————

W —

— e e e e e et et et WA e i - - =%
. — s = - — s — o

C Compiler

Professional Development Tool
for the IBM PC and Compatibles

1
nu]J Mark Williams CPmpany

fark Williams Company

V4.04 - B(RI51
Let’s C Registration Form

n this form and retura it within 30 days to qualify for maintenance and product updates. This
will help us serve your needs better. Please read and complete all the questions: be specific and

State or Country:

Purchase Date:

g
a
3

]
F
g

:

ol g

Computer Language [PC Tech Journal

- O PC Week

 Dr. Dobb's Journal [0 PC Worid
InfoWorld [] Personal Computing

O ST Leg
O START
[] ST Applications

ool

8. Describe your current C programming projects:

9. 1 prefer to purchase software from:

O retail (full-service) [mail-order

[0 retail (discount) O direct from company
O Other

10. This software was purchased for:
[personal use O business use
[educational program (picase specify)

11. Other software purchase interests (please ./

items and also elaborate in space provided):

[0 Source Level Debugger [C Interpreter
0 ¢ library toolboxes O C tutorial

[C run-time source code [GEM Libraries
[J Cross development tools [Other compilers
[0 Other programming tools [J Other utilitics
[0 Embedded applications toolbox

NO POSTAGE
NECESSARY
IF MAILED
INTHE

Williams Company

D Wrightwood Avenue
Chicago, lllinois 60614

UNITED STATES

C Compiler

Professional Development Tool
for the IBM PC and Compatibles

ﬂlm Mark Williams Company

Copyright © 1987 Mark Williams Company,

This publication conveys information that is the property of Mark Williams Company. It shall not be copied,
or duplicated in whole or in part without the express written permission of Mark Williams Company.

Mark Williams Company makes no warranty of any kind with respect to this material and disclaims any implied war-

ranties of merchantability or fitness for any particular purpose.

Let’s € Is & registered trademark of Mark Williams Company. csd, COHERENT, and Fast Forward are trademarks
of Mark Williams Company. UNIX is a trademark of Bell Laboratories.

Revision 3 Printing 5 43 2 1
Published by Mark Willisms Company, 1430 W. Wrightwood Avenue, Chicago, Illinois 60614,

I created this PDF version of the csd C Source Debugger manual in October 2020 using my
1987 hard copy and archived Mark Williams Company documentation sources. The pages at
the beginning and end (cover, Registration Form, title page, User Reaction Report, Other
Products, Order Form, Software License Agreement, back cover) are scans of my hard copy. The
remaining sections were regenerated from the archived sources using the COHERENT version of
troff. The reconstructed manual has not been carefully proofread.

This material was originally 0 1987 by Mark Williams Company. This PDF is posted with the
kind permission of Robert Swartz (founder and president of MWC), the current copyright holder.

Stephen Ness
10/19/2020

Table of Contents

Introduction L e 1
Whatis Let’'s C?. o e e 1
Hardware requirements e e e e e e e e 1
Changesinrelease 4.0. oL L 1
Howtousethismanual e 2
User registration and reactionreport L e 3
Technical support. 3
Bibliography o . e e 3

i8086/MS-DOS information. e 5

Installingand Running Let’s C 7

Installing Let’'s C e e 7
Installing Lets Contoaharddisk 7
Installing Let’s C onto a floppy-disksystem 8
Re-installinga portionof Let's C. 10

Setting your computer’'s environment. L L. oLl o s e e 10
Settingthe PATH e 10
Finding the ccargsfile 11
Editing ccargs. o o e e e e e e e 11

Using MWS, the Let’s C command interface 12
Editingafile. e e 13
Simple compiling e e e 15
Runningaprogram. e 18
Quick DOS and IDOS options. e e 19
Using the make programming discipline 19
Using csd, the C source debuggero i i ittt ittt 21
Resettingthe buffers 22
Wheretogofromhere e 25

CforBeginners. L 27
Programming languagesand C. L e 27

Assembly and high-level languages e 27
So, whatis C?. e 28
Structured programmingo e e e 28
Compiling a C program o vttt it e e e e e e e e e 29
Writinga Cprogram e 29

A sample C programming SesSiOno e e 30
Designing a programol e e e e e e e e e e e 30
The main function 31
Opening a file and showing text 0 o o oL 32
Accepting filenames e e e 34
Errorchecking. 35
Printa portionofafile. 37
Checking fortheend offile 39
Polling the keyboard e 40
For more information. e e e 42

Whereto gofromhere L e 42

CompilingwithLet’'sC. 43
The phases of compilation. e 43
Edit errors automatically e e e 43
Renaming executable files. L e e e e e 44

ii The COHERENT System

Floating-pointnumbers e 44
Compiling multiple sourcefiles. L e 45
Wildeards. o o e e e e e e 45
Tailoring the command line interface 46
Linking without compiling. e e e 46
Compiling without linking. o o oo oo oo 47
Mini-make option. e e e e 47
Assembly-languagefiles 47
Changing the size of thestack 48
i8086 memory models e e e 48
Debugging information. e e e e 49
IBO87 PrOgramsS v v vt e e e e e e e e 49
Options passed to MS-LINK. e 49
Compiling programs without STDIO. ittt 50
Using defaultoptions. e 50
Wheretogofromhere 51
Introduction to MicroEMAGCS e e 53
What is MicroEMACS? e e e e e e 53
Keystrokes — <ctrl>, <esc> L e 53
Becoming acquainted with MicroEMACS it 53
Beginningadocument. e e e e e e 54
Moving the CUISOr o e e e e e e 55
Moving the cursor forward. e 56
Moving the cursor backward L 56
Fromlinetoline. e 56
Moving up and down by a screenfuloftext., 57
Moving to beginningorend of text. L o oL 57
Saving textand quitting oL L 57
Killing and deleting. e e e e e 57
Deleting versus Killing e e e 58
Erasingtexttotheright 58
Erasingtexttotheleft 59
Erasinglines of text e 59
Yanking back (restoring) text L L e 59
Quitting L e e e e 59
Block killingand moving text. 60
Movingone line of text. e 60
Multiple copying of killed text. 60

Kill and move a block of text e 60
Capitalization and other tools. L 61
Capitalization and lowercasing e 61
Transpose characters. o o o 62
Screenredraw. o v it e e e e e e e e 62
Returnindent L e e 62
Wordwrapo 63
Searchand ReverseSearch L e 64
Search forward 64
Reversesearch e e 65
Cancelacommand it e e e e 65
Searchandreplace L e e 66
Saving textand exiting. L e e e 66
Write texttoanew file. 67
Savetextandexit. 67

CONTENTS

The COHERENT System _iii

Advanced editing L. e 67
Arguments. L e e e e e e e e 68
Arguments —defaultvalues L o 68
Selecting values. e 69
Deleting with arguments—an exception. 69
Buffersand files. e e e e e e e e e e e 69
Definitions o e e e e e e 69

File and buffer commands. 70
Write and rename commandsS. L L e e e e e e e e 70
Replacetextinabuffer 70
Visiting another buffer. 71
Move text from one buffertoanother 71
Checking buffer status. L L L 71
Renamingabuffer e 72
Deleteabuffer. e e e e e e 72
WINdows e e e 72
Creating windows and moving betweenthem 73
Enlarging and shrinking windows o e 74
Displaying text withinawindow L 00 oL 75
Onebuffer 75
Multiple buffers L 76
Moving and copying text among buffers. 76
Checking buffer status. e 76
Saving text from windows L L 76
Keyboard macros o e e e e e e e 77
Keyboard macro commands. e e e e e 77
Replacinga macro o i i i e e e e e 77
Sending commands to MS-DOS e 77
Compiling and debugging through MicroEMACS 78

The MicroEMACS help facility 79
Wheretogofromhere 79
make Programming Discipline0 0 o o oo 81
How does make work? e e 81
Trymake o e e e 82
Essentialmake e e e 83
Themakefile. 83
Building a simple makefile 84
Comments and MACIOS. v v vt v v vttt e 84
Settingthe time 85
Building a large programo e e e 85
Command lineoptions. e e 86
Other command line features. o L Lo 86
Advanced make e e e 87
Defaultrules. e e e 87
Double-colon targetlines L 88
Alternative USes. L e e e 89
Special targets. L L e e 90
Errors. e 90
Exitstatus. L e 90
Whereto gofromhere L e 90
Questions and ANSWeTrS. e e 91
Programming problems L e e 91
Problems with running programs L e e e e 95

CONTENTS

iv_ The COHERENT System

Limitations in i8086 L e 96
Error MeSSages. o i vttt e e e e 97
The Lexicon. e e e 115

example. Give an example of Mark Williams Lexicon format. 117

L Logical negation operator 118

I= Inequalityoperator 118

e String literal character. 118

#.oooo String-ize operator Lo oL oo 119

##H ... Lo Token-pastingoperator 120

#define Define an identifierasamacro. 121

#elif Include code conditionally. 123

#else Include code conditionally. 123

#endif. End conditional inclusionofcode 124

#Error. Errordirective. 124

3 Include code conditionally. 124

#ifdefo Include code conditionally. 125

#ifndef Include code conditionally. 125

#include Read another file and include it 126

#line. Resetlinenumber 127

#pragma Perform implementation-definedtask 127

#undef Undefineamacro.o v i i i i i i i 128

% ..o Remainderoperator. 0. 128

%=. Remainder assignment operator 129

& 129

&&. ... Logical AND operator. 130

S e Bitwise-AND assignmentoperator 130

(e o e e e 130

s 131

T 132

e Multiplication assignment operator 132

o 132

e Incrementoperator. Lo o 133

= Addition assignment operator. 0L 134

e e e e e e e 134

e 135

T e e e e e e e e e e Decrementoperator. 0oL 136

T e e e Subtraction assignment operator. 136

> Selectamember 136

................. Memberselection. 137

/o Divisionoperator oo 138

L e 138

/= Division assignmentoperator. 138

... 139

D e e e e e 139

< Less-thanoperator 139

<< Bitwise left-shift operator 0., 139

<<= L Bitwise left-shift assignment operator. 140

<= e Less-than or equal-tooperator 140

S Assignmentoperator. L Lo 141

T e e e e e e e e Equalityoperator 141

> e Greater-thanoperator 142

>SS Greater-than or equal-tooperator 142

S>> e Bitwise right-shift operator 143

CONTENTS

The COHERENT System v

S>= Bitwise right-shift assignment operator. 144
2 S Conditionaloperator 144
... o .. Array subscriptoperator. o0 00000 145
N Bitwise exclusive ORoperator 146
A= Bitwise exclusive-OR assignment operator 147
__DATE__.......... Dateof translation 147
end . . . e e e e e e 147
__FILE__ Sourcefilename e 148
__LINE__ Current line within a sourcefile 148
__STDC_ _. Mark a conforming translator. 148
__TIME__.......... Time source fileis translated 149
exit() L Terminatea program. 149
_tolower(). Convert lettertolowercase, 149
_toupper() Convert letter to uppercase. 150
zero(). Zeroablockofmemory, 151
e e e e 151
[oo Bitwise inclusive ORoperator. 151

S e Bitwise inclusive-OR assignment operator 152
I T Logical ORoperator. 152
N e Bitwise complement operator. 153
abort(). End program immediately., 154
abs(). Compute the absolute value of an integer. 154
access(). Check if a file can be accessed in a given mode 155
access.h Define manifest constants used by access(). 156
accesschecking. L e e 157
acos() Calculateinversecosine 157
address. e e e e e e 157
alias. . . . e e e e e e e e 158
alien. Name a non-standard function. 158
alignment e e e e e 159
ATETIA .« . v v v v e 159
ATEC . o o v e 160
argument. L. e e e e e e e 160
ATEV . L ot e e e e e e e 160
array declarators e e e e e e e 161
AS . . e e e e e i8086 assembler. e 161
ASCIL . . . e e e e 177
asctime() Convert broken-down timetotext 180
asin() Calculateinversesine 181
assert() Check assertionatruntime. 181
assert.h. Header for assertions. 182
atan() Calculate inverse tangent 182
atan2() Calculate inversetangent 183
atexit() Register a function to be performedatexit. 183
atof() Convert string to floating-point number. 184
atoi(). Convert string tointeger. 185
atol(). Convert string to long integer. 185
auto. Lo Automatic storageduration. 00000 186
AUX « e e e e Logical device for serialport. 186
behavior e e e e e e e e e 187
BIOS . . . e e 187
biosh. Outline ROM BIOS dataarea 188
0 188

CONTENTS

vi The COHERENT System

bit-fields e e 188
bitmap. e e e e 189
BloCK e e e e 189
break Exit unconditionally from loop or switch 190
bsearch() Searchanarray. it 190
DY . o o e e e e 192
byte ordering. Describe order of bytes. 192
cabs() Complex absolute value function. 194
calloc() Allocate and clear dynamicmemory 194
CaASE . . v v v e Mark entry in switch table. 194
CC v v et e Compilercontroller. 195
CCO . L e 200
CCL . o e 200
CC2 L e 200
CC3 . o e e 200
CCTAIL. Variables at end of compilation command 201
ceil(). Integralceiling. 201
char. e e e 201
characterconstant e 202
character display semantics. 202
characterhandling e 203
clearerr() Clear a stream’s error indicator 204
CLK . TCK. . . . 205
clock(). Get processortimeused, 205
clock t Systemtime 206
close(). Closeafile. e 206
CIMP . . v v v v v e e e Compare bytesof twofiles. 207
commMAaNdS e e e e e e e e e e 207
COMIMENT v v vttt et s et e e e e e e e e e e 208
compatible types e 208
compile.o e e e 209
complianCe. e e e e e e e e e 209
(670 o N Logical device for theconsole 210
const Qualify an identifier as not modifiable. 210
constant eXpressions. L. e e e e 210
constants. e e e 212
continue Force next iterationofaloop 212
CONVETSIONS ot v it ettt e e e e e e e e e e e e e e e e e 213
cos(). Calculatecosine. e 215
cosh(). Calculate hyperboliccosine 215
(635 o T C PIEProCESSOT . . . v v v v v v e e e e e e e e e e e 215
creat). Create/truncateafile 216
csreg). Getvalue from CSregister. 216
ctime() Convert calendartimetotext. 217
ctypeh Header for character-handling functions 218
daemon. e e e e e 219
dateand time L e 219
dayspermonth() Return number of daysina givenmonth. 220
DBL DIG. . . . o o ottt e e e e e e e e e e e e e e e e e e 220
decimal-point character L e 220
declarations L e e e 221
declarators. L e e e 221
default Default entry in switch table 222

CONTENTS

The COHERENT System vii

defined Check if identifieris defined. 222
definition. e e e e e e e e e 223
Definitions e e e e 223
diagnostics. e e e 225
difftime() Calculate difference betweentwo times 225
digit. . . e e 226
directory L e e 226
div)o L. Perform integer division 226
div_t. Typereturnedbydiv() 227
do......... Loopconstruct 227
dosh Define MS-DOS functions and devices 228
DOS-specificfeatures L 228
double e e e e 228
dsreg(). Get value from DS segmentregister 229
dup() Duplicate a file descriptor, 229
dup2(). Duplicate a filedescriptor 229
ecvt() Convert floating-point numbers to strings 231
(5723 (<) o A Extended patternsearch. 231
else Conditionally execute a statement. 233
eNUM Enumerateddatatype, 234
enumeration constant L L L L L e e e e e e e e e e e e e e e 235
environmental variable. L L L L e e e e e e e e e e 235
ENVP. « v v v e e Argument passedtomain. L. 235
EOF. Indicateend ofafile 236
(S35 3 o 0 External integer that holds error status. 236
errno.h Define errnoand errorcodes 237
€SCAPE SEQUETICES & v v v v v it et e e e e e e e e e e e e e e e e e 237
esreg(). Get value from ES segment register 238
exargs(). Get and parse a commandline 238
EXCEPLION. L e e 240
execall). Executea subprogram. 0. 240
executablefile L e e e e 241
exit(). Terminate a program gracefully. 241
explicit conversion Lo e e e 242
extended characterhandling e 243
extended time L L e e e e 243
extern. Externallinkage. Lo oL 244
external definitions L e e e e e 244
external name e e e e e e e e e 244
fabs() Compute absolutevalue. 246
false. . . . e e e e e e 246
fclose() Closeastream. i v i v ittt i 246
fevt()., Convert floating-point numbers to strings 247
fdopen(). Open a stream for standardI/O 247
feof(). Examine a stream’s end-of-file indicator 248
ferror() Examine a stream’s error indicator 249
fflush() Flush output stream’sbuffer. 250
fgete(Q) Read a character fromastream 250
fgetpos() Get value of file-position indicator 251
fgets() Read aline fromastream. 252
fgetw(). Read integer from stream 253
field e e e e 254
e . . . e e e e e e e 255

CONTENTS

viii_The COHERENT System

file descCriptor L e e e e e e 256
FILENAME_MAX Maximum length of filename 256
fileno) Getfiledescriptor. o Lo oL 256
float e 257
float.h. e e e e e 260
floating constant 262
floor() Numericfloor e 262
fmod Calculate modulus for floating-point number 263
fopen() Open a stream for standardI/O 263
for. Loopconstruct 265
fpos_t. Encode current positioninafile 265
fprintf() Print formatted text intoa stream 266
fpute(). Write a characterintoastream. 267
fputs(). Write a string intoa stream. 268
fputw() Write an integertoa stream. 268
fread(). Read datafromastream. 268
free(). Deallocate dynamic memory 269
freopen() Re-openastream. 270
frexp(). Fracture floating-point number. 271
fscanf() Read and interpret text from a stream. 271
fseek(). Set file-position indicator, 273
fsetpos(). Set file-position indicator 0oL L. 274
ftel(). Get value of file-position indicator 275
function L e e 275
functioncall e e e e e 276
function declarators L e e e e e 282
function definition e e 282
function designator. e e e e 283
function prototype e e e 283
fwrite() Write dataintoastream. 285
gevt() oL Convert floating-point numbers to strings 286
general utilities L. e e e 286
gete) Read a character fromastream 287
getchar() Read a character from the standard input stream. 287
getenv(). Read environmental variable 288
gets() Read a string from the standard input stream 289
getw() Read word from filestream 290
gmtime() Convert calendar time to universal coordinated time 290
goto. Unconditionally jump within a function. 291
header e e e e e e e e 293
headernames L e e e e e e e e e e e e 294
hypot) Compute hypotenuse of right triangle. 294
18086 support L e e e e 295
i8087 Floating-point co-processor 295
identifiers L e e e e e 296
if. oo Conditionally execute an expression. 297
implicit conversions L. e e e e e e e 298
inb(Q).............. Readfromaport, 298
INCDIR. Directory that holds include files. 298
index() Find a characterinastring. 299
initialization L e e e e e e e e 299
00 302
intcall() Call MS-DOSinterrupt., 303

CONTENTS

The COHERENT System ix

integerconstant. L e 304
internal name e e e e e e e e e e e e e e 305
Interrupt L e e e 305
isalnum(). Check if a characteris a numeralorletter 305
isalpha() Check if a characterisaletter 306
isascii() Check if a character is an ASCII character 306
isentrl(). Check if a characteris a control character 306
isdigit() Check if a characterisanumeral 307
isgraph() Check if a characteris printable 307
islower(). Check if a character is a lower-caseletter. 307
isprint(). Check if a characteris printable 308
ispunct() Check if a character is a punctuationmark 308
isspace() Check if character is whitespace. 309
isupper() Check if a character is an upper-caseletter 309
isxdigit) Check if a character is a hexadecimal numeral 310
joO.o Compute Bessel function 311
J10. . . . oo Compute Bessel function 312
jday_to_time() Convert Julian date to systemtime 312
jday_to_tm() Convert Julian date to system calendar format 312
jmp_buf. Type used with non-localjumps 313
jnQ., Compute Bessel function 313
Keywords. o e e e e e e 315
label. e e e e e e 316
labs() Compute the absolute value of a long integer 316
Language. e 316
LARGE model Intel multi-segment memory model 319
LCALL............ All locale information. 319
LC_COLLATE Locale collation information. 320
LCCIYPE.......... Locale character-handling information 321
LC_MONETARY Locale monetary information 321
LC_NUMERIC Locale numeric information. 321
LCTIME........... Locale time information 322
Iconv Hold monetary conversion information 322
Idexp(). Load floating-pointnumber. 324
IdivQ. Perform long integer division 325
Idiv.t Type returned by 1div(Q o000 325
lexical elements e e e e e e e e e e e e e 326
LexXiCom o o e e e e e e e e e e e e e e e e e e 326
libcxs87.1ib. Standard library, SMALL model/i8087only. 327
Hbm e e 327
LIBPATH Directories that hold libraries. 327
Hmits.h e e e e e e 328
HNK . . . e 329
Hnkage o o e e e e e e e e 329
localeh. Localization functions and macros. 330
localeconv(). Initialize lconv structure 331
localization. e e e e e e e e e e 331
localtime() Convert calendar time to localtime 334
log) Compute natural logarithm 335
loglO() Compute common logarithm 336
long double e 336
longint. L e e e 337
longimp() Executeanon-localjump 337

CONTENTS

X The COHERENT System

Iseek(). Set read/write position. Lo 338
Ivalue e e 339
MAaiN L e e e e e e e e e 341
main Introduce program’s main function 341
make Program building discipline. 342
malloc(). Allocate dynamicmemory 345
manifest constant. e 345
math.h Header for mathematics functions 346
mathematics. L e e e e 346
MAXIMEIIL . . . v v v v vt e 347
mblen() Return length of a string of multibyte characters 347
mbstowes(). Convert sequence of multibyte characters to wide characters. 348
mbtowe() Convert a multibyte character to a wide character 348
MEe. v v v e MicroEMACS screen editor 349
MEMDET. o L e e e e e e e e e e e e e e e e e 355
memchr(). Search a region of memory for a character 356
memcmp() Comparetworegions. 357
memcpy(). Copy one region of memory into another 358
memmove(). Copy region of memory into area it overlaps 359
memset() Fill an areawith acharacter 360
mktemp(). Generate a temporary filename 360
mktime() Turn broken-down time into calendartime. 361
model. e e 362
modf(). Separate floating-pointnumber. L0, 362
mtype.h. List processor code numbers, 363
multibyte characters L. 363
NAME SPACE . . . v v v v vt b e e e e e e e e e e e e e e e e e e e 366
nested comments. e e e e e 367
NM. . . oot e oo e e e e Print a program’s symbol table. 367
nondigit. e e 368
non-local jJumps. e e e e 368
notmem(). Check if memoryis allocated 369
null directive. Directive that doesnothing 369
null pointer constant. 369
null statement. e 370
numerical imits. L L e e e e 370
nybble e e e 370
ObjJeCt . . . L e e e e e e 371
objectdefinition. L 371
objectformat. L e e e 372
object types e e e e e e 372
obsolescent e e e e 372
open(). Openafile. 372
operating system devices . Logical devices for system peripherals. 374
OPEratorS. e e e e 374
ordinary identifier. 375
outb(). Writetoaport. 376
parameter L e e 377
PATH Directories that hold executablefiles 377
pathQ Build a pathnameforafile. 377
path.h. Declarepath() 378
pPatterno e e e e e e e 379
peek() Extract a word frommemory 379

CONTENTS

The COHERENT System xi

peekb() Extract a byte from memory. 379
perror() Write error message into standard error stream 380
picture() Format numbers undermask. 381
pnmatch() Match stringpattern 382
POINtEr L e e 383
pointerdeclarators e e e e e e 386
poke(). Insertaword intomemory, 386
pokeb() Insert a byte intomemory 0oL L. 387
POTT . o e e 387
portability e e 387
pow() Raise one number to the power of another 388
Pr .« oo oo Paginate and printfiles 389
Preprocessing NUIMDbDEIS o v v vttt e e e e e 389
printf) Format and print text into the standard output stream 390
prn MS-DOS logical device for parallelport 396
PTOCESS . . . o o o i it e e e e e e e e e e e e e e e e e 397
program startup. L e e e e e e 397
program termination Lo L e 397
PUIL . . o e e e e e e e e e e e e e 397
punctuators L e e e e e 398
putc(. Write a characterintoa stream. 398
putchar(). Write a character into the standard output stream 399
putsQ Write a string into the standard output stream 400
putw(. Write wordtostream. 400
qgsort(). Sortanarray 402
raise(). Sendasignal 403
rand(). Generate pseudo-random numbers 404
randomm ACCESS. . . . v v v v i e e e e e e e e e e e e e e e e e 405
read() Read fromafile., 405
read-only MEMOTY. o v v vttt e 406
realloc(). Reallocate dynamicmemory. 406
TECOTA. o e e e e e e e e e e e e e 407
register Quick accessrequiredo oo 0oL 407
TEGISTET L L e 408
remove() Removeafile. e 408
rename() Renameafile 409
return. Return to calling function 409
rewind(). Reset file-position indicator oL L. 410
rindex(). Find a characterinastring. 411
runtime startup. oL e e e e e e 411
TVAlUE. o e e e e e e e e e e e e 412
sbrk() Increase a program’'sdataspace 413
scanf(). Read and interpret text from standard input stream 413
SCOPE « v v o e 416
SEqUENCE POINL e e 418
setbuf() Set alternative streambuffer 418
setimp(). Save environment for non-localjump 419
setimp.h Declarations for non-localjump 419
setlocale(). Set or query a program’slocale. 420
setvbuf() Set alternative streambuffer 421
shellsort(). Sortarraysinmemory oL 422
shortint e e e e e 422
side effect. L e e e e e e 423

CONTENTS

Xii The COHERENT System

sig atomic_t. Type that can be updated despite signals. 423
signal() Set processing fora signal. 0L L. 423
signalh. Signal-handlingroutines 424
signal handling e 425
signals/interrupts e e e e e 426
signed. 431
signedchar e e 432
sin().............. Calculatesine e 432
sinh() Calculate hyperbolicsine 433
size Print the size of an object module 433
SIZeof . . . L e e 434
SMALL model Intel single-segment memorymodel 434
source file L e e e e 435
sprintf(). Print formatted text intoa string. 435
sqrt() Calculate the square root of anumber 436
srand() Seed pseudo-random number generator 437
sscanf() Read and interpret text froma string 438
stack . . . L e e 440
Standard L e e e 440
standard error. L L L e e e e e e e 440
standard input e e e 441
standard output. L. e e 441
stat() Find file attributes 441
stath............. Definitions and declarations to obtain file status 443
statements. e e e e e e e e 443
static Internallinkage 444
stdarg.h. Header for variable numbers of arguments. 444
stderr. Pointer to standard error stream 444
stdin Pointer to standard input stream. 445
STDIO. Standardinputandoutputo 445
stdioh Declarations and definitions for STDIO 447
stdlib.h. General utilities. L0 oL 447
stdout. Pointer to standard output stream. 449
stime() Set the operating systemtime 449
storage-class specifiers. L e 450
storageduration. oo Lo L 450
strcat() Append one stringontoanother 451
strchr() Find a characterinastring. 451
stremp(). Comparetwostrings 453
strcoll) Compare two strings, using locale-specific information. 453
strepy() Copy one string intoanother 454
strespn() Return length a string excludes characters in another 454
stream L e e 455
strerror() Translate an error number intoa string. 456
strftime() Format locale-specifictime 457
string.h. e 458
string handling 459
string literal o 460
strip. oL Strip debug table from executablefile. 460
strlen() Measure the length ofa string 461
strneat() L. Append n characters of one string onto another. 461
strnecmp(). Compare one string with a portion of another 462
strnepy() Copy one string intoanother 463

CONTENTS

The COHERENT System _xiii

strpbrk() Find first occurrence of a character from another string 465
strrchr(). Search for rightmost occurrence of a character in a string. . . 466
strspn(). Return length a string includes characters in another 467
strstr() Find one string withinanother. 468
strtod() Convert string to floating-point number. 469
strtok() Break a stringintotokens., 470
strtol(). Convert string to long integer. 471
strtoul(). Convert string to unsigned long integer. 472
SIIUCT e e e e e e e e e 474
strxfrm() Transformastring 475
swab(). Swapapairofbytes 475
switch. Selectanentryinatable 476
system(). Suspend a program and execute another. 477
. . e 478
tail. L Printtheendofafile. 478
tan(). Calculatetangent. 478
tanh() Calculate hyperbolictangent 479
technical information. L e e e e e e 479
tempnam() Generate a unique name for a temporary file. 479
time() Get current calendartime, 480
time. Print current time/Time execution of a command. 480
timeh. Header fordateand time 481
time t. Calendartime e 481
time_to_jday() Convert system time to Juliandate 482
TIMEZONE. Time zone information 482
tm. Encode broken-downtime. 484
tm_to_jday() Convert calendar format to Juliantime 484
TMPDIR. Directory that holds temporaryfiles 485
tmpfile(). Create a temporaryfile. 485
tmpnam(). Generate a unique name for a temporary file. 488
toascii(). Convert charactersto ASCII. 489
TOKENL e e e e e e 490
tolower() Convert charactertolowercase 491
toupper() Convert charactertouppercase 492
translationunit L. e e e 493
trigraph SeqUenCes L e e e e 493
True . . . e e e e e 494
typedef Synonym for anothertype. 494
type qualifier. 494
TYPES « o o e e e 495
type specifier. L e e e e e 498
ungetc(). Push a character back into the input stream. 500
1501 () o O 501
universal coordinated time 502
unlink(). Removeafile. 503
unsignedol e e e e e e e e 504
unsigned char. L e e e e e 504
unsignedint. e e e 504
unsigned longint L e 505
unsigned shortint L e 505
va_arg(). Return pointer to next argument in argument list. 506
vaend(). Tidy up after traversal of argumentlist 506
va list. Type used to handle argument lists of variable length 507

CONTENTS

xiv The COHERENT System

va_start). Point to beginning of argumentlist 507
value Preserving. o ot i e e e e e e e e e e e e e e e e e e e 508
variablearguments. 0oL o 508
viprintf() Print formatted text intostream 509
void Empty type. o e 511
void expression L o 513
volatile Qualify an identifier as frequently changing 513
vprintf(). Print formatted text into standard output stream 513
vsprintf() Print formatted text into string 514
WC . v v v e e e e Count words, lines, and charactersinfiles. 516
westombs(). L. L Convert sequence of wide characters to multibyte characters. 516
wctomb() Convert a wide character to a multibyte character 517
while Loopconstruct 517
wildecards. 518
write(). Writeintoafile, 518
Xctype.hi . .o e 519
XOFF . . . 519
XON. . oo 519
xtime. . . . e 519
Appendix L L e e e e 521

CONTENTS

Infroduction

Congratulations on choosing Let’s C, the Mark Williams C compiler for the IBM PC and
compatibles. Let’s C has the state-of-the-art power and flexibility that the professional programmer
needs, but is easy enough for the beginner to learn quickly.

Let’s C is part of the Mark Williams Company family of C compilers, which supports many different
operating systems and processors. The operating systems supported include:

COHERENT MS-DOS TOS
CP/M-68K RMX VAX/VMS
ISIS-II

The processors supported include:
PDP-11 68000 80186
Z8001 68020 80286
78002 8086

What is Let’s C?

Let’s C is a professional C programming system designed for the IBM PC and compatibles. It
consists of the following:

° The Mark Williams C compiler, plus an assembler, a preprocessor, and other tools.

i A set of commands selected from the COHERENT operating system, including the MicroEMACS
screen editor and the make programming discipline.

e Afull set of C libraries.
i A set of sample programs, including full source code for the MicroEMACS editor.

¢ The Mark Williams shell MWS. MWS will help you build commands for Let’s C, and will
accelerate the operation of your software. By using MWS’s display interface, you build
commands for Let’s C and its utilities. MWS also includes an accelerator that speeds up
Let’s C. If you prefer to type commands directly into MS-DOS, MWS will let you and it will still
accelerate your software for you.

Hardware requirements

Let’s C runs on an IBM PC, XT, or AT, or any compatible computer that has at least 320 kilobytes of
RAM and either two double-sided floppy disk drives or at least one floppy disk drive and a hard disk.

Changes in release 4.0

Let’s C version 4.0 has been greatly expanded and improved over earlier releases. Its new features
include the following:

. Let’s C now compiles into MS-DOS format, rather than the proprietary Mark Williams
format used in earlier versions.

° It supports LARGE model as well as SMALL model.

. Let’s C supports the i8087 mathematics co-processor, to speed up mathematics routines.

2 Introduction

° Let’s C supports csd, the revolutionary Mark Williams C source debugger. csd can now
debug programs in MS-DOS object format, and that are compiled into either SMALL or
LARGE model.

° Let’s C libraries will sense the presence of the i8087 co-processor. If one is present, then it

is used to execute mathematics routines; if one is not present, mathematics routines are
emulated in software. Your programs will now make maximum use of your computer,
whether an i8087 is present or not.

i The make programming discipline is included. This helps you to construct large programs
that use many modules, with a minimum of difficulty.
° Let’s C's assembler, as, has been improved to support both LARGE and SMALL model, as

well as the i8087 co-processor. It generates MS-DOS object format rather than the Mark
Williams proprietary format, as before. as now supports a macro processing feature, which
allows you to write model-independent versions of your assembly-language programs.

. The utility fixobj lets you edit object modules and libraries so they can be linked with object
modules generated by Let’s C. You can now use libraries from any other C compiler with
Let’s C.

o The Mark Williams shell MWS now makes it easy to build commands for Let’'s C and its

utilities. MWS also supports RAM compiling, to speed up compilation on your system.

o The MicroEMACS screen editor is now integrated with Let’s C. If you wish, you can have
MicroEMACS display your source code automatically whenever an error occurs during
compilation; you can then fix your error and recompile by using only a few keystrokes.

o Floating-point numbers now use IEEE format. Floating-point routines have been rewritten
to execute more quickly than before.

. Division of longs has been rewritten, and is much faster than in previous versions.

o Let’s C will now compile programs using i80286 instructions. Although such programs

cannot be run on a computer that uses the i8086 microprocessor, they will run more
quickly on the IBM PC-AT and compatibles.

o Finally, the manual for Let’s C has been entirely rewritten, and now uses the Mark Williams
Lexicon format. This format has set the standard for language documentation on the Atari
ST, and Let’s C is the first C compiler to bring Lexicon format to the IBM PC.

How to use this manual
This manual is in nine sections. Section 1, which you are now reading, introduces Let’s C.

Section 2 shows you how to install Let’s C on your computer. It also introduces the Let’'s C shell,
introduces the MicroEMACS screen editor, and shows you how to compile simple C programs.

Section 3 is entitled C for Beginners. If you are new to the C programming language, this section
will introduce you to C. It is not a full tutorial on C, but it will show you the basics of C
programming, so you will be better able to follow the rest of this manual and use the example
programs in it.

Section 4 introduces compiling with Let’s C. It describes the options to the compiler controller ce,
and shows you how to compile using different memory models and different formats. Technical
issues that involve the i8086 microprocessor and MS-DOS are also discussed.

Section 5 is a tutorial on the MicroEMACS screen editor. It introduces most of the MicroEMACS
commands and includes exercises to help sharpen your skills at editing programs.

Let’s C

Introduction 3

Section 6 is a tutorial on make, the Mark Williams programming discipline. make is one of the
most useful tools available for constructing and maintaining large, intricate programs. This section
describes make, from building relatively simple programs to using make to control work other than
compiling C programs.

Section 7 presents some questions and answers about Let’s C. New users of Let’s C often ask the
same questions about how to use it; so if you have a question, look here first. You could well find
the answer you need.

Section 8 lists all of the error messages that the Let’s C compiler, assembler, and utilities can
produce. Many entries have hints to help you correct or avoid the error that the message describes.

Finally, section 9 is the Lexicon. This is by far the largest part of the manual. The Lexicon contains
several hundred individual entries; each describes a command, a function, defines a C technical
term, or gives you other useful information. All of the Lexicon’s entries are in alphabetical order,
and are designed to be easily used. For example, if you want information on how to use the STDIO
routines, simply turn to the entry in the Lexicon on STDIO; there, you will find a list of all the
STDIO routines, a description of each, and instructions on how to use them. Or, if you want
information on how Let’s C encodes floating point numbers, simply turn to the entry on float.
There, you will find a full description of floating point numbers. Many Lexicon entries have full C
programs as examples; all have cross-references to related entries.

The opening sections of this manual will refer constantly to the Lexicon. If you are unfamiliar with a
technical term used in this manual, look it up in the Lexicon. Chances are, you will find a full
explanation. If you are not sure how to use the Lexicon, look up the entry for Lexicon within the
Lexicon. This will help you get started.

Finally, the back of the manual lists the Lexicon’s entries sorted by category, and gives an index.
User registration and reaction report

Before you continue, fill out the User Registration Card that came with your copy of Let’s C. When
you return this card, you become eligible for direct telephone support from the Mark Williams
Company technical staff, and you will automatically receive information about all new releases and
updates.

If you have comments or reactions to the Let’s C software or documentation, please fill out and mail
the User Reaction Report included at the end of the manual. We especially wish to know if you
found errors in this manual. Mark Williams Company needs your comments to continue to improve
Let’s C.

Technical support

Mark Williams Company provides free technical support to all registered users of Let’s C. If you are
experiencing difficulties with Let’s C, outside the area of programming errors, feel free to contact the
Mark Williams Technical Support Staff. You can telephone during business hours (Central time), or
write. This support is available only if you have returned your User Registration Card for Let’s C.

If you telephone Mark Williams Company, please have at hand your manual for Let’s C. Please
collect as much information as you can concerning your difficulty before you call. If you write, be
sure to include the product serial number (from the sticker on the back of this manual) and your
return address.

Bibliography

The following books may be helpful in developing your skills with C. This list also contains all
books that are referenced in this manual. It is by no means exhaustive; however, it should prove
helpful to both beginners and experienced programmers.

Let’s C

4 Introduction

American National Standards Institute: Draft Programming Language C (October 1986 Draft).
Washington, D.C.: X3 Secretariat, Computer and Business Equipment Manufacturers Association,
1986.

AT&T Bell Laboratories: The C Programmer’s Handbook. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1985.

Chirlin, P.M.: Introduction to C. Beaverton, Or.: Matrix Publishers, Inc., 1984.
Derman, B. (ed.): Applied C. New York: Van Nostrand Reinhold Co., Inc., 1986.
Feuer, A.R.: The C Puzzle Book. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1982.

Gehani, G.: Advanced C: Food for the Educated Palate. Rockville, Md.: Computer Science Press,
1985.

Hancock, L.: Krieger, M.: The C Primer. New York: McGraw-Hill Book Publishers, Inc., 1982.
Harbison, S.; Steele, G.: C: A Reference Manual. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.
Hogan, T.: The C Programmer’s Handbook. Bowie, Md.: Brady Publishing, 1984.

Kelley, A.; Pohl, I.: C by Dissection: The Essentials of C Programming. Menlo Park, Ca.: The
Benjamin/Cummings Publishing Company, Inc., 1987.

Kernighan, B.W.; Ritchie, D.M.: The C Programming Language. Englewood Cliffs, N.J.: Prentice-
Hall, Inc., 1978.

Kernighan, B.W.; Plauger, P.J.: The Elements of Programming Style, ed. 2. New York: McGraw-Hill
Book Co., 1978.

Kochan, S.G.: Programming in C. Hasbrouck Heights, N.J.: Hayden Book Co., Inc., 1983.

Knuth, D.E.: The Art of Computer Programming, vol. 1: Basic Algorithms. Reading, Ma.: Addison-
Wesley Publishing Co., 1969.

Knuth, D.E.: The Art of Computer Programming, vol. 2: Seminumerical Algorithms. Reading, Ma.:
Addison-Wesley Publishing Co., 1969.

Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting and Searching. Reading, Ma.:
Addison-Wesley Publishing Co., 1969.

Plum, T.: Learning to Program in C. Cardiff, N.J.: Plum Hall, Inc., 1983.
Plum, T.: C Programming Guidelines. Cardiff, N.J.: Plum Hall, Inc., 1984.
Plum, T.; Brodie, J.: Efficient C. Cardiff, NJ: Plum Hall, Inc., 1985.
Purdum, J.: C Programming Guide. Indianapolis: Que Corp., 1983.

Purdum, J.; Leslie, T.C.; Stegemoller, A.L.: C Programmer’s Library. Indianapolis: Que Corp.,
1984.

Traister, R.J.: Programming in C for the Microprocessor User. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1984.

Traister, R.J.: Going from BASIC to C. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1984.
Vile, R.C., Jr.: Programming in C with Let’s C. Glenview, IL: Scott, Foresman and Company, 1988.
Waite, M.; Prata, S.; Martin, D.: C Primer Plus. Indianapolis: Howard W. Sams, Inc., 1984.

Let’s C

Introduction 5

Weber Systems, Inc.: C Language User’s Handbook. New York: Ballantine Books, 1984.
Zahn, C.T.: C Notes. New York: Yourdan Press, 1979.
i8086/MS-DOS information

Duncan, R.: Advanced MS-DOS: The Microsoft guide for assembly language and C programmers.
Redmond, WA: Microsoft Press, 1986. Recommended.

IBM Corporation: Technical Reference, Personal Computer XT. Boca Raton, FL: International
Business Machines Corporation, 1983.

Intel Corporation: 8086 Relocatable Object Module Formats. Document No. 121748-001. Santa
Clara, CA: Intel Corporation.

Intel Corporation: 8086/8087/8088 Assembly Language Reference Manual for 8086-Based
Development Systems. Santa Clara, CA: Intel Corporation, 1983.

Intel Corporation: iAPX 286 Programmer’s Reference Manual. Santa Clara, CA: Intel Corporation,
1985.

Microsoft Corporation: MS-DOS Technical Reference Encyclopedia. Bellevue, WA: Microsoft Press,
1986.

Norton, P.: The Peter Norton Programmer’s Guide to the IBM PC. Bellevue, WA: Microsoft Press, 1985.

Young, M.: Performance Programming Under MS-DOS. Alameda, CA: SYBEX, Inc., 1987.
Recommended.

Let’s C

6 Introduction

Let’s C

N

e

Installing and Running Let’s C

This section describes how to install Let’s C onto your computer, and how to use it to compile
simple programs.

Installing Let’s C
Before you can use Let’s C, you must install it on your computer. As Let’s C comes to you, its files
are fitted together to save space on its disks, not to run conveniently. This helps us lower our costs,

to give you Let’s C at the lowest possible price; however, it also means that before you can use the
compiler you must recopy the files into organized groups.

To install Let’s C, you must copy files from the distribution disks onto either a hard disk or, if you
don’t have a hard disk, a set of floppy disks. To make this job easy for you, Let’s C includes the
utility install, which does the copying for you. By running install and answering a few simple
questions, you can build a working copy of Let’s C on your system in a few minutes.

If you have a hard disk, use the directions in the section Installing Let’s C onto a hard disk. If you
do not have a hard disk, skip below to the section Installing Let’s C onto a floppy-disk system, and
follow the directions there.

Installing Let’s C onto a hard disk

To begin, log into drive C on your system. You can do so by typing ¢ at the MS-DOS prompt. On
nearly all computers, drive C is the hard disk.

Now, insert Let’s C’s distribution disk 1 into floppy drive A and type the following command:
a:install

In a moment, install will begin to work. It will print some information on your screen, and then ask
you the following question:

Do you have a hard disk?
Type ‘y’, for “yes”.
install will then ask you:
Do you wish to install all the files?
Answer ‘y’.
install will now ask you in which directories you wish to install the files, as follows:

Where do you want the executabl e prograns?
Where do you want the header files?

Where do you want the libraries?

Where do you want the sanple prograns?
Where do you want the source files?

Where do you want the tenporary files?

After each question, type <return>, which signifies the default setting. Later, you may wish to re-
install Let’s C into other directories, but you should use the default settings until you gain some
familiarity with Let’s C.

8 Installing and Running

install will now copy the files from the distribution disk onto your hard disk. Depending on how
fast your system is and how fast your hard disk is, this can take from five to 15 minutes. When all
the files from one disk are copied, install will ask for the next disk, until all files are copied.

When install exits, it will print some information on the screen, and then an instruction of the form:
set CCHEAD=@:\Ilib\ccargs

Copy down this instruction. You should then write this instruction into the file autoexec.bat on
your MS-DOS boot disk. This instruction tells Let’s C where you have stored all of its components,
so it can find everything correctly. This will be discussed below, in the section entitled Setting your
computer’s environment.

Once all the files are copied, place your copy of the MS-DOS disk into the floppy disk drive. If you
have version 3.2 of MS-DOS, you have two MS-DOS disks; insert the disk labelled “supplemental
programs”. Now, type the command:

copy a:link.exe \bin

This copies the MS-DOS linker MS-LINK into directory \bin on your hard disk. Let’s C uses MS-
LINK to link its executable files, so MS-LINK must be copied into a directory where Let’s C can find
it. If you did not use the default directory names, copy link.exe into the directory where you stored
Let’s C’s executable files.

That's all there is to it. Let’s C is now installed on your hard disk. Now, skip below to the section
entitled Setting your computer’s environment. This will tell you how to set the environment, so
Let’s C can work efficiently.

Installing Let’s C onto a floppy-disk system

Let’s C is too large to fit onto a single floppy disk. Therefore, if your system does not have a hard
disk you must install Let’s C onto a set of seven floppy disks, as follows:

Disk 1 The shell disk. This disk holds MWS, the Mark Williams shell. You will use it only to
boot MWS, then put it away.

Disk 2 The compiler disk for standard-sized programs. You should use this disk to compile
programs that are of normal size and complexity. This disk holds the compiler
controller cc, the phases of compilation, the MicroEMACS screen editor, and other
tools used during compilation.

Disk 3 The compiler disk for unusually large programs. If you have written a program thatis
unusually large or complex, and it will not compile correctly with disk 2, use disk 3
instead. This disk has all of the files that appear on disk 2, plus LARGE-model
versions of the compiler phases ec0 and cc2.

Disk 4 This disk holds the SMALL-model libraries. You will need to copy MS-LINK onto this
disk.

Disk 5 This disk holds the LARGE-model libraries. You will also need to copy MS-LINK onto
this disk.

Disk 6 This disk holds the Let’s C commands and utilities. For a fuller description of the

commands, see the Lexicon entry for commands.

Disk 7 This disk holds the sample programs and source code that comes with Let’s C. This
includes the full source code for the MicroEMACS screen editor.

To begin, format eight new floppy disks. Label them respectively as follows:

Let’s C

Installing and Running 9

shel

normal conpil er

conpi l er for |arge prograns
SMALL- nodel |ibraries
LARGE- nodel libraries
commands

source code and sanpl es

NookwNE

Now, at the MS-DOS prompt, type B:. This will log into drive B on your machine. Insert Let’s C’s
distribution disk 1 into drive A; type the following command:

arinstall
In a moment, install will begin to execute, and will print some information on your screen. It will
then ask you this question:

Do you have a hard disk?
Answer ‘1, for “no”.

install will then ask:
Do you wish to install all of the files?
Type ‘y’, for “yes”.
install will now ask you in which directories you wish to install the files, as follows:

Where do you want the executabl e prograns?
Where do you want the header files?

Where do you want the libraries?

Were do you want the sanple prograns?
Where do you want the source files?

Where do you want the tenporary files?

After each question, type <return>, which accepts the default setting. Later, you may wish to re-
install Let’s C into other directories, but you should use the default settings until you gain some
familiarity with Let’s C.

install will now tell you:
Insert the shell disk into drive B.

Insert the formatted floppy disk that you labelled “shell” into drive B. install will copy the
appropriate files onto it. When install needs a new source disk, it will prompt you for it.

install will go through this procedure for each of the seven floppy disks that you will be building. It
will prompt you when to change disks, and tell you which disk to insert into drive A or drive B.

When install exits, it will print some information on the screen, and then an instruction of the form:
set CCHEAD=@: \ ccargs

Copy down this instruction. You should then edit this instruction into the file autoexec.bat on
your MS-DOS boot disk. This instruction tells Let’s C where you have stored all of its components,
so it can find everything correctly. This will be discussed below, in the section entitled Setting your
computer’s environment.

When install has finished, you must do the following for each of the four library disks, disks 3
through 6. First, place your computer’s MS-DOS disk into drive A. If you have MS-DOS version 3.2
or later, your copy of MS-DOS comes on two disks; insert the disk labelled “supplemental programs”
into drive A. Then, place disk 4 (which holds the SMALL-model libraries) into drive B. Type the
following command:

Let’s C

10 Installing and Running

copy a:link.exe b:\bin

This command will copy the MS-DOS linker MS-LINK into directory \bin on your library disk.
Let’'s C uses MS-LINK to link the executable files it creates, so MS-LINK must be copied into a
directory where Let’s C can find it.

Repeat this procedure for disk 5.
That is all there is to it: Let’s C is now installed on your computer.

When you are finished, you may wish to recopy your installed disks, to save yourself the trouble of
having to reinstall should something happen to your working copy.

Now, read the following section Setting your computer’s environment, which tells you how to set your
computer’s environment so you can use Let’s C.

Re-installing a portion of Let’s C
If you wish, you can re-install just a portion of the compiler. When install asks
Do you wish to install all of the files?

answer ‘n’. install will then prompt you for which portion, or portions, of Let’'s C you wish to
install, and will then install it for you.

Setting your computer’s environment

As you have probably noticed by now, Let’s C is not just one program: it is a collection of more than
100 files and programs, which together form one of the most sophisticated C programming systems
available at any price. Despite its complexity, Let’s C is designed to work smoothly, and transform
your source code into an executable file in the shortest possible time.

For Let’s C to work at peak efficiency, however, you should pay some attention to your computer’s
environment. The environment is a set of variables that are available to all of the programs run on
your computer. By setting the environment properly, you will help Let’s C find all of its programs
quickly to speed your work.

Setting the PATH

When you installed Let’s C, all of its commands were copied into a directory called \bin. When you
type a command into MS-DOS, MS-DOS looks for it in the directories named in the environmental
variable PATH. To ensure that MS-DOS can find Let’s C’'s commands you must set the PATH so
that it names the directory \bin.

To set the PATH, use the MS-DOS command path. For example, if you want keep your executable
files in the directories bin and mwe, type:

PATH=C: \ BI N; C: \ M\AC
If your computer does not have a hard disk, use the following form of the path command:
PATH=A: \ BI N; A\ MAC; B: \ BI N; B: \ MAC

This tells MS-DOS to look for cc in the directories bin and mwe on both of your floppy disk drives.
With the PATH set to this configuration, it does not matter which disk drive holds your compiler
disk when you work: MS-DOS will find cc in either drive automatically.

When the PATH is set properly, you should copy the path command you used into the file
autoexec.bat, on your computer’s boot disk. Then, the PATH will be set automatically whenever
you boot your computer.

Let’s C

Installing and Running 11

Finding the ccargs file

When you installed Let’s C onto your computer, the program install created a file called ccargs.
This file contains the names of all of the directories in which install stored the elements of Let’s C.

When you compile a program, Let’s C reads ccargs and uses its entries to find all of the files it
needs. If you have a floppy-disk system, install wrote ccargs into directory a:\ on disk 2 (the
compiler disk). If you have a hard disk, install wrote ccargs into the directory in which you
installed the Let’s C libraries (the default is e:\lib\).

You must set an additional environmental variable so that Let’s C can locate ccargs when you
compile a program: the environmental variable CCHEAD. As noted above, when install finished
installing Let’s C on your system, it printed on your screen an instruction of the form

set CCHEAD=@lirectory\ ccar gs

where directory is the name of the directory into which it wrote ccargs. For example, if you have a
floppy-disk system, install printed the message

set CCHEAD=@: \ ccargs

whereas if you have a hard disk, it printed the message
set CCHEAD=@:\Ilib\ccargs

Be sure that you copy this instruction into the file autoexec.bat on your MS-DOS boot disk. Once
you have done this, reboot your system; this ensures that CCHEAD is set for your system.

That’'s all there is to it. When you copy the set commands for PATH and CCHEAD into
autoexec.bat and reboot your system, you have set Let’s C’s environment. Let’s C is now ready to
start working for you.

Editing ccargs

ccargs correctly describes where everything is stored on your computer. The default ccargs for a
hard disk reads as follows:

-xcc:\bin\
-xlc:\1lib\
-xtc:\tmp\
-1c:\include\

The default ccargs for a floppy disk system reads as follows:

-xca: \ bi n\
-xla:\lib\
-la:\include\
-Z

If you later decide to move part of Let’s C from one directory to another, you must edit ccargs to
reflect this change, or Let’s C will not know where you moved Let’s C. You should edit ccargs as
follows:

Executable files
If you move the executable files from where you installed them, change the line in ccargs that
begins -xc. For example, if you have a floppy disk system and you move the executable files
from directory \bin to directory \mwe, change the line

-xca: \ bi n\

to read

Let’s C

12 Installing and Running

-xca: \ mwe\

Libraries
If you move the libraries from where you installed them, you should change the line in ccargs
that begins -x1. For example, if you have a hard disk and you move the libraries from
directory \lib to directory \library, change the line

-xbe:\Vliby
to read
-xlc:\library\
Header files
If you move the header files from where you installed them, you should change the line in

ccargs that begins -I. For example, if you have a floppy disk system and you move the header
files from directory \include to directory \header, change the line

-la:\incl ude\
to read
-la:\ header\
Temporary files
Finally, ccargs tells Let’s C where to write your temporary files. This is set only in the
version of ccargs that is used with a hard disk. If you decide to change where Let’s C writes

its temporary files, you must edit the line in ccargs that begins -xt. For example, if you want
to write temporary files into directory nowhere, change the line

-xtc:\tmp\
to read
- xt c: \ nowher e\
If you need more information on where Let’s C looks for files, or how Let’s C works in general, look

at the Lexicon entry for cc. This will describe in some detail how Let’s C works, and also describe
other ways that you can change how Let’s C looks for its files.

Using MWS, the Let’s C command interface

Let’s C includes an interface program, MWS, which is designed to help you develop programs more
quickly and efficiently. MWS, which stands for “Mark Williams shell”, accelerates the speed with
which your programs work, and it has a display interface that helps you build commands with ease.

To invoke MWS, simply do the following. If you do not have a hard disk, insert disk 1 (the “shell”
disk) into disk drive A. Then, at the MS-DOS prompt type:

MAB

In a moment, the screen will clear and the MWS main menu will appear:

Let’s C

Installing and Running 13

Let’s C Version 4.0 .
(c) 1987 Mark W lians Conpany, Chicago
oo o - +
ile

Rugp

Debug

Vake

Buffers

Qui ck DGCS

I'DOS Escape

New di rectory
o m e e e o - o +
<return> sel ect <F1> nore help
<-> use arrow keys <esc> exit nmenu

As you can see, the entry for Edit on the menu is marked by a reverse-video band, called the cursor
bar. In this tutorial, the cursor bar will be shown as shading. The cursor bar indicates the entry in
the main menu you wish to select. Try pressing the down-arrow key (!) on the keypad. The cursor
bar now covers the entry Compile. Each selection will be discussed in detail in the following sub-
sections.

Note that if you do not want to bother with moving the cursor bar, you can pick an option simply by
typing its first letter. For example, you can begin to edit a file simply by typing ‘e’.

At the bottom of the screen are listed the commands that you can give MWS. As noted above,
pressing the arrow keys moves the cursor bar up and down the menu. Pressing <return> tells MWS
to select the menu entry that the cursor bar is highlighting. Pressing <esc> exits. If you are in a
sub-menu, pressing <esc> returns you to the previous menu; whereas if you are already in the main
MWS menu, pressing <esc> exits you from MWS altogether, and returns you to MS-DOS.

Finally, pressing the function key <F1> prints a help message. Each screen has its own help
message, to guide you through MWS even if you do not have this manual available.

Editing a file

MWS includes a full-featured screen editor, called MicroEMACS. An editor is a program that lets
you type text into your computer, store it on disk, then recall it from disk and change it. You will
use an editor to type all of the programs that you compile with Let’s C.

MicroEMACS allows you to divide the screen into sections, called windows, and display and edit a
different file in each one. It has a full search-and-replace function, allows you to define keyboard
macros, and has a large set of commands for killing and moving text. Also, MicroEMACS has a full
help function for C programming. Should you need information about any macro or library function
that is included with Let’s C, all you need to do is move the text cursor over that word and press a
special combination of keys; MicroEMACS will then open a window and display information about
that macro or function.

Let’s C

14 Installing and Running

Let’s C includes both a compiled, binary version of MicroEMACS that is ready to use, and the full
source code. We invite you to examine the code, modify it, and enhance MicroEMACS to suit your
preferences.

For a list of the MicroEMACS commands, see the Lexicon entry for me, the MicroEMACS command.
A following section of this introduction gives a full tutorial on MicroEMACS. In the meantime,
however, you can begin to use MicroEMACS by learning a half-dozen or so commands.

MWS lets you access the MicroEMACS screen directly through its display interface. To edit a file
through MWS, do the following. First, if you do not have a hard disk, remove the “shell” floppy disk
from drive A and put it aside. Place disk 2, the “compiler” disk, into drive A. Then, press the up-
arrow key (1) until the cursor bar covers the entry Edit. Press <return>. This selects the edit
feature; that is, it tells MWS that you wish to use the MicroEMACS editor to edit a file.

In a moment, MWS redraws the screen as follows:

Edi t
B e el
| e
B e el
[ool
Execut e
Files
New Fil e
[ool
<return> sel ect <F1> nore help
<-> use arrow keys <esc> exit nenu

The cursor bar is now positioned over the selection Execute. Press the | key two times, so the
cursor bar is positioned over New File. Press <return>. The menu disappears, and MWS prompts
you to enter the name of the file you wish to create.

Type hello.c. Note that the name hello.c appears in the long box at the top of the screen; this box
is called the command box, because it is where MWS builds your command. Note, too, that the
cursor bar has returned to the entry Execute on the menu.

Now press <return>. This tells MWS to execute the command that is displayed in the command
box. The screen again clears: you have just invoked the MicroEMACS editor to edit the file hello.c.

Now, type the following text, as it is shown here. If you make a mistake, simply backspace over it
and type it correctly; the backspace key will wrap around lines:

mai n()

printf("hello, world\n");
}

When you have finished, save the file by typing <etrl-X><ctrl-S> (that is, hold down the control key
and type X', then hold down the control key and type ‘S’). MicroEMACS will tell you how many lines
of text it just saved. Exit from the editor by typing <ctrl-X><ctrl-C>.

Let’s C

Installing and Running 15

When you have exited from MicroEMACS, MWS redisplays the edit menu, with the cursor bar
positioned over Execute. Note that MWS remembers the last command you built for each of the
commands on the main menu (that is, the last Edit command, the last Compile command, and so
on). If you do not wish to build a new command, you can re-execute the last command you built by
simply pressing <return>.

Now, type <return>. MWS will invoke MicroEMACS with the last file you edited, hello.c. The text of
the file you just typed is now displayed on the screen. Try changing the word hello to Hello, as
follows: First, type <ctrl-N> That moves you to the next line. (The command <etrl-P> would move
you to the previous line, if there were one.) Now, type the command <ctrl-F>. As you can see, the
cursor moved forward one space. Continue to type <ctrl-F> until the cursor is located over the
letter ‘h’ in hello. If you overshoot the character, move the cursor backwards by typing <ctrl-B>.

If you prefer, you can also move the cursor by pressing the arrow keys.

When the cursor is correctly positioned, delete the ‘h’ by typing the delete command <ctrl-D>; then
type a capital ‘H’ to take its place.

With these few commands, you can load files into memory, edit them, create new files, save them to
disk, and exit. This just gives you a sample of what MicroEMACS can do, but it is enough so that
you can begin to do real work.

Now, again save the file by typing <ctrl-X><ctrl-S>, and exit from MicroEMACS by typing <ctrl-
X><ctrl-C>. Again, the screen shows the Edit screen. Type <esc>; as shown at the bottom of the
screen, this will exit you from the Edit menu, and so return you to the main menu.

Just as a reminder, the following table gives the MicroEMACS commands presented above:

<ctrl-N>or | Move cursor to the next line

<ctrl-P> or t Move cursor to the previous line
<ctrl-F> or - Move cursor forward one character
<ctrl-B> or — Move cursor backward one character
<ctrl-D> Delete a character

<ctrl-X><ctrl-S> Save the edited file

<ctrl-X><ctrl-C> Exit from MicroEMACS

Simple compiling

Now that you have prepared a C program with the MicroEMACS editor, the next step is to compile it
into executable form.

To compile a program under Let’s C, you must use the command cc. MWS’s display interface lets
you easily construct commands for cc to execute. To see how this works, press the | key once, so
the cursor bar is positioned over Compile. Press <return>, to select this option.

MWS redraws the screen so it appears as follows:

Let’s C

16 Installing and Running

Conpi |l e
T +
| cc
o +
Fomm e o - +

Execut e
tions
Files
Fomm e o - +
<return> sel ect <F1> nore help
<-> use arrow keys <esc> exit nenu

The cursor bar is positioned over Execute. Press the | key, to move the cursor bar to Options;
then press <return>. The screen will be redrawn to appear as follows:

Conpi |l e
+ oo oo oo oo oo oo —=—=—=—+
| cc <fil enanme>
+ oo oo oo oo oo oo —=—=—=—+
+====+4
-A Automatical ly invoke editor

-C Conpil e only, do not link
-d Def 1 ne synbol

-e Expand preprocessor out put
-f Fl oati ng poi nt out put

- I nclude directory

-k Keep tenporary files

-1 Li brary options

-m M ni - make

-n No extra libraries

-0 Qutput file

-u Undef i ne synbol

-V Vari ant options
+====+
<return> sel ect <backspace> de-sel ect <F1> nore help
<-> use arrow keys <end> end options <esc> exit menu

cc’s options cannot all fit onto one screen; if you press the | key until it is at the bottom of the
menu, you can then scroll through the options that are not initially shown on the screen. The
options with ellipses “...” after their descriptions have a menu of sub-options associated with them.

For the present exercise, type the | key until the cursor bar is positioned over the entry -v, for
variant options. Press <return>. A second set of options appears on the screen, which now appears
as follows:

Let’s C

Installing and Running 17

Conpi |l e
+ oo oo oo oo oo oo —=—=—=—+
| cc <fil enanme> |
+ oo oo oo oo oo oo —=—=—=—+
+====+ Ff=========4
-A Automatically invoke editor ver bose | verbose out put
-C Compil e only, do not link 80186 CGenerate ...
-d Def 1 ne symnbol asm Pr oduce ...
-e Expand preprocessor out put chest Allow ...
-f Fl oati ng poi nt out put csd Cenerate ...
- I nclude directory f1 oat Produce ...
-k Keep tenporary files | arge Cenerate ...
-1 Li brary options ... i nes Cenerate ...
-m M ni - nake ndp Pr oduce ...
-n No extra libraries ... noopt Turn off ...
-0 Qutput file pstr Put strings ...
-u Undef i ne synbol qui et Suppress ...
-V Variant options ... sbook Strict K&R ...
+====+ Ff=========4
<return> sel ect <backspace> de-sel ect <F1> nore help
<-> use arrow keys <end> end options <esc> exit menu

The cursor bar is over the verbose option. Type <return>; this selects the verbose option, which
tells you what steps the compiler is executing as it compiles. The command box now reads:

cc -V <fil ename>

Type <end>. The variant options box disappears, and the cursor is repositioned over the -v option.
Type <end> again. The options box has disappeared, and you are back in the Compile menu.

Now, press the | key, to position the cursor bar over Files. Press <return>. In a moment, two
boxes will appear. One displays all of the files that have the suffix .c, and the other displays all of
the files that have the suffix .obj, if any. To move between the boxes, press <tab>, as shown at the
bottom of the screen. Press the | until the cursor bar is positioned over hello.c. Press <return>.
This completes the construction of the ee command line, as shown in the command box.

Note that you must select a file by moving the cursor bar to its name and pressing return; you
cannot select a file by typing the first character in its name, because more than one file could use
that character.

Press <end> to tell MWS that you have selected all of the files you want. MWS then returns you to
the compile menu, with the cursor bar positioned over Execute. Press <return>, to begin execution
of the command you have built.

Compilation now begins automatically. The switch -V tells cc to describe each step in compilation.

If your computer does not have a hard disk, Let’s C will print the following prompt on your screen
when it comes time to link your program:

Insert floppy disk 3 (SMALL-npdel, i8087-sensing libraries)

Open drive A, remove the compiler disk, and insert floppy disk 3. If your computer does have a hard
disk, you will not need to do this. As noted earlier, when you installed Let’s C, this disk holds the
libraries for SMALL-model programs that sense the presence of the i8087 co-processor. For more
information on how these libraries work, see the Lexicon entries for library, model, and i8087.
When you have inserted this disk, press <return>. Let’s C will now invoke MS-LINK and link your
program.

Let’s C

18 Installing and Running

As you can see, cc guides the program through all phases of compilation, invokes the linker, and
links in all necessary routines from the libraries to produce a file called hello.exe that is ready to
execute.

When compilation is finished, you will be returned to the MWS main menu.

Running a program

The next step is to run the program you just compiled. MWS lets you run any program you have
compiled with Let’s C, or in fact any executable program whatsoever, through its display interface.

If your computer does not have a hard disk, before you begin this step you should open drive A,
remove floppy disk 3 (a libraries disk), and reinsert floppy disk 2 (the compiler disk). If your
computer does have a hard disk, you do not need to do this.

To run hello.exe, which you created when you compiled hello.c, press the | key until the cursor
bar is positioned over Run. Then, press <return> to select this option. The main menu disappears,
and MWS redraws the screen as follows:

Run

Execut e
Ar Purrent S
Files

[e

<return> sel ect <F1> nore help
<-> use arrow keys <esc> exit nenu

As before, you can use the arrow keys to move the cursor bar up and down the menu. If you press
<return> with the cursor positioned over Execute, MWS will re-execute the last command you built,
if any. If your program needs arguments, select the Arguments option, which will prompt you to
enter them. If your command does not take any arguments, simply type <return>.

Press the | key once. The cursor bar is now positioned over Files. Press <return>. MWS draws a
box that holds all executable files in the current directory—that is, all files that have the suffix .exe.
Press the | key until the cursor bar covers hello.exe. Press <return>. As you can see, the
command box now shows hello.exe. Press <esc> to exit from this menu.

You have returned to the Run menu, with the cursor bar over Execute. Press <return>. MWS now
executes the command shown in the command box, hello.exe. It executes, and prints on your
screen hello, world. To return to MWS’s main menu, press any key.

As you can see, it is easy to create, compile, and execute a program through the MWS menu
interface.

Let’s C

Installing and Running 19

Quick DOS and !DOS options

MWS gives you two ways to give commands directly to MS-DOS while still enjoying MWS’s
acceleration of your programs.

To give just one command to MS-DOS, press the | key until the cursor bar is positioned over Quick
DOS. Press <return>. At the bottom of your screen appears the prompt

DOS command:

Type dir. MS-DOS executes dir and prints the contents of the current directory on your screen.
When dir has finished executing, press any key to return to MWS’s main menu.

If you want to give a number of commands directly to MS-DOS, press the | key until the cursor bar
is positioned over !DOS Escape. Press <return>. The main menu again disappears, and your MS-
DOS prompt appears on the screen. MS-DOS is now ready to receive any number of your
commands. If you are familiar with the ec command or MicroEMACS, you can now type these
commands directly to MS-DOS. MWS does not require you to use its display interface, but it will
still accelerate your work.

When you are done working with MS-DOS, type exit. The MS-DOS prompt will disappear, and the
MWS main menu will reappear.

Using the make programming discipline
MWS gives you quick access to make, the Mark Williams programming discipline.

make helps you build large, complex programs. It reads a makefile that you prepare, and follows
the makefile’s descriptions to build your program. If you need more information on make, see the
entry for make in the Lexicon, and see the tutorial on make that appears in section 5 of this
manual. The tutorial also describes in detail how to write a makefile.

To invoke make through MWS, press the | key until the cursor bar covers Make. Type <return>.
The main menu disappears, and the screen appears as follows:

Vake
[s —————
| make
[s —————
[} gt g—g—ry o
Execut e
tions
cros
Targets
[et
<return> sel ect <F1> nore help
<-> use arrow keys <esc> exit nmenu

The cursor bar is over the top entry in the menu, Execute. MWS remembers the last command you
gave make, if any; so, if you press <return> MWS will automatically execute the last make

Let’s C

20 Installing and Running

command you issued.

If you wish to construct a new make command, the first step is to change make’s default macros so
that make will produce the sort of executable program that you want. Note that this step often is
not necessary. For more information on make’s macros and the files in which they are kept, see the
Lexicon entry for make; also see the make tutorial.

To redefine a macro, press the | key twice, to move the cursor bar to Macros; then press <return>.
MWS will prompt you to enter the new macro; what you type will then be used instead of any macro
that has the same name.

Likewise, should you wish to change the default targets that make constructs, press the | key until
the cursor bar covers Targets; then press <return>. MWS will prompt you to type the new target or
targets that you want to build. For more information on what a target is and how make builds one,
see the tutorial for make, or see the Lexicon entry for make.

The next step is to construct the make command line. Press the t key to move the cursor bar to
Options. Press <return>. The screen is redrawn to offer you the options for make, as follows:

Make

d Debug) Verbose out put

f ternate make filenane _

[I gnore error returns and continue

n Show conmands but do not execute

-p Print macro and target descriptions
o} Query target status

r Do not use built-in rules

S Silent running

-t Touch all targets to current time
===+
<return> sel ect <backspace> de-sel ect <F1> nore help
<-> use arrow keys <end> end options <esc> exit menu

To select an option, press the | key until the cursor bar is positioned over it, and then press
<return>. The option will be written into the command box at the top of the screen. Should you
select an option by accident, press <backspace>; the option will be erased from the command box at
the top of the screen. If you select the -f option, MWS will prompt you for the name of the file that
you wish to use in place of makefile. For more information on make’s options, see the entry for
make in the Lexicon, or see the tutorial on make later in this manual.

When you have selected all of the options that you want, press <end>. You will be returned to the
main Make menu, and the cursor bar will be positioned over Execute. Press <return>; MWS will
then execute the make command that you have built, which appears in the command box at the top
of the screen. make will look for makefile, read it, and begin to build your program. When make is
finished, you will be returned to the MWS main menu.

Let’s C

Installing and Running 21

Using csd, the C source debugger

MWS also helps you to invoke csd, the Mark Williams C source debugger. esd is an invaluable tool
to a programmer, for it allows you to debug programs while using your C source code, instead of
having to use listings in assembly language. Note that esd is not included with Let’s C, but it is
available as a separate product for use with Let’s C.

If your computer does not have a hard disk, you must insert the disk that came with your copy of
csd into drive A before you can begin to work with esd.

To invoke cs d,press the | key until the cursor bar is positioned over Debug. Press <return>. MWS
redraws its screen as follows:

Debug
+:::::::-:::::::::::::::::::::::::::::::::+
| csd <fil enane>
B e el
[ool
Execut e
Opti ons
Argument s
Files
[e —t—r
<return> sel ect <F1> nore help
<> use arrow keys <esc> exit nenu

If you wish to construct a new esd command, press the | key once, to position the cursor bar over
Options; then type <return> MWS will redraw its screen to display the available options, as
follows:

Let’s C

22 Installing and Running

-D Data segnent size

G Graphics node for col or nonitor
-H Help files live here

R Menory nodel override

S Source files live here

-T Source files live here
+====+
<return> sel ect <backspace> de-sel ect <F1> nore help
<> use arrow keys <end> end options <esc> exit menu

If you select either -H or -S, MWS will prompt you to enter the name of the directory where you have
stored these files. For more information on esd’s options, see your csd manual.

As before, if you select an option by accident, press <backspace>. This will erase the option from
the command box at the top of your screen. When you have selected all of the options that you
want, press <end>. The list of options will disappear from the screen, and the original Debug menu
reappear.

To complete your esd command, press the | key twice; this moves the cursor bar to Files. Press
<return>. MWS will then draw a box that contains all of the executable files in the current
directory. You can select one by moving the cursor bar to it, and then pressing <return>.

Remember that to debug a file with esd, it must first have been compiled with the -VCSD option to
the cc command line. This writes special debugging information into the executable file.

When you have selected the program you wish to debug and have pressed <return>, MWS will write
the file name into the command box, and return you to the Debug menu; the cursor bar is
positioned over Execute. Press <return> to invoke esd and execute the command you have just
built. You can then debug your program with esd just as it is described in the esd manual.

When you have finished your debugging session and have exited from csd, you will return to the
MWS main menu. MWS will then be ready help you build another command.

Resetting the buffers

As noted earlier, MWS not only gives you an easy way to build commands for Let’s C: it also
contains an accelerator that speeds up your software. The accelerator uses a buffering system that
reduces the number of times that programs need to read the disk drive. Because reading the disk
drive is the slowest part of any program, reducing the number of times the disk must be read
increases the speed with which the program operates.

At times, you may need to change how MWS performs its buffering. To do so, use the Buffers
command on MWS’s main menu.

Let’s C

Installing and Running 23

To begin, press the | key until the cursor bar is positioned at the entry Buffers. Press <return>.
MWS will draw the Buffers screen, as follows:

Buf fers
[oo el
| Loaded * 128K T
[oo el
f e
Load/ Unl oad
Di sk Drives
Buffer Size
Wite Option
Save Dat a
Change
[e
<return> sel ect <F1> nore help
<-> use arrow keys <esc> exit nenu

Each command is described below.

Load/Unload
This tells MWS to load or unload the accelerator. Note that this command is a toggle: if the
accelerator is unloaded, then pressing <return> tells MWS to load it, and vice-versa. Try
pressing <return>. You will see that the entry in the command box will flip from Loaded to
Unloaded.

Note, too, that this command does not take effect immediately. To unload or load the
accelerator, you must exit from MWS and then re-enter it.

Disk Drives
This command tells MWS which disk drives you want accelerated. The default is “**’, which
indicates that all drives are accelerated.

To change the settings, press the | key until the cursor bar is positioned over Disk Drives.
Press <return>. MWS will prompt you for the name of a disk drive. Type A, to indicate that
you want to accelerate disk drive A. Note that the asterisk in the command box has been
replaced with A:. The prompt remains on the screen: if you wish, you can name any
number of disk drives. To end this session, press <return> without typing anything. MWS
will now accelerate only disk drive A:.

Now, re-invoke this command by moving the cursor bar to Disk Drives and pressing
<return>. Type **, and then press <return> twice. MWS has now resumed accelerating all
disk drives.

Buffer Size
The accelerator reserves a portion of memory to buffer what it reads from your disk drives.
By default, the size of its buffer is 128 kilobytes, as shown in the command box. If your
system has limited amounts of memory, you may wish to decrease this amount. On the
other hand, if your system has memory to spare you may wish to increase the size of the
buffer: the larger the buffer is, the more your software will be accelerated.

Let’s C

24 Installing and Running

To change the size of the buffer, press the | key until the cursor bar is positioned over
Buffer Size, and then press <return>. MWS will prompt you for the new buffer size. If you
change your mind and decide to leave the buffer unchanged, simply press <return> without
entering anything.

Note that this command, like the Load/Unload, does not take effect immediately. You must
leave MWS and then re-enter it before you can begin working with a different sized buffer.

Write Option
The MWS accelerator not only speeds up the rate with which your programs read the disk:
it also speeds up the rate at which they write data to the disk.

The accelerator offers you three ways to save your data to the disk: Memory, Timed Save,
and Disk. The Memory option stores all data in memory. No data are written to the disk
until you choose to save them with the Save Data command, which will be described in a
moment. The Disk option writes all data directly to disk, and does not buffer data at all.
Note that the Memory option is faster than the Disk, but not as safe, because an accident
could cause you to lose the data stored in the buffer.

The Timed Save option combines features of the Memory and Disk options. Data are
stored in memory, but they are automatically written to disk every five minutes. Thus, you
have the speed of in-memory storage, plus the safety of saving data to disk. This is the
default option.

To change the write option, press the | key until the cursor bar is over Write Option, and
then press <return>. A menu will appear that displays the three write options. Move the
cursor bar to the one you want and then press <return>. The option you select will be
shown in the command box, and you will be returned to the Buffers menu.

Save Data
This command writes to disk all data that MWS has stored in its buffer. To use it, simply
press the | key until the cursor bar is positioned over Save Data, and then press <return>.
This command has no options: it will simply write the data, and return you to the Buffers
menu.

You should use this command to save your data before you turn off your machine or before
you leave MWS, should you be using the Memory option.

Change Disk
The last command, Change Disk, must be used before you change the floppy disk in a disk
drive that is being accelerated. This command writes to disk all of the data that MWS has
stored in its buffer, and then empties the buffer to make it ready for the new disk.

If you do not use this command before you change a floppy disk, you could lose data. This
bears repeating: You must use this command before you change a floppy disk in a drive that
is being accelerated, or you could lose data.

To use this command, simply press the | key until the cursor bar is positioned over Change
Disk. Press <return>. Any saved data will be written out, the buffer will be emptied, and
MWS will be ready to accept a new floppy disk.

To return to the main MWS menu, press <esc>.

As you can see, MWS’s accelerator is easy to use. With a few simple commands, you can alter its
settings to suit your preferences. MWS will remember these settings, and use them automatically in
the future.

Let’s C

Installing and Running 25

Where to go from here

The following bibliography lists reference books on C and on the i8086 processor. This list includes
both primers and references for advanced programmers. This list is not exhaustive, but you will
find it helpful should you need detailed information on a topic.

Section 2, C for Beginners, introduces the C language to users who are new to C. If you are
experienced with C you may wish to skip this section, but if you are a novice at C programming you
may find it helpful.

After C for Beginners is a section on Advanced Compiling. This discusses many of the compiler’s
options that were just mentioned here. It also discusses some technical issues on the i8086
microprocessor that both experienced programmers and novices will find helpful.

Finally, if you need more information on any command, library function, C keyword, or technical
term, check the Lexicon.

Let’s C

26 Installing and Running

Let’s C

C for Beginners

In the last few years, C has grown from a relatively obscure language used by a handful of
programmers at universities, to a “must know” language throughout the computer industry. C has
become known as a language that is powerful, fast, and efficient.

This chapter briefly introduces C. It is in two parts. Part 1 describes what a programming language
is, and gives the history of the C programming language. This section also introduces some
concepts basic to C, such as structured programming, pointer, and operator. Part 2 walks through a
C programming session. It emphasizes how a C programmer deals with a real problem, and
demonstrates some of the aspects of the language.

This chapter is not designed to teach you the entire C language. It will introduce you to C, so you
can read the rest of this manual with some understanding. We urge you to look up individual
topics of C programming in the Lexicon, and especially to study the example programs given there.

Programming languages and C

Before beginning with C, it is worthwhile to review how a microprocessor and a computer language
work.

A microprocessor is the part of your computer that actually computes. Built into it is a group of
instructions. Each instruction tells the microprocessor to perform a task; for example, one
instruction adds two numbers together, another stores the result of an arithmetic operation in
memory, and a third copies data from one point in memory to another.

Together, a microprocessor’s instructions form its instruction set. The instruction set is, in effect,
the microprocessor’s “native language”.

A microprocessor also contains areas of very fast storage, called registers. The registers are
essential to arithmetic and data handling within the microprocessor. How many registers a
microprocessor has, and how they are designed, help to determine how much memory the
microprocessor can read and write, or address, and how the microprocessor handles data.

A computer language, as the name implies, lets a human being use the microprocessor’s instruction
set. The lowest level language is called “assembly language”. In assembly language, the
programmer calls instructions directly from the microcomputer’s instruction set, and manipulates
the registers within the microprocessor. To write programs in assembly language, a programmer
must know both the microprocessor’s instruction set and the configuration of its registers.

Assembly and high-level languages

With assembly language, the programmer can tailor the program specifically to the microprocessor.
However, because each microprocessor has a unique instruction set and configuration of registers, a
program written in one microprocessor’s assembly language cannot be run on another
microprocessor. For example, no program written in the assembly language for the Motorola 68000
microprocessor can be run on the IBM PC or any PC-compatible computer. The program must be
entirely rewritten in the assembly language for the Intel 8086 microprocessor, which is difficult and
time consuming.

A high-level language helps programmers to avoid these problems. The programmer does not need
to know the microprocessor in detail; instead of specific microprocessor instructions, he writes a set
of logical constructions. These constructions are then handed to another program, which translates
them into the instructions and registers calls used by a specific microprocessor. In theory, a

27

28 C for Beginners

program written in a high-level language can be run on any microprocessor for which someone has
written a translation program.

A high-level language allows the programmer to concentrate on the task being executed, rather than
on the details of registers and instructions. This means that programs can be written more quickly
than in assembly language, and can be maintained more easily.

So, what is C?

C was invented in the mid-1970s by Dennis Ritchie, a programmer at Bell Laboratories. Ritchie
created C specifically to re-write the UNIX operating system from PDP-11 assembly language.
Ritchie designed C to have the power, speed, and flexibility of assembly language, but the portability
of high-level languages.

In 1978, Ritchie and Brian W. Kernighan published The C Programming Language, which describes
and defines the C language. The C Programming Language is the “bible” of C, a standard work to
which all programmers can refer when writing their programs.

Because C is modeled after assembly language, it has been called a “medium-level” language. The
programmer doesn’t have to worry about specific registers or specific instructions, but he can use all
of the power of the computer almost as directly as he can with assembly language. The price is that
a C program often can be terse and difficult to understand.

Also, because C was written by experienced programmers for experienced programmers, it makes
little effort to protect a programmer from himself. A programmer can easily write a C program that
is legal and compiles correctly but crashes the system. Also, C’s punctuation marks, or “operators”,
closely resemble each other. Thus, a mistake in typing can create a legal program that compiles
correctly but behaves very differently from what you expect.

Structured programming

C is a structured language. This means that a C program is assembled from a number of sub-
programs, or functions, each of which performs a discrete task. If this concept is difficult to grasp,
consider the following example.

Suppose you want to turn a file of text into upper-case letters and print it on the screen. This job
seems simple, but a program to do it must perform five tasks:

1. Accept the name of the file to open.

2. Open the file so it can be read, in much the same way that you must open a book before
you can read it.

3. Read the text from the file.

4. Turn what is read into upper-case letters.

5. Finally, print the transformed text onto the screen.
A good program will also perform the following tasks:

1. Check that the file requested actually exists.

2. Check that the file requested is actually a text file rather than a file of binary information;
the latter makes very little sense when printed on the screen.

3. Close the program neatly when the work is finished.

Stop processing and print an error message if a problem occurs.

Let’s C

C for Beginners 29

A structured language like C allows you to write a separate function for each of these tasks.

A structured programming language offers two major advantages over a non-structured language.
First, it is easier to debug a function than an entire program because the function can be unplugged
from the program as a whole, made to work correctly, and then plugged back in again. Second,
once a function works, it can be used again and again in different programs. This allows you to
create libraries of reliable functions that you can pull off the shelf whenever you need them.

The functions within a program communicate by passing values to each other. The value being
passed can be an integer, a character, or—most commonly—an address within memory where a
function can find data to manipulate. This passing of addresses, or pointers, is the most efficient
way to manipulate data because by receiving one number, a function can find its way to a large
amount of data. This speeds up a program’s execution.

C adds some extra tools to help you construct programs. To begin, C allows you to store functions
in compiled form. These precompiled functions are added only when the program is finally loaded
into memory; this spares you the trouble of having to recompile the same code again and again.
Second, C adds a preprocessor that expands definitions, or macros, and pulls in special material
stored in header files. This allows you to store often-used definitions in one file and use them just
by adding one line to your program.

Compiling a C program

When Let’s C compiles a C program, it invokes a number of sub-programs, or phases, each of which
performs part of the work of turning your file of C code into an executable program. The phases are
as follows:

cpp The preprocessor. This reads the file of source code, adds any header files that you have
requested, and expands any user-defined macros in the program.

ccO The preprocessed file is then handed to cc0, the parser, which examines the program to see
that it is written in legal C and translates it into a logical structure, or tree.

ccl The output of the parser is then handed to ccl, the code generator, which translates the
logical structure created by the parser into machine instructions.

cc2 The output of the code generator is then handed to ce2, the optimizer, which examines the
code, eliminates redundant instructions, and then writes the object module file. The output
of cec2 is the relocatable object module, which always has the suffix .obj.

The relocatable object module is handed to MS-LINK, the linker, which opens the libraries and adds
the library functions to create the executable program. What the linker does will be explained in
more detail below.

This sounds complicated, and it is; for that reason, Let’s C includes a command, called cc, that
guides a program through the compilation process automatically. For example, to compile the
program test.c with Let’s C, all you have to do is type:

cc test.c

or use the MWS display interface, as described in section 1, Tutorial Introduction. cc takes care of
the rest.

Writing a C program

As noted above, a C program consists of a bundle of sub-programs, or functions, which link together
to perform the task you want done. Every C program must have at least one function that is called
main. This is the main function; when the computer reads this, it knows that it must begin to
execute the program. All other functions are subordinate to main. When the main function is
finished, the program is over.

Let’s C

30 C for Beginners

Here is a simple C program; all it does is print the message “Hello, world!” on the screen:
mai n()
printf("Hello, world!\n");
}

As you can see, this program begins with the word main. The program begins to work at this point.
The parentheses after main enclose all of the arguments to main — or would, if this program’s main
took any. An argument is an item of information that a function uses in its work.

The braces {" and }’ enclose all the material that is subsidiary to main.

The word “printf” calls a function called printf. This function performs formatted printing. The line
of characters (or “string”) Hello, world! is the argument to printf: this argument is what printf is to
print.

The characters ‘\n’ stand for a carriage return; this ensures that when the program is finished, the
cursor is not left fixed in the middle of the screen. Finally, the semicolon ;" at the end of the
command indicates that the command is finished.

One point to remember is that printf is not part of the C language. Rather, it is a _function that was
written by Mark Williams Company, then compiled and stored in a library for later use. This means
that you do not have to re-invent a formatted printing function to perform this simple task: all you
have to do is call the one that Mark Williams Company has written for you.

Although most C programs are more complicated than this example, every C program has the same
elements: a function called main, which marks where exection begins and ends; braces that fence
off blocks of code; functions that are called from libraries; and data passed to functions in the form
of arguments.

A sample C programming session

This section walks you through a C programming session. It shows how you can go about planning
and writing a program in C.

C allows you to be precise in your programming, which should make you a stronger programmer.
Be careful, however, because C does exactly what you tell it to do: if you make a mistake, you can
produce a legal C program that does very unexpected things.

Designing a program

Most programmers prefer to work on a program that does something fun or useful. Therefore, we
will write something useful: a version of the UNIX utility more. It will do the following:

1. Open a text file on disk.
2. Display its contents in 23-line portions (one full screen).

3. After a portion is displayed, wait to see if the user wants to see another portion. If the user
presses the space bar, display another portion; if he types anything else, exit.

4. Exit automatically when the end of file is reached.

As you can see, the first step in writing a program is to write down what the program is to do, in as
much detail as you can manage, and in complete sentences.

Now, invoke the MicroEMACS editor and get ready to type in the program. Use the command
me nore.c

or use the MWS display interface as described in section 1 of this manual. Note that the suffix .c on
the file name indicates that this is a file of C code. If you do not use this suffix, Let’s C will not

Let’s C

C for Beginners 31

recognize tnat tnis 1s a 1i€ o1 L code, anda will reruse to compile 1t.

Begin by inserting a description of the program into the top of the file in the form of a comment.
When a C compiler sees the symbol ‘/*, it throws away everything it reads until it sees the symbol
*/’. This lets you insert text into your program to explain what the program does.

Now, type the following:

/
Truncated version of the "nmore’ wutility.
Open a file, print out 23 lines, wait.
If user types <space>,
print another 23 |ines,
if user types any other key, exit.

Exit when ECF is read.

/

E N A

Save what you have typed by pressing <ctrl-X> and then <ctrl-S>. Now, anyone, including you,
who looks at this program will know exactly what it is meant to do.

The main function

As described earlier, the C language permits structured programming. This means that you can
break your program into a group of discrete functions, each of which performs one task. Each
function can be perfected by itself, and then used again and again when you need to execute its
task. C requires, however, that you signal which function is the main function, the one that
controls the operation of the other functions; thus, each C program must have a function called
main().

Now, add main() to your program. Type the code that is shaded, below:

/*

* Truncated version of the 'nore’ utility.
* Open a file, print out 23 lines, wait.

I f user types <space>,

print another 23 lines,

if user types any other key, exit.

Exit when ECF is read.

/

L

mai n()

}

The parentheses “()” show that main is a function; if main were to take any arguments, they would
be named between the parentheses. The braces “{}” delimit all code that is subordinate to main;
this will be explained in more detail below.

Note that the shortest legal C program is main(){}. This program doesn’t do anything when you run
it, but it will compile correctly and generate an executable file.

Now, try compiling the program. Save your text by typing <ctrl-X><ctrl-S>, and then exit from the
editor by typing <ctrl-X><ctrl-C>. Compile the program by typing:

CC nore.c

or use the MWS display interface, as described in section 1. When compilation is finished, type
more. MS-DOS pauses for a moment, and then returns the prompt to your screen. As you can see,
you now have a legal, compilable C program, but one that does nothing.

Let’s C

32 C for Beginners

Opening a file and showing text

The next step is to install routines that open a file and print its contents. For the moment, the
program will read only a file called tester, and not break it into 23-line portions.

Type the shaded lines into your program, as follows:

/)\'

* Truncated version of the 'nmore’ utility.
* Open a file, print out 23 lines, wait.
* | f user types <space>,

* print another 23 |ines,

* if user types any other key, exit.

* Exit when EOF is read.

*/

#i ncl ude <stdio. h>
mai n()

char string[128];
FILE *fileptr;

/* Open file */
fileptr = fopen("tester", "r");

/* Read material and display it */
for (;;)

fgets(string, 128, fileptr);
printf("%\n", string);

}

Note first how comments are inserted into the text, to guide the reader.
Now, note the lines

char string[128];
FILE *fileptr;

These declare two data structures. That is, they tell Let’s C to set aside a specific amount of
memory for them.

The first declaration, char string[128];, declares an array of 128 chars. A char is a data entity that
is exactly one byte long; this is enough space to store exactly one alphanumeric character in
memory, hence its name. An array is a set of data elements that are recorded together in memory.
In this instance, the declaration sets aside 128 chars-worth of memory. This declaration reserves
space in memory to hold the data that your program reads.

The second declaration, FILE *fileptr, declares a pointer to a FILE structure. The asterisk shows
that the data element points to something, rather than being the thing itself. When a variable is
declared to be a pointer, Let’s C sets aside enough space in memory to hold an address. When your
program reads that address, it then knows where the actual data are residing, and looks for them
there. C uses pointers extensively, because it is much more efficient to pass the address of data
than to pass the data themselves. You may find the concept of pointers to be a little difficult to
grasp; however, as you gain experience with C, you will find that they become easy to use.

Let’s C

C for Beginners 33

The FILE structure is the data entity that holds all the information your program needs to read
information from or write information to a file on the disk. For now, all you need to remember is
that this declaration sets aside a place to hold a pointer to such a structure, and the structure itself
holds all of the information your program needs to manipulate a file on disk. In effect, the variable
fileptr is used within your program as a synonym for the file itself.

Now, the line

fileptr = fopen("tester", "r");
opens the file to be read. The function fopen opens the file, fills the FILE structure, and fills the
variable fileptr with the address of where that structure resides in memory.

fopen takes two arguments. The first is the name of the file to be opened, within quotation marks.
The second argument indicates the mode in which to open the file; r indicates that the file will be
read only.

The lines

for(;;)

{
begin a loop. A loop is a section of code that is executed repeatedly until a condition that you set is
met. For example, you may define a loop that executes until the value of a particular variable
becomes greater than zero.

for is built into the C language. Note that it has braces, just like main() does; these braces mean
that the following lines, up to the next right brace (}) are part of this loop. You can set conditions
that control how a for loop operates; in its present form, it will loop forever. This will be explained
in more detail shortly.

Two library functions are executed within the loop. The first,
fgets(string, 128, fileptr);

reads a line from the file named in the fileptr variable, and writes it into the character array called
string. The middle argument ensures that no more than 128 characters will be read at a time. The
second line within this loop,

printf("%\n", string);

prints out the line. printf is a powerful and subtle function; in its present form, it prints on the
screen the string named in the variable string.

Finally, the line at the top of the program
#i ncl ude <stdi o. h>

tells Let’s C to read a header file called stdio.h. The term “STDIO” stands for “standard input and
output”; stdio.h declares and defines a number of routines that will be used to read data from a file
and write them onto the screen.

When you have finished typing in this code, again compile the program as you did earlier. If an
error occurs, check what you have typed and make sure that it exactly matches the code shown on
the previous page. If you find any errors, fix them and then recompile. If errors persist, see the
sections Error Messages and Questions and Answers for help.

When compilation is finished, execute more as you did earlier. The file tester is included with
Let’s C. You will see the text from tester scroll across the screen. When the text is finished,
however, the DOS prompt does not return; you have not yet inserted code that tells the program to
recognize that the file is finished. Type <ctrl-C> to break the program and return to DOS.

Let’s C

34 C for Beginners

Accepting file names

Of course, you will want more to be able to display the contents of any file, not just files named
tester. The next step is to add code that lets you pass arguments to the program through its
command line. This task requires that you give the main() function two arguments; by tradition,
these are always called arge and argv. How they work will be described in a moment.

The enhanced program now appears as follows:

/
Truncated version of the "nmore’ utility.
Open a file, print out 23 lines, wait.

I f user types <space>,
print another 23 lines,
if user types any other key, exit.
Exit when ECF is read.
/

L

#i ncl ude <stdi o. h>
#defi ne MAXCHAR 128

mai n(argc, argv)

/* Declare argunents to main() */
int argc;

char *argv[];

char string[MAXCHAR] ;
FILE *fileptr;

/* Qpen file */
fileptr = fopen(argv[1], "r");

/* Read material and display it */
for (;3;)
{

fgets(string, MAXCHAR fileptr);
printf("%\n", string);

}
First, a small change has been added: the line
#defi ne MAXCHAR 128

defines the manifest constant MAXCHAR to be equivalent to 128. This is done because the “magic
number” 128 is used throughout the program. If you decide to change the number of characters
that this program can handle at once, all you would have to do is to change this one line to alter the
entire program. This cuts down on mistakes in altering and updating the program. If you look
lower in the program, you will see that the declaration

char string[128]
has been changed to read
char string[MAXCHAR]

The two forms are equivalent; the only difference is that the latter is easier to use. It is a good idea
to use manifest constants wherever possible, to streamline changes to your program.

Let’s C

C for Beginners 35

Now, look at the line that declares main(). You will see that main() has two arguments: arge and
argv.

The first is an int, or integer, as shown by its declaration — int argc;. argc gives the number of
entries typed on a command line. For example, when you typed

nore fil enane

the value of argec was set to two: one for the command name itself, and one for the file-name
argument. argc and its value are set by Let’s C. You do not have to do anything to ensure that this
value is set correctly.

argv, on the other hand, is an array of pointers to the command line’s elements. In this instance,
argv[1] points to name of the file that you want more to read. This, too, is set by Let’s C, and
works automatically.

If you look below at the line that delares fopen(), you will see that tester has been replaced with
argv[1]; this means that you want fopen() to open the file named in the first argument to the more
command.

Now, try running the program by typing
more tester

more will open tester and display its contents on the screen. You still need to type <ctrl-C> when
the file is finished; the code to recognize the end of the file will be inserted later.

Also, be sure that you give the command only one file name as an argument, no more and no less.
Code that checks against errors has not yet been inserted, and handing it the wrong number of
arguments could cause MS-DOS to crash.

Error checking

Obviously, the program runs at this stage, but is still fragile, and could cause problems for you.
The next step is to stabilize the program by writing code to check for errors. To do so, a programmer
must first write code to capture error conditions, and then write a routine to react appropriately to
an error.

Our edited program now appears as follows:

/
Truncated version of the 'nmore’ utility.
Open a file, print out 23 lines, wait.

I f user types <space>,
print another 23 I|ines,
if user types any other key, exit.
Exit when EOF is read.
/

L

#i ncl ude <stdio. h>
#defi ne MAXCHAR 128

mai n(argc, argv)

/* define argunents to main() */
int argc;

char *argv[];

char string[MAXCHAR] ;
FILE *fileptr;

Let’s C

36 C for Beginners

/* Check if right nunber of argunents was passed */
if ((argc-1) '=1)
error("Usage: nore fil enane");

/* Qpen file */
if ((fileptr = fopen(argv[1], "r")) == NULL)
error (" Cannot open file");

/* Read material and display it */
for (;3)
{

fgets(string, MAXCHAR, fileptr);
printf("%\n", string);

}

/* Process error nessages */
error (message)
char *nessage;

{
printf("%\n", nmessage);
exit(1);

}

The additions to the program are introduced by comments.
The first addition

if ((argc-1) !'= 1)
error("Usage: nore filename");

checks to see if the correct number of arguments was passed on the command line; that is to say, it
checks to make sure that you named a file when you typed the more command.

As noted above, arge is the number of arguments on the command line, or rather, the number of
arguments plus one, because the command name itself is always considered to be an argument.
The statement if((argc-1) != 1) will check this. The if statement is built into C. If the condition
defined between its parentheses is true, then do something, but if it is not true, do nothing at all.
The operator != means “does not equal”’. Therefore, our statement means that if arge minus one is
not equal to one (in other words, if there is not one and only one argument to the more command),
execute the function error. error is defined below.

Our fopen function also has some error checking added (which will be described in a moment):

if ((fileptr = fopen(argv[1], "r")) == NULL)
error (" Cannot open file");

fopen will return a value called “NULL” if, for any reason, it cannot open the file you requested.
Thus, our new if statement says that if fopen cannot open the file named on the first argument to
the command line (that is, argv[1]), it should invoke the error function.

C always executes nested functions from the “inside out”. That means that the innermost function
(that is, the function that is enclosed most deeply within the pairs of parentheses) is executed first.
Its result, or what it returns, is then passed to next outermost function as an argument; that
function is then executed and what it returns is, in turn, passed to the function that encloses it,
and so on. In this instance, the innermost function is

fileptr = fopen(argv[1], "r")

fopen is executed and what it returns is written into fileptr. What fopen returned is then passed to

Let’s C

C for Beginners 37

the next outer operation; in this case, it is compared with NULL, as follows:
(fileptr = fopen(argv[1], "r") == NULL

What that operation returns is then passed to the outermost function, in this case the if statement,
which evaluates what it is passed, and acts accordingly. If fileptr is NULL (that is, if fopen couldn’t
open the file), the if statement will be true and the error function will be called. If, however, the file
was opened, fileptr will not equal NULL and the program will proceed.

As this example shows, C allows a programmer to nest functions quite deeply. Although nested
functions are sometimes difficult to untangle when you read them, they make programming much
more convenient.

Finally, at the bottom of the file is a new function, called error:

error (nmessage)
char *message;

{
printf("%\n", nmessage);
exit(1);

}

This function stands outside of main, as you can tell because it appears outside of main’s closing
brace. This function is called only when your program needs it. If there are no errors, the program
progresses only until the closing brace and the error function is never called.

error takes one argument, the message that is to be printed on the screen. This message is defined
by the routine that calls error. error uses the function printf to print the message, then calls the
exit function; this, as its name implies, causes the program to stop. The argument 1 is a special
signal that tells MS-DOS that something went wrong with your program.

When the error checking code is inserted, recompile the program without an argument. Previously,
this would crash MS-DOS; now, all it does is print the message

Usage: nore fil enane
and terminate the program.

Print a portion of a file

So far, our utility just opens a file and streams its contents over the screen. Now, you must insert
code to print a 23-line portion of the file. At present, it will only print the first 23 lines, and then
exit.

To do so, you must insert another for loop. Unlike our first loop, which ran forever, this one will
cycle only 23 times, and then stop. Our updated program appears as follows:

/
Truncated version of the 'nmore’ utility.
Open a file, print out 23 lines, wait.
If user types <space>,
print another 23 I|ines,
if user types any other key, exit.

Exit when EOCF is read.

/

L

#i ncl ude <stdio. h>
#defi ne MAXCHAR 128

Let’s C

mai n(argc, argv)
int argc;
char *argv[];

char string[MAXCHAR] ;
FILE *fileptr;
int ctr;

/* Check if right nunber of argunents was passed */
if ((arge-1) !'=1)
error("Usage: nore fil enanme");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)
error (" Cannot open file");

/* Qutput 23 lines */

for (;3;)
for (ctr = 0; ctr < 23; ctr++)
{ fgets(string, MAXCHAR fileptr);
printf("%\n", string);
int(O);

}

/* Process error nmessages */
error (nmessage)
char *message;

{
printf("%\n", nmessage);
exit(1);

}

The new for loop is nested inside the loop governed by for(;;). The program also declares a new
variable, ctr, at the beginning of the program. ctr keeps track of how many times the loop has
executed. Now, look at the line:

for (ctr = 0; ctr < 23; ctr++)

It has three sub-statements, which are separated by semicolons. The first sub-statement sets ctr to
zero; the second says that execution is to continue as long as ctr is less than 23; and the third says
that ctr is to be increased by one every time the loop executes (this is indicated by the ++ appended
to ctr). With each iteration of this loop, fgets reads a line from the file named on the more
command line, and printf prints it on the screen.

Also, an exit call has been set after this new loop; this ensures that the program will exit
automatically after the loop has finished executing. This is a temporary measure, to make sure that
you no longer have to type <ctrl-C> to return to MS-DOS.

When you have updated the program, recompile it in the usual way. When you run it, more will
show the first 23 lines of the file, and then the MS-DOS prompt will return.

The program is now approaching its final form.

Let’s C

C for Beginners 39

Checking for the end of file

The next-to-last step in preparing the program is teaching it to recognize the end of a file when it
sees it. This does not appear to be needed now because the program exits automatically after 23
lines or fewer, but it will be quite necessary when the program begins to display more than one 23-
line portion of text.

The libraries included with Let’s C include a function that checks for the end of file (or EOF); it is
called feof(). Before the program attempts to print out a line of text, it should check if the end of the
file has been reached. This means placing feof in an if statement; the statement will take advantage
of the fact that feof outputs, or returns, a zero if the end of file has not been reached, and returns a
number other than zero if the end of file has been reached. The if statement will capture what feof
returns, and continue execution as long as the value of the number returned is zero.

The updated program now appears as follows:

-~
L

~

Truncated version of the "nmore’ utility.
Open a file, print out 23 lines, wait.

I f user types <space>,

print another 23 lines,

if user types any other key, exit.

Exit when ECF is read.

#i ncl ude <stdi o. h>
#defi ne MAXCHAR 128

mai n(argc, argv)
int argc;
char *argv[];

char string[MAXCHAR] ;
FILE *fileptr;
int ctr;

/* Check if right nunber of argunents was passed */
if ((arge-1) !'=1)
error("Usage: nore fil ename");

/* Open file */

if ((fileptr = fopen(argv[1], "r")) == NULL)
error (" Cannot open file");

Let’s C

40 C for Beginners

/* Qutput 23 lines, while checking for EOF */
for (;3)

{
for (ctr = 0; ctr < 23; ctr++)
if (feof (fileptr) == 0)
{
fgets(string, MAXCHAR, fileptr);
printf("%\n", string);
}
el se
exit(0);
}
exit(0);
}

}

/* Process error nmessages */
error (nmessage)
char *message;

{
printf("%\n", nmessage);
exit(1);

}

First, note that the comment that describes the program’s output has been changed to reflect our
changes to the program. It is important for a programmer to ensure that the comments and the
code are in step with each other.

Our new if statement

if (feof(fileptr) == 0)

checks what feof returns: if it returns zero, the end of the file has not been reached, the if
statement is true, and the program prints out the next line. If it returns a number other than zero,
the end of file has been reached, the if statement is false so the else statement is executed, which
causes more to exit. feof takes one argument, which is the FILE that was defined by fopen.

Note, too, that a new control statement is introduced: else. This, like if, is built into the C language.
An else statement is always paired with an if statement; together, they mean that if the condition
for which if is testing is true, the program should do one thing; otherwise, it should do something
else. In this case, the program says that if the end of file has not been reached, another line should
be read from the file and printed on the screen; however, if it has been reached, then the program
should exit. As you can imagine, if/else pairs are common in C programming; they are logical and
useful.

One more task must be done on our program; then it is finished.
Polling the keyboard

For the program to be complete, it has to ask you if you want to see another 23-line portion of text.
The program should write another portion if you press the space bar, and exit if you type anything
else.

The program will use a new function, getenb, to accomplish this task. getcnb reads what you type
in an unbuffered fashion; that means that you do not have to type the carriage return key for the
keystroke to be read by the program. This is placed within an if statement that compares what
character is typed with the space character. If they are not the same (as indicated by the operator
!=), the program will exit; otherwise, it will loop through again and show another 23 lines.

Let’s C

C for Beginners 41

When these changes are inserted, the program is complete:

* Truncated version of the 'nore’ utility.
* Open a file, print out 23 lines, wait.
* | f user types <space>,

* print another 23 |ines,

* if user types any other key, exit.

* Exit when EOF is read.

*/

#i ncl ude <stdio. h>
#defi ne MAXCHAR 128

mai n(argc, argv)
int argc;
char *argv[];

char string[MAXCHAR] ;
FILE *fileptr;
int ctr;

/* Check if right nunber of argunents was passed */
if ((argc-1) !'= 1)
error("Usage: nore fil enane");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)
error("Cannot open file");

/* Qutput 23 lines, while checking for ECF */
for (;;)

for (ctr = 0; ctr < 23; ctr++)

if (feof (fileptr) == 0)
{

fgets(string, MAXCHAR, fileptr);

printf("%\n", string);
}
el se

exit(0);

/* Read keyboard; exit if not <space> */
if (getcnb() !'="")
exit(0);

}

/* Process error nessages */
error(nmessage)
char *message;
{
printf("%\n", nmessage);
exit(1);
}

After you have inserted these changes, again compile the program.

Let’s C

42 C for Beginners

When compilation is finished, try typing
more more.c

The first 23 lines of the source code to the program now appear on your screen. Hit the space bar;
the next 23 lines appear. Now, type any other key: the program exits.

You now have a simple but helpful more utility.

For more information

This section has given you a brief, concentrated introduction to writing a C program. If you are new
to programming, much of what happened must seemed strange, but we hope it helped you to
appreciate the logic of how C works.

Numerous books are on the market to teach beginners how to program in C; see the bibliography at
the end of section 1 of this manual for a list of them. Also, look at the sample C programs in the
Lexicon. These demonstrate how to use many of the functions available to you with Let’s C.

With patience, you should discover that programming with C is one of the greatest pleasures to be
had with a computer: few feats are as satisfying as delving into the machine and having it do exactly
what you want it to do.

Where to go from here

The following section, Advanced compiling, introduces some of the more sophisticated features of the
Let’s C compiler. You should look through this section when you feel that you are ready for
advanced programming.

If you have any questions about any of the features of Let’s C, or about any of the functions that
were described in this tutorial, look in the Lexicon. For example, if you have a question about feof
or printf, look them up in the Lexicon. There, you will full descriptions of how to use them, plus
sample C programs that show how to use them. By typing, compiling, and running the sample
programs, you will quickly learn how to use the C language.

~

)

-

Let’s C

Compiling with w..c

This section describes how to compile C programs with Let’s C.

In brief, a C compiler transforms files of C source code into machine code. Compilation involves
several steps; however, Let’s C simplifies it with the cc command, which controls all the actions of
the compiler.

The phases of compilation

Let’s C is not just one program, but a number of different programs that work together. Each
program performs a phase of compilation. The following summarizes each phase:

cpp The C preprocessor. This processes any of the ‘#° directives, such as #include or #ifdef, and
expands macros.

ccO0 The parser. This phase parses programs. It translates the program into a parse-tree format,
which is independent of both the language of the source code and the microprocessor for
which code will be generated.

ccl The code generator. This phase reads the parse tree generated by ecO and translates it into
machine code. The code generation is table driven, with entries for each operator and
addressing mode.

cc2 The optimizer/object generator. This phase optimizes the generated code and writes the
object module.

cc3 Let’s C also includes a fifth phase, called ce3, which can be run after the object generator,
cc2. ce3 generates a file of assembly language instead of a relocatable object module. This
phase is optional, and allows you to examine the code generated by the compiler. If you want
Let’s C to generate assembly language, use the -VASM option on the ee command line.

Unless you specify the -VASM option, Let’s C creates an object module that is named after the
source file being compiled. This module has the suffix .obj. An object module is not executable; it
contains only the code generated by compiling a C source file, plus information needed to link the
module with other program modules and with the library functions.

As the final step in its execution, cc calls the linker 1d to produce an executable program.

Edit errors automatically

The first option, and one that youll use most often, is the MicroEMACS option -A. Often when
you're writing a new program, you try to compile it, only to have the compiler tell you that you've
made a mistake. You must then invoke your editor, change the program, exit from the editor, and
start compiling the program again.

To make this process easier, cc command has the automatic (or MicroEMACS) option, -A. If Let’s C
detects any errors in your program, it will automatically invoke the MicroEMACS screen editor.
MicroEMACS will display all error messages in one window and your source code in another, with
the cursor set at the number of the line where the first error occurred.

Try the following example. Use MicroEMACS to create a program called error.c. To invoke
MicroEMACS, type the command

ne error.c

43

44 Compiling with vLet's c

at the MS-DOS prompt, or use the display interface to MWS, the Mark Williams shell, as described
in section 1 of this manual. Then type the following code:

mai n()

printf("Hello, world")
}

Note that the semicolon was left off of the printf statement. Type <ctrl-X><ctrl-S> to save the file to
disk, and <ctrl-X><ctrl-C> to exit from MicroEMACS. Now, try compiling error.c with the following
cc command:

cc -Aerror.c

or use MWS’s display interface, as described in section 1. You will see no messages from the
compiler because they are all being diverted into a file to be used by MicroEMACS. Then,
MicroEMACS will appear automatically. In the upper window you will see the message:

4: mssing ;'
and in the lower window you will see your source code for error.c, with the cursor set on line 4. If

you had more than one error, typing <ctrl-X>> would move you to the next line with an error in it;
typing <ctrl-X>< would return you to the previous error.

With some errors, such as those for missing braces or semicolons, the compiler cannot always tell
exactly which line the error occurred on; it will point to a line that is near the source of the error.

Now, use <ctrl-E> to move the cursor to the end of line 3, and type a semicolon to correct the error.
Type <ctrl-X><ctrl-S> to save the file to disk, and then type <ctrl-X><ctrl-C> to exit from
MicroEMACS. cc will recompile the program automatically, to produce a normal working executable
file.

cc will continue to invoke the MicroEMACS editor either until the program compiles without error,
or until you exit from the editor by typing <ctrl-U> followed by <ctrl-X><ctrl-C>.

Renaming executable files

When Let’s C compiles a source file, by default it names the executable program after the source
file. For example, when you compiled error.c, Let’s C automatically named the executable file
error.exe.

If you wish, you can give the executable file a different name. Use the -o (output) option, followed by
the desired name. For example, should you wish the executable file to have the name example.exe,
use the command:

cc -0 exanple.exe error.c

This command will compile the source file error.c and generate an executable file called
example.exe. The suffix .exe tells MS-DOS that the file is executable.

Floating-point numbers

Often, you will need to use floating-point numbers in your programs. If you are unsure what a
floating-point number is, see the Lexicon entry for float.

The routines that print floating-point numbers are large, and most C programs do not need to print
floating-point numbers; therefore, the code to perform floating-point arithmetic is not included in a
program by default. You must ask Let’s C to include these routines with your program by using the
-f option with the ec command.

Let’s C

Compiling with Levsc 45

For example, if the program example.c used floating-point numbers, you would compile it with the
following command line:

cc -f exanple.c

If your program prints floating-point numbers or reads them from an input device, and it is not
compiled with the -f option, it will print the following error message when it is run:

You nust conpile with the -f option
to include printf() floating point!

Compiling multiple source files

Many programs are built from more than one file of C source code. For example, the program
factor, which is provided with Let’s C, is built from the C source files factor.c and atod.c. To
produce the executable program factor, both source files must be compiled; the linker 1d then joins
them to form an executable file.

To compile a program that uses more than one source file, type all of the source files onto the cc
command line. For example, to compile factor type the following:

cc -f factor.c atod.c -Im
This command compiles both C source files to create the program factor.

When the cc command line includes several file name arguments, by default it uses the first to
name the executable file. In the above example, cc produces the non-executable object modules
factor.obj and atod.obj, and then links them together to produce the executable file factor.exe.

The argument -lm tells cc to include routines from the mathematics library when the object
modules are linked. This option must come after the names of all of the source files, or the program

will not be linked correctly.
Wildcards

A wildcard character is one that represents a variety of characters. MS-DOS recognizes the asterisk
“* and the question mark ‘2. The asterisk can represent any string of characters of any length
(including no character at all), whereas the question mark can represent any one character.

For example, if the current directory held the following files:

a.c
ab.c
abc. c
abcd. ¢
typing dir a?.c would print:
ab.c
whereas typing dir a*.c would print all four files.

The cc command lets you use wildcards in your command line to save you time and effort. For
example, you can compile all of the C source files in the current directory simply by typing:

cc *.c
This command compiles all of the files with the suffix .c and links the resulting object modules.

In another example, if the program example were built from the source files examplel.c,
example2.c, and example3.c, you could compile them with the following command:

Let’s C

46 Compiling with vLet's c

cc exanpl e?.c

Tailoring the command line interface

With Let’s C, you can tailor the command-line interface that your compiled programs use. Some
programs do not use command-line arguments; others take a few; whereas others may need to read
the environment and expand wildcard characters. The following options allow you to select the
interface you want for your program.

The option -na (for “no arguments”) tells Let’s C that a program does not use command line
arguments. The -na option may be used with or without the -ns option, which suppresses STDIO.

The option -w (for “wildcard”) tells Let’s C to include code that expands the wildcards ‘?” and “*" used
in command-line arguments. For example, if the program example.exe is compiled with the -w
option, it will expand the command:

exanple *.c
The wildcard argument *.c will expand into all file names in the current directory that end in .c.

If your program defines a global array char _cmdname]] that gives the name of the command, then
compiling the program with the -w option will include code that fills in argv[0] with the command
name and looks for environmental variables of the form nameHEAD and nameTAIL. If found, these
are added to the argv[] array, respectively, before and after the command-line arguments.

For example, the word-count command we is built with the -w option. If you set the environmental
variable WCHEAD to -1, then the command

we foo.c
has the same effect as the command
we -1 foo.c
The arguments to the function main are usually defined as

mai n(argc, argv)
int argc; char *argv[];

On some systems, a third argument is available:

mai n(argc, argv, envp)
int argc;
char *argv[], *envp[];

The argument envp is a NULL-terminated array of pointers to environmental variables, each of the
form var=value. If a program is compiled without the -w option, Let’s C passes an empty list as
envp. If a program is compiled with this option, Let’s C passes an envp that points to all of the
MS-DOS environmental variables. Note that your program does not have to use envp; like arge and
argyv, it is available should you want it.

Linking without compiling

When you are writing a program that consists of several source files, you will need to compile the
program, test it, and then change one or more of the source files. Rather than recompile all of the
source files, you can save time by recompiling only the modified files and relinking the program.

For example, if you modify the factor program by changing the source file factor.c, you can
recompile factor.c and relink the entire program with the following command:

Let’s C

Compiling with Levsc 47

cc -f factor.c atod.obj -Im

The first two arguments are the C source file factor.c and the object module atod.obj. cc recognizes
that atod.obj is an object module and simply passes it to the linker 1d without compiling it. You
will find this particularly useful when your programs consist of many source files and you need to
compile only a few of them.

To simplify compiling, especially if you are developing systems that use many source modules, you
should consider using the make command that is included with Let’s C. For more information on
make, see the entry in the Lexicon, or see the tutorial for make that appears later in this manual.

Compiling without linking

At times, you will need to compile a source file but not link the resulting object module to the other
object modules. You will do this, for example, to compile a module that you wish to insert into a
library. Use the -c option to tell cc not to link the compiled program. This option is used most
often to create relocatable object modules that can be archived into a library for later use.

For example, if you wanted just to compile factor.c without linking it, you would type:
cc -c factor.c

To link the resulting object module with the object module atod.obj and with the appropriate
libraries, type the following command:

cc -f factor.obj atod.obj -Im

Mini-make option

When you write a program that consists of several files of source code, you may find that, at one
time or another, you need to alter the code in just one or two files, to update the program or to fix a
bug. You must then recompile and relink the program to create an executable file; however, it is
wasteful to recompile every file of source code when did not modify all of them. What you need is an
easy way to recompile only the files that you edited, and then relink all of the object modules into an
executable file.

The -m (mini-make) option allows you to create an up-to-date version of your program without
recompiling all of your source files. When you use the -m option, the compiler compares the date
the source file was last modified with the date its object module was last created. If the object
module has a later date than the source file, then the source file has not been modified since it was
last compiled, and Let’s C will not recompile it. It will, however, re-link the previously compiled
object module to build a new executable file.

This option is quite useful when recompiling programs that are built out of many different modules
because unchanged source files are not recompiled unnecessarily. Note, however, that the -m
option does not recognize header file dependencies, so you should use it with some caution.

Note, too, that this option will not work properly if you do not reset your system’s time whenever
you reboot. If you do not, files will be date-stamped to the default time, and ce will not be able
organize them properly.

Assembly-language files

C makes most assembly language programming unnecessary. However, you may wish to write
small parts of your programs in assembly language for greater speed or to access processor features
that C cannot use directly. Let’s C includes an assembler, named as, which is described in detail in
the Lexicon.

Let’s C

48 Compiling with vLet's c

To compile a program that consists of the C source file example.c and the assembly-language
source file example.s, simply use the cc command as usual:

cc exanpl el.c exanple2.s

cc recognizes that the suffix .s indicates an assembly-language source file, and assembles it with as;
then it links both object modules to produce an executable file.

If you wish, you can also write programs that combine assembly language with C preprocessor
instructions. These files should have the suffix .m. When you name a .m file in a cec command, cc
will pass it first to the C preprocessor cpp, and then pass what epp produces to the assembler as.
These allow you to write assembly-language programs that are independent of i8086 memory model.
For more information on how to use the .m format, see the Lexicon entries for larges.h and for as.

Changing the size of the stack

The stack is the segment of memory that holds function arguments, local variables, and function
return addresses. Let’s C by default sets the size of the stack to two kilobytes (2,048 bytes). This is
enough stack space for most programs; however, some programs, such as the example program on
page 26 of the first edition of The C Programming Language, ed. 2, require more than two kilobytes
of stack. A program that uses more than its allotted amount of stack will cause a stack overflow;
this may force you to reboot your computer.

The size of the stack cannot be altered while a program is running. Should your program need more
than two Kilobytes of stack, use the -ys option to the cc command. For example, to increase the
stack size to 8,000 bytes, use the following command to the ec command:

cc -ys8000 hello.c

Note that this option indicates the number of bytes to which you wish to set the stack, not the
number of kilobytes. This must be a decimal number.

i8086 memory models

The i8086/88 microprocessor uses a segmented architecture. This means the i8086/88 divides
memory into segments of 64 kilobytes each. No program or data element can exceed that limit.

Intel Corporation has devised a number of models for organizing the segments of memory into a
program that is larger than any single segment. Let’s C implements the two most useful of these:
SMALL model and LARGE model.

SMALL model C programs use 16-bit pointers and near calls. Because a 16-bit pointer can address
65,536 bytes (64 kilobytes) of memory, SMALL model programs are limited to 64 kilobytes (one
segment) of code and 64 kilobytes of data and stack.

LARGE model C programs use 32-bit pointers and far calls. In the LARGE model, the 32-bit
pointers are converted by the processor to 20-bit addresses, so LARGE model programs can access
up to a total of 1,048,576 bytes (one megabyte) of code and data. The IBM PC and and its imitators
have a physical limit of 640 kilobytes.

In terms of execution, LARGE-model programs run more slowly than SMALL-model programs, but
for many purposes the advantages of the expanded address space of the LARGE model outweigh the
decreased efficiency.

When Let’s C compiles a program with the -VSMALL option, the resulting object module follows the
rules of the SMALL model. This is the default setting for the compiler. When the -VLARGE option
is used with the ce command, the object program follows the rules of the LARGE model.

When you compile a program with the -VLARGE option, cec defines the manifest constant LARGE to
the C preprocessor. This allows you to use the #ifdef LARGE conditional to flag model-dependent
code.

Let’s C

Compiling with Levsc 49

Note that you cannot mix SMALL-model object modules with those compiled into LARGE model.
Debugging information

One powerful feature of Let’s C is its ability to generate programs that you can debug with esd, the
revolutionary Mark Williams C source debugger. csd lets you debug C source code: you can use it
even if you do not know i8086 assembly language.

csd uses debugging information that Let’s C writes into the object module as it compiles a C
program. Because this information slightly enlarges the file that contains the object modules,
Let’s C does not produce it unless you request it. To include debugging information in an object
module, use the -VCSD option before the file name argument on the cc command line:

cc -VCSD hello.c
The manual for csd describes the C source debugger in full.

A module compiled with the -VCSD option will run exactly the same as one compiled without it, but
the size of the object module will increase by a few bytes. The size of the executable file will
increase, due to the special symbol table that the -VCSD option builds.

With some programs that already approach the limits of the SMALL model, compiling with the -
VCSD option may make them too large to be executed as SMALL model programs. In that case,
recompile the program with the -VCSD and -VLARGE options; the latter option will create a LARGE
model output.

To remove the debug symbol table from the programs that you compile with the -VCSD option, use
the strip command. strip is described in the Lexicon.

i8087 programs

The Intel i8087 chip is a numeric data processor that is designed to execute mathematics routines.
It increases the speed with which programs can compute floating-point numbers. Because of its
expense, however, many personal computers do not include this chip.

Let’s C by default uses a special set of libraries that sense if an i8087 is present. When you compile
a program with these libraries and then run it, the library routines automatically check to see if an
i8087 is present on your computer. If an i8087 is present, then floating-point arithmetic is
automatically computed it; otherwise, it is computed in software. Thus, a program compiled with
Let’s C can be run to best advantage on machines that have an i8087 as well as on machines that
do not, without needing to recompile the program.

If you know that the program you are compiling will always be run on a machine with an i8087, you
may wish to use the libraries that use the i8087 exclusively. You can do this by specifying the -
VNDP option to the ee command. For example, to compile the program factor to run exclusively
with an i8087, use the following command:

cc -VNDP factor.c atod.c -Im

This program will not run on a machine that does not have an i8087; however, the executable file
will be somewhat smaller than one that uses the sensing libraries, and will run slightly faster.

Options passed to MS-LINK

The compiler controller ec passes a number of its options directly to MS-LINK. The following
summarizes them.

-y/switch
This option sends switch directly to MS-LINK. switch can be any MS-LINK command or
option.

Let’s C

50 Compiling with vLet's c

-ym Tell MS-LINK to create a map file that can be used with the MS-DOS utility DEBUG. For
more information on DEBUG and its uses, see your MS-DOS manual.

-yn Increase the number of segments allowed in a program to 1,024 using the MS-LINK
segments switch. Note that the segments switch is used only version of MS-LINK later 3.0.
Earlier versions use the x switch to increase the number of segments.

-ysnumber
Set the stack size to number where number is a decimal integer that gives the number of
bytes you desire. The stack is set by default to two kilobytes; to set the stack, for example,
to 16,000 bytes type:

cc -ys16000 foo.c

-yf Tell MS-LINK to write a linker command file. This option is useful, should you ever have
trouble linking a program and wish to see just what MS-LINK is doing, or if you wish to
fine-tune how your program is linked.

-yuname
Undefine the variable name for MS-LINK. This tells MS-LINK to link in the library module
called name even though it is not named explicitly in your program. For example, the
command line

cc -yuprintf exanple.c

tells MS-LINK to link the library module printf into your program, even if your program
does not explicitly call printf. This tactic is sometimes quite useful.

Compiling programs without STDIO

STDIO is an abbreviation for standard input and output. Library routines use STDIO to write to the
screen or read the keyboard. Most of the runtime startup routines included with Let’s C call
STDIO, whether your program uses any STDIO functions or not.

If you have a small program that does not use any of the STDIO functions, you can stop STDIO from
being linked into your program by using the -ns option. This will make your program noticeably
smaller and more efficient. Note that the -ns option gives your program a different version of the
exit command, one that does not call fclose or fflush

Using default options

To make using Let’s C even simpler, ec helps you specify default options with the environment
variables CCHEAD and CCTAIL These variables give options that cc adds to the command line you
give it: it adds CCHEAD to the start of the command line (after the “cc”), and it appends CCTAIL to
the end of the command line.

How you can build a nameHEAD and nameTAIL feature into your program is described above, in
the sub-section Tailoring the command line interface.

When you installed Let’s C, the install utility instructed you to set CCHEAD so that Let’'s C would
read the file CCARGS. If you wish, though, you can attach additional variables to CCHEAD, or add
them to the file ccargs.

For example, suppose you always wish to use the options -V and -f (for “verbose” compilation and
floating-point routines), and always link in the mathematics library with the -lm option (which, as
you recall, must be mentioned after the source and object modules). Rather than retype these
options every time you type a ce command line, you can set CCHEAD and CCTAIL as follows:

set CCHEAD=@:\lib\ccargs\ -V -f
set CCTAIL=-1m

Let’s C

Compiling with Levsc 51

Note that if your computer has a hard disk, CCHEAD should indicate that ccargs is on drive C,
rather than drive A, as shown above. Thereafter, when you type

cc factor.c atod.c
it will be as if you had typed
cc -V -f factor.c atod.c -Im

in addition to the arguments contained in ccargs. These environmental variables allow you to pass
variables to Let’s C with ease. To ensure that these variables are set every time you boot your
system, be sure to enter the set commands described above into the file autoexec.bat on your MS-
DOS boot disk.

Where to go from here

For more information on compiling, see the Lexicon entry for cc. This entry summarizes all of ce’s
options, and presents many that are not discussed here. For more information on the assembler as,
see its entry in the Lexicon as well.

The following section introduces the MicroEMACS screen editor. If you have worked the exercises in
this part of the book, you have already used MicroEMACS a little; this tutorial, however, will show
you how to use all of its advanced features to input text quickly and easily.

Then comes an introduction to make, the Mark Williams programming discipline. If you are
building programs that use multiple files of source code, you will find make to be an invaluable tool.

Section 6, Questions and Answers, answers frequently asked questions about Let’s C and its
utilities. If you have a question about Let’s C, look here first. You may well find the information
you need.

Let’s C

52 Compiling with vLet's c

Let’s C

Infroduction to MicroEMACS

This section introduces MicroEMACS, the interactive screen editor for Let’s C. It is written for two
types of reader: the one who has never used a screen editor and needs a full introduction to the
subject, and the one who has used a screen editor before but wishes to review specific topics.

What is MicroEMACS?

MicroEMACS is an interactive screen editor. An editor lets you type text into your computer, name
it, store it, and recall it later for editing. Interactive means that MicroEMACS will accept an editing
command, execute it, display the results for you immediately, then wait for your next command.
Screen means that you can use nearly the entire screen of your terminal as a writing surface: you
can move your cursor up, down, and around your screen to create or change text, much as you
move your pen up, down, and around a piece of paper.

These features, plus the others that will be described in the course of this tutorial, make
MicroEMACS a tool that is powerful yet easy to use. You can use MicroEMACS to create or change
computer programs or any type of text file.

The MS-DOS version of MicroEMACS was adapted by Mark Williams Company from a public-
domain program written by David G. Conroy. This tutorial is based on the descriptions in his essay
MicroEMACS: Reasonable Display Editing in Little Computers MicroEMACS is derived from the
mainframe display editor EMACS, which was created at the Massachusetts Institute of Technology
by Richard Stallman.

For a summary of MicroEMACS and its commands, see the entry for me in the Lexicon.

Keystrokes — <ctrl>, <esc>

The MicroEMACS commands use control characters and meta characters. Control characters use the
control key, which is marked Control on your keyboard; meta characters use the escape key, which
is marked Esc.

Ctrl works like the shift key: you hold it down while you strike the other key. Here, this will be
represented with a hyphen; for example, pressing the control key and the letter ‘X key
simultaneously will be shown as follows:

<ctrl-X>

The esc key, on the other hand, works like an ordinary character. You should strike it first, then
strike the letter character you want. Escape character codes will not be represented with a hyphen;
for example, escape X will be represented as:

<esc>X

Becoming acquainted with MicroEMACS

Now you are ready for a few simple exercises that will help you get a feel for how MicroEMACS
works.

To begin, type the following command to MS-DOS:
me sanpl e

If you are using Let’s C through the MWS display interface, return to the main menu and then
press <return>. When the Edit menu appears, press the <> key until the cursor bar is at New File;
then press <return> and type sample.

53

54 MicroEMACS

Within a few seconds, your screen will have been cleared of writing, the cursor will be positioned in
the upper left-hand corner of the screen, and a command line will appear at the bottom of your
screen.

Now type the following text. If you make a mistake, just backspace over it and retype the text. Press
the carriage return or enter key after each line:

mai n()

{
}

Notice how the text appeared on the screen character by character as you typed it, much as it would
appear on a piece of paper if you were using a typewriter.

printf("Hello, world!\n");

Now, type <ctrl-X><ctrl-S>; that is, type <ctrl-X>, and then type <ctrl-S>. It does not matter whether
you type capital or lower-case letters. Notice that this message has appeared at the bottom of your
screen:

[Wote 4 |ines]
This command has permanently stored, or saved, what you typed into a file named sample.

Type the next few commands, which demonstrate some of the tasks that MicroEMACS can perform
for you. These commands will be explained in full in the sections that follow; for now, try them to
get a feel for how MicroEMACS works.

Type <esc><. Be sure that you type a less-than symbol ‘<, instead of a comma. Notice that the
cursor has returned to the upper left-hand corner of the screen. Type <esc>F. The cursor has
jumped forward by one word, and is now on the left parenthesis. Type <ctrl-N>. Notice that the
cursor has jumped to the next line, and is now just to the right of the left brace {. Type <ctrl-A>.
The cursor has jumped to the beginning of the second line of your text. Type <ctrl-N> again, and
the cursor is at the beginning of the third line of the program, the printf statement.

Now, type <ctrl-K>. The third line of text has disappeared, leaving an empty space. Type <ctrl-K>
again. The empty space where the third line of text had been has now disappeared.

Type <esc>>. Be sure to type a greater-than symbol >’, not a period. The cursor has jumped to the
space just below the last line of text. Now type <ctrl-Y>. The text that you erased a moment ago has
now been restored.

By now, you should be feeling more at ease with typing MicroEMACS’s control and escape codes.
The following sections will explain what these commands mean. For now, exit from MicroEMACS by
typing <ctrl-X><ctrl-C>, and when the message

Qit [y/n]?
appears type y and then <return>. This will return you to MS-DOS or MWS.
Beginning a document

If your computer does not have a hard disk, do the following before you begin: insert disk 2, the
compiler disk, into drive A of your computer. Insert disk 8, which holds the sample programs, into
drive B. Then, log into directory sample on drive B by typing the following command:

cd b:\sanpl e

If your system does have a hard disk, log into directory sample on your hard disk by typing the
following:

cd c:\sanple

Let’s C

MicroEMACS 55

Now, edit the file called examplel.c. First, use the cd to move to directory \src, which is where this
file was stored when you installed Let’s C. If you stored the sample programs in a different
directory, then use the ed command to transfer to that directory. Now, type the following command:

me exanpl el.c

If you are working through the MWS display interface, invoke MicroEMACS as follows: First, make
sure that you are in the main menu, and that the cursor bar is positioned over Edit. Type
<return>. When the Edit menu appear, press the <> key to move the cursor bar to Files. Press
<return>. A box will appear on the screen that shows all of the files available for editing. Press the
<> key until the cursor bar is positioned over the file labelled examplel.c; then press <return>. As
you can see, examplel.c now appears in the command box, which is at the top of the screen. Press
<end>, to return to the Edit menu; then press <return>, to execute the command you have just
built. This will invoke MicroEMACS to edit the file examplel.c.

In a moment, the following text will appear on your screen:

/
This is a sinple C programthat conputes the results
of three different rates of inflation over the

span of ten years. Use this text file to learn

how to use M cr oEMACS conmands

to make creating and editing text files quick,

* efficient and easy.

*/

#i ncl ude <stdio. h>

E I

mai n()
int i; /* count ten years */
float wi, w2, wg; /* three inflated quantities */
char *msg =" 9%Rd\t% % %\n";/* printf string */
i =0;
wl = 1.0;
w2 = 1.0;
w3 = 1.0;
for (i =1; i<=10; i++) {
wl *= 1.07; /* apply inflation */
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, wi, w2, w3);
}
}

When you type the MicroEMACS command and a file name, MicroEMACS copies that file into
memory. Your cursor also moved to the upper left-hand corner of the screen. At the bottom of the
screen appears the status line, as follows:

-- McroEMACS -- exanplel.c -- File: exanplel.c ----------

The word to the left, MicroEMACS, is the name of the editor. The word in the center, examplel.c, is
the name of the buffer that you are using. What a buffer is and how it is used will be covered later.
The name to the right is the name of the text file that you will be editing.

Moving the Cursor

Now that you have read a text file into memory, you will want to edit it. The first step is to learn to
move the cursor.

Let’s C

56 MicroEMACS

Try these commands for yourself as they are described in the following paragraphs. That way, you
will quickly acquire a feel for handling MicroEMACS’s commands. You can also use your arrow keys
with MicroEMACS. The arrow keys are found on the keypad on the right-hand side of your
keyboard. If when you press the arrow keys, numbers appear in the text instead of the cursor being
moved, press the number lock key, which is the key marked Num Lock. That should solve the
problem.

Moving the cursor forward

This first set of commands moves the cursor forward.

<ctrl-F> Move forward one space
<esc>F Move forward one word
<ctrl-E> Move to end of line

To see how these commands work, do the following: Type the forward command <ctrl-F>. This is
equivalent to pressing <Rationale>. As before, it does not matter whether the letter ‘F’ is upper case
or lower case. The cursor has moved one space to the right, and now is over the character ‘* in the
first line.

Type <esc>F. The cursor has moved one word to the right, and is now over the space after the word
this. MicroEMACS considers only alphanumeric characters when it moves from word to word.
Therefore, the cursor moved from under the * to the space after the word this, rather than to the
space after the *. Now type the end of line command <ctrl-E>. The cursor has jumped to the end of
the line and is now just to the right of the e of the word three.

Moving the cursor backward

The following summarizes the commands for moving the cursor backwards.

<ctrl-B> Move back one space
<esc>B Move back one word
<ctrl-A> Move to beginning of line

To see how these work, first type the backward command <ctrl-B>. This is equivalent to pressing <>.
As you can see, the cursor has moved one space to the left, and now is over the letter e of the word
three. Type <esc>B. The cursor has moved one word to the left and now is over the t in three. Type
<esc>B again, and the cursor will be positioned on the o of the word of.

Type the beginning of line command <ctrl-A>. The cursor jumps to the beginnning of the line, and
once again is resting over the ‘/’ character in the first line.

From line to line

<ctrl-P> Move to previous line
<ctrl-N> Move to next line

These two commands move the cursor up and down the screen. Type the next line command <ctrl-
N>. The cursor jumps to the space before the ‘¥ in the next line. Type the end of line command
<ctrl-E>, and the cursor moves to the end of the second line to the right of the period.

Continue to type <ctrl-N> until the cursor reaches the bottom of the screen. This is the same as if
you typed <>. As you reached the first line in your text, the cursor jumped from its position at the
right of the period on the second line to just right of the brace on the last line of the file. When you
move your cursor up or down the screen, MicroEMACS will try to keep it at the same position within
each line. If the line to which you are moving the cursor is not long enough to have a character at
that position, MicroEMACS will move the cursor to the end of the line.

Let’s C

MicroEMACS 57

Now, practice moving the cursor back up the screen. Type the previous line command <ctrl-P>. This
has the same effect as pressing <>. When the cursor jumped to the previous line, it retained its
position at the end of the line. MicroEMACS remembers the cursor’s position on the line, and
returns the cursor there when it jumps to a line long enough to have a character in that position.

Continue pressing <ctrl-P>. The cursor will move up the screen until it reaches the top of your text.
Moving up and down by a screenful of text

The next two cursor movement commands allow you to roll forward or backwards by one screenful
of text.

<ctrl-V> Move forward one screen
<esc>V Move back one screen

If you are editing a file with MicroEMACS that is too big to be displayed on your screen all at once,
MicroEMACS will display the file in screen-sized portions (22 lines at a time). The view commands
<ctrl-V> and <esc>V allow you to roll up or down one screenful of text at a time.

Type <ctrl-V>. Your screen now contains only the last three lines of the file. This is because you have
rolled forward by the equivalent of one screenful of text, or 22 lines.

Now, type <esc>V. Notice that your text rolls back onto the screen, and your cursor is positioned in
the upper left-hand corner of the screen, over the character ‘/’ in the first line.

Moving to beginning or end of text

Finally, these two cursor movement commands allow you to jump immediately to the beginning or
end of your text.

<esc>< Move to beginning of text
<esc>> Move to end of text

The end of text command <esc>> moves the cursor to the end of your text. Type <esc>>. Be sure to
type a greater-than symbol >’; this symbol may have been placed anywhere on your keyboard,
although on IBM-style keyboards it appears above the period. Your cursor has jumped to the end of
your text.

The beginning of text command <esc>< will move the cursor back to the beginning of your text.
Type <esc><. Be sure to type a less-than symbol ‘<’; on IBM-style keyboards it appears above the
comma. The cursor has jumped back to the upper left-hand corner of your screen.

These commands will move you immediately to the beginning or the end of your text, regardless of
whether the text is one page long or 20 pages long.

Saving text and quitting
If you do not wish to continue working at this time, you should save your text, and then quit.

It is good practice to save your text file every so often while you are working on it; then, if an
accident occurs, such as a power failure, you will not lose all of your work. You can save your text
with the save command <ctrl-X><ctrl-S>. Type <ctrl-X><ctrl-S>—that is, first type <ctrl-X>, then type
<ctrl-S>. If you had modified this file, the following message would appear:

[Wote 23 |ines]

The text file would have been saved to your computer’s disk. MicroEMACS will send you messages
from time to time; the messages enclosed in square brackets [' /|" are for your information, and do
not necessarily mean that something is wrong. To exit from MicroEMACS, type the quit command
<ctrl-X><ctrl-C>. This will return you to MS-DOS or MWS.

Killing and deleting

Let’s C

58 MicroEMACS

Now that you know how to move the cursor, you are ready to edit your text.
To return to MicroEMACS, type the command:

me exanplel.c
Within a moment, examplel.c will be restored to your screen.

By now, you probably have noticed that MicroEMACS is always ready to insert material into your
text; unless you use the <ctrl> or <esc> keys, MicroEMACS will assume that whatever you type is
meant to be text and will insert it onto your screen where your cursor is positioned.

The simplest way to erase text is simply to position the cursor to the right of the text you want to
erase and backspace over it. MicroEMACS, however, also has a set of commands that allow you to
erase text easily. These commands, kill and delete, perform differently; the distinction is
important, and will be explained in a moment.

Deleting versus killing

When text is deleted, it is erased completely; however, when text is killed, it is copied into a
temporary storage area in memory. This storage area is overwritten when you move the cursor and
then kill additional text. Until then, however, the killed text is saved. This aspect of killing allows
you to restore text that you killed accidentally, and it also allows you to move or copy portions of
text from one position to another.

MicroEMACS is designed so that when it erases text, it does so beginning at the left edge of the
cursor. This left edge is called the current position.

You should imagine that an invisible vertical bar separates the cursor from the character
immediately to its left; as you enter the various kill and delete commands, this vertical bar moves to
the right or the left with the cursor, and erases the characters it touches. Therefore, if you wish to
erase a word but wish to keep both spaces around it, position your cursor directly over the first
character of the word and strike <esc>D. If you wish to erase a word and the space before it,
position the cursor at the space before you strike <esc>D, so that the invisible vertical bar sweeps
away the space at which the cursor is positioned, as well as the word that follows.

Erasing text to the right
The first two commands to be presented erase text to the right.

<ctrl-D> Delete one character to the right
<esc>D Kill one word to the right

<ctrl-D> deletes one character to the right of the current position. <esc>D deletes one word to the
right of the current position.

To try these commands, type the delete command <ctrl-D>. The character ‘/’ in the first line has
been erased, and the rest of the line has shifted one space to the left.

Now, type <esc>D. The ‘¥ character and the word This have been erased, and the line has shifted six
spaces to the left. The cursor is positioned at the space before the word is. Type <esc>D again. The
word is has vanished along with the space that preceded it, and the line has shifted four spaces to
the left.

<ctrl-D> deletes text, but <esc>D Kkills text.

Let’s C

MicroEMACS 59

Erasing text to the left

You can erase text to the left with the following commands:

 Delete one character to the left
<ctrl-H> Delete one character to the left
<esc> Kill one word to the left
<esc><ctrl-H> Kill one word to the left

To see how to erase text to the left, first type the end of line command <ctrl-E>; this will move the
cursor to the right of the word three on the first line of text. Then, type . The second e of the
word three has vanished.

Type <esc>. The rest of the word three has disappeared, and the cursor has moved to the
second space following the word of.

Move the cursor four spaces to the left, so that it is over the letter o of the word of. Type <esc>.
The word results has vanished, along with the space that was immediately to the right of it. As
before, these commands erased text beginning immediately to the left of the cursor. The <esc>
command can be used to erase words throughout your text.

If you wish to erase a word to the left yet preserve both spaces that are around it, position the
cursor at the space immediately to the right of the word and type <esc>. If you wish to erase a
word to the left plus the space that immediately follows it, position the cursor under the first letter
of the next word and then type <esc>.

Typing deletes text, but typing <esc> kills text.
Erasing lines of text
Finally, the following command erases a line of text:
<ctrl-K> Kill from cursor to end of line
This command erases the line beginning from immediately to the left of the cursor.

To see how this works, move the cursor to the beginning of line 2. Now, strike <ctrl-K>. All of line 2
has vanished and been replaced with an empty space. Strike <ctrl-K> again. The empty space has
vanished, and the cursor is now positioned at the beginning of what used to be line 3, in the space
before * Use.

As its name implies, the <ctrl-K>command kills the line of text.

Yanking back (restoring) text

The following command allows you restore material that you have killed:
<ctrl-Y> Yank back (restore) Kkilled text

Remember that when material is killed, MicroEMACS has temporarily stored it elsewhere. You can
return this material to the screen by using the yank back command <ctrl-Y>. Type <ctrl-Y>. All of
line 2 has returned; the cursor, however, remains at the beginning of line 3.

Quitting

When you are finished, do not save the text. If you do so, the undamaged copy of the text that you
made earlier will be replaced with the present changed copy. Rather, use the quit command <ctrl-
X><ctrl-C>. Type <ctrl-X><ctrl-C>. On the bottom of your screen, MicroEMACS will respond:

Qit [y/n]?
Reply by typing y and a carriage return. If you type n, MicroEMACS will simply return you to where

Let’s C

60 MicroEMACS

you were in the text. MicroEMACS will now return you to MS-DOS.
Block killing and moving text

As noted above, text that is killed is stored temporarily within the computer. Killed text may be
yanked back onto your screen, and not necessarily in the spot where it was originally killed. This
feature allows you to move text from one position to another.

Moving one line of text
You can kill and move one line of text with the following commands:

<ctrl-K> Kill text to end of line
<ctrl-Y> Yank back text

To test these commands, invoke MicroEMACS for the text examplel.c by typing the following
command:

me exanplel.c

or use the MWS interface, as you did earlier. When MicroEMACS appears, the cursor will be
positioned in the upper left-hand corner of the screen.

To move the first line of text, begin by typing the kill command <ctrl-K> twice. Now, press <esc>> to
move the cursor to the bottom of text. Finally, yank back the line by typing <ctrl-Y>. The line that
reads

/* This is a sinple C programthat conputes the results
is now at the bottom of your text.
Your cursor has moved to the point on your screen that is after the line you yanked back.
Multiple copying of killed text

When text is yanked back onto your screen, it is not deleted from within the computer. Rather, it is
simply copied back onto the screen. This means that killed text can be reinserted into the text more
than once. To see how this is done, return to the top of the text by typing <esc><. Then type <ctrl-
Y>. The line you just killed now appears as both the first and last line of the file.

The killed text will not be erased from its temporary storage until you move the cursor and then kill
additional text. If you kill several lines or portions of lines in a row, all of the killed text will be
stored in the buffer; if you are not careful, you may yank back a jumble of accumulated text.

Kill and move a block of text
If you wish to kill and move more than one line of text at a time, use the following commands:

<ctrl-@> Set mark
<ctrl-w> Kill block of text

If you wish to kill a block of text, you can either type the kill command <ctrl-K> repeatedly to kill the
block one line at a time, or you can use the block kill command <ctrl-W>. To use this command,
you must first set a mark on the screen, an invisible character that acts as a signal to the computer.
The mark is set with the mark command <ctrl-@>.

Once the mark is set, you must move your cursor to the other end of the block of text you wish to
kill, and then strike <ctrl-W>. The block of text will be erased, and will be ready to be yanked back
elsewhere.

Let’s C

MicroEMACS 61

Try this out on examplel.c. Type <esc>< to move the cursor to the upper left-hand corner of the
screen. Then type the set mark command <ctrl-@>. By the way, be sure to type ‘@, not 2.
MicroEMACS will respond with the message

[Mark set]

at the bottom of your screen. Now, move the cursor down six lines, and type <ctrl-W>. Note how the
block of text you marked out has disappeared.

Move the cursor to the bottom of your text. Type <ctrl-Y>. The killed block of text has now been
reinserted.

When you yank back text, be sure to position the cursor at the exact point where you want the text
to be yanked back. This will ensure that the text will be yanked back in the proper place.

To try this out, move your cursor up six lines. Be careful that the cursor is at the beginning of the
line. Now, type <ctrl-Y> again. The text reappeared above where the cursor was positioned, and the
cursor has not moved from its position at the beginning of the line — which is not what would have
happened had you positioned it in the middle or at the end of a line.

Although the text you are working with has only 23 lines, you can move much larger portions of text
using only these three commands. Remember, too, that you can use this technique to duplicate
large portions of text at several positions to save yourself considerable time in typing and reduce the
number of possible typographical errors.

Capitalization and other tools

The next commands perform a number of useful tasks that will help with your editing. Before you
begin this section, destroy the old text on your screen with the quit command <ctrl-X><ctrl-C>, and
read into MicroEMACS a fresh copy of the program, as you did earlier.

Capitalization and lowercasing

The following MicroEMACS commands can automatically capitalize a word (that is, make the first
letter of a word upper case), or make an entire word upper case or lower case.

<esc>C Capitalize a word
<esc>L Lowercase an entire word
<esc>U Uppercase an entire word

To try these commands, do the following: First, move the cursor to the letter d of the word different
on line 2. Type the capitalize command <esc>C. The word is now capitalized, and the cursor is now
positioned at the space after the word. Move the cursor forward so that it is over the letter t in rates.
Press <esc>C again. The word changes to raTes. When you press <esc>C, MicroEMACS will
capitalize the first letter the cursor meets.

MicroEMACS can also change a word to all upper case or all lower case. (There is very little need for
a command that will change only the first character of an upper-case word to lower case, so it is not
included.)

Type <esc>B to move the cursor so that it is again to the left of the word Different. It does not matter
if the cursor is directly over the D or at the space to its left; as you will see, this means that you can
capitalize or lowercase a number of words in a row without having to move the cursor.

Type the uppercase command <esc>U. The word is now spelled DIFFERENT, and the cursor has
jumped to the space after the word.

Again, move the cursor to the left of the word DIFFERENT. Type the lowercase command <esc>L.
The word has changed back to different. Now, move the cursor to the space at the beginning of line
3 by typing <ctrl-N> then <ctrl-A>. Type <esc>L once again. The character “* is not affected by the
command, but the letter U is now lower case. <esc>L not only shifts a word that is all upper case to

Let’s C

62 MicroEMACS

lower case: it can also un-capitalize a word.

The uppercase and lowercase commands stop at the first punctuation mark they meet after the
first letter they find. This means that, for example, to change the case of a word with an apostrophe
in it you must type the appropriate command twice.

Transpose characters

MicroEMACS allows you to reverse the position of two characters, or transpose them, with the
transpose command <ctrl-T>.

Type <ctrl-T>. The character that is under the cursor has been transposed with the character
immediately to its left. In this example,

* use this
in line 3 now appears:
* us ethis

The space and the letter e have been transposed. Type <ctrl-T> again. The characters have returned
to their original order.

Screen redraw

Occasionally, while you are editing you may interrupt MicroEMACS to invoke another program,
such as an electronic calculator or a clock. When you exit from that program, you may find that it
has left material on your screen and scrambled it. Although this extraneous material will not be
recorded into your text, you will need to redraw your screen in order to continue to edit. The
redraw screen command <ctrl-L> will redraw your screen to the way it was before it was scrambled.

Type <ctrl-L>. Notice how the screen flickers and the text is rewritten. Had your screen been spoiled
by extraneous material, that material would have been erased and the original text rewritten.

The <ctrl-L> command also has another use: you can move the line on which the cursor is
positioned to the center of the screen. If you have a file that contains more than one screenful of text
and you wish to have that particular line in the center of the screen, position the cursor on that line
and type <ctrl-U><ctrl-L>. Immediately, the screen will be rebuilt with the line you were interested
in positioned in the center.

Return indent

<ctrl-J> Return and indent

You may often be faced with a situation in which, for the sake of programming style, you need many
lines of indented text. After every line, you must return, then tab the correct number of times, then
type your text. Block indents can be a time-consuming typing chore. The MicroEMACS <ctrl-J>
command makes this task easier. When you type a file that has many lines of indented text, such as
a C program, you can save many keystrokes by using the <ctrlJ> command. <ctrl-J> moves the
cursor to the next line on the screen, and positions the cursor at the previous line’s level of
indentation.

To see how this works, first move the cursor to the line that reads
w3 *= 1.10:
Press <ctrl-E>, to move the cursor to the end of the line. Now, type <ctrl-J>.

As you can see, a new line opens up and the cursor is indented the same amount as the previous

line. Type

Let’s C

MicroEMACS 63

/* Here is an exanple of auto-indentation */
This line of text begins directly under the previous line.

Word wrap

<ctrl-X>F Set word wrap

Although you have not yet had much opportunity to use it, MicroEMACS will automatically wrap
around text that you are typing into your computer. Word wrapping is controlled with the word
wrap command <ctrl-X>F. To see how the word wrap command works, first exit from MicroEMACS
by typing <ctrl-X><ctrl-C>; then reinvoke MicroEMACS by typing

me cucunber

or use the MWS display interface, as you did earlier. When MicroEMACS re-appears, type the
following text; however, do not type any carriage returns:

A cucunber shoul d be
wel | sliced, and dressed
wi th pepper and vi negar,
and then thrown out, as
good for not hing.

When you reached the edge of your screen, a dollar sign was printed and you were allowed to
continue typing. MicroEMACS accepted the characters you typed, but it placed them at a location
beyond the right edge of your screen.

Now, move to the beginning of the next line and type <ctrl-U>. MicroEMACS will reply with the
message:

Arg: 4
Type 30. The line at the bottom of your screen now appears as follows:
Arg: 30

(The use of the argument command <ectrl-U> will be explained in full in a few sections.) Now type the
word-wrap command <ctrl-X>F. MicroEMACS will now say at the bottom of your screen:

[Wap at col um 30]

This sequence of commands has set the word-wrap function, and told it to wrap to the next line all
words that extend beyond the 30th column on your screen.

The word wrap feature automatically moves your cursor to the beginning of the next line once you
type past a preset border on your screen. When you first enter MicroEMACS, that limit is
automatically set at the first column, which in effect means that word wrap has been turned off.

When you type prose for a report or a letter of some sort, you probably will want to set the border at
the 65th column, so that the printed text will fit neatly onto a sheet of paper. If you are using
MicroEMACS to type in a program, however, you probably will want to leave word wrap off, so you
do not accidentally introduce carriage returns into your code.

To test word wrapping, type the above text again, without using the carriage return key. When you
finish, it should appear as follows:

A cucunber should be well
sliced, and dressed with

pepper and vinegar, and then
thrown out, as good for nothing.

MicroEMACS automatically moved your cursor to the next line when you typed a space character

Let’s C

64 MicroEMACS

after the 30th column on your screen.

If you wish to fix the border at some special point on your screen but do not wish to go through the
tedium of figuring out how many columns from the left it is, simply position the cursor where you
want the border to be, type <ctrl-X>F, and then type a carriage return. When <ctrl-X>F is typed
without being preceded by a <ctrl-U> command, it sets the word-wrap border at the point your
cursor happens to be positioned. When you do this, MicroEMACS will then print a message at the
bottom of your terminal that tells you where the word-wrap border is now set.

If you wish to turn off the word wrap feature again, simply set the word wrap border to one.
Search and Reverse Search

When you edit a large text, you may wish to change particular words or phrases. To do this, you can
roll through the text and read each line to find them; or you can have MicroEMACS find them for
you. Before you continue, close the present file by typing <ctrl-X> <ctrl-C>; now, reinvoke the editor
to edit the file examplel.c, as you did before. The following sections will perform some exercises
with this file.

Search forward

<ctrl-S$> Search forward incrementally
<esc>S Search forward with prompt

As you can see from the display, MicroEMACS has two ways to search forward: incrementally, and
with a prompt.

An incremental search is one in which the search is performed as you type the characters. To see
how this works, first type the beginning of text command <esc>< to move the cursor to the upper
left-hand corner of your screen. Now, type the incremental search command <ctrl-S>. MicroEMACS
will respond by prompting with the message

i-search forward:
at the bottom of the screen.

We will now search for the pointer *msg. Type the letters *msg one at a time, starting with *. The
cursor has jumped to the first place that a * was found: at the second character of the first line. The
cursor moves forward in the text file and the message at the bottom of the screen changes to reflect
what you have typed.

Now type m. The cursor has jumped ahead to the letter s in *msg. Type s. The cursor has jumped
ahead to the letter g in *msg. Finally, type g. The cursor is over the space after the token *msg.
Finally, type <esc> to end the string. MicroEMACS will reply with the message

[Done]
which indicates that the search is finished.

If you attempt an incremental search for a word that is not in the file, MicroEMACS will find as
many of the letters as it can, and then give you an error message. For example, if you tried to search
incrementally for the word *msgs, MicroEMACS would move the cursor to the phrase *msg; when
you typed ‘s’, it would tell you

failing i-search forward: *nsgs

With the prompt search, however, you type in the word all at once. To see how this works, type
<esc><, to return to the top of the file. Now, type the prompt search command <esc>S. MicroEMACS
will respond by prompting with the message

Let’s C

MicroEMACS 65

Search [*nsgs]:

at the bottom of the screen. The word *msgs is shown because that was the last word for which you
searched, and so it is kept in the search buffer.

Type in the words editing text, then press the carriage return. Notice that the cursor has jumped to
the period after the word text in the next to last line of your text. MicroEMACS searched for the
words editing text, found them, and moved the cursor to them.

If the word you were searching for was not in your text, or at least was not in the portion that lies
between your cursor and the end of the text, MicroEMACS would not have moved the cursor, and
would have displayed the message

Not found
at the bottom of your screen.
Reverse search

<ctrl-R> Search backwards incrementally
<esc>R Search backwards with prompt

The search commands, useful as they are, can only search forward through your text. To search
backwards, use the reverse search commands <etrl-R> and <esc>R. These work exactly the same as
their forward-searching counterparts, except that they search toward the beginning of the file rather
than toward the end.

For example, type <esc>R. MicroEMACS will reply with the message
Reverse search [editing text]:

at the bottom of your screen. The words in square brackets are the words you entered earlier for the
search command; MicroEMACS remembered them. If you wanted to search for editing text again,
you would just press the carriage return. For now, however, type the word program and press the
carriage return.

Notice that the cursor has jumped so that it is under the letter p of the word program in line 1.
When you search forward, the cursor will move to the space after the word you are searching for,
whereas when you reverse search, the cursor will be moved to the first letter of the word you are
searching for.

Cancel a command

<ctrl-G> Cancel a search command

As you have noticed, the commands to move the cursor or to delete or kill text all execute
immediately. Although this speeds your editing, it also means that if you type a command by
mistake, it executes before you can stop it.

The search and reverse search commands, however, wait for you to respond to their prompts before
they execute. If you type <esc>S or <esc>R by accident, MicroEMACS will interrupt your editing and
wait for you to initate a search that you do not want to perform. You can evade this problem,
however, with the cancel command <ctrl-G>. This command tells MicroEMACS to ignore the
previous command.

To see how this command works, type <esc>R. When the prompt appears at the bottom of your
screen, type <ctrl-G>. Three things happen: your terminal beeps, the characters G appear at the
bottom of your screen, and the cursor returns to where it was before you first typed <esc>R. The
<esc>R command has been cancelled, and you are free to continue editing.

Let’s C

66 MicroEMACS

If you cancel an incremental search command, <ctrl-S> or <esc-S>, the cursor will return to where it
was before you began the search. For example, type <esc>< to return to the top of the file. Now type
<ctrl-S> to begin an incremental search, and type m. When the cursor moves to the m in simple,
type <ctrl-G>. The bell will ring, and your cursor will be returned to the top of the file, which is
where you began the search.

Search and replace

<esc>% Search and replace

MicroEMACS also gives you a powerful function that allows you to search for a string and replace it
with a keystroke. You can do this by executing the search and replace command <esc>%.

To see how this works, move to the top of the text file by typing <ese><; then type <esc>%. You will
see the following message at the bottom of your screen:

ad string:
As an exercise, type msg. MicroEMACS will then ask:
New string:

Type message, and press the carriage return. As you can see, MicroEMACS jumps to the first
occurrence of the string msg, and prints the following message at the bottom of your screen:

Query replace: [nsg] -> [nmessage]

MicroEMACS is asking if it should proceed with the replacement. Type a carriage return: this
displays the options that are available to you at the bottom of your screen:

<SP>[,] replace, [.] rep-end, [n] dont, [!] repl rest <C-G quit
The options are as follows:

Typing a space or a comma will execute the replacement, and move the cursor to the next
occurrence of the old string; in this case, it will replace msg with message, and move the cursor to
the next occurrence of msg.

Typing a period ‘.’ will replace this one occurrence of the old string, and end the search and replace
procedure; in this example, typing a period will replace this one occurrence of msg with message
and end the procedure.

Typing the letter ‘n’ tells MicroEMACS not to replace this instance of the old string, and move to the
next occurrence of the old string; in this case, typing n’ will not replace msg with message, and the
cursor will jump to the next place where msg occurs.

Typing an exclamation point ‘!’ tells MicroEMACS to replace all instances of the old string with the
new string, without checking with you any further. In this example, typing ‘" will replace all
instances of msg with message without further queries from MicroEMACS.

Finally, typing <ctrl-G> aborts the search and replace procedure.
Saving text and exiting

This set of basic editing commands allows you to save your text and exit from the MicroEMACS
program. They are as follows:

<ctrl-X><ctrl-S> Save text
<ctrl-X><ctrl-W> Write text to a new file
<ctrl-Z> Save text and exit
<ctrl-X><ctrl-C> Exit without saving text

Let’s C

MicroEMACS 67

You have used two of these commands already: the save command <ctrl-X><ctrl-S> and the quit
command <ctrl-X><ctrl-C>, which respectively allow you to save text or to exit from MicroEMACS
without saving text. (Commands that begin with <ctrl-X> are called extended commands; they are
used frequently in the advanced editing to be covered in the second half of this tutorial.)

Write text to a new file

<ctrl-X> <ctrl-w> Write text to a new file

If you wish, you may copy the text you are currently editing to a text file other than the one from
which you originally took the text. Do this with the write command <ctrl-X><ctrl-W>.

To test this command, type <ctrl-X><ctrl-W>. MicroEMACS will display the following message on the
bottom of your screen:

Wite file:

MicroEMACS is asking for the name of the file to which you wish to write the text. Type sample.
MicroEMACS will reply:

[Wote 23 lines]

The 23 lines of your text have been copied to a new file called sample. The status line at the bottom
of your screen has changed to read as follows:

-- McroEMACS -- exanmplel.c -- File: sample --------------

The significance of the change in file name will be discussed in the second half of this tutorial.

Before you copy text into a new file, be sure that you have not selected a file name that is already
being used. If you do, whatever is stored under that file name will be erased, and the text created
with MicroEMACS will be stored in its place.

Save text and exit

Finally, the store command <ctrl-Z> will save your text and move you out of the MicroEMACS editor.
To see how this works, watch the bottom line of your terminal carefully and type <ctrl-Z>. The MS-
DOS MicroEMACS has saved your text, and now you can issue commands directly to MS-DOS.

Advanced editing
The second half of this tutorial introduces the advanced features of MicroEMACS.

The techniques described here will help you execute complex editing tasks with minimal trouble.
You will be able to edit more than one text at a time, display more than one text on your screen at a
time, enter a long or complicated phrase repeatedly with only one keystroke, and give commands to
MS-DOS without having to exit from MicroEMACS.

Before beginning, however, you must prepare a new text file. Type the following command to MS-
DOS:

me exanpl e2.c

If you are using the display interface of MWS, the Mark Williams shell, invoke example2.c in the
same way that you invoked examplel.c earlier.

In a moment, example2.c will appear on your screen, as follows:

Let’s C

68 MicroEMACS

Use this programto get better acquainted
with the M croEMACS interactive screen editor.
You can use this text to learn sonme of the
nore advanced editing features of M croEMACS.
/

%k Ok Ok

#i ncl ude <stdio. h>
mai n()

FILE *fp;
int ch;
int filenane[20];

printf("Enter file name: ");
gets(fil enane);

if ((fp =fopen(filenane,"r")) !'=NULL) {
while ((ch = fgetc(fp)) != EOF)
fputc(ch, stdout);

}
el se

printf("Cannot open %.\n", filenane);
fclose(fp);

Arguments

Most of the commands already described in this tutorial can be used with arguments. An argument
is a subcommand that tells MicroEMACS to execute a command a given number of times. With
MicroEMACS, arguments are introduced by typing <ctrl-U>.

Arguments — default values

By itself, <ctrl-U> sets the argument at four. To illustrate this, first type the next line command
<ctrl-N>. By itself, this command moves the cursor down one line, from being over the ‘/’ at the
beginning of line 1, to being over the space at the beginning of line 2.

Now, type <ctrl-U>. MicroEMACS replies with the message:
Arg: 4

Now type <ctrl-N>. The cursor jumps down four lines, from the beginning of line 2 to the letter m of
the word main at the beginning of line 6.

Type <ctrl-U>. The line at the bottom of the screen again shows that the value of the argument is
four. Type <ctrl-U> again. Now the line at the bottom of the screen reads:

Arg: 16
Type <ctrl-U> once more. The line at the bottom of the screen now reads:
Arg: 64

Each time you type <ctrl-U>, the value of the argument is multiplied by four. Type the forward
command <ctrl-F>. The cursor has jumped ahead 64 characters, and is now over the i of the word
file in the printf statement in line 11.

Let’s C

MicroEMACS 69

Selecting values

Naturally, arguments do not have to be powers of four. You can set the argument to whatever
number you wish, simply by typing <ctrl-U> and then typing in the number you want.

For example, type <ctrl-U>, and then type 3. The line at the bottom of the screen now reads:
Arg: 3
Type the delete command <esc>D. MicroEMACS has deleted three words to the right.

Arguments can be used to increase the power of any cursor movement command, or any kill or
delete command. The sole exception is <ctrl-W>, the block kill command.

Deleting with arguments—an exception

Killing and deleting were described in the first part of this tutorial. They were said to differ in that
text that was killed was stored in a special area of the computer and could be yanked back, whereas
text that was deleted was erased outright. However, there is one exception to this rule: any text that
is deleted using an argument can also be yanked back.

Move the cursor to the upper left-hand corner of the screen by typing the begin text command
<esc><. Then, type <ctrl-U> 5 <ctrl-D>. The word Use has disappeared. Move the cursor to the right
until it is between the words better and acquainted, then type <ctrl-Y>. The word Use has been
moved within the line (although the spaces around it have not been moved). This function is very
handy, and should greatly speed your editing.

Remember, too, that unless you move the cursor between one set of deletions and another, the
computer’s storage area will not be erased, and you may yank back a jumble of text.

Buffers and files

Before beginning this section, replace the changed copy of the text on your screen with a fresh copy.
Type the quit command <ctrl-X><ctrl-C> to exit from MicroEMACS without saving the text; then
return to MicroEMACS to edit the file example2.c, as you did earlier.

Now, look at the status line at the bottom of your screen. It should appear as follows:
-- McroEMACS -- exanple2.c -- File: exanple2.¢c --------------

As noted in the first half of this tutorial, the name on the left of the command line is that of the
program. The name in the middle is the name of the buffer with which you are now working, and
the name to the right is the name of the file from which you read the text.

Definitions

A file is a text that has been given a name and has been permanently stored by your computer. A
buffer is a portion of the computer’s memory that has been set aside for you to use, which may be
given a name, and into which you can put text temporarily. You can put text into the buffer by
typing it in from your keyboard or by copying it from a file.

Unlike a file, a buffer is not permanent: if your computer were to stop working (because you turned
the power off, for example), a file would not be affected, but a buffer would be erased.

You must name your files because you work with many different files, and you must have some way
to tell them apart. Likewise, MicroEMACS allows you to name your buffers, because MicroEMACS
allows you to work with more than one buffer at a time.

Let’s C

70 MicroEMACS

File and buffer commands

MicroEMACS gives you a number of commands for handling files and buffers. These include the
following:

<ctrl-X><ctrl- W> Write text to file

<ctrl-X><ctrl-F> Rename file

<ctrl-X><ctrl-R> Replace buffer with named file
<ctrl-X><ctrl-V> Switch buffer or create a new buffer
<ctrl-X>K Delete a buffer

<ctrl-X><ctrl-B> Display the status of each buffer

Write and rename commands

The write command <ctrl-X><ctrl-W> was introduced earlier when the commands for saving text and
exiting were discussed. To review, <ctrl-X><ctrl-W> changes the name of the file into which the text
is saved, and then writes a copy of the text into that file.

Type <ctrl-X><ctrl-W>. MicroEMACS responds by printing
Wite file:

on the last line of your screen.

Type junkfile, then <return>. Two things happen: First, MicroEMACS writes the message
[Wote 21 |ines]

at the bottom of your screen. Second, the name of the file shown on the status line has changed
from example2.c to junlkfile. MicroEMACS is reminding you that your text is now being saved into
the file junkfile.

The file rename command <ctrl-X><ctrl-F> allows you rename the file to which you are saving text,
without automatically writing the text to it. Type <ctrl-X><ctrl-F>. MicroEMACS will reply with the
prompt:

Narme:

Type example2.c and <return>. MicroEMACS does not send you a message that lines were written
to the file; however, the name of the file shown on the status line has changed from junikfile back to
example2.c.

Replace text in a buffer

The replace command <ctrl-X><ctrl-R> allows you to replace the text in your buffer with the text
taken from another file.

Suppose, for example, that you had edited example2.c and saved it, and now wished to edit
examplel.c. You could exit from MicroEMACS, then re-invoke MicroEMACS for the file exampleZ2.c,
but this is cumbersome. A more efficient way is to simply replace the example2.c in your buffer with
examplel.c.

Type <ctrl-X><ctrl-R>. MicroEMACS replies with the prompt:
Read file:

Type examplel.c. Notice that example2.c has rolled away and been replaced with examplel.c. Now,
check the status line. Notice that although the name of the buffer is still example2.c, the name of
the file has changed to examplel.c. You can now edit examplel.c; when you save the edited text,
MicroEMACS will copy it back into the file examplel.c — unless, of course, you again choose to

Let’s C

MicroEMACS 71

rename the file.
Visiting another buffer

The last command of this set, the visit command <ctrl-X><ctrl-V>, allows you to create more than
one buffer at a time, to jump from one buffer to another, and move text between buffers. This
powerful command has numerous features.

Before beginning, however, straighten up your buffer by replacing examplel.c with example2.c. Type
the replace command <ctrl-X><ctrl-R>; when MicroEMACS replies by asking

Read file:
at the bottom of your screen, type exampleZ2.c.
You should now have the file example2.c read into the buffer named exampleZ2.c.
Now, type the visit command <ctrl-X><ctrl-V>. MicroEMACS replies with the prompt
Visit file:

at the bottom of the screen. Now type examplel.c. Several things happen. example2.c rolls off the
screen and is replaced with examplel.c; the status line changes to show that both the buffer name
and the file name are now examplel.c; and the message

[Read 23 |ines]
appears at the bottom of the screen.

This does not mean that your previous buffer has been erased, as it would have been had you used
the replace command <ctrl-X><ctrl-R>. example2.c is still being kept “alive” in a buffer and is
available for editing; however, it is not being shown on your screen at the present moment.

Type <ctrl-X><ctrl-V> again, and when the prompt appears, type example2.c. examplel.c scrolls off
your screen and is replaced by example2.c, and the message

[AOd buffer]
appears at the bottom of your screen. You have just jumped from one buffer to another.
Move text from one buffer to another

The visit command <ctrl-X><ctrl-V> not only allows you to jump from one buffer to another, it
allows you to move text from one buffer to another as well. The following example shows how you
can do this.

First, Kkill the first line of example2.c by typing the kill command <ctrl-K> twice. This removes both
the line of text and the space that it occupied; if you did not remove the space as well the line itself,
no new line would be created for the text when you yank it back. Next, type <ctrl-X><ctrl-V>. When
the prompt

Visit file:

appears at the bottom of your screen, type examplel.c. When examplel.c has rolled onto your
screen, type the yank back command <ctrl-Y>. The line you killed in example2.c has now been
moved into examplel.c.

Checking buffer status

The number of buffers you can use at any one time is limited only by the size of your computer. You
should create only as many buffers as you need to use immediately; this will help the computer run
efficiently.

Let’s C

72 MicroEMACS

To help you keep track of your buffers, MicroEMACS has the buffer status command <ctrl-X><ctrl-
B>. Type <ctrl-X><ctrl-B>. The status line has moved up to the middle of the screen, and the bottom
half of your screen has been replaced with the following display:

C Si ze Lines Buf f er File
* 655 24 exanpl el.c exanpl el.c
* 403 20 exanpl e2. ¢ exanpl e2. ¢

This display is called the buffer status window. The use of windows will be discussed more fully in
the following section.

The letter C over the leftmost column stands for Changed. An asterisk on a line indicates that the
buffer has been changed since it was last saved, whereas a space means that the buffer has not
been changed. Size indicates the buffer’s size, in number of characters; Buffer lists the buffer name,
and File lists the file name.

Now, kill the second line of examplel.c by typing the kill command <ctrl-K>. Then type <ctrl-X><ctrl-
B> once again. The size of the buffer examplel.c has been reduced from 657 characters to 595 to
reflect the decrease in the size of the buffer.

To make this display disappear, type the one window command <ctrl-X>1. This command will be
discussed in full in the next section.

Renaming a buffer

One more point must be covered with the visit command. MS-DOS will not allow you to have more
than one file with the same name. For the same reason, MicroEMACS will not allow you to have
more than one buffer with the same name.

Ordinarily, when you visit a file that is not already in a buffer, MicroEMACS will create a new buffer
and give it the same name as the file you are visiting. However, if for some reason you already have
a buffer with the same name as the file you wish to visit, MicroEMACS will stop and ask you to give
a new, different name to the buffer it is creating.

For example, suppose that you wanted to visit a new file named sample, but you already had a
buffer named sample. MicroEMACS would stop and give you this prompt at the bottom of the
screen:

Buf f er nane:

You would type in a name for this new buffer. This name could not duplicate the name of any
existing buffer. MicroEMACS would then read the file sample into the newly named buffer.

Delete a buffer

If you wish to delete a buffer, simply type the delete buffer command <ctrl-X>K. This command will
allow you to delete only a buffer that is hidden, not one that is being displayed.

Type <ctrl-X>K. MicroEMACS will give you the prompt:
Kill buffer:

Type example2.c. Because you have changed the buffer, MicroEMACS asks:
Di scard changes [y/n]?

Type y. Then type the buffer status command <ctrl-X><ctrl-B>; the buffer status window will no
longer show the buffer example2.c. Although the prompt refers to killing a buffer, the buffer is in
fact deleted and cannot be yanked back.

Windows

Let’s C

MicroEMACS 73

Before beginning this section, it will be necessary to create a new text file. Exit from MicroEMACS by
typing the quit command <ctrl-X><ctrl-C>; then reinvoke MicroEMACS for the text file examplel.c
as you did earlier.

Now, copy example2.c into a buffer by typing the visit command <ctrl-X><ctrl-V>. When the message
Visit file:

appears at the bottom of your screen, type example2.c. MicroEMACS will read example2.c into a
buffer, and show the message

[Read 21 lines]
at the bottom of your screen.

Finally, copy a new text, called example3.c, into a buffer. Type <ctrl-X><ctrl-V> again. When
MicroEMACS asks which file to visit, type example3.c. The message

[Read 123 lines]
will appear at the bottom of your screen.
The first screenful of text will appear as follows:

/
Factor prints out the prine factorization of nunbers.
If there are any argunents, then it factors these. |If
there are no argunments, then it reads stdin until
either EOF or the nunber zero or a non-nuneric
non-whi t e-space character. Since factor does all of
its calculations in double format, the |argest nunber
* which can be handled is quite |arge.

*/

#i ncl ude <stdio. h>

#i ncl ude <mat h. h>

#i ncl ude <ctype. h>

* %k ok ok % ok

#define NUL '\ 0O’
#define ERROR 0x10 /* |l argest input base */
#defi ne MAXNUM 200 /* nax nunber of chars in nunber */

mai n(argc, argv)

int argc;

regi ster char *argv[];

-- McroEMACS -- exanple3.c -- File: exanple3.c --------------

At this point, example3.c is on your screen, and examplel.c and example2.c are hidden.

You could edit first one text and then another, while remembering just how things stood with the
texts that were hidden; but it would be much easier if you could display all three texts on your
screen simultaneously. MicroEMACS allows you to do just that by using windows.

Creating windows and moving between them

A window is a portion of your screen that is set aside and can be manipulated independently from
the rest of the screen. The following commands let you create windows and move between them:

Let’s C

74 MicroEMACS

<ctrl-X>2 Create a window
<ctrl-X>1 Delete extra windows
<ctrl-X>N Move to next window
<ctrl-X>P Move to previous window

The best way to grasp how a window works is to create one and work with it. To begin, type the
create a window command <ctrl-X>2.

Your screen is now divided into two parts, an upper and a lower. The same text is in each part, and
the command lines give example3.c for the buffer and file names. Also, note that you still have only
one cursor, which is in the upper left-hand corner of the screen.

The next step is to move from one window to another. Type the next window command <ctrl-X>N.
Your cursor has now jumped to the upper left-hand corner of the lower window.

Type the previous window command <ctrl-X>P. Your cursor has returned to the upper left-hand
corner of the top window.

Now, type <ctrl-X>2 again. The window on the top of your screen is now divided into two windows,
for a total of three on your screen. Type <ctrl-X>2 again. The window at the top of your screen has
again divided into two windows, for a total of four.

It is possible to have as many as 11 windows on your screen at one time, although each window will
show only the control line and one or two lines of text. Neither <ctrl-X>2 nor <ctrl-X>1 can be used
with arguments.

Now, type the one window command <ctrl-X>1. All of the extra windows have been eliminated, or
closed.

Enlarging and shrinking windows

When MicroEMACS creates a window, it divides the window in which the cursor is positioned into
half. You do not have to leave the windows at the size MicroEMACS creates them, however. If you
wish, you may adjust the relative size of each window on your screen, using the enlarge window
and shrink window commands:

<ctrl-X>Z Enlarge window
<ctrl-X><ctrl-Z> Shrink window

To see how these work, first type <ctrl-X>2 twice. Your screen is now divided into three windows: two
in the top half of your screen, and the third in the bottom half.

Now, type the enlarge window command <ctrl-X>Z. The window at the top of your screen is now one
line bigger: it has borrowed a line from the window below it. Type <ctrl-X>Z again. Once again, the
top window has borrowed a line from the middle window.

Now, type the next window command <ctrl-X>N to move your cursor into the middle window. Again,
type the enlarge window command <ctrl-X>Z. The middle window has borrowed a line from the
bottom window, and is now one line larger.

The enlarge window command <ctrl-X>Z allows you to enlarge the window your cursor is in by
borrowing lines from another window, provided that you do not shrink that other window out of
existence. Every window must have at least two lines in it: one command line and one line of text.

The shrink window command <ctrl-X><ctrl-Z> allows you to decrease the size of a window. Type
<ctrl-X><ctrl-Z>. The present window is now one line smaller, and the lower window is one line larger
because the line borrowed earlier has been returned.

Let’s C

MicroEMACS 75

The enlarge window and shrink window commands can also be used with arguments introduced
with <ctrl-U>. However, remember that MicroEMACS will not accept an argument that would shrink
another window out of existence.

Displaying text within a window

Displaying text within the limited area of a window can present special problems. The view
commands <ctrl-V> and <esc>V will roll window-sized portions of text up or down, but you may
become disoriented when a window shows only four or five lines of text at a time. Therefore, three
special commands are available for displaying text within a window:

<ctrl-X><ctrl-N> Scroll down
<ctrl-X><ctrl-P> Scroll up
<esc>! Move within window

Two commands allow you to move your text by one line at a time, or scroll it: the scroll up
command <ctrl-X><ctrl-N>, and the scroll down command <ctrl-X><ctrl-P>.

Type <ctrl-X><ctrl-N>. The line at the top of your window has vanished, a new line has appeared at
the bottom of your window, and the cursor is now at the beginning of what had been the second line
of your window.

Now type <ctrl-X><ctrl-P>. The line at the top that had vanished earlier has now returned, the cursor
is at the beginning of it, and the line at the bottom of the window has vanished. These commands
allow you to move forward in your text slowly so that you do not become disoriented.

Both of these commands can be used with arguments introduced by <ctrl-U>.

The third special movement command is the move within window command <esc>!. This command
moves the line your cursor is on to the top of the window.

To try this out, move the cursor down three lines by typing <ctrl-U>3<ctrl-N>, then type <esc>!. (Be
sure to type an exclamation point ‘', not a numeral one ‘1’, or nothing will happen.) The line to
which you had moved the cursor is now the first line in the window, and three new lines have
scrolled up from the bottom of the window. You will find this command to be very useful as you
become more experienced at using windows.

All three special movement commands can also be used when your screen has no extra windows,
although you will not need them as much.

One buffer

Now that you have been introduced to the commands for manipulating windows, you can begin to
use windows to speed your editing.

To begin with, scroll up the window you are in until you reach the top line of your text. You can do
this either by typing the scroll up command <ctrl-X><ctrl-P> several times, or by typing <esc><.

Kill the first line of text with the kill command <ctrl-K>. The first line of text has vanished from all
three windows. Now, type <ctrl-Y> to yank back the text you just killed. The line has reappeared in
all three windows.

The main advantage to displaying one buffer with more than one window is that each window can
display a different portion of the text. This can be quite helpful if you are editing or moving a large
text.

To demonstrate this, do the following: First, move to the end of the text in your present window by
typing the end of text command <esc>>, then typing the previous line command <ctrl-P> four times.
Now, kill the last four lines.

Let’s C

76 MicroEMACS

You could move the killed lines to the beginning of your text by typing the beginning of text
command <esc><; however, it is more convenient simply to type the next window command <ctrl-
X>N, which will move you to the beginning of the text as displayed in the next window. MicroEMACS
remembers a different cursor position for each window.

Now yank back the four killed lines by typing <ctrl-Y>. You can simultaneously observe that the
lines have been removed from the end of your text and that they have been restored at the
beginning.

Multiple buffers

Windows are especially helpful when they display more than one text. Remember that at present
you are working with three buffers, named examplel.c, example2.c, and example3.c, although your
screen is displaying only example3.c. To display a different text in a window, use the switch buffer
command <ctrl-X>B.

Type <ctrl-X>B. When MicroEMACS asks
Use buffer:

at the bottom of the screen, type examplel.c. The text in your present window will be replaced with
examplel.c. The command line in that window has changed, too, to reflect the fact that the buffer
and the file names are now examplel.c.

Moving and copying text among buffers

It is now very easy to copy text among buffers. To see how this is done, first kill the first line of
examplel.c by typing the <ctrl-K> command twice. Yank back the line immediately by typing <ctrl-
Y>. Remember, the line you killed has not been erased from its special storage area, and may be
yanked back any number of times.

Now, move to the previous window by typing <ctrl-X>P, then yank back the killed line by typing <ctrl-
Y>. This technique can also be used with the block kill command <ctrl-W> to move large amounts of
text from one buffer to another.

Checking buffer status

The buffer status command <ctrl-X><ctrl-B> can be used when you are already displaying more
than one window on your screen.

When you want to remove the buffer status window, use either the one window command <ctrl-X>1,
or move your cursor into the buffer status window using the next window command <ctrl-X>N and
replace it with another buffer by typing the switch buffer command <ctrl-X>B.

Saving text from windows

The final step is to save the text from your windows and buffers. Close the lower two windows with
the one window command <ctrl-X>1. Remember, when you close a window, the text that it
displayed is still kept in a buffer that is hidden from your screen. For now, do not save any of these
altered texts.

When you use the save command <ctrl-X><ctrl-S>, only the text in the window in which the cursor
is positioned will be written to its file. If only one window is displayed on the screen, the save
command will save only its text.

If you made changes to the text in another buffer, such as moving portions of it to another buffer,
MicroEMACS will ask

Qit [y/n]:

If you answer ‘m’, MicroEMACS will save the contents of the buffer you are currently displaying by
writing them to your disk, but it will ignore the contents of other buffers, and your cursor will be

Let’s C

MicroEMACS 77

returned to its previous position in the text. If you answer 'y’, MicroEMACS again will save the
contents of the current buffer and ignore the other buffers, but you will exit from MicroEMACS and
return to MS-DOS. Exit from MicroEMACS by typing the quit command <ctrl-X><ctrl-C>.

Keyboard macros
Another helpful feature of MicroEMACS is that it allows you to create a keyboard macro.
Before beginning this section, reinvoke MicroEMACS to edit example3.c as you did earlier.

The term macro means a number of commands or characters that are bundled together under a
common name. Although MicroEMACS allows you to create only one macro at a time, this macro
can consist of a common phrase or a common command or series of commands that you use
while editing your file.

Keyboard macro commands

The keyboard macro commands are as follows:

<ctrl-X>(Begin macro collection
<ctrl-X>) End macro collection
<ctrl-X>E Execute macro

To begin to create a macro, type the begin macro command <ctrl-X>(. Be sure to type an open
parenthesis ‘(’, not a numeral ‘9’. MicroEMACS will reply with the message

[Start macro]
Type the following phrase:
MAXNUM

Then type the end macro command <ctrl-X>). Be sure you type a close parenthesis ‘), not a numeral
‘0’. MicroEMACS will reply with the message

[End nacr o]

Move your cursor down two lines and execute the macro by typing the execute macro command
<ctrl-X>E. The phrase you typed into the macro has been inserted into your text.

Should you give these commands in the wrong order, MicroEMACS will warn you that you are
making a mistake. For example, if you open a keyboard macro by typing <ctrl-X>(, and then attempt
to open another keyboard macro by again typing <ctrl-X>(, MicroEMACS will say:

Not now

Should you accidentally open a keyboard macro, or enter the wrong commands into it, you can
cancel the entire macro simply by typing <ctrl-G>.

Replacing a macro

To replace this macro with another, go through the same process. Type <ctrl-X>(. Then type the
buffer status command <ctrl-X><ctrl-B>, and type <ctrl-X>). Remove the buffer status window by
typing the one window command <ctrl-X>1.

Now execute your keyboard macro by typing the execute macro command <ctrl-X>E. The buffer
status command has executed once more.

Whenever you exit from MicroEMACS, your keyboard macro is erased, and must be retyped when
you return.

Sending commands to MS-DOS

Let’s C

78 MicroEMACS

The only remaining command you need to learn is the program interrupt command <ctrl-X>!. This
command allows you to interru