org

Introduction xxi

Jamsa, Kris. Microsoft QuickPascal Programming. Redmond, WA: Microsoft
Press. In press.
A comprehensive introduction to mastering QuickPascal programming for
the beginning- to intermediate- level programmer complete with hands-on
examples.

Jamsa, Kris. Microsoft QuickPascal: Programmer's Quick Reference. Red­
mond, WA: Microsoft Press. In press.
This alphabetical reference provides concise descriptions of all QuickPascal
procedures and functions.

Kemighan, Brian W., and P.J. Plauger. Software Tools in Pascal. Menlo Park,
CA: Addison-Wesley, 1981.
A beginning- to intermediate-level guide to software tools and programming
techniques.

Ladd, Robert Scott. Learning Object-Oriented Programming with Microsoft
QuickPascal. Redmond, WA: Microsoft Press. In press.
Provides an example-rich introduction to the philosophy and procedures
of object-oriented programming for the beginning- to intermediate-level
QuickPascal user.

Leestma, Sanford, and Larry Nyhoff. Pascal: Programming and Problem
Solving. New York, NY: Macmillan Publishing Company, 1987.
A beginner’s guide to Pascal programming. The book also covers problem
analysis, algorithm development, algorithm translation to Pascal, and pro­
gram validation.

Wirth, Niklaus, and Kathleen Jensen. Pascal User Manual and Report. 3d ed.
New York, NY: Springer-Verlag, 1985.
The definitive source.

Getting Assistance or Reporting Problems
If you feel you have discovered a problem in the software, please report the prob­
lem using the Product Assistance Request form at the back of this book.

If you have comments or suggestions reqarding any of the books accompanying
this product, please use the Documentation Feedback Card, also at the back of
this book.

pcjs.org

PARTI

Pascal Basics

pcjs.org

pcjs.org

PARTI

Pascal Basics
Part 1 of Pascal by Example introduces you to the Pascal program­
ming language and the basic elements of Pascal programs. The
chapters in this part assume that you know some programming con­
cepts but are not familiar with Pascal. Experienced Pascal program­
mers may want to skim these chapters.

The information in Part 1 helps you start writing Pascal programs
immediately. Chapters progress through such major topics as proce
dures, program flow, user-defined data types, and units. If you’re
new to Pascal, reading the chapters in this part sequentially will
give you a thorough introduction to the fundamentals of program­
ming in Pascal.

pcjs.org

CHAPTERS

1 Your First Pascal Program ...5

2 Programming Basics.. 13

3 Procedures and Functions 29

4 Controlling Program Flow 45

5 User-Defined Data Types ...57

6 Arrays and Records .. 73

7 Units ... 87

pcjs.org

CHAPTER 1 1 5

Your First
Pascal Program

1
You’re probably eager to use QuickPascal and begin writing programs in
Pascal. In this chapter, you’ll compile and run your first Pascal program,
FTOC.PAS, which is shown in Figure 1.1. As with all of the complete
programs in this book, we’ve done the work of typing it in for you. You
just need to use the Copy and Paste commands on the Edit menu to copy
the program from the QuickPascal Advisor into a blank source window.
Then you can press F5 to compile and run the program.

This chapter uses the sample program to introduce the parts of a Pascal
program, some terms you should know, and input and output. Most of
these terms are discussed in more detail in Chapter 2.

If you’re an experienced programmer in another structured language such
as C, you might want to skip this chapter and begin with Chapter 2, “Pro­
gramming Basics,” or Chapter 3, “Procedures and Functions.”

Sample Pascal Program
FTOC.PAS is a simple program that converts temperatures from Fahrenheit
to Celsius. Like all of the sample programs in this book, you’ll find it in the

pcjs.org

6 Pascal by Example

QuickPascal Advisor. Figure 1.1 contains theFTOC.PAS program code and il­
lustrates the program parts.

PROGRAM FtoC;------------------------------------ Program declaration
{ FTOC.PAS: converts temperatures }---------------------- Comment

USES
Crt;---------

CONST
factor = 32.0;

USES statement

VAR
degrees_fahr, degrees_cel, answer : Real;------ Variable declaration

FUNCTION ConvertToCel (degrees : Real) : Real; -Function declaration
BEGIN

ConvertToCel := ((degrees - factor) * 5.0) / 9.0;
END;

BEGIN
ClrScr;
Writeln('Temperature Converter');
Writeln ('Fahrenheit to Celsius');
Writeln;
Write ('Temperature in degrees Fahrenheit? ');
Readln (degrees_fahr);
degrees_cel := ConvertToCel(degrees_fahr);
Writeln('Equals ', degrees_cel:4:1, ' degrees Celsius');
Writeln;

END.

Figure 1.1 Parts of a Pascal Program

1.2 Parts of a Pascal Program
Pascal is a highly structured language. Programs have parts, and the parts have a
required order. This section explains the parts of a Pascal program.

The Program Declaration
Traditionally, the first line of every Pascal program contains the program decla­
ration. This declaration consists of the keyword PROGRAM, the name of the

pcjs.org

Your First Pascal Program 7

program, and a semicolon. With Microsoft QuickPascal, such a declaration is
not required, but it is still helpful as a way of labeling a program. Also, a pro­
gram declaration is necessary if you want your program to compile on compilers
other than those developed by Microsoft.

The USES Statement
The USES statement always follows the program declaration. It specifies which
units are called from the program. Units are explained in detail in Chapter 7.

The USES statement in the FTOC.PAS program calls the Crt unit. This unit con­
tains procedures and functions that allow you to control your computer screen.

Constant and Variable Declarations
Pascal requires that you declare constants, types, and variables before using
them. The keywords CONST, TYPE, and VAR are used for this purpose. Con­
stant declarations are made with the CONST keyword and include both the con­
stant identifier (a name) and its value. For example, the constant shown in the
FTOC.PAS program is named factor and has the value 32.0.

The VAR keyword is used for variable declarations. Variable declarations in­
clude the variable identifier (a name) and its type. Multiple variables of the same
type can be declared in the same statement.

Procedures and Functions
Procedure and function declarations come after the constant and variable declara­
tions. Each procedure or function has its own BEGIN...END block. FTOC.PAS
uses the function converttocel to convert the temperature from Fahrenheit
to Celsius.

The Program Body
The body of the program, as shown in Figure 1.1, is enclosed by the keywords
BEGIN and END. Pascal executes the instructions between BEGIN and END.
The period after the END keyword tells Pascal that the program is over; anything
that follows the period is ignored.

Comments
Comments are notes to yourself or others that make your programs easier to un­
derstand and maintain. Braces tell QuickPascal to ignore comment text. Instead
of braces, comments can also be enclosed in parentheses and asterisks, as shown
in this example:

(* This is a comment between the special symbols *)

The text on line 2 of FTOC.PAS is a comment.

pcjs.org

8 Pascal by Example

1.3 Some Terms You Should Know
If you’ve never programmed before, the terms “keyword” and “identifier” may
be confusing to you. These and other terms are discussed in this section. If you
are an experienced programmer, you can skip this section and go on to Chap­
ter 2, “Programming Basics.”

1.3.1 Keywords
Pascal contains a set of “keywords,” or words that it reserves for its own use.
Whenever the Pascal compiler encounters a keyword, a specific action is per­
formed. In the sample program FTOC.PAS, the words PROGRAM, VAR,
BEGIN, and END are all keywords. A keyword always means the same thing to
a program; for example, the keyword BEGIN always signals the beginning of a
statement block, and the keyword END always signals the end of a statement
block.

The QuickPascal environment gives you the option of displaying keywords in a
special color. This makes your programs easier to read on screen. See Up and
Running for more information on how to display in color.

Always remember that you cannot use a keyword as a variable name or for any­
thing other than its intended purpose. Keywords are shown in all uppercase let­
ters in this book, and in the sample programs. A list of QuickPascal keywords is
shown below:

ABSOLUTE IF RECORD
AND IMPLEMENTATION REPEAT
ARRAY IN SET
BEGIN INHERITED SHL
CASE INLINE SHR
CONST INTERFACE STRING
CSTRING INTERRUPT THEN
DIV LABEL TO
DO MOD TYPE
DOWNTO NIL UNIT
ELSE NOT UNTIL
END OBJECT USES
EXTERNAL OF VAR
FILE OR WHILE
FOR OVERRIDE WITH
FORWARD PACKED XOR
FUNCTION PROCEDURE
GOTO PROGRAM

pcjs.org

Your First Pascal Program 9

1.3.2 Identifiers
“Identifiers” are names that you use in your program. In the example program,
the word degrees_cel is the identifier for a variable. You could call it
celsiusdegrees or cd or fred if you wanted to; however, for the sake
of good programming practice, the name should provide information about the
purpose of the variable. Thus degrees_cel is preferable to cd or fred.
QuickPascal requires that you follow three rules when creating identifiers:

1. The first character of an identifier must be a letter or underscore char­
acter (_).

2. Digits can be used within an identifier.

3. Identifier names can be of any length, but only the first 63 characters are
significant.

Thus, the following are examples of valid identifiers:

FirstTime
first_time
indexO
area233
area_555
A4_9RT4_98NNS

By contrast, the following are examples of invalid identifiers:

Identifier

First Time
indexO$
area!233
555area

Reason It’s Invalid

There is a space between First and Time.
The $ sign is not a valid identifier character.

The ! mark is not a valid identifier character.

The first character is a digit.

Identifiers in Pascal are not case sensitive. This means that the identifiers
First_Time, first_Time, first_time, and FIRST_TIME all refer
to the same identifier. If these identifiers were typed in a program, the compiler
would not generate an error. Instead, the compiler would treat them as the same
identifier.

Some identifiers are defined by Microsoft. These identifiers name certain data
types, standard procedures and functions, units, and variables and constants de­
fined in standard units. In this manual and throughout the sample programs,
these “standard identifiers” are shown with initial capital letters.

pcjs.org

10 Pascal by Example

1.3.3 Constants and Variables
“Constants” and “variables” are two different ways for your program to use data.
A constant is defined at the beginning of your program and always has the same
value. In the sample program FTOC.P AS, the constant factor is assigned the
value 32.0. After such an assignment is made (using the CONST keyword),
QuickPascal replaces the identifier factor with the value 32.0 whenever
the identifier is encountered. Constants can make your program more readable
and understandable.

Programs operate on data. In Pascal, as in other programming languages, data
are stored in variables. Variables must be declared in a Pascal program before
being used. Variable declarations follow the keyword VAR and have two parts:
a variable name (identifier) and type. Data types are discussed below. In our
sample program, both degrees_fahr and degrees_cel are variables
of type Real.

1.3.4 Data Types
Pascal classifies data according to “type.” Roughly speaking, data types allow
the computer to determine how much memory a variable requires, and what
level of precision should be maintained for a number. Type declarations keep
you from making mistakes such as storing your zip code where your salary
should be.

When you declare a variable, you must declare its type as well as its name. Data
naturally falls into two general categories: text and numbers. Textual data items
(which may include numbers, as in a street address) are referred to as “strings.”
Numbers can be integers (whole numbers such as 1 and 34) or real numbers
(decimal numbers such as 29.5 and 3.14159). Four simple data types are illus­
trated below:

Data Type

Mary Smith String

1413 Oak Lane String

7 6 Integer

21.0987 Real

Y Character

Data types are discussed in more detail in Chapter 2, “Programming Basics.”

pcjs.org

Your First Pascal Program 11

1.3.5 Operators and Expressions
Operators are used in expressions to manipulate data within your program.
Pascal includes many operators, but the simplest are already familiar to you:
addition, subtraction, multiplication, and division. Another class of common
operators are relational operators, such as “greater than,” “less than,” and “equal
to.” You’ll use operators in your programs to do tasks such as counting how
many lines you’ve printed on a page, or seeing if the number of hours someone
worked in a week exceeds 40. More sophisticated uses for operators also exist,
and those are discussed in Chapter 2, “Programming Basics.”

Expressions combine operators with data, as shown in the example below:

{ Multiply the number of hours worked by the rate of
pay. Store the answer in the variable 'Salary'

}
salary := hours * pay_rate;

1.4 Input and Output
At the risk of oversimplification, you could say that most programs get some
data, manipulate that data in some fashion, and display some final data to a user.
So far in this chapter you’ve learned a bit about data and data manipulation.
“Input” and “output” refer to the processes of getting and displaying data.

Input
Pascal programs frequently make use of the Read and Readln procedures for
data input. Read is useful for getting a single keystroke—for instance, when you
want the user to press a key to stop a process. Readln is useful when you want
the user to be able to type and correct a complete line of text before the program
accepts it. Readln doesn’t do anything until the user presses ENTER, thus provid­
ing the user with the ability to edit the input line before sending it on to the pro­
gram for processing.

In the example below, the first line that the user types is stored as the variable
name and the next line is stored as address.

Readln (name);
Readln (address);

Output
Just as Read and Readln handle data input. Write and Writeln handle output.
Writeln differs from Write in that Writeln generates a carriage return at the
end of the string (the line of text). Thus, Writeln moves the cursor to a new line
on your output screen.

pcjs.org

12 Pascal by Example

1.5 Moving On
So far you have looked at and compiled your first program, and you have
been exposed to some basic Pascal terms. The next chapter elaborates on the
concepts introduced here and shows you how to create some more complex
programs.

pcjs.org

CHAPTER 2 o L
Programming Basics

2

This chapter introduces you to some Pascal programming fundamentals,
such as data types, constants, variables, operators, and expressions. If
you’re already an experienced programmer in another language, you
may find most of this material to be familiar. In that case, you might want
to skim this chapter quickly or just skip ahead to Chapter 3.

2.1 Data Types
All data in your program is either a constant or a variable; each has an associated
data type. Two kinds of data types exist in QuickPascal: predefined data types
and user-defined data types. Predefined data types, such as Real and STRING,
are a built-in part of the language and are discussed below. User-defined data
types expand your programming power considerably. They are complex enough
that Chapter 5 of this book is devoted to them.

The predefined data types supported by QuickPascal and explained in the follow­
ing sections are:

■ Integers

■ Floating-point numbers

■ Characters

■ Strings

■ Booleans

pcjs.org

14 Pascal by Example

2.1.1 Integer Types
Integers are whole numbers like the numbers you use to count with; that is, they
have no fractional parts. The number 12 is an integer; 12.0 and 12.5 are not.
Table 2.1 lists the five integer types that QuickPascal supports. Programs dis­
cussed later in this chapter show how these integers are used.

Table 2.1 Integer Data Types

Integer Type Range of Values Byte Size Examples

Shortlnt -128 to 127 1 -7, 55, 123,0, $F
Byte 0 to 255 1 55,123, $F, 0
Integer -32768 to 32767 2 -555,30000, 0, $FF
Word 0 to 65535 2 30000, 60000, $FFFF
Longlnt -2147483648 to 2147483647 4 -100000,100000, $FFFF

The integer types Byte and Word are called “unsigned” integers, while the other
integer types are called “signed” integers. The word “unsigned” indicates that
the integer includes values from zero to the upper positive limit. Signed integers
include negative numbers.

You can see that the main difference between the different integer types is the
range of the values that can be stored. In the VAR section of your program, you
declare the variable identifier and the specific type.

As the examples in Table 2.1 show, QuickPascal allows you to write integers in
either decimal (base 10) or hexadecimal notation (base 16). Hexadecimal num­
bers begin with the dollar sign ($) and use the characters 0-9 and A-F.

The INTTYPES.PAS program below demonstrates different types of integers.

PROGRAM Inttypes;
{ INTTYPES.PAS demonstrates integer data types. }

USES
Crt;

VAR
short_int_val : ShortInt;
byte__val : Byte;
integer_val : Integer;
word_val : Word;
long_int_val : Longlnt;

pcjs.org

Programming Basics 15

BEGIN
short_int_val := -31;
byte_val := 255;
integer_val := -21212;
word_val := $FFFF;
long_int_val := 12918656;
ClrScr;
Writeln('short_int_val =
Writeln('byte_val =
Writeln('integer_val =
Writeln('word_val =
Writeln('long_int_val =

END.

, short_int_val);
, byte_val);
, integer_val) ;
, word_val) ;
, long_int_val);

Here is the output from INTTYPES.PAS:

short_int_val
byte_val
integer_val
word_val
long_int_val

= -31
= 255
= -21212
= 65535
= 12918656

2.1.2 Floating-Point Types
Floating-point numbers are not integers; that is, they are written with a decimal
point. Thus the number 12.5 is a floating-point number, as is .00021459862.
Also, QuickPascal treats constants larger than its maximum as long-integer size
floating-point numbers, even if they do not contain a decimal point. Floating­
point numbers are also referred to as “real” numbers.

QuickPascal supports a group of floating-point types that vary in their precision,
range of values, and storage requirements. They are shown in Table 2.2.

Table 2.2 Floating-Point Data Types

Type Range of Value Byte Size Significant Digits

Single 1.5E-45 to 3.4E+38 4 7-8
Real 2.9E-39 to 1.7E+38 6 11-12
Double 5.0E-324 to 1.7E+308 8 15-16
Extended 3.4E-4951 to 1.1E+4932 10 15-16
Comp -9.2E+18 to 9.2E+18 8 15-16

pcjs.org

16 Pascal by Example

By default, QuickPascal assumes that your computer does not use a math co­
processor, resulting in fewer significant digits than if it did use a coprocessor.
However, if you have a math coprocessor available (any member of the 8087
family of processors), you can increase the precision of Comp and Extended
data types by 4 significant digits by including the {$N+} compiler directive in
your program.

Unlike some other Pascal compilers, QuickPascal makes all real number types
available for your use, whether or not your computer has a numeric coprocessor.

The Comp type is a little different from the other floating-point types. Comp is
designed to count very large numbers, and so it stores only the integer part of a
number between —(2A63)+1 and (2A63)—1.

2.1.3 Character Type
The character data type Char stores only one character. Each character occupies
one byte of storage. You can represent characters using the following formats:

Characters

Readable characters
(that is, the alphabet,
digits, and punctua­
tion characters)

Control characters
(ASCII characters 0
through 31)

All characters, includ­
ing those in the ex­
tended ASCII table

Representation

Can be represented by using same letters, digits, and
punctuation.

Can be represented using the carat symbol (A) fol­
lowed by the control letter. For example, the form
feed is represented by AL, since form feed is ASCII
12 and L is the 12th letter in the alphabet. Appendix
A contains a chart of all ASCII codes.

Can be represented by using the number sign (#) fol­
lowed by the ASCII code number. Thus, #65 is the
letter A, #12 is the form feed, and so on.

2.1.4 String Types
This data type stores a string of characters such as a name or an address. Quick­
Pascal strings can hold up to 255 characters. Many of the examples in this book
use strings to display messages and store input. The STRINGS.PAS program de­
monstrates how to create, read, and write simple strings.

pcjs.org

Programming Basics 17

PROGRAM Strings;

{ STRINGS.PAS demonstrates basic string operations. }

USES
Crt ;

CONST
str_constant = 'Type something and press Enter: ';

VAR
prompt_one : STRING;
prompt_two : STRING;
input_str : STRING;

BEGIN
prompt one := str_constant;
prompt_two := 'You typed: ';

ClrScr;
Write(prompt_one);
Readln(input_str);
Write(prompt_two);
Writeln(input_str);

END.

Here is typical output from STRINGS.PAS:

Type something and press Enter: QuickPascal!
You typed: QuickPascal!

2.1.4.1 Declaring Strings
Pascal strings are usually of the STRING type. In STRINGS.PAS, the statements

VAR
prompt_one : STRING;
prompt_two : STRING;
input_str : STRING;

declare three string variables named prompt_one, prompt_two, and
input_str.

pcjs.org

18 Pascal by Example

2.1.4.2 Initializing Strings
You can initialize string variables by assigning string literals or constants to
them:

CONST
str_constant = 'Type something and press Enter: ';

prompt_one := str_constant; { Assign string constant }
prompt_two := 'You typed: '; { Assign string literal }

Pascal strings can contain as many as 255 characters. The first character of a
string is a “length byte” that indicates the number of characters in the string. Pro­
cedures such as Writeln look at this byte to determine the string’s size.

Thus, if you assign Hello to a string variable, the variable actually contains
six characters: a length byte that contains the number 5, followed by the 5
characters of Hello.

2.1.4.3 Reading and Writing Strings
You can use the Read and Readln procedures to read a string:

Readln(input_str) ;

and the Write and Writeln procedures to write a string:

Write (prompt_two);
Writeln(input_str);

These procedures read input from the keyboard and write output to the screen.
See Chapter 8, “The Keyboard and Screen,” for more information on input and
output.

2.1.5 Boolean Type
A variable of type Boolean can be assigned a value of true or false. Variables of
this type are often used as “flags” when a condition in your program becomes
true (or false). Suppose, for example, that you wanted to check whether a user
had finished entering data. If the variable all_done had been declared as
type Boolean, you may use it like this:

IF (x = 0) THEN all_done := true;

pcjs.org

Programming Basics 19

Later you may need to check the all_done variable:

IF (all_done = True) THEN ...

A shorthand way of writing this statement is

IF (all_done) THEN ...

It is understood that IF all_done means the same as IF (all_done =
True) and by the same understanding, if (NOT all_done) means
IF (all_done = False).
For more information about Boolean types and what you can do with them, see
Chapter 12, “Advanced Topics.”

2.2 Constants
Fixed data, or “constants,” are assigned a value which is never changed (an ex­
ception to this, called “typed constants,” is discussed below). When you declare
constants in Pascal, you assign them a name and value. This value, once as­
signed, cannot be changed in your program. The assignment of name and value
to a constant is called a constant declaration.

QuickPascal supports two kinds of constants: simple and typed.

2.2.1 Simple Constants
Simple constants can be used for two purposes. First, they can store fixed values,
like the number of inches in a foot. Second, they can store values you wish to
use within your program, like the text of a title screen or your assumption for the
rate of inflation. Since constants are all declared at the beginning of your pro­
gram, it is easy to change any of those values and recompile your program. Re­
member, changing the value of a constant in its initial declaration gives that new
value to the constant wherever it is used. In fact, any other constants that depend
on the one you alter will also receive their updated values when you recompile
the program.

The general syntax for declaring and initializing a constant is:

CONST
Constantldentifier = {ConstantValue\Expression}

For example:

CONST

ft_per_mile = 5280;

pcjs.org

20 Pascal by Example

In this example, the Constantldentifier is ft__per_mile and the
ConstantValue is 5280.

In QuickPascal, you can use an expression that contains a previously declared
constant. You can also set a constant equal to an expression, as in

CONST

days_per_year = 365;
seconds_per_day = 60 * 60 * 24;
light_speed = 186282;
light_year = light_speed * seconds_per_day

* days_per_year;

However, if you declare a constant equal to an expression, that expression can
only contain simple operations like addition, subtraction, multiplication, and di­
vision. More advanced Pascal functions like square root cannot be used.

Here are some more examples of constants:

CONST

max_row = 10;
max_col = 10;

{ Uses previously declared constants }
table_size = max_row * max_col;

prompt = 'Press any key to resume...';
byebye = 'Thank you for using the program...';

euler_const = 0.577215664901;

{ An approximation of the Euler constant }
euler_const2 = 228.0 / 395.0;

2.2.2 Typed Constants
QuickPascal lets you use another kind of constant called a “typed constant.” In
standard Pascal, you can’t specify the data type of a constant. The compiler as­
signs the data a type according to how it is presented. For example, a constant
called number_of_people with a value of 35 would be assigned an inte­
ger type by QuickPascal, which makes sense. However, if you declared
number_of_people equal to 35.0, then the compiler would assign a real
number type to number_of_people, which doesn’t make much sense.

Fortunately, QuickPascal allows you to specifically state the data type associated
with a constant, which is the typed constant. You may also see the terms “varia­
ble constant” or “static variable” used to describe such a constant. Declaring

pcjs.org

Programming Basics 21

data with a typed constant actually changes the constant into an initialized varia­
ble. That is, the value associated with the typed-constant identifier can be
changed in the program, unlike regular constants whose value cannot be
changed within the program.

A typed constant can be thought of as a cross between a constant and a variable.
A constant’s value is declared but can never be changed. A variable, on the other
hand, is not declared with a predefined value, and its value can change within
the program. A typed constant is like a variable whose predefined value is de­
clared but which can be redefined within the program.

The general syntax is shown below:

CONST
Constantldentifier : Type Name = {ConstantValue I Expression}

Examples of typed constant declarations are given below. Note that the
ConstantValue or Expression assigned to the typed constant is much like a value
or expression assigned to a regular variable. Note that you use the \TypeName to
specify the type of the constant, as you would in a VAR declaration.

CONST

max_row : Word = 10;
max_col : Word = 10;
table_size : Word = max_row * max_col;

prompt ; STRING = 'Press any key to resume...';
byebye : STRING = 'Thank you for using the program...';

euler const : Real = 0.577215664901;
{ An approximation to the Euler const }
euler const2 : Real = 228.0 / 395.0;

2.3 Simple Variables
While constants are identifiers that are declared and assigned a fixed value, varia­
bles are identifiers that are merely declared. They are assigned values in the
main program or a subprogram. The general syntax for declaring a variable and
identifying its type is as follows:

VAR
VariableName [[, VariableName...]] : DataType

pcjs.org

22 Pascal by Example

Some examples of declaring variables:

VAR
{ Variables declared with predefined type }
column_index : Word;
area, circumference : Real;
message : STRING;
input_character : Char;

Once a variable is declared, QuickPascal sets aside the required amount of
memory to store data associated with the variable. The amount of memory set
aside is based on the variable’s data type. For example, a variable declared with
type STRING [40] gets 41 bytes of memory of which 40 bytes are available
for data (the remaining byte holds the string length); a variable with type
Integer gets 2 bytes of memory.

Once a variable is declared, you may assign it a value. Often you will use the as­
signment operator (:=), which should not be confused with the equality operator
(=). The assigned value can be a constant, another variable, or an expression.

The VARS .PAS program shows a simple assignment of variables. The variable
radius is assigned a value through user input (the Readln procedure). The varia­
ble area is assigned the value of an expression using the assignment operator.

PROGRAM Vars;
{ VARS.PAS: variable declaration and use }

VAR
radius, area : Real;

BEGIN
Writeln('Enter radius');
Readln(radius);
Area := (Pi * (radius * radius));
Writeln('Area of the circle = ', area:8:2);
Writeln;

END.

Typical output from VARS.PAS looks like this:

Enter radius
12
Area of the circle = 452.39

2.4 Pascal Operators
Operators let you manipulate data. Pascal operators are used to build expres­
sions. This section describes some of the operators available in Microsoft
QuickPascal. In addition to the ones discussed here, QuickPascal supports

pcjs.org

Programming Basics 23

some operators for advanced use, including bitwise and set operators. The
bitwise operators are discussed in detail in Chapter 12, “Advanced Topics.” Set
operators are discussed in Chapter 5, “User-Defined Data Types.”

2.4.1 Kinds of Operators
QuickPascal supports the following categories of operators:

■ Arithmetic

■ Relational

■ String

■ Address-of

2.4.1.1 Arithmetic Operators
Table 2.3 lists the arithmetic operators, which perform numeric manipulation
of integer and floating-point types. While the addition (+), subtraction (-), and
multiplication (*) operators work with both integers and floating-point types, the
division (/) operator performs floating-point division (even if the operands are
integers), and the DIV and MOD operators work with integers only.

While most of the operators take two operands, the unary plus and unary minus
operators work with one operand only.

Table 2.3 Arithmetic Operators

Operator Purpose

+ Unary plus sign

- Unary minus sign
+ Adds two numbers
- Subtracts two numbers
* Multiplies two numbers
/ Divides two floating-point numbers
DIV Divides two integer numbers
MOD Returns the remainder of integer division

pcjs.org

24 Pascal by Example

2.4.1.2 Relational Operators
Relational operators are used to compare two operands, which may be constants,
variables, functions, or expressions. The operands must be of the same or com­
patible types. Some useful relational operators are shown in Table 2.4.

Table 2.4 Relational Operators

Operator Purpose

= Equal to
< > Not equal to
> Greater than
> = Greater than or equal to
< Less than
<= Less than or equal to

2.4.1.3 String Operators
QuickPascal has one string operator, the (+) operator, for string and character
concatenation. Other aspects of string manipulation are performed by predefined
procedures and functions.

2.4.1.4 Address-Of Operator
The address-of operator (@) is used to return the address of variables, routines,
parameters, and so forth. The topic of pointers is covered fully in Chapter 11.

2.4.2 Operator Precedence
Operators in expressions are evaluated in order of their precedence. Table 2.5
lists the QuickPascal operators according to their precedence level. Although not
all of the operators shown in the table are discussed in this section, they are in
the table for the sake of completeness. For information on operators such as SHL
or XOR, see Chapter 12, “Advanced Topics,” or use QP Advisor.

pcjs.org

Programming Basics 25

Table 2.5 Operator Precedence

Precedence Level Operators Operator Class

1 (highest) @, NOT Unary
2 *, /, DIV, MOD, AND, SHL, SHR Multiplying
3 +,-, OR, XOR Adding
4 (lowest) =, < >, <, <=, >, >=, IN Relational

The following list interprets this table and gives examples of the use of
operators.

■ The operation defined by the operator with highest precedence and its related
operand is performed first. In the example

2*4+3
the number 4 is placed between two operators of different precedence.
Since the (*) operator has a higher precedence, multiplication of 2 and 4
proceeds first. The addition is performed afterward.

■ Operations of the same precedence level are performed from left to right. In
the example

2*4/3
the number 4 is placed between two operators of the same precedence.
Since the (*) operator appears to the left of number 4, it is applied before the
(/) operator.

■ Parentheses are used to group operations. Expressions enclosed in parenthe­
ses are evaluated first. The most deeply nested expression is evaluated before
any other. (Nested expressions are expressions within expressions.) Paren­
theses alter the “effective” or “working” precedence of an operator. In the
example

2 / ((3 + 4) * 5)
the expression in the parentheses (3 + 4) is evaluated first, since it is the
most nested expression in parentheses. The (*) operator is applied next, since
it is enclosed in parentheses, giving it a higher effect precedence. Finally, the
(/) operator is applied.

pcjs.org

26 Pascal by Example

2.5 Simple Pascal Expressions
Expressions are a special and very important part of any programming language.
They are created to evaluate data in your program. Expressions use the operators
described in Section 2.4 and operands, which are the data types in your program,
as their components. QuickPascal supports simple and advanced expressions.

This chapter briefly presents the simple expressions. Each type of expression fol­
lows a syntax rule which gives its components and syntax. The simple expres­
sions explained in this chapter are

■ Arithmetic

■ String

2.5.1 Arithmetic Expressions
Arithmetic expressions combine constants, numbers, variables, and functions
with arithmetic operators.

The syntax of an expression is

{ Constant I Expression) I

[[Constant I Expression I { Operator Constant I Expression }

For example

(length * width)

Expressions combine with constants or variables and relational or assignment
operators to make Pascal statements:

area := (length * width)

In the example above, the expression length * width is evaluated, then the
result is stored in the variable area.
Expressions are evaluated according to operator precedence. Using parentheses
to force the correct evaluation of an expression is always a good idea.

An expression may contain nested expressions, which are expressions within ex­
pressions. Examples are shown below:

K := (1 + 6) DIV (55 - J) ;
Z := (2 * X) + (Y / 4);
T := (((2 * X + 2) * X - 5) * X + 1) * X - 10;

pcjs.org

Programming Basics 27

2.5.2 String Expressions
String expressions use the (+) operator to concatenate strings and characters. The
general syntax rule is shown below:

[Character I String] + {Character I String}...

For example

'dog' + 'house'; { creates the word "doghouse" }

The (+) operator works identically to the Concat function. String and character
concatenation cannot build a string longer than 255 characters.

pcjs.org

Procedures
and Functions

CHAPTER 3 3 -
Procedures and functions allow you to write well-organized Pascal pro­
grams, in which discrete tasks are done in separate, logically contained
modules. Once you understand procedures and functions, you are well on
your way to becoming a true Pascal programmer.

This chapter begins by discussing procedures, which are simpler and
more commonly used than functions. The discussion covers many topics,
such as argument passing, that are common to both procedures and func­
tions. The chapter ends with an explanation of functions, nested proce­
dures, and recursion.

Procedures and functions let you program using a “divide and conquer” ap­
proach. Instead of trying to solve every aspect of a large problem at once, you
divide it into several small problems and solve each one separately. This strategy
allows you to write clear, reliable programs that perform different tasks in dis­
tinct, logically contained modules. In Pascal, these modules are called proce­
dures or functions.

Dividing a program into task-based modules offers several advantages:

■ Makes programs easier to write and read. All of the statements related to a
task are located in one place.

■ Prevents unexpected side effects because you can use private (“local”)
variables that are not visible to the main program or other sections.

■ Eliminates unnecessary repetition of code for frequently performed tasks.

■ Simplifies debugging. Once you have debugged a procedure or function, you
can use it with confidence in many different situations.

3.1 Overview

pcjs.org

30 Pascal by Example

The distinction between procedures and functions can be summarized in a few
words. A procedure performs a specific task; a function performs a specific task
and also returns a value. We will return to this topic in Section 3.3, “Functions.”

If you are familiar with Microsoft QuickBASIC, you will notice many similari­
ties in Pascal. A Pascal procedure resembles a QuickBASIC SUB procedure, and
a Pascal function is like a QuickBASIC FUNCTION procedure. If you know the
C language, you will notice that a C function combines the qualities of Pascal
procedures and functions; a C function can return a value, or return nothing.

3.2 Procedures
Procedures and functions are very similar—so similar, in fact, that everything
explained in this section applies to functions as well as procedures. To avoid re­
peating the phrase “procedures and functions” with every sentence, this section
refers only to procedures. You should read it with the understanding that these
ideas also apply to functions. Section 3.3, “Functions,” explains how functions
differ from procedures.

A “procedure” is a collection of declarations and statements that performs a cer­
tain task. You have already seen a few of the QuickPascal standard procedures,
such as Writeln, which writes a line. This section explains procedures using
several programs. The first example, CENTER.PAS, contains a procedure that
centers a line on the screen:

PROGRAM center;

{ CENTER.PAS: Demonstrate simple procedure }

USES
Crt;

VAR
row : Byte;
title : STRING;

PROCEDURE center_line(message : STRING; line : Byte);
BEGIN

GotoXY(40 - Length(message) DIV 2, line);
Writeln(message);

END;

BEGIN
row := 2;
title := 'Each line of text is centered.';
ClrScr;
center_line(title, row);
center_line('------- ', row+1);
center_line{ 'Microsoft QuickPascal!', row+2);

END.

pcjs.org

Procedures and Functions 31

The CENTER .PAS program displays these lines on the screen:

Each line of text is centered.

Microsoft QuickPascal!

The rest of this section refers frequently to the CENTER.PAS example.

3.2.1 Calling Procedures
The CENTER.PAS program uses a procedure named center_line to center
a line. You “call,” or execute, a procedure by stating its name and by supplying
any “arguments,” or data items that it might require. The center_line pro­
cedure expects you to supply two arguments: a piece of text to print, and the
screen line on which to print it. To print the message

Vite !

on the second screen line, you would call center_line with this statement:

center_line('Vite!', 2);

You list the arguments in parentheses after the procedure name, placing a
comma between each two arguments. Here, the first argument is the string
vite ! and the second is the number 2. Later in this chapter, you will learn
how a procedure handles the arguments it receives.

3.2.2 Declaring Procedures
A procedure “declaration” contains the complete code for the procedure. Here is
the procedure declaration for center_line:

PROCEDURE center_line(message : STRING; line : Byte);
BEGIN

GotoXY(40 - Length(message) DIV 2, line);
Write (message);

END;

A procedure declaration has two parts, called the “head” and the “body.” A pro­
cedure head consists of the PROCEDURE keyword, followed by the procedure’s
name and a list of its arguments in parentheses. It ends with a semicolon. Here is
the head of the center_line procedure:

PROCEDURE center_l.ine (message : STRING; line : Byte);

The list of arguments states the name and type of each argument. This example
states that center_line requires two arguments, one each of the data types
STRING and BYTE. The first argument is named message, andthesecond
argument is named line.

pcjs.org

The procedure body is a statement block that contains the procedure’s execu­
table statements. Like other blocks, the procedure body is enclosed in BEGIN
and END, and it ends with a semicolon. Here is the body of the center_line
procedure:

BEGIN
GotoXY{ 40 - Length(message) DIV 2, line);
Write (message);

END;

The body of the center_line procedure contains two statements, each of
which calls a standard Pascal procedure. The first calls the GotoXY procedure
and the second calls Write.

Forward Declarations
Pascal requires that you declare an entity before using it. Before using a vari­
able, for instance, you must declare its name and type. The same rule applies to a
procedure. Before calling a procedure, you must declare it as explained in the
previous section.

In simple programs, such as CENTER.PAS, it’s easy to satisfy the “declare
before calling” rule. Simply place all of your procedure declarations before the
main program body. In CENTER.PAS, the center_line procedure declara­
tion appears before the main program.

Occasionally, however, you may need to call a procedure before it has been de­
clared. This can be done by providing a “forward declaration” of the procedure
prior to the procedure call.

A forward declaration is identical to a procedure head, except that it contains
both the keyword FORWARD and a semicolon after the argument list. For in­
stance, the center_line procedure head looks like this

PROCEDURE center_line(message : STRING; line ; Byte);

and its forward declaration looks like this

PROCEDURE center_line(message : STRING; line : Byte);
FORWARD;

The forward declaration must appear before the first reference to the procedure.
Most programmers put forward references at or very near the beginning of the
program.

pcjs.org

Procedures and Functions 33

3.2.3 Declaring Local Variables
In addition to statements, the procedure body can contain variable declarations.
Variables declared in a procedure are said to be “local,” meaning they can be
seen only inside the procedure. Because their visibility is limited, local variables
are less likely to be changed accidentally than global variables.

The LOCAL.PAS program demonstrates local variables. It prompts you to enter
a number and then displays the factorial of that number. (A factorial is the pro­
duct of all the integers from 1 to a number. For instance, the factorial of 4 is 24,
the product of 1 * 2 * 3 * 4.)

PROGRAM local_variables;

{ LOCAL.PAS: Demonstrate local variables. }

VAR
num : Byte;

PROCEDURE factor(value : Byte);
VAR

factorial : Real;
count : Byte;

BEGIN
factorial := 1.0;
FOR count := 1 TO value DO
factorial := factorial * count;
Write('Factorial of ', value, ' is ');
Writeln(factorial);

END; { procedure factor }

BEGIN { main program }
Write('Enter a number smaller than 34: ');
Readln(num);
Factor(num);

END .

Here is typical output from LOCAL.PAS:

Enter a number smaller than 34: 5
Factorial of 5 is 1.20000000000000E+0002

pcjs.org

34 Pascal by Example

The factor procedure in LOCAL.PAS appears below. It declares two local
variables named factorial and count:
PROCEDURE factor(value : Byte);

VAR
factorial : Real;
count : Byte;

BEGIN
factorial := 1.0;
FOR count := 1 TO value DO

factorial := factorial * count;
Write ('Factorial of ', value,' is ');
Writeln(factorial);

END; { procedure factor }

Notice where local variables are declared: between the procedure’s head and the
BEGIN keyword.

Variable Scope
Unlike global variables, which are declared outside any procedure and are there­
fore visible everywhere in the program, local variables are declared inside a
procedure and are hidden from the rest of the program. If you refer to a local
variable outside the “scope,” or range, where it is visible, QuickPascal issues an
error message:

Error P0032: Unknown identifier

The same message appears if you refer to a variable that has never been de­
clared. In both cases, it means the variable is not visible—and cannot be used—
in the place where the reference appears.

The ability to limit a variable’s visibility makes it easier to write reliable pro­
grams. If a variable is local, it can’t be changed accidentally by some other part
of the program. Such haphazard side effects are common in older interpreted
BASIC programs, in which all variables are global.

3.2.4 Passing Arguments
The Factor procedure in LOCAL.PAS has another local variable that hasn’t
been mentioned yet. In addition to factorial and count, which it de­
clares, the procedure uses a third variable named value:

pcjs.org

Procedures and Functions 35

PROCEDURE Factor(value: Byte);
VAR

factorial : Real;
count : Byte;

BEGIN
factorial := 1.0;
FOR count := 1 TO value DO

factorial := factorial * count;
Write('Factorial of ', value,' is ')
Writeln(factorial);

END; {procedure factor }

The value argument, in the procedure head, is “passed” when you call the
factor procedure. The argument comes from a number you type in at the key­
board. The main procedure in LOCAL.PAS stores your input in a variable
named num:

Writeln ('Enter a number smaller than 34: ');
Readln (num);

The main program passes the value of num as an argument when it calls the
factor procedure:

factor(num);

When you list an argument in the procedure head, it becomes a local variable in
the procedure. Thus, the head of the factor procedure

PROCEDURE Factor(value : Byte);

creates a local variable named value. Inside the factor procedure,
value can be treated like any other local variable.

3.2.4.1 Passing by Value
The type of argument passing in LOCAL.PAS is called “passing by value” be­
cause the procedure receives the value o/the original variable, not the variable

pcjs.org

36 Pascal by Example

itself. The BYVALUE.PAS program demonstrates this idea, which has impor­
tant consequences for managing variables:

PROGRAM byvalue;

{ BYVALUE.PAS: Demonstrate passing by value. }

VAR
global_var : Integer;

PROCEDURE proof local_var : Integer);
BEGIN

Writeln('local_var = local_var);
local_var := 333;
Writeln('local_var = ' , local_var);

END; f procedure proc }

BEGIN { main program }
global_var := 5;
proof global_var);
Writeln('global_var = global_var);

END.

Here is the output from BYVALUE .PAS:

local_var = 5
local_var = 333
global_var = 5

The program declares a global variable named global_var and assigns the
value 5 to global_var. The proc procedure expects you to pass one
argument, which it names local_var. The procedure prints the value of
local_var (initially, 5), then changes its value to 333 and prints it again.
After control returns to the main program, BYVALUE.PAS prints the value of
global_var, which remains at 5.
The proc procedure alters the value of local_var. But this change has no
effect on the original variable, global_var, which is not affected by anything
that happens in proc. The same is true even if both variables have the same
name (if you name both of them my_val, for instance).

Passing an argument by value creates a local copy of the variable in the proce­
dure. Because the procedure receives only a local copy, it can give the argu­
ment any name, and change its value, without affecting variables outside the
procedure.

pcjs.org

Procedures and Functions 37

3.2A.2 Passing by Reference
Sometimes, you may want a procedure to change the value of an argument. For
instance, say you need a procedure that swaps two variables. If you pass the vari­
ables by value, their values change inside the swap procedure, but remain un­
changed in the rest of the program. You need a way to tell the procedure to
change the original variables, not its local copies of them.

Pascal offers a second passing method, called “passing by reference,” for just
such cases. The BYREF.PAS program demonstrates this method:

PROGRAM byref;

{ BYREF.PAS: Demonstrate passing by reference. }

VAR
varl, var2 : Integer;

PROCEDURE swap_vars(VAR varl : Integer; VAR var2 : Integer);
VAR

temp : Integer;
BEGIN

temp := varl;
varl := var2;
var2 := temp;

END; { procedure swap_vars }

BEGIN
varl := 55;
var2 := 99;
Writeln('varl = ', varl, ' var2 = ', var2);
swap_vars(varl, var2);
Writeln('varl = ', varl, ' var2 = ', var2);

END.

Here is the output from BYREF.PAS:

varl = 55 var2 = 99
varl = 99 var2 = 55

The program declares two global variables named varl and var2, assigning
them the values 55 and 99, respectively. It prints their values, calls the
swap_vars procedure, then prints their values again. The output proves that
swap_vars changes the original variables.

pcjs.org

38 Pascal by Example

The important difference between this program and the previous example ap­
pears in the swap_vars procedure head:

PROCEDURE swap_vars(VAR varl : Integer; VAR var2: Integer);

Notice the VAR keyword in front of each name in the argument list. It tells the
swap_vars procedure to treat the argument as a variable (located elsewhere)
rather than as a value. Instead of creating a local copy of the passed value, the
procedure acts upon the variable itself.

The swap_vars procedure head happens to use the same names for these ar­
guments (varl and var2) in its argument list. But the result would be the
same if swap_vars used different names. Because the arguments are de­
clared with VAR, their names in swap_vars are synonyms for the original
variables.

You can underscore this point by making a simple change to the previous ex­
ample, BYVALUE.P AS. Load the program and add VAR to the proc proce­
dure head:

PROCEDURE proof VAR local_var : Integer);

After you make this change, the proc procedure changes the global variable
global_var, giving this output:

local_var = 5
local_var = 333
global_var = 333

In the original BYVALUE.PAS program, the global variable global_var
retained the value 5 even though proc changed the value of local var.
Passing global_var by reference gives proc the ability to modify
global_var.
When you pass an argument by reference, you must pass a variable, not a value.
That is, the argument must be a variable name,

swap_vars(global_l, global_2); (correct }

not a constant,

swap_vars(55, 99); { error! }

or an expression:

swap_vars(5 * 11, 93 + 6); { error! }

It’s best to pass arguments by reference only when you want the procedure to
change the argument. Unnecessary passing by reference creates the same prob­
lems as the overuse of global variables.

pcjs.org

Procedures and Functions 39

3.3 Functions
A function is a procedure that returns a value. Like most languages, Pascal has
many standard functions, such as Sqrt, which returns a square root.

You can think of a function as a special kind of procedure. All of the concepts
explained in Section 3.2, “Procedures,” also apply to functions. Rather than re­
state everything that procedures and functions share in common, this section ex­
plains the features that make functions different from procedures.

The FUNCT.PAS program contains a simple function:

PROGRAM FUNCT;

{ FUNCT.PAS: Demonstrate function basics. }

VAR
num, expo, powr : Real;

FUNCTION power) base, exponent : Real) : Real;

BEGIN
IF (base > 0) THEN

Power := Exp(exponent * Ln(base))
ELSE

Power := -1.0;
END;

BEGIN
Write('Enter a number: ');
Readln (num);
Write) 'Enter an exponent: ');
Readln) expo);
powr := Power) num, expo);
Writeln (num, ' A ' , expo, ' = ', powr);

END.

The FUNCT.PAS program prompts you to enter two numbers, a base and an ex­
ponent. Then it calls the power function to raise the base to the exponent.
Typical output appears below:

Enter a number: 2
Enter an exponent: 8

2.00000000000000E+0000 A 8 .OOOOOOOOOOOOOOE+OOOO = 2.56000000000000E+0002

FUNCT.PAS raises 2 to the eighth power, giving a result of 256.

pcjs.org

40 Pascal by Example

3.3.1 Calling Functions
Function calls are identical to procedure calls. You state the function’s name,
listing in parentheses any arguments that the function requires. The only differ­
ence is in where the call can appear. A procedure call can stand alone as a state­
ment, but a function call, because it returns a value, must appear in an assign­
ment or expression.

The following statement from FUNCT.PAS calls the power function, assign­
ing its return value to the variable powr:

powr := power(num, expo);

Notice the similarity to a procedure call. The power function takes two argu­
ments, which are listed in parentheses after the function name.

The previous example uses the function call in an assignment. Function calls can
also appear in expressions:

dazzle := 12 * surprise(730, 88) / 2;

Here, the surprise function appears as part of the expression to the right of
the assignment symbol.

3.3.2 Returning Values from Functions
A function returns a value by assigning the value to its own name. In the
power function, for instance, this statement causes the function to return the
value -1.0:

power := -1.0;

The return value must match the type declared in the function head. Since the
power function returns a value of type Real, the above statement uses the value
-1.0 (with a decimal point).

3.3.3 Declaring Functions
Function declarations are identical to procedure declarations except that you sub­
stitute FUNCTION for PROCEDURE and declare the function’s return type after
the argument list. Below is the function head from FUNCT.PAS:

FUNCTION power(base, exponent : Real) : Real;

Following the argument list, separated by a colon, is the identifier Real, which
indicates that the power function returns a value of type Real. If power re­
turned an integer value, you would replace the Real with Integer, and so on.

pcjs.org

Procedures and Functions 41

Again, except for the differences noted in this section, functions are identical to
procedures. They can handle arguments and local variables exactly as described
in Section 3.2, “Procedures.”

3.4 Nested Procedures
In addition to local variables, a procedure can declare other procedures. You can
“hide” one procedure declaration inside another. Like a local variable, the hid­
den procedure is visible only in the procedure where it is declared. This feature,
which is unique to Pascal, allows you to limit the visibility of a procedure (and
that procedure’s local variables) in the same way you limit the visibility of local
variables. Nesting applies to both procedures and functions.

The HIDEPROC.PAS program demonstrates procedure nesting:

PROGRAM hideproc;

{ HIDEPROC.PAS: Demonstrate procedure nesting. }

VAR
globl : Integer;

PROCEDURE proc(p_parm : Integer);

VAR
p_locl: Integer;

PROCEDURE hidden(hidn_j?arm : Integer);

VAR
hidn_locl: Integer;

BEGIN
Writeln) 'hidden can see: globl, p_parm, '+

'p_locl, hidn_parm, hidn_locl');
END; { hidden procedure }

BEGIN
Writeln) 'Proc can see: globl, p_parm, p_locl');
hidden) 44); (Pass argument to hidden }

END; { proc }

BEGIN (main program }
Writeln) 'Main program can see: globl');
proc) 99); { Pass argument to proc }

END.

pcjs.org

42 Pascal by Example

HIDEPROC.PAS produces this output:

Main program can see: globl
Proc can see: globl, p_parm, p_locl
Hidden can see: globl, p_parm, p_locl, hidn_parm, hidn_locl

The program has two procedures named proc and hidden. Because the
hidden procedure declaration appears in the proc declaration, hidden is
visible only inside proc.
The program’s output shows how nesting affects variable visibility. At the deep­
est level in HIDEPROC.PAS—inside hidden—all of the program’s ■variables
are visible. The hidden procedure can see its own local variables, plus the
variables local to the proc procedure, plus all of the global variables. At the
next level—inside proc—visibility is more restricted. The proc procedure
can see its own local variables and the global variables, but not the variables
local to hidden. The main program has the most restricted visibility. It can see
only global variables.

Nesting also affects the visibility of a procedure itself. The hidden procedure
can be called only from the proc procedure, where it is declared. If you call
hidden from the main program, QuickPascal issues an error, just as it would if
the main program referred to one of the local variables in proc.

3.5 Recursion
“Recursion” is the ability of a procedure or function to call itself. The primary
use of recursion is in solving certain mathematical problems that require repeti­
tive operations.

The RECURSE.PAS program demonstrates recursion. It is a revision of the
LOCAL.PAS program that demonstrated local variables. Like its predecessor,
RECURSE.PAS computes a factorial. But instead of a loop, it uses a recursive
function named factor:

pcjs.org

Procedures and Functions 43

PROGRAM recurse;

{ RECURSE.PAS: Demonstrate recursion. }

USES
Crt;

VAR
num : Byte;
result : Real;

FUNCTION factor(value : Byte) : Real;
BEGIN

IF (value > 1) THEN
factor := value * factor(value - 1)

ELSE
factor := 1.0;

END; { factor }

BEGIN
Write('Enter a number smaller than 34: ');
ReadIn(num);
result := factor(num);
Write('Factorial of ', num, ' is ');
Writeln(result);

END.

The output from RECURSE.PAS and LOCAL.PAS is identical:

Enter a number smaller than 34: 5
Factorial of 5 is 1.20000000000000E+0002

The only difference between normal functions and recursive functions is that a
recursive function contains a statement that calls itself. Here is the recursive
statement in RECURSE.PAS:

Factor := value * factor) value - 1)

The expression on the right side of the assignment operator contains a call to the
factor function. The first call to factor can trigger a second call, which
can trigger a third call, and so on.

pcjs.org

44 Pascal by Example

The IF statement at the beginning of the factor function prevents the func­
tion from calling itself endlessly. Every recursive procedure and function must
include such an exit mechanism.

Most recursive procedures and functions exploit the fact that each invocation of
a procedure or function creates a new set of local variables. Recursion can be
very efficient in terms of programming time. You may be able to solve a com­
plex math problem with only a few lines of code. But deeply recursive proce­
dures can also be memory inefficient, consuming huge amounts of memory to
store local variables.

pcjs.org

CHAPTER 4 A 45

Controlling
Program Flow

Like other high-level languages, Pascal offers a wide variety of ways to
control a program’s flow of execution. This chapter discusses looping
statements, which perform repetitive actions, and decision-making state­
ments, which transfer control based on logical tests. Before examining
those statements in detail, this chapter briefly summarizes the operators
used in logical tests.

4.1 Relational and Boolean Operators
All of the looping and branching statements in Pascal depend on the outcome of
a Boolean (true or false) test. Such tests use relational and Boolean operators,
which look familiar to anyone who knows BASIC or C.

Even if you have never seen a line of Pascal code, you may be able to guess that
the statement

IF my_val = 20 THEN Writeln('my_val equals 20');

prints the message

my_val equals 20

if the value of the variable my_val equals 20. (The Pascal IF statement, as
you’ll read later in this chapter, works very much like IF in BASIC and C.)

The example uses the equality operator (=) to compare the variable my_val to
the constant 20. It produces a True result when my_val equals 20, and a
False result in every other case.

NOTE True and False are symbolic values in Pascal. Although they are represented by actual
numbers internally, you don't need to worry about what those numbers are.

pcjs.org

46 Pascal by Example

Relational operators, including the equality operator, compare two values and
produce a True or False result. Table 4.1 lists all of the Pascal relational
operators.

Table 4.1 Relational Operators

Operator Description

= Equal
< > Not equal
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal

A second group of operators allows you to perform Boolean logical operations.
They are listed in Table 4.2.

Table 4.2 Boolean Operators

Operator Description

NOT Negation
AND Logical AND
OR Logical OR
XOR Exclusive OR

Boolean operators (except for NOT) can act on one or two values, allowing more
complex logical tests. For instance, the statement

IF ((my_val > 3) AND (my_val < 20)) THEN Writeln ('Wahoo!');

tests two conditions instead of one. It prints the message

Wahoo!

if the value of my_val is greater than 3 and less than 2 0.

Pascal provides many more operators, but these are the important ones for con­
trolling program flow. The QP Advisor contains information about all of the
QuickPascal operators.

pcjs.org

Controlling Program Flow 47

4.2 Looping Statements
A loop performs one of the most basic computer operations: repeating an
action. This section discusses the Pascal looping statements: WHILE, REPEAT,
and FOR.

4.2.1 WHILE Loops
A WHILE loop is the simplest kind of loop. It repeats 0 or more times, as long as
a given condition remains true. The Q WHILE .PAS program contains a simple
WHILE loop.

PROGRAM qwhile;

{ QWHILE.PAS: Demonstrate WHILE loop. }

VAR
count : Integer;

BEGIN

count := 0;

WHILE count < 10 DO
BEGIN
Writeln('count = count);
count := count + 2;
END;

END.

Here is the output from QWHILE .PAS:

count = 0
count = 2
count = 4
count = 6
count = 8

A WHILE loop begins with the WHILE keyword followed by a condition. The
loop repeats as long as the condition remains true. In QWHILE.PAS, the con­
dition is

count < 10

so the loop continues as long as the value of the variable count is less than
10. After the condition is the DO keyword followed by a “loop body,” which

pcjs.org

48 Pascal by Example

can be a single statement or a statement block. In QWHILE.PAS, the loop body
is a statement block:

BEGIN
Writeln('count = ', count);
count := count + 2;

END;

You should enclose the body of a WHILE loop with BEGIN and END, even if
the loop is only one statement. This convention prevents any confusion about
where the loop body ends.

It’s important to know that a WHILE loop tests its condition before it executes
the loop body. Unlike some other kinds of loops, it’s possible for a WHILE loop
to skip everything in its loop body. If the test condition is false when a WHILE
loop begins, the loop body does not execute at all. For instance, if count
has the value 10 when the above loop begins, QWHILE.PAS doesn’t print
anything.

4.2.2 REPEAT Loops
A REPEAT loop is an inverted WHILE loop. It tests the condition after it exe­
cutes the loop body, and the loop repeats until the test condition becomes true.

The QREPEAT.PAS program performs the same task as QWHILE.PAS, but it
uses a REPEAT loop instead of a WHILE loop.

PROGRAM qrepeat;

{ QREPEAT.PAS: Demonstrate REPEAT loop. }

VAR
count : Integer;

BEGIN

count := 0;

REPEAT
Writeln('count = count);
count := count + 2;

UNTIL (count > 8);

END.

pcjs.org

Controlling Program Flow 49

The output from QREPEAT.PAS and QWHILE.PAS is identical:

count = 0
count = 2
count = 4
count = 6
count = 8

The REPEAT loop in QREPEAT.PAS contains the same loop body as the
WHILE loop in QWHILE.PAS:

REPEAT
Writeln('count = count);
count := count + 2;

UNTIL (count > 8) ;

You don’t need to enclose the loop body of a REPEAT loop with the BEGIN and
END keywords (although adding them does no harm). Since the loop body is al­
ready enclosed between two keywords (REPEAT and UNTIL), there can be no
confusion about where the block begins and ends.

Remember that a REPEAT loop always executes the loop body at least once. If
count has the value 10 when the loop begins, QREPEAT.PAS prints

count = 10

even though 10 is clearly greater than 8, the cutoff value in the test condition.
The value of count is not tested until after the loop body has executed.

Notice that WHILE and REPEAT loops use opposite logical tests. A WHILE
loop continues as long as the test condition is true, but a REPEAT loop con­
tinues until the test condition becomes true (or, to put it differently, as long as
the test condition is false). To illustrate, the WHILE loop in QWHILE.PAS con­
tinues as long as count is less than 10:

count < 10

However, the REPEAT loop in QREPEAT.PAS continues until count be­
comes greater than 8:

count > 8

4.2.3 FOR Loops
WHILE and REPEAT loops are ideal for cases in which you cannot predict how
many repetitions are needed. A program that gets keyboard input, for instance,
might use REPEAT to repeat an action until you press a certain key. Sometimes,
however, you know in advance exactly how many repetitions are required.

pcjs.org

50 Pascal by Example

The FOR loop repeats a statement, or statement block, a set number of times.
The QFOR.PAS program contains a simple FOR loop:

PROGRAM qfor;

{ QFOR.PAS: Demonstrate FOR loop. }

VAR
count : Integer;

BEGIN

FOR count := 0 TO 10 DO
Writeln('count = ', count);

END.

QFOR.PAS produces this output:

count = 0
count = 1
count = 2
count = 3
count = 4
count = 5
count = 6
count = 7
count = 8
count = 9
count = 10

The FOR loop in QFOR.PAS counts from 0 to 10 in increments of 1:

FOR count := 0 TO 10 DO
Writeln ('count = count);

In this example the control variable count is first set to 0. Each repetition
executes the loop body once and adds 1 to count until count reaches 10,
the terminating value.

FOR loops can count down as well as up. The TO keyword makes the loop count
up in increments of 1, and DOWNTO has the opposite effect. If you substitute
this loop in QFOR.PAS, the loop counts down from 10 to 0 in increments
of 1:

pcjs.org

Controlling Program Flow 51

FOR count := 10 DOWNTO 0 DO
Writeln('count = ', count);

The loop body in QFOR.PAS happens to be a single statement. If the loop
body is a statement block, you must enclose the block with BEGIN and END
statements:

FOR count := 0 TO 10 DO
BEGIN
Writeln('count = ', count);
Writeln('Another statement');
END;

4.3 Decision-Making Statements
Decision-making statements allow your program to perform different actions
based on the outcome of a logical test. This section examines the Pascal decision­
making statements: IF and CASE.

4.3.1 IF Statements
An IF statement consists of the IF keyword followed by a test expression and the
THEN keyword. After THEN is a statement or statement block. The statement is
executed if the test expression is true, or skipped if it is false.

The QIF.PAS program contains a simple IF statement:

PROGRAM qif;

{ QIF.PAS: Demonstrate IF statement. }

VAR
my_val : Integer;

BEGIN

my_val := 3;

IF (my_val = 3) THEN Writeln('my_val equals 3');

END.

pcjs.org

52 Pascal by Example

Here is the IF statement from QIF.PAS:

IF (my_val = 3) THEN Writeln('my_val equals 3');

In this statement the test condition

(my_val = 3)

compares the variable my_val to the constant 3. Since the comparison is true
(my_val does equal 3), QIF.PAS prints:

my_val equals 3

The statement following THEN can be a single statement or a statement block. A
block must be enclosed with BEGIN and END statements:

IF (my_val = 3) THEN
BEGIN
Writeln ('my_val equals 3');
Writeln ('Another statement');
END;

4.3.2 ELSE Clauses
The ELSE keyword allows an IF statement to perform more complex branching.
The QELSE.PAS program adds an ELSE clause to QIF.PAS:

PROGRAM qelse;

{ QELSE.PAS: Demonstrate ELSE clause. }

VAR
my_val : Integer;

BEGIN

my_val := 555;

IF (my_val = 3) THEN
Writeln('my_val equals 3')

ELSE
Writeln('my_val does not equal 3')

END.

The QELSE.PAS program contains the following IF...ELSE statement:

IF (my_val = 3) THEN
Writeln ('my_val equals 3')

ELSE
Writeln ('my_val does not equal 3');

pcjs.org

Controlling Program Flow 53

The ELSE clause allows the IF statement to take two alternate actions. The IF
statement prints

my_val equals 3

if my_val equals 3, and it prints

my_val does not equal 3

in all other cases. Note that a semicolon does not precede the ELSE, because
ELSE is considered part of the IF statement.

You can nest and combine IF statements and ELSE clauses as needed. Each
ELSE is associated with the closest preceding IF that does not have an ELSE al­
ready. Consider this example:

IF (my_val > 9) THEN
IF (my_val = 10) THEN

Writeln('Ten')
ELSE

Writeln('Greater than nine, but not ten ')
ELSE

Writeln('Less than ten');

The example can take three different actions. If my_val is greater then 9 and
equal to 10, it prints Ten. If my_val is greater then 9 but not equal to 10,
it prints Greater than nine, but not ten. If my_val is less than or
equal to 9, it prints Less than ten.
Use a BEGIN...END block to enclose the nested IF statement when the ELSE ap­
plies to the surrounding IF, as shown below:

IF (my_val > 9) THEN
BEGIN
IF (my_val = 10) THEN

Writeln('Ten');
END

ELSE
Writeln ('Less than ten ');

This example prints Ten if my_val equals 10, and Less than ten
otherwise. Without the BEGIN...END block, the ELSE clause would apply to
the IF (my_val = 10) condition, and not to IF (my_val>9).

4.3.3 CASE Statements
As the previous example demonstrates, complex IF...ELSE statements can be
difficult to read. If all of the branches test the same value (as in the previous
example), the CASE statement provides a cleaner solution.

pcjs.org

54 Pascal by Example

The Pascal CASE statement is similar to SELECT CASE in BASIC or the switch
statement in C. It can branch to several different alternatives based on the value
of a single ordinal expression test. The QCASE.PAS program contains a simple
CASE statement:

PROGRAM qcase;

{ QCASE.PAS: Demonstrate CASE statement. }

VAR
my_val : Integer;

BEGIN

my_val := 33;

CASE my_val OF
10 : Writeln('Ten');
20 : Writeln('Twenty')
ELSE

Writeln('Not ten or twenty');
END;

END.

A CASE statement begins with the CASE keyword, followed by an ordinal
expression and the OF keyword. The CASE statement in QCASE.PAS tests
the value of my_val:

CASE my_val OF

Next comes a list of alternatives, each labeled with a constant followed by a
colon (a “case constant”):

10 : Writeln('Ten');
20 : Writeln('Twenty');

The alternatives to execute can be single statements or statement blocks.
Each case constant in the list acts as a target. When my_val equals 10,
QCASE.PAS executes the statement after the case constant

10:

When my_val equals 20, control is transferred to the case constant

20:

pcjs.org

Controlling Program Flow 55

When my_val doesn’t match any case constant, QCASE.PAS executes the
statement following ELSE:

ELSE
Writeln('Not ten or twenty');

The ELSE clause is optional. If you omit it, and the value of the expression does
not match any of the CASE constants, none of the alternatives are executed. In­
stead, execution proceeds with the first statement following the CASE statements.

The CASE statement can use as many case constants as needed. The case con­
stant can be a single constant (as shown above), a group, or a range of constants:

CASE my_val OF
1600,2000 : Writeln('Leap century');
1601..1999: Writeln('Non-leap century');

END;

The first case constant includes two values: 160 0 and 2 000. The second in­
cludes a range of 399 values: 1601 through 19 99.

pcjs.org

CHAPTER 5 C L
User-Defined Data Types 5

Instead of limiting a program to using only predefined data types, Quick-
Pascal allows you to create your own custom data types that are relevant
to the program at hand.

An ordinal data type is a collection of values where each value (except
the first) has a unique value that precedes it and (except for the last) a
unique value that follows it. Examples of ordinal data types are Boolean,
Char, Integer, and Longlnt. With QuickPascal, you can create your
own ordinal types through the use of enumerated types and subrange
types.

An enumerated data type has a series of unique, ordinal values defined in
it. You can think of it in terms of an Integer, but instead of a range of
numbers, you designate a range of your own values. A subrange data type
is created by specifying the first and last elements of an existing ordinal
type. The type may be one of the standard Pascal ordinal types, or an
enumerated type of your own creation.

In addition to enumerated and subrange types, you can also create a set
type. A set holds up to 255 unique values from an existing ordinal type.

5.1 Enumerated Data Types
Enumerated data types consist of an ordered list of unique identifiers. The identi­
fiers can be anything from cars to days of the week. An enumerated data type is
defined simply by listing the identifiers that make up the type.

The syntax for an enumerated type is

TYPE LislName = (Identifier [[, Identifier...J)

pcjs.org

58 Pascal by Example

QuickPascal assigns numbers to the identifiers in the list The first list element is
assigned 0, the second is 1, and so on, up to a maximum of 65,535 values. This
is the QuickPascal internal representation. You normally refer to a value by its
name.

An example of an enumerated data type is

TYPE
japanese_cars = (honda, isuzu, nissan, toyota);

The use of the values assigned to elements in enumerated lists is shown in this
statement:

VAR
rental_car : japanese_cars;

BEGIN
rental_car := nissan;

This puts nissan , with a value of 2, into the variable rental_car.
There may be cases where you want the first element of a list to have a non-zero
value. You can accomplish this by declaring a fake identifier as the first element:

TYPE
place = (null, first, second, third, fourth);

This provides a more natural numeric ordering for the list elements.

QuickPascal provides two procedures and five functions to manipulate enumer­
ated data types. The predefined routines are First, Last, Succ, Pred, Inc, Dec,
and Ord.

5.1.1 The First Function
The First function returns the first element of any ordinal type. The function is
passed an ordinal type, and returns a value of the same type.

The following example shows you how to use First:

PROGRAM enums;

TYPE
my_type = -5..5;
greek = (alpha, beta, gamma, delta, epsilon);
subgreek = gamma..epsilon;

pcjs.org

User-Defined Data Types 59

BEGIN
Writeln ('Type ':20, 'First(Type)20, ' Last(Type)20);
Writeln;
Writeln('Integer':20, First(Integer) :20, Last (Integer) :20);
Writeln('Longlnt':20, First(Longlnt):20, Last(Longlnt):20);
Writeln('ShortInt':20, First) Shortlnt) :2 0, Last (Shortlnt) :20);
Writeln('Word':20, First(Word) :20, Last (Word) :20);
Writeln('Char (ord)' :20, Ord(First(Char)) :20,

Ord(Last(Char)) :20);
Writeln) 'Boolean':20, First) Boolean) :20, Last) Boolean) :20);
Writeln) 'my_type':20, First) my_type) :20, Last) my_type) :20);
Writeln) 'greek(ord)':20, Ord) First) greek)):20,

Ord) Last) greek)):20);
Writeln) 'subgreek(ord)':20, Ord) First) subgreek)):20,

Ord) Last) subgreek)) :20);

END.

5.1.2 The Last Function
The Last function returns the last element of any ordinal type. The function is
passed an ordinal type, and returns a value of the same type.

The previous example shows how to use Last.

5.1.3 The Succ Function
The Succ function returns the successor, or following element, of an enumerated
value.

Sample Function Call Ordinal Type Result

Succ(second) place third
Succ(isuzu) japanese cars nissan
Succ (15) Integer 16
Succ('a') Char 'b'
Succ (False) Boolean True

Both standard and user-defined ordinal types can be used with this function.

If range checking {$R+} is set, a run-time error occurs if you try to assign an ele­
ment beyond the last in the list. You can avoid this problem by using the Last
function to check if the element is last in the list.

pcjs.org

60 Pascal by Example

5.1.4 The Pred Function
The Pred function returns the predecessor, or preceding element, of an
enumerated value.

Sample Function Call Ordinal Type Result

Pred(isuzu) japanese_cars honda
Pred(second) place first
Pred(12) Integer 11
Pred('b') Char 'a'
Pred(True) Boolean False

Both standard and user-defined enumerated data types can be used with this
function.

If range checking {$R+} is set, a run-time error occurs if you try to assign an ele­
ment preceding the first in the list. You can avoid an error by using the First
function to check if the element is first in the list.

5.1.5 The Inc Procedure
The Inc procedure provides a shorthand form of the Succ function. Upon calling
the procedure, the variable it is passed is incremented by the number of elements
specified.

For example, instead of using Succ as follows:

status := Succ(status);
status := Succ(status);

the Inc procedure could be used as

Inc(status, 2);

If no increment parameter is specified, the variable is incremented by one:

Inc (status);

The Last function should be used to avoid unpredictable results when incre­
menting elements.

pcjs.org

User-Defined Data Types 61

5.1.6 The Dec Procedure
The Dec procedure is an alternative to the Pred function. Upon calling the
procedure, the variable it is passed is decremented by the number of elements
specified.

For example, instead of using Pred as follows:

status := Pred(status);
status := Pred(status);

the Dec procedure could be used as

Dec(status, 2);

If no decrement parameter is specified, the variable is decremented by one:

Dec(status);

The First function should be used to avoid unpredictable results when
decrementing elements.

5.1.7 The Ord Function
The Ord function returns the ordinal number of an enumerated element. Since
each enumerated element is unique, you need not mention the enumerated data
type that the element belongs to. Ordinal values start at zero.

Sample Function Call Ordinal Type Result

Ord(first) place 1
Ord(toyota) japanese cars 3
Ord('a') Char 97
Ord(False) Boolean 0

The Ord function accepts both enumeration constants and variables. Both stan­
dard and user-defined enumerated data types can be used with the function.

pcjs.org

62 Pascal by Example

5.2 Subrange Types
Sometimes, only a few of the elements of an existing data type are needed. In­
stead of declaring a new data type, Pascal allows you to define a subrange of
either a standard or enumerated data type.

For example, in a grading program, the variable test_score records grades
between 0 and 100. Instead of creating a new data type for the variable, an
Integer subrange is declared with a minimum value of 0 and a maximum value
of 100.

You can define subranges of the following ordinal types:

■ Integers

■ Characters

■ Enumerations

To declare a subrange type, identify the SubrangeName and define the first and
last value in the range, connected with two dots, as shown in the syntax below:

SubrangeName = FirstValue.LastValue

The FirstValue and LastValue must be constants of the same type, with the
FirstValue as a predecessor of the LastValue. That is,

Ord(FirstValue) <= Ord(LastValue)

Subrange types serve two useful purposes:

1. If the range of a type needs to be changed, only one change in the declaration
is necessary.

2. QuickPascal automatically checks the range assigned to variables of the sub­
range type, with the following limitations:
■ Range checking must be turned on with the compiler directive {$R+}.

This can be done at the beginning of the program, or turned on ({$R+})
and off ({$R-}) around a statement where a subrange variable is used.
When range checking is on, QuickPascal generates a run-time error if a
value outside of the subrange is assigned to a variable of the subrange
type. See Appendix B, “Compiler Directives,” for more information.

■ QuickPascal does range checking only in direct assignment statements.
It does not check for out-of-range values in loop-control variables or
Read/Write statements.

pcjs.org

User-Defined Data Types 63

5.2.1 Integer Subranges
Integer subranges define a range of valid integer values. Some examples of
simple integer subranges include

TYPE
screen columns = 1. oCO

die faces = 1. .6; { values on dice faces }
days = 1. .31; { max. 31 in a month }
months = 1. .12; {12 months/year}
years = 1900..2099; {the years DOS knows}
seconds = 0. .5 9;
minutes = 0. .59;
hours = 0. .23;

Constant identifiers can define the subranges. Examples include

CONST
max_col = 80;
max_row =25; { or 43 for EGA screen }
max_days_per_month = 31;
months_per_year = 12;
min_year = 1900;
max_year = 2099;

TYPE
screen_columns =
screen_rows =
days =
months =
years =

1.. max_col;
1.. max_row;
1.. max_days_per_month;
1.. months_per_year;
min_year..max_year;

Adding constants enhances readability and simplifies the subrange limits. For ex­
ample, if you are developing a program that employs EGA video, you need to
display 43 lines per screen. Variables of the screen_rows type should fall
within the 1..43 range. All that is required is to change the constant max_row
to 43 at one location.

QuickPascal permits expressions in defining ranges. The following are exam­
ples of declarations that include constant expressions:

CONST
sec_per_minute = 60;
minute_per_hour = 60;
hour_per_day = 24;

TYPE
seconds = 0..sec_per_minute - 1;
minutes = 0..minute_per_hour - 1;
hours = 0..hour_per_day - 1;

pcjs.org

64 Pascal by Example

5.2.2 Character Subranges
Character subranges define a range of acceptable Char values. Examples include

TYPE
up_case_char = ' A' . .' Z' ;
lo_case_char = 'a'..'z';
digit_char = 'O'..'9';
ctrl_char = #0..#31;
{ range of characters after
between Z a = Succ('Z') ..

' Z' and before
Pred('a');

'a' }

Any range of ASCII characters can be defined in a subrange. Note the use of the
Succ and Pred functions in the last example to define the six ASCII characters
between ’Z’ and ’a’. (See the ASCII character chart in Appendix A.)

5.2.3 Enumerated Subranges
Enumerated subranges limit the range of permissible enumerated values. An ex­
ample is

TYPE
vehicles = (Volkswagen, honda, toyota, corvette,

porsche, ferrari, suburban, blazer,
bronco);

economy_cars = Volkswagen..toyota;
sports_cars = corvette..ferrari;

The type economy_cars is a subrange with legal values of Volkswagen,
honda, and toyota. Similarly, the sports_cars type has only the
enumerated corvette, porsche, and ferrari values.

5.3 Sets
Sets are structured, user-defined data types. In mathematics, a set is an unor­
dered collection of elements. The concept of a set is the same in QuickPascal.
A set holds only unique values. For example, if A, B, and C were contained in a
set, and you added B to it, the set would still only contain A, B, and C, not A, B,
B, and C. Sets are useful for holding a collection of attributes or determining if
an element is a member of a particular group.

The syntax for declaring a set is

SetName = SET OF OrdinalType

The argument OrdinalType is an ordered range of values. The members of the
OrdinalType must be all of the same type, and can be single elements or a sub­
range. The OrdinalType cannot have more than 256 possible values. This limits

pcjs.org

User-Defined Data Types 65

sets to the predefined Boolean, Char, and Byte types, and restricts the use of
Word, Integer, and Longlnt types.

As an example, a program might declare a set of uppercase letters and vowels
to be

CONST
vowels = ['A', 'E', 'I', 'O', 'U'];
upper_case = SET OF 'A'..'Z' = ['A'..'Z'];

Once you have declared a set, the operator IN can be used to test for the pre­
sence or absence of a specified element. For example, in these statements

IF ch IN upper_case THEN...
IF ch IN vowels THEN...

IN returns a true result if ch is a member of the set, and false if it is not.

5.3.1 Declaring Set Types
Sets can be declared with a variety of types. Included are

■ Predefined ordinal types of Boolean, Char, and Byte

TYPE
boolean_set = SET OF Boolean;
char_set = SET OF Char;
byte_set = SET OF Byte;

■ Subranges of predefined types (either directly as the first set or indirecdy as
the last)

TYPE
bits
byte_bits
up_case
lo_case

■ Enumerated types

= 1. . 7 ;
= SET OF bits;
= SET OF 'A' . . 'Z';
= SET OF 'a' . . 'z';

TYPE
transportation

four_wheels
trans_set
four wheel set

(bicycle, motorcycle, car, truck,
bus) ;
car..bus;
SET OF transportation;
SET OF four wheels;

pcjs.org

66 Pascal by Example

• Variables

VAR
fast_trans : four_wheels;
lower_letters : lo_case;
numl, num2 : byte_bits;

■ Constants and typed constants

CONST
math_op
vowels
up_chars
lo_chars
cheap_trans

SET OF Char
SET OF Char
SET OF Char
SET OF Char

r r — r r _ f j
L — / /

['A' , 'E' , ' I‘
['A'..'Z'];
['a'..'z'];

SET OF transportation =
[bicycle, motorcycle, bus];

’/'];
. 'U'] ;

Character set constants are useful in representing fixed sets of characters used in
menu selections. For example, if you have a menu with the following selections:

Add Change Delete Print View Store Recall

where the capital letters are “hot” keys used to quickly select a menu option, the
corresponding typed constant would look like this:

CONST
menu_char : SET OF Char = [' A' , ' C' , ' D','P','V','S','R'] ;

5.3.2 Assigning Set Elements to Variables
To assign set elements to a set variable, use the square brackets:

SetVariable := [SetElements]

If there are no set elements present, the set variable is assigned an empty set
(SetVariable : = []). Set variables may be initialized in this way.

A set may be constructed from a list of single elements, a subrange, or a combi­
nation of both. Examples of assigning set elements to variables are

setl := [1, 3, 5, 7, 9]; { single elements }
set2 := [0 . .7]; (subrange }
set3 := [0..7, 14, 15, 16]; { subrange & single elements }
char_list := ['A'..'Z','a' ..' z', ' 0' ..' 9']; { subranges }

5.3.3 Set Operators
Although individual elements of a set cannot be directly accessed, a variety of
operators is available to test membership and manipulate the set as a whole.

pcjs.org

User-Defined Data Types 67

These operators offer powerful and flexible methods of creating new sets with
elements from existing sets. Set operators supported by QuickPascal include

■ Relational operators

■ IN operator

■ Set-union operator

■ Set-difference operator

■ Set-intersection operator

5.3.3.1 Relational Operators
A variety of relational operators is available to test set membership. Based on
the condition of an expression, the operator will return True or False.

Table 5.1 lists the relational operators that work on sets, with A and B as
example sets.

Table 5.1 Relational Operators

Expression Returns True if

A = B A and B are identical.
A <> B At least one element in A is

not in B, or at least one element
in B is not in A.

A <= B All elements in A are in B.
A >= B All elements in B are in A.

S.3.3.2 IN Operator
As previously discussed, the IN operator tests for set membership. This operator
returns a Boolean result indicating whether a value is a member of the set. The
tested value must be the same or of a compatible type with the tested set’s base
type. The syntax is

Value IN Set

For example,

ch IN vowels
'i' IN consonants
operator IN '*']

pcjs.org

68 Pascal by Example

Figure 5.1 displays the action of set operators on sets A and B. The shaded area
represents the result of the operations on the sets.

A + B
(Union)

A-B
(Difference)

A * B
(Intersection)

A and B are
disjoint sets. CD® CD® CD®
A intersects B. CD® CD® CD®
B is a
subset of A. © (© (©

Figure 5.1 Set Operators

5.3.13 Set-Union Operator
The set-union operator (+) merges two sets into a third set. If either set is a sub­
set of the other, combining the two sets results in a set that is the same as the
larger set. In the example below, two sets with unique members are merged,
resulting in a larger set:

setl = [' A' . .' Z'];
set2 = ['a' . .' z'];
set3 = setl + set2;
set3 = ['A' . . Z','a' .'z']; f same as previous assignment }

In the next example, the two character sets have overlapping members. The
united set consists of [' A' .' z'] with any overlapping members repre­
sented only once.

setl = [' A' . . L'] ;
set2 = ['H' . . Z'] ;
set3 = setl + set2;
set3 = [' A' . . Z']; { equivalent to previous assignment }

pcjs.org

User-Defined Data Types 69

The third example shows a set being united with a subset. This results in set 3
and setl having the same members.

setl := ['A'..'L'];
set2 := ['F'..'J'];
set3 := setl + set2;
set3 := ['A' . .'L']; { equivalent to previous assignment }

The union operator is also important for adding to the membership of a set. In
the following example, a character set is initialized and then a FOR loop is used
to add the characters A, B, C, D, E, F, . .

setl := []; { initialize }
FOR ch := 'A' TO 'Z' DO

setl := setl + [ch];

Note the presence of the set brackets around the ch variable. They are required
in order to make [ch] a single-element set.

Refer to Figure 5.1 for an illustration of the union operator.

5.13.4 Set-Difference Operator
The set-difference operator (-) creates a set that contains all of the members of
the first set that do not appear in the second set. For example, in the statement

set3 := setl - set2;

set3 will contain all of the elements in setl that are not in set2.

If setl and set2 have the same members, then set3 becomes an empty
set. If set2 isasubsetof setl, then set3 comprises of the members of
setl that are not common to set2.

In the following example, the difference between two sets with unique members
is assigned to a third set. The resulting set has the same members as setl
since the operand sets have nothing in common:

setl := ['A' . .'Z'];
set2 := ['a'..'z'];
set3 := setl - set2;
set3 ;= ['A' . .'Z']; { equivalent to previous assignment }

In the next example, the two character sets have overlapping members. The
resulting set is made up of [' A' . .' G']:

setl := ['A'..'L'];
set2 := ['H'..'Z'];
set3 := setl - set2;
set3 := ['A'..'G']; { equivalent to previous assignment }

pcjs.org

70 Pascal by Example

The next example shows the difference of a set with its subset. The result is that
set 3 contains [' A' . .' E'], the members of the first set not found in the sec­
ond one.

setl := ['A'..'L'];
set2 := ['F'..'J'];
set3 := setl - set2;
set3 := ['A'..'E', ' K', 'L']; { equivalent to previous

assignment }

The difference operator can also be used to strip single members from set
variables. The last example for the union operator can be rewritten to use the
difference operator in the following way. The character set is initialized to
[' A' . Z'] and a FOR loop is used to eliminate the A, B, D, F, H,

characters and so on.

oddeven := 0;
setl := ['A'..'Z']; { initialize }
FOR ch := 'B' TO 'Z' DO

BEGIN
IF (NOT Odd(Oddeven)> THEN

setl := setl - [ch];
Inc(Oddeven);
END;

Refer to Figure 5.1 for an illustration of the difference operator.

5.3.15 Set-Intersection Operator
The set-intersection operator (*) is used to extract all of the elements that are in
two similarly typed sets. For example, with

set3 := setl * set2;

set3 will contain all of the elements that are in both setl and set2.
In the next example, the two character sets have overlapping members. The inter­
section set is ['H'

setl := ['A' .' L'] ;
set2 := ['H' Z'] ;
set3 := setl * set2
set3 := ['H'

The intersection of a set with its subset returns the members of the subset. The
next example shows such an operation. The result is that set3 and set2
have the same members:

setl := ['A' .' L'] ;
set2 := ['F' .' J'] ;
set3 := setl * set2
set3 := ['F' .' J'];

pcjs.org

User-Defined Data Types 71

In the following example, two sets with unique members are intersected. The
resulting set is empty, since the operand sets have nothing in common:

setl := [' A' . ' Z'] ;
set2 := ['a' . ' z'] ;
set3 := setl * set2;
set3 := [1;

pcjs.org

CHAPTER 6 73

Arrays and Records 0
This chapter presents data types that hold organized collections of data in
a definite order.

An “array” is a collection of data items of the same type. Programs use
arrays in situations where a standard data format is repeated many times.
For example, numbers representing the Gross National Product for all the
years from 1900 to 1980 might be placed in an array.

A “record” is a collection of data items having different types. Programs
use records in situations where a variety of data have a close association.
For example, all of the information on a given employee—name, salary,
and security clearance—might be placed in a single record.

Finally, this chapter presents the “variant record” type, which is an exten­
sion of the record type. A variant record allows you to use different data
formats to access the same area of memory, enabling you to create a re­
cord that holds different kinds of information at different times.

Each of the major sections in this chapter introduces a data type, shows
how to declare it, then shows how to access its components.

6.1 Arrays
An array is a collection of elements that share the same data type and a common
variable name. You access an element in the array by specifying the position of
the element. An integer or ordinal value indicates the position and is called an
“index.”

Pascal lets you declare arrays of any type. You can even declare arrays of arrays,
which are, in essence, two-dimensional arrays. You can declare arrays with any
number of dimensions. Multidimensional arrays have many applications and

pcjs.org

74 Pascal by Example

appear often in Pascal programs. For example, a program that requires a grid
will use a two-dimensional array, and a program that maps three-dimensional
space will use a three-dimensional array. The simplest arrays are one-dimen­
sional. They consist of a linear sequence of elements.

6.1.1 Declaring Arrays
In many languages (such as C), arrays must always start at a particular index
number (such as 0 or 1). In Pascal, however, you can define the bounds of an
array with almost any ordinal type:

ARRAY [IndexType] OF ElementType

To declare a multidimensional array, you declare an index type for each
dimension:

ARRAY [IndexType, IndexType ...\ OF type

IndexType can be any ordinal type except Longlnt or subranges of Longlnt.
Most often, programs use subranges in array declarations. The lower and upper
bounds of the subrange give the lowest and highest index, and also determine the
size of the array. For example:

TYPE
income_per_year = ARRAY[1977..1989] OF Longlnt;
class_size = ARRAY11..12] OF Integer;
grid = ARRAY[-5..5, -10..10] OF Real;

As you can see, even negative numbers can serve as array bounds. Because Pas­
cal is so structured, you can use many different integer subranges and enumer­
ated types to index arrays. For example:

TYPE
pay = Longlnt;
rank = (private, sergeant. It, captain, major, general);
officers = It..general ;
letters = ' A' ..'Z' ;
my_arr = ARRAY[1..10] OF Real;

VAR
low_pay : ARRAY[private .. sergeant] OF pay;
high_pay : ARRAY[officers] OF pay;
ascii_code : ARRAY[letters] OF Word;
big_arr : ARRAY[letters] OF my_arr;

The last example above, big_arr, is really a two-dimensional array and is
equivalent to the following declaration, which specifies the ranges of the two
dimensions explicitly:

big_arr : ARRAY[letters, 1..10] OF Real;

pcjs.org

Arrays and Records 75

Bear in mind the difference between the index type of an array and the element
type. The item in brackets defines the index type of the array and is significant in
the following ways:

■ The index type determines the range and meaning of indexes. The next sec­
tion describes how you use indexes to access elements.

■ The index type determines the number of elements in the array. For example,
an array with subrange 1. . 5 0 0 has 500 elements. An array with subrange
101.. 10 3 has three elements.

The elements are declared by the data type at the end of the array declaration. As
mentioned above, you can use any data type, including any of the advanced data
types mentioned later in this book. Each element of the array has this element
type.

6.1.2 Accessing Array Elements
To refer to an element of an array, use the syntax

Name [Index]

in which Name is the name of the array variable, and Index has the index type
used to declare the array. If the index type is a subrange, Index must fall into
the specified range or the program produces errors. Consider the following
declarations:

VAR
trio : ARRAY[1..3] OF Word;
income : ARRAY[1980..1983] OF Longlnt;

In the example above, the elements of trio are referred to as

trio[1]
trio[2]
trio[3]

The elements of income are referred to as

income[1980]
income[1981]
income[1982]
income[1983]

Each of the elements above has the data type declared for the array—Word in
the case of trio and Longlnt in the case of income. You can refer to an ele­
ment in any context that is valid for a simple variable of the same type. You can

pcjs.org

76 Pascal by Example

alter an element, pass it to a procedure, or assign its value to another variable.
The following statements are all valid:

trio[l] := 50;
trio[2] := trio[l] DIV 2;
Writeln (' Result is : ', trio[l] + trio[2]);

The array index can be a variable as well as a constant. In fact, the power of
arrays in programming comes largely from the use of variable indexes. The fol­
lowing code uses a loop variable to efficiently initialize a large array of random
numbers:

VAR
i : Integer;
big_arr : ARRAY[1..1000] OF Word;

BEGIN
FOR i := 1 TO 1000 DO

big_arr[i] := Random(lOO);

To refer to an element of a multidimensional array, use the syntax

Name [Index, Index...]

in which each Index is of the type and range of the corresponding index in the
array declaration. For example, the following code uses a nested loop to effi­
ciently initialize a two-dimensional array of random numbers:

VAR
i, j : Integer;
results : ARRAY[1..max_row, l..max__col] OF Word;

BEGIN
FOR i := 1 TO max_row DO

FOR j ;= 1 TO max_col DO
results[i, j] := Random(lOO);

The {$R+} directive causes the program to check for out-of-bound indexes at run
time. Use the {$R+} directive during program development, but you may want to
turn the directive off ({$R—}) once you finish writing and debugging. This lets
the program run faster.

6.1.3 Declaring Constant Arrays
To declare a constant array, first define the array type, then declare the array and
the initial values in a CONST statement. As shown in the examples below, fol­
low the array type with an equal sign (=) and a list of initial values enclosed in
parentheses. Separate elements with commas. Multidimensional arrays require
additional levels of parentheses. For example, in a two-dimensional array, place
parentheses around the values for each row.

pcjs.org

Arrays and Records 77

CONST
max_row = 5;
grid_size = 2;

TYPE
small_int_arr = ARRAY[1..max_row] OF Integer;
hex_digit_arr = ARRAY[1..16] OF Char;

grid_xy = 1..grid_size;
char_grid_type = ARRAY[grid_xy, grid_xy] OF Char;

CONST
topic_index : small_int_arr = (11, 12,
hex : hex_digit_arr =

(' 0' , '1' , ' 2' , '3' , ' 4' , '5', '6'
'A', 'B', ' C' , 'D', 'E', 'F');

default_state : char_grid_type =
(('a' , ' j') , ('W' , 'T')) ;

13, 14, 15);

'7', '8', '9',

6.1.4 Passing Arrays as Parameters
This section describes how to pass an entire array to a procedure or function.
Note that there is no restriction on how you pass individual elements, which can
be passed just like simple variables of the same type.

To pass an array as a parameter, first define the array as an independent type.
Then declare the function to take a parameter of this predefined type, and pass a
value of this same type to the function. This requirement is necessary for Pascal
to ensure that the array is passed correcdy.

The following code illustrates how to successfully pass an array:

TYPE
res_arr = ARRAY[1..20] OF Integer;

VAR
results : res_arr; { results is a res_arr type variable }

{=====init_arr=====}
{ init_arr accepts a variable with res_arr type and initializes it }

PROCEDURE init_arr(VAR new_arr : res_arr);
BEGIN

END;

BEGIN
{ call init_arr, passing it the results variable

which has type res_arr
}
init arr(results);

pcjs.org

78 Pascal by Example

You don’t need to predefine a string type in order to pass a string. However, if
the Var-String Checking option (in the dialog box for Compiler directives in the
Options menu) is in effect (the default), the length of the string you pass must
match exactly the length of the string the procedure expects. For example, if pro­
cedure print_str is declared as

PROCEDURE print_str (data_str : STRING[20]);

then you can only pass strings of type STRING [20].

If Var-String Checking is turned off, then you can pass strings to parameters
without regard to length. You can also pass variables of type STRING.

Like all variables, arrays can be passed by value or by reference. When you pass
an array by value, the entire array is copied to the stack. This can cause you to
run out of stack memory quickly if you work with large arrays.

6.1.5 Using the Debugger with Arrays
When you want to display an array during debugging, you can specify three
different kinds of Watch expressions:

1. The entire array. You can watch all the elements of an array simply by speci­
fying the array’s name. The Watch window displays array elements as a list
of comma-delimited items enclosed in parentheses. You may need to scroll
through the Watch window to see all of the elements.

2. Specific array elements. You can watch individual elements of an array by
specifying either a constant or variable as an index. If you use a variable,
then QuickPascal displays a different element whenever the variable changes.

3. A subset of the array elements (a “subarray”). You can specify a subarray by
using the following syntax:
ArrayName[Index], Number
For example, a [4], 5 permits you to view the subarray a [4] to a [9].
You can also use a variable as the index of the first item.

6.2 Records
A record is a collection of variables that can have different types. Each variable
within the record has a name to differentiate it from other variables in the record.
This name is called a “field.” To access an item in a record, you give both the re­
cord name and the field.

pcjs.org

Arrays and Records 79

Records are common in practical applications. For example, consider a program
that maintains airplane reservations. For each reservation, there are several rele­
vant pieces of information: customer name, flight number, date, and time. You
can combine all of this information into a single record.

Although you could keep track of the different data items in separate variables,
placing them together in a single record makes programs easier to write and
maintain. Furthermore, as you’ll see in Chapter 10, “Binary Files,” records are
convenient units of data to read and write to disk.

6.2.1 Declaring Records
Declare a record with the following syntax. The record can form part of a type
definition or variable declaration.

RECORD
FieldDeclarations

END

In the syntax display above, FieldDeclarations is a variable declaration. The
variable name determines the name of the Field (see examples). You must sepa­
rate each field from the next with a semicolon.

The following lines show some simple record type definitions:

TYPE
complex = RECORD

x real,
y imag :: Real;
END;

mail rec = RECORD
name : STRING|[20
street : STRING [25
city : STRING [5]
state : STRING [2]
zip : Longlnt;
END;

Because of the highly structured nature of Pascal, each field can have any data
type. A field can be an array or even another record. When a record appears
as a field within another record, it is said to be “nested.” For example, the type
mail_list_rec shown below contains last_deleted_rec, which is
another record, as one of its fields.

mail_list_rec = RECORD
num_recs : Word;
last_update,
last_mailing : STRING;
last_deleted_rec ; mail_rec;
END;

pcjs.org

80 Pascal by Example

Arrays of records are common data types. For example, the following data struc­
ture creates a table of the grades of students in a math class:

TYPE
table_rows = 1..30;
stu_rec = RECORD

name : STRING [20];
testl_score,
test2_score,
test3_score : Word;
grade_pt : REAL;
END;

VAR
table : ARRAY[table rows] OF stu rec;

6.2.2 Accessing Record Fields
To access an individual field of a record, you give both the name of the record
variable and the name of the field:

RecordName. FieldName

The result is a data object of the type declared for the field. You can use the re­
sulting item in any context that would be valid for an ordinary variable of the
same type.

Consider the following record type:

TYPE
mail_rec = RECORD

name : STRING[20];
street : STRING[25];
city : STRING[5];
state : STRING[2];
zip : Longlnt;
END;

mail_array = ARRAY [1..max_mailing] OF mail rec;

VAR
my_mail : mail_rec;
mailing : mail_array;

The following example assigns a string to the name field of the my_mail
record variable declared above.

my_mail.name := 'John Doe';

The expression my_mail. name is a string variable that can be assigned a
value or passed to a function, just like any other string variable. For example, the
following statement displays the name:

pcjs.org

Arrays and Records 81

Writeln('Addressee name is ', my_mail.name);

The syntax gets a little more complicated when you refer to an item within the
array of records. For example, the following statement initializes the name
field of the third array element:

mailing[3].name := 'Hugo Bletch';

Consider how Pascal analyzes this expression. You can understand any complex
expression by following similar logic:

1. The symbol mailing is declared as an array of records.

2. The expression mailing [3] is therefore an individual record. Specifi­
cally, it is the third record of the array.

3. The expression mailing [3] .name refers to the name field in the third
record of the array. The result is a variable of type STRING [20].

The data path to an object grows as you increase the levels of nesting. For ex­
ample, consider the definition of the mail_rec type above plus the following
additional statements:

TYPE
MailArr = ARRAY[1..100] OF mail_rec;

VAR
mailing_list : RECORD

title : STRING;
addresses : MailArr;
END;

Given these declarations, you can access an individual name field as

mailing_list.addresses[5].name

The next section shows a technique for shortening the length of such expressions.

6.2.3 Using the WITH Statement to Access Fields
While defining the full data path in a record makes your code more readable, it
also increases the length of the identifiers. The QuickPascal WITH statement
enables you to omit the name of a record variable from a block of statements. It
has the following syntax:

WITH RecordName DO Statement

The Statement following DO can refer to fields in RecordName directly. For ex­
ample, you can assign a string to the name field of record variable my_mail
with the following statement:

pcjs.org

82 Pascal by Example

WITH my_mail DO
name := 'John Doe';

To follow the DO keyword with more than one statement, use a BEGIN...END
statement block.

In the case of nested records, the WITH statement may contain a record name
modified by a field name. Always specify the outermost record first. For ex­
ample, suppose name is a field of mail_rec, which in turn is a field of the
record variable mail_list_rec . The following statement assigns a string to
the name field:

WITH mail_list_rec.mail_rec DO
name := 'Hugo Bletch';

6.2.4 Constant Records
To declare a constant record, first define the record type, then declare the record
and the initial value in a CONST statement. The initial value of a record consists
of the following syntax:

(FieldName : Constant; FieldName : Constant...)

The initial value for each field follows the rules for its type. For example, each
row of an array initializer must be enclosed in parentheses. In the case of nested
records, additional levels of parentheses and fields are required, as shown below.

TYPE
complex = RECORD

x_real,
y_imag : Real;
END;

square matrix =
mat size
imag
determinant

RECORD
: Byte;
: complex;
: Real;

mat x
END;

CONST

: ARRAY[1..3 1. .3] OF Real;

origin : complex = (x real
def_mat : square matrix = (

mat size : 3;

oo y_imag : 0.0

imag
determinant
mat x

: (x real :
: 0.0;

1.0; y__imag : 1.0)

(1.0,
(2.0,
(3.0,

1.0,
2.0,
3.0,

1.0),
2.0) ,
3.0)

) ;

pcjs.org

Arrays and Records 83

6.2.5 Assigning Records to Record Variables
Pascal supports the use of the assignment operator (:=) to assign the value of one
record variable to another record. You can also assign one array to another if
you declare the array type as a field within a record.

For example, if rec_a and rec_b are both arrays of the same type, you can
use the following statement to assign one record tc another:

rec_a := rec_b;

As a further example, assume matrixl and matrix2 are both records of
the same type, and that this type contains an array field mat_x. You can use
the following statement to assign one array field to another

matrixl.mat_x := matrix2.mat_x

6.2.6 Using the Debugger with Records
The Debug window displays the fields of a record as a list of data items enclosed
in parentheses. Appending “, R” to the name of a watched record when it is put
into the Debug window displays the names of the fields and their values. A co­
lon separates the name of a field and its current value with this display format.
You may need to scroll through the window to see all of the fields in the record.

6.3 Variant Records
A variant record lets you provide a variety of data formats for the same area of
memory. Whenever you refer to the variant record, you indicate which format to
use. This capability is useful in the following situations:

■ You need flexibility within a general type of record. Suppose you want to
create a record type to store data on each employee in a company. You’ll
want certain common fields, such as name, to apply to every employee.
However, you may need to store different kinds of information on different
kinds of employees.
Variant records provide the needed flexibility. Instead of including all possi­
ble fields for all possible employees in every record (which would waste
memory), you can create fields specific to each subgroup of employees.

■ You want to read data in one way and write it out in another way. While this
situation is comparatively rare, it offers a perfect use for variant records. For
example, you can simulate the behavior of microprocessors which permit the
same register to be accessed either a byte at a time or a word at a time.

pcjs.org

84 Pascal by Example

6.3.1 Declaring Variant Records
The syntax for a variant record declaration is:

RECORD
FieldDeclarations
CASE [[Tag:]] TagType OF
CaseDeclarations
END

The FieldDeclarations make up the “fixed fields” of the record and are optional.
The Tag is an optional field that you can use to indicate which of the cases (data
formats) is active. Each CaseDeclaration has the following format:

CaseLabel: (FieldDeclarations)

Separate each CaseDeclaration with a semicolon. The Tag and each CaseLabel
must be of the TagType, which can be any valid ordinal type (such as an integer
or user-defined type).

Each case declares a different series of fields. However, each case is overlaid in
the same area of the record. Pascal allocates enough memory for the case that
has the largest total size. This area is called the “variant portion” of the record.
One case might use this area to store a string field. Another might use it to store
floating-point fields.

The following example shows a variant record that models the registers of the
8086 processor:

TYPE
regtype = (regl6, reg08);
registers86 = RECORD

CASE Integer OF
0 : (ax, bx, cx, dx, si, di, bp, sp, flags : Word;)
1 : (al, ah, bl, bh, cl, ch, dl, dh : Byte;);
END;

This type definition allows you to access the same data either as one 16-bit item,
such as ax, or as two 8-bit items, such as al and ah.

6.3.2 Accessing Variant Record Fields
You access all of the fields in the record the same way, regardless of whether
they are fixed fields or defined within the variant portion of the record. (Con­
sequently, the names of all fields in both the fixed and variant portions must be
unique.) In addition, if a tag field is declared, you can set it to indicate which
case is active.

pcjs.org

Arrays and Records 85

For example (assuming the declaration of registers 8 6 at the end of the last
section), the following statements load data into al and ah, and then display
ax. Note that ax contains the same data as al and ah combined.

VAR
my_regs : registers86;

BEGIN
my_regs.ah := $FF;
my_regs.al := $10;
Writeln ('AX now contains', my_regs.ax);

For another example, a simplified variant record scheme for the personnel sys­
tem of a company might look like this:

TYPE
clearance = (topsecret, secret, medium, low, known_spy);
drink_type = (martini, wine, champagne, teetotaler);
games_type = (tennis, squash, golf);
title = (secretary, engineer, exec);

emp_rec = RECORD
name : STRING[20];
CASE job : title OF
secretary : (wpm, steno : Word);
engineer : (security : clearance; IQ ; Byte);
exec : (beverage ; drink_type;

pastime : games_type;
washroom_code : Longlnt);

END;
VAR

new_emp : emp_rec;

The following code initializes the new_emp record variable for a recently
hired engineer:

new_emp.name := 'Jane Eyre';
new_emp.job := engineer;
new_emp.security := secret;
new_emp.IQ := 120;

Now suppose that Jane Eyre is promoted into management. The old data rele­
vant to engineers (security clearance and IQ) is no longer relevant to Jane in her
new position. Fortunately, the variant record type lets you reuse this same area
of memory to put in data relevant to managers.

First, the program makes Jane’s promotion official:

new_emp.job := exec;

pcjs.org

86 Pascal by Example

The program then enters Jane’s new data. To accommodate Jane’s rise up the
corporate ladder, the program records her favorite drink, favorite pastime, and
key code for the executive washroom. This information is overwritten onto the
engineer data, which is no longer needed.

new_emp.beverage := martini;
new_emp.pastime := tennis;
new_emp.washroom_code := 12345007;

pcjs.org

CHAPTER 7
Units

Units extend the usefulness of QuickPascal by giving your programs
access to additional declarations and procedures. A “unit” is defined as a
related collection of such declarations and procedures. Referencing a
unit’s name at the beginning of a program gives you access to that unit’s
contents just as though they were a part of standard Pascal. QuickPascal
comes with several predefined (or “standard”) units, and you can also
write your own.

This chapter explains both how to use QuickPascal standard units and
how to create your own units.

Understanding Units
If you’ve done much programming in another language, you’re probably famil­
iar with libraries. Libraries usually provide specialized routines not normally
part of the language. Pascal units work on a similar concept but have a broader
scope and application. They contain not only procedures and functions but also
variables, constants, and type declarations. In addition, a unit can execute some
code when the program starts and do anything a program can, like open files or
get user input. These are important differences from libraries in another program­
ming language.

Once you tell QuickPascal that your program uses a particular unit, you can
access the procedures, functions, and declarations defined in that unit just as you
would any standard procedure, function, or declaration.

Units effectively extend the portion of a program between the header and the
main program body—the area where all the declarations appear. Instead of writ­
ing a tremendous number of declarations, procedures, and functions, you can use
a unit and get the same results.

pcjs.org

88 Pascal by Example

If you use some of your own procedures repeatedly, you can create a custom
unit and make the procedures available to all your programs. And, rewriting
large programs to use units removes some of the constraints of the 64K segment
limit. Each unit gets its own segment, so creating just one unit doubles your pro­
gramming space. Programs can use up to 81 units.

QuickPascal standard units broaden your programs’ general capabilities; the cus­
tom units you write provide any specific functionality you need.

7.2 Using Units in a Program
You access a unit by adding the USES statement and the unit’s name under the
PROGRAM declaration. For example, the lines

USES
Crt, Dos;

let you use any of the procedures defined in either the Crt or Dos units in
your program, just as you would any local procedure. Any variables, constants,
or types declared in the unit are available to your program. (If you write pro­
grams that need many variables or constants, declaring them in a custom unit
can simplify your main program and make debugging easier.)

Here’s a more complete example that shows a unit in context:

PROGRAM lil_unit_test;
USES

Crt;

BEGIN
Write('Press any key to end');
REPEAT UNTIL KeyPressed;

END.

Once you put the unit in the USES list, you’re free to use its contents just like
any other Pascal procedures, functions, and declarations.

7.3 Standard QuickPascal Units
QuickPascal comes with several standard units. They enhance your control over
the screen and text, DOS routines, printer use, and graphics. QuickPascal auto­
matically inserts one other standard unit, System, into every program you com­
pile. It supplies all of the standard procedures and functions.

pcjs.org

Units 89

QuickPascal standard units include the following:

Unit name

Crt

Dos

Printer

MSGraph

System

Description

Handles keyboard input, screen/window manage­
ment, color selection, and cursor control.

Manipulates DOS files and directories, and per­
forms other DOS functions.

Gives programs access to a printer.

Creates graphics and displays text in different sizes
and type styles.

Contains the run-time system including the Quick-
Pascal standard procedures and functions. This unit
is automatically used by all QuickPascal programs;
you do not need to explicitly declare it.

If you consistendy use procedures not available in the standard units, consider
creating your own unit. Like a program, a custom unit can reference other units.
Both types of units—standard and custom—add power and flexibility to your
programs.

7.4 Creating Your Own Units
QuickPascal standard units supply most of the procedures you commonly need.
Yet you may need a special function repeatedly or want to initialize a large num­
ber of variables, constants, or data types. Or you may wish to share procedures
with other programmers. In any case, a convenient solution is to write your
own unit.

7.4.1 Writing a New Unit
QuickPascal units look similar to other Pascal programs, with the following
differences:

■ Units begin with a different keyword.

■ An INTERFACE section indicates what the program using the unit can
access.

■ An IMPLEMENTATION section defines any procedures and functions in
your unit.

pcjs.org

90 Pascal by Example

Beginning a Unit
Just as any program begins with the keyword PROGRAM, every unit begins
with a UNIT keyword:

UNIT new_unit;

The UNIT keyword tells QuickPascal to compile the file into a unit rather than
an executable program. The compiled unit receives the same name as its source
file, with the .QPU extension added. Unit source files usually keep the .PAS
extension.

Interface Portion
Everything in the next section, the INTERFACE portion of the unit, becomes
“public” information to any programs that use the unit. It includes any units
needed by this unit; the declarations of any public variables, constants, or data
types; and the calling format for any procedures or functions (including declara­
tions of all parameters). The actual code for the procedures and functions comes
later.

Consider the following sample INTERFACE section:

INTERFACE { Public information }

USES
Crt;

CONST
days_per_year = 365;

PROCEDURE center_line(message : STRING);
FUNCTION cube(num : Real) : Real;

These lines tell QuickPascal that this unit uses the standard Crt unit, establishes
the constant days_per_year, and makes one procedure (center_line)
and one function (cube) publicly available.

Implementation Portion
The second part of a unit, the IMPLEMENTATION portion, defines the proce­
dures given in the INTERFACE portion and any data necessary to implement
those procedures. This data may include any new definitions of variables, con­
stants, types, labels, and support procedures (procedures that assist the primary
procedures). The complete code for every PROCEDURE or FUNCTION de­
clared in the INTERFACE section must appear in the IMPLEMENTATION
section.

pcjs.org

Units 91

The following IMPLEMENTATION section includes both a new variable and a
support function:

IMPLEMENTATION
{ Private information available only to new_unit }

VAR
back : Word;

FUNCTION cube(num : Real) : Real;

VAR
temp : Real;

BEGIN
temp := Sqr(num);
cube := temp * num;

END;

FUNCTION calc_start(message : STRING) : Integer;
BEGIN

calc_start := (80 - Length(message)) DIV 2;
END;

PROCEDURE center_line(message : STRING);
BEGIN

GotoXY(calc_start(message), WhereY);
Writeln (message);

END;

{ Initialization part }
BEGIN

Writeln('What background color would you like ?');
Write(' (0 . . 7) :');
Readln (back);
TextBackground(back);
ClrScr;

END.

In QuickPascal, VAR, CONST, PROCEDURE, and FUNCTION declarations may
come in any order. However, you must declare supporting procedures and func­
tions—in this case the calc_start function, called by the center_line
procedure—prior to calling them from within another procedure. Be sure to in­
clude the definition for every procedure listed in the INTERFACE portion of
the program. Omitting any definition causes an Unsatisfied forward
reference error.

pcjs.org

92 Pascal by Example

Although the compiler does not require you to list each procedure’s parameters
(as it did in the INTERFACE portion), it is generally considered good program­
ming practice to do so. Keep in mind that if you do repeat the parameters, they
must exactly match the parameters listed in the INTERFACE portion.

Viewing the Entire Unit
Together, the three previous examples form a complete unit. A program that
uses new_unit gets access to the constant days_per_year, the procedure
center_line, and the function cube. However, the program cannot access
the calc_start function or the temp variable because they appear in the
IMPLEMENTATION section; that section remains entirely “hidden” to the pro­
gram using the unit.

When you finish writing a unit, save the source code with the unit’s name and
the .PAS extension. The next step, compiling the unit, is discussed in the follow­
ing section.

7.4.2 Compiling a Unit
You compile a unit in the same manner you compile a program. Choose the
Compile File command on the Make menu. If your code contains errors that
prevent the unit from compiling, QuickPascal displays an error message. When
you remove the message, the cursor appears at the point QuickPascal detected
the error. Correct the error and repeat the process until the unit compiles.

Alternately, you can compile the main program and a new unit in one step by
choosing the Rebuild Main File command on the Make menu (or specify the /R
option if you compile from the QPL command line). Again, if QuickPascal en­
counters any errors, the compilation halts and an error message appears. You
must compile all of the custom units a program references before you can com­
pile the main program.

Once your unit compiles properly, you can use it in any of your programs just as
you would use any of the standard units. If you change a program that uses a cus­
tom unit, you need to recompile only that program (and not the unit). However,
if you change the unit itself, you may need to recompile both the unit and the
program. The Build Main File and Rebuild Main File commands on the Make
menu simplify this task.

The Build Main File command recompiles all the source files that changed since
the last Build Main File command was executed. Rebuild Main File recompiles
the program and all of its associated custom units, regardless of whether any­
thing changed. See the QP Advisor or “Compiling a Multiple-Module Program”
in Chapter 3 of Up and Running for a step-by-step approach to compiling.

pcjs.org

Units 93

7.4.3 Tips for Programming with Units
When you program with units, avoid using identifiers with the same name in
different units and circular references between units.

Identifiers with the Same Name
When two or more units contain identifiers (such as constant or procedure
names) that share the same name, the identifier “belongs” to the unit most
recently used. QuickPascal uses units in the order they appear in the USES
statement.

To avoid any confusion, you can reference an identifier in a manner similar to
referencing fields in records using this syntax:

UnitName. Identifier

For example, if you have a cirScr procedure called SCRSTUFF.QPU, you
can reference it in your code as ScrStuff .CirScr in a unit, and the stand­
ard CirScr can be referenced as Crt. CirScr. Then the order of the units in
the USES declaration becomes irrelevant.

Circular Referencing
QuickPascal permits two units to reference each other. UNIT_A can use
UNIT_B, and UNIT_B can use UNIT_A. However, QuickPascal does not sup­
port circular referencing between three or more units. QuickPascal won’t com­
pile a program in which UNIT_A uses UNIT_B which uses UNIT_C which uses
UNIT_A (an A-B-C-A loop). Careful planning can avoid problems with circular
referencing.

The order of the units listed after the USES declaration is not important unless
their procedures have the same names, or the initialization code in one unit inter­
feres with the initialization code in another unit.

pcjs.org

PART 2

Programming Topics

pcjs.org

pcjs.org

PART 2

Programming Topics
Part 2 of Pascal by Example assumes you either have read Part 1,
“Pascal Basics,” or already know Pascal’s basic concepts. Part 2
covers more advanced programming concepts that give your pro­
grams additional flexibility. Topics include enhancing keyboard
and screen control, saving and extracting data from files, and using
pointers. The final chapter is devoted entirely to advanced topics
that experienced programmers may find particularly interesting.

While Part 1 was designed to be read sequentially, this part is
much more topical. You may read the chapters in any order. If
you’re using Pascal by Example to learn Pascal, however, consider
reading the chapter on text files before you try working with binary
files.

pcjs.org

CHAPTERS

8 The Keyboard and Screen...99

9 Text Files ...113

10 Binary Files ... 123

11 Pointers and Dynamic Memory131

12 Advanced Topics.. 147

pcjs.org

CHAPTER 8 g 99

The Keyboard
and Screen

0
Virtually all programs receive or send out information in some way, per­
haps accepting it from the keyboard or a file, perhaps printing it to the
screen or a printer. QuickPascal supports all of the input and output fea­
tures of standard Pascal and includes a unit specifically designed to en­
hance your programs’ appearance and ease of use.

This chapter contains two parts. The first covers the basics of Pascal
input and output and how to format output. The second part introduces
the Crt unit and how to use it to refine control of both the keyboard and
the screen.

8.1 Basic Input and Output
Pascal provides the Read and Readln procedures for input and the Write and
Writeln procedures for output. These procedures can handle both single data
items and lists of items separated by commas. All four use similar syntax:

Read(^FileName,]] InputVariable) [[, InputVariable...]

and

Writ edFileName, I OutputVariable J: Widths-.Decimals^
\,OutputVariable |[iWidth&:DecimalsJffl)

where FileName optionally refers to a disk file or device (such as a printer or a
modem), and Width and Decimals refer to formatting information. Without
FileName, Read accepts data from the standard input device (usually the key­
board) and Write sends data to the standard output device (usually the screen).

If either Read or Write encounters an error, the program terminates with a run­
time error message. You can include the {$1-} compiler directive in your pro­
gram if you want your program to continue despite Read or Write run-time
errors.

pcjs.org

100 Pascal by Example

If you choose to use the {$1-} compiler directive, you need to call the function
IOResult immediately after each input or output operation. The value returned
by IOResult indicates whether an error occurred. QuickPascal ignores any input
or output attempts after an error, unless you call IOResult.

Sections 8.1.1 and 8.1.2 cover the basic use of the Read and Write statements.
Section 8.2 goes into the formatting details (of Width and Decimals). For further
information on using Read and Write with data files and other devices (by
using FileName), read Chapter 9, “Text Files,” and Chapter 10, “Binary Files.”

8.1.1 Read and Readln Procedures
The Read and Readln procedures place data into one or more “input variables.”
Most commonly. Read and Readln receive their input from the keyboard or a
data file.

The input variables must belong to one of the predefined data types (except
Boolean) or a subrange type you defined, and they must be of a type that can ac­
cept the kind of data you’re trying to read. For example, an input variable of
type Char cannot accept a Real value. See Chapter 2, “Programming Basics,”
for information on assigning data types.

Readln attempts to read data into the list of input variables. If the number of
data items typed on a single line exceeds the number of variables, the additional
data items are ignored. However, if Readln receives fewer data items than the
number of input variables, it expects the additional data to appear on subsequent
lines. For example, the Readln statement in the following excerpt expects three
values:

Writeln ('For the investment what are: present value,');
Writeln('annual return, and number of years invested?');
Readln (present_value, rate_of_return, years_invested);

Suppose you run the program and in response to the prompt

For the investment what are: present value,
annual return, and number of years invested?

you type

3000.00 1.05

and press ENTER. The program will then wait for you to enter the final value.
You must remember to use spaces, tabs, or carriage returns to separate the
values. Using commas causes a run-time error. If you’re concerned about the
possibility of such errors, you can either write the program with one Readln
statement for each item entered, or read the data as a string of text and create a
procedure to separate the string into numbers.

The Read procedure, in contrast, reads only enough data to fill its input vari­
ables. But subsequent Read or Readln procedures may get the remaining data.

pcjs.org

The Keyboard and Screen 101

Suppose you rewrote the example above as

Writeln('For the investment what are: present value?');
Read(present_value)
Writeln('the annual return?');
Read(rate_of_return);
Writeln('and the number of years invested?');
Read(years_invested);

and ran the program with this response

For the investment what are: present value?
3000.00 12.8 37

The program would then accept 3000.00 as present_value and imme­
diately print the two remaining prompts without stopping:

the annual return?
and the number of years invested?

and set rate_of_return and years_invested equal to 12.8 and
37, respectively. Unless your program performs some type of error checking,
using such a series of Read statements can potentially introduce errors.

Like Readln, Read accepts all of the Pascal standard data types but inputs them
differently. Character data is not delimited; Read assigns any kind of input to
character variables, including carriage returns, spaces, and so on. Strings input
with Read can include any combination of ASCII text except for a carriage re­
turn, which signifies the end of the string. For numeric data. Read ignores any
leading blanks, begins with the first number or sign (+ or -), and continues until
it reaches the next white-space character or carriage return.

8.1.2 Write and Writeln Procedures
The Write and Writeln procedures enable you to send variables, constants, and
strings to the screen, disk files, or other output devices. The variables or con­
stants you use in Write and Writeln may be any of the Pascal standard data
types or a subrange of any of these types.

Write and Writeln differ only in that Writeln terminates the line after sending
its data to the output device. Subsequent output appears on the next line.

You often use the Write statement to print prompts on the screen. Writeln dis­
plays full lines of text and is useful for leaving blank lines on the screen for aes­
thetic purposes.

Write is often used with Read for simple prompt-and-reply input:

Write('Please enter two integers separated by a space: ');
Read (Inti, Int2);

pcjs.org

102 Pascal by Example

For complete lines of text and for blank lines, you might use Writeln:

Writeln('The Very Model of a Modern Major General');
Writeln ('=======================================');
Writeln;
Writeln('By Shorty Bonaparte');

Note that the strings of text appear at the left edge of the screen.

By themselves. Write and Writeln do not provide much numerical formatting;
they print numbers in a default format according to the type of variable. For ex­
ample, the output from

real_num := 3.1415;
long_int := 1234567;
Writeln('A real number prints out as ', real_num,'.');
Writeln('And a long integer prints as ', long_int,'.');

looks like

A real number prints out as 3.14150000000154E+0000.
And a long integer prints as 1234567.

The next section explains how to change these default formats.

8.1.3 Formatted Output with Write and Writeln
The default numerical output format for real numbers is scientific notation. For
integers, the default output format is a sequence of digits. And, Pascal normally
prints strings as left justified. But Write and Writeln do allow you to change the
default formats.

Recall that the Write and Writeln statements follow the syntax:

Write(RFileName, I OutputVariable I: Width^iDecimalsM
^OutputVariable I :Width^:DecimalsMl)

The two optional fields Width and Decimals control formatting. The Width field
sets the maximum number of spaces available for printing the variable called
OutputVariable and indicates right or left justification by its sign (positive for
right justification, negative for left).

Pascal formats text and integer data in a similar fashion. These statements print
out the integer my_int and the string my_str in a space six columns wide
and right justified:

Writeln(my_int:6) ;
Writeln(my_str:6);

If either my_int or my_str exceeds a width of six columns, QuickPascal
prints the entire integer or string with the default format.

pcjs.org

The Keyboard and Screen 103

Variables of type Real can also specify Decimals, which indicates the number of
digits to appear to the right of the decimal point. You cannot specify Decimals
for integers or strings.

The Write and Writeln procedures do not truncate strings or any type of numeri­
cal data. If OutputVariable is wider than Width, Width is overridden and the en­
tire OutputVar is printed. For floating-point types. Write and Writeln always
print the number of decimal places specified by Decimals, even if it means over­
riding the Width specification.

The following line right justifies a real number realnum and displays it with
four decimal places:

Writeln(realnum:12:4)

Provided realnum contains 12 or fewer digits, the last digit lies in column 12.

This example

int_var := 12345;
str_var := 'This sentence is a string.';
real_var := 9870.65434;
Writeln('1234567890123456789012345678901234567890 Ruler');
Writeln (' 10 20 30 40');
Writeln (int_var : 8);
Writeln (int_var : 85);
Writeln(str_var : 35);
Writeln (str_var : -3);
Writeln(real_var : —2 : 6);
Writeln(real_var : 14 : 2);

produces the following output:

1234567890123456789012345678901234567890 Ruler
10 20 30 40

12345
12345

This sentence is a string.
This sentence is a string.
9870.654340

9870.65

Formatting needs vary from program to program. If you frequently format your
data in a particular style, however, you may find it helpful to write a procedure
that automatically follows that format.

pcjs.org

104 Pascal by Example

8.1.4 DOS Redirection: Input and Output Files
A process called “DOS redirection” allows you to specify both input and output
files for QuickPascal programs. An input file contains responses to all of the
questions asked by the program (provided they are input with Read or Readln
statements). An output file receives all of the information written by Write and
Writeln statements that usually go to the screen.

8.1.4.1 Standard Redirection
Redirected programs run in a completely normal manner; they just accept their
input from a file instead of the keyboard, and send their output to a file instead
of the screen. You can run redirected programs only from the DOS command
line. To use redirection from within the QuickPascal environment, you must first
choose the DOS Shell command from the File menu. The general redirection
syntax is

ProgramName [< InputFileJ f>OutputFile]]

You can include the InputFile only, the OutputFile only, or both. Both must be
text files. If you run with just InputFile

ProgramName <InputFile

you still see the program’s queries and other output on the screen. However, un­
less you specifically write your program to echo user input, you do not see the
input data on the screen because it comes directly from the input file.

If you run ProgramName and include only the OutputFile

ProgramName >OutputFile

you need to know the order in which the program requires its input; all output,
including prompts for input, go to OutputFile. DOS creates a new output file
each time you run the program and specify OutputFile. If a file named Output-
File already exists, the old one is erased and a new one is created. But, if you
add an additional > symbol

ProgramName »OutputFile

DOS appends the new output to the end of the existing file named OutputFile.

For example, suppose you write a database program called address . exe
that reads employee names and returns their mailing addresses. Using Quick
Pascal or some other editor that saves text files, you can create a list of employee
names and save it as NAME. TXT. Then if you enter

ADDRESS <NAME.TXT

pcjs.org

The Keyboard and Screen 105

you can print the list of employee addresses on the screen. Entering

ADDRESS <NAME.TXT >ADD.TXT

creates a new file called ADD. TXT that contains the employee addresses. And,
if you write another input file called MORENAME. TXT, then the command

ADDRESS <MORENAME .TXT »ADD . TXT

adds the additional addresses to the end of the existing ADD. TXT file.

8.1.4.2 The Crt Unit and DOS Redirection
The Crt unit overrides DOS redirection. Programs with Crt in their USES state­
ments ignore input and output files.

If you want to run programs that use the Crt unit with input and output files, you
must include the following lines in your program prior to the first input or output
statement:

Assign(Input, '');
Reset(Input);
Assign(Output, '');
Rewrite(Output);

The Crt unit changes the names of the standard input and output sources; the
four lines above reassign them to their original settings.

8.2 The Crt Unit
If you have read Chapter 7, “Units,” you’re familiar with the concept of units.
The Crt unit is a standard unit that provides data types and procedures for key­
board input, cursor control, screen control, and windows. This section describes
some of the variables and all of the procedures provided in the Crt unit. You can
obtain more information on each of these variables and procedures through the
on-line help system.

If you plan to use the Crt and MSGraph units together, be sure you read Chap­
ter 13, “Using Graphics.” QuickPascal imposes some restrictions on programs
that call both the Crt and the MSGraph units.

8.2.1 Using the Crt Unit
Many of the complete sample programs presented in this manual use the Crt
unit. To access its functions, procedures, variables, and constants in your own
programs, add the statement USES Crt; immediately after your program
declaration.

pcjs.org

106 Pascal by Example

When you start a graphics program you need to tell QuickPascal how you want
it to display text. You pass a particular constant to the TextMode procedure
based on your desired text mode. The constants appear in Table 8.1.

Table 8.1 Crt Text-Mode Constants

Constant
Identifier Value Display

BW40 0 40 by 25 monochrome text screen
BW80 2 80 by 25 monochrome text screen
Mono 7 80 by 25 monochrome text screen
CO40 1 40 by 25 color text screen
CO80 3 80 by 25 color text screen
Font8x8 256 EGA/VGA 43 lines

The Crt unit also establishes the color constants shown in Table 8.2. When you
print text in different colors or create windows with different colored back­
grounds, refer to the color by its value.

Table 8.2 Crt Color Constants

Color Value Color Value

Black 0 LightBlue 9
Blue 1 LightGreen 10
Green 2 LightCyan 11
Cyan 3 LightRed 12
Red 4 LightMagenta 13
Magenta 5 Yellow 14
Brown 6 White 15
LightGray 7 Blink 128
DarkGray 8

pcjs.org

The Keyboard and Screen 107

In addition to the constants, the Crt unit exports the variables listed in Table 8.3.
They let your programs access status and informational settings used by Quick-
Pascal, such as the previous video mode or current text attributes.

Table 8.3 Variables Provided by the Crt Unit

Variable Data Type Purpose

CheckBreak Boolean Indicates the state of CTRL+BREAK checking

CheckEof Boolean Enables/disables checking for end-of-file
character on keyboard input

CheckSnow Boolean Enables/disables “snow checking” for the
screen

DirectVideo Boolean Enables/disables direct video output
LastMode Word Saves previous video mode
TextAttr Byte Contains the current text display attribute
WindMin Word Saves the previous coordinates of the upper

left comer of the active window
WindMax Word Saves the previous coordinates of the lower

right comer of the active window

The variable DirectVideo plays an important role in speeding up screen output.
Setting DirectVideo to True sends the output of Write and Writeln statements
directly to your screen’s memory. Unfortunately, this technique does not work
on some computer configurations. Setting DirectVideo to False, on the other
hand, employs your machine’s Basic Input Output System (BIOS). BIOS always
displays correctly but works at a slower speed; experiment to see which setting
works better for your computer.

The WindMin and WindMax variables store the coordinates of the active win­
dow. Use the predefined Hi and Lo functions to read the high and low bytes that
are packed in the WindMin or WindMax variables, as shown below:

UpperLeftX :=
UpperLeftY :=
LowerRightX :=
LowerRightY :=

Lo(WindMin) + 1;
Hi(WindMin) + 1;
Lo(WindMax) + 1;
Hi(WindMax) + 1;

Table 8.4 lists all of the Crt procedures and functions; by browsing through it
you’ll get a feel for the Crt unit. The “Purpose” column describes what each pro­
cedure does. On-line help gives a more complete explanation, and the sample
programs show other uses of these procedures.

pcjs.org

108 Pascal by Example

Table 8.4 Procedures and Functions Provided by the Crt Unit

Procedure Purpose Example

AssignCrt Associates a text-file
variable with the screen

AssignCrt(DataFile);

ClrEol Clears to the end of the
line

ClrEol;

ClrScr Clears the window and
places the cursor at the
upper left comer

ClrScr;

Delay Delays the program for
a specified number of
milliseconds

Delay(1000){1 sec. };

DelLine Removes the line at the
current cursor location

DelLine;

GotoXY Moves the cursor to
the specified window
coordinates

GotoXY(40,25);

HighVideo Displays characters in
high intensity

HighVideo;

InsLine Inserts an empty line
at the current cursor
location

InsLine;

KeyPressed Returns True if there is
a character in the key­
board buffer

WHILE KeyPressed DO . . .

LowVideo Displays characters in
low intensity

LowVideo;

NormVideo Restores screen attri­
butes to those in effect
when the program started

NormVideo;

NoSound Turns the speaker off NoSound;
ReadKey Reads the next character

from the keyboard buff­
er without showing it on
the screen

akey : = ReadKey;

Sound Turns the speaker on Sound(frequency);
TextBack-
ground

Selects the background
color for subsequent text
display

TextBackground(Black);

pcjs.org

The Keyboard and Screen 109

Table 8.4 0continued)

Procedure Purpose Example

TextCoIor Selects the foreground
color for subsequent text
display

TextCoIor(Red);

TextMode Selects the display mode TextMode (BW80);
WhereX Returns the X coor­

dinate of the cursor
location

posx : = WhereX;

WhereY Returns the Y coor­
dinate of the cursor
location

posy ; = WhereY;

Window Defines a new display
window

Window!2,2,40,10);

8.2.2 Character Input
You can read characters from the keyboard in a couple of different ways. In the
case of the Read and Readln procedures, as each letter is typed in, it is put into
the input variables and displayed on the screen. The Crt function ReadKey also
reads input from the keyboard, but can read only one character at a time; it does
not display the character on the screen.

Although you may want to do your primary data collection with Read and
Readln, the ReadKey function lets you add finishing touches to your programs.
For example, the following line pauses program execution until the user presses
enter:
REPEAT UNTIL ReadKey = Chr(13);

ReadKey also reads function keys, cursor-control keys, control keys, and alter­
nate keys. These special keys send a sequence of characters. The first is a null
character (that is, ASCII 0). The second character is an extended key code. (See
Appendix A for a table of extended key codes.)

The following excerpt illustrates a typical character processor for a keyboard-
driven program. It checks for the special character code # 0 and the standard
alphanumeric keys. If the first key is special, a second CASE statement identifies
which key is pressed. Once the character processor determines the key pressed,
it invokes the applicable procedure.

pcjs.org

110 Pascal by Example

VAR
done : Boolean;
ch, ch2 : Char;

BEGIN
done := False;

REPEAT
ch:= ReadKey;
CASE ch OF

#0: BEGIN
ch2:= ReadKey;
CASE ch2 OF

59: { Got FI key }
DoFl; { FI procedure }

END;{ CASE ch2 }
END;{ #0 }

'0' . 9' ,
'A'..'Z',
'a' :

DoAlphaDigit(ch); { Procedure for normal keys }
ELSE

done :=True;
END;

UNTIL done;

The CRT 1.PAS program in the QuickPascal Advisor demonstrates how to detect
special keys using ReadKey. You can compile and run the program, which does
the following:

■ Moves the 'o' character on the screen when you press the UP, down,
left, and right arrow keys.

■ Simulates a bouncing ball effect if you press the F2 function key.

■ Hides the cursor.

■ Exits when you press the Ft function key.

If you don’t like the sound effects, set the constant music to false.

In the CRT1.PAS program, the IF statement

IF cl = #0

becomes true when you press a special key. In that case, ReadKey returns two
characters, the first of which is always ASCII #0. The path taken through the
WHILE loops depends on which key you press.

The cursor_of f procedure calls BIOS to turn off the cursor. The Crt proce­
dures Sound and Delay are also used in this program. On-line help has more in­
formation about these two procedures.

pcjs.org

The Keyboard and Screen 111

8.2.3 Cursor and Screen Control
The Crt unit provides several procedures for screen and cursor control. Their
names reflect their actions: DelLine, HighVideo, GotoXY, and so on. For more
information about a specific procedure, use the QuickPascal Advisor help.

This section refers you to two example programs in the QP Advisor. The pro­
gram CRT2.PAS uses Crt procedures to insert and delete lines, change video in­
tensity, and produce sound effects. The program requires very few code lines to
accomplish these tasks.

The CRT3.PAS program uses the GotoXY function to control the cursor. Table
8.6 shows the GotoXY statements used to move the cursor relative to its current
position, assuming the cursor is not at the edge of a window.

Table 8.6 Statement Effects

Example Description

GotoXY(WhereX-1, WhereY)
GotoXY(WhereX+1, WhereY)
GotoXY(WhereX, WhereY-1)
GotoXY(WhereX, WhereY+1)
GotoXY(1, WhereY)
GotoXY (80, WhereY)

Moves one character to the left
Moves one character to the right
Moves up one line
Moves down one line
Moves to the beginning of the current line
Moves to the end of the current line

The CRT3.PAS program prompts you to type a character and then “bounces”
that character around the screen. The character changes direction and beeps
when it reaches the edge of the screen. The character’s speed increases each time
the character changes direction. When it reaches a maximum speed, the char­
acter slows back down to its original speed.

8.2.4 Using Windows
The Crt unit provides easy control of text windows. The Window procedure al­
lows you to define a new active area of the screen.

Window accepts row and column coordinates for the upper left and lower right
comers of the new window. These coordinates must be integers of type Byte.
The rows range from 1-25 (or 1- 43 or 1-50, depending on the text mode) and
the columns range from 1-80.

The Window procedure is analogous to choosing the size of a piece of paper to
draw on; the coordinates you pass to the procedure tell QuickPascal how big to

pcjs.org

112 Pascal by Example

make the piece of paper. For example, the following statement defines the entire
screen area:

Window! 1, 1, 25, 80);

Many applications use the top and bottom lines of the screen to display a menu
or help text. To exclude these lines from the active screen area, use

Window! 1, 2, 24, 80);

If you write an application that draws a frame around the screen, you may want
to use the following statement to reduce the active screen area:

Window! 2, 2, 24, 79);

When you create a new window, the upper left comer of the display area is
(1,1). Thus, GotoXY(l, 1) moves the cursor to the upper left comer of the ac­
tive window, regardless of window size and location. GotoXY is analogous to
setting your pen down at a specific place on the piece of paper. WhereX and
WhereY return you to your current location.

Choose the foreground and background colors for the active window with the
TextColor and TextBackground procedures. To continue the earlier compari­
son, TextColor lets you select your pen’s color and TextBackground selects
the color of the piece of paper. Note that after changing the background color,
you must clear the screen to see the new color. Clearing the screen resets the cur­
sor to (1,1).

The program CRT4.PAS shows how these procedures work (although you need
a color monitor to see the colors). It illustrates

■ Windows that move while keeping their size fixed

■ Windows that simultaneously move and change sizes

■ Screen and cursor control of text within a window

CRT4.PAS gives you an idea of what you can do with windows. With a few sim­
ilar lines of code, you can improve your screen’s visual impact and add clarity
and emphasis to your programs.

pcjs.org

CHAPTER 9 Q 113

Text Files %7

Text files store data as lines of ASCII characters. The lines do not have to
be the same length. Each line terminates with an end-of-line character
(carriage return). Any text editor or word processor that reads ASCII files
can edit these files, including the QuickPascal environment.

Pascal writes and reads text files sequentially, in much the same way an
audio cassette player records or plays back a tape. Adding basic file input
and output (I/O) capabilities to your programs lets you store and retrieve
data from this “tape” for both long- and short-term use.

This chapter covers how to name, open, read, write, and close a file, and
how to redirect text information between your disk, screen, and printer. It
also lists the standard procedures used to work with text files.

9.1 Working with Text Files
Working with text files means taking a few straightforward actions:

■ Declaring a file variable and a file name

■ Creating a new file or opening an existing one

■ Writing or appending data to a file

■ Reading data from a file

■ Closing a file

The following sections address these steps in detail.

pcjs.org

114 Pascal by Example

As a general introduction, look at the following sample program:

PROGRAM filetest;
VAR

datafile : Text;
i : Integer;

BEGIN
Assign(datafile, 'RAN_DATA.DAT');
Rewrite (datafile);

FOR i := 1 TO 100 DO
BEGIN
Writeln(datafile. Random(50));
END;

Close (datafile);
END.

The rest of this chapter frequently refers back to this example.

9.1.1 Declaring a File Variable and File Name
Declaring a file variable means telling QuickPascal how you want to refer to
the file from within the program. It is the variable name by which the program
knows the file. You declare it in the same way you would declare any other text
variable:

VAR
FileVar: Text

When you later read or write information to the file, you refer to the file by the
name you give FileVar. For example,

VAR datafile : Text;

creates a file variable with the name datafile.

QuickPascal also needs to know what name you want to assign to the text file
that is saved on the disk. The Assign procedure associates the file variable with
the disk file name:

Assign (FileVar, FileName)

pcjs.org

Text Files 115

QuickPascal accepts this assignment as meaning, “Whenever I say to read or
write to the file variable FileVar, send the information to the disk file with the
name FileName." You can make the two names similar, but keep in mind that
FileName must follow the DOS file-naming conventions. For instance,

Assign (datafile, 'RAN_DATA.DAT');

equates the fde variable datafile with the disk file RAN_DATA.DAT.
For more versatility, you can use a string variable in place of a literal string such
as ' RAN_DATA. DAT'. Using a string variable allows your program to prompt
for a file name. For example,

VAR
datafile : Text;
filename ; String;

BEGIN
Write('Enter name of data file to open: ');
Readln(filename);
Assign(datafile, filename);
Reset (datafile);

9.1.2 Opening a Text File
With the file variable and the file name both assigned, you can either create (and
then open) a new file or open an existing one.

9.1.2.1 Opening a New Text File
The standard procedure Rewrite creates and opens a new text file. It uses the
general syntax:

Rewrite(Fi/eV'ar)

The example program at the beginning of the chapter creates and opens a new
text file with the line:

Rewrite(datafile);

Since the Assign procedure associated the file variable datafile with the
name ran_data . DAT, this Rewrite statement creates a new file on the disk
also called ran data.dat.

pcjs.org

116 Pascal by Example

Note that if a file already exists with the same name. Rewrite destroys the old
file. So, it’s best to use only file names you know are “safe,” or have your pro­
gram ask the user to confirm the name selected.

Once you open a new file, you can immediately write new text to it.

9.1.2.2 Opening an Existing Text File
You can perform both read and write operations with an existing text file. Keep
in mind, however, that trying to open a nonexistent file causes a “File not found”
run-time error. A short procedure that verifies the existence of the file could save
you some time.

To open files for reading data, use the Reset procedure:

Res et(FileVar)

For example, to open the file named RAN_DATA. DAT created by this chapter’s
example program, you would use

Reset(datafile);

Reset opens the file and moves the “file pointer” (an internal bookmark that tells
the program where it is in the file) to the first character in the file, ready to begin
reading.

If you want to add text to the end of an existing file, open the file with the
Append procedure:

Append (FileVar)

To append data to the RAN_DATA. DAT file, type in:

Append(datafile);

This opens the file and sets the file pointer to the end of the file. Text that is cur­
rently in the file remains unaltered.

Once you open a file, you can immediately read text from it or write new text
to it.

9.1.3 Writing Text to a File
You write to a text file in much the same way as you write to the screen. You
still use the Write or Writeln procedure and any of its standard formatting
codes, but you specify the file variable as well.

pcjs.org

Text Files in

In the example at the beginning of this chapter, the loop

FOR i := 1 TO 100 DO
BEGIN
Writeln) datafile, Random(50));
END;

sends 100 random integers to the RAN_D AT A. DAT text file specified by the
datafile file variable.

You can just as easily write text or formatted numbers to the file, but remember
that even formatted numbers are stored in the file as text. Any acceptable form
of Write or Writeln can send data to a text file.

9.1.4 Reading Text from a File
Use the Read or Readln procedure to read data from an open text file, specify­
ing the file variable. For example,

Readln (datafile, line_o_text);

reads a line of text from the text file associated with the variable datafile
into the string line_o_text. Read has the same effect but reads one variable
at a time rather than an entire line.

In the example at the beginning of this chapter, with the FOR loop, the program
creates a file called RAN_DATA. DAT filled with 100 random numbers between
0 and 50 (some numbers appear more than once). You could write a nearly iden­
tical program to read the data back from the file by altering the loop to

FOR i := 1 TO 100 DO
BEGIN
Readln(datafile, random_number_string);
END;

Readln replaces Writeln, and you must declare random_number_string
as a variable of type STRING. (You would also need to open the file for reading
with Reset rather than writing.) To change random_number_string back
into numerical data, you need to add

Val(random_number_string, ran_num, errpos)

after the Readln procedure. (You would also need to declare ran_num and
errpos as integers.)

pcjs.org

118 Pascal by Example

In cases where you don’t know the length of a file in advance, you can use a
loop that checks for the end of the file with the Eof function. For example, if you
didn’t know the length of the ran_data.dat file, you could rewrite the pre­
vious loop as

WHILE NOT Eof(datafile) DO
BEGIN
Readln(datafile, random_number_string);
Writeln(random_number_string);
END;

Eof returns a Boolean result. It returns False as you read through the contents
of a file and True after you read the file’s last entry. The end-of-line function,
Eoln, works in a similar manner, but returns True when you reach the end of
a line.

9.1.5 Closing a Text File
You need to close a file when you finish working with it. All files close with the
same instruction:

CIos e(FileVar)

where FileVar specifies an open file.

Trying to close a file that is not open causes a run-time error. However, unless
you use a number of similarly named file variables, the compiler usually catches
potential errors as either undefined variables (often caused by typing mistakes)
or type mismatches (caused by placing a non-Text variable in die place of a file
variable).

For example, trying to compile the program from the beginning of this chapter
with the line

Close(datfile); { 'datafile' misspelled }

results in an Unknown identifier compiler error.

QuickPascal automatically closes any text files still open when a program ends.

9.2 Increasing the Speed for Input and Output
The run-time system employs a buffer that temporarily collects text during Read
and Write operations to text files. By default, the run-time system uses a 128-
byte buffer.

pcjs.org

Text Files 119

Larger buffers enhance the speed of I/O-intensive programs, but tend not to af­
fect programs with moderate or low levels of I/O activity. The larger the buffer,
the greater the speed. However, unless your programs bog down due to I/O
operations specifically, the default buffer size usually suffices. Keep in mind
that while increasing the buffer size can speed up a program, it also increases the
program’s size.

The standard procedure SetTextBuf lets you allocate different buffer sizes. It
uses the general syntax

SetTextBuf(Fi/eVar, Buffer^, SizeJ)

where Buffer refers to a variable to use as the buffer and Size optionally indicates
the size of the buffer in bytes. You can declare Buffer as any type of variable,
but you usually use an array of type Char. For example, if you wanted to in­
crease the buffer size of the program presented earlier, you could rewrite the
beginning as

PROGRAM filetest;
VAR

datafile : Text;
i : Integer;
buffer : ARRAY[1..2048] OF Char;

BEGIN
Assign(datafile, 'RAN_DATA.DAT');
Rewrite! datafile);
SetTextBuf! datafile, buffer);

This call to SetTextBuf provides a large array for intermediate storage. It’s
something of an overkill for a group of 100 random integers (based on the rest of
the example), but would work well for reading or writing large text files.

WARNING Buffer allocation must occur before or immediately after you open the text file.
Changing the file buffer size after I/O operations have already occurred can lead to data loss.

9.3 Redirecting Text Output
QuickPascal lets you access a number of standard DOS devices (such as a
printer and the screen) by specifying the device as an output file name. For ex­
ample, by reassigning the file variable, the same Writeln statement could send
text data to a disk file, the printer, or the screen.

pcjs.org

120 Pascal by Example

DOS devices use predefined names. The two most common are the printer name,
PRN (assumed to connect to the LPT1 port), and the screen name, CON (short
for “console”). Data sent to a device goes to the appropriate computer port.

To see how reassignment works, consider a program that, at the end of a particu­
larly grueling data-generating session, presents the user with a choice of sending
the data to the printer, console, or file. Based on the selection, the program as­
signs a file variable to the appropriate device or text file.

If OutFileVar is the file variable, choosing the printer leads to the
assignment

Assign(OutFileVar, 'PRN');

to direct the output to the printer. (You could also get the same effect by using
the Printer unit and substituting LST for the file variable. Printer provides the
LST text file variable already opened on the LPT1 printer port.)

Similarly,

Assign(OutFileVar, 'CON');

and

Assign(OutFileVar, NewFile);

direct the output to the screen and a disk file, respectively. (NewFile must be
declared as a string, and must contain the name of the new disk file.)

The file variable OutFileVar now refers to the correct output location, re­
gardless of whether that output is the printer, screen, or a new text file. The pro­
gram opens the device or file with

Rewrite! OutFileVar);

sends the data to the file with

Writeln (OutFileVar, TextOut);

and closes the file when finished with

Close! OutFileVar);

With some planning, the same section of program code can perform three differ­
ent functions: print data, send to the screen, or send to a file. The only difference
is the file name assigned to the file variable. In the example above, a CASE state­
ment, or similar decision-making structure, would assign an appropriate file­
name variable based on the user’s menu selection.

pcjs.org

Text Files 121

9.4 Standard Procedures and Functions for Input and Output
A number of the QuickPascal standard procedures and functions apply to all
types of data files—text, typed, and untyped. Table 9.1 summarizes those proce­
dures and functions available to all file types.

Table 9.1 Standard Procedures and Functions for All File Types

Routine Purpose

Assign Associates a file buffer with a filename
Close Closes the file buffer
Eof Returns the end-of-file status
Erase Deletes a file
IOResult Returns the error status of the last I/O

Read Reads one or more elements from a file
Rename Renames a file
Reset Opens an existing file
Rewrite Creates and opens a new file, after closing and erasing any file with

the same name
Write Writes one or more elements to a file

Several other standard procedures and functions apply only to text files. They
appear in Table 9.2 below.

Table 9.2 Standard Procedures and Functions for Text Files

Routine Purpose

Append Opens an existing text file for adding more text to the end of the file

Eoln Returns the end-of-line status

Flush Clears the text buffer
Readln Reads one or more data items, one line at a time
SeekEof Returns the end-of-file status, ignoring any blanks, tabs, and

end-of-line markers
SeekEoln Returns the end-of-line status, ignoring any blanks and tabs
SetTextBuf Assigns a text file I/O buffer
Writeln Writes one or more data items and appends an end-of-line marker

pcjs.org

CHAPTER 10 in 123

Binary Files 1U
A binary file contains program data stored on disk. Each item in a binary
file is stored in the same binary representation used by a QuickPascal pro­
gram. Binary files provide optimal storage of numbers, Booleans, and
enumerated types. For example, to store the integer 21,000 in a text file,
you write a string of at least five characters to disk. To store the number
in a binary file, you write just two bytes. However, you cannot display a
binary file directly or view it with a word processor.

You access each binary file as either a typed file or an untyped file:

■ A “typed file” contains a series of discrete units called “compo­
nents.” Each component must have the same type, which can be al­
most any data type supported by QuickPascal but is typically a record.

■ An “untyped file” is treated as a raw, unstructured series of bytes.
None of the text-oriented read and write functions is available. Typi­
cally, programs use untyped files for large block operations such as
copying an entire file to another. Any file can be declared as an un­
typed file.

10.1 Typed Files
Like an array, a typed file is a series of components all having the same type.
Unlike an array, a typed file has no definite size. A file starts at length zero and
automatically grows as you append data. Furthermore, files serve as permanent
records that exist after the program terminates.

In essence, typed files are formatted data files. The format is determined by the
component type, which you should choose carefully to solve a given program­
ming task. For example, to implement an airline reservation system, you would

pcjs.org

124 Pascal by Example

set up a record type to store all of the needed data for one reservation. Then you
might create a file made up of these records. Every program in the system must
use this same record type to correctly read the file.

The structure of a typed file supports random access. For example, in a file of
records, you can directly access record 367 without having to read through the
first 366.

10.1.1 Declaring Typed Files
Not surprisingly, the syntax for defining a typed file is similar to that for arrays:

FILE OF ComponentType

In the syntax display above, ComponentType can be any valid data type, with
one restriction: the component type cannot be a file type or a type that contains a
file type. Thus, files of arrays are legal, as are arrays of files. However, a file of
arrays of files is illegal.

The component type is frequently a record. (In fact, other programming lan­
guages often use the term “record” to refer to a component of a file.) For ex­
ample, you might define a record type to hold a name and phone number for one
person. To create a permanent list of phone numbers for many people, you could
create a file made up of these records.

The following code shows examples of valid file types:

TYPE
phonerec = RECORD

name
long_distance
phone
END;

phone_list = FILE OF phonerec;
math_file = FILE OF ARRAY[1..10] OF Real;

VAR
master_list : ARRAY[1..20] OF phone_list;
celebs : phone_list;
lucky_numbers : FILE OF Integer;

10.1.2 Accessing Data in a Typed File
After declaring a file variable, you may assign it to a physical disk file with the
Assign procedure, as described in the last chapter. Then you can open the file for
writing (with Rewrite) or for both reading and writing (with Reset).

For example, the following code declares a file of integers, assigns the file varia­
ble to the disk file MYFILE.DAT (in the root directory of drive C:), and then
opens the file for reading and writing:

STRING[20];
Boolean;
Longlnt;

pcjs.org

Binary Files 125

VAR
intfile : FILE OF Integer;

BEGIN
Assign(intfile, 'C:\MYFILE.DAT');
Reset (intfile);

After you open the file, you can read and write any number of components
sequentially with the Read and Write procedures. (The next section shows how
to use random access.) These procedures work with both text files and typed
files, and take the same syntax in either case. But with typed files, each item you
read or write must be a variable of the component type.

For example, if int_file is a file of integers, and a, b, and c are integer
variables, you can read or write the file as follows:

Write (int_file, a,b,c); { Write a, b, c to the file }
Read(int_file, n); { Read next integer in file }

The Read and Write procedures do not do any text formatting when used with
typed files. In the example above, the procedures read and write the numeric
value of the integers directly to and from the disk. If int_file were a text
file, the Read procedure would translate the numbers to character strings before
writing them.

As you read components of a file, use the Eof function or FileSize function (de­
scribed below) to make sure you don’t read past the end of the file. The Eof func­
tion returns True if the last read operation took you beyond the end of the file.

You can use a number of other procedures with typed files, including the proce­
dures listed in Table 9.1 in Chapter 9, “Text Files.” In addition, you can use
those listed below.

Procedure

FilePos

FileSize

Seek

Truncate

Description

Takes a file variable as a parameter, and returns the
current file position (in terms of components or
blocks)

Takes a file variable as a parameter, and returns the
size of the file in bytes; result has type Longlnt

Takes a file variable and a long integer as parame­
ters, and moves the file position to the component
or block designated by the integer

Takes a file variable as a parameter, and truncates
the file at the current file position

pcjs.org

126 Pascal by Example

The FilePos and Seek procedures let you treat a binary file as a random-access
file, and the next section provides more detail on how to use them. Note that you
do not have to treat a typed file as strictly a sequential or random-access file.
You can use any combination of functions supported for the file type.

10.1.3 Using Random Access
You can use random-access procedures with any typed file. “Random access” is
the capability to read or write components to any place in the file and in any
order.

Random access is like placing a phone call. You can immediately connect to any
place in the system by giving the right number. Sequential access is like reading
a novel. You advance from one page to the next in the order given.

The two principal random-access procedures are Seek and FilePos. The Seek
procedure sets the file buffer to the component denoted by the number you
specify. The first component is denoted by 0, the second by 1, and so on. The
syntax is

Seek (FileVar, Position)

in which FileVar is a file variable, and Position is a constant or variable of type
Longlnt. For example:

TYPE
phone_rec = RECORD

name,
notes : STRING;
number : Longlnt;
END;

VAR
phone_list : FILE OF phone_rec;
reclO, recll, recl5, rec25 : phone_rec;

BEGIN
Assign! phone_list
Reset! phone_list
Seek! phone_list,
Read! phone_list.
Seek! phone__list.
Read! phone_list.
Seek! phone_list,
Read! phone_list,

, 'FONEHOME.DAT');
);
9); { Get 10th & 11th record
reclO, recll);
14); { Get 15th record }
reel5) ;
24); (Get 25th record }
rec25);

}

The example above copies records at predefined locations in the file. More
often, a practical application determines the record number interactively. For
example, the following code prompts the user for the record number and data,
then enters this data into the file:

pcjs.org

Binary Files 127

VAR
phone_list : FILE OF phone_rec;
temp_rec : phone_rec;
n : Longlnt;

BEGIN
Assign) phone_list, 'FONEHOME.DAT');
Reset) phone_list);
Write) 'Enter record number: ');
Readln(n);
Write) 'Enter name: '); { Prompt for data }
Readln) temp_rec.name);
Write) 'Enter number: ');
Readln) temp_rec.number);
Seek) phone_list, n); { Access record requested >
Write) phone_list, temp_rec); { Write data to file }

The FilePos function takes a file variable as a parameter and returns the number
(again, a Longlnt) of the current component.

The Eof function is useful for both sequential-access and random-access opera­
tions. This function takes a file variable as its parameter and returns True if the
current component is past the end of the file. Thus, it tells you when you have
read to the end of the fde or have a record number corresponding to a nonexis­
tent file component.

So far, you have seen how to read and overwrite existing files. You can append
the end of files with

Seek(/, FiIePos(/))

and rewrite files completely with the Rewrite procedure. But there is no easy
way to insert new components into the middle of a file. The only way to insert a
component is to read an entire file into memory, manipulate the contents, and
write the file to disk again.

10.2 Untyped Files
Untyped file variables support direct, low-level I/O operations with any file. The
BlockRead and BlockWrite functions used with untyped files allow for fast
data transfer for copy and backup of files. You can also use untyped file I/O to
create sequential binary files with variable-length records.

Untyped files differ from typed files in that

■ Untyped files can contain any type of data, even text.

■ Untyped files can be read or written with any record length using BlockRead
and BlockWrite.

pcjs.org

128 Pascal by Example

To declare a type or variable as an untyped fde, just use the FILE keyword. For
example,

TYPE
low_level = FILE;

VAR
my_file : low_level;

The Read and Write procedures, supported for use with text files and typed
files, are not supported with untyped files. (Otherwise, any procedure supported
for typed files is also supported for untyped files.) Instead, use the BIockRead
and BlockWrite procedures to access data. BIockRead and BlockWrite read
and write records to a file. In this context, “record” denotes a data block of a
specific size. The default block size is 128 bytes if you use the standard file-open
sequence:

Assign(file_var, 'FILE');
Reset (file_var);

With the default block size, the BIockRead procedure reads in units of 128 bytes
at a time. If the last BIockRead finds fewer than 128 bytes, an error occurs.
Rarely are the contents of a file exactly equal to 128 * n. To avoid errors, you
have two alternatives:

1. Create a file by writing records of a fixed size with BlockWrite. Then the
file size will be exactly divisible by the size of the record.

2. Create a record size of one byte (since every file size is a multiple of one) by
using the statements below:

Assign) file_var, 'FILE');
Reset) file_var, 1);

Reset and Rewrite have an optional parameter to define the number of bytes
in a record. Once the record size is set to one byte, the procedures BIockRead
and BlockWrite transfer multiples of one byte whenever they execute. No error
occurs at the end of the file.

The syntax for BIockRead is

BlockRead(Fz7eVar, Buffer, Count [, NumReadf)

where BIockRead reads Count records (or the number of records remaining,
whichever is less) from the file into Buffer. The Buffer parameter can be any
variable large enough to hold the number of bytes read. The actual number of
complete records read is returned in the optional parameter NumRead. Use
NumRead to determine whether BIockRead was successful. If the parameter

pcjs.org

Binary Files 129

NumRead is omitted and BIockRead reads fewer than Count records, an
I/O error occurs. The parameter list of BlockWrite is the same as that for
BIockRead.

The following simple program, DUPLICAT.PAS, shows a typical use of block
I/O to copy a file:

PROGRAM duplicat;
CONST

max_buf=16384;
VAR

file_name, copyfile_name : STRING;
source, target : FILE;
buffer : ARRAY [l..max_buf] OF Char; { 16K buffer }
bytes_read, bytes_written : Word;

BEGIN
Write('Enter source file_name -> ');
Readln(file_name);
Write! 'Enter name of target file -> ');
Readln! copyfile_name);
Assign! source, file_name);
Reset (source, 1); {1 byte-block size }
Assign! target, copyfile_name);
Rewrite! target, 1); {1 byte-block size }
REPEAT

BIockRead! source, buffer, SizeOf(buffer), bytes_read);
BlockWrite! target, buffer, bytes_read, bytes_written)

UNTIL (bytes_read = 0) OR (bytes_read <> bytes_written);
Close(source);
Close (target);

END.

The program detects the end of the file by looking for either of the following
two conditions:

1. No records were read by the last BIockRead call.

2. The requested number of records does not match the actual number of
records read.

The block I/O techniques presented in the program above are used to implement
an extended version of the DOS COPY command in the sample program
EXCOPY.PAS, available on-line in QuickPascal. The other sample program
components are the command-line arguments; the FindFirst and FindNext
routines; a binary tree to detect duplicate file names; I/O error checking used
with BIockRead and BlockWrite; and screen output informing the user of the
file copy progress.

pcjs.org

130 Pascal by Example

The EXCOPY.PAS procedure copyfile has the task of actually copying the
files, one at a time. Notice the following aspects of the procedure:

■ The Reset and Rewrite statements are accompanied by the {$1-} directive to
prevent run-time errors from stopping the program. After calling Reset and
Rewrite, the value of the function IOResult is compared with 0. If it is not
0, the procedure terminates. This behavior protects against errors resulting
from bad file names or attempts to copy files that cannot be accessed.

■ After the BlockWrite procedure is executed, the parameters bytes_read
and byte_written are compared. If they are not equal, the destination
disk becomes full while copying the current file.

■ If the file cannot be copied, then a message is displayed to that effect and the
target file is erased. Consequently, any partially used disk space is freed for
other smaller files to be copied. In addition, the above procedure also wipes
off zero-byte files that would otherwise appear in the target directory.

To run EXCOPY .EXE, first compile the program EXCOPY.PAS. The current
directory should contain the source files you wish to copy. Enter the command
line arguments as

EXCOPY TargetDirectory RFileListJ

The FileList argument can contain one or more file names separated by spaces.
Each file name can contain the wildcard characters * and ?. If you omit
FileList, EXCOPY uses the default file specification *.* as the file list.

pcjs.org

CHAPTER 11 «i 131

Pointers and
Dynamic Memory

A pointer is a variable that contains the numeric address of another data
object. A pointer provides indirect access to data. For example, if you
have a pointer to a record and you pass this pointer to a procedure, then
the procedure can manipulate any field by using the pointer. The proce­
dure does not need its own copy of the data.

In Pascal, you use pointers primarily as handles to dynamic-memory ob­
jects. “Dynamic memory” consists of memory that the program explicitly
requests at ran time. Dynamic memory gives you many advantages. It
lets your memory usage grow and contract as your needs require—you
do not need to specify a maximum size or limit.

Because dynamic memory is allocated at run time, your program cannot
know in advance where the block is located. Pascal, therefore, returns a
pointer when it allocates dynamic memory. The pointer provides the
access to the data.

Dynamic memory enables you to create powerful data structures such as
linked lists and binary trees. These structures, described at the end of this
chapter, are networks of data in which pointers provide the connecting
links.

In QuickPascal, you can also use pointers to point to ordinary (non­
dynamic) variables. This chapter begins by explaining the basics of
pointers using nondynamic variables.

pcjs.org

132 Pascal by Example

11.1 Declaring and Accessing Pointers
Using pointers consists of three major steps, which you must always do in this
order:

1. Declare the pointer as a specific type.

2. Initialize the pointer.

3. Use the pointer by assigning its value, testing its value, or accessing the
value that it points to.

11.1.1 Declaring Pointers
Like other variables, pointers have definite types and can only point to a variable
of the appropriate type. You can declare a pointer with the following syntax:

PointerName: ADataType

Example pointer declarations are shown below:

TYPE
totals =

VAR
int_ptr
char_ptr
str_ptr
real_ptr
total_ptr

ARRAY[1..10] OF

"Integer;
"Char;
"STRING;
"Real;
"totals;

Integer;

After you declare a pointer, it does not point to any meaningful value; you can
produce errors if you try to use it. The first thing you must do after declaring a
pointer is initialize it.

11.1.2 Initializing Pointers
After declaring a pointer, you must initialize it to an address. You can always
initialize a pointer to the special NIL value. This value indicates that the pointer
is temporarily turned off—it has no object to point to. Your program can test for
this condition and take appropriate actions. The NIL value is useful in indicating
the end of a tree or linked list. Here is an example of an assignment to NIL:

my_ptr := NIL;

pcjs.org

Pointers and Dynamic Memory 133

To assign the address of a variable to a pointer, you can use either the address-of
(@) operator, or the Addr function. The syntax is

Pointer := Addr (Variable)
Pointer := @Variable

The Variable can be any variable of the type that appears in the declaration of
Pointer. An example is shown below:

VAR
an_int : Byte;
byte_ptr : ''Byte;

BEGIN
an_int := 5;

{ These assignment statements put the same
address in pointer byte_ptr.
Both Writeln statements print the number 5.

}
byte_ptr := Addr(an_int);
Writeln (byte_ptr'') ;

byte_ptr := @an_int;
Writeln (byte_ptr'') ;

END.

In Section 11.2, you learn how to assign a value to a pointer by making a
dynamic-memory procedure call.

11.1.3 Manipulating Pointers
Pointer manipulation in Pascal is extremely limited. In addition to the methods
described above, the only way to manipulate a pointer is to assign it the value of
another pointer of the same type. For example, the statement

ptrl := ptr2;

causes ptrl to point to the same location that ptr2 does. This kind of as­
signment is frequently useful in dealing with data structures such as linked lists
(shown in Section 11.3).

Once you declare and initialize a pointer, you can use it in one of the following
ways:

■ Assign the value of the pointer itself to another pointer.

■ Test the value of the pointer itself.

■ Access the value of the variable pointed to.

pcjs.org

134 Pascal by Example

The number of operations you can do with the value of the pointer is limited. As
described above, you can assign the value of a pointer to another pointer of the
same type. You can also test a pointer for equality to NIL or to another pointer.
For example, the statement

IF (ptr1 = ptr2) THEN ...

executes the statement following THEN if ptrl and ptr2 point to the same
variable. Note that if ptrl and ptr2 point to different locations, then the ex­
pression ptrl = ptr2 evaluates as False, even if the objects that ptrl and
ptr2 point to are equal.

You can also access the value of the variable indicated by the pointer. This value
can be manipulated in any way you can manipulate the variable itself. Use the
following syntax to access the variable indicated by the pointer:

PointerName''

This operation is called “dereferencing” the pointer. For example, the following
code sets the value of x to 5, and then assigns this value to y:

VAR
x, y : Byte;
byte_ptr : AByte;

BEGIN
byte_ptr := Addr(x); { byte_ptr now points to x }
byte_ptrA := 5; { assign 5 to x }
y := byte_ptrA; { assign value of x to y }

END.

In testing pointer values, bear in mind the difference between a pointer and the
variable pointed to. For example, the statement

IF (ptrlA = ptr2A) THEN ...

executes the statement following THEN if the objects pointed to by ptrl and
ptr2 are equal. Contrast this example with the previous IF-statement example,
which evaluated to True only if ptrl and ptr2 pointed to the same object.

11.2 Dynamic-Memory Allocation
In most programs, you need to evaluate the maximum amount of memory the
program will require. If the amount of data becomes larger than you foresaw,
you must rewrite the program and then recompile. However, dynamic memory
lets your memory usage grow along with the needs of the program. The amount
of physical memory available is the only ultimate limit to dynamic memory.

pcjs.org

Pointers and Dynamic Memory 135

The use of pointers is essential to all dynamic-memory operations. When Quick-
Pascal allocates memory, it returns a pointer. The pointer gives you access to the
memory block.

There are two basic ways of dynamically allocating memory:

1. Allocating one object at a time (New and Dispose)

2. Allocating a block of memory (GetMem and FreeMem)

11.2.1 Allocating a Single Object
By using the New procedure, you allocate space equal to the size of the data type
associated with the pointer. The syntax is

New (Pointer)

Once the New function executes, QuickPascal assigns the address of the
dynamic-memory block to Pointer. The Pointer must be a variable previously
declared. The following example shows how to declare a pointer of type Byte;
allocate memory through the pointer; and then use the dynamic variable to hold,
manipulate, and display a value.

VAR
int_ptr : ''Byte;

BEGIN
int_ptr := NIL;
{ create a Byte-type dynamic variable }
New(int_ptr);
int_ptrA := 100;

Inc(int_ptr'', 10),
Writeln (int_ptrA) ,
Dispose(int_ptr);

{ assign a value to the dynamic
variable }

{ increment it }
{ display its value }

END.

As described in the previous section, int_ptr A is an example of a derefer­
enced pointer. int_ptr itself is a pointer, which can only be manipulated in a
few restricted ways. However, int_ptrA is equivalent to an ordinary variable
of type Byte. Use int_ptrA anywhere you would use a Byte variable.

To remove a dynamic-memory object created with the New function, use the
Dispose function. See Section 11.3, “Linked Lists,” for more examples of New
and Dispose.

pcjs.org

136 Pascal by Example

11.2.2 Allocating a Memory Block
The GetMem and FreeMem functions are similar to New and Dispose. How­
ever, GetMem and FreeMem deal with entire blocks of memory rather than one
object at a time. Once a block is allocated, you access it as if it were an array of
indefinite size.

Use the GetMem procedure to select the size of a dynamic-memory block. The
size should be a multiple of the size of the element type of the array. Therefore,
if size is the number of elements you want to allocate, and basetype is
the element type of the array, then pass the following parameters to GetMem:

Size * SizeOf(base_type)

A common way to use GetMem is to declare an array type of max_elements
elements first, where max_elements is the largest possible number of ele­
ments of the base type. Because the type is an array, you can access memory
throughout the block with an array index. For example, the following code
makes the necessary declarations and then calls GetMem to return a memory
block:

CONST
max_elements = 65520 DIV SizeOf(base_type);

TYPE
big_array = ARRAY[1..max_elements] OF base_type;

VAR
array_ptr : Abig_array;

BEGIN

GetMem(array_ptr, size * SizeOf(base_type));

The array_ptr now points to an array of type base_type. You can treat
array_ptr just like any array. The largest index in this array is size. To
access any element in this array, use the following syntax:

ArrayPointerA [Index]

The example shown below requests a memory block 100 elements long. In
thiscase, array_size issetto 100, but at run time, the program could set
array_size to whatever length it needed.

pcjs.org

Pointers and Dynamic Memory 137

CONST
max_elements = 65520 DIV SizeOf(Real);

TYPE
some_reals : ARRAY[1.,max_elements] OF Real;

VAR
rptr : Asome_reals;
i : Byte;
array_size : Word;

BEGIN
array_size := 100;
GetMem(rptr, array_size * SizeOf(Real));
FOR i := 1 TO array_size DO

BEGIN
rptrA[i] := i;
Writeln (rptrA [i]);
END;

FreeMem(rptr, array_size * SizeOf(Real));
END.

The FreeMem procedure frees up memory blocks allocated by GetMem. If you
no longer need to use a particular memory block, it is a good idea to free the
memory. Otherwise, the program can use up all of the available memory over
time. The FreeMem procedure takes the same parameters that GetMem does.
Make sure that the size you specify in FreeMem matches the size allocated with
GetMem.

Table 11.1 summarizes the procedures provided by QuickPascal for use with
pointers.

Table 11.1 Pointer Procedures

Routine Purpose Example

Addr Returns the address of a data ob­
ject (same as the @ operator)

aptr : = Addr (I) ;

Dispose Disposes of a dynamic variable Dispose(nextptr);
FreeMem Disposes of a dynamic variable of

given size in bytes
FreeMem (aptr, 512);

GetMem Creates a dynamic variable of a
given size in bytes

GetMem (aptr, 512);

New Creates a dynamic variable New(aptr);

pcjs.org

138 Pascal by Example

11.3 Linked Lists
Stacks, queues, and trees are data structures that are linked lists. A “linked list”
is a collection of dynamically allocated records, each having a field that is a
pointer to the next record. Essentially, the pointers serve as the connectors be­
tween any two items. By altering the value of the pointers, you can sort or
reorganize the list in any way—without physically moving any of the stored
records.

If your program implements a straightforward algorithm, you do not need to use
these data structures. However, these structures give you a great deal of power to
solve complex computing tasks. They can grow to any size, and they let the pro­
gram traverse, analyze, and restructure a network of data paths. The only limit to
the complexity is your own imagination.

The LIST.PAS program adds records to a list, deletes them, and prints the con­
tents of the list. The data is stored in a record declared as:

TYPE
rec_ptr = /'stack_rec;
stack_rec = RECORD

data : Integer;
next_rec : rec_ptr;
END;

Note that the second field of type stack_rec points to another record—also
of type stack_rec. Though this self reference may seem paradoxical, it is
perfectly legal. It simply means that the second field is the connector to another
record of the same type. The data field contains the data to be stored. For
more complex programs, the record could have any number of appropriate data
fields.

To create a list, first declare a pointer to the start of the list and initialize this
pointer to NIL:

VAR
stack_ptr : rec_ptr;

BEGIN
stack_ptr := NIL;

The program has two major procedures, push and pop. These procedures
model the behavior of the PUSH and POP instructions of the processor. The
linked list in this program is a last-in, first-out mechanism, just like the stack of
the 8086 microprocessor. The push procedure adds items to the front of the
list, and pop removes these items from the front as well. Therefore, the last
item stored is also the first item retrieved.

pcjs.org

Pointers and Dynamic Memory 139

The code in the push procedure inserts a new record at the front of the list and
then assigns the new value (x) to the data field. These actions simulate the ac­
tion of pushing x onto the top of a stack.

VAR
temp : rec_ptr;

BEGIN
New(temp);
temp”,next_rec := stack_ptr;
stack_ptr := temp;
stack_ptr”.data := x;

END;

The above lines of code show the four steps required for the push procedure to
add a new record to the linked list. These four steps are listed below:

1. The first statement, New (temp), allocates a memory location large
enough to hold a record with the fields data and next_rec. The pointer
temp now points to this new record.

2. To insert this record at the front of the list, the code reassigns two pointer
values. First, the procedure sets the next_rec field to point to the current
item at the front of the list. The pointer variable stack_pt r points to the
front of the list, so the following line of code assigns the value stack_ptr
to the next_rec field of the new record (the new record is referred to as
temp”).

temp”.next_rec := stack_ptr;
3. Next, the pointer stack_ptr must be reassigned to temp. The result is

that the item previously at the front of the list is now the second item (be­
cause of step 2), and the new record is at the very front.

4. Now that the new record has been created and inserted, you can simply load
the new data into the record. The following statement assigns the value of x
to the data field of the new record. Note that because of step 3, the new re­
cord can be referred to as s t a c k_pt r ”.

stack_ptr”.data := x;

pcjs.org

140 Pascal by Example

Note that temp still points to the new record, but now temp can be
ignored because stack_ptr also points to this record.

Figure 11.1 illustrates the push procedure.

The pop procedure works by executing the series of steps in reverse, as shown
in the code below:

z := stack-Ptr*.data;
temp := stack_ptr;
stack_ptr := stack_ptrA.next_rec;
Dispose(temp);

1. The procedure pops the value off the top of the stack by saving the value in
the data field of the first record. The following statement saves this value
by loading it into z, the output value of the procedure.

z := stack_ptr/'.data;
2. Note that the current record at the front of the list must be deleted. The

pointer temp points to this record, so that the procedure can use temp
to delete the record later on.

temp := stack_ptr;
3. Then the pointer to the top of the stack, stack_ptr, is moved so it points

to stack_ptrA . next_rec. Note that stack j>tr points to the top
record in the list, which is a record with two fields: the data field and the
next_rec field. The next_rec field in that top record currently points
to the next record in the list. The statement

stack_ptr := stack_ptrA.next_rec;
moves stack_ptr to point to the same record that stack_j>try' .next
_rec is pointing to. By assigning stack_ptr to point to the same record
to which the top record was pointing, there is now no pointer in the list point­
ing to the record that was on top. The record has been removed from the list.

pcjs.org

Pointers and Dynamic Memory 141

Initial Condition

Step 1 New (temp) ;

data

temp _r next rec

Step 2 temp''. next_rec :=stack_ptr;

Step 3 stack_ptr:=temp;

Step 4 stack_ptrA . data :=x;

NIL

NIL

Figure 11.1 The Push Procedure

pcjs.org

142 Pascal by Example

4. The old record at the front of the list, pointed to by temp, is now deleted
from memory.

Dispose(temp);
Figure 11.2 illustrates the pop procedure.

Step 1 z : = stac^ptr* . data;

Step 2 temp := stack_ptr;

NIL

Step 3 stack_ptr := stac^ptr'' . next_rec;

Step 4 Dispose (temp);

stack_ptr —

1 1 data
1 1 "

next rec
L _l

NIL

NIL

Figure 11.2 The Pop Procedure

pcjs.org

Pointers and Dynamic Memory 143

11.4 Binary Trees
Binary trees are one of the many types of tree structures that can be created with
pointer variables. Binary trees are more complex than the linked lists described
in the previous section. Each record (called a “node”) has not one, but two point­
ers. Each of these pointers connects the node to two other nodes (called “child­
ren”)—one on its left and one on its right.

Figure 11.3 shows a sample binary tree. As you can see, a left child always con­
tains a smaller value than the “parent node,” and the right child contains a value
larger than the parent node. Moreover, the entire subtree of a given node con­
tains smaller values than the parent, if on the left side, or larger values than the
parent, if on the right side. This organization permits efficient searching for any
value in the tree.

Root Node

Figure 11.3 A Binary Tree

This sample binary tree contains only simple arithmetic nodes. However, you
can create binary trees containing any kind of information (as long as each node
is the same type). You can also organize or sort items in the tree using a variety
of methods.

pcjs.org

144 Pascal by Example

To build a binary tree, first declare the following types:

TYPE
node_ptr = Anode;
node = RECORD

left,
right : node_ptr;
data : Word;
END;

Similar to the record type of a linked list, the Node type contains pointers that
point to other records of the same type. If the node currently lacks a left or right
child, the corresponding pointer field should be initialized to NIL.

To create a tree, first declare a pointer to the start of the tree and initialize this
pointer to NIL, as shown below. Although no node currently exists in the tree,
one will be inserted eventually. The first node will become the original ancestor
of all other nodes in the tree.

VAR
root_ptr : node_ptr;

BEGIN
root_ptr := NIL;

You can start building the tree by inserting values, which can be generated in a
number of ways—standard input, a data file, or with the Random function. Each
time you get a value, add it to the tree by using the following five steps:

1. Examine root_pt r, the pointer to the first node of the tree. The expres­
sion root_pt r A is equivalent to the first node, if one exists. If no node
exists, root_ptr is equal to NIL.

2. If the pointer is NIL, add a new record and assign the pointer to point to this
record. Load the data field of the new record with the value to be added.

3. If the pointer is not NIL, then a node exists and must be compared to the new
value. Compare the value to the data field of the node.

4. If the new value is less than the one at the node, use the left field as the
new pointer value, and go to step 2.

5. If the new value is greater than the one at the node, use the right field as
the new pointer value, and go to step 2.

You can use a recursive procedure to implement these steps. Linked lists and
trees are often good subjects for recursive solutions. As explained in Chapter 3,
“Procedures and Functions,” a “recursive” procedure presents a simplified algo­
rithm by calling itself repeatedly. In the case of binary trees, a recursive proce­
dure traces left and right branches repeatedly until it finds a matching value at
the end of the tree.

pcjs.org

Pointers and Dynamic Memory 145

In the case of the steps discussed above, you initially call the procedure by pass­
ing the value you want to insert and root_pt r as arguments. The procedure
calls itself to trace the left or right subtree, each time passing the left or
right field as the pointer argument, as follows:

PROCEDURE insert(x : Integer; VAR ptr : node_ptr);
BEGIN

IF (ptr = NIL) THEN
create_node(x, ptr)

ELSE IF (x <ptr/'.data) THEN
insert(x, ptr".left)

ELSE
insert(x, ptr".right);

END;

Notice how short the above procedure is. The actual work of inserting the node
is the last step of the process, and it is carried out by a separate procedure written
just for that purpose:

PROCEDURE create_node(x : Integer; VAR ptr : node_ptr);
BEGIN

New(ptr) ;
ptr".data := x;
ptr".left := NIL;
ptr".right := NIL;

END;

The initialization of the left and right fields to NIL is critical. Otherwise,
the insert procedure produces unpredictable results when it reaches the end
of the tree and attempts a comparison. The procedures above effectively use NIL
as the end-of-the-tree indicator.

pcjs.org

CHAPTER 12 10 147

Advanced Topics IjL
This chapter gives you a look inside QuickPascal. You can accomplish
most any standard programming task by using the techniques presented
in prior chapters. This chapter helps you deal with special situations, such
as running out of dynamic memory, analyzing internal data formats, and
linking to assembly language.

The bitwise operators are of special interest to assembly-language pro­
grammers, but are useful even if you don’t use assembly language. You
can use the bitwise operators to mask out bits within an integer, manipu­
late individual bits, or test a variable to see which bits are on.

After presenting the bitwise operators, the chapter shows a general pic­
ture of how QuickPascal organizes memory. Then the chapter illustrates
internal data formats and explains how to link to assembly language.

12.1 The Bitwise Operators
You can access and manipulate bits by using the standard Boolean operators and
the shift operators.

The logical operators NOT, AND, OR, and XOR work as bitwise operators when
you use them with integer types. Bitwise operations take two data items of the
same size and compare each bit in one operand to the corresponding bit in the
other. For example, consider the following statement:

Result := $FF00 AND $9055;

pcjs.org

148 Pascal by Example

QuickPascal implements this statement by comparing each bit in the constant
$FF00 to each corresponding bit in the constant $9055. The AND operator sets
a bit in the result to 1, if and only if the corresponding bits in both operands have
a value of 1:

AND
$FF00 = 1111
$90FF = 1001

1111
0000

0000
1111

0000
1111

Result $9000 = 1001 0000 0000 0000

The result of the operation is $ 9 0 0 0. In the example above, using the AND
operator with the constant $FF00 in effect masks out the low 8 bits of a 16-bit
integer. You can create other constants to selectively mask out any combination
of bits. For example, you can use the AND operator to test whether a value is a
multiple of four by masking out all but the lowest two bits and determining
whether the result is zero:

IF (x AND $0003 = 0) THEN
Writelnt 'x is multiple of 4.');

Conversely, you can use the OR operator to set specific bits to 1. All of the
bitwise operators work in a similar way. The following list shows how each
operator works:

Operator Sets a bit to 1 if:

NOT The corresponding bit in operand is 0. (This opera­
tor takes just one operand.)

AND Both corresponding bits in the operands have the
value 1.

OR Either one of the corresponding bits in the operand
has the value 1.

Either one, but not both, of the corresponding bits
has the value 1.

XOR

pcjs.org

Advanced Topics 149

The AND, OR, and XOR operators all take two operands each. With each of
these operators, the two integers you specify must be of the same type. For all
the bitwise operators, the integer operands may be 8,16, or 32 bits long. (Thus,
operations with Longlnt types are valid.)

The SHL and SHR operators take an integer operand and move the bits by the
number of positions specified by the second operand. For example, the binary
number for 12 is

$0C = 00001100

When you execute the statement 12 SHR 2, each of the bits is moved two posi­
tions to the right, and the result looks like this:

$03 = 00000011

The result of the shift is the number 3. Note that shifting right by two is equiv­
alent to dividing by 4. Left and right shifts are equivalent to multiplying and
dividing by a power of two.

The general syntaxes for SHL and SHR are

IntVar SHL NumPositions
IntVar SHR NumPositions

The result is always of the same type as IntVar. The NumPositions argument de­
termines the number of bit positions to shift. If this number is equal to or larger
than the number of bits in IntVar, the result is always zero.

12.2 QuickPascal Memory Map
The memory map described in this section shows how a QuickPascal program
uses memory. This information can help you develop strategies for very large
programs that may run out of memory quickly.

pcjs.org

150 Pascal by Example

When you execute a QuickPascal program, it uses all available memory (subject
to the limits imposed by the {$M} compiler directive as described below). Figure
12.1 shows the general layout of memory in a QuickPascal program, and the rest
of the section explains the meaning of items in this layout.

Top of DOS Memory

Free List (grows downwards)

Free Memory

Heap (grows upwards)

Stack (grows downwards)

Free Stack

Global Variables

Typed Constants

System Unit Code Segment

First Unit Code Segment
Contents of an

executable--
file image

Other Unit Code Segments

Last Unit Code Segment

Main Program Code Segment

Program Segment Prefix (PSP)

Free_Ptr

HeapPtr

HeapOrg

SSeg:SPtr

SSeg:0000

DSegiOOOO

PrefixSeg

Figure 12.1 QuickPascal Memory Map

The solid lines in Figure 12.1 show demarcations between segments. A “seg­
ment” is an area of memory that can be up to 64K in length. Thus, as you can
see from Figure 12.1, the code segment of the main program can never be more
than 64K. However, for very large programs, you can surpass the 64K limit by
simply adding additional units. The amount of code for each unit can be as large
as 64K.

All global variables and typed constants are placed in a single segment. Thus,
the total size of these data items cannot exceed 64K across all units.

pcjs.org

Advanced Topics 151

The stack is placed in its own segment. You can set the stack size with the {$M}
compiler directive. Increasing the stack lets the program accommodate more pro­
cedure calls, but may take away from memory available for the heap. (See Ap­
pendix B, “Compiler Directives.”)

The heap consists of the rest of available RAM, unless you use the {$M} com­
piler directive to set maximum heap size. The heap contains all dynamic varia­
bles allocated through calls to New or GetMem. If you know in advance that
your program must have a certain amount of heap space to run properly, you can
use the {$M} compiler directive to specify a minimum heap size. DOS will not
load the program unless it can allocate enough memory for the requested min­
imum heap size.

Certain variables appear in the QuickPascal memory map. These are public vari­
ables declared in the System unit, and your program can access them at any time
(no special declaration is needed to use the System unit).

The following list describes the public variables appearing in the memory map:

Variable

FreePtr

HeapPtr

HeapOrg

PrefixSeg

Description

Pointer to beginning of “free list,” (as described
in Section 12.3). The free list is a series of records
that describes the size and location of free mem­
ory blocks inside the heap. As the free list grows,
FreePtr decreases because the free list grows
downward.

Pointer to top of heap. As the amount of space
needed by dynamic variables increases, HeapPtr
increases. It decreases only when memory is freed
from the top of the heap.

Pointer to beginning of heap. This variable has the
generic type POINTER, as do the other pointers de­
clared in the System unit. You cannot dereference
pointers of this type, but you can assign the value of
such a pointer to any other pointer, regardless of
type.

Word variable containing segment address of Pro­
gram Segment Prefix (PSP). When DOS loads your
program, it constructs the PSP to store command­
line arguments, interrupt vectors, and other informa­
tion. See the MS-DOS Programmer's Reference or
MS-DOS Encyclopedia for more information.

pcjs.org

152 Pascal by Example

12.3 Managing the Heap
The simplest way to create dynamic variables is to make calls to New and
GetMem. In small programs, you can generally call these procedures without
worrying about how the heap is managed. However, if your programs make
heavy use of dynamic memory, you can sometimes avoid running out of
memory by knowing how the heap works.

The basic model of the heap is simple. Initially, the New and GetMem proce­
dures simply increment HeapPtr by the size of the memory block you request
and return a pointer to the beginning of the block.

The structure of the heap becomes more complicated when you start freeing
blocks of memory. If you free memory at the current top of the heap, HeapPtr is
decreased by the amount of memory freed. More often, however, the block to be
freed is somewhere in the middle of the heap. In this case, the free-memory pro­
cedure (Dispose or FreeMem) adds a record to the free list to record the exist­
ence of the freed block.

The free block is then like a hole in the middle of the heap. The next time you re­
quest memory, the allocation procedure attempts to allocate memory from a free
block if it can. Furthermore, if a block is freed adjacent to an existing free block,
the two blocks form one larger free block, and the free list is updated to reflect
this fact.

The maximum number of free blocks that Pascal programs can maintain is
8,192. Programs rarely reach this limit. However, you can use a variety of tech­
niques to manage the heap, each of which is explained in a section below:

■ Use the Mark and Release functions to free memory efficiently

■ Determine the amount of heap space left and the number of records in the
free list

■ Set the FreeMin variable to prevent a deadlock between the heap and the
free list

■ Write a customized HeapError function to control how the program
responds when you run out of heap space (the default action is to abort
execution)

12.3.1 Using Mark and Release to Free Memory
The Mark and Release procedures provide a simpler and more efficient way to
free memory than Dispose or FreeMem. However, the use of Mark and
Release requires that you release memory in the reverse order to that in which
you allocated it. Not all programs can adhere to this requirement.

pcjs.org

Advanced Topics 153

The Mark procedure sets a pointer to point to the current top of the heap. The
pointer can have any base type. Then if you allocate more dynamic memory, the
new memory is higher in memory than the marked location (because the heap
grows upward).

The Release procedure takes a single pointer as an argument, just as Mark does,
and releases all dynamic memory above the pointer. In other words, it releases
all memory allocated after the Mark procedure was called. The Release proce­
dure basically works by setting HeapPtr to the value of the pointer argument.

For example, the following code allocates five dynamic variables:

New(PtrA) ;
New(PtrB);
Mark(Ptrs);
New(PtrC);
New(PtrD);

The next line of code releases the pointers declared after the Mark (Ptrs)
statement. Specifically, it frees the memory pointed to by PtrC and PtrD:
Release (Ptrs);

Mark and Release impose significant limitations on program logic because they
do not let you randomly free any block of memory; you can only free contiguous
blocks at die top of the heap. However, if you use these procedures, you have
none of the problems that sometimes occur with a free list.

Note that the Mark and Release procedures are not compatible with Dispose
and FreeMem. Once you use one of the latter two procedures, you should not
call Release.

12.3.2 Determining Free Memory and Size of the Free List
Two functions let you determine the amount of free memory available:

■ The MemAvail function returns the total number of free bytes in the heap.

■ The MaxAvail function returns the size of the largest single free block in the
heap—in other words, the largest amount of memory that you can success­
fully request.

Generally, the MaxAvail function is the more useful of the two functions, since
it lets you know whether any given call to New or GetMem will be successful.
Both the MemAvail and MaxAvail functions return a Longlnt result, and
neither takes any parameters.

pcjs.org

154 Pascal by Example

Determining the size of the free list also helps you discover if you are going to
run out of memory. The free list is declared as follows:

TYPE
FreeRec = RECORD

OrgPtr, EndPtr : Pointer;
END;

FreeList = ARRAY [0..8190] OF FreeRec;
FreeListP = "FreeList;

Each record in the free list defines a single free memory block; the OrgPtr
and EndPtr fields define the beginning and ending address, respectively, of
the block. EndPtr points to the first byte after the end of the block. You can
calculate the number of free blocks recorded in the free list by using the follow­
ing statement:

free_blocks := (8192 - Ofs(FreePtr") DIV 8) MOD 8192;

When the offset portion of the address in FreePtr is 0, the free list is empty. As
a free block is added to the list, FreePtr decreases by eight bytes, and the free
list also grows downward by eight.

12.3.3 Preventing Deadlock with the Free List
If the top of the heap is very close to the bottom of the free list, then deadlock
can occur when you try to free blocks of memory. If the blocks to be freed are at
the top of the heap, there is no problem. Otherwise, the free list is blocked from
expanding.

This problem always causes a run-time error. You can neither allocate new
dynamic memory nor free any existing memory. The only way to prevent this
situation is to set a minimum amount of space between the locations pointed to
by HeapPtr and FreePtr.

The FreeMin system variable sets the minimum free memory space (between
the top of the heap and bottom of the free list). This variable has type Word and
represents a distance in bytes. The New and FreeMem procedures will not allo­
cate a block of memory if doing so would make the space between the heap and
the free list fall below FreeMin. The Mem Avail and MaxAvail functions also
take FreeMin into account by subtracting it from the free memory area.

12.3.4 Writing a Heap-Error Function
By default, the New and GetMem procedures simply abort program execution
when they cannot return a memory block of the requested size. However, you
can create a customized function to respond to heap errors.

pcjs.org

Advanced Topics 155

Your heap-error function is called by New and GetMem as needed, and it can
return one of three values:

Value Meaning

0 Failure; abort program

1 Failure; return the NIL pointer value to the caller of
New or GetMem, but do not abort program

2 Memory successfully freed; authorize New or
GetMem to retry

Your function should return the value 2 only if it was able to find a disposable
dynamic variable in your program and free the necessary memory. If the func­
tion returns 2 without freeing memory first, then it will be called again.

To create a heap-error function, first declare a function similar to the one below:

($F+}
FUNCTION heap_err(size : Word) : Integer;
($F-}
BEGIN

{ Cause FreeMem to return NIL but continue execution }
heap_err := 1;

END;

You can give the function any name you want and supply any statements in the
body of the function. However, the rest of the declaration should be the same. In
particular, the {$F+} compiler directive is necessary to make sure the function is
compiled for far calls. The single parameter of type Word gives the size of the
memory block that New or GetMem failed to allocate.

After declaring your heap-error function, set the HeapError system variable to
point to your function:

HeapError := @heap_err;

12.4 Internal Data Formats
Knowledge of internal data formats is useful if you want to write assembly-
language procedures that access data from QuickPascal programs. Furthermore,
you can use this knowledge to help determine what data types most efficiently
store information for a given program.

Section 12.4.1 describes the data formats for all types except floating-point num­
bers. The floating-point data types are described separately in Section 12.4.2, be­
cause of their complexity.

pcjs.org

156 Pascal by Example

12.4.1 Non-Floating-Point Data Types
The list that follows describes the internal formats of most data types, including
structured variables such as arrays and records. Note that any given type is
stored the same way, whether it is a simple variable or part of a record.

Where an integer value is designated as signed, QuickPascal uses the two’s com­
plement format for storing negative numbers. This format represents the nega­
tive of a number by logically negating each bit (as is done by the NOT operator)
and then adding 1. For example, since 00000011 represents 3, then 11111100 is
the logical negation, and 11111101 is the two’s complement of 3.

Therefore, if you declare a Byte constant as -3, QuickPascal stores this value as
11111101. Generally speaking, you never have to carry out two’s-complement
conversion yourself. It is simply an internal format understood by both Quick­
Pascal and the 8086 family of processors.

As a consequence, all nonnegative numbers have 0 in the most significant bit; all
negative numbers have 1 in the most significant bit. The unsigned formats do not
consider any number to be negative.

Data Type

Char

Byte

Integer

Word

Longlnt

Comp

Boolean

Internal Format

An unsigned byte. (Values range from 0 to 255.)

A signed byte. (Values range from -128 to 127.)

A signed word. (Values range from -32768 to
32767.)

An unsigned word. (Values range from 0 to 65535.)

A signed double word. (Values range from
-2147483648 to 2147483647.)

A signed eight-byte integer. If the most-significant
bit is 1 and the other bits are all 0, this type has the
special value NAN (Not a Number). Note that with
the {N+} directive, QuickPascal uses the 8087 co­
processor, if installed, to do calculations with
Comp types.

A byte assuming the value 0 (False) or 1 (True).

pcjs.org

Advanced Topics 157

Enumerated types

STRING types

CSTRING

SET types

ARRAY types

RECORD types

Pointer types

Stored as an unsigned byte if the type can assume
256 values or fewer. Otherwise, the enumerated
type is stored as an unsigned word. The first item in
an enumerated-type definition corresponds to the
value 0, and the rest are numbered sequentially in
the order given.

A sequence of bytes in which the first byte stores
the current length of the string (which may be less
than its maximum length), and the rest of the bytes
store the string data. QuickPascal allocates enough
space for a string’s maximum length plus one addi­
tional byte (for the length indicator). The generic
STRING type is equivalent to STRING [255],
which has the maximum limit.

Similar to STRING types, except that the first byte
is not a length indicator, and the string data includes
a terminating null byte. Maximum limit is 255 +
null bytes. The generic CSTRING type defaults to
this length.

Stored as a bit array, in which each bit corresponds
to a specific element. If a bit is on, then the corre­
sponding element is present. QuickPascal allocates
one byte for each element, up to a maximum of 32
bytes (256 elements). Elements within a set are
stored in order of their ordinal value, in which the
first element is stored in the least-significant bit.

Elements of the array are stored contiguously in
memory, starting from the lowest-indexed com­
ponent and going in sequence to the highest. In
multidimensional arrays, the rightmost index
changes fastest. Thus, in the array declared as
Grid [Rows, Cols], all elements for an entire
row are stored next to each other in memory.

A sequence of variables stored contiguously in
memory (the fields appear in memory in the same
order they do in source code). With variant records,
each variant case starts at the same address.

A double word that contains the offset address in
the low word and the segment address in the high
word. The special value NIL is a generic pointer
containing the value zero.

pcjs.org

158 Pascal by Example

12.4.2 Floating-Point Data Types
Figure 12.2 displays the formats used to represent floating-point numbers of
different levels of precision. QuickPascal uses these data formats whether or not
a math coprocessor is installed. If a coprocessor is not installed, then Quick-
Pascal provides procedures to execute floating-point calculations. In cases of
rounding, these procedures are not guaranteed to produce precisely the same re­
sults as a coprocessor.

Real Type
Width 1 39 8

s t e

Bits 47 0

Single Type
Width 1 8 23

s e f

Bits 31 0

Double Type
Width 1 ii 52

s e f

Bits 63 0

Extended Type
Width 1 15 1 63

s e i f

Bits 79 0

Comp Type
Width 1 63

s d

Bits 63 0

Figure 12.2 QuickPascal Data Formats

pcjs.org

Advanced Topics 159

With each of the formats illustrated in Figure 12.2, the sign bit (s) indicates a
negative number if on, and a nonnegative number if off. The fractional part (f)
indicates the fractional part of the mantissa. To save space, the data formats all
assume that the units’ digit in the mantissa is equal to 1. Finally, the exponent is
adjusted downward by a different number for each format. This means that for
the four-byte Single type, the value represented is equal to
-l(s)* l.f * 2(e-127)

For example, assume a variable of this type contains the following values:

s = 0
e = 127 decimal
f = 11110100000000000000000 binary

The value of the variable is 1.111101 binary. Note that (in contrast to Figure
12.2 and the example above) data storage on 8086 processors actually runs from
least-significant bit (stored lowest in memory) to most-significant bit. This fact
may make bytes appear to be backward if you use a debugging tool to dump a
word at a time.

The exponents are automatically reduced by 129 for the six-byte Real format, by
1,023 for the Double format, and by 16,383 for the Extended format. This auto­
matic reduction lets the exponent field represent a negative number (producing a
floating-point value between 1 and -1).

In each format, if all bits are set to zero, then the resulting floating-point number
is equal to zero.

12.5 Linking to Assembly Language
You can link QuickPascal programs to modules written with the Microsoft
Macro Assembler and other assemblers. However, be forewarned that Quick-
Pascal has a number of conventions and restrictions that differ from other
Microsoft languages. When you write an assembly-language procedure to link
to QuickPascal, your assembly-language module can include

■ Procedures and functions that the main program can call

■ References to global variables or data from a unit declared in an
INTERFACE statement

■ Static data that is private to your assembly-language module

However, the assembly-language module cannot declare public data for the
QuickPascal code to reference. Furthermore, an assembly-language module must
place all instructions in a single segment named CODE, and cannot use the
GROUP directive. (Segment conventions are described in Section 12.5.2.)

pcjs.org

160 Pascal by Example

Sections 12.5.1-12.5.6 list steps for writing an assembly-language module,
in roughly the order that you would observe them in writing the code. You
should read all of these sections carefully before attempting to write an as­
sembly-language procedure (although the section on return values is optional
and applies only when you write a function). Section 12.5.7 has a simple, but
complete, example.

12.5.1 Setting Up a Link to Assembly Language
To link to assembly language, you must write an EXTERNAL declaration for
each assembly-language procedure you’re going to call and use the {$L} com­
piler directive to link in the object file.

To write an EXTERNAL declaration, simply write a procedure or function
heading as you would normally and follow the heading with the keyword
EXTERNAL as shown below:

FUNCTION computet a, b, c: Integer) : Integer; EXTERNAL;
PROCEDURE switcheroof VAR a, b, c : Byte); EXTERNAL;

Place the {$L> compiler directive at the beginning of your QuickPascal main pro­
gram. The {$L} directive takes a single argument: the base file name of an object
file. Note that you do not use LINK or any other utility to produce a program. In­
stead, QuickPascal sets up the link by copying the object file into the program
and changing the file into its own internal object-code format. (The disk-based
copy of the object file is not affected, however.)

12.5.2 Segment and Data Conventions
Observe the following conventions when declaring segments and data:

■ Place all executable statements in a segment named CODE or CSEG. Place
all data declarations in a segment named DATA or DSEG. All other seg­
ments are ignored, as are group statements.

■ The segments can have the BYTE or WORD align type, but QuickPascal will
always give segments word alignment.

■ Do not specify class names.

■ Declare PUBLIC each procedure that you want to call from QuickPascal.
However, QuickPascal ignores any PUBLIC data declarations.

pcjs.org

Advanced Topics 161

m Do not initialize variables in the DATA segment. (Variables must be initial­
ized with instructions.)

■ You can access data declared by the main program (or declared in an
INTERFACE statement) by declaring it with the EXTRN directive. However,
you cannot use the HIGH or LOW operators with external data. See Section
12.4, “Internal Data Formats,” for information on how to evaluate each data
type.

12.5.3 Entering the Procedure
The entry sequence for QuickPascal procedures is the same as that for other
Microsoft languages. The first two instructions set up the BP register as the
“framepointer,” which points to the stack area of the current procedure. All para­
meters and local variables are available through BP:

push bp
mov bp, sp
sub sp, local_size

In the code above, local_size is a placeholder for the total size of local pa­
rameters you wish to use. This last step is entirely optional. Your procedure may
be able to use registers to hold all temporary values. If not, you can use locations
on the stack to hold data. (Specifically, these locations are below the address
pointed to by BP, but no more than local_size bytes below this address.)

Procedures called by QuickPascal must preserve the values of the BP, SP, SS,
and DS registers. BP and SP are preserved by the standard entry and exit code. If
you need to alter DS or SS, you must push their values onto the stack and pop
them just before returning as shown below:

push bp
mov bp, sp
sub sp, local
push ds

12.5.4 Accessing Parameters
All parameters and local variables are accessed as indirect memory operands
using the BP register. To determine the location of each parameter, you need to
understand the QuickPascal calling conventions. This section summarizes those
conventions and gives some examples with specific procedures.

pcjs.org

162 Pascal by Example

QuickPascal pushes each parameter onto the stack—in the order that the parame­
ters appear in the source code—before making the actual call. Consequently, the
first parameter is highest in memory. (Recall that the stack grows downward.)
You can pass parameters by value or by reference. In Pascal, VAR parameters
are passed by reference; other parameters are passed by value.

When a parameter is passed by reference, QuickPascal pushes a four-byte
pointer to the data. The offset portion of the pointer is always pushed first and is
therefore higher in memory.

When a parameter is passed by value, Pascal takes different actions depending
on the data type:

■ If the value parameter is Char, Boolean, any Pointer, any integer, or any
floating-point type, QuickPascal pushes the parameter onto the stack.

■ If the parameter is a string or set type, QuickPascal passes a pointer to the
data. This action is really the same as passing by reference. If you want to
avoid any possibility of altering the data, make a temporary copy of the data,
then work with the temporary copy. (QuickPascal procedures use this
technique.)

■ If the parameter is an array or record type, QuickPascal pushes the variable
directly onto the stack if it is no more than four bytes long. Otherwise, it
pushes a pointer to the data.

This calling convention for value parameters is not shared by other Microsoft
high-level languages, which always push a value parameter directly onto the
stack.

Note that the PUSH instruction can push only one word of data at a time. Quick­
Pascal always pushes the most-significant portion first, consistent with the 8086-
processor convention that the most-significant portion is stored highest in
memory.

As noted in the next section, the QuickPascal code sometimes places an extra
parameter on the stack for functions. (This extra parameter is a pointer to the
location of the return value.)

Finally, the QuickPascal code calls the procedure with a CALL instruction. Calls
to external procedures are always far, so you should declare your assembly pro­
cedure with the FAR keyword.

As an example, consider the following procedure call:

PROCEDURE quad(VAR x : Real; a, b, c : Integer); EXTERNAL;

quad(result, 2, 3, 4);

pcjs.org

Advanced Topics 163

QuickPascal implements the call by placing the following items on the stack,
and in this order:

1. The segment address of result

2. The offset address of result

3. The value 2 (as a word)

4. The value 3

5. The value 4

6. The segment of the return address (the address to return to when done)

7. The offset of the return address

A far CALL instruction places the last item, the return address, on the stack.
After you perform the entry sequence, the BP register points to the location just
below the return address. Each parameter can then be accessed with the follow­
ing equates:

result EQU < [BP + 12] >
a EQU < [BP + 10] >
b EQU < [BP + 8]>
c EQU < [BP + 6]>

As another example, consider the procedure call

PROCEDURE repeat_it(num : Longlnt;
stuff : STRING); EXTERNAL;

repeat_it(n, 'This is a message.');

With this procedure, QuickPascal implements the call by placing the following
items on the stack:

1. The most-significant word of the long integer n

2. The least-significant word of n

3. The segment address of the string data

4. The offset address of the string data

5. The segment of the return address

6. The offset of the return address

pcjs.org

164 Pascal by Example

A far CALL instruction places the last two items on the stack. After writing the
entry sequence, you can access the parameters with the following equates:

num EQU <[BP + 10]>
stuff EQU <[BP + 6]>

12.5.5 Returning a Value
This section affects functions only. From the standpoint of assembly code, func­
tions are just procedures that have a return value. To return a value to Quick-
Pascal code, follow these conventions:

■ For a six-byte Real type, place the result in DX:BX:AX, in which DX holds
the most-significant word and AX the least.

■ For a string, CSTRING, Comp, or floating-point type other than Real, Quick-
Pascal passes an additional parameter. This parameter is pushed first and is a
pointer to a temporary storage location. Place the result of the function in this
location.

■ For ordinal types (including Char, Boolean, and any integer), place the re­
sult in AL if one byte, AX if two bytes, and DX:AX if a double word (in
which DX holds the most-significant byte).

■ QuickPascal does not support functions that return array or record types.
(However, you can set the value of an array or record if QuickPascal passes
it as a VAR parameter.)

12.5.6 Exiting the Procedure
To exit the procedure, first pop any registers you preserved on the stack. Then
write the following instructions:

mov sp,bp
pop bp
ret param_size

In the code given above, param_size is a placeholder for the total size of
parameters in your procedure. This last instruction is necessary to completely
restore the stack.

pcjs.org

Advanced Topics 165

12.5.7 A Complete Example
The following example of linking QuickPascal programs to modules written in
assembly language is simple, but complete. The Pascal source code contains the
following statements:

{$L SWITCH }
PROCEDURE switch(VAR a, b : Word); EXTERNAL;

switch(x, y);

Since the parameters are VAR parameters, QuickPascal passes pointers to the
parameters. Then, the assembly code must use indirect register operands to
access the data. The following procedure exchanges the values of the two
variables.

; SWITCH.ASM

CODE SEGMENT WORD PUBLIC

ASSUME CS:CODE

PUBLIC switch ; Make procedure public

a EQU < [BP + 10] > ; Parameters for switch
b EQU < [BP + 6] > ; procedure

switch PROC FAR
push bp ; Entry sequence
mov bp, sp
push ds

Ids si, a ; Load ptr into ds:si
les di, b ; Load ptr into es:di
mov bx, es:[di] ; temp = b
xchg bx, [si] ; Switch temp and a
xchg bx, es:[di] ; Switch temp and b

pop ds
mov sp, bp ; Exit sequence
pop bp
ret 8 ; Total of 8 bytes in

; parameters
switch ENDP

pcjs.org

—— PART 3

Graphics and Objects

pcjs.org

pcjs.org

PART3

Graphics and Objects
Part 3 of Pascal by Example covers QuickPascal support of
graphics, fonts, and object-oriented programming. Each of these
topics requires a moderate degree of experience with Pascal. You
need to be comfortable with all of the topics in Part 1 and may find
familiarity with Part 2 helpful.

The graphics and fonts chapters show you how to use the Quick-
Pascal graphics unit to create colorful and informative screen dis-
plays. The chapter on object-oriented programming introduces the
fundamental concepts of programming with objects and how to
implement those concepts in QuickPascal.

pcjs.org

CHAPTERS

13 Using Graphics .. 171

14 Using Fonts...215

15 Object-Oriented Programming.................................. 225

pcjs.org

CHAPTER 13 IQ 171

Using Graphics 10
This chapter explains how to call graphics routines that set points, draw
lines, change colors, and draw shapes such as rectangles and circles. The
first section describes the general structure of any graphics program, de­
fines important graphics terms, and works through an example program
step by step, showing how to use the basic routines. Subsequent sections
explain video modes, coordinate systems, and animation.

To run any graphics programs, your computer must have graphics capa­
bility. The QuickPascal graphics facility supports the Color Graphics
Adapter (CGA), the Enhanced Graphics Adapter (EGA), and the Video
Graphics Adapter (VGA) video modes available on IBM® and IBM-
compatible computers. The graphics facility also supports the Olivetti®
(and AT&T®) enhanced video modes and the Hercules® monochrome
graphics mode.

This chapter discusses the techniques for writing graphics programs but
does not cover every graphics procedure and function (there are more
than 75). You can explore additional topics by using the QP Advisor and
the example programs. Be sure to check the README.DOC file for any
last-minute changes or additions.

13.1 Getting Started with Graphics
The subject of graphics and color display on computers is fairly complex. This
chapter and the next one, “Using Fonts,” provide an introduction to graphics and
fonts. The next sections cover common graphics terms and list sources for more
information on graphics.

pcjs.org

172 Pascal by Example

13.1.1 Graphics Terms
There are several concepts you need to know before you can create graphics pro­
grams. The following list explains the most useful terms:

■ The “x axis” determines the horizontal position on the screen. The “origin”
(point 0,0) is in the upper left comer. The maximum number of horizontal
“pixels” (picture elements) varies from 320 to 640 to 720, depending on the
graphics card installed and the graphics mode in effect.

■ The “y axis” is the vertical position on the screen. The origin is the upper left
comer. The number of vertical pixels ranges from 200 to 480.

■ Each graphics mode offers a “palette” from which you may choose the colors
to be displayed. You may have access to 2,4, 8, 16, or 256 “color indexes,”
depending on the graphics card in the computer and the graphics mode in
effect. The color is the index to the palette of colors displayable by a particu­
lar graphics adapter.

■ The CGA modes offer four fixed palettes containing predefined colors that
may not be changed. In EGA, MCGA, and VGA graphics modes, you may
change any of the color indexes by providing a color value that describes the
mix of colors you wish to use.

■ A color index is always a short integer. A color value is always a long in­
teger. When you’re calling graphics functions that require color-related para­
meters, you should be aware of the difference between color indexes and
color values.

13.1.2 For More Information
The following books cover a variety of graphics topics that you may find useful.
They are listed only for your convenience. With the exception of its own publica­
tions, Microsoft does not endorse these books or recommend them over others
on the same subject.

■ Artwick, Bruce. Microcomputer Displays, Graphics and Animation. Engle­
wood Cliffs, NJ: Prentice-Hall, Inc., 1985.

Discussion of microcomputer graphics and animation from the creator of
Microsoft Flight Simulator.

■ Kliewer, Bradley D. EGA/VGA: A Programmer’s Reference Guide. New
York, NY: Intertext Publications, Inc., 1988.

A detailed discussion of the EGA and VGA video modes.

pcjs.org

Using Graphics 173

■ Norton, Peter, and Richard Wilton. The New Peter Norton Programmer's
Guide to the IBM PC and PS/2. Redmond, WA: Microsoft Press, 1985.

The standard guide to the inside of the IBM PC and PS/2 families of com­
puters. Several chapters are devoted to video modes.

a Wilton, Richard. Programmer’s Guide to PC and PS/2 Video Systems.
Redmond, WA: Microsoft Press, 1987.

An advanced guide to all the PC and PS/2 video modes.

13.2 Writing Your First Graphics Program
In QuickPascal, all graphics programs must follow these six basic steps:

1. Use the MSGraph unit.

2. Set a video mode.

3. Determine the video parameters.

4. Set up a coordinate system.

5. Create and display graphics.

6. Restore initial video configuration and exit the program.

A simple graphics program, 1STGRAPH.PAS, is shown below. In the next few
pages, this program will be dissected into the six required elements of a graphics
program.

PROGRAM FirstGraphics;
{ 1STGRAPH.PAS: Demonstrates basic graphics program structure }

USES
MSGraph;

VAR
a, i : integer;
vc : _VideoConfig;

BEGIN { Begin main program. }

_ClearScreen(_GClearScreen);

{ Set the highest resolution video mode and check for success }
a := SetVideoMode(MaxResMode);

pcjs.org

174 Pascal by Example

IF (a = 0) THEN
BEGIN

Writeln('No valid graphics mode; hit RETURN to continue');
Readln;
a := _SetVideoMode(_DefaultMode);
Halt (0);

END;

{ Find out some screen characteristics. }
_GetVideoConfig(vc);
Writeln('mode: ',vc.Mode);
Writeln('Horizontal resolution: ', vc.NumXPixels);
Writeln('Vertical resolution: ', vc.NumYPixels);
Writeln('Number of colors: ', vc.NumColors);

{ Draw a colored rectangle and ellipse in lower left quadrant. }
_SetColor(4);
_Rectangle(_GBorder, 0, vc.NumYPixels - 1,

vc.NumXPixels DIV 4,
vc.NumYPixels * 3 DIV 4);

_Ellipse(_GBorder, 0, vc.NumYPixels - 1,
vc.NumXPixels DIV 4,
vc.NumYPixels * 3 DIV 4);

{ Draw a line from the corner of the rectangle to the screen center. }
_SetColor(3) ;
_MoveTo(vc.NumXPixels DIV 4, vc.NumYPixels * DIV 4);
_LineTo(vc.NumXPixels DIV 2, vc.NumYPixels DIV 2);

{ Wait for RETURN key and then restore video mode. }
Readln;
_SetVideoMode(_DefaultMode) ;

END.

Using the MSGraph Unit
The first step in creating 1STGRAPH.PAS is to use the MSGraph unit within
your QuickPascal program. The MSGraph unit contains the constants, data
types, procedures, and functions used in graphics programs. QuickPascal units
are explained in Chapter 7, “Units.” The MSGraph unit is the library of gra­
phics features you need to access from your program.

The USES section of your program calls MSGraph. This section appears imme­
diately after the PROGRAM declaration line and looks like this:

USES
MSGraph;

Note that some components of the MSGraph unit are incompatible with
some functions within the Crt unit. Some of the Crt unit routines that deal
with the display (such as HighVideo or DirectVideo) conflict with the
graphics functions.

pcjs.org

Using Graphics 175

The following Crt routines are safe to use with the MSGraph unit:

AssignCRT NoSound
Delay ReadKey
GotoXY Sound
KeyPressed WhereX

WhereY
Window

Setting the Video Mode
Before you can start drawing pictures on the screen, your program must tell the
graphics adapter to switch from text mode to graphics mode. Call SetVideo-
Mode, passing it a predefined constant that tells it which mode to display. The
constants listed in Table 13.1 are defined in the MSGraph unit. The dimensions
are listed in columns for video text modes and in pixels for graphics mode.

Table 13.1 Constants Set by SetVideoMode

Constant Video Mode Mode Type/Hardware

DefaultMode Restores to original mode Both/All
MaxResMode Highest resolution Graphics/All
MaxCotorMode Maximum colors Graphics/All

_TextBW40 40 column text, 16 gray Text/CGA
_TextC40 40 column text, 16/8 color Text/CGA
TextBW80 80 column text, 16 gray Text/CGA
TcxtC80 80 column text, 16/8 color Text/CGA
MRes4Color 320 x 200, 4 color Graphics/CGA
MResNoColor 320 x 200, 4 gray Graphics/CGA
HResBW 640 x 200, BW Graphics/CGA

_TextMono 80 column text, BW Text/MDPA
HercMono 720 x 348, BW for HGC Graphics/HGC

_MRcsl6Color 320 x 200,16 color Graphics/EGA
HResl6Color 640 x 200,16 color Graphics/EGA

_EResNoCo!or 640 x 350, BW Graphics/EGA
EResColor 640 x 350, 4 or 16 color Graphics/EGA

_VRes2Color 640 x 480, BW Graphics/VGA/
MCGA

_VResl6Color 640 x 480,16 color Graphics/VGA
_MRcs256CoIor 320 x 200, 256 color Graphics/VGA/

MCGA
_OResColor 640 x 400, 1 of 16 colors Graphics/Olivetti

pcjs.org

176 Pascal by Example

These video modes are described more fully in Section 13.3.

The special modes MaxResMode and MaxColorMode are used when you
simply want QuickPascal to determine the highest resolution or maximum color
mode available.

If the _SetVideoMode function returns a 0, it means the hardware does not sup­
port the selected mode. You may continue to select alternate video modes until a
nonzero value is returned. If the hardware configuration doesn’t support any of
the selected video modes, then exit the program.

The segment of example program 1STGRAPH.PAS below sets the video mode
for maximum resolution and then checks for success. If the function SetVideo-
Mode fails (and returns a 0), the program prints a message, restores the video
mode, and halts.

{ Set the highest resolution mode and check for success }
a := _SetVideoMode(_MaxResMode);
IF (a = 0) THEN

BEGIN
Writeln('No valid graphics mode; hit RETURN to continue');
Readln;

a := _SetVideoMode(_DefaultMode);
Halt (0) ;
END;

Determining the Video Parameters
After entering graphics mode, you can check the current video configuration.
This is necessary when you have used the constant _MaxResMode or
_MaxColorMode, since you do not know the specifics of the video mode
selected.

The video configuration requires a special structure called _VideoConfig, which
is defined in the MSGraph unit. The _GetVideoConfig procedure finds the cur­
rent video configuration information.

The _VideoConfig structure contains the following elements:

{ Structure for GetVideoConfig }

_VideoConfig = RECORD
NumXPixels : Integer; { Horizontal resolution }
NumYPixels : Integer; { Vertical resolution }
NumTextCols : Integer; { Number of text columns available }
NumTextRows : Integer; { Number of text rows available }
NumColors : Integer; { Number of actual colors }
BitsPerPixel : Integer; { Number of bits per pixel }
NumVideoPages : Integer; { Number of available video pages }
Mode : Integer; { Current video mode }
Adapter : Integer; (Active display adapter }
Monitor : Integer; { Active display monitor }
Memory : Integer; { Adapter video memory in K bytes }

END;

pcjs.org

Using Graphics 177

The variables within the _VideoConfig structure are initialized when you call
_GetVideoConfig. In the following example program, the video mode is set to
_MaxResMode. The program then calls _GetVideoConfig to determine the
screen dimensions (in pixels) and the maximum number of colors allowed.

{ Find out some screen characteristics. }
_GetVideoConfig(,vc);
Writeln ('mode: 'vc.Mode);
Writeln('Horizontal resolution: ', vc.NumXPixels);
Writeln ('Vertical resolution: ', vc.NumYPixels);
Writeln ('Number of colors: ', vc.NumColors);

Setting Up Coordinate Systems
The third step in writing a QuickPascal graphics program is to establish the
“coordinate system.”

A coordinate system is used to identify a pixel location relative to a horizontal
and vertical axis. In a graphics mode, each pixel on the screen can be located by
means of a unique pair of coordinates. The QuickPascal graphics unit supports
the following coordinate systems:

■ Text coordinates

■ Physical coordinates

■ Viewport coordinates

■ Window coordinates

Since this example graphics program does not specify otherwise, the coordinate
system used is that provided by the physical screen dimensions. This is known
as the “physical-coordinate system.”

But how much screen is available to work with? There might be 720 x 348,
640 x 480,640 x 400,640 x 350, or 640 x 200 pixels. The _VideoConfig struc­
ture elements NumXPixels and NumYPixels provide the screen dimensions. On
a VGA card, a request for maximum resolution would set the screen to the
_VResl6CoIor mode. The horizontal resolution is 640 pixels and vertical resolu­
tion is 480. The horizontal resolution might be 640, but the pixels are numbered
0 - 639.

The physical-coordinate system places the origin (or the coordinate pair (0,0)) at
the upper left comer of the screen. Increasing positive values of the x coordinate
extend from left to right. Increasing positive values of the y coordinate extend
from top to bottom.

The physical-coordinate system is dependent on the hardware and display con­
figuration and cannot be changed. The other coordinate systems and the proce­
dures used to translate between them are described in Section 13.4.

pcjs.org

178 Pascal by Example

Drawing Graphics
The next few lines in this example program draw a rectangle and an ellipse and
then a line to the center of the screen. Prior to drawing the rectangle or the line,
the graphics color is set to two different values. The program segment that draws
the rectangle and ellipse is shown below:

{ Draw a colored rectangle and ellipse in lower left quadrant. }
_SetColor(4);
_Rectangle(_GBorder, 0, vc.NumYPixels - 1,

vc.NumXPixels DIV 4, vc.NumYPixels * 3 DIV 4);
_Ellipse (_GBorder, 0, vc.NumYPixels - 1,

vc.NumXPixels DIV 4, vc.NumYPixels * 3 DIV 4);

The call to the _Rectangle procedure has five arguments. The first argument is
the “fill flag,” which may be either _GBorder or_GFillInterior. The fill flag
determines whether the figure will be drawn with just the border or as a solid
figure. Choose _GBorder if you want a rectangle of four lines (a border only, in
the current line style). Or you can choose _GFilUnterior if you want a solid rec­
tangle (filled in with the current color and fill pattern).

The second and third arguments are the x and y coordinates of one comer of the
rectangle. The fourth and fifth arguments are die coordinates of the opposite
comer. The coordinates for the two comers are defined in terms of the measure­
ments obtained from _GetVideoConfig. As a result, this program draws the rec­
tangle correcdy in any graphics mode.

The _Ellipse procedure draws an ellipse on the screen. Its parameters resemble
the parameters for _Rectangle. Both procedures require a fill flag and two
comers of a “bounding rectangle.” When the ellipse is drawn, four points touch
the edges of the bounding rectangle. A bounding rectangle defines the space in
which a rounded figure is drawn. For a rounded figure, the center of the bound­
ing rectangle defines the center of the rounded figure. A bounding rectangle is
defined by the coordinates of the upper left comer and the lower right comer of
the rectangle.

When the program first enters a graphics mode or sets a viewport (as discussed
in Section 13.4), the drawing position is set to the center of the screen. Since the
_RectangIe procedure takes the comers of the rectangle as parameters, there is
no need to set the drawing position. But after the figures are drawn, the program
moves the current drawing position (with the _MoveTo procedure) and draws a
line from the new position to the center of the screen:

{ Draw a line from the corner of the rectangle to the screen center. }
_SetColor(3);
_MoveTo (vc.NumXPixels DIV 4, vc.NumYPixels * 3 DIV 4);
_LineTo (vc.NumXPixels DIV 2, vc.NumYPixels DIV 2);

Again, the coordinates are given in terms of NumXPixels and NumYPixels to
ensure portability across video modes.

pcjs.org

Using Graphics 179

Restoring Initial Video Configuration and Exiting
The final step in any graphics program is to restore the default video mode. In
the sample program, the Readln procedure waits for the RETURN key. The

SetVideoMode function restores the screen to the default mode, which sets the
screen back to normal.

{ Wait for RETURN key and then restore the video mode. }
Readln;
a := _SetVideoMode(_DefaultMode);

13.3 Using Video Modes
The QuickPascal MSGraph unit provides support for the following video
adapters and displays:

■ Monochrome Display Printer Adapter (MDPA)

■ Hercules-compatible graphics adapters

■ CGA

■ EGA

■ VGA

■ MCGA

■ Olivetti-compatible graphics adapters (including AT&T 6300 series)

The sections that follow explain how to select a video mode, then discuss the
major CGA, EGA, and VGA graphics modes. A complete listing of the Quick-
Pascal video modes that can be set by the _SetVideoMode function is shown in
Table 13.1.

NOTE If you use a Hercules graphics card, you must run the MSHERC. COM program before at­
tempting to display any graphics in _HercMono mode. If your computer also has a color graphics
card, you must run MSHERC.COM with the !H (/HALF) option to set the Hercules graphics card in
HALF mode. Otherwise, the results will be unpredictable.

pcjs.org

180 Pascal by Example

The _VideoConfig structure, which is returned by GetVideoConfig, includes
fields that denote the type of graphics adapter and monitor in use. Table 13.2
lists the constants for graphics adapters.

Table 13.2 Constants for Graphics Adapters

Constant Value Description

MDPA 0x0001 Monochrome Display Adapter
_CGA 0x0002 Color Graphics Adapter
_EGA 0x0004 Enhanced Graphics Adapter
_VGA 0x0008 Video Graphics Array
_MCGA 0x0010 MultiColor Graphics Array
_HGC 0x0020 Hercules Graphics Card
_OCGA 0x0042 Olivetti Color Graphics Adapter
_OEGA 0x0044 Olivetti Enhanced Graphics Adapter
_OVGA 0x0048 Olivetti Video Graphics Array

Table 13.3 lists the constants for monitors.

Table 13.3 Constants for Monitors

Constant Value Description

_Mono 0x0001 Monochrome
Color 0x0002 Color
ENHColor 0x0004 Enhanced Color

_AnalogMono 0x0008 Analog Monochrome only
_AnalogColor 0x0010 Analog Color only

Analog 0x0018 Analog Monochrome and Color modes

13.3.1 Selecting a Video Mode
Before you can display graphics, you must put the graphics adapter into a
graphics mode. As shown in the example program, the _SetVideoMode function
performs this task. Before calling SetVideoMode, you must decide which
graphics modes are acceptable for your purposes. There are several ways you
can select an appropriate graphics mode:

pcjs.org

Using Graphics 181

a Set the mode to a specified value. If you want the program to work in a
high-resolution EGA color mode, use _SetVideoMode to set the mode to

EResColor:

a := _SetVideoMode(_EResColor);
■ Request either the highest resolution available using the _MaxResMode con­

stant or the greatest color selection, _MaxColorMode, available with your
monitor and adapter configuration:

{ Selects highest resolution }
a := _SetVideoMode(_MaxResMode);
{ or, selects most colors }
a := _SetVideoMode(_MaxColorMode);

■ Specify a specific resolution mode (such as 320 x 200 pixels) by first deter­
mining the video adapter type (from the VideoConfig structure) and then
setting the appropriate mode for the adapter. The program fragment below
shows how this technique can be used to set a 320 x 200 pixel resolution
mode.

GetVideoConfig(vc); { Find out adapter type }
IF (vc.Monitor = _Mono) THEN

BEGIN
Writeln('This program requires a color monitor.');
Halt (0);
END

ELSE
CASE vc.Adapter OF

_MDPA, _HGC :
BEGIN
Writeln('This program requires a color graphics adapter.');
Halt(0);
END;

CGA, OCGA : a := _SetVideoMode(_MRes4Color);
EGA, _OEGA : a := _SetVideoMode(_MResl6Color);
MCGA, _VGA : a := _SetVideoMode(_MRes256Color);

END;
{ To get video configuration after mode is set }
_GetVideoConfig(vc);

This program fragment begins by calling _GetVideoConfig, which determines
the graphics configuration and tells the type of adapter currently in use. If the
monitor is monochrome, the program displays a message and halts. Next, the
CASE statement enters the appropriate graphics mode. Finally, the program seg­
ment calls _GetVideoConfig to get the new configuration values after the mode
has been set.

pcjs.org

182 Pascal by Example

To view every possible graphics mode, you can run the example program
GRAPHIC.PAS, shown below. Sections 13.3.2-13.3.6 explain the various
graphics modes.

PROGRAM graphic; { Displays every graphic mode }

USES
Crt, MSGraph;

CONST
modes : ARRAY [0..11] OF Integer =

(_MRes4Color, _MResNoColor, _HResBW, _HercMono,
_MResl6Color, _HResl6Color, _EResNoColor, _EResColor,
_VRes2Color, _VResl6Color, _MRes25SColor, _OResColor);

VAR
vc : _VideoConfig;
ch, key : Char;
which : Char;
a : Integer;

PROCEDURE print_menu;
{ Prints a menu on the screen }
BEGIN

Writeln('Please choose a graphics mode
Writeln(
Writeln;

'Type "x" to exit');
Writeln(' 0 _MRES4C0L0R') ;
Writeln(' 1 _MRESNOCOLOR') ;
Writeln('2 _HRESBW');
Writeln('3 HERCMONO') ;
Writeln('4 _MRES16C0L0R') ;
Writeln('5 _HRES16C0L0R') ;
Writeln(' 6 ERESNOCOLOR');
Writeln('7 _ERESCOLOR');
Writeln('8 _VRES2COLOR');
Writeln(' 9 _VRES16C0L0R') ;
Writeln('a MRES25 6C0L0R');
Writeln('b __ORESCOLOR') ;

END;

PROCEDURE show_mode(which : Char);
{ Shows the different video modes. }

VAR
nc, i : Integer;
height : Integer;
width : Integer;
mode : STRING;
r : Real;
e,m : Integer;

pcjs.org

Using Graphics 183

BEGIN
mode := which;
IF (mode < '0') OR (mode > '9') THEN

IF mode = 'a' THEN
mode := '10'

ELSE IF mode = 'b' THEN
mode := '11'

ELSE Halt; { Exit procedure }
Val(mode, r, e);
m := Trunc(r);
a := _SetVideoMode(modes[m]);
IF (a <> 0) THEN

BEGIN
_GetVideoConfig(vc);
nc := vc.NumColors;
width := vc.NumXPixels DIV nc;
height := vc.NumYPixels DIV 2;
FOR i := 1 TO (nc - 1) DO

BEGIN
_SetColor(i);
_Rectangle(_GFillInterior, i * width,

0, (i + 1) * width, height);
END;

END { IF a not equal to 0 }
ELSE

BEGIN
Writeln('Video mode ', which, ' is not available.');
Writeln ('Please press ENTER.');
END;

Readln; { Wait for ENTER to be pressed }
a := _SetVideoMode(_DefaultMode);
print_menu;

END;

BEGIN (Begin main program }

key := ' ';
_ClearScreen(_GClearScreen) ;
print_menu;
WHILE (key <> 'x') DO

BEGIN
key := ReadKey;
show_mode(key);
END;

END.

pcjs.org

184 Pascal by Example

13.3.2 CGA Color Graphics Modes
The CGA color graphics modes _MRes4Color and _MResNoColor display
four colors selected from one of several predefined palettes of colors. They dis­
play these foreground colors against a background color that can be any one of
the 16 available colors. With the CGA hardware, the palette of foreground colors
is predefined and cannot be changed. Each palette number is an integer as shown
in Table 13.4.

Table 13.4 Available CGA Colors

Palette
Number

Color Index

1 2 3

0 Green Red Brown
1 Cyan Magenta Light Gray
2 Light Green Light Red Yellow
3 Light Cyan Light Magenta White

The _MResNoColor graphics mode produces palettes containing various shades
of gray on black-and-white monitors. The MResNoColor mode displays colors
when used with a color display. However, only two palettes are available with a
color display. You can use the _SelectPalette function to select one of these pre­
defined palettes. Table 13.5 shows the correspondence between the color in­
dexes and the palettes.

Table 13.5 CGA Colors: MResNoColor Mode

Palette
Number

Color Index

1 2 3

0 Blue Red Light Gray
1 Light Blue Light Red White

You may use the _SelectPaIette function in conjunction with the_MRes4Color,
MResNoColor, and _OResColor graphics modes. To change palettes in other

graphics modes, use the RemapPalette or RemapAlIPalette routines.

In _OResColor mode, you can choose one of 16 foreground colors by passing a
value in the range 0 - 15 to the _SelectPalette function. The background color is
always black.

pcjs.org

Using Graphics 185

The following program sets the video mode to _MRes4Color and then cycles
through background colors and palette combinations. It works on computers
equipped with CGA, EGA, MCGA, or VGA cards. A color monitor is required.

PROGRAM cga;
{ Demonstrates CGA colors }

USES
MSGraph;

CONST
bkcolor : ARRAY [0..7] OF Longlnt = (_Black, _Blue, _Green, _Cyan,

_Red, _Magenta, _Brown, _White);

bkcolor_name : ARRAY [0..7] OF STRING = ('BLACK 'BLUE
'GREEN ', 'CYAN ', 'RED ', 'MAGENTA',
'BROWN ', 'WHITE ');

VAR
1/ Integer;

BEGIN { Begin main program }
a := _SetVideoMode(_MRes4Color);
FOR i := 0 TO 3 DO

BEGIN
a := _SelectPalette (i);
FOR k := 0 TO 7 DO

BEGIN
_SetBkColor(bkcolor[k]);
FOR j := 0 TO 3 DO

BEGIN
_SetTextPosition(1, 1);
Writeln('Background color: ', bkcolor_name[k]);
Writeln(' Palette: ', i);
Writeln(' Number: ', j);
_SetColor (j);
_Rectangle(_GFillInterior, 160, 100, 320, 200);
Readln; { Wait for ENTER to be pressed }
END; { for j }

END; { for k }
END; (for i }

a := SetVideoMode(DefaultMode); { restore original palette }
END.

13.3.3 EGA, MCGA, and VGA Palettes
The beginning of this chapter mentioned the difference between color indexes
and color values. An analogy might make things clearer. Imagine a painter who
owns 64 tubes of paint and a painter’s palette that has room for only 16 globs of
paint at any one time. A painting created under these constraints could contain

pcjs.org

186 Pascal by Example

only 16 colors (selected from a total of 64). The EGA graphics modes (such as
EResColor) are similar: they have 16 color indexes chosen from a total of 64

color values.

The color values available in the EGA, MCGA, and VGA palettes are not prede­
termined like the CGA palettes. Instead, the color values available in EGA,
MCGA, and VGA palettes are created by a process of “color mixing” of red,
green, and blue elements. The next two sections describe color mixing.

VGA Color Mixing VGA offers the widest variety of color values: 262,144
(256K). Depending on the graphics mode, the VGA palette size may be 2,16, or
256. When you select a color value, you specify a level of intensity ranging from
0-63 for each of the red, green, and blue color values. The long integer that de­
fines a color value consists of four bytes (32 bits):

MSB LSB
zzzzzzzz zzBBBBBB zzGGGGGG zzRRRRRR

The most-significant byte must contain all zeros. The two high bits in the remain­
ing three bytes must also be 0. To mix a light red (pink), turn red all the way up,
and mix in some green and blue:

00000000 00100000 00100000 00111111

To represent this value in hexadecimal, use the number $0020203F.
For white, turn all the elements on; for black, set all elements to 0.

EGA Color Mixing Mixing colors in EGA modes is similar to the mixing de­
scribed above, but there are fewer intensities for the red, green, and blue com­
ponents. In the modes that offer 64 colors, the R, G, and B values cover 2 bits
and can range from 0-3. The long integer that defines an RGB color looks
like this:

MSB LSB
zzzzzzzz zzBB???? zzGG???? zzRR????

The bits marked z must be zeros and the bits marked with question marks can be
any value. This format is used for compatibility with VGA color mixing. To
form a pure red color value, you would use the constant $00000030. For cyan
(blue plus green), use $00303000.

13.3.4 EGA Color Graphics Modes
If you have an EGA adapter, you should use the video mode _MResl6Color,
_HResl6Color, or _EResColor for the best color-graphics results. The CGA
modes also display on the EGA but with the lower CGA resolution and
decreased color options.

pcjs.org

Using Graphics 187

The _RemapPalette function assigns a new color value to a color index. For ex­
ample, when you first enter an EGA graphics mode, color index 1 equals the
color value blue. To reassign the pure red color value to color index 1, you could
use this line:

a := _RemapPalette(1, $000030);

Or, use the symbolic constant _Red, which is defined using the MSGraph unit:

a := _RemapPalette(1, _Red);

After this function call, any object currently drawn in color index 1 instantly
switches from blue to red.

The first value is an Integer in the range 0-15 and the second value is a
Longlnt defined as a mixture of red, green, and blue (you may also use sym­
bolic constants such as _Red).

The _RemapAllPalette procedure changes all of the color indexes simultane­
ously. You pass it an array of color values. The first color value in the list be­
comes the new color associated with the color index 0.

The number in a function call that sets the color (such as _SetColor) is an index
into the palette of available colors. In the default text palette, an index of 1 refers
to blue but the palette could be remapped to change index 1 to any other avail­
able color. As a result, the color produced by that pixel value also changes. The
number of color indexes depends on the number of colors supported by the cur­
rent video mode.

The _RemapPalette and RemapAHPalette routines work in all modes but
only with the EGA, MCGA, or VGA hardware. The _RemapPalette fails,
returning a value of -1 when you attempt to remap a palette without the EGA,
MCGA, or VGA hardware.

The following program draws a rectangle with a red interior. In the default
EGA palette, the color index 4 is red. This color index is changed to _Blue in
this program.

PROGRAM ega;
{ Demonstrates EGA/VGA palettes }

USES
MSGraph;

CONST
crlf = #13 + #10;

VAR
a : Longlnt;
m : Integer;

pcjs.org

188 Pascal by Example

BEGIN { Begin main program }

m := _SetVideoMode(_MaxColorMode);
_SetColor (4);
_Rectangle(_GFillInterior, 50, 50, 150, 150);

_SetTextPosition(1, 1);
_OutText('Normal palette' + crlf);
_0utText('Press ENTER');
Readln;

a := _RemapPalette(4, _Blue);

_SetTextPosition(1, 1);
_OutText('Remapped palette' + crlf);
_OutText('Press ENTER');
Readln;

a := _RemapPalette(4, _Red);

_SetTextPosition(1, 1);
_OutText('Restored palette' + crlf);
_OutText('Press ENTER to clear the screen');
Readln;

_ClearScreen(_GClearScreen);
m := _SetVideoMode(_DefaultMode);

END.

13.3.5 VGA Color Graphics Modes
The VGA card adds graphics modes _VRes2CoIor, _VResl6Color, and
_MRes256Color to your repertoire. EGA and CGA modes can also be used
with the VGA hardware, but with either lower resolution or fewer color choices.

The VGA color graphics modes operate with a range of 262,144 (256K)
color values. The _VRes2Color graphics mode displays two colors, the
_VResl6Color graphics mode displays 16 colors, and the _MRes256CoIor
graphics mode displays 256 colors from the available VGA colors.

The _RemapPalette function changes a color index to a specified color value.
The function below remaps the color index 1 to the color value given by the sym­
bolic constant _Red (which represents red). After this statement is executed,
whatever was displayed as blue now appears as red:

{ reassign color index 1 to VGA red }
a := _RemapPalette(1, _Red);

pcjs.org

Using Graphics 189

Use the _RemapAHPalette procedure to remap all of the available color indexes
simultaneously. The procedure’s argument references an array of color values
that reflects the remapping. The first color number in the list becomes the new
color associated with color index 0.

Symbolic constants for the default color numbers are supplied so that the remap­
ping of VGA colors is compatible with EGA practice. The names of these con­
stants are self-explanatory. For example, the color numbers for black, red, and
light yellow are represented by the symbolic constants _Black, _Red, and

Yellow.

All of the VGA display modes operate with any VGA video monitor. Colors are
displayed as shades of gray when a monochrome analog display is connected.

The program HORIZON.PAS illustrates what can be done with the range of 256
colors if you have a VGA card:

PROGRAM horizon; { Demonstrates VGA graphics with cycling of 256 colors }

USES
Crt, MSGraph;

CONST
Red = $00002a;
GRN = $002a00;
BLU = $2a0000;
WHT = $2a2a2a;
step = 21;

VAR
vc : _VideoConfig;
rainbow : ARRAY [1..512] OF Longlnt;
i, a : Integer;
col, gray : Longlnt;
rec : _XYCoord;

BEGIN { Begin main program }
a := SetVideoMode(_MRes256Color);
IF (a~= 0) THEN

BEGIN
Writeln ('This program requires a VGA or MCGA card');
Halt (0);
END;

FOR col := 0 TO 63 DO
BEGIN
gray := col OR (col SHL 8) OR (col SHL 16);
rainbow[col] := BLU AND gray;
rainbow[col + 256] := BLU AND gray;
rainbow[col +64] := BLU OR gray;
rainbow[col + 64 + 256] := BLU OR gray;
rainbow[col + 128] := Red OR (WHT AND NOT gray);
rainbow[col + 128 + 256] := Red OR (WHT AND NOT gray);
rainbow[col + 192] := Red OR NOT gray;
rainbow[col + 192 + 256] := Red OR NOT gray;
END;

pcjs.org

190 Pascal by Example

_SetViewOrg(160, 85, rec);

FOR i := 0 TO 254 DO
BEGIN
_SetColor(255 - i);
_MoveTo(i, i - 255);
_LineTo(-i, 255 - i);
_MoveTo (-i, i - 255);
_LineTo (i, 255 - i);
_Ellipse(_GBorder, -i, -i DIV 2, i, i DIV 2);
END;

i := 0;
WHILE NOT KeyPressed DO

BEGIN
_ReraapAllPalette(rainbow[i]);
i := i + step;
IF (i >= 256) THEN i := 0;
END;

a := _SetVideoMode(_DefaultMode);
END.

13.3.6 Using the Color Video Text Modes
All video adapters offer support for video text modes (_TextC40, _TextC80,
_TextBW40, _TextBW80, _TextMono). Using the video text modes, you can
display color text without having to enter a graphics mode. On a color monitor,
you can display normal or blinking text in any of 16 foreground colors with any
of 8 background colors. On a monochrome monitor, you can specify text
“colors” in exactly the same way, although the color values are interpreted differ­
ently by the hardware.

The text procedures and functions described in this section can be used in the
video text modes as well as in all of the graphics modes.

Selecting Text Colors
In a video text mode, each displayed character requires two bytes of video
memory. The first byte contains the ASCII code representing the character and
the second byte contains the display attribute. In the CGA color video text
modes, the attribute byte determines the color and whether it will blink. Sixteen

pcjs.org

Using Graphics 191

colors are available: the CGA indexes, and the default EGA and VGA indexes.
Since the EGA and VGA palettes can be remapped, these values can be made to
correspond to any set of 16 colors with the appropriate palette mapping.

Using Text Colors
Use the _GetTextColor and GetBkCoIor functions to find foreground and
background colors of the current text.

Values in the range 0 -15 are interpreted as normal color. Values in the range
16 -31 are the same colors as those in the range 0 -15 but with blinking text.

Set the foreground and background colors in a video text mode with the
_SetTextColor and _SetBkCoIor functions. These functions use a single
argument that specifies the index to be used for text displayed with the
_OutText procedure. The color indexes for color video text modes are
defined in Table 13.6.

Table 13.6 Text Colors

Number Color Number Color

0 Black 8 Gray

1 Blue 9 Light Blue

2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 White 15 Light White

On monochrome displays, you can select text attributes in the same way as for
color displays. For underlined text, use Blue or Light Blue. For highlighted text,
use any color from Light Green to White. For blinking text, add 16 to the color
constant.

Displaying Text Colors
The _SetTextPosition procedure moves the cursor to a row and column for dis­
playing color text. The _OutText procedure displays the text.

pcjs.org

192 Pascal by Example

The following program displays a chart showing all possible combinations of
text and background colors:
PROGRAM coltext; { Displays text in color }

USES
Crt, MSGraph;

VAR
messagel, s, t : STRING;
blink, fgd, bgd : Integer;
a : Integer;

BEGIN { Begin main program }

_ClearScreen(_GClearScreen);
_OutText('Color text attributes:');

FOR blink := 0 TO 1 DO
FOR bgd := 0 TO 6 DO

BEGIN
_SetBkColor(bgd);
_SetTextPosition(bgd + (blink * 9) +3, 1);
_SetTextColor(7);
Str(bgd, s);
messagel := 'Bgd: ';
_OutText(messagel);
_OutText(s);
s : = s + ' ' ;
messagel := ' Fgd: ';
_OutText(messagel);
FOR fgd := 0 TO 15 DO

BEGIN
_SetTextColor(fgd + (blink*16));
a := fgd + (blink*16);
Str(a, s);
s := s + ' ' ;
_OutText(s) ;
END;

END; { FOR loops }

REPEAT UNTIL KeyPressed;
a := _SetVideoMode(_DefaultMode);

END.

pcjs.org

Using Graphics 193

13.4 Understanding Coordinate Systems
Before you can write a program to print a word or to display graphics on the
screen, you need a system that describes exactly where to print or display the
item.

QuickPascal provides several coordinate systems. The physical coordinate sys­
tem has already been used in the program 1STGRAPH.PAS. This section dis­
cusses the four coordinate systems supported by QuickPascal and shows how to
translate between systems.

The coordinate systems supported by QuickPascal are:

■ Text coordinates

■ Physical coordinates

■ Viewport coordinates

■ Real coordinates in a window

13.4.1 Text Coordinates
QuickPascal divides the text screen into rows and columns. See Figure 13.1.

Row 1,
Column 1

Row 1,
Column 80

Row 25,
Column 1

Figure 13.1 Text Screen Coordinates

pcjs.org

194 Pascal by Example

Two important conventions to keep in mind about video text mode are:

1. Numbering starts at 1, not 0. An 80-column screen contains columns 1-80.

2. The row is always listed before the column.

If the screen is in a video text mode that displays 25 rows and 80 columns (as
in Figure 13.1), the rows are numbered 1-25 and the columns are numbered
1-80. In routines such as _SetTextPosition, which is called in the next example
program, the parameters you pass are row and column (in that order). Some
monitors (such as the EGA or VGA) support more than 25 text rows. For these
monitors, use the _SetVideoModeRows or _SetTextRows functions to specify
the number of rows to display.

13.4.2 Physical Screen Coordinates
Suppose you write a program that calls _SetVideoMode and puts the screen into
the VGA graphics mode _VResl6Color. This gives you a screen containing
640 horizontal pixels and 480 vertical pixels. The individual pixels are named
by their location relative to the x axis and y axis, as shown in Figure 13.2.

(0, 0) (639, 0)

Figure 13.2 Physical Screen Coordinates

pcjs.org

Using Graphics 195

Two important differences between text coordinates and graphics coordinates
are:

1. Numbering starts at 0, not 1. If there are 640 pixels, they’re numbered
0-639.

2. The x coordinate is listed before the y coordinate.

The upper left comer is called the “origin.” The x and y coordinates for the
origin are always (0,0). If you use variables to refer to pixel locations, declare
them as integers. The “viewport” is the region where graphics will be displayed.

Changing the Origin with SetViewOrg
The _SetViewOrg procedure changes the location of the viewport’s origin. You
pass two integers, which represent the x and y coordinates of a physical screen lo­
cation. For example, the following line would move the origin to the physical
screen location (50,100):

_SetViewOrg(50, 100, xyorg);

The effect on the screen is illustrated in Figure 13.3.

(-50,-100) (589,-100)

Figure 13.3 Coordinates Changed by _SetViewOrg

The number of pixels hasn’t changed, but the names given to the points have
changed. The x axis now ranges from -50 to +589 instead of 0 to 639. The y axis
now covers the values -100 to +379. (If you own an adapter other than the
VGA, the numbers are different but the effect is the same.)

pcjs.org

196 Pascal by Example

All standard graphics functions and procedures are affected by the new origin, in­
cluding MoveTo, LineTo, Rectangle, _Ellipse, _Arc, and _Pie.

For example, if you call the _Rectangle procedure after relocating the viewport
origin, and pass it the coordinate values (0,0) and (40,40), the rectangle would
be drawn 50 pixels from the left edge of the screen and 100 pixels from the top.
It would not appear in the upper left comer.

The values passed to _SetViewOrg are always physical screen locations. Sup­
pose you called the same procedure twice:

_SetViewOrg(50, 100, xyorg);
_SetViewOrg(50, 100, xyorg);

The viewport origin would not move to (100, 200). It would remain at the physi­
cal screen location (50,100).

Defining a Clipping Region with SetCHpRgn
The _SetCIipRgn procedure creates an invisible rectangular area on the screen
called a “clipping region.” Attempts to draw inside the clipping region are
successful, while attempts to draw outside the region are not.

When you first enter a graphics mode, the default clipping region is the entire
screen. QuickPascal ignores any attempts to draw outside the clipping region.

Changing the clipping region requires one call to _SetClipRgn. Suppose you’ve
entered the CGA graphics mode _MRes4Color, which has a screen resolution
of 320 x 200. If you draw a diagonal line from the top left to the bottom right
comer, the screen looks like Figure 13.4.

0 319

Figure 13.4 Line Drawn on a Full Screen

pcjs.org

Using Graphics 197

You could create a clipping region with the following:

_SetClipRgn(10, 10, 309, 189);

Then draw a line with the statement:

_LineTo(0, 0, 319, 199);

With the clipping region in effect, the same _LineTo command given above
would put the line shown in Figure 13.5 on the screen.

Figure 13.5 Line Drawn within a Clipping Region

The broken lines don’t actually appear on the screen. They indicate the outer
bounds of the clipping region.

13.4.3 Viewport Coordinates
Viewport coordinates are yet another coordinate system supported by Quick-
Pascal. You can establish a new viewport within the boundaries of the physical
screen by using the _SetViewport procedure. A standard viewport has two dis­
tinguishing features:

1. The origin of a viewport is in the upper left comer.

2. The clipping region matches the outer boundaries of the viewport.

The _SetViewport procedure does the same thing as calling _SetViewOrg and
_SetClipRgn together.

pcjs.org

198 Pascal by Example

13.4.4 Real Coordinates in a Window
QuickPascal supports a system of real coordinates for use in a window. This sys­
tem lets you use floating-point values in graphics.

Functions and procedures that refer to coordinates on the physical screen and
within the viewport require integer values. However, in real-life graphing appli­
cations, you might wish to use floating-point values—stock prices, the price of
wheat, average rainfall, and so on.

Setting Window Coordinates
The _SetWindow procedure allows you to scale the screen to almost any size.
In addition, the window-related functions and procedures take double-precision
floating-point values instead of integers.

If, for example, you wanted to graph 12 months of average temperatures that
range from - 40 to +100, you could add the following line to your program:

_SetWindow(TRUE, 1.0, -40.0, 12.0, 100.0);

The first argument is the invert flag, which puts the lowest y value in the bottom
left comer. The minimum and maximum Cartesian coordinates follow (the deci­
mal point marks them as floating-point values). The new organization of the
screen is shown in Figure 13.6.

Figure 13.6 Window Coordinates

pcjs.org

Using Graphics 199

This procedure makes the temperatures for January and December appear on the
left and right edges of the screen. In an application like this, it might be better to
number the x axis from 0.0 to 13.0, to provide some extra space.

If you plot a point with _SetPixel_w or draw a line with _LineTo_w, the values
are automatically scaled to the established window. You can also find the posi­
tion of the graphics cursor at any time with GetCurrentPositionwxy.

Programming Real-Coordinate Graphics
The four steps to using real-coordinate graphics are:

1. Enter a graphics mode with _SetVideoMode.

2. Use _SetViewPort to create a viewport area. This step is optional if you plan
to use the entire screen.

3. Create a real-coordinate window with _SetWindow, passing a Boolean in­
vert flag and four Double x and y coordinates for the minimum and maxi­
mum values.

4. Draw graphics shapes with _Rectangle_w and other procedures. Do not con­
fuse _Rectangle (the viewport procedure) with _Rectangle_w (the window
procedure for drawing rectangles). All window procedures end with an under­
score and a letter w or an underscore and wxy.

Real-coordinate graphics can give you a lot of flexibility. For example, you can
fit either axis into a small range (such as 151.25 to 151.45) or into a large range
(-50,000 to +80,000), depending on the type of data you’re graphing. In addi­
tion, by changing the window coordinates, you can create the effects of zooming
in or panning across a figure.

An Example of Real-Coordinate Graphics
The program below illustrates how to use the real-coordinate window routines.

PROGRAM realg; (Example of real-coordinate graphics}
USES

MsGraph, Crt;

CONST
bananas : ARRAY[0..20] OF Single =

(
-0.3, C

MO
1 -0.224, -0.1, -0.5, + 0.21

+ 0.3, + 0.2, 0.0, -0.885, -1.1, -0.3,
0.001, 0.005, 0.14, 0.0, -0.9, -0.13

+ 2.9,
-0.2,
+ 0.3

VAR
halfx, halfy,
a : Integer;
vc : _VideoConfig;
ch : Char;

pcjs.org

200 Pascal by Example

FUNCTION four_colors : Boolean;
BEGIN

four_colors :- False;
IF (_SetVldeoMode(_MaxColorMode) > 0) THEN

BEGIN
_GetVideoConfig(vc);
IF (vc.NumColors >= 4) THEN

four_colors ;= True;
END;

END;
PROCEDURE grid_shape;
VAR

i, xl, yl, x2, y2 : Integer;
x, y : Real;
s : STRING[80];

BEGIN
FOR i := 1 TO vc.NumColors DO

BEGIN
_SetTextPosition(i, 2);
_SetTextColor(i);
Str (i, s) ;
_OutText('Color ' + s);
END;

_SetColor(1);
_Rectangle_w(_GBorder, -1.0, -1.0, 1.0, 1.0);
_Rectangle_w(_GBorder, -1.02, -1.02, 1.02, 1.02);

x := -0.9;
i := 0;
WHILE x < 0.9 DO

BEGIN
_SetColor(2);
_MoveTo_w(x, -1.0); _LineTo_w(x, 1.0) ;
_MoveTo_w(-1.0, x); _LineTo_w(1.0, x);
_SetColor(3);
_MoveTo_w(x - 0.1, bananas[i]);
Inc(i);
_LineTo_w(x, bananas[1]);
x := x + 0.1;
END;

_MoveTo_w(0.9, bananas[i]);
Inc (i);
_LineTo_w(1.0, bananas[i]);
END;

PROCEDURE three_graphs;
VAR

upleft, botright : _WXYCoord;
xwidth, yhelght, cols, rows : Integer;

pcjs.org

Using Graphics 201

BEGIN
_ClearScreen(_GClearScreen) ;
xwidth := vc.NumXPixels;
yheight := vc.NumYPixels;
halfx := xwidth DIV 2;
halfy := yheight DIV 2;
cols := vc.NumTextCols ;
rows := vc.NumTextRows;

{ first window }
_SetViewport(0, 0, halfx-1, halfy-1);
_SetTextWindow(1, 1, rows DIV 2, cols DIV 2);
_SetWindow(False, -2.0, -2.0, 2.0, 2.0);
grid_shape;
_Rectangle(_GBorder, 0, 0, halfx-1, halfy-1);

{ second window }
_SetViewport(halfx, 0, xwidth-1, halfy-1);
_SetTextWindow(1, cols DIV 2+1, rows DIV 2, cols);
_SetWindow(False, -3.0, -3.0, 3.0, 3.0);
grid_shape;
_Rectangle_w(_GBorder, -3.0, -3.0, 3.0, 3.0);

{ third window }
_SetViewport(0, halfy, xwidth-1, yheight-1);
_SetTextWindow(rows DIV 2+2, 1, rows, cols);
SetWindow(True, -3.0, -1.5, 1.5, 1.5);

grid shape;
upleft.wx := -3.0
upleft.wy := -1.5
botright.wx := 1.5
botright.wy := 1.5
Rectangle_wxy(_GBorder, upleft, botright);

END;

BEGIN { main program }

IF four_colors THEN
BEGIN
_OutText('This program requires a CGA, EGA, or VGA graphics card');
three_graphs;
END;

ch := ReadKey;
a := _SetVideoMode(_DefaultMode);

END .

pcjs.org

202 Pascal by Example

The main body of the program is short. It calls the four_colors function
(defined below), which attempts to enter a graphics mode in which at least four
colors are available. If it succeeds, the three_graphs function is called.
This function uses the numbers in the bananas array to draw three graphs.
The REALG.PAS screen output is shown in Figure 13.7.

Color 1
Color Z
Color 3
Color 4
Color 5
Color 6
Color 7
Color 8
Color 9
Color 10
Color 11
Color 1Z
Color 13
Color 14
Color 15

Color 1
Color Z
Color 3
Color 4
Color 5
Color 6
Color 7
Color 8
Color 9
Color 10
Color 11
Color 1Z
Color 13
Color 14
Color 15

Figure 13.7 REALG.PAS Program

It’s worth noting that the graphs are all drawn using the same numbers. How­
ever, the program uses three different real-coordinate windows. The two win­
dows in the top half are the same size in physical coordinates, but they have
different window sizes. In all three cases, the grid is two units wide. In the upper
left comer, the window is four units wide; in the upper right, the window is six
units wide, which makes the graph appear smaller.

In two of the three graphs, one of the lines goes off the edge, outside the clipping
region. The lines do not intrude into the other windows, since defining a win­
dow creates a clipping region.

Finally, note that the graph on the bottom of the screen seems to be upside down
with respect to the two graphs above it. This is the result of setting the invert flag
to True.

pcjs.org

Using Graphics 203

Entering a Graphics Mode
The first step in any graphics program is to enter a graphics mode. The function
four_colors performs this step:

FUNCTION four_colors : Boolean;
BEGIN

four_colors := False;
IF (_SetVideoMode(_MaxColorMode , >0) THEN

BEGIN
_GetVideoConfig(vc);
IF (vc.NumColors >= 4) THEN

four_colors := True;
END;

END;

The _GetVideoConfig procedure places some information into the structure
VideoConfig called screen. Then you use the member screen. adapt­

er of the _VideoConfig structure in a CASE statement construct to turn on the
matching graphics mode. The symbolic constants _CGA and the rest are defined
in the MSGraph unit. The modes containing the letter “O” are Olivetti modes.

If the computer is equipped with a color card, this function returns a True.
If it is not, it returns a False, which causes the program to skip the function
three_graphs and to end the program.

If the four_colors function works properly, the program calls the function
below, which prints the three graphs.

PROCEDURE three_graphs;
VAR

upleft, botright : _WXYCoord;
xwidth, yheight, cols, rows ; Integer;

BEGIN
_ClearScreen(_GClearScreen);
xwidth := vc.NumXPixels;
yheight := vc.NumYPixels;
halfx := xwidth DIV 2;
halfy := yheight DIV 2;
cols := vc.NumTextCols;
rows ;= vc.NumTextRows;

pcjs.org

{ first window }
_SetViewport(0, 0, halfx-1, halfy-1);
_SetTextWindow(1, 1, rows DIV 2, cols DIV 2);
_SetWindow(False, -2.0, -2.0, 2.0, 2.0);
grid_shape;
_Rectangle(_GBorder, 0, 0, halfx-1, halfy-1);

{ second window }
_SetViewport(halfx, 0, xwidth-1, halfy-1);
_SetTextWindow(1, cols DIV 2+1, rows DIV 2, cols);
_SetWindow(False, -3.0, -3.0, 3.0, 3.0);
grid_shape;
_Rectangle_w(_GBorder, -3.0, -3.0, 3.0, 3.0);

{ third window }
_SetViewport(0, halfy, xwidth-1, yheight-1);
_SetTextWindow(rows DIV 2+2, 1, rows, cols);
_SetWindow(True, -3.0, -1.5, 1.5, 1.5);
grid shape;
upleft,wx oCO1II

upleft.wy := -1.5
botright,wx := 1.5
botright.wy := 1.5
Rectangle_wxy(_GBorder, upleft, botright);

END;

Working with Windows
Although entering a graphics mode automatically clears the screen, it doesn’t
hurt to be sure, so three_graphs calls the _ClearScreen procedure:

_ClearScreen (_GClearScreen);

The _GClearScreen constant causes the entire physical screen to clear. Other
options include _GViewport and _GWindow, which clear the current viewport
and the current text window, respectively.

The First Window After assigning values to some variables, the procedure
three_graphs creates the first window:

_SetViewPort(0, 0, halfx - 1, halfy - 1);
_SetTextWindow(1, 1, rows / 2, cols / 2);
SetWindow(False, -2.0, -2.0, 2.0, 2.0);

pcjs.org

Using Graphics 205

First a viewport is defined to cover the upper left quarter of the screen. Next, a
text window is defined within the boundaries of that border. (Note the number­
ing starts at 1 and the row location precedes the column.) Finally, a window is
defined. The False constant forces the y axis to increase from top to bottom. The
comers of the window are (-2.0, -2.0) in the upper left and (2.0, 2.0) in the bot­
tom right comer.

Next, the function grid_shape is called, and a border is added to the
window:

grid_shape;
_Rectangle(_GBorder, 0, 0, halfx-1, halfy-1);

Note that this is the standard _Rectangle procedure, which takes coordinates
relative to the viewport (not window coordinates).

TWO More Windows The two other windows are similar to the first. All
three call grid_shape (defined below), which draws a grid from location
(-1.0, -1.0) to (+1.0, +1.0). The grid appears in different sizes because the

coordinates in the windows vary. The second window ranges from (-3.0, -3.0)
to (+3.0, +3.0), so the width of the grid is one-third the width of the second win­
dow, while it is one-half the width of the first.

Note also that the third window contains True as the first argument. This causes
the y axis to increase from bottom to top, instead of top to bottom. As a result,
this graph appears to be upside down in relation to the other two.

After calling grid_shape, the program frames each window with one of the
following procedures:

_Rectangle (_GBorder, 0, 0, halfx -1, halfy -1);
_Rectangle_w(_GBorder, -3.0, -3.0, 3.0, 3.0);
_Rectangle_wxy(_GBorder, upleft, botright);

All three procedures contain a fill flag as the first argument. The procedure
_Rectangle takes integer arguments that refer to the viewport screen coordi­
nates. The procedure _Rectangle_w takes four double-precision, floating-point
values referring to window coordinates: upper left x, upper left y, lower right x,
and lower right y. The procedure Rectanglewxy takes two arguments: the
addresses of structures of type_WXYCoord, which contains two Double types
named wx and wy. The structure is defined in the MSGraph unit. The values
are assigned just before _Rectangle_wxy is called.

Drawing Graphics
The grid_shape procedure is shown here:

pcjs.org

206 Pascal by Example

PROCEDURE grid_shape;
VAR

i, xl, yl, x2, y2
X; y

Integer;
Real;
STRING[80];s

BEGIN

FOR i ;= 1 TO vc.NumColors DO
BEGIN
_SetTextPosition(i, 2);
_SetTextColor(i >;
Str(i, s);
_OutText('Color ' + s) ;
END;

_SetColor(1);
_Rectangle_w(_GBorder, -1.0, -1.0, 1.0, 1.0);
_Rectangle_w(_GBorder, -1.02, -1.02, 1.02, 1.02);

x := -0.9;
i := 0;
WHILE x 0.9 DO

BEGIN
_SetColor(2);
_MoveTo_w(x, -1.0); _LineTo_w (x, 1.0);
_MoveTo_w(-1.0, x); _LineTo_w(1.0, x);
_SetColor(3);
_MoveTo_w(x - 0.1, bananas [i]);
Inc(i);
_LineTo_w(x, bananas[i]);
x := x + 0.1;
END;

_MoveTo_w(0.9, bananas[i]);
Inc(i);
LineTo_w(1.0, bananas[i]);

First, the number of available color indexes is assigned to the numc variable
and a loop displays all of the available colors:

FOR 1 := 1 TO numc DO

BEGIN
_SetTextPosition(i, 2);
_SetTextColor(i);
Str(i, s);
_OutText('Color ' + s);
END;

END;

pcjs.org

Using Graphics 207

The names of the procedures are self-explanatory. The advantage of using
_OutText in graphics mode is that you can control the text color and limit
output to the currently defined text window.

The procedure and function names that end with _w work the same as their view­
port equivalents, except you pass double-precision, floating-point values instead
of integers. For example, you pass integers to JLineTo but floating-point values
to LineTo w.

13.5 Animation
The QuickPascal MSGraph unit provides several functions that can be used
to animate your graphics programs. These functions provide two means of
animation:

1. Video-page animation (also used in text modes)

2. Bit-mapped animation

“Video-page animation” takes advantage of the fact that the EGA, VGA, and
Hercules video cards have enough memory to store more than one video dis­
play page. You can animate by switching between the pages. “Bit-mapped
animation” captures bit-mapped images of the screen and then stores them in a
memory buffer. These images can be redisplayed at a new location to perform
animation.

This section discusses these two animation techniques and shows two sample
programs that bring your graphics to life.

13.5.1 Video-Page Animation
Most video adapters contain enough memory so that more than one display page
can be stored at a time. The MSGraph unit provides several functions that allow
you to manipulate these video pages. Two terms are used to describe these
pages—the “active page” is the page where text and graphics commands operate;
the “visual page” is the page that you see displayed.

The number of video pages available in an adapter depends on the amount of
video memory on the adapter and the mode in which the adapter is used. For ex­
ample, the CGA adapter with 16K of video memory supports four video pages in
the text mode _TextC80. An EGA adapter with a full 256K of video memory
has room for two video pages even in the high resolution _EResColor mode.
Virtually all adapters provide for multiple pages in text modes; only the EGA
and VGA adapters with 256K of video memory support two video pages in the
high-resolution graphics modes. The Hercules graphics mode (_HercMono) can
support two pages, but only if it is the only graphics adapter present and only
when MSHERC.COM is started without the /H option.

pcjs.org

208 Pascal by Example

Use the procedure _GetVideoConfig to obtain information about the video con­
figuration. After calling _GetVideoConfig, use the NumVideoPages element of
the _VideoConfig structure to determine the number of video pages supported.

A simple use of video pages is to draw graphics offscreen (on the active page)
and then make this active page the visual page. In this way, you do not see the
process of creating the graphics; you only see the final result. This process of
drawing offscreen and then switching can be extended to provide animation.

The procedure _SetVisualPage changes the page that you see. The procedure
_SetActivePage changes the page where drawing takes place. The first page in
any graphics system is number 0, the second is number 1, and so on. A corre­
sponding set of functions _GetActivePage and _GetVisualPage return the
value of the current active or visual page, respectively.

To animate any sequence of screens using video-page animation, use the follow­
ing steps:

1. Perform regular graphics initialization (select video mode, check for error,
and so on).

2. Draw on the active page.

3. Swap the visual and active pages.

4. Repeat steps 2 and 3 until finished with animation.

5. Restore the screen and exit the program.

The example program PAGES .PAS uses four video pages to animate a simple
set of character images in text mode.

PROGRAM page_animation;
{ PAGES.PAS: Use video pages to animate screens }

USES
MSGraph, Crt;

CONST
jumper : ARRAY[0..3] OF STRING =

('/OV, '-0-', '\0/>. 'WOW');
VAR

a, i : Integer;
oldvpage : Integer;
oldapage : Integer;
vc : _VideoConfig;
oldcursor : Boolean;

BEGIN (Begin main program }

_ClearScreen(_GClearScreen) ;

oldapage := _GetActivePage;
oldvpage := _GetVisualPage;

pcjs.org

Using Graphics 209

{ Set the video mode for a large text size }
a := _SetVideoModeRows(_TextBW40, 25);
_GetVideoConfig(vc);

IF ((a = 0) OR (vc.NumVideoPages < 4)) THEN
BEGIN
Writeln('_TEXTBW40 mode not available; hit Return to continue');
Readln;
a := _SetVideoMode(_DefaultMode);
Halt(0);
END;

(Turn off flashing cursor. }
oldcursor := _DisplayCursor(False);

{ Draw image on each page. }
FOR i := 0 TO 3 DO

BEGIN
_SetActivePage(i);
_SetTextPosition(12, 20);
_0utText(jumper[i]);
END;

{ Cycle through pages 0 to 3. }
REPEAT

FOR i := 0 TO 3 DO
BEGIN
_SetVisualPage(i);
Delay (500);
END;

UNTIL KeyPressed;

{ Restore everything before ending the program. }
a := _SetVideoMode(_DefaultMode);
_SetActivePage(oldapage) ;
_SetVisualPage(oldvpage);

END.

The program PAGES .PAS begins with a call to _ClearScreen and then sets the
video mode using the _SetVideoModeRows function. The cursor is turned off
with the _DisplayCursor function.

The FOR loop draws a graphics image on each of four pages. The loop goes to
each of the video pages and outputs the graphics image using the _OutText pro­
cedure. When you run this program, notice that you don’t see any of this activ­
ity. Since the drawing is taking place on the active pages, it is not visible on the
screen (the visual page).

Once the pages have been drawn, the REPEAT loop cycles through each page
and makes it the visual page (so you can see it) and then delays 500 milliseconds
between calls to _SetVisualPage.

Finally, when a key is pressed, the program ends by restoring the video mode to
DefaultMode using the SetVideoMode function.

pcjs.org

210 Pascal by Example

13.5.2 Bit-Mapped Animation
Bit-mapped animation gives you the ability to draw graphics figures and store
them in memory for later use in animation. The _ImageSize function determines
the amount of memory required to store a specified bit-mapped image. The
image is specified in terms of a bounding rectangle. The _GetImage procedure
copies the bit map of pixels inside a specified rectangle to a buffer area in mem­
ory. The _PutImage procedure copies a bit-mapped image from a memory buff­
er to the screen at a location specified by the program.

The _PutImage procedure uses a CopyMode argument to control how the stored
image interacts with what is already on the screen. The CopyMode argument
specifies one of the following screen display operations:

Constant Action

Gand Logical AND of the transfer image and screen image

Gor Superimposition of the transfer image onto the ex­
isting screen image

GPReset Direct transfer from memory to screen; color
inverted

GPSet Direct transfer from memory to screen

Gxor Screen inversion only where a point exists in the
transfer image

The two CopyMode arguments best suited for animation are _Gxor and _GPSet.

Animation done using _GPSet is faster, but erases the screen background. In
contrast, _Gxor is slower, but preserves the screen background.

Animation with _Gxor is done with the following four steps:

1. Put the object on the screen with Gxor.

2. Calculate the new position of the object.

3. Put the object on the screen a second time at the old location, using _Gxor
again—this time to remove the old image.

4. Go to step 1, but this time put the object at the new location.

Movement done with these four steps leaves the background unchanged after
step 3. Flicker can be reduced by minimizing the time between steps 4 and 1,
and by making sure that there is enough time delay between steps 1 and 3. If
more than one object is being animated, every object should be processed at
once, one step at a time.

pcjs.org

Using Graphics 211

If it is not important to preserve the background, animation can be performed
using the _GPSet option. If the border of the bounding rectangle around the
image is as large as or larger than the maximum distance the object will move,
then each time the image is put in a new location, the border will erase all traces
of the image in the old location.

The process of animating using bit-mapped images follows these eight steps:

1. Perform regular graphics initialization (select graphics mode, check for error,
and so on).

2. Draw the graphics image using the MSGraph unit procedures and functions.

3. Use the _ImageSize function to determine the amount of memory required to
store the image.

4. Use the GetMem procedure to allocate the amount of memory needed (as
found in step 2).

5. Call _GetImage to copy the bit map of pixels from the screen to the memory
buffer created in step 3.

6. Call _PutImage to display the image stored in memory. This display can be
at any location on the screen.

7. Repeat steps 3 through 6 (possibly with different images) until finished with
animation.

8. Restore the screen and exit the program.

The program ANIMATE.PAS demonstrates this process, drawing a rectangle
and then redisplaying it at random locations on the screen.

PROGRAM Animate;
{ ANIMATE.PAS: Demonstrates animation using image buffers }

USES
MSGraph, Crt;

CONST
max_buffer = 65520;

Using Bit-Mapped Images

An Example of Bit-Mapped Animation

VAR
q
vc
buffer
imsize

Integer;
VideoConfig;

xO, yO
X/ y

POINTER;
Longlnt;
Integer;
Integer;

pcjs.org

212 Pascal by Example

BEGIN { Begin main program. }

_ClearScreen(_GClearScreen);

{ Set the video mode and check for success }
q := _SetVideoMode(_MaxResMode);
IF (q = 0) THEN

BEGIN
Writeln('Graphics mode unavailable; hit Return to continue');
Readln;
q := _SetVideoMode(_DefaultMode);
Halt(0) ;
END;

{ Find out some screen characteristics. }
_GetVideoConfig(vc);

{ Draw and store a simple figure. }
_SetColor(3);
x := vc.NumXPixels DIV 4;
y := vc.NumYPixels DIV 4;

_Rectangle(_GFillInterior, 0, 0, x, y);
imsize := _ImageSize(0, 0, x, y);
IF (imsize > max_buffer) THEN

BEGIN
Writeln('Image too big.');
Readln;
Halt(0);
END

ELSE
BEGIN
GetMem(buffer, imsize);
IF (buffer = NIL) THEN

BEGIN
Writeln('Not enough heap memory.');
Readln;
Halt(0) ;
END;

END;

_GetImage(0, 0, x, y, buffer");
_ClearScreen(_GClearScreen);

{ Draw axes centered on the screen }
_SetColor (2);
xO := vc.NumXPixels DIV 2 -1;
yO := vc.NumYPixels DIV 2 -1;
_MoveTo (xO ,0);
_LineTo(xO, vc.NumYPixels);
_MoveTo(0, yO);
_LineTo(vc.NumXPixels, yO);

pcjs.org

Using Graphics 213

_SetTextPosition(1,1);
_OutText('_Gxor');
WHILE NOT KeyPressed DO

BEGIN
_PutImage(Random! vc.NumXPixels - x),

Random! vc-NumYPixels - y), buffer'', _Gxor);
Delay(500);
END;

_ClearScreen(_GClearScreen);
q := _SetVideoMode(_DefaultMode);

END.

Initializing Graphics and Drawing the Image The animate.pas pro­
gram begins by clearing the screen, initializing the random-number generator,
and setting the video mode to the highest resolution possible.

The following code fragment draws and stores a simple image:

{ Draw and store a simple figure. }
_SetColor (3);
x := vc.NumXPixels DIV 4;
y := vc.NumYPixels DIV 4;

_Rectangle (_GFillInterior, 0, 0, x, y);
imsize := _ImageSize(0, 0, x, y);
IF (imsize > max_buffer) THEN

BEGIN
Writeln ('Image too big.');
Readln;
Halt (0);
END

ELSE
BEGIN
GetMem(buffer, imsize);
IF (buffer = NIL) THEN

BEGIN
Writeln ('Not enough heap memory.');
Readln;
Halt (0);
END;

END;

_GetImage(0, 0, x, y, bufferA);
_ClearScreen (_GClearScreen) ;

Allocating Memory The Rectangle procedure draws a rectangle that is
about one-sixteenth the size of the screen. The _ImageSize function uses the
same bounding rectangle measurements to determine the amount of memory re­
quired to hold this figure. The GetMem procedure then allocates the necessary
memory space for the image. Because GetMem can allocate at most 65,520
bytes (64K-16), you must check the image size before requesting the buffer. If
the image is larger than 65,520 bytes, you will need to allocate additional buffers
and copy part of the image to each buffer.

pcjs.org

214 Pascal by Example

The _GetImage procedure copies the image from the screen and stores it into
the memory area specified by buffer. Finally, the _ClearScreen procedure
clears this image off the screen. A more complex program could make use of the
active and visual pages discussed in the previous section so that the image is
drawn on the active page and the _ClearScreen procedure is not needed.

Next, the program draws a coordinate axis centered on the screen. This will
clarify later how the stored image interacts with images already displayed on the
screen.

Displaying the Image The program then repeatedly calls _PutImage to dis­
play the stored image at random locations on the screen. The process ends when
a key is pressed. Once a key is pressed, the program ends with a call to restore
the video mode.

WHILE NOT KeyPressed DO
BEGIN
_PutImage(Random(vc.NumXPixels - x),

Random(vc.NumYPixels - y), buffer", _Gxor);
Delay(500);
END;

_ClearScreen(_GClearScreen);
q := _SetVideoMode(_DefaultMode);

END.

The _PutImage procedure takes four arguments. The first two specify the x and
y coordinates of the upper left comer where the image is to be displayed from
the memory buffer. The third argument specifies the memory buffer created by
GetMem and used by _GetImage to store the bit map. Finally, the last argu­
ment specifies the interaction between the stored image and the currently dis­
played image. Notice that in this case (using the _Gxor argument) that the image
is inverted when it overlaps a currently displayed figure (like the axes or another
rectangle).

pcjs.org

You can write QuickPascal programs that generate graphics and display
text. In any graphics image, QuickPascal can display various styles and
sizes of type. These collections of stylized text characters are called
“fonts.” Fonts are simple to learn and easy to use. Yet they can add a
touch of polish to your program.

This chapter explains how to use fonts. It assumes you have already read
Chapter 13, “Using Graphics.” You should understand such terms as
“graphics mode” and “text mode,” and be familiar with such procedures
as SetVideoMode and MoveTo.

Note that the QuickPascal fonts can be used only in graphics modes.
Fonts cannot be used in text modes.

14.1 Overview of QuickPascal Fonts
Each font in QuickPascal consists of a typeface and several type sizes.

“Typeface” is a printer’s term that refers to the style of the displayed text—
Courier, for example, or Roman. The list on the following page shows six of
the typefaces available with the QuickPascal font functions.

“Type size” measures the screen area occupied by individual characters. This
term is also borrowed from the printer’s lexicon, but for our purposes, it is
specified in units of screen pixels. For example, “Courier 16 x 9” denotes text
of Courier typeface, with each character occupying a screen area of 16 vertical
pixels by 9 horizontal pixels.

The QuickPascal font functions use two methods to create fonts. The first tech­
nique generates the typefaces Courier, Helv, and Tms Rmn through a “bit­
mapping” technique. Bit mapping defines character images with binary data.
Each bit in the map corresponds to a screen pixel. If a bit is 1, its associated

pcjs.org

216 Pascal by Example

pixel is set to the current screen color. A bit value of 0 clears the pixel. Video
adapters use this same technique to display text in graphics mode.

The second method creates the remaining three type styles—Modem, Script, and
Roman—as “vector mapped” fonts. Vector mapping represents each character in
terms of lines and arcs. In a literal sense, vector-mapped characters are drawn on
the screen. You might think of bit-mapped characters as being stenciled.

Each method of creating fonted text has advantages and disadvantages. Bit­
mapped characters are formed more completely since the pixel mapping is prede­
termined. However, they cannot be scaled to arbitrary sizes. Vector-mapped text
can be scaled to any size, but the characters lack the solid appearance of the bit­
mapped characters.

Any function or procedure affecting the current graphics position (such as the
_MoveTo procedure or the JLineTo procedure) will also affect the font display
when _OutGText is called. Other routines (such as _SetCoIor or Remap-
Palette) that affect drawing characteristics also affect font text output.

The QuickPascal fonts appear on your screen as follows:

Typeface Sample Text

Courier ABCDEFGHIJKLMNOPQRSTUVWXYZ
abodefghijklmnopqrstuvwxyz

Helv ABCDEFG HIJ KLM NO PQ RSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Tms Rmn ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Modem ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghljklmnopqratuvwxyz

Script

Roman ABCDEFGHIJKLUNOPQRSTUWXYZ
abcdeftfhiiklmuoDarstuvwxvz

pcjs.org

Using Fonts 217

Table 14.1 describes the characteristics of each font. Notice that bit-mapped
fonts come in preset sizes as measured in pixels. The exact size of any font
character depends on the screen resolution and display type.

Table 14.1 Typefaces and Type Sizes in QuickPascal

Typeface Mapping Size (in Pixels) Spacing

Courier Bit 13x8,16x9, 20x12 Fixed

Helv Bit 13 x5,16 x7, 20 x 8
13x15,16x6,19x8

Proportional

Tms Rmn Bit 10 x 5,12 x 6,15 x 8
16x9, 20x12, 26x16

Proportional

Modem Vector Scaled Proportional
Script Vector Scaled Proportional
Roman Vector Scaled Proportional

14.2 Using Fonts in QuickPascal
Data for both bit-mapped and vector-mapped fonts reside in files on disk. A
.FON extension identifies the files. The names of the .FON files indicate their
content. For example, the MODERN.FON, ROMAN.FON, and SCRIPT.FON
files hold data for the three vector-mapped fonts.

The QuickPascal .FON files are identical to the font files supplied with Micro­
soft QuickC®, Version 2.0, as well as being identical to the .FON files used in
the Microsoft Windows operating environment. Consequently, you can use any
of the Windows .FON files with the QuickPascal font functions. The Windows
.FON files are also available for purchase separately. In addition, several ven­
dors offer software that create or modify .FON files, allowing you to design your
own fonts.

Your programs should follow these four steps to display fonted text:

1. Set a graphics video mode

2. Register fonts

3. Set the current font from the register

4. Display text using the current font

Sections 14.2.1-14.2.3 describe each of the font-specific steps in detail. The pro­
cedure for using video modes for graphics is discussed in Section 13.3. An ex­
ample program in the final section of this chapter demonstrates how to display
the various fonts available in the QuickPascal .FON files.

pcjs.org

218 Pascal by Example

14.2.1 Registering Fonts
The fonts you plan to use must be organized into a list in memory, a process
called “registering.” The register list contains information about the available
.FON files. You register fonts by calling the function Register Fonts. This
function reads header information from the specified .FON files. It builds a list
of file information but does not read mapping data from the files.

The MSGraph unit defines the _RegisterFonts function as

Function _RegisterFonts(PathName : CSTRING): Integer

The argument PathName is a string containing a file name. The file name is the
name of the .FON file for the desired font. The file name can include wild cards,
allowing you to register several fonts with one call to _RegisterFonts. For ex­
ample, the function call below registers all of the .FON files in the current
directory and checks for a successful registration:

result := _RegisterFonts('*.FON');
IF (result < 0) THEN

BEGIN
Writeln('Unable to register fonts');
Halt (0) ;
END;

{ the rest of your fonts program goes here }

As illustrated above, the _RegisterFonts function returns a negative number if
it is unable to register any fonts or if the .FON file is corrupt. If it successfully
reads one or more .FON files, _RegisterFonts returns the number of fonts
registered.

14.2.2 Setting the Current Font
To set a font as the current font, call the function _SetFont. This function
checks to see if the requested font is registered, then reads the mapping data
from the appropriate .FON fde. A font must be registered and marked current
before your program can display text using that font.

The MSGraph unit defines the _SetFont function as

Function _SetFont(Options: CSTRING): Integer

The Options argument is a string that describes the desired characteristics of the
font. The string uses letter codes that describe the desired font, as outlined here:

pcjs.org

Using Fonts 219

Option Code

t'FontName'

hy

w*

f

P

V

r

b

Meaning

Typeface of the font in single quotes. The
FontName string is one of the following:

courier modem
helv script
tms rmn roman

Notice that the FontName string is surrounded by a
pair of two single quotes. This is necessary to
embed the FontName string within the Options
string, and Pascal uses single quotes to specify a
string. Notice the space in “tms rmn.”
Other products’ font files use other names for
FontName. Refer to the vendor’s documentation for
these names.

Character height, where y is the height in pixels.

Character width, where x is the width in pixels.

Select only a fixed-spaced font.

Select only a proportional-spaced font.

Select only a vector-mapped font.

Select only a bit-mapped font.

Select the best fit from the registered fonts. This op­
tion instructs _SetFont to accept the closest-fitting
font if a font of the specified size is not registered.
If at least one font is registered, the b option always
guarantees that _SetFont will be able to set a cur­
rent font. If you do not specify the b option and an
exact matching font is not registered, _SetFont will
fail. In this case, any existing current font remains
current.
The _SetFont function uses four criteria for select­
ing the best fit. In descending order of precedence
the four criteria are pixel height, typeface, pixel
width, and spacing (fixed or proportional). If you
request a vector-mapped font, SetFont sizes the
font to correspond with the specified pixel height
and width. If you request a bit-mapped font,
_SetFont chooses the closest available size. If the
requested type size for a bit-mapped font fits
exactly between two registered fonts, the smaller
size takes precedence.

pcjs.org

220 Pascal by Example

nx Select font number x, where x is less than or equal
to the value returned by _RegisterFonts. For ex­
ample, the option n3 makes the third registered font
current, assuming that three or more fonts are
registered.
This option is primarily useful for cycling through
all registered fonts in a loop. Because .FON files
often contain several fonts, and the files are loaded
into memory in reverse order from which they are
registered, it is difficult to know which font will be
number 3.

Option codes are not case-sensitive and can be listed in any order. You can sepa­
rate codes with spaces or any other character that is not a valid option code. The
_SetFont function ignores all invalid codes.

For example, the function call below specifies that the font should be a “script”
typeface with a character height of 30 pixels and a character width of 24 pixels.
If the function is unable to do this, a “best fit” font is requested. The multiple
single quotes around script are required since the entire argument used by
_SetFont is a string. The double single quote specifies to QuickPascal that the
string contains a single quote.

result := _SetFont('t''script''h30w24b');
IF (result = -1) THEN

BEGIN
Writeln ('Unable to set requested font');
Halt (0);
END;

Writeln('Font set');
{ the rest of your font program goes here }

As illustrated above, the _SetFont function returns a -1 if it is unable to set the
requested font. If it successfully sets a current font, the value 0 is returned.

Once a font is set as the current font, the _SetFont function updates a data area
with the parameters of the current font. The data area is in the form of a
_FontInfo record, defined in the MSGraph unit as

{ structure for GetFontlnfo }

FontInfo = RECORD
fonttype : Integer; { bO set = vector,clear = bit map }
ascent : Integer; { pix dist from top to baseline }
pixwidth : Integer; { character width in pixels, 0 = prop }
pixheight : Integer; { character height in pixels }
avgwidth : Integer; { average character width in pixels }
filename : CSTRING[81]; { file name including path }
facename : CSTRING[32]; { font name }
END;

pcjs.org

Using Fonts 221

If you wish to retrieve the parameters of the current font, call the function
_GetFontInfo, which is defined in the MSGraph unit as

Function _GetFontInfo(VAR FInfo : Fontlnfo): Integer

14.2.3 Displaying Text Using the Current Font
Now you can display the font-based text. This step consists of two parts:

1. Select a screen position for the text with the graphics procedure _MoveTo.
Note that all of the font-based text is displayed using graphics functions.
Consequently, the_MoveTo procedure (rather than the text procedure
_SetTextPosition) positions the text. The _MoveTo procedure takes pixel
coordinates as arguments. The coordinates specify the upper left point of
the first character in the text string. Optionally, you can use the procedure
_SetGTextVector to change the orientation of the text on the screen.

2. Display the font-based text at that position with the procedure _OutGText.

14.3 A Few Hints on Using Fonts
Fonted text is simply another form of graphics, and using fonts effectively re­
quires little programming effort. Still, there are a few things to watch:

■ Remember that the video mode should be set only once to establish a
graphics mode. If you generate an image (as with the _RectangIe procedure)
and wish to incorporate fonted text above it as a title, don’t reset the video
mode prior to calling the font routines. Doing so will blank the screen, de­
stroying the original image.

■ The _SetFont function reads specified .FON files to obtain mapping data for
the current font. Each call to SetFont causes a disk access and overwrites
the old font data in memory. If you wish to show text of different styles on
the same screen, display all of the text of one font before moving on to the
others. By minimizing the number of calls to _SetFont, you’ll save time
spent in disk I/O and memory reloads.

■ When your program finishes with the fonts, you might want to free the
memory occupied by the register list. Call the _UnRegisterFonts procedure
to do this. As its name implies, this procedure frees the memory previously
allocated by _RegisterFonts. The register information for each type size of
each font takes up approximately 140 bytes of memory. Thus the amount of
memory returned by _UnRegisterFonts is significant only if you have many
fonts registered.

pcjs.org

222 Pascal by Example

u As for screen aesthetics, the same suggestions for the printed page apply to
fonted screen text. Typefaces are more effective when they are not compet­
ing with each other for attention. Restricting the number of styles per screen
to one or two generally results in a more pleasing, less cluttered image.

14.4 Example Program
The QuickPascal font functions shine when they are used in conjunction with
your other graphics functions. They allow you to dress up any image on the
screen, yet they can make a visual impression when used by themselves, as the
example program S AMPLER.PAS illustrates. This program displays sample text
in all of the available fonts, then exits when a key is pressed. Make sure the
.FON files are in the current directory before running the program.

Notice that SAMPLER.PAS calls the graphics procedure _MoveTo to establish
the starting position for each text string. Section 13.4 “Understanding Coordi­
nate Systems,” describes the _MoveTo procedure. The function _SetFont takes
a character string as an argument. The string is an options list that specifies type­
face and the best fit for a character height of 30 pixels and a width of 24 pixels.

PROGRAM sampler; { Demonstrates using different fonts }

USES
Crt, MSGraph;

CONST
CRLF = #13 + #10;
nfonts = 6;

texttypes : ARRAY[1..2, 1..nfonts] OF CSTRING[8] =

roman', 'courier', 'helv', 'tms rmn' , 'modern', 'script') ,
ROMAN', 'COURIER' , 'HELV', 'TMS RMN', 'MODERN', ' SCRIPT')
) ;

faces : ARRAY
/

1..nfonts] OF CSTRING[
\
' t'' roman''',
' t'' cour''',
' t'' helv''',
' t'' tms rmn''',
' t" modern''',
' t''
\.

script'''

fontpath : CSTRING = '*.FON';
VAR

list : CSTRING;
vc : _VideoConfig;
i, a : Integer;
stra : STRING[3];
ch : Char;

pcjs.org

Using Fonts 223

BEGIN { Begin main program }

(Read header information from all .FON files in
the current directory

}

a := _RegisterFonts(fontpath);
IF a < 0 THEN

BEGIN
_OutText('Error: Cannot register fonts.' + CRLF);
Halt (1) ;
END;

{ Set the highest available video mode)
a := _SetVideoMode(_MaxResMode);
Str(a, stra) ;
_OutText('MaxresMode = ' + stra);

{ Copy video configuration into structure vc }
_GetVideoConfig(vc);

{ Display six lines of sample text }
FOR i := 1 TO nfonts DO

BEGIN
list := faces[i] + 'bh24w24' ;
a:= _SetFont(list);

IF (a <> -1) THEN
BEGIN
_SetColor(i + 1);
_MoveTo(0, i * 30);
_OutGText(texttypes[2,i]);
_MoveTo(vc.NumXPixels DIV 2, i * 30);
_OutGText(texttypes[1,i]+CRLF);
END

ELSE
BEGIN
a := _SetVideoMode(_DefaultMode);
_OutText('Error: Cannot set font.’);
Halt(1);
END;

END;

ch := ReadKey;

a := _SetVideoMode(_DefaultMode) ;

_UnRegisterFonts; { Returns memory used by fonts }

END.

pcjs.org

CHAPTER 15 15 225

Object-Oriented
Programming

Object-oriented programming is widely hailed as the programming style
of the future. QuickPascal offers you object-oriented programming today,
through its object extensions to standard Pascal. Although they make
only a few syntactic additions to the language, the QuickPascal object
extensions provide a powerful and efficient framework for creating
programs.

15.1 Overview
Standard Pascal programs, along with programs written in other procedural lan­
guages, are organized around a set of data structures, with separate procedures
and functions manipulating the data. An example is a graphics program that de­
clares each shape as a unique TYPE. Various routines draw, erase, and move the
shapes, likely using a CASE statement to differentiate between them.

Object-oriented programs operate differently. Instead of being organized around
data, they are organized around a set of “objects.” An object is a structure that
combines both data and routines into one type. It is similar to a Pascal RECORD
type, but can store both functions and procedures as well as data.

Objects have a property called “inheritance.” Once an object has been declared,
another object can be derived that inherits all of the data and routines associated
with the parent type. New data and routines can be added, or existing inherited
routines modified.

A graphics program that was written with object extensions to QuickPascal
would declare an initial “generic shape” object. The generic shape would define
all of the data and routines—such as draw, erase, and size—that were common
to every shape. New shapes would be derived from the generic shape, and then
these new shapes would declare additional data fields, override existing routines,
and add new ones.

pcjs.org

226 Pascal by Example

One of the primary benefits of object-oriented programming is the ease with
which programs can be changed and portions reused. In the hypothetical stan­
dard Pascal graphics application, to add an octagon shape to the program, you
would need to declare an entire new type as well as modify each routine that
dealt with the shapes. With object extensions to QuickPascal, you would define
an octagon object, already derived from the generic shape object, and add or
modify any data or routines the octagon exclusively used. The old routines
would still operate the same way on old types of objects. Instead of making
changes throughout the entire program, all of the changes would occur in one
localized area and apply only to that object or its descendants.

The example in Section 15.5 demonstrates basic object-oriented programming
techniques.

15.2 Object Programming Concepts
Object-oriented extensions are based on four concepts: classes, objects, methods,
and inheritance. A “class” is similar to a Pascal RECORD. It describes an overall
structure for any number of types based upon it. The main difference between a
class and a record is that a class combines data fields (called “instance varia­
bles”) and procedures and functions (called “methods”) that act upon the data.
Instance variables can include standard Pascal data types as well as objects.

An “object” is a variable of a class (often called a class instance). Like a class,
an object is declared as a TYPE. All objects derived from a class are considered
members of that class and share similar characteristics of the superclass.

“Methods” are procedures and functions encapsulated in a class or object. Cal­
ling a method is referred to as “passing a message to an object.” The object ex­
tensions to QuickPascal create programs that do most of their work by sending
messages to objects, and by instructing objects to send messages to each other.
Methods are stored in an object-type method table and do not occupy memory
when an object is declared as a variable.

Members of the same class exhibit similar behavior through inheritance. This
means the variable instances and methods found in a superclass are also present
in objects derived from the superclass. Additionally, objects have their own
space for storing data and methods local to the object. If necessary, an object can
also override a parent class’s method, replacing the inherited method’s instruc­
tions with its own. If it does, only the descendant object’s methods are altered,
while the parent’s remain unchanged.

15.3 Using Objects
As mentioned before, the object extensions to QuickPascal add only a few new
keywords and types. All of the standard Pascal identifiers, constructs, and
routines are available when programming with objects. The differences in using

pcjs.org

Object-Oriented Programming 227

object extensions are in the areas of declaring class and object data structures
and of calling procedures and functions through methods.

15.3.1 Setting the Method Compiler Directive
The first step in using object extensions is to enable the Method compiler direc­
tive. The {$M+} directive should appear at the beginning of any source file that
uses objects. (The ($M+) directive is enabled by default.) This directive in­
structs the compiler to check whether or not memory for an object has been allo­
cated before the object’s method is executed. See Appendix B, “Compiler
Directives,” for more information.

15.3.2 Creating Classes
Since all objects are derived from classes, classes are created first. A class
should incorporate all data and methods that descendant objects will have in
common.

You use the following syntax to declare an object class:

TYPE
ClassName = OBJECT

DataFields
(PROCEDURE | FUNCTION}|[Methods]

END;

The parts of the syntax are defined below:

Argument

ClassName

OBJECT

DataFields

Methods

Discription

A unique name that identifies the class.

A QuickPascal keyword that instructs the compiler
to treat the structure as an object.

The declaration of one or more data structures. The
syntax is the same as that used for declaring the
fields of a record.

A list of method declarations. Each method declara­
tion is like a procedure or function heading, except
that the name may be qualified with the name of the
class: ClassName.MethodName. Although not re­
quired, such a qualification is good programming
style. Methods are declared immediately following
the class and object type declarations.

pcjs.org

228 Pascal by Example

For example, the following code fragment creates a generic shape for a graphics
program:

TYPE
shape = OBJECT

color: colors;
height, width: Integer;
PROCEDURE shape.init;
PROCEDURE shape.draw;
PROCEDURE shape.move(hoz, vert: Integer);
FUNCTION shape.area: Integer;

END;

PROCEDURE shape.init
BEGIN { code for init method here }

END;

PROCEDURE shape.draw;
BEGIN { code for draw method here }
. { remainder of methods }

END;

15.3.3 Creating Subclasses
Once a class has been created, subclasses can be defined. The syntax for creating
a subclass is similar to that of a class:

TYPE
ObjectName - OBJECT(ParentClass)

DataFields
{PROCEDURE | FUNCTION)([Methods]) [[; OVERRIDE J

END;

The two special aspects of declaring objects are the use of parent class and of
overriding inherited methods. The argument ParentClass is the name of a parent
class. Since the subclass is derived from a class, you would enclose the name of
the class in parentheses.

If the subclass redefines a method from the parent class, the OVERRIDE state­
ment should appear after the method header.

pcjs.org

Object-Oriented Programming 229

For example, the following code fragment declares a descendant of the shape
class:

TYPE
circle = OBJECT(shape)

radius: Integer;
PROCEDURE circle.init; OVERRIDE;
PROCEDURE circle.draw; OVERRIDE;
FUNCTION circle.area: Integer; OVERRIDE;
PROCEDURE circle.changeradius(new_radius: Integer);

END;

Because the circle type is being derived from the shape class, there is no
need to declare all of the instance variables and methods from shape. The only
variables and methods that need declaring are those that are new and exclusive
to the circle object. In this case, the new items are the radius field and
the changeradius method. A circle object will have color, height,
width, and radius fields.

Since the init, draw, and area methods will be different for circle
than they were for shape, the OVERRIDE keyword instructs the compiler to
use the method local to circle when one of these messages is passed to the
object.

15.3.4 Defining Methods
After a method has been associated with an object, it must be defined. Methods
are defined with the PROCEDURE or FUNCTION keywords. The actual state­
ments that compose the method are defined after all classes and subclasses have
been created. Either the PROCEDURE or FUNCTION keyword precedes the ob­
ject name, followed by a period (.) and the method name. Methods that are over­
ridden follow the same syntax. (See the example at the end of the chapter.)

The first method you should define is one that initializes all of the object’s data
fields, allocates memory, or performs any other actions the object may need
before being used. This method should be called immediately after space has
been allocated for the object.

Instance variables that belong to the object can be accessed from within a
method by using their identifier preceded by the pseudovariable Self, as shown
below:

PROCEDURE circle.init;
BEGIN

Self.color := blue;
Self.height := 20;
Self.width := 20;
Self.radius := 0;

END;

Self simply instructs the object to operate on itself.

pcjs.org

230 Pascal by Example

An object’s data may be accessed by a program directly, as if the object were a
record:

the_radius := circle.radius;

Also, to call a method belonging to the object from within a different method,
you may precede it with the Self variable. In the code fragment below,
Self .draw is equivalent to circle, draw.

PROCEDURE circle.move(hoz, vert: Integer);
BEGIN

Self.draw;
END;

Note that you are not restricted solely to using methods when you use object ex­
tensions to QuickPascal. Methods are only used with objects. Standard Pascal
procedures and functions can be implemented to manipulate other forms of data.

15.3.5 Using INHERITED
The INHERITED keyword negates an override of an inherited method. If the
class of method performs only a portion of what an object needs to have done,
the parent method can be called from the descendant method.

For example, suppose that in the shape initialization method, you set the fol­
lowing values:

PROCEDURE shape.init;
BEGIN

color := blue;
height := 20;
width := 20;

END;

If the circle object used these values, but overrode the method to initialize
its own data field, INHERITED could be used to call the ancestor method. This
would initialize the common fields without needing to initialize them in the de­
scendant method.

PROCEDURE circle.init;
BEGIN

radius := 0;
INHERITED Self.init;

END;

pcjs.org

Object-Oriented Programming 231

15.3.6 Declaring Objects
Declaring an object is similar to declaring a dynamic variable. The syntax is

VAR
Objectldentifier: Class

Objectldeniifier is the QuickPascal identifier for the object, and Class is the type
of the object.

For example, this code declares an object of the class circle:

VAR
my_circle: circle;

15.3.7 Allocating Memory
Before an object can be used in a program, memory space must be allocated for
it. This is done with the Pascal New procedure:

New(my_circle);

A common mistake in object-oriented programming is forgetting to allocate
memory for an object and then trying to access it. Allocating memory for objects
should be one of the first actions of the program body.

15.3.8 Calling Methods
After classes and objects have been declared, and memory has been allocated for
the object, you can call a method (that is, send a message to the object) from
within the main body of the program to manipulate the object’s instance varia­
bles. Sending a message is similar to calling a procedure or function in standard
Pascal. The only difference is that you specify both the object and the method.

For example, different methods for my_circle are executed by

my_circle.draw;
my_circle.move(30, 30);
circle_area := my_circle.area;

15.3.9 Testing Membership
The Member function tests if a particular object is in a class, as shown below:

IF Member! a_circle, shape) THEN
num_shapes := num_shapes + 1;

The function is passed the object and the class. It returns True if the object is an
instance of, or a decendant of, the class.

pcjs.org

232 Pascal by Example

15.3.10 Disposing of Objects
When you are finished using an object, the memory allocated for it should be
freed. This is done with the Dispose procedure:

Dispose(my_circle);

Before disposing of an object, be sure it will not be used further in the program.

Often, a free method is declared to reallocate data-structure memory, close files,
and perform other housecleaning. Such a method should be called before using
Dispose.

15.4 Object Programming Strategies
The greatest difficulty facing programmers who are learning object extensions to
QuickPascal is the need to plan and write their programs in an object-oriented
manner. All too often, a programmer’s first object-oriented programs exhibit a
procedural style with objects sprinkled in haphazardly. Programming in this fash­
ion reduces the value of object extensions for producing efficient and reusable
code. Sections 15.4.1-15.4.5 discuss several issues you should keep in mind as
you create object-oriented programs.

15.4.1 Object Style Conventions
Although style conventions for programs are often a matter of personal prefer­
ence, adoption of certain style conventions for object programming can make
your source code easier to read. For example, since both a Pascal record and an
object use a period (.) to access their data fields and methods, it can be difficult
to distinguish objects from records. This is made more complicated by the diffi­
culty telling whether an identifier following an object is an instance variable or a
method.

Here are some style conventions for object programming:

■ Classes and objects are preceded with an uppercase “T.” This identifies the
variable as an object type, as shown below:

Tcircle = OBJECT(Tshape)
■ Object instance variables are preceded with a lowercase “f.” The “f ’ indi­

cates at a glance that the identifier is a field. Identifiers without the “f’ are
methods, as in the following example:

the_radius :=
Tcircle.draw;

Tcircle.fradius;

pcjs.org

Object-Oriented Programming 233

• Global variables are preceded with a lowercase “g.” This is helpful in identi­
fying objects that can be passed messages from objects outside their own
class (see below):

gTtemp_circle.color := blue;

15.4.2 Object Reusability
The essence of object-oriented programming is reusability. When you create ob­
jects, you should give some thought to their future use, both in terms of the cur­
rent program and for later ones. It’s best to create classes from which other
objects can be derived. Inheriting methods is generally more important than in­
heriting data. On a larger scale, class libraries are useful for dealing with com­
mon tasks. A set of related classes can reside in a UNIT and be called at any time.

15.4.3 Modularity
Object extensions to QuickPascal lend themselves to modularized programs. A
class’s methods can easily be kept together, instead of being strung out through
the source code. A properly constructed object program should require only a
few localized modifications to add and alter methods.

15.4.4 Methods
Methods should be treated as replaceable components of the object building
blocks of QuickPascal. Methods are designed to serve a single purpose; a
method that is multipurpose is more difficult to modify because it performs a
variety of tasks. Whenever you want to perform an action, create a method to do
it. Methods should be short, at most several dozen statements in length.

15.4.5 Data Fields
It isn’t necessary to declare an instance variable for each data item an object may
use. If more than one object method uses a specific data item, the data should be
incorporated as an instance variable. If only a single method accesses the data, it
can be passed as a parameter to the method. You should use object instance vari­
ables in place of global variables to promote modularity.

pcjs.org

234 Pascal by Example

15.5 Example Program
This example shows how a typical object-oriented program works. A class is de­
clared (geo_shape), with two subclasses (rectangle and circle).
Both the subclasses demonstrate how to add instance variables and methods and
how to override existing parent methods. The body of the OBJECTDE.PAS pro­
gram has examples of defining methods, accessing instance variables, and declar­
ing and disposing of objects.

Program objectdemo;
{ Demonstrates object techniques with geometric shapes }

{M+}

TYPE

geo_shape = OBJECT
area: Real;
height: Real;
what: STRING;
PROCEDURE geo_shape.init;
PROCEDURE geo_shape.say_what;
FUNCTION geo_shape.get_area : Real;

END;

rectangle = OBJECT(geo_shape)
len: Real;
FUNCTION rectangle.is_square : Boolean;
PROCEDURE rectangle.init; OVERRIDE;
FUNCTION rectangle.get_area : Real; OVERRIDE;

END;

circle = OBJECT(geo_shape)
radius: Real;
PROCEDURE circle.init; OVERRIDE;
FUNCTION circle.get_area : Real; OVERRIDE;

END;

PROCEDURE geo_shape.init;
BEGIN

Self.area := 0;
Self.height := 0;
Self.what := 'Geometric shape';

END;

PROCEDURE geo_shape.say_what;
BEGIN

Writeln(Self-what);
END;

FUNCTION geo_shape.get_area : Real;
BEGIN

Self.area := Self.height * Self.height;
get_area := Self.height;

END;

pcjs.org

Object-Oriented Programming 235

PROCEDURE circle.init;
BEGIN

INHERITED Self.init;
Self.radius := 4;
Self.what := 'circle';

END;

FUNCTION circle.get_area: Real;
BEGIN

Self.area := (Pi * Sqr(Self.radius));
get_area := Self.area;

END;

PROCEDURE rectangle.init;
BEGIN

INHERITED Self.init;
Self.height := 5;
Self.len := 5;
Self.what := 'Rectangle';

END;

FUNCTION rectangle.is_square: Boolean;
BEGIN

is_square := False;
IF Self.len = Self.height THEN
is_square := True;

END;

FUNCTION rectangle.get_area: Real;
BEGIN

Self.area := (Self.len * Self.height);
get_area := Self.area;

END;

VAR
the_circle : circle;
the_rect : rectangle;

BEGIN
New(the_circle);
the_circle.init ;
New(the_rect);
the_rect.init;

the_circle.say_what;
Writeln('area: ', the_circle.get area);

Writeln;

the_rect.say_what;
Writeln ('area: ', the_rect.get_area);

Dispose(the_circle);
Dispose(the_rect);

END .

pcjs.org

237Appendixe^^_i^^^^

A ASCII Character Codes and Extended-Key Codes.......................239

B Compiler Directives.. 245

C Summary of Standard Units ..253

D Quick Reference Guide ...255

pcjs.org

pcjs.org

ASCII Character Codes and Extended Key Codes

Appendix A________________ 239

A.1 ASCII Character Codes
The ASCII character codes for printable and control characters are listed on the
following two pages. The value of each character is its ordinal value within the
type Char. For example, Ord (’P’) returns the decimal value 80.

pcjs.org

240 Pascal by Example

Ctrl Dec Hex Char Code

0 00 NUL
A i 01 0 SOH
B 2 02 0 STX
C 3 03 I ETX
D 4 04 ♦ EOT
E 5 05 * ENQ
F 6 06 ACK
G 7 07 * BEL

*H 8 08 □ BS
I 9 09 0 HT
J 10 0A a LF
K 11 0B d VT

*L 12 OC 2 FF
M 13 0D f CR

"N 14 0E fl SO
o 15 OF * SI
p 16 10 ► DLE
Q 17 11 i DC1
R 18 12 X DC2

‘s 19 13 ii DC3
*T 20 14 ii DC4

U 21 15 f NAK
*v ?2 16 ■ SYN
w 23 17 i ETB

'x 24 18 t CAN
Y 25 19 X EM
Z 26 1A 4 SUB

'[27 IB t ESC
*\ 28 1C L FS
"1 29 ID 0 GS

30 IE A RS

— 31 IF ▼ US

Dec Hex Char

64 40 0

65 41 A
66 42 B
67 43 C
68 44 D

69 45 E
70 46 F
71 47 G
72 48 H
73 49 I

74 4A J
75 4B K

76 4C L
77 4D H

78 4E N
79 4F 0

80 50 P
81 51 Q
82 52 R

83 53 S
84 54 I

85 55 U
86 56 U
87 57 w

88 58 X

89 59 Y

90 5 A z
91 5B [

92 5C \
93 5D]
94 5E A

95 5F —

Dec Hex Char
32 20
33 21 ♦
34 22 II

35 23 it
36 24 $
37 25 V.

38 26 &
39 27)

40 28 (
41 29)
42 2A *
43 2B +
44 2C }

45 2D -

46 2E 1

47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3 A i

59 3B •
I

60 3C <
61 3D “
62 3E >
63 3F 7

Dec Hex Char

96 60 1
97 61 a
98 62 h
99 63 c

100 64 d
101 65 e
102 66 f
103 67 9

104 68 h

105 69 i
106 6A j
107 6B k

108 6C 1

109 6D M

110 6E n
111 6F 0

1 12 70 P
113 71 q

1 14 72 r

1 15 73 s
116 74 t
1 17 75 u

1 18 76 V

119 77 w

120 78 X
121 79 y

122 7A z
123 7B {
124 7C !

125 7D >

126 7E AT

127 7F

t ASCII code 127 has the code DEL. Under DOS, this code has the same effect as ASCII 8 (BS).
The DEL code can be generated by the CTRL + BKSP key combination.

pcjs.org

ASCII Character Codes and Extended Key Codes 241

Dec Hex Char

224 E0 a

225 El P
226 E2 r
227 E3 n
228 E4 l
229 E5 tr

230 E6 V
231 E7 T
232 E8 5
233 E9 6
234 EA ft
235 EB
236 EC ®

237 ED *
238 EE i
239 EE n
240 FO z

241 FI +

242 F2 >

243 F3 <

244 F4 r
245 F5 j
246 F6 ■
247 F7 tvtv

248 F8 0

249 E9 1

250 EA •
251 EB
252 EC n
253 ED 2

254 EE ■
255 FF

Dec Hex Char

192 CO L
193 Cl 1

194 C2 T

195 C3 h

196 C4 -

197 C5 +
198 C6 1=

199 C7 II
200 C8 IS

201 C9 If
202 CA Jl

203 CB if

204 CC If
205 CD =

206 CE Jl
ir

207 CE JL

208 DO Jl
209 D1 T

210 D2 It

211 1)3 U

212 D4 b
213 D5 F
214 D6 IT

215 1)7
216 D8 *
217 1)9 J
218 L)A r
219 DB 1
220 DC ■

221 DD 1
222 DE 1
223 DE ■

Dec Hex Char

160 AO a
161 A1 l

162 A2 6

163 A3 u
164 A4 n
165 A5 N
166 A6 t

167 A7 t

168 A8 6
169 A9 r
170 AA T

171 AB *
172 AC
173 AD !
174 AE «
175 AE »
176 BO
177 B1 i
178 B2 b

179 B3 i
180 B4 \
181 B5
182 B6 i
183 B7 TI

184 B8
185 B9 Jll

186 BA II

187 BB ll

188 BC SI

189 BD 11
190 BE d
191 BE T

Dec Hex Char

128 80 5
129 81 u
130 82 e
131 83 S
132 84 a
133 85 a
134 86 4
135 87 <>
136 88 ?
137 89 e
138 8A e
139 8B i
140 8C ?
141 8D l
142 8E A
143 8F A
144 90 £
145 91 a
146 92 ft
147 93

A0
148 94 0
149 95 o
150 96 u
151 97 ii
152 98 9
153 99 'O'
154 9A U
155 9B
156 9C £
157 9D ¥
158 9E ft
159 9F /

pcjs.org

242 Pascal by Example

A.2 Extended-Key Codes
The Crt unit’s ReadKey function returns a pair of values (instead of a single
ASCII character) when a key on an extended keyboard is pressed. The first code
is a null character (ASCII 0), which indicates that the next character will be an
extended-key code.

This table lists the key or key combination along with the decimal extended-key
code. This information is also available in the on-line help (in a form that can be
pasted directly into your program).

Key Type Extended Key Code Extended Key Code

Arrow UP 72 DOWN 80
LEFT 75 RIGHT 77
PGUP 73 PGDN 81
HOME 71 END 79
INS 82 DEL 83

CTRL + CTRL+PRTSC 114 CTRL+HOME 119
Arrow CTRL+LEFT 115 CTRL+END 117

CTRL+RIGHT 116
CTRL+PGUP 132 Null key 3
CTRL+PGDN 118 SHUT+TAB 15

ALT + ALT+A 30 ALT+N 49
Letter ALT+B 48 ALT+O 24

ALT+C 46 ALT+P 25
ALT+D 32 ALT+Q 16
ALT+E 18 ALT+R 19
ALT+F 33 ALT+S 31
ALT+G 34 ALT+T 20
ALT+H 35 ALT+U 22
ALT+I 23 ALT+V 47
ALT+J 36 ALT+W 17
ALT+K 37 ALT+X 45
ALT+L 38 ALT+Y 21
ALT+M 50 ALT+Z 44

pcjs.org

ASCII Character Codes and Extended Key Codes 243

Key Type Extended Key Code Extended Key Code

ALT + ALT+1 120 alt+6 125
Number ALT+2 121 ALT+7 126

ALT+3 122 ALT+8 127

ALT+4 123 ALT+9 128

ALT+5 124 ALT+0 129
ALT+MINUS 130 ALT+ = 131

Function FI 59 F6 64

F2 60 F7 65
F3 61 F8 66
F4 62 F9 67
F5 63 F10 68

SHIFT + SHtFT+Fl 84 SHIFT+F6 89
Function SHIFT+F2 85 SHIFT+F7 90

SHIFT+F3 86 SHIFT+F8 91
SHIFT+F4 87 SHIFT+F9 92
SffiFT+F5 88 SHIFT+F10 93

CTRL + CTRL+F1 94 CTRL+F6 99
Function CTRL+F2 95 CTRL+F7 100

CTRL+F3 96 CTRL+F8 101
CTRL+F4 97 CTRL+F9 102
CTRL+F5 98 CTRL+Fl 0 103

ALT + ALT+F1 104 ALT+F6 109
Function ALT+F2 105 ALT+F7 110

ALT+F3 106 ALT+F8 111
ALT+F4 107 ALT+F9 112
ALT+F5 108 ALT+F10 113

Extended FI 1 133 F12 134
Function SHIFT+F11 135 SHIFT+F12 136

CTRL+Fl 1 137 CTRL+Fl 2 138
ALT+F11 139 ALT+F12 140

pcjs.org

Appendix B
Compiler Directives

QuickPascal uses a variety of compiler directives to affect code output. They can
be classed as

■ Switch Directives (on and off switches that control compiler options)

■ Parameter Directives (commands that require numbers or a fde name)

■ Conditional Directives (commands that compile specific portions of the
source file, depending if certain conditions are met)

Compiler directives can be specified in the source file, in the QuickPascal en­
vironment, or at the DOS command line.

B.1 Switch Directives
Switch directives are identified by a single letter enclosed in braces. The letter
is preceded by a dollar sign ($) and is followed by either a plus (+) that enables
the switch, or a minus (-) that disables it. If you do not specify a switch direc­
tive, the default setting will automatically be used.

A space must not come between the left brace and the dollar sign. If one does,
the compiler considers the line to be a comment. This is useful for commenting
out directives.

Multiple switches can be set in a single statement. For example,

{SA-,S+,R-,V+)

Certain switch directives must be declared globally at the beginning of the pro­
gram, just after the header. That is, they must appear before any data declaration
or code. Other switch directives can occur locally, anywhere within the source
file.

The individual switch directives are described below.

Align Data
{$A+} or {$A-}
Default: ($A+)
Type: Local

Changes from byte alignment to word alignment of typed constants and varia­
bles. When the align data directive is enabled, all typed constants and variables
larger than one byte are aligned on a machine-word boundary. Although word

pcjs.org

246 Pascal by Example

alignment does not affect program execution on the 8088 processor, on 80x86
processors, programs can execute faster since word-sized items are accessed in
one memory cycle.

When the directive is disabled, no alignment occurs, and all typed constants and
variables are placed at the next available memory address.

Boolean Evaluation
{$B+} or {$B-}
Default: {$B-}
Type: Local

Determines which type of code will be generated for the Boolean AND and
OR operators. When the directive is enabled, code is created for the complete
Boolean expression, even if the result is already known. If the directive is dis­
abled (the default), the evaluation stops as soon as the result becomes evident,
resulting in faster programs. Enable this switch when the second or subsequent
operands in the Boolean expression include a procedure or function call that
needs to be executed, regardless of the value of the first operand.

Debug Information
{$D+} or {$D-}
Default: {$D+}
Type: Global

Inserts debugging information into your compiled program. When the directive
is enabled, you can use the QuickPascal debugger to single step through code to
view VARS, you need {$L+}. Additionally, when a run-time error is reported,
QuickPascal will move to the line in the source code that caused the error.

FAR Calls
{$F+} or {$F-}
Default: {$F-}
Type: Local

Determines which model is used for compiled procedures and functions. When
the FAR calls directive is enabled, procedures and functions always use the FAR
call model. If the directive is disabled, QuickPascal determines the call model
based on location of the routine. If the procedure or function is declared in the
INTERFACE portion of a unit, the FAR model is used. Otherwise, the NEAR
model is used.

See Chapter 12, “Advanced Topics,” for a full discussion of FAR and NEAR
call models.

pcjs.org

Compiler Directives 247

I/O Checking
{$1+} or {$1-}
Default: {$1+}
Type: Local

Generates code that examines the result of an input/output procedure. If an I/O
error occurs while the directive is enabled, the program displays a run-time error
and terminates. If the I/O checking directive is disabled, you should use the
IOResult function to check for I/O errors. See Chapter 9, “Text Files,” for more
information on I/O routines.

Local Symbol Data
{$L+} or {$L-}
Default: ($L+)
Type: Global

Generates symbol information in your compiled code. When the directive is
enabled, you can use the QuickPascal debugger to examine and modify variables
within your program. The local symbol data directive is used in conjunction with
the debug information directive. If the debug information directive is disabled,
the local symbol data directive is automatically disabled.

Method Checking
{$M+} or {$M-}
Default: {$M-}
Type: Global

Determines if memory for an object has been allocated before an object’s
method is called. If the directive is enabled and an object hasn’t had memory
allocated, a run-time error is generated. You should always enable the method­
checking directive when you are using objects and programming in object-
oriented Pascal.

Numeric Processing
{$N+} or {$N-}
Default: {$N-}
Type: Global

Specifies which model of floating-point code is generated by the compiler.
When the directive is enabled, all floating-point calculations are performed by
the 80x87 math coprocessor. If the directive is disabled, all real type calculations
are performed in software using the run-time libraries.

When the directive is enabled ($N+), the resulting program will run only on ma­
chines equipped with 80x87 coprocessors. Attempting to run the program on a
computer that is not 80x87-equipped generates an error message informing the
user that a coprocessor is required.

pcjs.org

248 Pascal by Example

When the directive is disabled ($N-), the resulting program will run on any ma­
chine, whether or not it has a coprocessor. However, the code will not use the co­
processor, even if present. Use of the $N- directive involves some differences in
the way Extended and Comp data types are handled. See Chapter 2, “Program­
ming Basics,” for more information.

Range Checking
{$R+} or {$R-}
Default: {$R-}
Type: Local

Generates code that determines if all array and string indexing expressions are
within bounds, and all assignments to scalar and subrange variables are within
range. If range checking fails while the directive is enabled, a run-time error is
reported. The range checking directive should be used only for debugging, as it
decreases program performance and increases program size.

Stack Checking
{$S+} or {$S-}
Default: {$S+}
Type: Local

Creates code that checks whether enough space remains on the stack for local
variables before executing a procedure or function. If a stack overflow occurs
when the directive is enabled, the program displays a run-time error message
and terminates.

VAR String Checking
{$V+} or {$V-}
Default: {$V+}
Type: Local

Compares the declared type of a VAR type string parameter with the string type
actually being passed as a parameter when the directive is enabled. The types
must be identical. If the directive is disabled, no type checking is performed.

pcjs.org

Compiler Directives 249

B.2 Parameter Directives
Parameter directives instruct the compiler to take a certain action, based on para­
meters that are passed to the compiler. A space always separates the single direc­
tive letter and the parameter.

The individual parameter directives are described below.

Include
{$1 Filename}
Type: Local

Includes a named source file in the compilation immediately after the directive.
QuickPascal assumes the .INC extension if none is specified. If the include file
is in a different path from the one defined in the QuickPascal Environment com­
mand in the Options menu, you must type in the entire pathname.

You cannot have an include file within a BEGIN...END block.

Link
{$L ObjectFile}
Type: Local

Links a relocatable object file containing external routines written in assembly
language. If the .OBJ file is in a different path from the one defined in the Quick­
Pascal Environment command in the Options menu, you must type in the entire
pathname. For additional information on linking with assembly language, see
Chapter 12, “Advanced Topics.”

Memory
{$M StackSize, MinHeap, MaxHeap}
Default: ($M 16384, 0, 655360}
Type: Global

Sets stack and heap memory allocation. Three parameters are passed: stack size,
minimum heap size, and maximum heap size. Each parameter must be an integer
within a specific range. See the list of ranges in Table B.l below.

Table B.l Minimum and Maximum Memory Allocation Parameters

Parameter Minimum Value Maximum Value

StackSize 1024 65520
MinHeap 0 655360
MaxHeap MinHeap 655360

pcjs.org

250 Pascal by Example

B.3 Conditional Directives
Conditional directives produce different code from the same source file if a con­
ditional identifier is defined. The conditional directives are, in effect, a variation
of the IF control statement. If a condition is true, code between the {$IFxex
Condition} and {$ENDIF} directives is compiled. If the condition is false, the
compiler skips the code between the two directives. An optional {$ELSE} direc­
tive provides further control.

{$DEFINE DEBUG}

{$IFDEF DEBUG}
Writeln('tax: tax, 'total: total)

{$ELSE}
Writeln('amount: ',tax + total);

{ENDIF}

You define and undefine identifiers with the ($DEFINE Name) and {$UNDEF
Name} directives. Conditional identifiers are treated separately from similarly
named program constants and variables. In addition to user-defined control iden­
tifiers, QuickPascal incorporates several predefined identifiers (listed in Table
B.2 below).

Table B.2 QuickPascal Predefined Conditional Identifiers

Conditional
Identifier State Purpose

VERIO Defined Indicates the compiler version
MSDOS Defined Indicates the operating system
CPU86 Defined Indicates the 80x86 CPU family
CPU87 Defined if an 80x87 is

present at compile time
Indicates the use of an 80x87 CPU

Conditional directives may be placed anywhere in the source file. The individual
conditional directives are described below.

DEFINE
{SDEFINE Identifier}

Defines a conditional identifier. The identifier exists through the rest of the com­
pilation, or until undefined with the UNDEF directive.

pcjs.org

Compiler Directives 251

ELSE
{$ELSE}

Compiles or skips the source based on the identifier in the preceding IF directive.

ENDIF
{$ENDIF}

Ends the conditional compilation associated with the most recent IF directive.

IFDEF
{$IFDEF Identifier}

Compiles the source that follows if the identifier has been defined.

IFNDEF
{$IFNDEF Identifier}

Compiles the source following the directive if the identifier is undefined.

IFOPT
($IFOPT Switch}

Compiles the source that follows if the specified switch has been set as
described. For example,

{$ IFOPT I-}
result := IOResult;

{SENDIF}

UNDEF
{$UNDEF Identifier}

Undefines a previously declared identifier for the remainder of the compilation
or until the identifier is once again defined.

pcjs.org

253

Summary of Standard Units

Appendix C

QuickPascal comes with several standard units that expand your programs’ capa­
bilities. These units—collections of variables, constants, data types, procedures,
and functions—enhance your control over the screen and text, DOS routines,
printer use, and graphics. QuickPascal automatically inserts the System standard
unit whenever you compile a program. System supplies all of the QuickPascal
standard procedures and functions.

Crt Unit
The Crt unit extends your control of the screen, keyboard input, and sound. Crt
has procedures and functions that manipulate the screen colors, cursor position,
text attributes, and windows. It also contains functions for checking keyboard
activity and lets you turn the internal speaker on and off.

Dos Unit
The Dos unit gives you access to file-handling and operating-system routines.
Programs that need to access DOS procedures and functions in order to set or get
the time and date, to determine disk sizes and available disk space, or to control
software interrupts can do so with the Dos unit. Other procedures and functions
within the Dos unit let you manipulate file names and file attributes.

Printer Unit
The Printer unit lets you use a printer. It declares a text file, “Lst,” and sends
the output of Write and Writeln calls that use Lst to the printer port rather than
to the screen. Printer accepts any type of formatting available to Write and
Writeln. (Lst directs its output to LPT1. Make sure your printer connects to
that port.)

MSGraph Unit
The MSGraph unit provides graphics in QuickPascal. It supports a large num­
ber of procedures and functions that draw geometric shapes, fill figures with
colors and patterns, manipulate images, create windows and viewports, and dis­
play text in various sizes and type styles. You can display graphics on a wide
variety of video adapters and can choose the best combination of screen resolu­
tion and colors for your needs.

pcjs.org

254 Pascal by Example

System Unit
The System unit contains all of the standard procedures and functions (Writeln,
Pred, Copy, and so on), which you think of as always being available. You do
not need to include System in the USES list; QuickPascal automatically uses the
System unit whenever you compile a program.

pcjs.org

Appendix D
Quick Reference Guide

D.1 Keywords, Procedures, and Functions
Use the QP Advisor for complete descriptions and information.

Abs(x)
Returns the absolute value of x.

ABSOLUTE
Declares a variable to reside at a specific memory location.

Addr(x)
Returns the address of x, where x is any variable, typed constant, procedure
identifier, or function identifier.

AND
Acts as logical or bitwise AND operator.

Append(FileVariable)
Opens an existing Text file FileVariable to append additional text.

ArcTanf x)

Returns the arctangent of x.

ARRAY [Ranges] OF Type

Defines Type as the base type, and Ranges as the range of indices, for an
array type, variable, or constant.

Assign(FileVariable, Name)
Assigns the file variable FileVariable to the external file named in Name.

BEGIN
Starts a statement block.

BlockReadf FileVariable, Buffer, Count [[, RecordsReadf)
Reads Count number of records into memory from the file specified by
FileVariable, beginning with the first byte occupied by Buffer. Optionally
BlockRead returns the number of records successfully read in RecordsRead.

pcjs.org

256 Pascal by Example

BlockWrite(FileVariable, Buffer, Count [[, RecordsWritten]])
Writes Count number of records from memory to the file specified by
FileVariable, beginning with the first byte occupied by Buffer. Optionally
BlockWrite returns the number of records successfully written in
RecordsWritten.

CASE Selector OF Constant: StatementBlock;... END
Executes the StatementBlock whose Constant matches Selector.

ChDir(NewDir)
Makes NewDir the current directory.

Chr(x)
Returns the ASCII character with ordinal value x.

Close(FileVariable)

Closes the open file specified by the file variable FileVariable.

Concat(Strl [, Str2,Str3...]\)

Returns the argument strings (Strl, Str2, etc.) as a single string.

CONST
Starts a constant definition section.

Copy(String, Start, Count)
Returns a substring of String, Count characters long, beginning with
character number Start.

Cos(x)
Returns the cosine of x.

CSeg
Returns the value of the CS register.

CSTRING [[Length] 1
Defines a variable or constant as a series of up to 255 characters ending in a
null byte, as in the C programming language. The integer Length specifies
the maximum length of the string.

DecOI, StepJ)
Decrements the variable* by 1; if Step is specified, * is decremented by Step.

Delete) String, Start, Count)

Returns a copy of String with Count characters removed, beginning with
character number Start.

pcjs.org

Quick Reference Guide 257

Dispos e(p)
Removes the dynamic variable that p points to and returns the memory to
the heap.

DIV
Acts as the integer division operator, i DIV j returns the quotient of i divided
by j rounded to the integer nearest zero.

DO
Introduces the statement block with WHILE, FOR, and WITH.

DOWNTO
Indicates that a FOR statement’s end value is less than its start value and that
the control variable is decremented by 1 with each iteration.

DSeg
Returns the value of the DS register.

ELSE
Begins the default clause in an IF...THEN...ELSE or CASE statement.

END
Ends a statement block.

Eof ^(FileVariable)J
Returns the end-of-file status for the file FileVariable. Eof returns True if
the end of the file has been reached, otherwise it returns False. If you omit
FileVariable, Eof checks the status of the standard input file.

Eoln[[(FileVariable)]]
Returns the end-of-line status. Eoln returns True if the end of the line has
been reached, otherwise it returns False. If you omit FileVariable, Eoln
checks the status of the standard input file.

Erase(FileVariable)
Erases the file referred to by FileVariable.

Exit
In a procedure or function, causes control to return to the main program. In
the main program, Exit halts program execution.

Exp (x)
Returns the exponential of x, that is, the value e raised to the power of x.

pcjs.org

258 Pascal by Example

EXTERNAL
Identifies a separately compiled procedure or function written in assembly
language.

FILE |[OF ComponentTypeJ

Declares a file type composed of values of type ComponentType.

FilePos(FileVariable)

Returns the current position of an open file referred to by file variable
FileVariable.

FileSize(FileVariable)
Returns the size (in bytes) of an open file referred to by file variable
FileVariable.

FillChar(Variable, Count, Character)
Fills Count contiguous bytes of memory with Character (either an ASCII
value or a literal character enclosed in single quotes), starting with the first
byte occupied by Variable.

FIush(FileVariable)
Writes to disk the buffer of the text file referred to by FileVariable.

FOR ControlVariable := StartVal {TO I DOWNTO} EndVal DO
StatementBlock

Executes StatementBlock as long as the value of ControlVariable is between
its start value StartVal and its end value EndVal, inclusive. Use TO if EndVal
is greater than StartVal, or DOWNTO if EndVal is less than StartVal. FOR in­
crements (with TO) or decrements (with DOWNTO) ControlVariable by 1
each time it executes StatementBlock.

FORWARD
Declares a procedure but omits its definition until a second declaration. This
permits mutually referencing procedures.

Frac(x)
Returns the fractional portion of the real number*.

FreeMem(Pointer, Size)

Frees Size bytes of dynamic memory at address Pointer.

pcjs.org

Quick Reference Guide 259

FUNCTION Identifier^ |[VAR]] Par ami \, Param2 ...| iPtypel
I; [[VAR] Param3l, Param4 ...1 :Ptype2 ...])J:Typename

Defines a function named Identifier that returns a value of type Typename.
Any parameters (.Paraml, Param2, etc.) to the function must be declared
along with their type (Ptypel, Ptype2, etc.). Every function must return a
value.

GetDir(Drive, Path)

Returns the current directory in the string Path, given the integer Drive. Set­
ting Drive to 0 uses the current drive, Drive to 1 uses drive A, Drive to 2
uses drive B, and so on.

GetMem(Pointer, Size)
Creates a new dynamic variable of Size bytes from heap memory, setting
location Pointer.

GOTO LabelName

Unconditionally transfers program control to the statement at label
LabelName.

Halt I (Code)]]
Halts program execution and returns to DOS. You can optionally include the
program’s exit code.

HiU)
Returns the high-order byte of x, a word or integer.

IF BooleanExpression THEN StatementBlockl [[ELSE StatementBlock2]
Executes StatementBlockl if BooleanExpression is True, otherwise executes
StatementBlockl.

IMPLEMENTATION
Indicates the beginning of the unit section that defines the unit’s procedures
and functions. The identifiers declared in this section are private.

IN
Acts as the member-of operator for sets. IN is used to test for the presence of
an element in a set.

Inc(x LStepI)
Increments the variable* by 1; if Step is specified, * is incremented by Step.

pcjs.org

260 Pascal by Example

INHERITED
Modifies a message to refer to the parent method.

INLINE(MachineCode)
Defines machine code that is inserted into the program.

Insert(String, Substring, Start)
Inserts the string Substring into the string String, beginning at character num­
ber Start. If the resulting string is more than 255 characters long, it is trun­
cated to 255 characters.

Int(x)
Returns the integral portion of the real number*.

INTERFACE
Indicates the beginning of the unit section that declares the variables, con­
stants, procedures, and functions available to the calling program.

INTERRUPT
Declares a procedure as an interrupt procedure. Interrupt procedures may
handle program interrupts.

IOResult
Returns the status of the most recent I/O operation. A status of 0 indicates the
I/O operation was successful.

LABEL [Identifier 10..9999}
Declares the label Identifier or a number. Labels are the destination of GOTO
statements.

Length/ String)
Returns the length of the string String.

Ln(x)
Returns the natural logarithm of x.

Lo/x)
Returns the low-order byte of x, a word or integer.

Mark/ Pointer)
Saves the current top of the heap in Pointer.

MaxAvail
Returns the size (in bytes) of the largest continuous block of free memory in
the heap.

pcjs.org

Quick Reference Guide 261

MemAvail
Returns the total free memory in the heap in bytes.

Member(ObjectVariable, Classld)
Returns True if ObjectVariable is a member of the class Classld, and False
otherwise.

MkDir(NewDir)
Creates a new directory with the path given in the string NewDir.

MOD
Acts as the modular division operator. The expression i MOD j returns the
remainder of i DIV j.

Move(Source, Destination, Count)
Copies Count bytes of Source to Destination.

New(Pointer)
Allocates space for a new dynamic variable in the heap and sets Pointer to
the address of the new variable. The type of pointer determines how much
memory New allocates.

NIL
Indicates the value of a pointer that does not point to anything.

NOT
Acts as the logical or bitwise negation operator.

OBJECT IjParentjl

Defines an object type or class, descended from the Parent class.

Odd(x)
Returns True if the integral x is odd, False if x is even.

OF
Identifies the base type of an ARRAY, FILE, or SET, or introduces the con­
stant list found in a CASE statement.

Ofs(x)
Returns the offset of x, a variable, typed constant, procedure, or function
name.

OR
Acts as the logical or bitwise OR operator.

pcjs.org

262 Pascal by Example

Ord(x)
Returns the ordinal number of x (an ordinal-type variable).

OVERRIDE
Redefines a parent method to do something new.

PACKED
Required by standard Pascal. Serves only to distinguish types in QuickPascal.

ParamCount
Returns the number of command-line parameters.

ParamStr(i)
Returns a string that is the z'th command-line parameter. Parameter number 0
is the program path in DOS versions 3.1 and later.

Pi
Returns the value Pi (3.1415926535897932385). The precision of the value
varies, depending on the floating-point hardware present.

Pointer
Defines a variable as a generic pointer type. A variable of type POINTER
must be assigned to a variable of a specific pointer type before it can be
dereferenced.

Pos(Substring, String)
Returns the starting position of string Substring in string String.

Pred(x)
Returns the predecessor of x in the list of values of its ordinal type.

PROCEDURE Identifier^ [[VAR]) Par ami [[, Param2 ...]] iPtypel
I; [[VARI Param3l, Param4 ...J :Ptype2 ...J)J

Defines a procedure named Identifier. Any parameters (Paraml, Param2,
etc.) to the procedure must be declared along with their type (Ptypel,
Ptype2, etc.).

PROGRAM [[ProgNameJ

Declares a program with the name ProgName.

Yix{Seg,Off)

Converts a segment and offset to a pointer address; Seg and Off are both of
type Word.

pcjs.org

Quick Reference Guide 263

Randoml(Limit)]
Returns a random real number between 0 and 1, or a random whole number
between 0 and Limit.

Randomize
Initializes the random number generator.

Read(lFileVariable,lVarl [, Var2 ...1)
Reads one or more values from the standard input device or, optionally, from
the file specifier FileVariable.

Readln(IFileVariable ,Warl [, Var2 ...])
Executes the Read procedure, then skips to the beginning of the next line of
the text file specified by FileVariable.

RECORD FieldList END
Creates a compound variable consisting of the items listed in FieldList. The
different fields in a record can have different types.

Release(Pointer)
Returns the value of the heap-top pointer to Pointer, which was previously
obtained by Mark.

Rename(FileVariable, NewName)
Renames the external file specified by file variable FileVariable to the name
string NewName.

REPEAT StatementBlock UNTIL BooleanExpression

Executes StatementBlock as long as BooleanExpression remains False.
When BooleanExpression becomes True, control passes to the statement
following the UNTIL statement.

Reset(FileVariable [[, SizeJ)

Opens the file specified by FileVariable with a data transfer unit size of Size.

Rewrite(FileVariable I, SzzeJ)
Creates and opens a new file FileVariable, with a data transfer unit size of
Size. If FileVariable already exists, it is truncated to a length of zero.

RmDir(Dir)
Removes the empty directory named Dir.

Round(x)
Rounds the real number x to the nearest whole number.

pcjs.org

264 Pascal by Example

RunErrorMErrorNum)J
Halts program execution with the run-time error number ErrorNum, or run­
time error 0 if ErrorNum is not specified.

Seek(FileVariable, Pos)
Moves the current position of the file specified by FileVariable to the
position Pos.

SeekEof [[(FileVariable)J
Returns the end-of-file status for the text file specified by FileVariable, skip­
ping blanks, tabs, and end-of-line markers. The actual file position does not
change.

SeekEoln[[(FileVariable)J
Returns the end-of-line status for the text file specified by FileVariable, skip­
ping blanks and tabs.

Seg(x)
Returns the segment containing x, a variable, typed constant, procedure, or
function name.

Self
Refers to the object that received a message, used by methods.

SET OF OrdinalType

Identifies OrdinalType as the base type for a set type, constant, or variable.

SetTextBuf(FileVariable, Buffer [LSizeJ)

Assigns the text file FileVariable a buffer of Size bytes in memory starting at
Buffer. If Size is omitted, SizeOf (Buffer) is assumed.

SHL

Acts as the bitwise shift-left operator. The expression i SHL j shifts the value
of i to the left by j bits.

SHR
Acts as the bitwise shift-right operator. The expression ISHR j shifts the
value of i to the right by j bits.

Sin(x)
Returns the sine of x.

SizeOf(x)
Returns the size of the variable, typed constant, or typex in bytes.

pcjs.org

Quick Reference Guide 265

SPtr
Returns the value of the SP register, the current offset of the stack pointer in
the stack segment.

Sqr(x)
Returns the square of x.

Sqrt(x)

Returns the square root of x, a positive integer or real number.

SSeg
Returns the value of the SS register, the stack segment address of the stack
pointer.

Str(Numberl:Widthi:DecimalsM, String)
Converts the numeric value Number to the string String. The arguments
Width and Decimals specify the total width and number of decimal places
that will appear in the string.

STRING[[[Length] J
Defines a variable or constant as a series of up to 255 characters. The integer
Length specifies the maximum length of the string.

Succ(x)
Returns the successor to x in the list of values of its ordinal type.

Swap(x)
Exchanges the high- and low-order bytes of x, an integer or word.

THEN StatementBlock

Used in the second half of an IF...THEN statement. If the condition in the IF
portion of the statement is True, the statements in StatementBlock execute.

TO
Indicates that a FOR statement’s ending value is greater than its starting
value and that the control variable will be incremented by one.

Trunc(x)
Truncates a real value x to an integer.

Truncate! FileVariahle)
Truncates the file specified by FileVariable at the current file position.

TYPE
Begins a type definition section.

pcjs.org

266 Pascal by Example

UNIT Identifier
Identifies the code that follows as a unit and gives the unit the name
Identifier.

UNTIL BooleanExpression
Terminates a REPEAT statement when BooleanExpression becomes True.

UpCase(Char)
Returns character Char in uppercase.

USES Identifier[, IdentifierJ...
Identifies units required by the program to resolve references to identifiers
defined within the units.

Val(String, Number, ErrorPosition)
Converts the numeric string String to its numeric representation Number. If
String does not represent a number, ErrorPosition returns the position of the
first offending character.

VAR
Begins a variable declaration section or declares a variable parameter.

WHILE BooleanExpression DO StatementBlock
Executes StatementBlock as long as BooleanExpression remains True. When
BooleanExpression becomes False, control passes to the statement following
StatementBlock.

WITH RecordNamel [[, RecordName2 ...JDO StatementBlock
Allows statements within StatementBlock to refer to the fields of one or
more records without specifying the names of the records {RecordNamel,
RecordName2...).

Write(IFileVariable ,JVarll,Var2...l)
Writes one or more values to the standard output device or to the file
specified by FileVariable.

Writeln(IFileVariable ,JVarll,Var2...J)
Executes the Write procedure, then sends an end-of-line marker to the stan­
dard output device or the file specified by a FileVariable.

XOR
Acts as the logical or bitwise exclusive-or operator.

pcjs.org

Quick Reference Guide 267

D.2 Crt Procedures and Functions
AssignCrt(FileVariable)

Associates a Text file variable FileVariable with the CRT device (screen).

ClrEoI
Clears a line from the cursor to the end of the line.

ClrScr
Clears the window and moves the cursor to the upper left comer.

Delay(Microseconds)
Pauses program execution for a specified length of time.

DelLine
Deletes the line at the current cursor location.

GotoXY(x,y)
Moves the cursor to designated column and row.

HighVideo
Turns on high-intensity video for the current foreground color.

InsLine
Inserts a blank line at the current cursor location.

KeyPressed
Returns True if the keyboard buffer contains a character.

LowVideo
Turns off high-intensity video for the current foreground color.

NormVideo
Restores the text colors and attributes that were in effect at program start-up.

NoSound
Turns off the computer’s speaker.

Read Key
Returns one character from the keyboard buffer but does not echo character
on the screen.

Sound(Frequency)
Generates a tone from the computer’s speaker at the specified frequency.

pcjs.org

268 Pascal by Example

TextBackground(Color)
Sets the background color for character output.

TextColor(Color)

Sets the foreground color and blinking attribute for character output.

TextMode(Mode)
Sets the display to the specified text mode.

WhereX
Returns the current x-coordinate of the text cursor.

WhereY
Returns the current y-coordinate of the text cursor.

Windowf xl,yl,x2,y2)
Defines a text display window. The coordinates give the upper left and lower
right comers of the window.

D.3 Dos Procedures and Functions
DiskFree(DriveNumber)

Returns the number of bytes of free space on the specified drive.

DiskSizef DriveNumber)
Returns the total capacity in bytes of the specified drive.

DosExitCode
Returns the exit code from a child process.

DosVersion
Returns the version number of the operating system.

EnvCount
Returns the number of variables defined in the DOS environment.

EnvStrf EnvironmentStringlndex)
Returns the value of a variable from the DOS environment.

Exec(ProgramPath, CommandLine)
Loads and runs a child process while suspending parent process.

FExpandf FilePath)

Expands a name to a fully qualified DOS path name.

pcjs.org

Quick Reference Guide 269

FindFirst(SearchPattern, Attributes, Matched)

Searches the specified directory for the first file matching the given
SearchPattern and set of attributes.

FindNext(Matched)

Searches the specified directory for the next file matching the SearchPattern
and attributes specified in a previous call to FindFirst.

FSearch(FilePath, DirectoryList)
Searches for a file in a list of directories.

FSplit(FilePath , Directory , Filename, Extension)
Separates a path name into its directory, basename, and extension parts.

GetCBreak(Brazfa>ig)
Gets the current state of DOS CTRL+BREAK checking.

GetDate(Year, Month, Day, DayOfWeek)
Gets the current system date.

GetEnv(EnvironmentstringLabel)
Returns the current value of a DOS environment variable.

GetFAttr(FileVariable, Attribute)
Gets a file’s attributes.

GetFTime(FileVariable, TimeStamp)
Gets the Longlnt representing a file’s date and time of modification.

GetIntVec(InterruptNumber, Vector)

Gets the vector address for a given interrupt number.

GetTime(Hour, Minute, Second, SeclOO)

Gets the current system time.

GetVerify(Verifying)
Gets the current state of the DOS verify flag.

Intr(InterruptNumber, RegisterValues)
Calls a software interrupt, loading and returning register values.

Keep{ExitCode)
Terminates a program but keeps it resident in memory.

MsDos(RegisterValues)

Calls DOS interrupt $21.

pcjs.org

270 Pascal by Example

PackTime(DateTime, TimeStamp)
Converts an unpacked DateTime record to a packed Longlnt TimeStamp

SetCBreak(Breaking)
Turns DOS ctrl+break checking on or off.

SetDate(Year, Month, Day)

Sets the current system date.

SetFAttr(FileVariable, Attribute)
Sets a file’s attributes.

SetFTime(FileVariable, TimeStamp)
Sets a file’s date and time of file modification record.

SetIntVec(InterruptNumber. Vector)
Installs a new interrupt handler. If a program changes an interrupt vector, it
must restore it before terminating.

SetTime(Hour, Minute, Second, SeclOO)
Sets the system time.

SetVerify(Verifying)
Sets the state of the DOS verify flag.

SwapVectors
Swaps interrupt vectors with previously saved values.

UnpackTime(TimeStamp, DateTime)
Converts the Longlnt TimeStamp argument to an unpacked DateTime record.

D.4 Printer Unit Interface
The printer unit does not contain any procedures or functions. It connects the file
variable Lst with the printer port. Using Lst in a Write or Writeln statement
sends the text to the printer:

Write (Lst, 'This text goes to the printer.');

Lst is a text variable assigned to the file variable PRN and preconnected to the
LPT1 printer port.

pcjs.org

Quick Reference Guide 271

D.5 MSGraph Procedures and Functions
_Arc(xl,yl,x2,y2,x3,y3,x4,y4)

Draws an arc given the bounding rectangle and beginning and ending points
in viewport coordinates.

_Arc_wxy(wxyl, wxy2, wxy3, wxy4)

Draws an arc given the bounding rectangle and beginning and ending points
in window coordinates in _WXYCoord records.

_ClearScreen(Area)

Clears the specified area of the screen.

_DisplayCursor(Toggle)
Specifies whether to turn the cursor back on or leave it off after executing
graphics routines.

_EHipse(Control,xl,yl,x2,y2)

Draws an ellipse given the fill control and bounding rectangle in viewport
coordinates.

_EHipse_w(Control, wxl, wyl, wx2, wy2)
Draws an ellipse given the fill control and bounding rectangle in window
coordinates.

_Ellipse_wxy(Control, wxyl, wxy2)
Draws an ellipse given the fill control and bounding rectangle in window
coordinates in the _WXYCoord records wxyl and wxy2.

_FloodFill(x, y, Boundary)

Fills an area with the current color and fill mask. If the point (x, y) lies inside
the figure, it fills the interior; if (x, y) lies outside the figure, it fills the back­
ground. x and y are given in viewport coordinates.

_FIoodFilI_w(wx, wy, Boundary)
Fills an area with the current color and fill mask. If the point (x, y) lies inside
the figure, it fills the interior; if (x, y) lies outside the figure, it fills the back­
ground. wx and wy are given in window coordinates.

GetActivePage
Returns the current active page number.

pcjs.org

272 Pascal by Example

GetArcInfo(Start, End, Paint)
Returns information about the most recently drawn _Arc or _Pie. The Start
point, End point, and Paint point are returned in _XYCoord records.

GetBkColor
Returns the current background color.

GetColor
Returns the current color index.

GetCurrentPositionf xy)

Returns the current graphics cursor position in viewport coordinates in the
_XYCoord record xy.

GetCurrentPosition_wxy(wxy)
Returns the current graphics cursor position in window coordinates in the

WXYCoord record wxy.

GetFiIlMask(Mask)
Returns the current fill mask in mask, if one is defined.

GetFontInfo(FInfo)
Gets the current font characteristics and returns them in the _FontInfo record
FInfo.

GetGTextExtent(TextString)
Returns the pixel width required to print the string TextString in the current
font with the _OutGText function.

GetGTextVectorf Vector)
Returns the current rotation vector that is applied to font-based text output in
the _XYCoord record Vector. The default is (1,0).

Getlmage(xl,yl,x2,y2,Image)
Stores the screen image inside the bounding rectangle specified in viewport
coordinates. Stores the image in the buffer Image. The rectangle must be
completely within the current clipping region.

Getlmage_w(wxl, wyl, wx2, wy2, Image)
Stores the screen image inside the bounding rectangle specified in window
coordinates. Stores the image in the buffer Image. The rectangle must be
completely within the current clipping region.

pcjs.org

Quick Reference Guide 273

Getlmage_wxy(wxyl, wxy2, Image)
Stores the screen image inside the bounding rectangle specified in window
coordinates in the _WXYCoord records wxyl and wxy2. Stores the image in
the buffer Image. The rectangle must be completely within the current clip­
ping region.

GetLineStyle
Returns the current line-style mask.

GetPhysCoord(x, y, xy)
Translates the viewport coordinates (x, y) into physical screen coordinates
and returns them in the_XYCoord record xy.

GetPixelf x, y)
Returns the pixel value (color index) at the location specified in viewport
coordinates (x, y).

GetPixel_w(wx, wy)
Returns the pixel value (color index) at the location specified in window
coordinates (wx, wy).

GetTextColor
Returns the color index (attribute) of the current text color.

GetTextCursor
Returns the current cursor attribute (shape) in text modes.

GetTextPosition(r, c)

Returns the current row and column position of the text cursor.

GetTextWindow(rl, cl,r2, c2)
Returns the boundaries of the current text window in row and column
coordinates.

GetVideoConfig(vc)
Returns the current graphics environment configuration in the _VideoConfig
record vc.

GetViewCoord(x, y, xy)
Translates physical coordinates (x, y) into viewport coordinates, returning the
viewport coordinates in lhe_XYCoord record xy.

GetViewCoord_w(wx, wy, xy)
Translates window coordinates (wx, wy) into viewport coordinates, returning
the viewport coordinates in the _XYCoord record xy.

pcjs.org

274 Pascal by Example

GetViewCoord_wxy(wxy, xy)
Translates window coordinates given in the _WXYCoord record wxy into
viewport coordinates, returning the viewport coordinates in the _XYCoord
record xy.

GetVisualPage
Returns the current visual page number.

GetWindowCoord(x, y, wxy)
Translates viewport coordinates (x, y) into window coordinates and returns
them in the WXYCoord record wxy.

ImageSizef xl, yl, x2, y2)

Returns the number of bytes needed to store the image inside the bounding
rectangle specified by the viewport coordinates (xl,yl), (x2, y2). This func­
tion returns a Longlnt.

ImageSizewf wxl, wyl, wx2, wy2)
Returns the number of bytes needed to store the image inside the bounding
rectangle specified by the window coordinates (wxl, wyl), (wx2, wy2). This
function returns a Longlnt.

ImageSize_wxy(wxyl, wxy2)
Returns the number of bytes needed to store the image inside the bounding
rectangle specified by the window coordinates in the _WXYCoord records
wxyl and wxy2. This function returns a Longlnt.

LineTofx, y)
Draws a line from the current position to the point specified in viewport
coordinates, using the current color, line-style mask, and logical write mode.

LineTo_w(wx, wy)
Draws a line from the current position to the point specified in window
coordinates, using the current color, line-style mask, and logical write mode.

MoveTof x, y)
Moves the graphics cursor to the point specified by the viewport coordinates
(x,y).

MoveTo_w(wx, wy)
Moves the graphics cursor to the point specified by the window coordinates
(wx, wy).

OutGTextf TextString)

Prints TextString on the screen using the current font and graphics color at
the current graphics cursor position.

pcjs.org

Quick Reference Guide 275

OutMem(TextString, Length)
Prints TextString on the screen at the current text cursor position. This proce­
dure treats ASCII 0,10, and 13 as graphics characters. Formatting is not
supported.

OutText(TextString)
Prints TextString on the screen at the current text cursor position. Formatting
is not supported, except for carriage return and line feed.

Pie(Control, xl, yl,x2, y2, x3, y3, x4, y4)
Draws a pie-shaped wedge given the fill control, bounding rectangle, starting
point, and ending point. All coordinates are given in viewport coordinates.

Pie_wxy(Control, wxyl, wxy2, wxy3, wxy4)
Draws a pie-shaped wedge given the fill control, bounding rectangle, starting
point, and ending point. All coordinates are given in _WXYCoord records.

Putlmage(x, y, Image, Action)
Transfers the image stored in the buffer Image to the screen (using the logi­
cal operator Action) with the upper left comer at the specified viewport
coordinates. If the image does not completely fit in the current clipping
region, the image is not transferred.

Putlmage_w(wx, wy, Image, Action)
Transfers the image stored in the buffer Image to the screen (using the logi­
cal operator Action) with the upper left comer at the specified window coordi­
nates. If the image does not completely fit in the current clipping region, the
image is not transferred.

Rectangle(Control, xl,yl,x2,y2)
Draws a rectangle given the fill control and bounding rectangle in viewport
coordinates, using the current color, line-style mask, and logical write mode.

Rectangle_w(Control, wxl, wyl, wx2, wy2)
Draws a rectangle given the fill control and bounding rectangle in window
coordinates, using the current color, line-style mask, and logical write mode.

Rectangle_wxy(Control, wxyl, wxy2)
Draws a rectangle given the fill control and bounding rectangle in the win­
dow coordinates specified in the_WXYCoord records wxyl and wxy2 and
using the current color, line-style mask, and logical write mode.

RegisterFonts(PathName)
Registers the fonts in the fde given in PathName.

pcjs.org

276 Pascal by Example

RemapAIIPaIette(NewPalette)
Remaps the entire color palette simultaneously, given an array of color
values.

RemapPalette(Index, Value)
Remaps the color index Index to the color value Value.

ScroIlTextWindow(Count)
Scrolls the current text window by Count lines. If Count is positive, the text
scrolls up; if negative, the text scrolls down.

SelectPaIette(Number)

Sets the active palette to palette number Number in CGA and Olivetti
graphics modes.

SetActivePagef Page)
Makes page number Page the active page for graphics output, available only
for configurations that support multiple screen pages.

SetBkColor(Color)
Sets the current background color to Color.

SetClipRgn(xl, yl,x2, y2)
Limits the display of subsequent graphics and font text to the bounding rec­
tangle, given in viewport coordinates.

SetCoIor(Color)

Sets the current graphics color to color index Color.

SetFiIIMask(Mask)
Defines the current fill mask.

SetFont(Options)

Selects a new active font from one of the registered fonts. Font selection is
based on the characteristics specified by Options.

SetGTextVectorf xvect, yvect)
Sets the current rotation vector that is applied to font-based text output. The
default is horizontal text (1,0).

SetLineStyle(Style)
Sets the current line-style mask to Style. The line-style mask affects the
output of LineTo and Rectangle.

pcjs.org

Quick Reference Guide 277

SetPixel(x, y)
Changes the specified pixel to the current color. The point is specified in
viewport coordinates.

SetPixel_w(wx, wy)
Sets the specified pixel to the current color. The point is specified in window
coordinates.

SetTextCoIor(Color)
Sets the text color to color index Color. Subsequent text output from
_OutText and _OutMem appears in the new color.

SetTextCursorf Attr)
Sets the cursor shape in text mode.

SetTextPosition(r, c)
Moves the text cursor position to the row and column specified, relative to
the current text window.

SetTextRowsf Rows)
Sets the number of rows available for text modes.

SetTextWindowf rl, cl, r2, c2)
Defines the upper left and lower right boundaries of the current text window.
Output from _OutText and _OutMem is limited to this window.

SetVideoMode(Mode)
Selects a screen mode for a particular hardware/display configuration.

SetVideoModeRows(Mode, Rows)
Sets the screen mode and number of text rows for a particular hardware/
display configuration.

SetViewOrgf x, y, Org)
Moves the viewport origin to the physical coordinates (x, y), and returns the
previous origin in the_XYCoord record Org.

SetViewport(xl,yl,x2,y2)
Defines the graphics viewport (defines the clipping region and sets the view­
port origin to the upper left comer of the region) given the bounding rec­
tangle in physical coordinates.

SetVisuaIPage(Page)
Makes Page the current visual page (requires a configuration that supports
multiple screen pages).

pcjs.org

278 Pascal by Example

SetWindowf FInvert ,xl,yl,x2,y2)
Creates a floating-point graphics window given a bounding rectangle in win­
dow coordinates. If FInvert is True, the window is inverted vertically.

SetWriteMode(WMode)
Sets the logical operation applied to line-drawing output to one of the
following: Gor, Gand, GPReset, GPSet, or Gxor. Only LineTo and
Rectangle are affected.

UnRegisterFonts
Disables fonts and frees memory previously allocated by _RegisterFonts.

Wrap On (Option)
Controls text wrapping for _OutText and _OutMem when the output
reaches the edge of the text window. By default, text wrapping is enabled.

pcjs.org

Index 279

(* *) (parentheses and asterisks), enclosing comments,
7
* (set-intersection operator), 70
+ (plus operator)

concatenating strings, 24
set union, 68

- (set-difference operator), 69
:= (assignment operator)

expressions, 22
use, 83

= (equality operator)
expressions, 22
use, 45

@ (address-of operator), pointer assignment, 133
[] (square brackets), set elements, 66, 68
>, <, » (redirection operators), I/O redirection, 104
() (braces), enclosing comments, 7

A
Addr procedure, 133
Allocating memory. See Memory allocation
Animation, graphics, 207, 208-209
Append procedure, 116
Arguments, passing

introduction, 34
by reference, 37
by value, 35

Arithmetic expressions, 25
Arithmetic operators (table), 23
Arrays

accessing elements in, 73, 75-76
constant, 76
debugging, 78
declaration syntax, 74
declaring, 74
indexes, 73, 75-76
initializing, 76
multidimensional, 74, 76
parameters, used as, 77
passing to procedures, 77-78
VAR string checking, 78

asch
See also Appendix A
character formats, 16
characters, 64

ASCH (continued)
(list), 240-241
string, 101
text files, 113

Assembly language
accessing from QuickPascal, 155
conventions, Pascal, 159
linking to, 159-160
writing modules for

accessing parameters, 161
calling conventions, 161-162
compiler directives, 159
declaring segments, data, 160
directives, 161
entry sequence, 161
exiting, 164
EXTERNAL declaration, 160
FAR keyword, 162
PUSH instruction, 162
registers, 161
return values, 164
segment types, 160
stack, 162-163

Assign procedure, 114, 124
Assignment operator (:=)

expressions, 22
use, 83

B
BEGIN...END statement, 7, 32
Binary trees

described, 143
implementation, 144
recursive, 144

Bit-mapped fonts, 215
Bitwise operators

(list), 148
use, 147

BlockRead procedure, 127-128
BlockWrite procedure, 127-128
Boolean evaluation, compiler directives for, 246
Boolean operators, 45, 147-148
Boolean variables, 18
Braces ({)), enclosing comments, 7
Buffers, input/output, 118-119

pcjs.org

280 Pascal by Example

c
Case sensitivity

identifiers, 8
_SetFont option codes, 220

CASE statement, 53
CGA

color palettes, 184
graphics mode, available colors (table), 184

CHAR data type, 16
Character input. See ReadKey function
Character subranges, 64
Characters

See also Appendix A
ASCH, 16
control, 16
declaring with CHAR, 16
format, 16

Classes
creating, 227
defined, 226

Color Graphics Adapter. See CGA
Color graphics modes

CGA, available colors (table), 184
EGA, using, 186
VGA, using, 188

Comments, described, 7
Compiler directives

conditional
define, 250
described, 250
else, 251
endif, 251
ifdef, 251
ifndef, 251
ifopt, 251
indef, 251

I/O checking, 99-100
parameter

described, 249
Include, 249
Link, 249
Memory (table), 249

Compiler directives (continued)
switch

align data, 245
Boolean evaluation, 246
debug information, 246
described, 245
FAR calls, 246
I/O checking, 247
local symbol data, 247
method checking, 247
numeric processing, 247
range checking, 248
stack checking, 248
syntax, 245
VAR string checking, 248

Compiling units, 92
Concat function, 27
CONST statement, 7, 10, 19
Constants

arrays, 76
declaring, 7
defined, 10
naming, 7
records, 82
simple, 19
syntax, 19
typed

defined, 19
syntax, 21

use, 19
variable, 21

Coordinate systems. See Graphics, coordinate systems
Copying sample programs, 5
Crt unit. See Units, Crt

D
Data format

floating-point numbers, 155, 158
(list), 156-157
signed numbers, 156
two’s complement, 156
unsigned numbers, 156

pcjs.org

Index 281

Data types Enumerated types
See also Enumerated types; Ordinal types; Set types; assigning values, 58

Subrange types
Boolean, 18
character

ASCB, 16
control, 16
declaring with CHAR, 16
format, 16

constants, 10, 19
described, 10
floating-point, 15
integer

(table), 14
described, 13

predefined, 13
real (table), 15
strings, 16
user-defined, 13
variables, 21

Debugging
arrays, 78
compiler directives for, 246
records, 83

Dec procedure, 61
Decimal notation, 14
Decision-making statements, 51
Declarations. See individual statement names
Dereferencing pointers, 134—135
Dispose function

memory allocation, 135-143
pointer procedure, 137
precautions for use, 232

DOS
command line, 104
devices, 119-120
I/O redirection, 104—105

Dos unit. See Units, Dos
Dynamic memory, 131
Dynamic variables, 131

E
EGA, color palettes, 185
Enhanced Graphics Adapter. See EGA
Enumerated subranges, 64

Dec procedure, 61
described, 57
Inc procedure, 60
null elements, 58
Ord function, 61
Pred function, 60
Succ function, 59
syntax, 57

Eof function, 118,125, 127
Eoln function, 118
Equality operator (=)

expressions, 22
use, 45

Examples. See Programs, example
Extended key codes. See Appendix A
Expressions

arithmetic, 25
described, 11, 26
parentheses, 25
precedence, 25
string, 27

F
Factorial, defined, 33
Fields. See Records
File pointers, 116
File variables, declaring, 114
FilePos procedure, 125, 127
Files

See also Typed files; Untyped files
standard procedures

Chdir, 121
Erase, 121
GetDir, 121
IOResult, 121
MkDir, 121
Rename, 121
RmDir, 121
(table), 121

FileSize function, 125
First function, 58
Flags, Boolean, 18

pcjs.org

282 Pascal by Example

Floating-point numbers
format, 156
(table), 15

_FontInfo record, 220
Fonts

bit-mapped, 216
creating, 216
.FON files, 217
_FontInfo record, 220
_GetFontInfo record, 221
(list), 216
_MoveTo procedure, 221
_OutGText, 221
overview, 215
registering

_RegisterFonts, 218
_UnRegisterFonts, 221

scaling, 216
setting, 218-221
setting graphics video mode, 217, 221
typefaces, type sizes

defined, 215
(table), 217

vector-mapped, 216
FOR loops, 49
Forward declarations, 32
FORWARD statement, 32
FreeMem procedure, 135-137
Function declarations, location in program, 7
FUNCTION statement, 40
Functions

See also specific function names; Appendix D
calling, 39
declaring, 40
differences from procedures, 30, 39
purpose, 29
recursive, 42
returning values from, 40
standard, 39

G
_GetFontInfo function, 221
GetMem procedure, 135-137, 150
Global variables, 36
GotoXY function, 111

Graphics
animation

bit-mapped, 207, 210
_SetActivePage, 208
_SetVisualPage, 208
video page, 207

bit-mapped animation
_GetImage, 210-211,214
JbnageSize, 210-211, 213
.Putlmage, 210-211,214
using, 211

bounding rectangle, 178
CGA _MResNoColor mode, available

colors (table), 184
clipping region

defined, 196
_SetClipRgn, 194-196
using, 196-197

color graphics modes
CGA, 184
EGA, 186
VGA, 188

color indexes, 172,185
color palettes, mixing colors, 186
color value

data type, 172
described, 186

coordinate systems
defined, 177, 193
physical screen, 177, 193-194
text coordinates, 177, 193
viewport, 177, 193, 197
window, 177, 193, 198-199

Crt unit, compatibility with graphics, 174
_Ellipse procedure, 178
fill flag

_GBorder, 178
_GFillInterior, 178

_GetActivePage, 208
_GetCurrentPosition_wxy, 199,272
_GetVisualPage, 208
MSGraph unit, 89, 174, 253
palette, defined, 172
pixel coordinates, defined, 194
pixels, defined, 172
_Rectangle, 205
_Rectangle procedure, 178,205
_Rectangle_w, 205

pcjs.org

Index 283

Graphics (continued)
_Rectangle_wxy, 205
_RemapAllPalette procedure, 184,189
_RemapPalette function, 184, 187-188
_SelectP alette, 184
_SetColor function, 187
text color modes

available colors (table), 191
displaying text, 191
_GetBkColor function, 191
_GetTextColor function, 191
_OutText procedure, 191, 207
selecting, 190

text coordinates
defined, 194
_SetTextPosition, 194
_SetTextRows, 194
_SetVideoModeRows, 194

USES statement, 174
video configuration

determining, 176
_GetVideoConfig, 176, 180, 207
JVideoConfig, 176, 180

video modes
CGA, 179
_ClearScreen, 204
constants (list), 175
EGA, 179
entering, 203
Hercules-compatible, 179
_MaxResMode, 176
MCGA, 179
monochrome, 179
Olivetti-compatible, 179
restoring, 179
selecting, 180
setting, 175-176
_SetVideoMode, 175-176,179-180, 194
supported, 172
text, 190
using with fonts, 221
VGA, 179

video page animation, 207
viewport coordinates

_SetViewPort procedure, 197
viewport

defined, 195
_SetViewOrg, 193-194

Graphics (continued)
window coordinates

_Rectangle_w, 199
_SetWindow procedure, 198-199
using, 198

writing first program, 173

H
Heap, defined, 151
Hexadecimal notation, 14

/
I/O. See Input; Output
Identifiers, 9
IF...THEN statement, 51
IF...THEN...ELSE statement, 52
Inc procedure, 60
Inheritance, described, 225

defined, 227
INHERITED keyword, 230
Input

See also Read, Readln
DOS I/O redirection, 104
from files, 117
overview, 10
standard procedures (table), 121

Input variables, 100
Instance variables

declaring, 233
defined, 226

Integer subranges, 62
Integers, 14
IOResult function, 130

K
Keywords (list), 8. See also Appendix D

L
Last function, 59
Linked lists

defined, 138
Dispose function, 140
implementation, 138-139
New procedure, 139

pcjs.org

284 Pascal by Example

Linked lists (continued)
nodes, 143
reasons for use, 138
records in, 138

Loops. See FOR, REPEAT, or WHILE loops
LST text-file variable, 120

M
_MaxColorMode, 176
MCGA, color palettes, 186
Memory allocation, 134-136
Memory layout, 150
Memory management

compiler directives, 155
deadlock, preventing, 154
determining memory available, 153
error handling, 154
FreeMin variable, 152,154
heap management, 151-152
HeapError variable, 155
HeapPtr, 151-152
MaxAvail function, 153
MemAvail function, 153

Methods
calling, 231
defined, 226
designing, 233

_MoveTo procedure, 221
MSGraph unit. See Units, MSGraph
Multicolor Graphics Adapter. See MCGA

N
Nested procedures, 41
New procedure

memory allocation, 135, 137,151-152
precautions for use, 231

NIL, 132

0
OBJECT keyword, 227
Object-oriented programming

benefits, 226
classes

creating, 227
defined, 226

Object-oriented programming (continued)
classes (continued)

Member function, 231
OBJECT keyword, 227
syntax, 227

Dispose procedure, 232
inheritance, 225-226
instance variables

declaring, 233
defined, 226

Member function, 231
methods

calling, 231
defined, 226
defining, 229
designing, 233
INHERITED keyword, 230
reusing, 232
Self variable, 229
syntax, 227

modularity, 233
New procedure, 231
style conventions, 232
subclasses

creating, 228
OVERRIDE statement, 228

Objects
memory allocation, 231
compiler directives, 227
declaring, 231
described, 225
disposing of, 232
Member function, 231

Operators
address-of (@), 132-133
arithmetic (list), 23
assignment (:=)

expressions, 22
use, 83

bit wise
(list), 148
use, 147

Boolean, 45,147-148
defined, 11
DOS redirection, 104
equality (=), use, 45
equality (=), expressions, 22
IN, 67

pcjs.org

Index 285

Operators (continued)
in expressions, 11
plus (+)

concatenating strings, 24
set union, 67

pointer, 23
pointer assignment, 133
precedence

described, 24
interpretation, 25
(table), 25

relational
expressions (table), 24
sets (table), 67

set difference (-), 69
set intersection (*), 70
set union (+), 67
shift, 148
string, 24

Ord function, 61
Ordinal types

defined, 57
First function, 58
Last function, 59

_OutGText, 221
Output

See also Write, Writeln
DOS redirection, 104
files, 116, 119
LST text-file variable, 120
overview, 10
printer, 119
screen, 119
standard procedures (table), 121

Overlay unit, 150
OVERRIDE statement, 228

P
Parameters, arrays as, 77
Parentheses and asterisks ((* *)), enclosing

comments, 7
Passing arguments

introduction, 34
by reference, 37
by value, 35

Passing arrays, 77

Physical coordinates, defined, 177
Plus operator (+)

concatenating strings, 24
set union, 68

Pointer, dereferencing, 135
Pointers

accessing, 132
Addr function, 133
address-of operator (@), 133
allocating memory, 134-136
assigning addresses, 132-133
binary trees, 143
declaring, 131-132
defined 131
dereferencing, 134
file, 116
initializing, 132
linked lists, 138
manipulating, 133-134
NIL, 132, 138
nodes, 143
operators, 23
standard procedures (table), 137
syntax, 132

Pred function, 60
Printer unit. See Units, Printer
Procedure declarations, location in program, 7
PROCEDURE statement, 31
Procedures

See also specific procedure names'. Appendix D
arrays as parameters, 77
calling, 31
declaring, 31
defined 30
differences from functions, 30
forward declarations, 32
location in programs, 32
nested, 41
passing arguments

defined 31
by reference, 37
by value, 35

purpose, 29
recursive, 41, 144
standard, 30

Program declarations, 6
PROGRAM statement, 6

pcjs.org

286 Pascal by Example

Programs, example
Crt functions

CRT1.PAS, 110
CRT2.PAS, 111
CRT3.PAS, 111
CRT4.PAS, 112

data types
INTTYPES.PAS, 14
STRINGS.PAS, 17
VARS .PAS, 22

decision-making
QCASE.PAS, 54
QELSE.PAS, 52
QIF.PAS, 51

fonts
SAMPLER.PAS, 222

graphics
1STGRAPH.PAS, 173
ANIMATE.PAS, 211
CGA.PAS, 185
COLTEXT.PAS, 192
EGA.PAS, 187
GRAPHIC.PAS, 182
HORIZON.PAS, 189
PAGES .PAS, 208
REALG.PAS, 199

linked lists
LIST.PAS, 138

loading from on-line help, xviii
loops

QFOR.PAS, 50
QREPEAT.PAS, 48
QWHILE.PAS, 47

miscellaneous
FTOC.PAS, 5

object-oriented
OBJECTDE.PAS, 234

pointers
LIST.PAS, 138

procedures
BYREF.PAS, 37
BYVALUE.PAS, 36
CENTER.PAS, 30
FUNCT.PAS, 39
HIDEPROC.PAS, 41
LOCAL.PAS, 33

Programs, example (continued)
recursion

RECURSE.PAS, 43
typed files

DUPLICAT.PAS, 129
EXCOPY.PAS, 129-130

Q
QuickPascal Advisor

copying programs, 5
on-line help, xvii
program examples, xviii

R
Random access

described, 125
Eof function, 127
using, 125-127

Read, Readln
file input, 117,125, 128
format options, 101
input variables, 100
introduction, 11
numeric data, with, 101
syntax, 99

ReadKey function, 109
Records

assigning values, 83
constant, 82
debugging, 83
declaration syntax, 79
described, 73, 78
dynamic, 138
fields

accessing, 78, 80-81
arrays, 79
assigning values, 80-81
data types, 79

variant, 83-85
WITH...DO statement, 81

Recursion
benefits, 43
binary trees, used with, 144

pcjs.org

Index 287

Recursion (continued)
defined, 41
disadvantages, 43
purpose, 41

Redirecting I/O
from command line, 104
Crtunit, 105
operators, 104

Redirection operators (>, <, »), 104
_RegisterFonts, 218
Registering fonts

_RegisterFonts, 218
_UnRegisterFonts, 221

Relational operators
in expressions, 24
sets, 66

_RemapAllPalette procedure, 184,189
_RemapPalette function, 184,188
REPEAT loops, 48
Reset procedure

accessing data, 124,128
opening text files, 116
optional parameters, 128

Rewrite procedure
data access, 124
creating text files, 115
optional parameters, 128
random access, 127

s
Scaling fonts, 216
Seek procedure, 125
Segments, defined, 150
Self variable, 229
Set operators

difference (-), 69
IN, 67
intersection (*), 70
relational, 66
union (+), 68

Set types
declaring, 20, 65
defined, 57

Set variables, assigning elements to, 66
Set-difference operator (-), 68
Set-intersection operator (*), 70

_SetFont
.FON files, 218, 221
options, 219-220

Sets
described, 64
syntax, 64

SetTextBuf procedure, 119-120
Setting fonts

_FontInfo record, 220
_GetFontfrifo, 221
_SetFont, 218-219, 221

_SetVideoMode function, 176, 179-180
Shift operators, 147-148
Signed integers, 14
Signed numbers, 156
Square brackets ([]), 66, 68
Stack, defined, 151
Standard units (list), 89
Statement block, defined, 7
Statements. See individual statement names
Static variables. See Constants, typed
Strings

Concat function, 27
concatenating, 27
declaring, 17
expressions, 27
initializing, 18
length, 18
operators, 24
passing to procedures, 77-78
reading, 18
writing, 18

Style conventions, object-oriented programming, 232
Subclasses, creating, 228
Subrange types

character, 63
constants with, 62
defined, 62
enumerated, 64
expressions with, 63
integer, 62
range checking with, 62
syntax, 62
use, 62

Succ function, 59
Switch directives, described, 245
System unit. See Units, System

pcjs.org

288 Pascal by Example

T
Text files

buffers, 118-119
closing, 118
creating, 115
declaring file variables, 114
described, 113
file pointer, 116
LST file variable, 120
opening, 115-116
reading from, 117
standard procedures

Append, 116
Assign, 114
Eof function, 118
Eo In function, 118
Flush statement, 121
Reset, 116
Rewrite, 115
SeekEof function, 121
SeekEoln function, 121
SetTextBuf, 119-120
(table), 121

writing to, 116
Truncate procedure, 125
Two’s complement format, 156
Type size, 215
Typed files

components, 123
data access

Assign, 124
Eof function, 125
FilePos procedure, 125
FileS ize function, 125
Read procedure, 125
Reset procedure, 124
Rewrite, 124
Seek procedure, 125
Truncate function, 125
Write, 125

data, formatted, 123
declaring, 124
described, 123
random access

described, 124
Eof function, 127

Typed files (continued)
random access (continued)

FilePos procedure, 125-127
Rewrite procedure, 127
Seek procedure, 125-127
using, 125-127

records in, 124
Typeface, 215

Units
circular referencing, 93
compiling, 92
creating

declarations, order, 91
IMPLEMENTATION, 89-90
INTERFACE, 89-90
UNIT keyword, 90

Crt
character input, 109
color constants (table), 106
cursor movement. 111
described, 7, 89, 253
GotoXY function, 111-112
procedures, functions (table), 108
standard variables (table), 107
text-mode constants (table), 106
using, 105
Window procedure, 111-112

defined, 87
Dos, 253

Units (continued)
identifiers in, 93
MSGraph, 89, 174, 253
overlay, 150
overview, 87
Printer, 89,120, 253
USES statement

calls to MSGraph, 174
DOS redirection, 105
in program declarations, 7, 88

standard, described (list), 89
System, 89, 254

_UnRegisterFonts, 221
Unsigned integers, 14
Unsigned numbers, 156

pcjs.org

Index 289

Untyped files
BlockRead procedure, 127-128
BlockWrite procedure, 127-128
compiler directives, 130
declaring, 128
described, 123
differences from typed files, 127
IOResult function, 130
Read procedure, 128
Reset procedure, 128-129
Rewrite procedure, 128-129
Write procedure, 128

USES statement
calls to MSGraph, 174
DOS redirection, 105
in program declarations, 7, 88

V
VGA, 179, 185-186
VAR statement, 7,10, 37
VAR string checking, 78, 248
Variable range. See Variables, visibility
Variable scope. See Variables, visibility
Variables

as arguments, 38
arrays, 73
assignment operator (:=), expressions, 22
Boolean, 18
constant, 21
declaration syntax, 21
declaring, 7, 9
dynamic, 131
file

declaring, 114
reassigning, 119-120

global, 36
input, 100
local, 33-35

Variables (continued)
memory use, 22
naming, 7
nondynamic, 131
pointer, 131
private, 29
procedures, 33
records, 78-80
static, 20
text (LST), 120
visibility, 33-34, 42

Variant records
accessing, 84
declaring, 83-84
described, 73

Vector-mapped fonts, 216
Video Graphics Adapter. See VGA
Video modes

entering, 203
restoring, 179
selecting, 180
setting, 175-176

w
Watch window expressions

arrays in, 78
records in, 83

WHILE loops, 47
Window procedure, 111-112
WITH...DO statement, 81
Write, Writeln

described, 11
file output, 116, 119, 125, 128
formatting output, 102
numeric data, 102
screen ouput, 101
strings, 103
syntax, 99, 102

pcjs.org

MICROSOFT PRODUCT ASSISTANCE REQUEST
Microsoft Product Support Services - Phone (206) 454-2030

Instructions
When you need assistance with a Microsoft pro­
duct, call our Product Support Services group at
(206) 454-2030. So that we can answer your
question as quickly as possible, please gather all
information that applies to your problem. Note or
print out any on-screen messages you get when the
problem occurs. Have your manual and product
disks close at hand and have all the information
requested on this form available when you call.

Diagnosing a Problem
So that we can assist you more effectively, please
be prepared to answer the following questions
regarding your problem, your software, and your
hardware.

1. Can you reproduce the problem?
□ yes □ no

2. Does the problem occur with another copy of
the original disk of your Microsoft Software?

□ yes □ no

3. Does the problem occur with another system
(if available)?

□ yes □ no

4. If you were running other windowing or
memory-resident software at the same time,
does the problem also occur when you don't use
the other software?

□ yes □ no

Product

Product name

Version Number Registration Number

Software
Operating System

Name/Version number

Windowing Environment
If you were running Microsoft Windows or another
windowing environment, give name and number of
windowing software:

CD ROM Software

Name/Version number

Other Software
Name/Version number of any other software you
were running when problem occurred, including
memory-resident software (such as keyboard
enhancers or print spoolers):

pcjs.org

Hardware
So that we can assist you more effectively, please
be prepared to answer the following questions
regarding your problem, your software, and your
hardware.

Computer

Manufacturer/model Total memory

Floppy-disk drives
Number: □ 1 0 2 □ Other
Size: □ 3 1/2" □ 5 1/4"
Number of Sides: □ 1 0 2
Density: □ Single □ Double □ Quad
Capacity:
5 1/4": □ 160K □ 360K □ 1.2 megabytes
3 1/2": □ 360K □ 400K □ 720K □ 800K

□ 1.4 megabytes

System Memory

Manufacturer/model Total memory
(If using DOS, you can run CHKDSK to determine
the amount of memory available. If using Apple
Macintosh Finder, select "About The Finder..."
from the Apple menu to determine the amount of
memory available.)

Peripherals
Hard Disk

Manufacturer/model Capacity(megabyte)

Printer/Plotter

Manufacturer/model

□ Serial □ Parallel

Printer peripherals, such as font cartridges,
downloadable fonts, sheet feeders:

Mouse
Microsoft Mouse: □ Bus □ Serial □ InPort™ □
Other

Manufacturer/model

Boards
□ Add-on RAM board

Manufacturer/mode]

□ Graphics-adapter board

Manufacturer/model

□ Other boards installed

Manufacturer/model

Modem

Manufacturer/model

CD ROM Player

Manufacturer/model

Version of Microsoft MS-DOS® CD ROM
Extensions:

Network
Is your system part of a network? □ Yes □ No

Manufacturer/model

What hardware and software does your network
use?

pcjs.org

Documentation Feedback - Microsoft® QuickPascal
Help us improve our documentation. After you’ve become familiar with our product, please complete and return
this form. Comments and suggestions become the property of Microsoft Corporation.

Which statement best describes your experience with
Pascal?

I haven’t had much programming experience
in any language.
I have used other languages, but I’m new to Pascal.
I have used Pascal occasionally, but I’m still
unfamiliar with many of its features.
I use Pascal regularly in my professional work, but
I’m not a full-time programmer or developer.
I’m a full-time programmer or developer using
Pascal regularly.

How long ago did you buy this QuickPascal package?
____months

Have you read Up and Running all the way through?
I haven’t used it at all.
I’ve read part of it. Which parts?

I’ve read it all the way through.

Have you used the on-line tutorial, QP Express?
I haven’t used it at all.

____I’ve used part of it. Which parts?

I’ve followed it all the way through.

Which statement best summarizes your response to the
Pascal language information in Pascal by Example?

It’s too simple; I need more in-depth
information.
It’s about right; I can usually understand it
without much difficulty.
It’s too technical; I find it hard to read
and apply.

In this QuickPascal package, some information is
provided on-line and some in book form. What’s your
opinion of this mix?

I wish more information were available
on-line. Please specify

I wish more information were available in
book form. Please specify_____________

I feel the balance is about right.

Were there any topics you felt weren’t covered well
enough anywhere in the documentation? Please explain.

Overall, how well does the QuickPascal documentation
meet your needs? Rate each from 1 (does not meet your
needs at all) to 5 (meets your needs perfectly).
____Up and Running

Pascal by Example

QP Advisor (on-line help)

QP Express (on-line tutorial)

Now, please return to the question above and tell us,
in the space after each item, the main reason for your
rating.

Use the back of this form for other suggestions and comments. Please note any errors and special strengths or
weaknesses in areas such as programming examples, indexing, overall organization. Which parts of the book do you
refer back to most frequently?

(Over)

pcjs.org

Name

Address

City/State/Zip

_______ () -______________ ()
Phone (home) (work)

Additional comments:

Please mail this form to:

Microsoft Corporation
Attn: Product Support
16011 NE 36th Way
Box 97017
Redmond, WA 98073-9717

pcjs.org

Microsoft

Microsoft Corporation
16011NE 36th Wav
Box 97017
Redmond. WA 98073-9717

0489 Part No. 06396pcjs.org

