

I created this PDF version of the csd C Source Debugger manual in October 2020 using my
1987 hard copy and archived Mark Williams Company documentation sources. The pages at
the beginning and end (cover, Registration Form, title page, User Reaction Report, Other
Products, Order Form, Software License Agreement, back cover) are scans of my hard copy. The
remaining sections were regenerated from the archived sources using the COHERENT version of
troff. The reconstructed manual has not been carefully proofread.

This material was originally  1987 by Mark Williams Company. This PDF is posted with the
kind permission of Robert Swartz (founder and president of MWC), the current copyright holder.

Stephen Ness
10/19/2020

Table of Contents

Introduction . 1
What is Let’s C? . 1
Hardware requirements . 1
Changes in release 4.0 . 1
How to use this manual . 2
User registration and reaction report . 3
Technical support. 3
Bibliography . 3

i8086/MS-DOS information. 5
Installing and Running Let’s C . 7

Installing Let’s C . 7
Installing Let’s C onto a hard disk . 7
Installing Let’s C onto a floppy-disk system . 8
Re-installing a portion of Let´s C . 10

Setting your computer´s environment . 10
Setting the PATH . 10
Finding the ccargs file . 11
Editing ccargs . 11

Using MWS, the Let’s C command interface . 12
Editing a file . 13
Simple compiling . 15
Running a program. 18
Quick DOS and !DOS options. 19
Using the make programming discipline . 19
Using csd, the C source debugger . 21
Resetting the buffers . 22
Where to go from here . 25

C for Beginners. 27
Programming languages and C . 27

Assembly and high-level languages . 27
So, what is C? . 28
Structured programming . 28
Compiling a C program . 29
Writing a C program . 29

A sample C programming session . 30
Designing a program . 30
The main function . 31
Opening a file and showing text . 32
Accepting file names . 34
Error checking. 35
Print a portion of a file . 37
Checking for the end of file . 39
Polling the keyboard . 40
For more information. 42

Where to go from here . 42
Compiling with Let’s C . 43

The phases of compilation. 43
Edit errors automatically . 43
Renaming executable files . 44

i

ii The COHERENT System

Floating-point numbers . 44
Compiling multiple source files . 45
Wildcards. 45
Tailoring the command line interface . 46
Linking without compiling. 46
Compiling without linking . 47
Mini-make option . 47
Assembly-language files . 47
Changing the size of the stack . 48
i8086 memory models . 48
Debugging information. 49
i8087 programs . 49
Options passed to MS-LINK . 49
Compiling programs without STDIO . 50
Using default options. 50
Where to go from here . 51

Introduction to MicroEMACS . 53
What is MicroEMACS? . 53
Keystrokes — <ctrl>, <esc> . 53
Becoming acquainted with MicroEMACS . 53

Beginning a document . 54
Moving the Cursor . 55

Moving the cursor forward. 56
Moving the cursor backward . 56
From line to line. 56
Moving up and down by a screenful of text . 57
Moving to beginning or end of text . 57
Saving text and quitting . 57

Killing and deleting . 57
Deleting versus killing . 58
Erasing text to the right . 58
Erasing text to the left . 59
Erasing lines of text . 59
Yanking back (restoring) text . 59
Quitting . 59

Block killing and moving text . 60
Moving one line of text . 60
Multiple copying of killed text. 60
Kill and move a block of text . 60

Capitalization and other tools. 61
Capitalization and lowercasing . 61
Transpose characters. 62
Screen redraw . 62
Return indent . 62
Word wrap . 63

Search and Reverse Search . 64
Search forward . 64
Reverse search . 65
Cancel a command . 65
Search and replace . 66

Saving text and exiting. 66
Write text to a new file . 67
Save text and exit . 67

CONTENTS

The COHERENT System iii

Advanced editing . 67
Arguments . 68

Arguments — default values . 68
Selecting values . 69
Deleting with arguments—an exception. 69

Buffers and files. 69
Definitions . 69
File and buffer commands. 70
Write and rename commands. 70
Replace text in a buffer . 70
Visiting another buffer . 71
Move text from one buffer to another . 71
Checking buffer status. 71
Renaming a buffer . 72
Delete a buffer. 72

Windows . 72
Creating windows and moving between them . 73
Enlarging and shrinking windows . 74
Displaying text within a window . 75
One buffer . 75
Multiple buffers . 76
Moving and copying text among buffers. 76
Checking buffer status. 76
Saving text from windows . 76

Keyboard macros . 77
Keyboard macro commands. 77
Replacing a macro . 77

Sending commands to MS-DOS . 77
Compiling and debugging through MicroEMACS . 78
The MicroEMACS help facility . 79

Where to go from here . 79
make Programming Discipline . 81

How does make work? . 81
Try make . 82

Essential make . 83
The makefile . 83
Building a simple makefile . 84
Comments and macros. 84
Setting the time . 85

Building a large program . 85
Command line options . 86
Other command line features . 86

Advanced make . 87
Default rules. 87
Double-colon target lines . 88
Alternative uses . 89
Special targets. 90
Errors. 90
Exit status . 90

Where to go from here . 90
Questions and Answers. 91

Programming problems . 91
Problems with running programs . 95

CONTENTS

iv The COHERENT System

Limitations in i8086 . 96
Error Messages . 97
The Lexicon. 115

example. Give an example of Mark Williams Lexicon format. 117
! Logical negation operator . 118
!= Inequality operator . 118
’’ String literal character . 118
. String-ize operator . 119
. Token-pasting operator . 120
#define Define an identifier as a macro 121
#elif Include code conditionally. 123
#else Include code conditionally. 123
#endif End conditional inclusion of code 124
#error Error directive . 124
#if Include code conditionally. 124
#ifdef Include code conditionally. 125
#ifndef Include code conditionally. 125
#include Read another file and include it 126
#line. Reset line number . 127
#pragma Perform implementation-defined task 127
#undef Undefine a macro . 128
% Remainder operator. 128
%=. Remainder assignment operator 129
&. 129
&&. Logical AND operator. 130
&= Bitwise-AND assignment operator 130
() . 130
* . 131
*/ . 132
*= Multiplication assignment operator 132
+ . 132
++ Increment operator . 133
+= Addition assignment operator. 134
, . 134
- . 135
--. Decrement operator. 136
-= Subtraction assignment operator. 136
-> Select a member . 136
. Member selection . 137
/ Division operator . 138
/* . 138
/= Division assignment operator . 138
: . 139
; . 139
< Less-than operator . 139
<< Bitwise left-shift operator . 139
<<= Bitwise left-shift assignment operator 140
<= Less-than or equal-to operator 140
= Assignment operator . 141
== Equality operator . 141
> Greater-than operator . 142
>= Greater-than or equal-to operator 142
>> Bitwise right-shift operator . 143

CONTENTS

The COHERENT System v

>>= Bitwise right-shift assignment operator 144
?: Conditional operator . 144
[] Array subscript operator. 145
^ Bitwise exclusive OR operator 146
^= Bitwise exclusive-OR assignment operator 147
_ _DATE_ _ Date of translation . 147
__end . 147
_ _FILE_ _ Source file name . 148
_ _LINE_ _ Current line within a source file 148
_ _STDC_ _ Mark a conforming translator. 148
_ _TIME_ _ Time source file is translated . 149
_exit() Terminate a program . 149
_tolower() Convert letter to lower case . 149
_toupper() Convert letter to upper case. 150
_zero(). Zero a block of memory . 151
{} . 151
| Bitwise inclusive OR operator. 151
|= Bitwise inclusive-OR assignment operator 152
|| Logical OR operator. 152
~ Bitwise complement operator . 153
abort(). End program immediately . 154
abs(). Compute the absolute value of an integer. 154
access() Check if a file can be accessed in a given mode 155
access.h Define manifest constants used by access(). 156
access checking . 157
acos() Calculate inverse cosine . 157
address . 157
alias. 158
alien. Name a non-standard function 158
alignment . 159
arena . 159
argc . 160
argument. 160
argv . 160
array declarators . 161
as i8086 assembler. 161
ASCII . 177
asctime() Convert broken-down time to text 180
asin() Calculate inverse sine . 181
assert() Check assertion at run time. 181
assert.h. Header for assertions. 182
atan() Calculate inverse tangent . 182
atan2() Calculate inverse tangent . 183
atexit() Register a function to be performed at exit 183
atof() Convert string to floating-point number. 184
atoi(). Convert string to integer . 185
atol(). Convert string to long integer . 185
auto Automatic storage duration . 186
aux Logical device for serial port. 186
behavior . 187
BIOS . 187
bios.h Outline ROM BIOS data area . 188
bit . 188

CONTENTS

vi The COHERENT System

bit-fields . 188
bit map . 189
block . 189
break Exit unconditionally from loop or switch 190
bsearch() Search an array . 190
byte . 192
byte ordering. Describe order of bytes. 192
cabs() Complex absolute value function. 194
calloc() Allocate and clear dynamic memory 194
case Mark entry in switch table. 194
cc Compiler controller . 195
cc0 . 200
cc1 . 200
cc2 . 200
cc3 . 200
CCTAIL Variables at end of compilation command 201
ceil() Integral ceiling. 201
char . 201
character constant . 202
character display semantics. 202
character handling . 203
clearerr() Clear a stream´s error indicator 204
CLK_TCK . 205
clock(). Get processor time used . 205
clock_t System time . 206
close() Close a file . 206
cmp Compare bytes of two files. 207
commands . 207
comment . 208
compatible types . 208
compile . 209
compliance. 209
con Logical device for the console . 210
const Qualify an identifier as not modifiable. 210
constant expressions. 210
constants. 212
continue Force next iteration of a loop . 212
conversions . 213
cos() Calculate cosine. 215
cosh() Calculate hyperbolic cosine . 215
cpp C preprocessor . 215
creat() Create/truncate a file . 216
csreg(). Get value from CS register. 216
ctime() Convert calendar time to text . 217
ctype.h Header for character-handling functions 218
daemon. 219
date and time . 219
dayspermonth() Return number of days in a given month 220
DBL_DIG . 220
decimal-point character . 220
declarations . 221
declarators . 221
default Default entry in switch table . 222

CONTENTS

The COHERENT System vii

defined Check if identifier is defined. 222
definition . 223
Definitions . 223
diagnostics. 225
difftime() Calculate difference between two times 225
digit . 226
directory . 226
div() Perform integer division . 226
div_t. Type returned by div() . 227
do Loop construct . 227
dos.h Define MS-DOS functions and devices 228
DOS-specific features . 228
double . 228
dsreg(). Get value from DS segment register 229
dup() Duplicate a file descriptor . 229
dup2(). Duplicate a file descriptor . 229
ecvt() Convert floating-point numbers to strings 231
egrep Extended pattern search. 231
else Conditionally execute a statement 233
enum Enumerated data type . 234
enumeration constant . 235
environmental variable. 235
envp. Argument passed to main . 235
EOF Indicate end of a file . 236
errno External integer that holds error status. 236
errno.h Define errno and error codes . 237
escape sequences . 237
esreg(). Get value from ES segment register 238
exargs() Get and parse a command line 238
exception . 240
execall() Execute a subprogram . 240
executable file . 241
exit(). Terminate a program gracefully. 241
explicit conversion . 242
extended character handling . 243
extended time . 243
extern. External linkage. 244
external definitions . 244
external name . 244
fabs() Compute absolute value . 246
false . 246
fclose() Close a stream. 246
fcvt(). Convert floating-point numbers to strings 247
fdopen(). Open a stream for standard I/O 247
feof(). Examine a stream´s end-of-file indicator 248
ferror() Examine a stream´s error indicator 249
fflush() Flush output stream´s buffer . 250
fgetc() Read a character from a stream 250
fgetpos() Get value of file-position indicator 251
fgets() Read a line from a stream . 252
fgetw(). Read integer from stream . 253
field . 254
file . 255

CONTENTS

viii The COHERENT System

file descriptor . 256
FILENAME_MAX Maximum length of file name . 256
fileno() Get file descriptor . 256
float . 257
float.h. 260
floating constant . 262
floor() Numeric floor . 262
fmod Calculate modulus for floating-point number 263
fopen() Open a stream for standard I/O 263
for Loop construct . 265
fpos_t Encode current position in a file 265
fprintf() Print formatted text into a stream 266
fputc(). Write a character into a stream. 267
fputs(). Write a string into a stream . 268
fputw() Write an integer to a stream. 268
fread() Read data from a stream. 268
free(). Deallocate dynamic memory . 269
freopen() Re-open a stream . 270
frexp() Fracture floating-point number. 271
fscanf() Read and interpret text from a stream. 271
fseek(). Set file-position indicator . 273
fsetpos(). Set file-position indicator . 274
ftell(). Get value of file-position indicator 275
function . 275
function call . 276
function declarators . 282
function definition . 282
function designator. 283
function prototype . 283
fwrite() Write data into a stream . 285
gcvt() Convert floating-point numbers to strings 286
general utilities . 286
getc() Read a character from a stream 287
getchar() Read a character from the standard input stream. 287
getenv() Read environmental variable . 288
gets() Read a string from the standard input stream 289
getw() Read word from file stream . 290
gmtime() Convert calendar time to universal coordinated time 290
goto Unconditionally jump within a function. 291
header . 293
header names . 294
hypot() Compute hypotenuse of right triangle 294
i8086 support . 295
i8087 Floating-point co-processor . 295
identifiers . 296
if Conditionally execute an expression. 297
implicit conversions . 298
inb() Read from a port . 298
INCDIR Directory that holds include files 298
index() Find a character in a string . 299
initialization . 299
int . 302
intcall() Call MS-DOS interrupt. 303

CONTENTS

The COHERENT System ix

integer constant. 304
internal name . 305
interrupt . 305
isalnum() Check if a character is a numeral or letter 305
isalpha() Check if a character is a letter 306
isascii() Check if a character is an ASCII character 306
iscntrl() Check if a character is a control character 306
isdigit() Check if a character is a numeral 307
isgraph() Check if a character is printable 307
islower(). Check if a character is a lower-case letter. 307
isprint() Check if a character is printable 308
ispunct() Check if a character is a punctuation mark 308
isspace() Check if character is white space. 309
isupper() Check if a character is an upper-case letter 309
isxdigit() Check if a character is a hexadecimal numeral 310
j0(). Compute Bessel function . 311
j1(). Compute Bessel function . 312
jday_to_time() Convert Julian date to system time 312
jday_to_tm() Convert Julian date to system calendar format 312
jmp_buf. Type used with non-local jumps 313
jn(). Compute Bessel function . 313
keywords . 315
label. 316
labs() Compute the absolute value of a long integer 316
Language. 316
LARGE model Intel multi-segment memory model 319
LC_ALL All locale information. 319
LC_COLLATE Locale collation information. 320
LC_CTYPE Locale character-handling information 321
LC_MONETARY Locale monetary information . 321
LC_NUMERIC Locale numeric information . 321
LC_TIME Locale time information . 322
lconv Hold monetary conversion information 322
ldexp(). Load floating-point number . 324
ldiv(). Perform long integer division . 325
ldiv_t Type returned by ldiv() . 325
lexical elements . 326
Lexicon . 326
libcxs87.lib. Standard library, SMALL model/i8087 only 327
libm . 327
LIBPATH Directories that hold libraries. 327
limits.h . 328
link . 329
linkage . 329
locale.h Localization functions and macros. 330
localeconv(). Initialize lconv structure . 331
localization. 331
localtime() Convert calendar time to local time 334
log() Compute natural logarithm . 335
log10() Compute common logarithm . 336
long double . 336
long int . 337
longjmp() Execute a non-local jump . 337

CONTENTS

x The COHERENT System

lseek() Set read/write position. 338
lvalue . 339
main . 341
main Introduce program´s main function 341
make Program building discipline . 342
malloc() Allocate dynamic memory . 345
manifest constant. 345
math.h Header for mathematics functions 346
mathematics. 346
maxmem . 347
mblen() Return length of a string of multibyte characters 347
mbstowcs() Convert sequence of multibyte characters to wide characters . 348
mbtowc() Convert a multibyte character to a wide character 348
me. MicroEMACS screen editor . 349
member. 355
memchr() Search a region of memory for a character 356
memcmp() Compare two regions . 357
memcpy() Copy one region of memory into another 358
memmove(). Copy region of memory into area it overlaps 359
memset() Fill an area with a character . 360
mktemp() Generate a temporary file name 360
mktime() Turn broken-down time into calendar time 361
model . 362
modf() Separate floating-point number. 362
mtype.h. List processor code numbers . 363
multibyte characters . 363
name space . 366
nested comments . 367
nm. Print a program´s symbol table 367
nondigit. 368
non-local jumps. 368
notmem() Check if memory is allocated . 369
null directive. Directive that does nothing . 369
null pointer constant. 369
null statement. 370
numerical limits. 370
nybble . 370
object . 371
object definition . 371
object format. 372
object types . 372
obsolescent . 372
open() Open a file . 372
operating system devices . Logical devices for system peripherals. 374
operators . 374
ordinary identifier. 375
outb() Write to a port . 376
parameter . 377
PATH Directories that hold executable files 377
path() Build a path name for a file . 377
path.h. Declare path() . 378
pattern . 379
peek() Extract a word from memory . 379

CONTENTS

The COHERENT System xi

peekb() Extract a byte from memory. 379
perror() Write error message into standard error stream 380
picture() Format numbers under mask. 381
pnmatch() Match string pattern . 382
pointer . 383
pointer declarators . 386
poke() Insert a word into memory . 386
pokeb() Insert a byte into memory . 387
port . 387
portability . 387
pow() Raise one number to the power of another 388
pr Paginate and print files . 389
preprocessing numbers . 389
printf() Format and print text into the standard output stream 390
prn MS-DOS logical device for parallel port 396
process . 397
program startup. 397
program termination . 397
pun . 397
punctuators . 398
putc() Write a character into a stream. 398
putchar() Write a character into the standard output stream 399
puts() Write a string into the standard output stream 400
putw() Write word to stream . 400
qsort() Sort an array . 402
raise() Send a signal . 403
rand() Generate pseudo-random numbers 404
random access. 405
read() Read from a file . 405
read-only memory. 406
realloc() Reallocate dynamic memory. 406
record. 407
register Quick access required . 407
register . 408
remove() Remove a file. 408
rename() Rename a file . 409
return. Return to calling function . 409
rewind(). Reset file-position indicator . 410
rindex() Find a character in a string . 411
runtime startup . 411
rvalue . 412
sbrk() Increase a program´s data space 413
scanf(). Read and interpret text from standard input stream 413
scope . 416
sequence point . 418
setbuf() Set alternative stream buffer . 418
setjmp() Save environment for non-local jump 419
setjmp.h Declarations for non-local jump 419
setlocale(). Set or query a program´s locale. 420
setvbuf() Set alternative stream buffer . 421
shellsort(). Sort arrays in memory . 422
short int . 422
side effect. 423

CONTENTS

xii The COHERENT System

sig_atomic_t Type that can be updated despite signals 423
signal() Set processing for a signal. 423
signal.h. Signal-handling routines . 424
signal handling . 425
signals/interrupts . 426
signed. 431
signed char . 432
sin() Calculate sine . 432
sinh() Calculate hyperbolic sine . 433
size Print the size of an object module 433
sizeof . 434
SMALL model Intel single-segment memory model 434
source file . 435
sprintf() Print formatted text into a string 435
sqrt() Calculate the square root of a number 436
srand() Seed pseudo-random number generator 437
sscanf() Read and interpret text from a string 438
stack . 440
Standard . 440
standard error . 440
standard input . 441
standard output. 441
stat() Find file attributes . 441
stat.h Definitions and declarations to obtain file status 443
statements . 443
static Internal linkage . 444
stdarg.h. Header for variable numbers of arguments 444
stderr Pointer to standard error stream 444
stdin Pointer to standard input stream. 445
STDIO. Standard input and output . 445
stdio.h Declarations and definitions for STDIO 447
stdlib.h General utilities . 447
stdout. Pointer to standard output stream. 449
stime() Set the operating system time 449
storage-class specifiers. 450
storage duration. 450
strcat() Append one string onto another 451
strchr() Find a character in a string . 451
strcmp(). Compare two strings . 453
strcoll() Compare two strings, using locale-specific information. 453
strcpy() Copy one string into another . 454
strcspn() Return length a string excludes characters in another 454
stream . 455
strerror() Translate an error number into a string. 456
strftime() Format locale-specific time . 457
string.h . 458
string handling . 459
string literal . 460
strip Strip debug table from executable file 460
strlen() Measure the length of a string 461
strncat() Append n characters of one string onto another 461
strncmp() Compare one string with a portion of another 462
strncpy() Copy one string into another . 463

CONTENTS

The COHERENT System xiii

strpbrk() Find first occurrence of a character from another string 465
strrchr(). Search for rightmost occurrence of a character in a string. . . 466
strspn() Return length a string includes characters in another 467
strstr() Find one string within another 468
strtod() Convert string to floating-point number. 469
strtok() Break a string into tokens. 470
strtol(). Convert string to long integer . 471
strtoul() Convert string to unsigned long integer 472
struct . 474
strxfrm() Transform a string . 475
swab(). Swap a pair of bytes . 475
switch. Select an entry in a table . 476
system(). Suspend a program and execute another 477
tag. 478
tail. Print the end of a file . 478
tan() Calculate tangent . 478
tanh() Calculate hyperbolic tangent . 479
technical information. 479
tempnam() Generate a unique name for a temporary file. 479
time() Get current calendar time . 480
time Print current time/Time execution of a command. 480
time.h. Header for date and time . 481
time_t Calendar time . 481
time_to_jday() Convert system time to Julian date 482
TIMEZONE. Time zone information . 482
tm Encode broken-down time. 484
tm_to_jday() Convert calendar format to Julian time 484
TMPDIR. Directory that holds temporary files 485
tmpfile(). Create a temporary file . 485
tmpnam(). Generate a unique name for a temporary file. 488
toascii() Convert characters to ASCII. 489
token . 490
tolower() Convert character to lower case 491
toupper() Convert character to upper case 492
translation unit . 493
trigraph sequences . 493
true . 494
typedef Synonym for another type . 494
type qualifier. 494
types . 495
type specifier. 498
ungetc(). Push a character back into the input stream. 500
union . 501
universal coordinated time . 502
unlink() Remove a file. 503
unsigned . 504
unsigned char . 504
unsigned int . 504
unsigned long int . 505
unsigned short int . 505
va_arg() Return pointer to next argument in argument list. 506
va_end(). Tidy up after traversal of argument list 506
va_list. Type used to handle argument lists of variable length 507

CONTENTS

xiv The COHERENT System

va_start() Point to beginning of argument list 507
value preserving. 508
variable arguments . 508
vfprintf() Print formatted text into stream 509
void Empty type. 511
void expression . 513
volatile Qualify an identifier as frequently changing 513
vprintf() Print formatted text into standard output stream 513
vsprintf() Print formatted text into string 514
wc Count words, lines, and characters in files 516
wcstombs() Convert sequence of wide characters to multibyte characters . 516
wctomb() Convert a wide character to a multibyte character 517
while Loop construct . 517
wildcards. 518
write() Write into a file . 518
xctype.h . 519
XOFF . 519
XON. 519
xtime.h . 519

Appendix . 521

CONTENTS

Introduction

Congratulations on choosing Let’s C, the Mark Williams C compiler for the IBM PC and
compatibles. Let’s C has the state-of-the-art power and flexibility that the professional programmer
needs, but is easy enough for the beginner to learn quickly.

Let’s C is part of the Mark Williams Company family of C compilers, which supports many different
operating systems and processors. The operating systems supported include:

COHERENT MS-DOS TOS
CP/M-68K RMX VAX/VMS
ISIS-II

The processors supported include:

PDP-11 68000 80186
Z8001 68020 80286
Z8002 8086

What is Let’s C?
Let’s C is a professional C programming system designed for the IBM PC and compatibles. It
consists of the following:

• The Mark Williams C compiler, plus an assembler, a preprocessor, and other tools.

• A set of commands selected from the COHERENT operating system, including the MicroEMACS
screen editor and the make programming discipline.

• A full set of C libraries.

• A set of sample programs, including full source code for the MicroEMACS editor.

• The Mark Williams shell MWS. MWS will help you build commands for Let’s C, and will
accelerate the operation of your software. By using MWS’s display interface, you build
commands for Let’s C and its utilities. MWS also includes an accelerator that speeds up
Let’s C. If you prefer to type commands directly into MS-DOS, MWS will let you and it will still
accelerate your software for you.

Hardware requirements
Let’s C runs on an IBM PC, XT, or AT, or any compatible computer that has at least 320 kilobytes of
RAM and either two double-sided floppy disk drives or at least one floppy disk drive and a hard disk.

Changes in release 4.0
Let’s C version 4.0 has been greatly expanded and improved over earlier releases. Its new features
include the following:

• Let’s C now compiles into MS-DOS format, rather than the proprietary Mark Williams
format used in earlier versions.

• It supports LARGE model as well as SMALL model.

• Let’s C supports the i8087 mathematics co-processor, to speed up mathematics routines.

1

2 Introduction

• Let’s C supports csd, the revolutionary Mark Williams C source debugger. csd can now
debug programs in MS-DOS object format, and that are compiled into either SMALL or
LARGE model.

• Let’s C libraries will sense the presence of the i8087 co-processor. If one is present, then it
is used to execute mathematics routines; if one is not present, mathematics routines are
emulated in software. Your programs will now make maximum use of your computer,
whether an i8087 is present or not.

• The make programming discipline is included. This helps you to construct large programs
that use many modules, with a minimum of difficulty.

• Let’s C’s assembler, as, has been improved to support both LARGE and SMALL model, as
well as the i8087 co-processor. It generates MS-DOS object format rather than the Mark
Williams proprietary format, as before. as now supports a macro processing feature, which
allows you to write model-independent versions of your assembly-language programs.

• The utility fixobj lets you edit object modules and libraries so they can be linked with object
modules generated by Let’s C. You can now use libraries from any other C compiler with
Let’s C.

• The Mark Williams shell MWS now makes it easy to build commands for Let’s C and its
utilities. MWS also supports RAM compiling, to speed up compilation on your system.

• The MicroEMACS screen editor is now integrated with Let’s C. If you wish, you can have
MicroEMACS display your source code automatically whenever an error occurs during
compilation; you can then fix your error and recompile by using only a few keystrokes.

• Floating-point numbers now use IEEE format. Floating-point routines have been rewritten
to execute more quickly than before.

• Division of longs has been rewritten, and is much faster than in previous versions.

• Let’s C will now compile programs using i80286 instructions. Although such programs
cannot be run on a computer that uses the i8086 microprocessor, they will run more
quickly on the IBM PC-AT and compatibles.

• Finally, the manual for Let’s C has been entirely rewritten, and now uses the Mark Williams
Lexicon format. This format has set the standard for language documentation on the Atari
ST, and Let’s C is the first C compiler to bring Lexicon format to the IBM PC.

How to use this manual
This manual is in nine sections. Section 1, which you are now reading, introduces Let’s C.

Section 2 shows you how to install Let’s C on your computer. It also introduces the Let’s C shell,
introduces the MicroEMACS screen editor, and shows you how to compile simple C programs.

Section 3 is entitled C for Beginners. If you are new to the C programming language, this section
will introduce you to C. It is not a full tutorial on C, but it will show you the basics of C
programming, so you will be better able to follow the rest of this manual and use the example
programs in it.

Section 4 introduces compiling with Let’s C. It describes the options to the compiler controller cc,
and shows you how to compile using different memory models and different formats. Technical
issues that involve the i8086 microprocessor and MS-DOS are also discussed.

Section 5 is a tutorial on the MicroEMACS screen editor. It introduces most of the MicroEMACS
commands and includes exercises to help sharpen your skills at editing programs.

Let’s C

Introduction 3

Section 6 is a tutorial on make, the Mark Williams programming discipline. make is one of the
most useful tools available for constructing and maintaining large, intricate programs. This section
describes make, from building relatively simple programs to using make to control work other than
compiling C programs.

Section 7 presents some questions and answers about Let’s C. New users of Let’s C often ask the
same questions about how to use it; so if you have a question, look here first. You could well find
the answer you need.

Section 8 lists all of the error messages that the Let’s C compiler, assembler, and utilities can
produce. Many entries have hints to help you correct or avoid the error that the message describes.

Finally, section 9 is the Lexicon. This is by far the largest part of the manual. The Lexicon contains
several hundred individual entries; each describes a command, a function, defines a C technical
term, or gives you other useful information. All of the Lexicon’s entries are in alphabetical order,
and are designed to be easily used. For example, if you want information on how to use the STDIO
routines, simply turn to the entry in the Lexicon on STDIO; there, you will find a list of all the
STDIO routines, a description of each, and instructions on how to use them. Or, if you want
information on how Let’s C encodes floating point numbers, simply turn to the entry on float.
There, you will find a full description of floating point numbers. Many Lexicon entries have full C
programs as examples; all have cross-references to related entries.

The opening sections of this manual will refer constantly to the Lexicon. If you are unfamiliar with a
technical term used in this manual, look it up in the Lexicon. Chances are, you will find a full
explanation. If you are not sure how to use the Lexicon, look up the entry for Lexicon within the
Lexicon. This will help you get started.

Finally, the back of the manual lists the Lexicon’s entries sorted by category, and gives an index.

User registration and reaction report
Before you continue, fill out the User Registration Card that came with your copy of Let’s C. When
you return this card, you become eligible for direct telephone support from the Mark Williams
Company technical staff, and you will automatically receive information about all new releases and
updates.

If you have comments or reactions to the Let’s C software or documentation, please fill out and mail
the User Reaction Report included at the end of the manual. We especially wish to know if you
found errors in this manual. Mark Williams Company needs your comments to continue to improve
Let’s C.

Technical support
Mark Williams Company provides free technical support to all registered users of Let’s C. If you are
experiencing difficulties with Let’s C, outside the area of programming errors, feel free to contact the
Mark Williams Technical Support Staff. You can telephone during business hours (Central time), or
write. This support is available only if you have returned your User Registration Card for Let’s C.

If you telephone Mark Williams Company, please have at hand your manual for Let’s C. Please
collect as much information as you can concerning your difficulty before you call. If you write, be
sure to include the product serial number (from the sticker on the back of this manual) and your
return address.

Bibliography
The following books may be helpful in developing your skills with C. This list also contains all
books that are referenced in this manual. It is by no means exhaustive; however, it should prove
helpful to both beginners and experienced programmers.

Let’s C

4 Introduction

American National Standards Institute: Draft Programming Language C (October 1986 Draft).
Washington, D.C.: X3 Secretariat, Computer and Business Equipment Manufacturers Association,
1986.

AT&T Bell Laboratories: The C Programmer’s Handbook. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1985.

Chirlin, P.M.: Introduction to C. Beaverton, Or.: Matrix Publishers, Inc., 1984.

Derman, B. (ed.): Applied C. New York: Van Nostrand Reinhold Co., Inc., 1986.

Feuer, A.R.: The C Puzzle Book. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1982.

Gehani, G.: Advanced C: Food for the Educated Palate. Rockville, Md.: Computer Science Press,
1985.

Hancock, L.: Krieger, M.: The C Primer. New York: McGraw-Hill Book Publishers, Inc., 1982.

Harbison, S.; Steele, G.: C: A Reference Manual. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

Hogan, T.: The C Programmer’s Handbook. Bowie, Md.: Brady Publishing, 1984.

Kelley, A.; Pohl, I.: C by Dissection: The Essentials of C Programming. Menlo Park, Ca.: The
Benjamin/Cummings Publishing Company, Inc., 1987.

Kernighan, B.W.; Ritchie, D.M.: The C Programming Language. Englewood Cliffs, N.J.: Prentice-
Hall, Inc., 1978.

Kernighan, B.W.; Plauger, P.J.: The Elements of Programming Style, ed. 2. New York: McGraw-Hill
Book Co., 1978.

Kochan, S.G.: Programming in C. Hasbrouck Heights, N.J.: Hayden Book Co., Inc., 1983.

Knuth, D.E.: The Art of Computer Programming, vol. 1: Basic Algorithms. Reading, Ma.: Addison-
Wesley Publishing Co., 1969.

Knuth, D.E.: The Art of Computer Programming, vol. 2: Seminumerical Algorithms. Reading, Ma.:
Addison-Wesley Publishing Co., 1969.

Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting and Searching. Reading, Ma.:
Addison-Wesley Publishing Co., 1969.

Plum, T.: Learning to Program in C. Cardiff, N.J.: Plum Hall, Inc., 1983.

Plum, T.: C Programming Guidelines. Cardiff, N.J.: Plum Hall, Inc., 1984.

Plum, T.; Brodie, J.: Efficient C. Cardiff, NJ: Plum Hall, Inc., 1985.

Purdum, J.: C Programming Guide. Indianapolis: Que Corp., 1983.

Purdum, J.; Leslie, T.C.; Stegemoller, A.L.: C Programmer’s Library. Indianapolis: Que Corp.,
1984.

Traister, R.J.: Programming in C for the Microprocessor User. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1984.

Traister, R.J.: Going from BASIC to C. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1984.

Vile, R.C., Jr.: Programming in C with Let’s C. Glenview, IL: Scott, Foresman and Company, 1988.

Waite, M.; Prata, S.; Martin, D.: C Primer Plus. Indianapolis: Howard W. Sams, Inc., 1984.

Let’s C

Introduction 5

Weber Systems, Inc.: C Language User’s Handbook. New York: Ballantine Books, 1984.

Zahn, C.T.: C Notes. New York: Yourdan Press, 1979.

i8086/MS-DOS information

Duncan, R.: Advanced MS-DOS: The Microsoft guide for assembly language and C programmers.
Redmond, WA: Microsoft Press, 1986. Recommended.

IBM Corporation: Technical Reference, Personal Computer XT. Boca Raton, FL: International
Business Machines Corporation, 1983.

Intel Corporation: 8086 Relocatable Object Module Formats. Document No. 121748-001. Santa
Clara, CA: Intel Corporation.

Intel Corporation: 8086/8087/8088 Assembly Language Reference Manual for 8086-Based
Development Systems. Santa Clara, CA: Intel Corporation, 1983.

Intel Corporation: iAPX 286 Programmer’s Reference Manual. Santa Clara, CA: Intel Corporation,
1985.

Microsoft Corporation: MS-DOS Technical Reference Encyclopedia. Bellevue, WA: Microsoft Press,
1986.

Norton, P.: The Peter Norton Programmer’s Guide to the IBM PC. Bellevue, WA: Microsoft Press, 1985.

Young, M.: Performance Programming Under MS-DOS. Alameda, CA: SYBEX, Inc., 1987.
Recommended.

Let’s C

6 Introduction

Let’s C

#%2=0 .nr # 2

Installing and Running Let’s C

This section describes how to install Let’s C onto your computer, and how to use it to compile
simple programs.

Installing Let’s C
Before you can use Let’s C, you must install it on your computer. As Let’s C comes to you, its files
are fitted together to save space on its disks, not to run conveniently. This helps us lower our costs,
to give you Let’s C at the lowest possible price; however, it also means that before you can use the
compiler you must recopy the files into organized groups.

To install Let’s C, you must copy files from the distribution disks onto either a hard disk or, if you
don’t have a hard disk, a set of floppy disks. To make this job easy for you, Let’s C includes the
utility install, which does the copying for you. By running install and answering a few simple
questions, you can build a working copy of Let’s C on your system in a few minutes.

If you have a hard disk, use the directions in the section Installing Let’s C onto a hard disk. If you
do not have a hard disk, skip below to the section Installing Let’s C onto a floppy-disk system, and
follow the directions there.

Installing Let’s C onto a hard disk

To begin, log into drive C on your system. You can do so by typing c at the MS-DOS prompt. On
nearly all computers, drive C is the hard disk.

Now, insert Let’s C’s distribution disk 1 into floppy drive A and type the following command:

a:install

In a moment, install will begin to work. It will print some information on your screen, and then ask
you the following question:

Do you have a hard disk?

Type ‘y’, for ‘‘yes’’.

install will then ask you:

Do you wish to install all the files?

Answer ‘y’.

install will now ask you in which directories you wish to install the files, as follows:

Where do you want the executable programs?
Where do you want the header files?
Where do you want the libraries?
Where do you want the sample programs?
Where do you want the source files?
Where do you want the temporary files?

After each question, type <return>, which signifies the default setting. Later, you may wish to re-
install Let’s C into other directories, but you should use the default settings until you gain some
familiarity with Let’s C.

7

8 Installing and Running

install will now copy the files from the distribution disk onto your hard disk. Depending on how
fast your system is and how fast your hard disk is, this can take from five to 15 minutes. When all
the files from one disk are copied, install will ask for the next disk, until all files are copied.

When install exits, it will print some information on the screen, and then an instruction of the form:

set CCHEAD=@c:\lib\ccargs

Copy down this instruction. You should then write this instruction into the file autoexec.bat on
your MS-DOS boot disk. This instruction tells Let’s C where you have stored all of its components,
so it can find everything correctly. This will be discussed below, in the section entitled Setting your
computer’s environment.

Once all the files are copied, place your copy of the MS-DOS disk into the floppy disk drive. If you
have version 3.2 of MS-DOS, you have two MS-DOS disks; insert the disk labelled ‘‘supplemental
programs’’. Now, type the command:

copy a:link.exe \bin

This copies the MS-DOS linker MS-LINK into directory \bin on your hard disk. Let’s C uses MS-
LINK to link its executable files, so MS-LINK must be copied into a directory where Let’s C can find
it. If you did not use the default directory names, copy link.exe into the directory where you stored
Let’s C’s executable files.

That’s all there is to it. Let’s C is now installed on your hard disk. Now, skip below to the section
entitled Setting your computer’s environment. This will tell you how to set the environment, so
Let’s C can work efficiently.

Installing Let’s C onto a floppy-disk system

Let’s C is too large to fit onto a single floppy disk. Therefore, if your system does not have a hard
disk you must install Let’s C onto a set of seven floppy disks, as follows:

Disk 1 The shell disk. This disk holds MWS, the Mark Williams shell. You will use it only to
boot MWS, then put it away.

Disk 2 The compiler disk for standard-sized programs. You should use this disk to compile
programs that are of normal size and complexity. This disk holds the compiler
controller cc, the phases of compilation, the MicroEMACS screen editor, and other
tools used during compilation.

Disk 3 The compiler disk for unusually large programs. If you have written a program thatis
unusually large or complex, and it will not compile correctly with disk 2, use disk 3
instead. This disk has all of the files that appear on disk 2, plus LARGE-model
versions of the compiler phases cc0 and cc2.

Disk 4 This disk holds the SMALL-model libraries. You will need to copy MS-LINK onto this
disk.

Disk 5 This disk holds the LARGE-model libraries. You will also need to copy MS-LINK onto
this disk.

Disk 6 This disk holds the Let’s C commands and utilities. For a fuller description of the
commands, see the Lexicon entry for commands.

Disk 7 This disk holds the sample programs and source code that comes with Let’s C. This
includes the full source code for the MicroEMACS screen editor.

To begin, format eight new floppy disks. Label them respectively as follows:

Let’s C

Installing and Running 9

1. shell
2. normal compiler
3. compiler for large programs
4. SMALL-model libraries
5. LARGE-model libraries
6. commands
7. source code and samples

Now, at the MS-DOS prompt, type B:. This will log into drive B on your machine. Insert Let’s C’s
distribution disk 1 into drive A; type the following command:

a:install

In a moment, install will begin to execute, and will print some information on your screen. It will
then ask you this question:

Do you have a hard disk?

Answer ‘n’, for ‘‘no’’.

install will then ask:

Do you wish to install all of the files?

Type ‘y’, for ‘‘yes’’.

install will now ask you in which directories you wish to install the files, as follows:

Where do you want the executable programs?
Where do you want the header files?
Where do you want the libraries?
Where do you want the sample programs?
Where do you want the source files?
Where do you want the temporary files?

After each question, type <return>, which accepts the default setting. Later, you may wish to re-
install Let’s C into other directories, but you should use the default settings until you gain some
familiarity with Let’s C.

install will now tell you:

Insert the shell disk into drive B.

Insert the formatted floppy disk that you labelled ‘‘shell’’ into drive B. install will copy the
appropriate files onto it. When install needs a new source disk, it will prompt you for it.

install will go through this procedure for each of the seven floppy disks that you will be building. It
will prompt you when to change disks, and tell you which disk to insert into drive A or drive B.

When install exits, it will print some information on the screen, and then an instruction of the form:

set CCHEAD=@a:\ccargs

Copy down this instruction. You should then edit this instruction into the file autoexec.bat on
your MS-DOS boot disk. This instruction tells Let’s C where you have stored all of its components,
so it can find everything correctly. This will be discussed below, in the section entitled Setting your
computer’s environment.

When install has finished, you must do the following for each of the four library disks, disks 3
through 6. First, place your computer’s MS-DOS disk into drive A. If you have MS-DOS version 3.2
or later, your copy of MS-DOS comes on two disks; insert the disk labelled ‘‘supplemental programs’’
into drive A. Then, place disk 4 (which holds the SMALL-model libraries) into drive B. Type the
following command:

Let’s C

10 Installing and Running

copy a:link.exe b:\bin

This command will copy the MS-DOS linker MS-LINK into directory \bin on your library disk.
Let’s C uses MS-LINK to link the executable files it creates, so MS-LINK must be copied into a
directory where Let’s C can find it.

Repeat this procedure for disk 5.

That is all there is to it: Let’s C is now installed on your computer.

When you are finished, you may wish to recopy your installed disks, to save yourself the trouble of
having to reinstall should something happen to your working copy.

Now, read the following section Setting your computer’s environment, which tells you how to set your
computer’s environment so you can use Let’s C.

Re-installing a portion of Let’s C

If you wish, you can re-install just a portion of the compiler. When install asks

Do you wish to install all of the files?

answer ‘n’. install will then prompt you for which portion, or portions, of Let’s C you wish to
install, and will then install it for you.

Setting your computer’s environment
As you have probably noticed by now, Let’s C is not just one program: it is a collection of more than
100 files and programs, which together form one of the most sophisticated C programming systems
available at any price. Despite its complexity, Let’s C is designed to work smoothly, and transform
your source code into an executable file in the shortest possible time.

For Let’s C to work at peak efficiency, however, you should pay some attention to your computer’s
environment. The environment is a set of variables that are available to all of the programs run on
your computer. By setting the environment properly, you will help Let’s C find all of its programs
quickly to speed your work.

Setting the PATH

When you installed Let’s C, all of its commands were copied into a directory called \bin. When you
type a command into MS-DOS, MS-DOS looks for it in the directories named in the environmental
variable PATH. To ensure that MS-DOS can find Let’s C’s commands you must set the PATH so
that it names the directory \bin.

To set the PATH, use the MS-DOS command path. For example, if you want keep your executable
files in the directories bin and mwc, type:

PATH=C:\BIN;C:\MWC

If your computer does not have a hard disk, use the following form of the path command:

PATH=A:\BIN;A:\MWC;B:\BIN;B:\MWC

This tells MS-DOS to look for cc in the directories bin and mwc on both of your floppy disk drives.
With the PATH set to this configuration, it does not matter which disk drive holds your compiler
disk when you work: MS-DOS will find cc in either drive automatically.

When the PATH is set properly, you should copy the path command you used into the file
autoexec.bat, on your computer’s boot disk. Then, the PATH will be set automatically whenever
you boot your computer.

Let’s C

Installing and Running 11

Finding the ccargs file

When you installed Let’s C onto your computer, the program install created a file called ccargs.
This file contains the names of all of the directories in which install stored the elements of Let’s C.

When you compile a program, Let’s C reads ccargs and uses its entries to find all of the files it
needs. If you have a floppy-disk system, install wrote ccargs into directory a:\ on disk 2 (the
compiler disk). If you have a hard disk, install wrote ccargs into the directory in which you
installed the Let’s C libraries (the default is c:\lib\).

You must set an additional environmental variable so that Let’s C can locate ccargs when you
compile a program: the environmental variable CCHEAD. As noted above, when install finished
installing Let’s C on your system, it printed on your screen an instruction of the form

set CCHEAD=@directory\ccargs

where directory is the name of the directory into which it wrote ccargs. For example, if you have a
floppy-disk system, install printed the message

set CCHEAD=@a:\ccargs

whereas if you have a hard disk, it printed the message

set CCHEAD=@c:\lib\ccargs

Be sure that you copy this instruction into the file autoexec.bat on your MS-DOS boot disk. Once
you have done this, reboot your system; this ensures that CCHEAD is set for your system.

That’s all there is to it. When you copy the set commands for PATH and CCHEAD into
autoexec.bat and reboot your system, you have set Let’s C’s environment. Let’s C is now ready to
start working for you.

Editing ccargs

ccargs correctly describes where everything is stored on your computer. The default ccargs for a
hard disk reads as follows:

-xcc:\bin\
-xlc:\lib\
-xtc:\tmp\
-Ic:\include\

The default ccargs for a floppy disk system reads as follows:

-xca:\bin\
-xla:\lib\
-Ia:\include\
-Z

If you later decide to move part of Let’s C from one directory to another, you must edit ccargs to
reflect this change, or Let’s C will not know where you moved Let’s C. You should edit ccargs as
follows:

Executable files
If you move the executable files from where you installed them, change the line in ccargs that
begins -xc. For example, if you have a floppy disk system and you move the executable files
from directory \bin to directory \mwc, change the line

-xca:\bin\

to read

Let’s C

12 Installing and Running

-xca:\mwc\

Libraries
If you move the libraries from where you installed them, you should change the line in ccargs
that begins -xl. For example, if you have a hard disk and you move the libraries from
directory \lib to directory \library, change the line

-xlc:\lib\

to read

-xlc:\library\

Header files
If you move the header files from where you installed them, you should change the line in
ccargs that begins -I. For example, if you have a floppy disk system and you move the header
files from directory \include to directory \header, change the line

-Ia:\include\

to read

-Ia:\header\

Temporary files
Finally, ccargs tells Let’s C where to write your temporary files. This is set only in the
version of ccargs that is used with a hard disk. If you decide to change where Let’s C writes
its temporary files, you must edit the line in ccargs that begins -xt. For example, if you want
to write temporary files into directory nowhere, change the line

-xtc:\tmp\

to read

-xtc:\nowhere\

If you need more information on where Let’s C looks for files, or how Let’s C works in general, look
at the Lexicon entry for cc. This will describe in some detail how Let’s C works, and also describe
other ways that you can change how Let’s C looks for its files.

Using MWS, the Let’s C command interface
Let’s C includes an interface program, MWS, which is designed to help you develop programs more
quickly and efficiently. MWS, which stands for ‘‘Mark Williams shell’’, accelerates the speed with
which your programs work, and it has a display interface that helps you build commands with ease.

To invoke MWS, simply do the following. If you do not have a hard disk, insert disk 1 (the ‘‘shell’’
disk) into disk drive A. Then, at the MS-DOS prompt type:

MWS

In a moment, the screen will clear and the MWS main menu will appear:

Let’s C

Installing and Running 13

Let’s C Version 4.0
(c) 1987 Mark Williams Company, Chicago

+----------------+
| Edit |
| Compile |
| Run |
| Debug |
| Make |
| Buffers |
| Quick DOS |
| !DOS Escape |
| New directory |
+----------------+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

As you can see, the entry for Edit on the menu is marked by a reverse-video band, called the cursor
bar. In this tutorial, the cursor bar will be shown as shading. The cursor bar indicates the entry in
the main menu you wish to select. Try pressing the down-arrow key (↓) on the keypad. The cursor
bar now covers the entry Compile. Each selection will be discussed in detail in the following sub-
sections.

Note that if you do not want to bother with moving the cursor bar, you can pick an option simply by
typing its first letter. For example, you can begin to edit a file simply by typing ‘e’.

At the bottom of the screen are listed the commands that you can give MWS. As noted above,
pressing the arrow keys moves the cursor bar up and down the menu. Pressing <return> tells MWS
to select the menu entry that the cursor bar is highlighting. Pressing <esc> exits. If you are in a
sub-menu, pressing <esc> returns you to the previous menu; whereas if you are already in the main
MWS menu, pressing <esc> exits you from MWS altogether, and returns you to MS-DOS.

Finally, pressing the function key <F1> prints a help message. Each screen has its own help
message, to guide you through MWS even if you do not have this manual available.

Editing a file

MWS includes a full-featured screen editor, called MicroEMACS. An editor is a program that lets
you type text into your computer, store it on disk, then recall it from disk and change it. You will
use an editor to type all of the programs that you compile with Let’s C.

MicroEMACS allows you to divide the screen into sections, called windows, and display and edit a
different file in each one. It has a full search-and-replace function, allows you to define keyboard
macros, and has a large set of commands for killing and moving text. Also, MicroEMACS has a full
help function for C programming. Should you need information about any macro or library function
that is included with Let’s C, all you need to do is move the text cursor over that word and press a
special combination of keys; MicroEMACS will then open a window and display information about
that macro or function.

Let’s C

14 Installing and Running

Let’s C includes both a compiled, binary version of MicroEMACS that is ready to use, and the full
source code. We invite you to examine the code, modify it, and enhance MicroEMACS to suit your
preferences.

For a list of the MicroEMACS commands, see the Lexicon entry for me, the MicroEMACS command.
A following section of this introduction gives a full tutorial on MicroEMACS. In the meantime,
however, you can begin to use MicroEMACS by learning a half-dozen or so commands.

MWS lets you access the MicroEMACS screen directly through its display interface. To edit a file
through MWS, do the following. First, if you do not have a hard disk, remove the ‘‘shell’’ floppy disk
from drive A and put it aside. Place disk 2, the ‘‘compiler’’ disk, into drive A. Then, press the up-
arrow key (↑) until the cursor bar covers the entry Edit. Press <return>. This selects the edit
feature; that is, it tells MWS that you wish to use the MicroEMACS editor to edit a file.

In a moment, MWS redraws the screen as follows:

Edit

+==+
| me |
+==+

+============+
| Execute |
| Files |
| New File |
+============+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

The cursor bar is now positioned over the selection Execute. Press the ↓ key two times, so the
cursor bar is positioned over New File. Press <return>. The menu disappears, and MWS prompts
you to enter the name of the file you wish to create.

Type hello.c. Note that the name hello.c appears in the long box at the top of the screen; this box
is called the command box, because it is where MWS builds your command. Note, too, that the
cursor bar has returned to the entry Execute on the menu.

Now press <return>. This tells MWS to execute the command that is displayed in the command
box. The screen again clears: you have just invoked the MicroEMACS editor to edit the file hello.c.

Now, type the following text, as it is shown here. If you make a mistake, simply backspace over it
and type it correctly; the backspace key will wrap around lines:

main()
{

printf("hello, world\n");
}

When you have finished, save the file by typing <ctrl-X><ctrl-S> (that is, hold down the control key
and type ‘X’, then hold down the control key and type ‘S’). MicroEMACS will tell you how many lines
of text it just saved. Exit from the editor by typing <ctrl-X><ctrl-C>.

Let’s C

Installing and Running 15

When you have exited from MicroEMACS, MWS redisplays the edit menu, with the cursor bar
positioned over Execute. Note that MWS remembers the last command you built for each of the
commands on the main menu (that is, the last Edit command, the last Compile command, and so
on). If you do not wish to build a new command, you can re-execute the last command you built by
simply pressing <return>.

Now, type <return>. MWS will invoke MicroEMACS with the last file you edited, hello.c. The text of
the file you just typed is now displayed on the screen. Try changing the word hello to Hello, as
follows: First, type <ctrl-N> That moves you to the next line. (The command <ctrl-P> would move
you to the previous line, if there were one.) Now, type the command <ctrl-F>. As you can see, the
cursor moved forward one space. Continue to type <ctrl-F> until the cursor is located over the
letter ‘h’ in hello. If you overshoot the character, move the cursor backwards by typing <ctrl-B>.

If you prefer, you can also move the cursor by pressing the arrow keys.

When the cursor is correctly positioned, delete the ‘h’ by typing the delete command <ctrl-D>; then
type a capital ‘H’ to take its place.

With these few commands, you can load files into memory, edit them, create new files, save them to
disk, and exit. This just gives you a sample of what MicroEMACS can do, but it is enough so that
you can begin to do real work.

Now, again save the file by typing <ctrl-X><ctrl-S>, and exit from MicroEMACS by typing <ctrl-
X><ctrl-C>. Again, the screen shows the Edit screen. Type <esc>; as shown at the bottom of the
screen, this will exit you from the Edit menu, and so return you to the main menu.

Just as a reminder, the following table gives the MicroEMACS commands presented above:

<ctrl-N> or ↓ Move cursor to the next line
<ctrl-P> or ↑ Move cursor to the previous line

<ctrl-F> or → Move cursor forward one character
<ctrl-B> or ← Move cursor backward one character

<ctrl-D> Delete a character

<ctrl-X><ctrl-S> Save the edited file
<ctrl-X><ctrl-C> Exit from MicroEMACS

Simple compiling

Now that you have prepared a C program with the MicroEMACS editor, the next step is to compile it
into executable form.

To compile a program under Let’s C, you must use the command cc. MWS’s display interface lets
you easily construct commands for cc to execute. To see how this works, press the ↓ key once, so
the cursor bar is positioned over Compile. Press <return>, to select this option.

MWS redraws the screen so it appears as follows:

Let’s C

16 Installing and Running

Compile

+--+
| cc |
+--+

+------------+
| Execute |
| Options |
| Files |
+------------+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

The cursor bar is positioned over Execute. Press the ↓ key, to move the cursor bar to Options;
then press <return>. The screen will be redrawn to appear as follows:

Compile

+==+
| cc <filename> |
+==+

+====+
| -A | Automatically invoke editor
| -c | Compile only, do not link
| -d | Define symbol
| -e | Expand preprocessor output
| -f | Floating point output
| -i | Include directory
| -k | Keep temporary files
| -l | Library options ...
| -m | Mini-make
| -n | No extra libraries ...
| -o | Output file
| -u | Undefine symbol
| -v | Variant options ...
+====+

<return> select <backspace> de-select <F1> more help
<→> use arrow keys <end> end options <esc> exit menu

cc’s options cannot all fit onto one screen; if you press the ↓ key until it is at the bottom of the
menu, you can then scroll through the options that are not initially shown on the screen. The
options with ellipses ‘‘...’’ after their descriptions have a menu of sub-options associated with them.

For the present exercise, type the ↓ key until the cursor bar is positioned over the entry -v, for
variant options. Press <return>. A second set of options appears on the screen, which now appears
as follows:

Let’s C

Installing and Running 17

Compile

+==+
| cc <filename> |
+==+

+====+ +=========+
| -A | Automatically invoke editor | verbose | verbose output
| -c | Compile only, do not link | 80186 | Generate ...
| -d | Define symbol | asm | Produce ...
| -e | Expand preprocessor output | cnest | Allow ...
| -f | Floating point output | csd | Generate ...
| -i | Include directory | float | Produce ...
| -k | Keep temporary files | large | Generate ...
| -l | Library options ... | lines | Generate ...
| -m | Mini-make | ndp | Produce ...
| -n | No extra libraries ... | noopt | Turn off ...
| -o | Output file | pstr | Put strings ...
| -u | Undefine symbol | quiet | Suppress ...
| -v | Variant options ... | sbook | Strict K&R ...
+====+ +=========+

<return> select <backspace> de-select <F1> more help
<→> use arrow keys <end> end options <esc> exit menu

The cursor bar is over the verbose option. Type <return>; this selects the verbose option, which
tells you what steps the compiler is executing as it compiles. The command box now reads:

cc -V <filename>

Type <end>. The variant options box disappears, and the cursor is repositioned over the -v option.
Type <end> again. The options box has disappeared, and you are back in the Compile menu.

Now, press the ↓ key, to position the cursor bar over Files. Press <return>. In a moment, two
boxes will appear. One displays all of the files that have the suffix .c, and the other displays all of
the files that have the suffix .obj, if any. To move between the boxes, press <tab>, as shown at the
bottom of the screen. Press the ↓ until the cursor bar is positioned over hello.c. Press <return>.
This completes the construction of the cc command line, as shown in the command box.

Note that you must select a file by moving the cursor bar to its name and pressing return; you
cannot select a file by typing the first character in its name, because more than one file could use
that character.

Press <end> to tell MWS that you have selected all of the files you want. MWS then returns you to
the compile menu, with the cursor bar positioned over Execute. Press <return>, to begin execution
of the command you have built.

Compilation now begins automatically. The switch -V tells cc to describe each step in compilation.

If your computer does not have a hard disk, Let’s C will print the following prompt on your screen
when it comes time to link your program:

Insert floppy disk 3 (SMALL-model, i8087-sensing libraries)

Open drive A, remove the compiler disk, and insert floppy disk 3. If your computer does have a hard
disk, you will not need to do this. As noted earlier, when you installed Let’s C, this disk holds the
libraries for SMALL-model programs that sense the presence of the i8087 co-processor. For more
information on how these libraries work, see the Lexicon entries for library, model, and i8087.
When you have inserted this disk, press <return>. Let’s C will now invoke MS-LINK and link your
program.

Let’s C

18 Installing and Running

As you can see, cc guides the program through all phases of compilation, invokes the linker, and
links in all necessary routines from the libraries to produce a file called hello.exe that is ready to
execute.

When compilation is finished, you will be returned to the MWS main menu.

Running a program

The next step is to run the program you just compiled. MWS lets you run any program you have
compiled with Let’s C, or in fact any executable program whatsoever, through its display interface.

If your computer does not have a hard disk, before you begin this step you should open drive A,
remove floppy disk 3 (a libraries disk), and reinsert floppy disk 2 (the compiler disk). If your
computer does have a hard disk, you do not need to do this.

To run hello.exe, which you created when you compiled hello.c, press the ↓ key until the cursor
bar is positioned over Run. Then, press <return> to select this option. The main menu disappears,
and MWS redraws the screen as follows:

Run

+==+
| <filename> |
+==+

+============+
| Execute |
| Arguments |
| Files |
+============+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

As before, you can use the arrow keys to move the cursor bar up and down the menu. If you press
<return> with the cursor positioned over Execute, MWS will re-execute the last command you built,
if any. If your program needs arguments, select the Arguments option, which will prompt you to
enter them. If your command does not take any arguments, simply type <return>.

Press the ↓ key once. The cursor bar is now positioned over Files. Press <return>. MWS draws a
box that holds all executable files in the current directory—that is, all files that have the suffix .exe.
Press the ↓ key until the cursor bar covers hello.exe. Press <return>. As you can see, the
command box now shows hello.exe. Press <esc> to exit from this menu.

You have returned to the Run menu, with the cursor bar over Execute. Press <return>. MWS now
executes the command shown in the command box, hello.exe. It executes, and prints on your
screen hello, world. To return to MWS’s main menu, press any key.

As you can see, it is easy to create, compile, and execute a program through the MWS menu
interface.

Let’s C

Installing and Running 19

Quick DOS and !DOS options

MWS gives you two ways to give commands directly to MS-DOS while still enjoying MWS’s
acceleration of your programs.

To give just one command to MS-DOS, press the ↓ key until the cursor bar is positioned over Quick
DOS. Press <return>. At the bottom of your screen appears the prompt

DOS command:

Type dir. MS-DOS executes dir and prints the contents of the current directory on your screen.
When dir has finished executing, press any key to return to MWS’s main menu.

If you want to give a number of commands directly to MS-DOS, press the ↓ key until the cursor bar
is positioned over !DOS Escape. Press <return>. The main menu again disappears, and your MS-
DOS prompt appears on the screen. MS-DOS is now ready to receive any number of your
commands. If you are familiar with the cc command or MicroEMACS, you can now type these
commands directly to MS-DOS. MWS does not require you to use its display interface, but it will
still accelerate your work.

When you are done working with MS-DOS, type exit. The MS-DOS prompt will disappear, and the
MWS main menu will reappear.

Using the make programming discipline

MWS gives you quick access to make, the Mark Williams programming discipline.

make helps you build large, complex programs. It reads a makefile that you prepare, and follows
the makefile’s descriptions to build your program. If you need more information on make, see the
entry for make in the Lexicon, and see the tutorial on make that appears in section 5 of this
manual. The tutorial also describes in detail how to write a makefile.

To invoke make through MWS, press the ↓ key until the cursor bar covers Make. Type <return>.
The main menu disappears, and the screen appears as follows:

Make

+==+
| make |
+==+

+===========+
| Execute |
| Options |
| Macros |
| Targets |
+===========+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

The cursor bar is over the top entry in the menu, Execute. MWS remembers the last command you
gave make, if any; so, if you press <return> MWS will automatically execute the last make

Let’s C

20 Installing and Running

command you issued.

If you wish to construct a new make command, the first step is to change make’s default macros so
that make will produce the sort of executable program that you want. Note that this step often is
not necessary. For more information on make’s macros and the files in which they are kept, see the
Lexicon entry for make; also see the make tutorial.

To redefine a macro, press the ↓ key twice, to move the cursor bar to Macros; then press <return>.
MWS will prompt you to enter the new macro; what you type will then be used instead of any macro
that has the same name.

Likewise, should you wish to change the default targets that make constructs, press the ↓ key until
the cursor bar covers Targets; then press <return>. MWS will prompt you to type the new target or
targets that you want to build. For more information on what a target is and how make builds one,
see the tutorial for make, or see the Lexicon entry for make.

The next step is to construct the make command line. Press the ↑ key to move the cursor bar to
Options. Press <return>. The screen is redrawn to offer you the options for make, as follows:

Make

+==+
| make |
+==+

+====+
| -d | (Debug) Verbose output
| -f | Alternate make filename
| -i | Ignore error returns and continue
| -n | Show commands but do not execute
| -p | Print macro and target descriptions
| -q | Query target status
| -r | Do not use built-in rules
| -s | Silent running
| -t | Touch all targets to current time
+====+

<return> select <backspace> de-select <F1> more help
<→> use arrow keys <end> end options <esc> exit menu

To select an option, press the ↓ key until the cursor bar is positioned over it, and then press
<return>. The option will be written into the command box at the top of the screen. Should you
select an option by accident, press <backspace>; the option will be erased from the command box at
the top of the screen. If you select the -f option, MWS will prompt you for the name of the file that
you wish to use in place of makefile. For more information on make’s options, see the entry for
make in the Lexicon, or see the tutorial on make later in this manual.

When you have selected all of the options that you want, press <end>. You will be returned to the
main Make menu, and the cursor bar will be positioned over Execute. Press <return>; MWS will
then execute the make command that you have built, which appears in the command box at the top
of the screen. make will look for makefile, read it, and begin to build your program. When make is
finished, you will be returned to the MWS main menu.

Let’s C

Installing and Running 21

Using csd, the C source debugger

MWS also helps you to invoke csd, the Mark Williams C source debugger. csd is an invaluable tool
to a programmer, for it allows you to debug programs while using your C source code, instead of
having to use listings in assembly language. Note that csd is not included with Let’s C, but it is
available as a separate product for use with Let’s C.

If your computer does not have a hard disk, you must insert the disk that came with your copy of
csd into drive A before you can begin to work with csd.

To invoke cs�d,press the ↓ key until the cursor bar is positioned over Debug. Press <return>. MWS
redraws its screen as follows:

Debug

+==+
| csd <filename> |
+==+

+============+
| Execute |
| Options |
| Arguments |
| Files |
+============+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

If you wish to construct a new csd command, press the ↓ key once, to position the cursor bar over
Options; then type <return>. MWS will redraw its screen to display the available options, as
follows:

Let’s C

22 Installing and Running

Debug

+==+
| csd <filename> |
+==+

+====+
| -D | Data segment size
| -G | Graphics mode for color monitor
| -H | Help files live here
| -R | Memory model override
| -S | Source files live here
| -T | Source files live here
+====+

<return> select <backspace> de-select <F1> more help
<→> use arrow keys <end> end options <esc> exit menu

If you select either -H or -S, MWS will prompt you to enter the name of the directory where you have
stored these files. For more information on csd’s options, see your csd manual.

As before, if you select an option by accident, press <backspace>. This will erase the option from
the command box at the top of your screen. When you have selected all of the options that you
want, press <end>. The list of options will disappear from the screen, and the original Debug menu
reappear.

To complete your csd command, press the ↓ key twice; this moves the cursor bar to Files. Press
<return>. MWS will then draw a box that contains all of the executable files in the current
directory. You can select one by moving the cursor bar to it, and then pressing <return>.

Remember that to debug a file with csd, it must first have been compiled with the -VCSD option to
the cc command line. This writes special debugging information into the executable file.

When you have selected the program you wish to debug and have pressed <return>, MWS will write
the file name into the command box, and return you to the Debug menu; the cursor bar is
positioned over Execute. Press <return> to invoke csd and execute the command you have just
built. You can then debug your program with csd just as it is described in the csd manual.

When you have finished your debugging session and have exited from csd, you will return to the
MWS main menu. MWS will then be ready help you build another command.

Resetting the buffers

As noted earlier, MWS not only gives you an easy way to build commands for Let’s C: it also
contains an accelerator that speeds up your software. The accelerator uses a buffering system that
reduces the number of times that programs need to read the disk drive. Because reading the disk
drive is the slowest part of any program, reducing the number of times the disk must be read
increases the speed with which the program operates.

At times, you may need to change how MWS performs its buffering. To do so, use the Buffers
command on MWS’s main menu.

Let’s C

Installing and Running 23

To begin, press the ↓ key until the cursor bar is positioned at the entry Buffers. Press <return>.
MWS will draw the Buffers screen, as follows:

Buffers

+==+
| Loaded * 128K T |
+==+

+==============+
| Load/Unload |
| Disk Drives |
| Buffer Size |
| Write Option |
| Save Data |
| Change |
+==============+

<return> select <F1> more help
<→> use arrow keys <esc> exit menu

Each command is described below.

Load/Unload
This tells MWS to load or unload the accelerator. Note that this command is a toggle: if the
accelerator is unloaded, then pressing <return> tells MWS to load it, and vice-versa. Try
pressing <return>. You will see that the entry in the command box will flip from Loaded to
Unloaded.

Note, too, that this command does not take effect immediately. To unload or load the
accelerator, you must exit from MWS and then re-enter it.

Disk Drives
This command tells MWS which disk drives you want accelerated. The default is ‘*’, which
indicates that all drives are accelerated.

To change the settings, press the ↓ key until the cursor bar is positioned over Disk Drives.
Press <return>. MWS will prompt you for the name of a disk drive. Type A, to indicate that
you want to accelerate disk drive A. Note that the asterisk in the command box has been
replaced with A:. The prompt remains on the screen: if you wish, you can name any
number of disk drives. To end this session, press <return> without typing anything. MWS
will now accelerate only disk drive A:.

Now, re-invoke this command by moving the cursor bar to Disk Drives and pressing
<return>. Type ‘*’, and then press <return> twice. MWS has now resumed accelerating all
disk drives.

Buffer Size
The accelerator reserves a portion of memory to buffer what it reads from your disk drives.
By default, the size of its buffer is 128 kilobytes, as shown in the command box. If your
system has limited amounts of memory, you may wish to decrease this amount. On the
other hand, if your system has memory to spare you may wish to increase the size of the
buffer: the larger the buffer is, the more your software will be accelerated.

Let’s C

24 Installing and Running

To change the size of the buffer, press the ↓ key until the cursor bar is positioned over
Buffer Size, and then press <return>. MWS will prompt you for the new buffer size. If you
change your mind and decide to leave the buffer unchanged, simply press <return> without
entering anything.

Note that this command, like the Load/Unload, does not take effect immediately. You must
leave MWS and then re-enter it before you can begin working with a different sized buffer.

Write Option
The MWS accelerator not only speeds up the rate with which your programs read the disk:
it also speeds up the rate at which they write data to the disk.

The accelerator offers you three ways to save your data to the disk: Memory, Timed Save,
and Disk. The Memory option stores all data in memory. No data are written to the disk
until you choose to save them with the Save Data command, which will be described in a
moment. The Disk option writes all data directly to disk, and does not buffer data at all.
Note that the Memory option is faster than the Disk, but not as safe, because an accident
could cause you to lose the data stored in the buffer.

The Timed Save option combines features of the Memory and Disk options. Data are
stored in memory, but they are automatically written to disk every five minutes. Thus, you
have the speed of in-memory storage, plus the safety of saving data to disk. This is the
default option.

To change the write option, press the ↓ key until the cursor bar is over Write Option, and
then press <return>. A menu will appear that displays the three write options. Move the
cursor bar to the one you want and then press <return>. The option you select will be
shown in the command box, and you will be returned to the Buffers menu.

Save Data
This command writes to disk all data that MWS has stored in its buffer. To use it, simply
press the ↓ key until the cursor bar is positioned over Save Data, and then press <return>.
This command has no options: it will simply write the data, and return you to the Buffers
menu.

You should use this command to save your data before you turn off your machine or before
you leave MWS, should you be using the Memory option.

Change Disk
The last command, Change Disk, must be used before you change the floppy disk in a disk
drive that is being accelerated. This command writes to disk all of the data that MWS has
stored in its buffer, and then empties the buffer to make it ready for the new disk.

If you do not use this command before you change a floppy disk, you could lose data. This
bears repeating: You must use this command before you change a floppy disk in a drive that
is being accelerated, or you could lose data.

To use this command, simply press the ↓ key until the cursor bar is positioned over Change
Disk. Press <return>. Any saved data will be written out, the buffer will be emptied, and
MWS will be ready to accept a new floppy disk.

To return to the main MWS menu, press <esc>.

As you can see, MWS’s accelerator is easy to use. With a few simple commands, you can alter its
settings to suit your preferences. MWS will remember these settings, and use them automatically in
the future.

Let’s C

Installing and Running 25

Where to go from here

The following bibliography lists reference books on C and on the i8086 processor. This list includes
both primers and references for advanced programmers. This list is not exhaustive, but you will
find it helpful should you need detailed information on a topic.

Section 2, C for Beginners, introduces the C language to users who are new to C. If you are
experienced with C you may wish to skip this section, but if you are a novice at C programming you
may find it helpful.

After C for Beginners is a section on Advanced Compiling. This discusses many of the compiler’s
options that were just mentioned here. It also discusses some technical issues on the i8086
microprocessor that both experienced programmers and novices will find helpful.

Finally, if you need more information on any command, library function, C keyword, or technical
term, check the Lexicon.

Let’s C

26 Installing and Running

Let’s C

#%2=0 .nr # 0

C for Beginners

In the last few years, C has grown from a relatively obscure language used by a handful of
programmers at universities, to a ‘‘must know’’ language throughout the computer industry. C has
become known as a language that is powerful, fast, and efficient.

This chapter briefly introduces C. It is in two parts. Part 1 describes what a programming language
is, and gives the history of the C programming language. This section also introduces some
concepts basic to C, such as structured programming, pointer, and operator. Part 2 walks through a
C programming session. It emphasizes how a C programmer deals with a real problem, and
demonstrates some of the aspects of the language.

This chapter is not designed to teach you the entire C language. It will introduce you to C, so you
can read the rest of this manual with some understanding. We urge you to look up individual
topics of C programming in the Lexicon, and especially to study the example programs given there.

Programming languages and C
Before beginning with C, it is worthwhile to review how a microprocessor and a computer language
work.

A microprocessor is the part of your computer that actually computes. Built into it is a group of
instructions. Each instruction tells the microprocessor to perform a task; for example, one
instruction adds two numbers together, another stores the result of an arithmetic operation in
memory, and a third copies data from one point in memory to another.

Together, a microprocessor’s instructions form its instruction set. The instruction set is, in effect,
the microprocessor’s ‘‘native language’’.

A microprocessor also contains areas of very fast storage, called registers. The registers are
essential to arithmetic and data handling within the microprocessor. How many registers a
microprocessor has, and how they are designed, help to determine how much memory the
microprocessor can read and write, or address, and how the microprocessor handles data.

A computer language, as the name implies, lets a human being use the microprocessor’s instruction
set. The lowest level language is called ‘‘assembly language’’. In assembly language, the
programmer calls instructions directly from the microcomputer’s instruction set, and manipulates
the registers within the microprocessor. To write programs in assembly language, a programmer
must know both the microprocessor’s instruction set and the configuration of its registers.

Assembly and high-level languages

With assembly language, the programmer can tailor the program specifically to the microprocessor.
However, because each microprocessor has a unique instruction set and configuration of registers, a
program written in one microprocessor’s assembly language cannot be run on another
microprocessor. For example, no program written in the assembly language for the Motorola 68000
microprocessor can be run on the IBM PC or any PC-compatible computer. The program must be
entirely rewritten in the assembly language for the Intel 8086 microprocessor, which is difficult and
time consuming.

A high-level language helps programmers to avoid these problems. The programmer does not need
to know the microprocessor in detail; instead of specific microprocessor instructions, he writes a set
of logical constructions. These constructions are then handed to another program, which translates
them into the instructions and registers calls used by a specific microprocessor. In theory, a

27

28 C for Beginners

program written in a high-level language can be run on any microprocessor for which someone has
written a translation program.

A high-level language allows the programmer to concentrate on the task being executed, rather than
on the details of registers and instructions. This means that programs can be written more quickly
than in assembly language, and can be maintained more easily.

So, what is C?

C was invented in the mid-1970s by Dennis Ritchie, a programmer at Bell Laboratories. Ritchie
created C specifically to re-write the UNIX operating system from PDP-11 assembly language.
Ritchie designed C to have the power, speed, and flexibility of assembly language, but the portability
of high-level languages.

In 1978, Ritchie and Brian W. Kernighan published The C Programming Language, which describes
and defines the C language. The C Programming Language is the ‘‘bible’’ of C, a standard work to
which all programmers can refer when writing their programs.

Because C is modeled after assembly language, it has been called a ‘‘medium-level’’ language. The
programmer doesn’t have to worry about specific registers or specific instructions, but he can use all
of the power of the computer almost as directly as he can with assembly language. The price is that
a C program often can be terse and difficult to understand.

Also, because C was written by experienced programmers for experienced programmers, it makes
little effort to protect a programmer from himself. A programmer can easily write a C program that
is legal and compiles correctly but crashes the system. Also, C’s punctuation marks, or ‘‘operators’’,
closely resemble each other. Thus, a mistake in typing can create a legal program that compiles
correctly but behaves very differently from what you expect.

Structured programming

C is a structured language. This means that a C program is assembled from a number of sub-
programs, or functions, each of which performs a discrete task. If this concept is difficult to grasp,
consider the following example.

Suppose you want to turn a file of text into upper-case letters and print it on the screen. This job
seems simple, but a program to do it must perform five tasks:

1. Accept the name of the file to open.

2. Open the file so it can be read, in much the same way that you must open a book before
you can read it.

3. Read the text from the file.

4. Turn what is read into upper-case letters.

5. Finally, print the transformed text onto the screen.

A good program will also perform the following tasks:

1. Check that the file requested actually exists.

2. Check that the file requested is actually a text file rather than a file of binary information;
the latter makes very little sense when printed on the screen.

3. Close the program neatly when the work is finished.

4. Stop processing and print an error message if a problem occurs.

Let’s C

C for Beginners 29

A structured language like C allows you to write a separate function for each of these tasks.

A structured programming language offers two major advantages over a non-structured language.
First, it is easier to debug a function than an entire program because the function can be unplugged
from the program as a whole, made to work correctly, and then plugged back in again. Second,
once a function works, it can be used again and again in different programs. This allows you to
create libraries of reliable functions that you can pull off the shelf whenever you need them.

The functions within a program communicate by passing values to each other. The value being
passed can be an integer, a character, or—most commonly—an address within memory where a
function can find data to manipulate. This passing of addresses, or pointers, is the most efficient
way to manipulate data because by receiving one number, a function can find its way to a large
amount of data. This speeds up a program’s execution.

C adds some extra tools to help you construct programs. To begin, C allows you to store functions
in compiled form. These precompiled functions are added only when the program is finally loaded
into memory; this spares you the trouble of having to recompile the same code again and again.
Second, C adds a preprocessor that expands definitions, or macros, and pulls in special material
stored in header files. This allows you to store often-used definitions in one file and use them just
by adding one line to your program.

Compiling a C program

When Let’s C compiles a C program, it invokes a number of sub-programs, or phases, each of which
performs part of the work of turning your file of C code into an executable program. The phases are
as follows:

cpp The preprocessor. This reads the file of source code, adds any header files that you have
requested, and expands any user-defined macros in the program.

cc0 The preprocessed file is then handed to cc0, the parser, which examines the program to see
that it is written in legal C and translates it into a logical structure, or tree.

cc1 The output of the parser is then handed to cc1, the code generator, which translates the
logical structure created by the parser into machine instructions.

cc2 The output of the code generator is then handed to cc2, the optimizer, which examines the
code, eliminates redundant instructions, and then writes the object module file. The output
of cc2 is the relocatable object module, which always has the suffix .obj.

The relocatable object module is handed to MS-LINK, the linker, which opens the libraries and adds
the library functions to create the executable program. What the linker does will be explained in
more detail below.

This sounds complicated, and it is; for that reason, Let’s C includes a command, called cc, that
guides a program through the compilation process automatically. For example, to compile the
program test.c with Let’s C, all you have to do is type:

cc test.c

or use the MWS display interface, as described in section 1, Tutorial Introduction. cc takes care of
the rest.

Writing a C program

As noted above, a C program consists of a bundle of sub-programs, or functions, which link together
to perform the task you want done. Every C program must have at least one function that is called
main. This is the main function; when the computer reads this, it knows that it must begin to
execute the program. All other functions are subordinate to main. When the main function is
finished, the program is over.

Let’s C

30 C for Beginners

Here is a simple C program; all it does is print the message ‘‘Hello, world!’’ on the screen:

main()
{

printf("Hello, world!\n");
}

As you can see, this program begins with the word main. The program begins to work at this point.
The parentheses after main enclose all of the arguments to main — or would, if this program’s main
took any. An argument is an item of information that a function uses in its work.

The braces ‘{’ and ‘}’ enclose all the material that is subsidiary to main.

The word ‘‘printf’’ calls a function called printf. This function performs formatted printing. The line
of characters (or ‘‘string’’) Hello, world! is the argument to printf: this argument is what printf is to
print.

The characters ‘\n’ stand for a carriage return; this ensures that when the program is finished, the
cursor is not left fixed in the middle of the screen. Finally, the semicolon ‘;’ at the end of the
command indicates that the command is finished.

One point to remember is that printf is not part of the C language. Rather, it is a function that was
written by Mark Williams Company, then compiled and stored in a library for later use. This means
that you do not have to re-invent a formatted printing function to perform this simple task: all you
have to do is call the one that Mark Williams Company has written for you.

Although most C programs are more complicated than this example, every C program has the same
elements: a function called main, which marks where exection begins and ends; braces that fence
off blocks of code; functions that are called from libraries; and data passed to functions in the form
of arguments.

A sample C programming session
This section walks you through a C programming session. It shows how you can go about planning
and writing a program in C.

C allows you to be precise in your programming, which should make you a stronger programmer.
Be careful, however, because C does exactly what you tell it to do: if you make a mistake, you can
produce a legal C program that does very unexpected things.

Designing a program

Most programmers prefer to work on a program that does something fun or useful. Therefore, we
will write something useful: a version of the UNIX utility more. It will do the following:

1. Open a text file on disk.

2. Display its contents in 23-line portions (one full screen).

3. After a portion is displayed, wait to see if the user wants to see another portion. If the user
presses the space bar, display another portion; if he types anything else, exit.

4. Exit automatically when the end of file is reached.

As you can see, the first step in writing a program is to write down what the program is to do, in as
much detail as you can manage, and in complete sentences.

Now, invoke the MicroEMACS editor and get ready to type in the program. Use the command

me more.c

or use the MWS display interface as described in section 1 of this manual. Note that the suffix .c on
the file name indicates that this is a file of C code. If you do not use this suffix, Let’s C will not

Let’s C

C for Beginners 31

recognize that this is a file of C code, and will refuse to compile it.

Begin by inserting a description of the program into the top of the file in the form of a comment.
When a C compiler sees the symbol ‘/*’, it throws away everything it reads until it sees the symbol
‘*/’. This lets you insert text into your program to explain what the program does.

Now, type the following:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

Save what you have typed by pressing <ctrl-X> and then <ctrl-S>. Now, anyone, including you,
who looks at this program will know exactly what it is meant to do.

The main function

As described earlier, the C language permits structured programming. This means that you can
break your program into a group of discrete functions, each of which performs one task. Each
function can be perfected by itself, and then used again and again when you need to execute its
task. C requires, however, that you signal which function is the main function, the one that
controls the operation of the other functions; thus, each C program must have a function called
main().

Now, add main() to your program. Type the code that is shaded, below:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

main()
{
}

The parentheses ‘‘()’’ show that main is a function; if main were to take any arguments, they would
be named between the parentheses. The braces ‘‘{}’’ delimit all code that is subordinate to main;
this will be explained in more detail below.

Note that the shortest legal C program is main(){}. This program doesn’t do anything when you run
it, but it will compile correctly and generate an executable file.

Now, try compiling the program. Save your text by typing <ctrl-X><ctrl-S>, and then exit from the
editor by typing <ctrl-X><ctrl-C>. Compile the program by typing:

cc more.c

or use the MWS display interface, as described in section 1. When compilation is finished, type
more. MS-DOS pauses for a moment, and then returns the prompt to your screen. As you can see,
you now have a legal, compilable C program, but one that does nothing.

Let’s C

32 C for Beginners

Opening a file and showing text

The next step is to install routines that open a file and print its contents. For the moment, the
program will read only a file called tester, and not break it into 23-line portions.

Type the shaded lines into your program, as follows:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>

main()
{

char string[128];
FILE *fileptr;

/* Open file */
fileptr = fopen("tester", "r");

/* Read material and display it */
for (;;)
{

fgets(string, 128, fileptr);
printf("%s\n", string);

}
}

Note first how comments are inserted into the text, to guide the reader.

Now, note the lines

char string[128];
FILE *fileptr;

These declare two data structures. That is, they tell Let’s C to set aside a specific amount of
memory for them.

The first declaration, char string[128];, declares an array of 128 chars. A char is a data entity that
is exactly one byte long; this is enough space to store exactly one alphanumeric character in
memory, hence its name. An array is a set of data elements that are recorded together in memory.
In this instance, the declaration sets aside 128 chars-worth of memory. This declaration reserves
space in memory to hold the data that your program reads.

The second declaration, FILE *fileptr, declares a pointer to a FILE structure. The asterisk shows
that the data element points to something, rather than being the thing itself. When a variable is
declared to be a pointer, Let’s C sets aside enough space in memory to hold an address. When your
program reads that address, it then knows where the actual data are residing, and looks for them
there. C uses pointers extensively, because it is much more efficient to pass the address of data
than to pass the data themselves. You may find the concept of pointers to be a little difficult to
grasp; however, as you gain experience with C, you will find that they become easy to use.

Let’s C

C for Beginners 33

The FILE structure is the data entity that holds all the information your program needs to read
information from or write information to a file on the disk. For now, all you need to remember is
that this declaration sets aside a place to hold a pointer to such a structure, and the structure itself
holds all of the information your program needs to manipulate a file on disk. In effect, the variable
fileptr is used within your program as a synonym for the file itself.

Now, the line

fileptr = fopen("tester", "r");

opens the file to be read. The function fopen opens the file, fills the FILE structure, and fills the
variable fileptr with the address of where that structure resides in memory.

fopen takes two arguments. The first is the name of the file to be opened, within quotation marks.
The second argument indicates the mode in which to open the file; r indicates that the file will be
read only.

The lines

for(;;)
{

begin a loop. A loop is a section of code that is executed repeatedly until a condition that you set is
met. For example, you may define a loop that executes until the value of a particular variable
becomes greater than zero.

for is built into the C language. Note that it has braces, just like main() does; these braces mean
that the following lines, up to the next right brace (}) are part of this loop. You can set conditions
that control how a for loop operates; in its present form, it will loop forever. This will be explained
in more detail shortly.

Two library functions are executed within the loop. The first,

fgets(string, 128, fileptr);

reads a line from the file named in the fileptr variable, and writes it into the character array called
string. The middle argument ensures that no more than 128 characters will be read at a time. The
second line within this loop,

printf("%s\n", string);

prints out the line. printf is a powerful and subtle function; in its present form, it prints on the
screen the string named in the variable string.

Finally, the line at the top of the program

#include <stdio.h>

tells Let’s C to read a header file called stdio.h. The term ‘‘STDIO’’ stands for ‘‘standard input and
output’’; stdio.h declares and defines a number of routines that will be used to read data from a file
and write them onto the screen.

When you have finished typing in this code, again compile the program as you did earlier. If an
error occurs, check what you have typed and make sure that it exactly matches the code shown on
the previous page. If you find any errors, fix them and then recompile. If errors persist, see the
sections Error Messages and Questions and Answers for help.

When compilation is finished, execute more as you did earlier. The file tester is included with
Let’s C. You will see the text from tester scroll across the screen. When the text is finished,
however, the DOS prompt does not return; you have not yet inserted code that tells the program to
recognize that the file is finished. Type <ctrl-C> to break the program and return to DOS.

Let’s C

34 C for Beginners

Accepting file names

Of course, you will want more to be able to display the contents of any file, not just files named
tester. The next step is to add code that lets you pass arguments to the program through its
command line. This task requires that you give the main() function two arguments; by tradition,
these are always called argc and argv. How they work will be described in a moment.

The enhanced program now appears as follows:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
/* Declare arguments to main() */
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;

/* Open file */
fileptr = fopen(argv[1], "r");

/* Read material and display it */
for (;;)
{

fgets(string, MAXCHAR, fileptr);
printf("%s\n", string);

}
}

First, a small change has been added: the line

#define MAXCHAR 128

defines the manifest constant MAXCHAR to be equivalent to 128. This is done because the ‘‘magic
number’’ 128 is used throughout the program. If you decide to change the number of characters
that this program can handle at once, all you would have to do is to change this one line to alter the
entire program. This cuts down on mistakes in altering and updating the program. If you look
lower in the program, you will see that the declaration

char string[128]

has been changed to read

char string[MAXCHAR]

The two forms are equivalent; the only difference is that the latter is easier to use. It is a good idea
to use manifest constants wherever possible, to streamline changes to your program.

Let’s C

C for Beginners 35

Now, look at the line that declares main(). You will see that main() has two arguments: argc and
argv.

The first is an int, or integer, as shown by its declaration — int argc;. argc gives the number of
entries typed on a command line. For example, when you typed

more filename

the value of argc was set to two: one for the command name itself, and one for the file-name
argument. argc and its value are set by Let’s C. You do not have to do anything to ensure that this
value is set correctly.

argv, on the other hand, is an array of pointers to the command line’s elements. In this instance,
argv[1] points to name of the file that you want more to read. This, too, is set by Let’s C, and
works automatically.

If you look below at the line that delares fopen(), you will see that tester has been replaced with
argv[1]; this means that you want fopen() to open the file named in the first argument to the more
command.

Now, try running the program by typing

more tester

more will open tester and display its contents on the screen. You still need to type <ctrl-C> when
the file is finished; the code to recognize the end of the file will be inserted later.

Also, be sure that you give the command only one file name as an argument, no more and no less.
Code that checks against errors has not yet been inserted, and handing it the wrong number of
arguments could cause MS-DOS to crash.

Error checking

Obviously, the program runs at this stage, but is still fragile, and could cause problems for you.
The next step is to stabilize the program by writing code to check for errors. To do so, a programmer
must first write code to capture error conditions, and then write a routine to react appropriately to
an error.

Our edited program now appears as follows:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
/* define arguments to main() */
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;

Let’s C

36 C for Beginners

/* Check if right number of arguments was passed */
if ((argc-1) != 1)

error("Usage: more filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

/* Read material and display it */
for (;;)
{

fgets(string, MAXCHAR, fileptr);
printf("%s\n", string);

}
}

/* Process error messages */
error(message)
char *message;
{

printf("%s\n", message);
exit(1);

}

The additions to the program are introduced by comments.

The first addition

if ((argc-1) != 1)
error("Usage: more filename");

checks to see if the correct number of arguments was passed on the command line; that is to say, it
checks to make sure that you named a file when you typed the more command.

As noted above, argc is the number of arguments on the command line, or rather, the number of
arguments plus one, because the command name itself is always considered to be an argument.
The statement if((argc-1) != 1) will check this. The if statement is built into C. If the condition
defined between its parentheses is true, then do something, but if it is not true, do nothing at all.
The operator != means ‘‘does not equal’’. Therefore, our statement means that if argc minus one is
not equal to one (in other words, if there is not one and only one argument to the more command),
execute the function error. error is defined below.

Our fopen function also has some error checking added (which will be described in a moment):

if ((fileptr = fopen(argv[1], "r")) == NULL)
error("Cannot open file");

fopen will return a value called ‘‘NULL’’ if, for any reason, it cannot open the file you requested.
Thus, our new if statement says that if fopen cannot open the file named on the first argument to
the command line (that is, argv[1]), it should invoke the error function.

C always executes nested functions from the ‘‘inside out’’. That means that the innermost function
(that is, the function that is enclosed most deeply within the pairs of parentheses) is executed first.
Its result, or what it returns, is then passed to next outermost function as an argument; that
function is then executed and what it returns is, in turn, passed to the function that encloses it,
and so on. In this instance, the innermost function is

fileptr = fopen(argv[1], "r")

fopen is executed and what it returns is written into fileptr. What fopen returned is then passed to

Let’s C

C for Beginners 37

the next outer operation; in this case, it is compared with NULL, as follows:

(fileptr = fopen(argv[1], "r") == NULL

What that operation returns is then passed to the outermost function, in this case the if statement,
which evaluates what it is passed, and acts accordingly. If fileptr is NULL (that is, if fopen couldn’t
open the file), the if statement will be true and the error function will be called. If, however, the file
was opened, fileptr will not equal NULL and the program will proceed.

As this example shows, C allows a programmer to nest functions quite deeply. Although nested
functions are sometimes difficult to untangle when you read them, they make programming much
more convenient.

Finally, at the bottom of the file is a new function, called error:

error(message)
char *message;
{

printf("%s\n", message);
exit(1);

}

This function stands outside of main, as you can tell because it appears outside of main’s closing
brace. This function is called only when your program needs it. If there are no errors, the program
progresses only until the closing brace and the error function is never called.

error takes one argument, the message that is to be printed on the screen. This message is defined
by the routine that calls error. error uses the function printf to print the message, then calls the
exit function; this, as its name implies, causes the program to stop. The argument 1 is a special
signal that tells MS-DOS that something went wrong with your program.

When the error checking code is inserted, recompile the program without an argument. Previously,
this would crash MS-DOS; now, all it does is print the message

Usage: more filename

and terminate the program.

Print a portion of a file

So far, our utility just opens a file and streams its contents over the screen. Now, you must insert
code to print a 23-line portion of the file. At present, it will only print the first 23 lines, and then
exit.

To do so, you must insert another for loop. Unlike our first loop, which ran forever, this one will
cycle only 23 times, and then stop. Our updated program appears as follows:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

Let’s C

38 C for Beginners

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if ((argc-1) != 1)

error("Usage: more filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

/* Output 23 lines */
for (;;)
{

for (ctr = 0; ctr < 23; ctr++)
{

fgets(string, MAXCHAR, fileptr);
printf("%s\n", string);

}
exit(0);

}
}

/* Process error messages */
error(message)
char *message;
{

printf("%s\n", message);
exit(1);

}

The new for loop is nested inside the loop governed by for(;;). The program also declares a new
variable, ctr, at the beginning of the program. ctr keeps track of how many times the loop has
executed. Now, look at the line:

for (ctr = 0; ctr < 23; ctr++)

It has three sub-statements, which are separated by semicolons. The first sub-statement sets ctr to
zero; the second says that execution is to continue as long as ctr is less than 23; and the third says
that ctr is to be increased by one every time the loop executes (this is indicated by the ++ appended
to ctr). With each iteration of this loop, fgets reads a line from the file named on the more
command line, and printf prints it on the screen.

Also, an exit call has been set after this new loop; this ensures that the program will exit
automatically after the loop has finished executing. This is a temporary measure, to make sure that
you no longer have to type <ctrl-C> to return to MS-DOS.

When you have updated the program, recompile it in the usual way. When you run it, more will
show the first 23 lines of the file, and then the MS-DOS prompt will return.

The program is now approaching its final form.

Let’s C

C for Beginners 39

Checking for the end of file

The next-to-last step in preparing the program is teaching it to recognize the end of a file when it
sees it. This does not appear to be needed now because the program exits automatically after 23
lines or fewer, but it will be quite necessary when the program begins to display more than one 23-
line portion of text.

The libraries included with Let’s C include a function that checks for the end of file (or EOF); it is
called feof(). Before the program attempts to print out a line of text, it should check if the end of the
file has been reached. This means placing feof in an if statement; the statement will take advantage
of the fact that feof outputs, or returns, a zero if the end of file has not been reached, and returns a
number other than zero if the end of file has been reached. The if statement will capture what feof
returns, and continue execution as long as the value of the number returned is zero.

The updated program now appears as follows:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if ((argc-1) != 1)

error("Usage: more filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

Let’s C

40 C for Beginners

/* Output 23 lines, while checking for EOF */
for (;;)
{

for (ctr = 0; ctr < 23; ctr++)
{

if (feof(fileptr) == 0)
{

fgets(string, MAXCHAR, fileptr);
printf("%s\n", string);

}
else

exit(0);
}
exit(0);

}
}

/* Process error messages */
error(message)
char *message;
{

printf("%s\n", message);
exit(1);

}

First, note that the comment that describes the program’s output has been changed to reflect our
changes to the program. It is important for a programmer to ensure that the comments and the
code are in step with each other.

Our new if statement

if (feof(fileptr) == 0)
{

checks what feof returns: if it returns zero, the end of the file has not been reached, the if
statement is true, and the program prints out the next line. If it returns a number other than zero,
the end of file has been reached, the if statement is false so the else statement is executed, which
causes more to exit. feof takes one argument, which is the FILE that was defined by fopen.

Note, too, that a new control statement is introduced: else. This, like if, is built into the C language.
An else statement is always paired with an if statement; together, they mean that if the condition
for which if is testing is true, the program should do one thing; otherwise, it should do something
else. In this case, the program says that if the end of file has not been reached, another line should
be read from the file and printed on the screen; however, if it has been reached, then the program
should exit. As you can imagine, if/else pairs are common in C programming; they are logical and
useful.

One more task must be done on our program; then it is finished.

Polling the keyboard

For the program to be complete, it has to ask you if you want to see another 23-line portion of text.
The program should write another portion if you press the space bar, and exit if you type anything
else.

The program will use a new function, getcnb, to accomplish this task. getcnb reads what you type
in an unbuffered fashion; that means that you do not have to type the carriage return key for the
keystroke to be read by the program. This is placed within an if statement that compares what
character is typed with the space character. If they are not the same (as indicated by the operator
!=), the program will exit; otherwise, it will loop through again and show another 23 lines.

Let’s C

C for Beginners 41

When these changes are inserted, the program is complete:

/*
* Truncated version of the ’more’ utility.
* Open a file, print out 23 lines, wait.
* If user types <space>,
* print another 23 lines,
* if user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if ((argc-1) != 1)

error("Usage: more filename");

/* Open file */
if ((fileptr = fopen(argv[1], "r")) == NULL)

error("Cannot open file");

/* Output 23 lines, while checking for EOF */
for (;;)
{

for (ctr = 0; ctr < 23; ctr++)
{

if (feof(fileptr) == 0)
{

fgets(string, MAXCHAR, fileptr);
printf("%s\n", string);

}
else

exit(0);
}

/* Read keyboard; exit if not <space> */
if (getcnb() != ’ ’)

exit(0);
}

}

/* Process error messages */
error(message)
char *message;
{

printf("%s\n", message);
exit(1);

}

After you have inserted these changes, again compile the program.

Let’s C

42 C for Beginners

When compilation is finished, try typing

more more.c

The first 23 lines of the source code to the program now appear on your screen. Hit the space bar;
the next 23 lines appear. Now, type any other key: the program exits.

You now have a simple but helpful more utility.

For more information

This section has given you a brief, concentrated introduction to writing a C program. If you are new
to programming, much of what happened must seemed strange, but we hope it helped you to
appreciate the logic of how C works.

Numerous books are on the market to teach beginners how to program in C; see the bibliography at
the end of section 1 of this manual for a list of them. Also, look at the sample C programs in the
Lexicon. These demonstrate how to use many of the functions available to you with Let’s C.

With patience, you should discover that programming with C is one of the greatest pleasures to be
had with a computer: few feats are as satisfying as delving into the machine and having it do exactly
what you want it to do.

Where to go from here
The following section, Advanced compiling, introduces some of the more sophisticated features of the
Let’s C compiler. You should look through this section when you feel that you are ready for
advanced programming.

If you have any questions about any of the features of Let’s C, or about any of the functions that
were described in this tutorial, look in the Lexicon. For example, if you have a question about feof
or printf, look them up in the Lexicon. There, you will full descriptions of how to use them, plus
sample C programs that show how to use them. By typing, compiling, and running the sample
programs, you will quickly learn how to use the C language.

Let’s C

#%2=0 .nr # 0

Compiling with Let’s C

This section describes how to compile C programs with Let’s C.

In brief, a C compiler transforms files of C source code into machine code. Compilation involves
several steps; however, Let’s C simplifies it with the cc command, which controls all the actions of
the compiler.

The phases of compilation
Let’s C is not just one program, but a number of different programs that work together. Each
program performs a phase of compilation. The following summarizes each phase:

cpp The C preprocessor. This processes any of the ‘#’ directives, such as #include or #ifdef, and
expands macros.

cc0 The parser. This phase parses programs. It translates the program into a parse-tree format,
which is independent of both the language of the source code and the microprocessor for
which code will be generated.

cc1 The code generator. This phase reads the parse tree generated by cc0 and translates it into
machine code. The code generation is table driven, with entries for each operator and
addressing mode.

cc2 The optimizer/object generator. This phase optimizes the generated code and writes the
object module.

cc3 Let’s C also includes a fifth phase, called cc3, which can be run after the object generator,
cc2. cc3 generates a file of assembly language instead of a relocatable object module. This
phase is optional, and allows you to examine the code generated by the compiler. If you want
Let’s C to generate assembly language, use the -VASM option on the cc command line.

Unless you specify the -VASM option, Let’s C creates an object module that is named after the
source file being compiled. This module has the suffix .obj. An object module is not executable; it
contains only the code generated by compiling a C source file, plus information needed to link the
module with other program modules and with the library functions.

As the final step in its execution, cc calls the linker ld to produce an executable program.

Edit errors automatically
The first option, and one that you’ll use most often, is the MicroEMACS option -A. Often when
you’re writing a new program, you try to compile it, only to have the compiler tell you that you’ve
made a mistake. You must then invoke your editor, change the program, exit from the editor, and
start compiling the program again.

To make this process easier, cc command has the automatic (or MicroEMACS) option, -A. If Let’s C
detects any errors in your program, it will automatically invoke the MicroEMACS screen editor.
MicroEMACS will display all error messages in one window and your source code in another, with
the cursor set at the number of the line where the first error occurred.

Try the following example. Use MicroEMACS to create a program called error.c. To invoke
MicroEMACS, type the command

me error.c

43

44 Compiling with Let’s C

at the MS-DOS prompt, or use the display interface to MWS, the Mark Williams shell, as described
in section 1 of this manual. Then type the following code:

main()
{

printf("Hello, world")
}

Note that the semicolon was left off of the printf statement. Type <ctrl-X><ctrl-S> to save the file to
disk, and <ctrl-X><ctrl-C> to exit from MicroEMACS. Now, try compiling error.c with the following
cc command:

cc -A error.c

or use MWS’s display interface, as described in section 1. You will see no messages from the
compiler because they are all being diverted into a file to be used by MicroEMACS. Then,
MicroEMACS will appear automatically. In the upper window you will see the message:

4: missing ’;’

and in the lower window you will see your source code for error.c, with the cursor set on line 4. If
you had more than one error, typing <ctrl-X>> would move you to the next line with an error in it;
typing <ctrl-X>< would return you to the previous error.

With some errors, such as those for missing braces or semicolons, the compiler cannot always tell
exactly which line the error occurred on; it will point to a line that is near the source of the error.

Now, use <ctrl-E> to move the cursor to the end of line 3, and type a semicolon to correct the error.
Type <ctrl-X><ctrl-S> to save the file to disk, and then type <ctrl-X><ctrl-C> to exit from
MicroEMACS. cc will recompile the program automatically, to produce a normal working executable
file.

cc will continue to invoke the MicroEMACS editor either until the program compiles without error,
or until you exit from the editor by typing <ctrl-U> followed by <ctrl-X><ctrl-C>.

Renaming executable files
When Let’s C compiles a source file, by default it names the executable program after the source
file. For example, when you compiled error.c, Let’s C automatically named the executable file
error.exe.

If you wish, you can give the executable file a different name. Use the -o (output) option, followed by
the desired name. For example, should you wish the executable file to have the name example.exe,
use the command:

cc -o example.exe error.c

This command will compile the source file error.c and generate an executable file called
example.exe. The suffix .exe tells MS-DOS that the file is executable.

Floating-point numbers
Often, you will need to use floating-point numbers in your programs. If you are unsure what a
floating-point number is, see the Lexicon entry for float.

The routines that print floating-point numbers are large, and most C programs do not need to print
floating-point numbers; therefore, the code to perform floating-point arithmetic is not included in a
program by default. You must ask Let’s C to include these routines with your program by using the
-f option with the cc command.

Let’s C

Compiling with Let’s C 45

For example, if the program example.c used floating-point numbers, you would compile it with the
following command line:

cc -f example.c

If your program prints floating-point numbers or reads them from an input device, and it is not
compiled with the -f option, it will print the following error message when it is run:

You must compile with the -f option
to include printf() floating point!

Compiling multiple source files
Many programs are built from more than one file of C source code. For example, the program
factor, which is provided with Let’s C, is built from the C source files factor.c and atod.c. To
produce the executable program factor, both source files must be compiled; the linker ld then joins
them to form an executable file.

To compile a program that uses more than one source file, type all of the source files onto the cc
command line. For example, to compile factor type the following:

cc -f factor.c atod.c -lm

This command compiles both C source files to create the program factor.

When the cc command line includes several file name arguments, by default it uses the first to
name the executable file. In the above example, cc produces the non-executable object modules
factor.obj and atod.obj, and then links them together to produce the executable file factor.exe.

The argument -lm tells cc to include routines from the mathematics library when the object
modules are linked. This option must come after the names of all of the source files, or the program
will not be linked correctly.

Wildcards
A wildcard character is one that represents a variety of characters. MS-DOS recognizes the asterisk
‘*’ and the question mark ‘?’. The asterisk can represent any string of characters of any length
(including no character at all), whereas the question mark can represent any one character.

For example, if the current directory held the following files:

a.c
ab.c
abc.c
abcd.c

typing dir a?.c would print:

ab.c

whereas typing dir a*.c would print all four files.

The cc command lets you use wildcards in your command line to save you time and effort. For
example, you can compile all of the C source files in the current directory simply by typing:

cc *.c

This command compiles all of the files with the suffix .c and links the resulting object modules.

In another example, if the program example were built from the source files example1.c,
example2.c, and example3.c, you could compile them with the following command:

Let’s C

46 Compiling with Let’s C

cc example?.c

Tailoring the command line interface
With Let’s C, you can tailor the command-line interface that your compiled programs use. Some
programs do not use command-line arguments; others take a few; whereas others may need to read
the environment and expand wildcard characters. The following options allow you to select the
interface you want for your program.

The option -na (for ‘‘no arguments’’) tells Let’s C that a program does not use command line
arguments. The -na option may be used with or without the -ns option, which suppresses STDIO.

The option -w (for ‘‘wildcard’’) tells Let’s C to include code that expands the wildcards ‘?’ and ‘*’ used
in command-line arguments. For example, if the program example.exe is compiled with the -w
option, it will expand the command:

example *.c

The wildcard argument *.c will expand into all file names in the current directory that end in .c.

If your program defines a global array char _cmdname[] that gives the name of the command, then
compiling the program with the -w option will include code that fills in argv[0] with the command
name and looks for environmental variables of the form nameHEAD and nameTAIL. If found, these
are added to the argv[] array, respectively, before and after the command-line arguments.

For example, the word-count command wc is built with the -w option. If you set the environmental
variable WCHEAD to -l, then the command

wc foo.c

has the same effect as the command

wc -l foo.c

The arguments to the function main are usually defined as

main(argc, argv)
int argc; char *argv[];

On some systems, a third argument is available:

main(argc, argv, envp)
int argc;
char *argv[], *envp[];

The argument envp is a NULL-terminated array of pointers to environmental variables, each of the
form var=value. If a program is compiled without the -w option, Let’s C passes an empty list as
envp. If a program is compiled with this option, Let’s C passes an envp that points to all of the
MS-DOS environmental variables. Note that your program does not have to use envp; like argc and
argv, it is available should you want it.

Linking without compiling
When you are writing a program that consists of several source files, you will need to compile the
program, test it, and then change one or more of the source files. Rather than recompile all of the
source files, you can save time by recompiling only the modified files and relinking the program.

For example, if you modify the factor program by changing the source file factor.c, you can
recompile factor.c and relink the entire program with the following command:

Let’s C

Compiling with Let’s C 47

cc -f factor.c atod.obj -lm

The first two arguments are the C source file factor.c and the object module atod.obj. cc recognizes
that atod.obj is an object module and simply passes it to the linker ld without compiling it. You
will find this particularly useful when your programs consist of many source files and you need to
compile only a few of them.

To simplify compiling, especially if you are developing systems that use many source modules, you
should consider using the make command that is included with Let’s C. For more information on
make, see the entry in the Lexicon, or see the tutorial for make that appears later in this manual.

Compiling without linking
At times, you will need to compile a source file but not link the resulting object module to the other
object modules. You will do this, for example, to compile a module that you wish to insert into a
library. Use the -c option to tell cc not to link the compiled program. This option is used most
often to create relocatable object modules that can be archived into a library for later use.

For example, if you wanted just to compile factor.c without linking it, you would type:

cc -c factor.c

To link the resulting object module with the object module atod.obj and with the appropriate
libraries, type the following command:

cc -f factor.obj atod.obj -lm

Mini-make option
When you write a program that consists of several files of source code, you may find that, at one
time or another, you need to alter the code in just one or two files, to update the program or to fix a
bug. You must then recompile and relink the program to create an executable file; however, it is
wasteful to recompile every file of source code when did not modify all of them. What you need is an
easy way to recompile only the files that you edited, and then relink all of the object modules into an
executable file.

The -m (mini-make) option allows you to create an up-to-date version of your program without
recompiling all of your source files. When you use the -m option, the compiler compares the date
the source file was last modified with the date its object module was last created. If the object
module has a later date than the source file, then the source file has not been modified since it was
last compiled, and Let’s C will not recompile it. It will, however, re-link the previously compiled
object module to build a new executable file.

This option is quite useful when recompiling programs that are built out of many different modules
because unchanged source files are not recompiled unnecessarily. Note, however, that the -m
option does not recognize header file dependencies, so you should use it with some caution.

Note, too, that this option will not work properly if you do not reset your system’s time whenever
you reboot. If you do not, files will be date-stamped to the default time, and cc will not be able
organize them properly.

Assembly-language files
C makes most assembly language programming unnecessary. However, you may wish to write
small parts of your programs in assembly language for greater speed or to access processor features
that C cannot use directly. Let’s C includes an assembler, named as, which is described in detail in
the Lexicon.

Let’s C

48 Compiling with Let’s C

To compile a program that consists of the C source file example.c and the assembly-language
source file example.s, simply use the cc command as usual:

cc example1.c example2.s

cc recognizes that the suffix .s indicates an assembly-language source file, and assembles it with as;
then it links both object modules to produce an executable file.

If you wish, you can also write programs that combine assembly language with C preprocessor
instructions. These files should have the suffix .m. When you name a .m file in a cc command, cc
will pass it first to the C preprocessor cpp, and then pass what cpp produces to the assembler as.
These allow you to write assembly-language programs that are independent of i8086 memory model.
For more information on how to use the .m format, see the Lexicon entries for larges.h and for as.

Changing the size of the stack
The stack is the segment of memory that holds function arguments, local variables, and function
return addresses. Let’s C by default sets the size of the stack to two kilobytes (2,048 bytes). This is
enough stack space for most programs; however, some programs, such as the example program on
page 26 of the first edition of The C Programming Language, ed. 2, require more than two kilobytes
of stack. A program that uses more than its allotted amount of stack will cause a stack overflow;
this may force you to reboot your computer.

The size of the stack cannot be altered while a program is running. Should your program need more
than two kilobytes of stack, use the -ys option to the cc command. For example, to increase the
stack size to 8,000 bytes, use the following command to the cc command:

cc -ys8000 hello.c

Note that this option indicates the number of bytes to which you wish to set the stack, not the
number of kilobytes. This must be a decimal number.

i8086 memory models
The i8086/88 microprocessor uses a segmented architecture. This means the i8086/88 divides
memory into segments of 64 kilobytes each. No program or data element can exceed that limit.

Intel Corporation has devised a number of models for organizing the segments of memory into a
program that is larger than any single segment. Let’s C implements the two most useful of these:
SMALL model and LARGE model.

SMALL model C programs use 16-bit pointers and near calls. Because a 16-bit pointer can address
65,536 bytes (64 kilobytes) of memory, SMALL model programs are limited to 64 kilobytes (one
segment) of code and 64 kilobytes of data and stack.

LARGE model C programs use 32-bit pointers and far calls. In the LARGE model, the 32-bit
pointers are converted by the processor to 20-bit addresses, so LARGE model programs can access
up to a total of 1,048,576 bytes (one megabyte) of code and data. The IBM PC and and its imitators
have a physical limit of 640 kilobytes.

In terms of execution, LARGE-model programs run more slowly than SMALL-model programs, but
for many purposes the advantages of the expanded address space of the LARGE model outweigh the
decreased efficiency.

When Let’s C compiles a program with the -VSMALL option, the resulting object module follows the
rules of the SMALL model. This is the default setting for the compiler. When the -VLARGE option
is used with the cc command, the object program follows the rules of the LARGE model.

When you compile a program with the -VLARGE option, cc defines the manifest constant LARGE to
the C preprocessor. This allows you to use the #ifdef LARGE conditional to flag model-dependent
code.

Let’s C

Compiling with Let’s C 49

Note that you cannot mix SMALL-model object modules with those compiled into LARGE model.

Debugging information
One powerful feature of Let’s C is its ability to generate programs that you can debug with csd, the
revolutionary Mark Williams C source debugger. csd lets you debug C source code: you can use it
even if you do not know i8086 assembly language.

csd uses debugging information that Let’s C writes into the object module as it compiles a C
program. Because this information slightly enlarges the file that contains the object modules,
Let’s C does not produce it unless you request it. To include debugging information in an object
module, use the -VCSD option before the file name argument on the cc command line:

cc -VCSD hello.c

The manual for csd describes the C source debugger in full.

A module compiled with the -VCSD option will run exactly the same as one compiled without it, but
the size of the object module will increase by a few bytes. The size of the executable file will
increase, due to the special symbol table that the -VCSD option builds.

With some programs that already approach the limits of the SMALL model, compiling with the -
VCSD option may make them too large to be executed as SMALL model programs. In that case,
recompile the program with the -VCSD and -VLARGE options; the latter option will create a LARGE
model output.

To remove the debug symbol table from the programs that you compile with the -VCSD option, use
the strip command. strip is described in the Lexicon.

i8087 programs
The Intel i8087 chip is a numeric data processor that is designed to execute mathematics routines.
It increases the speed with which programs can compute floating-point numbers. Because of its
expense, however, many personal computers do not include this chip.

Let’s C by default uses a special set of libraries that sense if an i8087 is present. When you compile
a program with these libraries and then run it, the library routines automatically check to see if an
i8087 is present on your computer. If an i8087 is present, then floating-point arithmetic is
automatically computed it; otherwise, it is computed in software. Thus, a program compiled with
Let’s C can be run to best advantage on machines that have an i8087 as well as on machines that
do not, without needing to recompile the program.

If you know that the program you are compiling will always be run on a machine with an i8087, you
may wish to use the libraries that use the i8087 exclusively. You can do this by specifying the -
VNDP option to the cc command. For example, to compile the program factor to run exclusively
with an i8087, use the following command:

cc -VNDP factor.c atod.c -lm

This program will not run on a machine that does not have an i8087; however, the executable file
will be somewhat smaller than one that uses the sensing libraries, and will run slightly faster.

Options passed to MS-LINK
The compiler controller cc passes a number of its options directly to MS-LINK. The following
summarizes them.

-y/switch
This option sends switch directly to MS-LINK. switch can be any MS-LINK command or
option.

Let’s C

50 Compiling with Let’s C

-ym Tell MS-LINK to create a map file that can be used with the MS-DOS utility DEBUG. For
more information on DEBUG and its uses, see your MS-DOS manual.

-yn Increase the number of segments allowed in a program to 1,024 using the MS-LINK
segments switch. Note that the segments switch is used only version of MS-LINK later 3.0.
Earlier versions use the x switch to increase the number of segments.

-ysnumber
Set the stack size to number where number is a decimal integer that gives the number of
bytes you desire. The stack is set by default to two kilobytes; to set the stack, for example,
to 16,000 bytes type:

cc -ys16000 foo.c

-yf Tell MS-LINK to write a linker command file. This option is useful, should you ever have
trouble linking a program and wish to see just what MS-LINK is doing, or if you wish to
fine-tune how your program is linked.

-yuname
Undefine the variable name for MS-LINK. This tells MS-LINK to link in the library module
called name even though it is not named explicitly in your program. For example, the
command line

cc -yuprintf example.c

tells MS-LINK to link the library module printf into your program, even if your program
does not explicitly call printf. This tactic is sometimes quite useful.

Compiling programs without STDIO
STDIO is an abbreviation for standard input and output. Library routines use STDIO to write to the
screen or read the keyboard. Most of the runtime startup routines included with Let’s C call
STDIO, whether your program uses any STDIO functions or not.

If you have a small program that does not use any of the STDIO functions, you can stop STDIO from
being linked into your program by using the -ns option. This will make your program noticeably
smaller and more efficient. Note that the -ns option gives your program a different version of the
exit command, one that does not call fclose or fflush

Using default options
To make using Let’s C even simpler, cc helps you specify default options with the environment
variables CCHEAD and CCTAIL These variables give options that cc adds to the command line you
give it: it adds CCHEAD to the start of the command line (after the ‘‘cc’’), and it appends CCTAIL to
the end of the command line.

How you can build a nameHEAD and nameTAIL feature into your program is described above, in
the sub-section Tailoring the command line interface.

When you installed Let’s C, the install utility instructed you to set CCHEAD so that Let’s C would
read the file CCARGS. If you wish, though, you can attach additional variables to CCHEAD, or add
them to the file ccargs.

For example, suppose you always wish to use the options -V and -f (for ‘‘verbose’’ compilation and
floating-point routines), and always link in the mathematics library with the -lm option (which, as
you recall, must be mentioned after the source and object modules). Rather than retype these
options every time you type a cc command line, you can set CCHEAD and CCTAIL as follows:

set CCHEAD=@a:\lib\ccargs\ -V -f
set CCTAIL=-lm

Let’s C

Compiling with Let’s C 51

Note that if your computer has a hard disk, CCHEAD should indicate that ccargs is on drive C,
rather than drive A, as shown above. Thereafter, when you type

cc factor.c atod.c

it will be as if you had typed

cc -V -f factor.c atod.c -lm

in addition to the arguments contained in ccargs. These environmental variables allow you to pass
variables to Let’s C with ease. To ensure that these variables are set every time you boot your
system, be sure to enter the set commands described above into the file autoexec.bat on your MS-
DOS boot disk.

Where to go from here
For more information on compiling, see the Lexicon entry for cc. This entry summarizes all of cc’s
options, and presents many that are not discussed here. For more information on the assembler as,
see its entry in the Lexicon as well.

The following section introduces the MicroEMACS screen editor. If you have worked the exercises in
this part of the book, you have already used MicroEMACS a little; this tutorial, however, will show
you how to use all of its advanced features to input text quickly and easily.

Then comes an introduction to make, the Mark Williams programming discipline. If you are
building programs that use multiple files of source code, you will find make to be an invaluable tool.

Section 6, Questions and Answers, answers frequently asked questions about Let’s C and its
utilities. If you have a question about Let’s C, look here first. You may well find the information
you need.

Let’s C

52 Compiling with Let’s C

Let’s C

#%2=0 .nr # 0

Introduction to MicroEMACS

This section introduces MicroEMACS, the interactive screen editor for Let’s C. It is written for two
types of reader: the one who has never used a screen editor and needs a full introduction to the
subject, and the one who has used a screen editor before but wishes to review specific topics.

What is MicroEMACS?
MicroEMACS is an interactive screen editor. An editor lets you type text into your computer, name
it, store it, and recall it later for editing. Interactive means that MicroEMACS will accept an editing
command, execute it, display the results for you immediately, then wait for your next command.
Screen means that you can use nearly the entire screen of your terminal as a writing surface: you
can move your cursor up, down, and around your screen to create or change text, much as you
move your pen up, down, and around a piece of paper.

These features, plus the others that will be described in the course of this tutorial, make
MicroEMACS a tool that is powerful yet easy to use. You can use MicroEMACS to create or change
computer programs or any type of text file.

The MS-DOS version of MicroEMACS was adapted by Mark Williams Company from a public-
domain program written by David G. Conroy. This tutorial is based on the descriptions in his essay
MicroEMACS: Reasonable Display Editing in Little Computers MicroEMACS is derived from the
mainframe display editor EMACS, which was created at the Massachusetts Institute of Technology
by Richard Stallman.

For a summary of MicroEMACS and its commands, see the entry for me in the Lexicon.

Keystrokes — <ctrl>, <esc>
The MicroEMACS commands use control characters
and meta characters.
Control characters use
the
control key, which is marked Control
on your keyboard; meta characters
use the escape key, which
is marked Esc.

Ctrl
works like the shift key: you hold it down while
you strike the other key.
Here, this will be
represented with a hyphen; for
 example, pressing the control key and the letter ‘X’
 key
simultaneously will be shown as follows:

<ctrl-X>

The esc
key, on the other hand, works like an ordinary
character.
You should strike it first, then
strike the
letter character you want.
Escape character codes will not be represented
with a hyphen;
for example, escape X will be represented as:

<esc>X

Becoming acquainted with MicroEMACS
Now
 you are ready for a few simple exercises that will help
 you get a feel for how MicroEMACS
works.

To begin, type the following command to
MS-DOS:

me sample

If you are using Let’s C through the MWS display interface, return to the main menu and then
press <return>. When the Edit menu appears, press the <> key until the cursor bar is at New File;
then press <return> and type sample.

53

54 MicroEMACS

Within a few seconds, your screen will have been cleared of writing,
the cursor will be positioned in
the upper left-hand corner of
 the screen, and a command line will appear at the bottom of your

screen.

Now type the following text.
If you make a mistake, just backspace over it and
retype the text.
Press
the carriage return or enter key
after each line:

main()

{

printf("Hello, world!\n");

}

Notice how the text appeared on the screen character by character
as you typed it, much as it would
appear on a piece
of paper if you were using a typewriter.

Now, type
<ctrl-X><ctrl-S>;
that is, type <ctrl-X>,
and then type <ctrl-S>.
It does not matter whether
you type capital or lower-case letters.
Notice that this message has appeared at the bottom of your

screen:

[Wrote 4 lines]

This command has permanently stored, or saved, what you
typed into a file named sample.

Type the next few commands, which demonstrate some of the tasks that
MicroEMACS can perform
for you.
These commands will be explained in full in the sections
that follow; for now, try them to
get a feel
for how MicroEMACS works.

Type <esc><.
 Be sure that you type a less-than symbol
 ‘<’, instead of a comma.
Notice that the
cursor has returned to the upper left-hand corner
 of the screen.
 Type <esc>F.
 The cursor has
jumped forward by one word, and is now
 on the left parenthesis. Type <ctrl-N>.
Notice that the
cursor has jumped to the next line, and is now
just to the right of the left brace ‘{’.
Type <ctrl-A>.

The cursor has jumped to the beginning of the second line
of your text.
Type <ctrl-N> again, and
the cursor is at the beginning of the
third line of the program, the printf statement.

Now, type <ctrl-K>.
The third line of text has disappeared, leaving an empty space.
Type <ctrl-K>
again.
The empty space where the third line of text had been has now
disappeared.

Type <esc>>.
Be sure to type a greater-than symbol
‘>’, not a period.
The cursor has jumped to the
space just
below the last line of text.
Now type <ctrl-Y>.
The text that you erased a moment ago has
now been restored.

By now, you should be feeling more at ease with typing
MicroEMACS’s control and escape codes.

The following sections will explain what these commands mean.
For now, exit from MicroEMACS by
typing <ctrl-X><ctrl-C>, and
when the message

Quit [y/n]?

appears type y and then <return>. This will return you to MS-DOS or MWS.

Beginning a document

If your computer does not have a hard disk, do the following before you begin: insert disk 2, the
compiler disk, into drive A of your computer. Insert disk 8, which holds the sample programs, into
drive B. Then, log into directory sample on drive B by typing the following command:

cd b:\sample

If your system does have a hard disk, log into directory sample on your hard disk by typing the
following:

cd c:\sample

Let’s C

MicroEMACS 55

Now, edit the file called example1.c. First, use the cd to move to directory \src, which is where this
file was stored when you installed Let’s C. If you stored the sample programs in a different
directory, then use the cd command to transfer to that directory. Now, type the following command:

me example1.c

If you are working through the MWS display interface, invoke MicroEMACS as follows: First, make
sure that you are in the main menu, and that the cursor bar is positioned over Edit. Type
<return>. When the Edit menu appear, press the <> key to move the cursor bar to Files. Press
<return>. A box will appear on the screen that shows all of the files available for editing. Press the
<> key until the cursor bar is positioned over the file labelled example1.c; then press <return>. As
you can see, example1.c now appears in the command box, which is at the top of the screen. Press
<end>, to return to the Edit menu; then press <return>, to execute the command you have just
built. This will invoke MicroEMACS to edit the file example1.c.

In a moment, the following text will appear on your
screen:

/*

* This is a simple C program that computes the results

* of three different rates of inflation over the

* span of ten years. Use this text file to learn

* how to use MicroEMACS commands

* to make creating and editing text files quick,

* efficient and easy.

*/

#include <stdio.h>

main()

{

int i; /* count ten years */

float w1, w2, w3; /* three inflated quantities */

char *msg = " %2d\t%f %f %f\n";/* printf string */

i = 0;

w1 = 1.0;

w2 = 1.0;

w3 = 1.0;

for (i = 1; i<= 10; i++) {

w1 *= 1.07; /* apply inflation */

w2 *= 1.08;

w3 *= 1.10;

printf (msg, i, w1, w2, w3);

}

}

When you type the MicroEMACS
 command and a file name, MicroEMACS
 copies that file into
memory. Your cursor also moved to the upper left-hand corner of the screen. At the bottom of the
screen appears the status line, as follows:

-- MicroEMACS -- example1.c -- File: example1.c ----------

The word to the left, MicroEMACS, is the name of
the editor.
The word in the center, example1.c, is
the name of the buffer
that you are using.
What a buffer is and how it is used will be covered later.

The name to the right is the name of the text file
that you will be editing.

Moving the Cursor
Now that you have read a text file into memory, you will want to edit it. The first step is to learn to
move the cursor.

Let’s C

56 MicroEMACS

Try these commands for yourself as they are described in the
following paragraphs.
That way, you
will quickly acquire a feel for handling
MicroEMACS’s commands.
You can also use your arrow keys
with MicroEMACS.
 The arrow keys are found on the keypad on the right-hand
 side of your
keyboard.
If when you press the arrow keys, numbers appear in the text instead
of the cursor being
moved, press the number lock key, which
 is the key marked Num Lock.
 That should solve the
problem.

Moving the cursor forward

This first set of commands moves the cursor forward.

<ctrl-F> Move forward one space

<esc>F Move forward one word

<ctrl-E> Move to end of line

To see how these commands work, do the following: Type the forward command <ctrl-F>.
This is
equivalent to pressing <Rationale>. As before, it does not matter whether the letter ‘F’ is
upper case
or lower case.
The cursor has moved one space to the right, and now is over
the character ‘*’ in the
first line.

Type <esc>F.
The cursor has moved one word to the right,
and is now over the space after the word
this.
 MicroEMACS considers only alphanumeric characters when it moves from word to word.
Therefore, the cursor moved from under the * to the space after the word this, rather than to the
space after the *. Now type the end of line command <ctrl-E>.
The cursor has jumped to the end of
the line and is now
just to the right of the e of the word three.

Moving the cursor backward

The following summarizes the commands for moving the cursor backwards.

<ctrl-B> Move back one space

<esc>B Move back one word

<ctrl-A> Move to beginning of line

To see how these work, first type the backward command <ctrl-B>.
This is equivalent to pressing <>.
As you can see, the cursor has moved one space to the left, and now is over the letter e of the word
three.
Type <esc>B.
The cursor has moved one word to the left and now
is over the t in three.
Type
<esc>B again, and the cursor will be positioned on the o of
the word of.

Type the beginning of line command <ctrl-A>.
The cursor jumps to the beginnning of the line,
and
once again is resting over the ‘/’ character
in the first line.

From line to line

<ctrl-P> Move to previous line

<ctrl-N> Move to next line

These two commands move the cursor up and down the screen.
Type the next line command <ctrl-
N>.
The cursor jumps
to the space before the ‘*’ in the next line.
Type the end of line command
<ctrl-E>, and the cursor moves
to the end of the second line to the right of the period.

Continue to type <ctrl-N> until the cursor reaches the
bottom of the screen.
This is the same as if
you typed <>. As you reached the first line in your text, the
cursor jumped from its position at the
right of the period
on the second line to just right of the
brace on the last line of the file.
When you
move your cursor up or down the screen, MicroEMACS
will try to keep it at the same position within
each line.
If the line to which you are moving the cursor is not long enough
to have a character at
that position,
MicroEMACS will move the cursor to the end of the line.

Let’s C

MicroEMACS 57

Now, practice moving the cursor back up the screen.
Type the previous line command <ctrl-P>.
This
has the same effect as pressing <>. When the cursor jumped to the previous
line, it retained its
position at the end of the line.
 MicroEMACS remembers the cursor’s position on the line,
 and
returns the cursor there when it jumps to a line
long enough to have a character in that position.

Continue pressing <ctrl-P>.
The cursor will move up the screen until it reaches
the top of your text.

Moving up and down by a screenful of text

The next two cursor movement commands allow you to roll forward
or backwards by one screenful
of text.

<ctrl-V> Move forward one screen

<esc>V Move back one screen

If you are editing a file with MicroEMACS that is too big
to be displayed on your screen all at once,
MicroEMACS
will display the file in screen-sized portions
(22
lines at a time).
The view commands
<ctrl-V> and <esc>V allow you
to roll up or down one screenful of text at a time.

Type <ctrl-V>.
Your screen now contains only the last three lines of the file.
This is because you have
rolled forward by the equivalent of one
screenful of text, or 22 lines.

Now, type <esc>V.
Notice that your text rolls back onto the screen, and your
cursor is positioned in
the upper left-hand corner of the
screen, over the character ‘/’ in the first line.

Moving to beginning or end of text

Finally, these two cursor movement commands allow you to jump immediately
to the beginning or
end of your text.

<esc>< Move to beginning of text

<esc>> Move to end of text

The end of text command <esc>> moves the cursor to the
end of your text.
Type <esc>>.

Be sure to
type a greater-than symbol ‘>’; this
 symbol may have been placed anywhere on your keyboard,
although
on IBM-style keyboards it appears above the period.
Your cursor has jumped to the end of
your text.

The beginning of text command <esc>< will move the cursor
back to the beginning of your text.

Type <esc><.
Be sure to type a less-than symbol

‘<’;
on IBM-style keyboards it appears above the
comma.
The cursor has jumped back to the upper left-hand corner
of your screen.

These commands will move you immediately to the beginning or the end
of your text, regardless of
whether the text is one page long or 20
pages long.

Saving text and quitting

If you do not wish to continue working at this time,
you should save your text, and then quit.

It is good practice to save your text file every so often while you
 are working on it; then, if an
accident occurs, such as a power failure,
you will not lose all of your work.
You can save your text
with the save command <ctrl-X><ctrl-S>.
Type <ctrl-X><ctrl-S>—that
is, first type <ctrl-X>, then type
<ctrl-S>.
If you had modified this file, the following message would appear:

[Wrote 23 lines]

The text file would have been saved to your computer’s disk.
MicroEMACS will send you messages
from time to time;
the messages enclosed in square brackets ‘[’ ‘]’ are for your
information, and do
not necessarily mean that something is wrong.
To exit from MicroEMACS, type the quit command
<ctrl-X><ctrl-C>.
This will return you to MS-DOS or MWS.

Killing and deleting

Let’s C

58 MicroEMACS

Now that you know how to move the cursor, you are ready
to edit your text.

To return to MicroEMACS, type the command:

me example1.c

Within a moment, example1.c will be restored to your screen.

By now, you probably have noticed that MicroEMACS is always ready to insert material
into your
text; unless you use the <ctrl> or <esc>
keys, MicroEMACS will assume that whatever you type is
meant
to be text and will insert it onto your screen where
your cursor is positioned.

The simplest way to erase text is simply to position the
cursor to the right of the text you want to
erase and backspace
over it.
MicroEMACS, however, also has a set of commands that
allow you to
erase text easily. These commands, kill and delete,
 perform differently; the distinction
 is
important, and will be explained in a moment.

Deleting versus killing

When text is deleted, it is erased completely; however, when
 text is killed, it is copied into a
temporary storage area in memory. This storage area is overwritten when you
move the cursor and
then kill additional text.
Until then, however, the killed text
 is saved.
This aspect of killing allows
you to restore text that you
killed accidentally, and it also allows you to move or copy portions
of
text from one position to another.

MicroEMACS is designed so that when it erases
text, it does so beginning
at the left edge of the
cursor.
This left edge is called the current position.

You should imagine that an invisible vertical bar separates the cursor from
 the character
immediately to its left; as you
enter the various kill and delete commands,
this vertical bar moves to
the right or the left with the cursor, and
erases the characters it touches.
Therefore, if you wish to
erase a word
but wish to keep both spaces around it,
position your cursor directly over the first

character of the word and strike <esc>D.
 If you wish to erase a word and
 the space before it,
position the cursor at the
space before you strike <esc>D, so that the
invisible vertical bar sweeps
away the space at which
the cursor is positioned, as well as the word that follows.

Erasing text to the right

The first two commands to be presented erase text to the right.

<ctrl-D> Delete one character to the right

<esc>D Kill one word to the right

<ctrl-D> deletes one character to the right of the current position.
<esc>D deletes one word to the
right of the current position.

To try these commands, type the delete command <ctrl-D>.
The character ‘/’
 in the first line
has
been erased, and the rest
of the line has shifted one space to the left.

Now, type <esc>D.
The ‘*’ character and the word This
have been erased, and the line has shifted six
spaces to the left.
The cursor is positioned at the space
before the word is.
Type <esc>D again.
The
word is has vanished along
with the space that preceded it, and the line
has shifted four spaces to
the left.

<ctrl-D> deletes text, but
<esc>D kills text.

Let’s C

MicroEMACS 59

Erasing text to the left

You can erase text to the left with the following commands:

 Delete one character to the left

<ctrl-H> Delete one character to the left

<esc> Kill one word to the left

<esc><ctrl-H> Kill one word to the left

To see how to erase text to the left, first type the
end of line command <ctrl-E>; this will move the

cursor to the right of the
word three on the first line of text.
Then, type .
The second e of the
word three has vanished.

Type <esc>.
 The rest of the word three
 has disappeared,
and the cursor has moved to the
second space following
the word of.

Move the cursor four spaces to the left, so that
it is over the letter o of the word of.
Type <esc>.

The word results has vanished, along with the
 space that was immediately to the right of it.
 As
before, these commands erased text beginning
immediately to the left of the cursor.
The <esc>
command can be used to erase
words throughout your text.

If you wish to erase a word to the left yet preserve
both spaces that are around it, position the
cursor
at the space immediately to the right of the word
and type <esc>.
If you wish to erase a
word to the left plus
the space that immediately follows it, position
the cursor under the first letter
of the next
word and then type <esc>.

Typing deletes text, but
typing <esc> kills text.

Erasing lines of text

Finally, the following command erases a line of text:

<ctrl-K> Kill from cursor to end of line

This command erases the line beginning
from immediately to the left of the cursor.

To see how this works, move the cursor to the beginning
of line 2.
Now, strike <ctrl-K>.
All of line 2
has vanished and been replaced
with an empty space.
Strike <ctrl-K> again.
The empty space has
vanished, and the cursor
is now positioned at the beginning of what used to be
line 3, in the space
before * Use.

As its name implies, the <ctrl-K> command kills
the line of text.

Yanking back (restoring) text

The following command allows you restore material that you have killed:

<ctrl-Y> Yank back (restore) killed text

Remember that when material is killed, MicroEMACS has
temporarily stored it elsewhere.
You can
return this material to the screen by using the yank back command <ctrl-Y>.
Type <ctrl-Y>.
All of
line 2 has returned; the cursor, however,
remains at the beginning of line 3.

Quitting

When you are finished, do not save the text.
If you do so, the undamaged copy of the text that
you
made earlier will be replaced with the
present changed copy.
Rather, use the quit command
<ctrl-
X><ctrl-C>.
Type <ctrl-X><ctrl-C>.
On the bottom of your screen, MicroEMACS will respond:

Quit [y/n]?

Reply by typing y and a carriage return.
If you type n, MicroEMACS will
simply return you to where

Let’s C

60 MicroEMACS

you were in the text.
MicroEMACS will now return you to MS-DOS.

Block killing and moving text
As noted above, text that is killed is stored temporarily within
 the computer.
Killed text may be
yanked back
onto your screen, and not necessarily in the spot where it was
originally killed.
This
feature allows you to move text from one position to another.

Moving one line of text

You can kill and move one line of text with the following commands:

<ctrl-K> Kill text to end of line

<ctrl-Y> Yank back text

To test these commands, invoke MicroEMACS for the
 text example1.c
 by typing the following
command:

me example1.c

or use the MWS interface, as you did earlier. When MicroEMACS appears, the
 cursor will be
positioned in the
upper left-hand corner of the screen.

To move the first line of text, begin by
typing the kill command
<ctrl-K> twice.
Now, press <esc>> to
move the cursor to the
bottom of text.
Finally, yank back the line by typing <ctrl-Y>.
The line that
reads

/* This is a simple C program that computes the results

is now at the bottom of your text.

Your cursor has moved to the point on your screen that is
after the line you yanked back.

Multiple copying of killed text

When text is yanked back onto your screen, it is not deleted
from within the computer.
Rather, it is
simply copied back onto the
screen.
This means that killed text can be reinserted into the text more

than once.
To see how this is done, return to the top of the text by typing
<esc><.
Then type <ctrl-
Y>.
The line you just killed now appears as both the first and last line of
the file.

The killed text will not be erased from its temporary
storage until you move the cursor
and then kill
additional text.
 If you kill several lines or portions of lines in a row, all of the
killed text will be
stored in the buffer; if you are not careful,
you may yank back a jumble of accumulated text.

Kill and move a block of text

If you wish to kill and move more than one line of text at a time, use the following commands:

<ctrl-@> Set mark
<ctrl-W> Kill block of text

If you wish to kill a block of text, you can either
type the kill command <ctrl-K> repeatedly
to kill the
block one line at a time, or you can
use the block kill command <ctrl-W>.
To use this command,
you must first
set a mark on the screen,
an invisible character that acts as a signal to the computer.

The mark is set with the mark command <ctrl-@>.

Once the mark is set, you must move your cursor to the
other end of the block of text you wish to
kill, and then strike
<ctrl-W>.
The block of text will be erased, and will be ready to be
yanked back
elsewhere.

Let’s C

MicroEMACS 61

Try this out on example1.c.
Type <esc>< to move the cursor to the upper left-hand
corner of the
screen.
 Then type the set mark command <ctrl-@>.
 By the way, be sure to type ‘@’, not ‘2’.

MicroEMACS will respond with the message

[Mark set]

at the bottom of your screen.
Now, move the cursor down six lines, and type <ctrl-W>.
Note how the
block of text you marked out has disappeared.

Move the cursor to the bottom of your text.
Type <ctrl-Y>.
The killed block of text has now been
reinserted.

When you yank back text, be sure
to position the cursor at the exact point
where you want the text
to be yanked back.
This will ensure that the text will be yanked back in
the proper place.

To try this out, move your cursor up six lines.
Be careful that the cursor is at the beginning of the
line.
Now, type <ctrl-Y> again.
The text reappeared above where the cursor
was positioned, and the
cursor has not moved from its position at the beginning of the line — which is not
what would have
happened had you positioned it in the middle
or at the end of a line.

Although the text you are working with has only 23 lines,
you can move much larger portions of text
using only
 these three commands.
Remember, too, that you can use this technique to duplicate

large portions of text at several positions to save
yourself considerable time in typing and reduce the
number of possible
typographical errors.

Capitalization and other tools
The next commands perform a number of useful tasks that
will help with your editing.
Before you
begin this section, destroy the old text on
your screen with the quit command <ctrl-X><ctrl-C>,
and
read into MicroEMACS a fresh copy of the program,
as you did earlier.

Capitalization and lowercasing

The following MicroEMACS commands can automatically
capitalize a word (that is, make the first
letter
of a word upper case), or make an entire word upper case or
lower case.

<esc>C Capitalize a word

<esc>L Lowercase an entire word

<esc>U Uppercase an entire word

To try these commands, do the following: First, move the cursor to the letter d of
the word different
on line 2.
Type the capitalize command <esc>C.
The word is now capitalized, and
the cursor is now
positioned at the space after the word.
Move the cursor forward so that it is over the letter t
in rates.

Press <esc>C again.
 The word changes to raTes.
 When you press <esc>C, MicroEMACS will
capitalize
the first letter the cursor meets.

MicroEMACS can also change a word to all upper case or
all lower case.
(There is very little need for
a command that will
change only the first character of an upper-case word
to lower case, so it is not
included.)

Type <esc>B to move the cursor so that it is again to the left of the
word Different.
It does not matter
if the cursor is directly over the D
or at the space to its left; as you will see, this means
that you can
capitalize or
lowercase a number of words in a row without having to
move the cursor.

Type the uppercase command <esc>U.
The word is now spelled
DIFFERENT, and the
cursor has
jumped to the space after the word.

Again, move the cursor to the left of the word DIFFERENT.
Type the lowercase command <esc>L.

The word has changed back to different.
Now, move the cursor to the space at the beginning of line
3 by typing
<ctrl-N> then <ctrl-A>.
Type <esc>L once again.
The character ‘‘*’ is not affected by the
command,
but the letter U is now lower case.
<esc>L not only shifts a word that is all upper case to

Let’s C

62 MicroEMACS

lower case: it can also un-capitalize a word.

The uppercase and lowercase commands
stop at the first punctuation mark they meet
after the
first letter they find.
This means that, for example,
to change the case of a word with an apostrophe
in it
you must type the appropriate command twice.

Transpose characters

MicroEMACS allows you to reverse the position of two characters,
or transpose them, with the
transpose command
<ctrl-T>.

Type <ctrl-T>.
 The character that is under the cursor
 has been transposed with the character
immediately to its left.
In this example,

* use this

in line 3 now appears:

* us ethis

The space and the letter e have been transposed.
Type <ctrl-T> again.
The characters have returned
to their original order.

Screen redraw

 Occasionally, while you are editing you may interrupt MicroEMACS
to invoke another program,
such as an electronic calculator or a clock.
When you exit from that program, you may find that it
has
 left material on your screen and scrambled it.
Although this extraneous material will not be
recorded
 into your text, you will need to redraw your screen in order
 to continue to edit.
 The
redraw screen command <ctrl-L> will redraw your screen to
the way it was before it was scrambled.

Type <ctrl-L>.
Notice how the screen flickers and the text is rewritten.
Had your screen been spoiled
by extraneous material,
that material would have been erased and the original
text rewritten.

The <ctrl-L> command also has another use: you can
 move the line on which the cursor is
positioned to the
center of the screen.
If you have a file that contains more than one screenful
of text
and you wish to have that particular line in the center
of the screen, position the cursor on that line
and type
<ctrl-U><ctrl-L>.
Immediately, the screen will be rebuilt with the line you
were interested
in positioned in the center.

Return indent

<ctrl-J> Return and indent

You may often be faced with a situation in which, for the sake of
programming style, you need many
lines of indented text.
After every line, you must return, then tab the correct number of
times, then
type your text.
 Block indents can be a time-consuming typing chore.
 The MicroEMACS <ctrl-J>
command makes this task easier.
When you type a file that has many lines of indented text, such as
a C
 program, you can save
many keystrokes by using the <ctrl-J> command.
<ctrl-J> moves the
cursor to the next line on the screen, and
 positions the cursor at the previous line’s level of
indentation.

To see how this works, first
move the cursor to the line that reads

w3 *= 1.10:

Press <ctrl-E>, to move the cursor to the end of the line.
Now, type <ctrl-J>.

As you can see, a new line opens up and the cursor is indented the same
amount as the previous
line.
Type

Let’s C

MicroEMACS 63

/* Here is an example of auto-indentation */

This line of text begins directly under the previous line.

Word wrap

<ctrl-X>F Set word wrap

Although you have not yet had much opportunity to use it,
MicroEMACS will automatically wrap
around text that you are typing into
 your computer.
Word wrapping is controlled with the word
wrap command
<ctrl-X>F.
To see how the word wrap command works, first exit from MicroEMACS

by typing <ctrl-X><ctrl-C>; then reinvoke MicroEMACS by typing

me cucumber

or use the MWS display interface, as you did earlier. When MicroEMACS re-appears,
 type the
following text; however, do not type
any carriage returns:

A cucumber should be

well sliced, and dressed

with pepper and vinegar,

and then thrown out, as

good for nothing.

When you reached the edge of your screen,
 a dollar sign was printed and you were allowed to
continue
typing.
MicroEMACS accepted the characters you typed, but it placed
them at a location

beyond the right edge of your screen.

Now, move to the beginning of the next line and type <ctrl-U>.
MicroEMACS will reply with the
message:

Arg: 4

Type 30.
The line at the bottom of your screen now appears as follows:

Arg: 30

(The use of the argument command <ctrl-U> will be
explained in full in a few sections.) Now type the
word-wrap command <ctrl-X>F.
MicroEMACS will now say at the bottom of your screen:

[Wrap at column 30]

This sequence of commands has set the word-wrap function, and
told it to wrap to the next line all
words that extend beyond
the 30th column on your screen.

The word wrap feature automatically moves your cursor to the
beginning of the next line once you
type past a preset border on your
 screen.
 When you first enter MicroEMACS, that limit is
automatically set
at the first column, which in effect means that word wrap has
been turned off.

When you type prose for a report or a letter of some sort, you
probably will want to set the border at
the 65th column, so that
 the printed text will fit neatly onto a sheet of paper.
 If you are using
MicroEMACS to type in a program, however, you probably
will want to leave word wrap off, so you
do not
accidentally introduce carriage returns into your code.

To test word wrapping,
type the above text again,
without using the carriage return key.
When you
finish, it should appear as follows:

A cucumber should be well

sliced, and dressed with

pepper and vinegar, and then

thrown out, as good for nothing.

MicroEMACS automatically moved your cursor to the next line when you typed
a space character

Let’s C

64 MicroEMACS

after the 30th column on your screen.

If you wish to fix the border at some special point on your screen
but do not wish to go through the
tedium of figuring out how many
columns from the left it is, simply position the cursor where you

want the border to be, type <ctrl-X>F, and then type a carriage
return.
When <ctrl-X>F is typed
without being preceded by a <ctrl-U>
 command, it sets the word-wrap border at the point your
cursor
happens to be positioned.
When you do this, MicroEMACS will then print a message at the
bottom
of your terminal that tells you where the word-wrap border is now set.

If you wish to turn off the word wrap feature again, simply set the
word wrap border to one.

Search and Reverse Search
When you edit a large text, you may wish to change particular
words or phrases.
To do this, you can
roll through the text and read each
line to find them; or you can have MicroEMACS find them for
you.
Before you continue, close the present file by typing
<ctrl-X> <ctrl-C>;
now, reinvoke the editor
to edit the file example1.c, as you did before. The following sections will perform some exercises
with this
file.

Search forward

<ctrl-S> Search forward incrementally

<esc>S Search forward with prompt

As you can see from the display, MicroEMACS has two ways to search
forward:
incrementally, and
with a prompt.

An
 incremental search is one in which the search is performed as you type the characters.
To see
how this works, first type the beginning of text
command <esc>< to move the cursor to the
upper
left-hand corner of your screen.
Now, type the incremental search command <ctrl-S>.
MicroEMACS
will respond by prompting with the message

i-search forward:

at the bottom of the screen.

We will now search for the pointer
*msg. Type the letters *msg one at a time, starting with *.
The
cursor has jumped to the first place that a * was found:
at the second character of the first line.
The
cursor moves forward in the text file and the message at the bottom
of the screen changes to
reflect
what you have typed.

Now type m.
The cursor has jumped ahead to the letter s in *msg.
Type s.
The cursor has jumped
ahead to the letter g in *msg. Finally, type g. The cursor is over the space after the token *msg.
Finally, type <esc> to end the string.
MicroEMACS will reply with the message

[Done]

which indicates that the search is finished.

If you attempt an incremental search for a word that is not in the file,
MicroEMACS will find as
many of the letters as it can, and then give you
an error message.
For example, if you tried to search
incrementally for the word
*msgs, MicroEMACS would move the cursor to the phrase *msg;
when
you typed ‘s’, it would tell you

failing i-search forward: *msgs

With the
prompt search, however, you type in the word all at once.
To see how this works, type

<esc><, to return to the top of the file.
Now, type the
prompt search command
<esc>S. MicroEMACS
will respond by prompting with the message

Let’s C

MicroEMACS 65

Search [*msgs]:

at the bottom of the screen.
The word *msgs
is shown because that was the last word for which you
searched,
and so it is kept in the search buffer.

Type in the words editing text, then press the carriage return.
Notice that the cursor has jumped to
the period after the
word text in the next to last line of your text.
MicroEMACS searched for the
words editing text, found them, and moved
the cursor to them.

If the word you were searching for was not in your text,
or at least was not in the portion that lies
between
your cursor and the end of the text, MicroEMACS
would not have moved the cursor, and
would have displayed the message

Not found

at the bottom of your screen.

Reverse search

<ctrl-R> Search backwards incrementally

<esc>R Search backwards with prompt

The search commands, useful as they are,
can only search forward through your text.
To search
backwards, use the reverse search commands
<ctrl-R> and <esc>R.
These work exactly the same as
their forward-searching counterparts,
except that they search toward the beginning of the file rather
than
toward the end.

For example,
type <esc>R.
MicroEMACS will reply with the message

Reverse search [editing text]:

at the bottom of your screen.
The words in square brackets are the words you
entered earlier for the
search command; MicroEMACS
remembered them.
If you wanted to search for editing text again,
you would just
press the carriage return.
For now, however, type the word program and press
the
carriage return.

Notice that the cursor has jumped so that it is under the
 letter p of the word program in line 1.

When you search forward, the cursor will move to the
space after the word you are searching for,
whereas
when you reverse search, the cursor will be moved to the
first letter of the word you are
searching for.

Cancel a command

<ctrl-G> Cancel a search command

As you have noticed, the commands to move the cursor
 or to delete or kill text all execute
immediately.
 Although this speeds your editing, it also means that
 if you type a command
 by
mistake, it executes before you can
stop it.

The
search and
reverse search commands, however, wait for
you to respond to their prompts before
they execute.
If you type <esc>S or <esc>R
by accident, MicroEMACS will interrupt your editing and

wait for you to initate a search that you do not
 want to perform.
You can evade this problem,
however, with the cancel
 command <ctrl-G>.
 This command tells MicroEMACS to ignore the
previous command.

To see how this command works, type <esc>R.
When the prompt appears at the bottom of your
screen, type
<ctrl-G>.
Three things happen: your
terminal beeps,
the characters
^G appear at the
bottom of your screen, and the cursor returns
to where it was before you first
typed <esc>R.
The
<esc>R command has been cancelled, and you
are free to continue editing.

Let’s C

66 MicroEMACS

If you cancel an
incremental search command,
<ctrl-S> or
<esc-S>, the cursor will return to where it
was before you began the search.
For example, type
<esc>< to return to the top of the file.
Now type

<ctrl-S> to begin an incremental search, and type
m. When the cursor moves to the
m in
simple,
type
<ctrl-G>. The bell will ring, and your cursor will be returned to the top of the
 file, which is
where you began the search.

Search and replace

<esc>% Search and replace

MicroEMACS also gives you a powerful function that allows you
to search for a string and replace it
with a keystroke.
You can do this by executing
the search and replace command <esc>%.

To see how this works, move to the top of the
text file by typing <esc><; then type
<esc>%.
You will
see the following message at the bottom of your screen:

Old string:

As an exercise, type msg.
MicroEMACS will then ask:

New string:

Type message, and press the carriage return.
 As you can see, MicroEMACS jumps to the first
occurrence of
the string msg, and prints the following message
at the bottom of your screen:

Query replace: [msg] -> [message]

MicroEMACS is asking if it should proceed with the replacement.
 Type a carriage return:
 this
displays the options that are available to you at the
bottom of your screen:

<SP>[,] replace, [.] rep-end, [n] dont, [!] repl rest <C-G> quit

The options are as follows:

Typing a space or a comma will execute the replacement, and move the cursor
 to the next
occurrence of the old string; in this case, it will replace
msg with message, and move the cursor to
the next occurrence
of msg.

Typing a period ‘.’ will replace this one occurrence of the old
string, and end the search and replace
procedure; in this example,
typing a period will replace this one occurrence of msg
with message
and end the procedure.

Typing the letter ‘n’ tells MicroEMACS not to replace
this instance of the old string, and move to the
next occurrence of
the old string; in this case, typing ‘n’ will not
replace msg with message, and the
cursor will jump
to the next place where msg occurs.

Typing an exclamation point ‘!’ tells MicroEMACS to replace
all instances of the old string with the
new string, without checking
 with you any further.
 In this example, typing ‘!’ will replace all
instances
of msg with message without further queries from
MicroEMACS.

Finally, typing <ctrl-G> aborts the search and replace procedure.

Saving text and exiting
This set of basic editing commands allows you to save your
 text and exit from the MicroEMACS
program.
They are as follows:

<ctrl-X><ctrl-S> Save text

<ctrl-X><ctrl-W> Write text to a new file

<ctrl-Z> Save text and exit

<ctrl-X><ctrl-C> Exit without saving text

Let’s C

MicroEMACS 67

You have used two of these commands already: the save command
<ctrl-X><ctrl-S>
and the quit
command
<ctrl-X><ctrl-C>, which respectively allow you to save text or to exit
 from MicroEMACS
without saving text.
(Commands that begin with <ctrl-X> are called extended
commands; they are
used frequently in the advanced editing to be
covered in the second half of this tutorial.)

Write text to a new file

<ctrl-X> <ctrl-W> Write text to a new file

If you wish, you may copy the text you are currently
editing to a text file other than the one from
which you originally
took the text.
Do this with the write command <ctrl-X><ctrl-W>.

To test this command, type <ctrl-X><ctrl-W>.
MicroEMACS will display the following message on the
bottom of
your screen:

Write file:

MicroEMACS is asking for the name of the file to which you
wish to write the text.
Type sample.

MicroEMACS will reply:

[Wrote 23 lines]

The 23 lines of your text have been copied to a new file
called sample.
The status line at the bottom
of your screen
has changed to read as follows:

-- MicroEMACS -- example1.c -- File: sample --------------

The significance of the change in file name will be discussed in the
second half of this tutorial.

Before you copy text into a new file, be sure that you have not
selected a file name that is already
being used.
If you do, whatever is stored under that file name
will be erased, and the text created
with MicroEMACS will
be stored in its place.

Save text and exit

Finally, the store command
<ctrl-Z> will save your text and move you out of
the MicroEMACS editor.

To see how this works, watch the bottom line of your terminal
carefully and type <ctrl-Z>.
The MS-
DOS MicroEMACS has saved your text, and now you can issue commands directly to MS-DOS.

Advanced editing
The second half of this tutorial introduces the advanced features of MicroEMACS.

The techniques described here will help you
execute complex editing tasks with minimal trouble.

You will be able to edit more than one text at a time,
display more than one text on your screen at a
time,
enter a long or complicated phrase repeatedly with only
one keystroke, and give commands to
MS-DOS
without having to exit from MicroEMACS.

Before beginning, however, you must prepare a new text
 file.
Type the following command to MS-
DOS:

me example2.c

If you are using the display interface of MWS, the Mark Williams shell, invoke example2.c in the
same way that you invoked example1.c earlier.

In a moment, example2.c will appear on your screen,
as follows:

Let’s C

68 MicroEMACS

/* Use this program to get better acquainted

* with the MicroEMACS interactive screen editor.

* You can use this text to learn some of the

* more advanced editing features of MicroEMACS.

*/

#include <stdio.h>

main()

{

FILE *fp;

int ch;

int filename[20];

printf("Enter file name: ");

gets(filename);

if ((fp =fopen(filename,"r")) !=NULL) {

while ((ch = fgetc(fp)) != EOF)

fputc(ch, stdout);
}

else

printf("Cannot open %s.\n", filename);

fclose(fp);

}

Arguments
Most of the commands already described in this tutorial can be used with arguments.
An argument
is a subcommand that tells MicroEMACS to
 execute a command a given number of times.
With
MicroEMACS, arguments are introduced by
typing <ctrl-U>.

Arguments — default values

By itself, <ctrl-U> sets the argument at four.
To illustrate this, first type the next line command
<ctrl-N>.
By itself, this command moves the cursor down one
 line, from being over the ‘/’ at the
beginning
of line 1, to being over the space at the beginning
of line 2.

Now, type <ctrl-U>.
MicroEMACS replies with the message:

Arg: 4

Now type <ctrl-N>.
The cursor jumps down four
lines, from the beginning of line 2 to the
letter m of
the word main at the beginning of line 6.

Type <ctrl-U>.
The line at the bottom of the screen again shows that
the value of the argument is
four.
Type <ctrl-U> again.
Now the line at the bottom of the screen reads:

Arg: 16

Type <ctrl-U> once more.
The line at the bottom of the screen now reads:

Arg: 64

Each time you type <ctrl-U>, the value of the argument
 is multiplied by four.
Type the forward
command <ctrl-F>.
The cursor has jumped ahead 64 characters, and is now
over the i of the word
file in the printf statement in
line 11.

Let’s C

MicroEMACS 69

Selecting values

Naturally, arguments do not have to be powers of four.
 You can set the argument to whatever
number you wish,
simply by typing <ctrl-U> and then typing in
the number you want.

For example, type <ctrl-U>, and then type 3.
The line at the bottom of the screen now reads:

Arg: 3

Type the delete command <esc>D.
MicroEMACS has deleted three words to the right.

Arguments can be used to increase the power of any
cursor movement command, or any kill or
delete
command.
The sole exception is <ctrl-W>, the block
kill command.

Deleting with arguments—an exception

Killing and deleting were described in the first
part of this tutorial.
They were said to differ in that
text that was killed was
stored in a special area of the computer and could be
yanked back, whereas
text that was deleted was erased outright.
However, there is one exception to this rule:
any text that
is deleted using an argument can also be
yanked back.

Move the cursor to the upper left-hand corner of the screen by
 typing the begin text command
<esc><.
Then, type <ctrl-U> 5 <ctrl-D>.
The word Use has disappeared.
Move the cursor to the right
until it is between
 the words better and acquainted, then
 type <ctrl-Y>.
 The word Use has been
moved within the line
(although the spaces around it have not been moved).
This function is very
handy, and should greatly speed
your editing.

Remember, too, that unless you move the cursor between
one set of deletions and another,
 the
computer’s storage area will not be erased, and
you may yank back a jumble of text.

Buffers and files
Before beginning this section, replace the changed copy
of the text on your screen with a fresh copy.

Type the quit command
 <ctrl-X><ctrl-C> to exit from MicroEMACS without
 saving the text; then
return to MicroEMACS to edit the file example2.c, as you did earlier.

Now, look at the status line at the bottom of your screen.
It should appear as follows:

-- MicroEMACS -- example2.c -- File: example2.c --------------

As noted in the first half of this tutorial,
 the name on the left of the command line is
that of the
program.
The name in the middle is the name of the buffer with
which you are now working, and
the name to the right is
the name of the file from which you read the
text.

Definitions

A file is a
text that has been given a name and has been
permanently stored by your computer.
A
buffer is a portion of the computer’s
memory that has been set aside for you to use, which may be
given a name,
and into which you can put text temporarily.
You can put text into the buffer by
typing it in from
your keyboard or by copying it from a file.

Unlike a file, a buffer is not permanent: if your computer
were to stop working (because you turned
the power off, for example),
a file would not be affected, but a buffer
would be erased.

You must name your files because you work with many
different files, and you must have some way
to tell them apart.
Likewise, MicroEMACS allows you to name your buffers,
because MicroEMACS
allows you to work with more than one
buffer at a time.

Let’s C

70 MicroEMACS

File and buffer commands

MicroEMACS gives you a number of commands for handling files and buffers. These include the
following:

<ctrl-X><ctrl-W> Write text to file

<ctrl-X><ctrl-F> Rename file

<ctrl-X><ctrl-R> Replace buffer with named file

<ctrl-X><ctrl-V> Switch buffer or create a new buffer

<ctrl-X>K Delete a buffer

<ctrl-X><ctrl-B> Display the status of each buffer

Write and rename commands

The write command <ctrl-X><ctrl-W> was introduced earlier when
the commands for saving text and
exiting were discussed.
To review, <ctrl-X><ctrl-W> changes the name of the
file into which the text
is saved, and then writes a copy of the
text into that file.

Type <ctrl-X><ctrl-W>.
MicroEMACS responds by printing

Write file:

on the last line of your screen.

Type junkfile, then <return>.
Two things happen: First, MicroEMACS writes the message

[Wrote 21 lines]

at the bottom of your screen.
Second, the name of the file shown on the status line
has changed
from
example2.c to junkfile.
MicroEMACS is reminding you that your text is now being saved into
the file junkfile.

The file rename command <ctrl-X><ctrl-F> allows you rename the
file to which you are saving text,
without automatically
writing the text to it.
Type <ctrl-X><ctrl-F>.
MicroEMACS will reply with the
prompt:

Name:

Type example2.c and <return>. MicroEMACS does not send you a message that
lines were written
to the file; however, the name of the
file shown on the status line has changed from
junkfile back to
example2.c.

Replace text in a buffer

The replace command <ctrl-X><ctrl-R> allows
you to replace the text in your buffer with the text

taken from another file.

Suppose, for example, that you had edited example2.c
 and saved it, and now wished to edit
example1.c.
You could exit from MicroEMACS, then re-invoke MicroEMACS
for the file example2.c,
but this is cumbersome.
A more efficient way is to simply replace the example2.c
in your buffer with
example1.c.

Type <ctrl-X><ctrl-R>.
MicroEMACS replies with the prompt:

Read file:

Type example1.c.
Notice that example2.c has rolled away and been replaced with
example1.c.
Now,
check the status line.
Notice that although the name of the buffer is still
example2.c, the name of
the file has changed to example1.c.
You can now edit example1.c; when you save the edited
text,
MicroEMACS will copy it back into the file example1.c — unless,
of course, you again choose to

Let’s C

MicroEMACS 71

rename the file.

Visiting another buffer

The last command of this set, the visit command
<ctrl-X><ctrl-V>, allows you to create more than

one buffer at a time, to jump from one buffer to another,
 and move text between buffers.
 This
powerful command has numerous features.

Before beginning, however, straighten up your buffer
by replacing example1.c with example2.c.
Type
the replace command
<ctrl-X><ctrl-R>; when MicroEMACS replies
by asking

Read file:

at the bottom of your screen, type example2.c.

You should now have the file example2.c read into
the buffer named example2.c.

Now, type the visit command <ctrl-X><ctrl-V>.
MicroEMACS replies with the prompt

Visit file:

at the bottom of the screen.
Now type example1.c.
Several things happen.
example2.c rolls off the
screen and is replaced
with example1.c; the status line changes to show
that both the buffer name
and the file name are now
example1.c; and the message

[Read 23 lines]

appears at the bottom of the screen.

This does not mean that your previous buffer
has been erased, as it would have been had you used
the
 replace command <ctrl-X><ctrl-R>.
 example2.c is still being kept ‘‘alive’’ in a buffer
 and is
available for editing; however,
it is not being shown on your screen at the present
moment.

Type <ctrl-X><ctrl-V> again, and when the prompt
appears, type example2.c.
example1.c scrolls off
your screen and is replaced
by example2.c, and the message

[Old buffer]

appears at the bottom of your screen.
You have just jumped from one buffer to another.

Move text from one buffer to another

The visit command
 <ctrl-X><ctrl-V> not only allows you to jump
 from one buffer to another, it
allows you to move text
from one buffer to another as well.
The following example shows how you
can do this.

First, kill the first line of example2.c by typing the kill command
<ctrl-K> twice.
This removes both
the line of text and the space that it occupied;
if you did not remove the space as well the line itself,
no new line would be
created for the text when you yank it back.
Next, type <ctrl-X><ctrl-V>. When
the prompt

Visit file:

appears at the bottom of your screen, type example1.c.
 When example1.c has rolled onto your
screen,
 type the yank back command <ctrl-Y>.
 The line you killed in example2.c has now been
moved
into example1.c.

Checking buffer status

The number of buffers you can use at any one time is limited
only by the size of your computer.
You
should create only as many buffers as you need
to use immediately; this will help the computer run
efficiently.

Let’s C

72 MicroEMACS

To help you keep track of your buffers, MicroEMACS has the
buffer status command <ctrl-X><ctrl-
B>.
Type <ctrl-X><ctrl-B>.
The status line has moved up to the middle
of the screen, and the bottom
half of your screen
has been replaced with the following display:

C Size Lines Buffer File
- ---- ----- ------ ----
* 655 24 example1.c example1.c
* 403 20 example2.c example2.c

This display is called the buffer status window.
The use of windows will be discussed more fully in
the
following section.

The letter C over the leftmost column stands for Changed.
An asterisk on a line indicates that the
buffer has been changed
since it was last saved, whereas
a space means that the buffer has not
been changed.
Size indicates the buffer’s size, in number of characters;
Buffer lists the buffer name,
and File lists the file name.

Now, kill the second line of example1.c by typing the kill command
<ctrl-K>. Then type <ctrl-X><ctrl-
B> once again.
The size of the buffer example1.c has been reduced from
657 characters to 595 to
reflect the decrease in the size of the
buffer.

To make this display disappear, type the one window command
<ctrl-X>1.
This command will be
discussed in full in the next section.

Renaming a buffer

One more point must be covered with the visit command.
MS-DOS will not allow you to have more
than
one file with the same name.
For the
same reason, MicroEMACS will not allow you to have
more than one
buffer with the same name.

Ordinarily, when you visit a file that is not already
in a buffer, MicroEMACS will create a new buffer
and give it the
same name as the file you are visiting.
However, if for some reason you already have
a buffer
with the same name as the file you wish to visit,
MicroEMACS will stop and ask you to give
a new, different name to
the buffer it is creating.

For example, suppose that you wanted to visit a new
 file named sample, but you already had a
buffer
 named sample.
 MicroEMACS would stop and give you this prompt at the bottom
 of the
screen:

Buffer name:

You would type in a name for this new buffer. This name could not duplicate the name of any
existing buffer. MicroEMACS would then read the file sample into the newly named buffer.

Delete a buffer

If you wish to delete a buffer, simply type the delete buffer command
<ctrl-X>K.
This command will
allow you to delete only a buffer that
is hidden, not one that is being displayed.

Type <ctrl-X>K.
MicroEMACS will give you the prompt:

Kill buffer:

Type
example2.c.
Because you have changed the buffer,
MicroEMACS asks:

Discard changes [y/n]?

Type y.
 Then type the buffer status command <ctrl-X><ctrl-B>;
 the buffer status window will no
longer show the buffer
example2.c.
Although the prompt refers to killing
a buffer, the buffer is in
fact deleted and cannot be
yanked back.

Windows

Let’s C

MicroEMACS 73

Before beginning this section, it will be necessary to create
a new text file.
Exit from MicroEMACS by
typing the quit command
<ctrl-X><ctrl-C>; then
reinvoke MicroEMACS for the text file example1.c

as you did earlier.

Now, copy example2.c into a buffer by typing
the visit command <ctrl-X><ctrl-V>.
When the message

Visit file:

appears at the bottom of your screen, type example2.c.
MicroEMACS will read example2.c into a
buffer, and show
the message

[Read 21 lines]

at the bottom of your screen.

Finally, copy a new text, called example3.c, into a buffer.
 Type <ctrl-X><ctrl-V> again.
 When
MicroEMACS asks which file to visit, type example3.c.
The message

[Read 123 lines]

will appear at the bottom of your screen.

The first screenful of text will appear as follows:

/*

* Factor prints out the prime factorization of numbers.

* If there are any arguments, then it factors these. If

* there are no arguments, then it reads stdin until

* either EOF or the number zero or a non-numeric

* non-white-space character. Since factor does all of

* its calculations in double format, the largest number

* which can be handled is quite large.

*/

#include <stdio.h>

#include <math.h>

#include <ctype.h>

#define NUL ’\0’

#define ERROR 0x10 /* largest input base */

#define MAXNUM 200 /* max number of chars in number */

main(argc, argv)
int argc;
register char *argv[];

-- MicroEMACS -- example3.c -- File: example3.c --------------

At this point, example3.c is on your screen,
and example1.c and example2.c are hidden.

You could edit first one text and then another, while remembering
just how things stood with the
texts that were hidden; but
 it would be much easier if you could display all three texts on your

screen simultaneously.
MicroEMACS allows you to do just that by using windows.

Creating windows and moving between them

A window is a portion of your screen that is set aside
and can be manipulated independently from
the rest of the screen.
The following commands let you create windows and move between them:

Let’s C

74 MicroEMACS

<ctrl-X>2 Create a window

<ctrl-X>1 Delete extra windows

<ctrl-X>N Move to next window

<ctrl-X>P Move to previous window

The best way to grasp how a window works is to create one
and work with it.
To begin, type the
create a window
command <ctrl-X>2.

Your screen is now divided into two parts, an upper
and a lower.
The same text is in each part, and
the command lines
give example3.c for the buffer
and file names.
Also, note that you still have only
one cursor, which is in
the upper left-hand corner of the screen.

The next step is to move from one window to another.
Type the next window command <ctrl-X>N.

Your cursor has now jumped to the upper left-hand corner
of the lower window.

Type the previous window command <ctrl-X>P.
Your cursor has returned to the upper left-hand
corner of the
top window.

Now, type <ctrl-X>2 again.
The window on the top of your screen is
now divided into two windows,
for a total of three
on your screen.
Type <ctrl-X>2 again.
The window at the top of your screen has
again
divided into two windows, for a total of four.

It is possible to have as many as 11 windows
on your screen at one time, although each window will

show only the control line and one or two lines of text.
Neither <ctrl-X>2 nor <ctrl-X>1 can
be used
with arguments.

Now, type the one window command <ctrl-X>1.
All of the extra windows have been eliminated, or

closed.

Enlarging and shrinking windows

When MicroEMACS creates a window, it divides the window in which the
cursor is positioned into
half.
You do not have to leave the windows at the size MicroEMACS creates
them, however.
If you
wish, you may adjust the relative size of each window on
your screen, using the enlarge window
and shrink window
commands:

<ctrl-X>Z Enlarge window

<ctrl-X><ctrl-Z> Shrink window

To see how these work, first type <ctrl-X>2 twice.
Your screen is now divided into three windows: two
in the
top half of your screen, and the third in the bottom half.

Now, type the enlarge window command <ctrl-X>Z.
The window at the top of your screen is now one
line
bigger: it has borrowed a line from the window below it.
Type <ctrl-X>Z again.
Once again, the
top window has borrowed a line from
the middle window.

Now, type the next window command
<ctrl-X>N to move your cursor into
the middle window.
Again,
type the enlarge window command <ctrl-X>Z.
 The middle window has borrowed a line from the
bottom
window, and is now one line larger.

The enlarge window command <ctrl-X>Z
 allows you to enlarge the window your cursor is
 in by
borrowing lines from another window,
provided that you do not shrink that
other window out of
existence.
Every window must have at least two lines in it:
one command line and one line of text.

The shrink window command
<ctrl-X><ctrl-Z> allows you to decrease the size of a
window.
Type
<ctrl-X><ctrl-Z>.
The present window is now one line smaller, and
the lower window is one line larger
because the line
borrowed earlier has been returned.

Let’s C

MicroEMACS 75

The enlarge window and shrink window commands can also be used
with arguments introduced
with <ctrl-U>.
However, remember that MicroEMACS will not accept
an argument that would shrink
another window out of existence.

Displaying text within a window

Displaying text within the limited area of a window can
 present special problems.
 The view
commands <ctrl-V> and <esc>V will roll
 window-sized portions of text up or down, but
 you may
become disoriented when a window shows only
four or five lines of text at a time.
Therefore, three
special commands are available for displaying
text within a window:

<ctrl-X><ctrl-N> Scroll down

<ctrl-X><ctrl-P> Scroll up

<esc>! Move within window

Two commands allow you to move your text by one line at a time, or
 scroll it: the scroll up
command <ctrl-X><ctrl-N>,
and the scroll down command <ctrl-X><ctrl-P>.

Type <ctrl-X><ctrl-N>.
The line at the top of your window has vanished,
a new line has appeared at
the bottom of your window, and
the cursor is now at the beginning of what had been the
second line
of your window.

Now type <ctrl-X><ctrl-P>.
The line at the top that had vanished earlier has now returned, the
cursor
is at the beginning of it, and
the line at the bottom of the window has vanished.
These commands
allow you to move forward in your text
slowly so that you do not become disoriented.

Both of these commands can be used with
arguments introduced by <ctrl-U>.

The third special movement command is the
move within window command <esc>!.
This command
moves the line your cursor is
on to the top of the window.

To try this out, move the cursor down three lines by
typing <ctrl-U>3<ctrl-N>, then type
<esc>!.
(Be
sure to type an exclamation point ‘!’, not a
numeral one ‘1’, or nothing will happen.)
The line to
which you had moved the cursor
 is now the first line in the window, and three new
 lines have
scrolled up from the bottom of the window.
You will find this command to be very useful as you

become more experienced at using windows.

All three special movement commands can also be used when your
screen has no extra windows,
although you will
not need them as much.

One buffer

Now that you have been introduced to the commands
for manipulating windows, you can begin
to
use windows to speed your editing.

To begin with, scroll up the window you are in
until you reach the top line of your text.
You can do
this
either by typing the scroll up command
<ctrl-X><ctrl-P> several times,
or by typing <esc><.

Kill the first line of text with the kill command <ctrl-K>.
The first line of text has vanished from all
three
windows.
Now, type <ctrl-Y> to yank back the text you just killed.
The line has reappeared in
all three windows.

The main advantage to displaying one buffer with more than one window
is that each window can
display a different portion of
the text.
This can be quite helpful if you are editing or moving a
large
text.

To demonstrate this, do the following:
First, move to the end of the text in your
present window by
typing the end of text command <esc>>, then typing the previous line command <ctrl-P> four times.
Now, kill the last four lines.

Let’s C

76 MicroEMACS

You could move the killed lines to the beginning of your text
 by typing the beginning of text
command <esc><;
however, it is more convenient simply to type the next
window command <ctrl-
X>N, which will move you to
the beginning of the text as displayed in the next window.
MicroEMACS
remembers a different cursor position
for each window.

Now yank back the four killed lines by typing <ctrl-Y>.
You can simultaneously observe that the
lines have been
 removed from the end of your text and that they have been
 restored at the
beginning.

Multiple buffers

Windows are especially helpful when they display more
than one text.
Remember that at present
you are working with three buffers,
named
example1.c,
example2.c, and example3.c, although your
screen
is displaying only example3.c.
To display a different text in a window, use the
switch buffer
command <ctrl-X>B.

Type <ctrl-X>B.
When MicroEMACS asks

Use buffer:

at the bottom of the screen, type
example1.c.
The text in your present window will be replaced with

example1.c.
The command line in that window
has changed, too, to reflect the fact that the buffer

and the file names are now
example1.c.

Moving and copying text among buffers

It is now very easy to copy
text among buffers.
To see how this is done, first kill the first line of

example1.c
by typing the <ctrl-K> command twice.
Yank back the line immediately by typing <ctrl-
Y>.
Remember, the line you killed has not been
erased from its special storage area, and may be

yanked back any number of times.

Now, move to the previous window by typing <ctrl-X>P,
then yank back the killed line by typing <ctrl-
Y>.
This technique can also be used with the block kill command
<ctrl-W> to move large amounts of
text from one buffer to
another.

Checking buffer status

The buffer status command <ctrl-X><ctrl-B> can
be used when you are already displaying more
than one window
on your screen.

When you want to remove the buffer status window, use either
the one window command <ctrl-X>1,
or move your
cursor into the buffer status window using the next window
command <ctrl-X>N and
replace it with another buffer
by typing the switch buffer command <ctrl-X>B.

Saving text from windows

The final step is to save the text from your windows and buffers.
Close the lower two windows with
the one window
 command <ctrl-X>1.
 Remember, when you close a window, the text that it
displayed
is still kept in a buffer that is hidden from your
screen.
For now, do not save any of these
altered texts.

When you use the save command <ctrl-X><ctrl-S>,
only the text in the window in which the cursor

is positioned will be written to its
 file.
 If only one window is displayed on the screen, the save

command will save only its text.

If you made changes to the text in another buffer,
such as moving portions of it to another buffer,
MicroEMACS
will ask

Quit [y/n]:

If you answer ‘n’, MicroEMACS will save
the contents of the buffer you are currently displaying
by
writing them to your disk, but it will ignore the
contents of other buffers, and your cursor will be

Let’s C

MicroEMACS 77

returned
 to its previous position in the text.
 If you answer ‘y’, MicroEMACS again will save the

contents of the current buffer and ignore the other buffers,
but you will exit from MicroEMACS and
return to MS-DOS. Exit from MicroEMACS by typing the quit command <ctrl-X><ctrl-C>.

Keyboard macros
Another helpful feature of MicroEMACS is that it allows you
to create a keyboard macro.

Before beginning this section, reinvoke MicroEMACS to edit
example3.c
as you did earlier.

The term macro means a number of commands or
characters that are bundled together under a
common name.
Although MicroEMACS allows you to create only one macro
at a time, this macro
can consist of a common
phrase or a common command or
series of commands that you use
while editing
your file.

Keyboard macro commands

The keyboard macro commands are as follows:

<ctrl-X>(Begin macro collection

<ctrl-X>) End macro collection

<ctrl-X>E Execute macro

To begin to create a macro, type the begin macro
 command <ctrl-X>(.
 Be sure to type an open
parenthesis ‘(’, not a numeral ‘9’.
MicroEMACS will reply with the message

[Start macro]

Type the following phrase:

MAXNUM

Then type the end macro command <ctrl-X>).
Be sure you type a close parenthesis ‘)’, not a numeral
‘0’.
MicroEMACS will reply with the message

[End macro]

Move your cursor down two lines and execute the macro
by typing the execute macro command
<ctrl-X>E.
The phrase you typed into the macro has been inserted
into your text.

Should you give these commands in the wrong order, MicroEMACS
will warn you that you are
making a mistake.
For example, if you open a keyboard macro by typing <ctrl-X>(,
and then attempt
to open another keyboard macro by again typing
<ctrl-X>(, MicroEMACS will say:

Not now

Should you accidentally open a keyboard macro, or enter the
 wrong commands into it, you can
cancel the entire macro simply
by typing <ctrl-G>.

Replacing a macro

To replace this macro with another, go through the same
process.
Type <ctrl-X>(. Then type the
buffer status command
<ctrl-X><ctrl-B>, and type <ctrl-X>).
Remove the buffer status window by
typing the one window
command <ctrl-X>1.

Now execute your keyboard macro
 by typing the execute macro command <ctrl-X>E.
 The buffer
status command has executed once more.

Whenever you exit from MicroEMACS, your keyboard
macro is erased, and must be retyped when
you return.

Sending commands to MS-DOS

Let’s C

78 MicroEMACS

The only remaining
command
you need to learn
is
the program interrupt
command <ctrl-X>!.
This
command allows
 you to interrupt your editing, give a command
 directly to MS-DOS,
 and then
resume editing without affecting
your text in any way.

The command <ctrl-X>! allows you to send one
command
to the operating system.
To see how this
command works, type <ctrl>!.
The prompt

MS-DOS command:
has appeared at the bottom of your
screen.
Type
dir.
Observe that the directory’s table of contents scrolls across your
screen.
To return
to your editing, simply type a carriage return.

Compiling and debugging through MicroEMACS

MicroEMACS can be used with the compilation command
 cc to give you a reliable system for
debugging new programs.

Often, when you’re writing a new program, you face the situation in which
you try to compile, but
the compiler produces error messages
 and aborts the compilation.
 You must then invoke your
editor, change the program, close the editor,
 and try the compilation over again.
 This cycle of
compilation—editing—recompilationcan be quite
bothersome.

To remove some of the drudgery from compiling, the
 cc command has the
 automatic, or

MicroEMACS option,
-A. When you compile with this option, the MicroEMACS screen editor will
be
invoked automatically if any errors occur.
The error or errors generated during compilation will be
displayed in
one window, and your text in the other, with the cursor set at the
number of the line
that the compiler indicated had the error.

Try the following example.
Use MicroEMACS to enter the following program, which you should call

error.c:

main() {

printf("Hello, world!\n")

}

The semicolon was left off of the
printf statement, which is an error.
Now, try compiling
error.c with
the following
cc command:

cc -A error.c

You should see no messages from the compiler because they are all being
diverted into a buffer to be
used by MicroEMACS.
Then MicroEMACS will appear automatically.
In one window you should see
the message:

3: missing ’;’

and in the other you should see your source code for
error.c, with the cursor set on line 3.

If you had more than one error, typing
<ctrl-X>> would move you to the next line with an error in it;
typing
 <ctrl-X>< would return you to the previous error.
 With some errors, such as those for
missing braces or
semicolons, the compiler cannot always tell exactly which line the
error occurred
on, but it will almost always point to a line that
is near the source of the error.

Now, correct the error by typing a semicolon at the end of line 2.
Close the file by typing
<ctrl-Z>. cc
will be invoked again automatically.

cc will continue to compile your program either until the program compiles without error, or until
you exit from MicroEMACS by typing
<ctrl-U> followed by
<ctrl-X><ctrl-C>.

Let’s C

MicroEMACS 79

The MicroEMACS help facility

MicroEMACS has a built-in help function. With it, you can ask for information either for a word
that you type in, or for a word over which the cursor is positioned. The MicroEMACS help file
contains the bindings for all library functions and macros included with Let’s C.

For example, consider that you are preparing a C program and want more information about the
function fopen. Type <ctrl-X>?. At the bottom of the screen will appear the prompt

Topic:

Type fopen. MicroEMACS will search its help file, find its entry for fopen, then open a window and
print the following:

fopen - Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;

If you wish, you can kill the information in the help window and copy it into your program to ensure
that you prepare the function call correctly.

Consider, however, that you are checking a program written earlier, and you wish to check the call
to fopen. Simply move the cursor until it is positioned over one of the letters in fopen, then type
<esc>?. MicroEMACS will open its help window, and show the same information it did above.

To erase the help window, type <esc>2.

Where to go from here
For a complete summary of MicroEMACS’s commands, see
the entry for
me in the Lexicon.

The next section introduces make, a utility is helpful in building and maintaining large programs.

Let’s C

80 MicroEMACS

Let’s C

#%2=0 .nr # 0

make Programming Discipline

make is a utility that relieves you of the drudgery of building a complex C program.

How does make work?

To understand how make works, it is first necessary to understand how a C program is built: how
Let’s C takes you from the C source code that you write to the executable program that you can run
on your computer.

The file of C source code that you write is called a source module. When Let’s C compiles a source
module, it uses the C code in the source module, plus the code in the header files that the code calls
to produce an object module. This object module is not executable by itself. To create an executable
file, the object module generated from your source module must be handed to a linker, which links
the code in the object module with the appropriate library routines that the object module calls, and
adds the appropriate C runtime startup routine.

For example, consider the following C program, called hello.c:

main()
{

printf("Hello, world\n");
}

When Let’s C compiles the file that contains C code shown above, it generates an object module
called hello.obj. This object module is not executable because it does not contain the code to
execute the function printf; that code is contained in a library. To create an executable program,
you must hand hello.obj to the linker ld, which copies the code for printf from a library and into
your program, adds the appropriate C runtime startup routine, and writes the executable file called
hello.exe. This third file, hello.exe, is what you can execute on your computer.

The term dependency describes the relationship of executable file to object module to source
module. The executable program depends on the object module, the library, and the C runtime
startup. The object module, in turn, depends on the source module and its header files (if any).

A program like hello.exe has a simple set of dependencies: the executable file is built from one
object module, which in turn is compiled from one source module. If you changed the source
module hello.c, creating an updated version of hello.exe would be easy: you would simply compile
hello.c to create hello.obj, which you would link with the library and the runtime startup to create
hello.exe. Let’s C, in fact, does this for you automatically: all you need to do is type

cc hello.c

and Let’s C takes care of everything.

On the other hand, the dependencies of a large program can be very complex. For example, the
executable file for the MicroEMACS screen editor is built from several dozen object modules, each of
which is compiled from a source module plus one or more header files. Updating a program as large
as MicroEMACS, even when you change only one source module, can be quite difficult. To rebuild
its executable file by hand, you must remember the names of all of the source modules used,
compile them, and link them into the executable file. Needless to say, it is very inefficient to
recompile several dozen object modules to create an executable when you have changed only one of
them.

81

82 Introduction to make

make automatically rebuilds large programs for you. You prepare a file, called a makefile, that
describes your program’s chain of dependencies. make then reads your makefile, checks to see
which source modules have been updated, recompiles only the ones that have been changed, and
then relinks all of the object modules to create a new executable file. make both saves you time,
because it recompiles only the source modules that have changed, and spares you the drudgery of
rebuilding your large program by hand.

Try make

The following example shows how easy it is to use make.

To begin, make examines the time and date that MS-DOS has stamped on each source file and
object module. When you edit a source module, MS-DOS marks it with the time at which you
edited it. Thus, if a source module has a time that is later than that of its corresponding object
module, then make knows that the source module was changed since the object module was last
compiled and it will compile a new object module from the altered source module. If you do not
reset the time on your system whenever you reboot, every time, some files will not have the correct
date and time and make cannot work correctly.

To see how make works, try compiling a program called factor. It is built from the following files:

atod.c
factor.c
makefile

All three are included with your copy of Let’s C.

If you do not have a hard disk, insert disk 8 (which holds the sample programs) into drive B, and
make sure that disk 2 (the compiler disk) is in drive A. Use the cd command to shift into directory
src.

Now, type make. make will begin by reading makefile, which describes all of factor’s
dependencies. It will then use the makefile description to create factor. The following will appear
on your screen:

cc -c factor.c
cc -c atod.c
cc -f -o factor.exe factor.obj atod.obj -lm

Each of these messages describes an action that make has performed. The first shows that make is
compiling factor.c, the second shows that it is compiling atod.c, and the third shows that it is
linking the compiled object modules atod.obj and factor.obj to create the executable file factor.exe.

When make has finished, the MS-DOS prompt will return. To see how your newly compiled
program works, type

factor 100

factor will calculate the prime factors of its argument 100, and print them on the screen.

To see what happens if you try to re-make your file, type make again. make will run quietly for a
moment, and then exit. make checked the dates and times of the object modules and their
corresponding source modules and saw that the object modules had a time later than that of the
source modules. Because no source module changed, there was no need to recompile an object
module or relink the executable file, so make quietly exited.

To see what happens when one of the source modules changes, try the following. Use the
MicroEMACS screen editor to open the file factor.c for editing. Insert the following line into the
comments at the top, immediately following the /*:

Let’s C

Introduction to make 83

* This comment is for test purposes only.

Now exit. Type make once again. This time, you will see the following on your screen:

cc -c factor.c
cc -f -o factor.exe factor.obj atod.obj -lm

Because you altered the source module factor.c, its time was later than that of its corresponding
object module, factor.obj. When make compared the times of factor.c and factor.obj, it noted that
factor.c had been altered. It then recompiled factor.c and relinked factor.obj and atod.obj to re-
create the executable file factor.exe. make did not touch the source module atod.c because atod.c
had not been changed since the last time it was compiled.

As you can see, make greatly simplifies the construction of a C program that uses more than one
source module.

Essential make
Although make is a powerful program, its basic features are easy to master. This section will show
you how to construct elementary make scripts.

The makefile

When you invoke make, it searches the directories named in the environmental variable PATH for a
file called makefile. As noted earlier, the makefile is a text file that describes a C program’s
dependencies. It also describes the type of program you wish to build, and the commands for
building it.

A makefile has three basic parts.

First, the makefile describes the executable file’s dependencies. That is, it lists the object modules
needed to create the executable file. The name of the executable file is always followed by a colon ‘:’
and then by the names of files from which the target file is generated.

For example, if the program feud.exe is built from the object modules hatfield.obj and mccoy.obj,
you would type:

feud.exe: hatfield.obj mccoy.obj

If the files hatfield.obj and mccoy.obj do not exist, make knows to create them from the source
modules hatfield.c and mccoy.c.

Second, the makefile holds one or more command lines. The command line gives the command to
compile the program in question. The only difference between a makefile command line and an
ordinary cc command is that a makefile command line must begin with a space or a tab character.

For example, the makefile to generate the program feud.exe must contain the following command
line:

cc -o feud.exe hatfield.obj mccoy.obj

For a detailed description of the cc command and its options, refer to the entry for cc in the
Lexicon.

Third, the makefile lists all of the header files that your program uses. These are given so that
make can check if they were modified since your program was last compiled. For example, if the
program hatfield.c used the header file shotgun.h and mccoy.c used the header files rifle.h and
pistol.h, the makefile to generate feud.exe would include the following lines:

hatfield.obj: shotgun.h
mccoy.obj: rifle.h pistol.h

Thus, the entire makefile to generate the program feud.exe is as follows:

Let’s C

84 Introduction to make

feud.exe: hatfield.obj mccoy.obj
cc -o feud.exe hatfield.obj mccoy.obj

hatfield.obj: shotgun.h
mccoy.obj: rifle.h pistol.h

A makefile may also contain macro definitions and comments. These are described below.

Building a simple makefile

The program factor.exe is built from two source modules, factor.c and atod.c. No header files are
used. The makefile contains the following two lines:

factor.exe: factor.obj atod.obj
cc -f -o factor.exe factor.obj atod.obj -lm

The first line describes the dependency for the executable file factor.exe by naming the two object
modules needed to build it. The second line gives the command needed to build factor.exe. The
option -lm at the end of the command line tells cc that this program needs the mathematics library
libm when the program is linked. No header file dependencies are described because these
programs use no header files.

Comments and macros

You can embed comments within a makefile. A comment is a line of text that is ignored; this lets
you ‘‘document’’ the file, so that whoever reads it will now know what it is for. make ignores all
lines that begin with a pound sign ‘#’. For example, you may wish to include the following
information in your makefile for factor:

This makefile generates the program "factor".
"factor" consists of the source modules "factor.c" and
"atod.c". It uses the standard mathematics library
"libm", but it requires no special header files.
"-f" lets you use printf for floating-point numbers.

factor: factor.obj atod.obj
cc -f -o factor.exe factor.obj atod.obj -lm

Anyone who reads this file will know immediately what it is for by looking at the comments.

make also lets you define macros within your makefile. A macro is a symbol that represents a
string of text. Usually, a macro is defined at the beginning of the makefile using a macro definition
statement. This statement uses the following syntax:

SYMBOL = string of text

Thereafter, when you use the symbol in your makefile, it must begin with a dollar sign ‘$’ and be
enclosed within parentheses.

Macros eliminate the chore of retyping long strings of file names. For example, with the makefile
for the program factor, you may wish to use a macro to substitute for the names of the object
modules out of which it is built. This is done as follows:

This makefile generates the program "factor".
"factor" consists of the source modules "factor.c" and
"atod.c". It uses the standard mathematics library
"libm", but it requires no special header files.
"-f" lets you use printf for floating-point numbers.

Let’s C

Introduction to make 85

OBJ = factor.obj atod.obj
factor: $(OBJ)

cc -o factor.exe $(OBJ) -lm

The macro OBJ is used in this makefile. If you use a macro that has not been defined, make
substitutes an empty string for it. The use of a macro makes sense when generating large files out
of a dozen or more source modules. You avoid retyping the source module names, and potential
errors are avoided.

Setting the time

As noted above, make checks to see which source modules have been modified before it regenerates
your C program. This is done to avoid wasteful recompiling of source modules that have not been
updated.

make determines that a source module has been altered by comparing its date against that of the
target program. For example, if the object module factor.obj was generated on March 16, 1987,
10:52:47 A.M., and the source module factor.c was modified on March 20, 1987, at 11:19:06 A.M.,
make will know that factor.c needs to be recompiled because it is younger than factor.obj.

For this reason, if you wish to use make, you must reset the date and time every time you reboot
your system. Some users do not do this routinely; however, unless the time is reset every time,
make will not work correctly.

Building a large program
As shown earlier, make can ease the task of generating a large program. The following is the
makefile used to generate the screen editor MicroEMACS:

MS-DOS limits command line tails to no more
than 128 characters. To skirt this limit, the
command line is built into a temporary file,
which we pass to make.

O1 = ansi.obj basic.obj buffer.obj display.obj file.obj \
fileio.obj line.obj main.obj

O2 = window.obj word.obj tcap.obj
O3 = random.obj region.obj search.obj spawn.obj termio.obj vt52.obj

me.exe: $(O1) $(O2) $(O3)
echo $(O1) > maketemp
echo $(O2) >> maketemp
echo $(O3) >> maketemp
cc -o me.exe @maketemp
del maketemp

$(O1) $(O2) $(O3): ed.h

This file shows how the elements of a makefile are used to control the generation of a large
program.

The first four lines consist of comments that describe a peculiarity of the file, as fair warning to
future programmers.

The next four lines define the macros O1, O2, and O3, which substitute for the 17 files that make
up this program. Three macros must be used because, as explained in the comments, under MS-
DOS no command line can have a tail longer than 128 characters.

The next line gives the name of the target file, me.exe, and the files needed to generate it; in this
case, these file names are represented by the macros O1, O2, and O3.

Let’s C

86 Introduction to make

The next three lines begin with the command echo. These command lines copy the three macros
into the temporary file maketemp; this strategy is one way around the 128-character limit on
command lines.

The next line is the command line. It controls the compiling of the files listed in maketemp.

The next to last line deletes maketemp, so that this file is no longer cluttering up your directory.
Finally, the last line notes that all 17 of the MicroEMACS object modules are built in from the
header file ed.h.

Command line options

Although make is controlled by your makefile, you can also control make by using command line
options. These allow you to alter make’s activity without having to edit your makefile.

Options must follow the command name on the command line and begin with a hyphen, ‘-’, using
the following format. The square brackets merely indicate that you can select any of these options;
do not type the brackets when you use the make command:

make [-dinprst] [-f filename]

Each option is described below.

-d (debug) make describes all of its decisions. You can use this to debug your makefile.

-f filename
(file) option tells make that its commands are in a file other than makefile. For example, the
command

make -f smith

tells make to use the file smith rather than makefile. If you do not use this option, make
searches the directories named in the environmental variable PATH, and then the current
directory for a file entitled makefile to execute.

-i (ignore errors) make ignores error returns from commands and continues processing.
Normally, make exits if a command returns an error status.

-n (no execution) make tests dependencies and modification times but does not execute
commands. This option is especially helpful when constructing or debugging a makefile.

-p (print) make prints all macro definitions and target descriptions.

-r (rules) make does not use the default macros and commands from $LIBPATH\mmacros and
$LIBPATH\mactions. These files will be described below.

-s (silent) make does not print each command line as it is executed.

-t (touch) make changes the modification time of each executable file and object module to the
current time. This suppresses recreation of the executable file, and recompilation of the
object modules. Although this option is used typically after a purely cosmetic change to a
source module or after adding a definition to a header file, it must be used with great caution.

Other command line features

In addition to the options listed above, you may include other information on your command line.

First, you can define macros on the command line. A macro definition must follow any command
line options. For example, the command line

make -n -f smith "CSD=-VCSD"

tells make to run in the no execution mode, reading the file smith instead of makefile, and defining

Let’s C

Introduction to make 87

the macro CSD to mean -VCSD.

The ability to define macros on the command line means that you can create a makefile using
macros that are not yet defined; this greatly increases make’s flexibility and makes it even more
helpful in creating and debugging large programs. In the above example, you can define a command
line as follows:

cc $(CSD) example.c

When you define the macro CSD on the command line, then the program is compiled using the -
VCSD option, which creates an executable that can be debugged with csd, the Mark Williams C
Source Debugger. If the macro is not set, however, then it is simply skipped when the command
line is executed, and the program is compiled in the usual manner.

Another command-line feature is the ability to change the name of the target file on the command
line. Normally, the target file is the executable file that you wish to create, although, as will be seen,
it does not have to be. As will be discussed below, a makefile can name more than one target file.
make normally assumes that the target is the first target file named in makefile. However, the
command line may name one or more target files at the end of the line, after any options and any
macro definitions.

To see how this works, recall the program factor described above. factor is generated out of the
source modules factor.c and atod.c. The command

make atod.obj

with the makefile outlined above would produce the following cc command line:

cc -c atod.c

if the object module atod.obj does not exist or is outdated. Here, make compiles atod.c to create
the target specified in the make command line, that is, atod.obj, but it does not create factor. This
feature allows you to apply your makefile to only a portion of your program.

The use of special, or alternative, target files is discussed below.

Advanced make
This section describes some of make’s advanced features. For most of your work, you will not need
these features; however, if you create an extremely complex program, you will find them most
helpful.

Default rules

The operation of make is governed by a set of default rules. These rules were designed to simplify
the compilation of a typical program; however, unusual tasks may require that you bypass or alter
the default rules.

To begin, make uses information from the files mmacros and mactions to define default macros
and compilation commands. make looks for these files in the directories named in the
environmental variable LIBPATH. make uses the commands in mmacros and mactions whenever
the makefile specifies no explicit regeneration commands. The command line option -r tells make
not to use the macros and actions defined in mmacros and mactions.

As shown in earlier examples, make knows by default to generate the object module atod.obj from
the source module atod.c with the command

cc -c atod.c

The macro .SUFFIXES defines the suffixes make knows about by default. Its definition in mmacros
includes both the .obj and .c suffixes.

Let’s C

88 Introduction to make

make’s files mmacros and mactions use pre-defined macros to increase their scope and flexibility.
These are as follows:

$< This stands for the name of the file or files that cause the action of a default rule. For
example, if you altered the file atod.c and then invoked make to rebuild the executable file
factor.exe, $< would then stand for atod.c.

$* This stands for the name of the target of a default rule with its suffix removed. If it had been
used in the above example, $* would have stood for atod.

$< and $* work only with default rules; these macros will not work in a makefile.

$? This stands for the names of the files that cause the action and that are younger than the
target file.

$@ This stands for the target name.

You can use the macros $? and $@ in a makefile. For example, the following rule updates the file
factor with the objects defined by macro $(OBJ) that are out of date:

factor: $(OBJ)
cc -c $? -lm

mmacros also contains a default command that describes how to build additional kinds of files:

• AS and ASFLAGS call the assembler to assemble .obj files out of source modules written in
assembly language rather than C.

You can change the default rules of make by changing them in mactions and changing the
definition of any of the macros as given in mmacros.

Double-colon target lines

An alternative form of target line simplifies the task of maintaining libraries. This form uses the
double colon ‘‘::’’ instead of a single colon ‘:’ to separate the name of the target from those of the files
on which it depends.

A target name can appear on only one single-colon target line, whereas it can appear on several
double-colon target lines. The advantage of using the double-colon target lines is that make will
remake the target by executing the commands (or its default commands) for the first such target line
for which the target is older than a file on which it depends.

For example, for the program factor.exe described earlier, assume that two versions of the source
modules factor.c and atod.c exist: factora.c plus atoda.c, and factorb.c plus atodb.c The
makefile would appear as follows:

OBJ1 = factora.obj atoda.obj
OBJ2 = factorb.obj atodb.obj

factor.exe :: $(OBJ1)
cc -c $(OBJ1) -lm

factor.exe :: $(OBJ2)
cc -c $(OBJ2) -lm

This makefile tells make to do the following: (1) Check if either factora.obj or atoda.obj is younger
than factor.exe. (2) If either one is, regenerate factor.exe using this version of these files. (3) If
neither factora.obj nor atoda.obj is younger than factor.exe, then check to see if either factorb.obj
or atodb.obj is younger than factor.exe. (4) If either of them is, then regenerate factor.exe using
the youngest version of these files.

Let’s C

Introduction to make 89

This technique allows you to maintain multiple versions of source files in the same directory and
selectively recompile the most recently updated version without having to edit your makefile or
otherwise trick the system.

You cannot target a file in both a single-colon and a double-colon target line.

Alternative uses

make is a program that helps you construct complex things from a number of simpler things.

make usually is used to build complex C programs: the executable file is made from object modules,
which are made from source modules and header files. However, make can be used to create any
type of file that is constructed from one or more source modules. For example, an accountant can
use make to generate monthly reports from daily inventories: all the accountant has to do is prepare
a makefile that describes the dependencies (that is, the name of the monthly report they wish to
create and the names of the daily inventories from which it is created), and the command required
to generate the monthly report. Thereafter, to recreate the report, all the accountant has to do to
generate a monthly report is type make.

In another example, the makefile can trigger program maintenance commands. For example, the
target name backup might define commands to copy source modules to another directory; typing
make backup saves a copy of the source modules. Similar uses include removing temporary files,
building libraries, executing test suites, and printing listings. A makefile is a convenient place to
keep all the commands used to maintain a program.

The following example shows a makefile that defines two special target files, printall and printnew,
to be used with the source files for the program factor.exe.

This makefile generates the program "factor.exe".
"factor.exe" consists of the source modules "factor.c" and
"atod.c". It uses the standard mathematics library
libm, but it requires no special header files.

OBJ = factor.obj atod.obj
SRC = factor.c atod.c

factor: $(OBJ)
cc -o factor $(OBJ) -lm

program to print all the updated source modules
used to generate the program "factor.exe"

printall:
pr $(SRC) | print /p
echo junk > printall

printnew: $(OBJ)
pr $? | print /p
echo junk > printnew

In this instance, typing the command

make printall

forces make to generate the target printall rather than the target factor.exe, which is the default as
it appears first in the makefile. The pr and print commands are then used to print a listing of all
files defined by SRC. The macro OBJ cannot be used with these commands because it would trigger
the printing of the object files, which would not be of much use. The word junk is echoed into an
empty file, prnew. This new file serves only to record the time the listing is printed. This tactic is
performed in order to record the time that the listing was last generated so that make will know
what files have been updated when you next use printnew.

Let’s C

90 Introduction to make

Typing the command

make printnew

forces make to generate the target printnew rather than the default target factor. printnew prints
only the files named in the macro SRC that have changed since any files were last printed.

Special targets

A few target names have special meanings to make. The name of each special target begins with ‘.’
and contains upper-case letters.

The target name .DEFAULT defines the default commands make uses if it cannot find any other
way to build a target. The special target .IGNORE in a makefile has the same effect as the -i
command line option. Similarly, .SILENT has the same effect as the -s command line option.

Errors

make prints ‘‘command exited with status n’’ and exits if an executed command returns an error
status. However, it ignores the error status and continues processing if the makefile command line
begins with a hyphen ‘-’ or if the make command line specifies the -i option.

make reports an error status and exits if the user interrupts it. It prints ‘‘can’t open file’’ if it
cannot find the specification file. It prints ‘‘Target file is not defined’’ or ‘‘Don’t know how to make
target’’ if it cannot find an appropriate file or commands to generate target. Other possible errors
include syntax errors in the specification file, macro definition errors, and running out of space.
The error messages make prints are generally self-explanatory; however, a table of error messages
and brief descriptions of them are given in a later section of this manual.

Exit status

make returns a status of zero if it succeeds and -1 if an error occurs.

Where to go from here
make is summarized in the Lexicon. Look there for more information about how to use it with C
programs.

Let’s C

#%2=0 .nr # 0

Questions and Answers

The following is a list of questions asked most often by Let’s C users, and suggestions for solving
problems. If you have a problem with Let’s C, look here first.

Programming problems

Why doesn’t cpp execute? cpp execute?’>=29
Most likely, cc cannot find cpp because it is in another directory and you did not tell cc
where to look for it. If this is the case, use the -xc option in the cc command line, as
described in the Lexicon entry for cc. Also see the sub-section Setting the environment, in
section 1 of this manual.

Can I keep the compiler and source code on separate disks?
Yes, when you use the -x options on the cc command line. See the description of these
options in the Lexicon entry for cc. Also see the sub-section Setting the environment, in
section 1 of this manual.

My program won’t read a carriage return from a file. Why? read a carriage return from a file.
Why?’>=29
When you open a file stream, by default it is opened in ASCII mode. A file stream opened in
ASCII mode will handle only alphanumeric characters plus the newline character ‘\n’. All
other characters, including the carriage return character ‘\r’ will be dropped from the file
stream. To read a file that contains a carriage return or other non-alphanumeric characters
correctly, open the file in binary mode.

To read from a binary file you must open it in binary mode; for example:

fopen("filename", "rb")

For more information, see the entry for fopen in the Lexicon.

My automatic large array is corrupted. Why?
Most likely, you did not allocate enough stack when you compiled your program. Let’s C by
default sets aside two kilobytes of memory for stack, but your program may require more.
To increase stack size, use the -ys option to cc, or make the array static by moving it
outside of the body of the program. The -ys option takes the number of bytes in decimal;
for example, -ys 10000 gives you 10,000 bytes worth of stack.
Note that using too much stack space can itself cause other unpredictable results to appear.

Can I reduce the size of my compiled modules?
Yes. A number of techniques will save space in your programs. For example, try making
automatic variables into register variables. This also increases the speed of execution. Use
register variables only for heavily used data items. Normally, the compiler uses registers SI
and DI for intermediate work. The first register variable you assign uses SI, the second uses
DI. After that, the register typing is ignored.

Another technique is to perform repetitive function calls by means of a table definition. This
will eliminate the code needed to make each of the function calls except one. Also, try
removing the modules’ symbol tables with the command strip. This will reduce their size
significantly.

If your program does not use any STDIO routines, you can compile it with the -ns option.

91

92 Questions and Answers

The order of evaluation is not what I expected. Why?
Note the following passage from The C Programming Language: ‘‘C, like most languages,
does not specify in what order the operands of an operator are evaluated In any
expression that involves side effects, there can be subtle dependencies on the order in which
variables taking part in the expression are stored. One unhappy situation is typified by the
statement

a[i] = i++;

‘‘The question is whether the subscript is the old value of i or the new. The compiler can do
this in different ways, and generate different answers depending on its interpretation... The
moral of this discussion is that writing code which depends on order of evaluation is a bad
programming practice in any language.’’

printf gives incorrect output when rounding numbers. Why?
For example:

printf("%6.0f", (double) 9/10.0);

yields 0 instead of 1. This, however, represents a misunderstanding of how printf works.
The instruction %6.0f tells printf to truncate the value and print it, not round it; because
9/10 is less than 1, the output is zero, not one.

Where does make look for mactions and mmacros?
mmacros and mactions are files of preset macros and definitions that make uses by
default. make looks for them first in the directories named by the environmental variable
LIBPATH. If this variable is not set, it then looks in directory lib; if there is no directory
with this name, it finally looks in the current directory.

My Tandy 2000 cannot access my printer with lpt1. Why?
The Tandy 2000 is not fully IBM-compatible. One way in which it differs from the IBM PC is
that it cannot recognize the logical device lpt1. Use prn to access the printer on this
machine.

What does the error message temporary file write error mean?
Let’s C is a multiphase compiler in which each phase performs a different task. Because
each phase stands alone (as a single program), it must write its output to a temporary file
that is read by the following phase. Thus, this error means that a phase could not write out
its temporary file. This is usually due to a hardware problem such as a full disk, or a
write-protected disk. To overcome this problem, it might be necessary to write temporary
files to another directory or to another disk drive.

What does the error message lvalue required mean?
Your program uses a constant where it should use a variable. A variable is the name of any
data element whose value can change; for example

int foo;

declares the variable foo. A constant, on the other hand, is any number or fixed address.
The name of an array, for example, is a fixed address and cannot be altered. The code

int foo[];
int *bar;

...
foo = bar;

will generate an lvalue required error message, because the name of an array is a constant
rather than a variable. On the other hand, the code

Let’s C

Questions and Answers 93

int *foo;
int *bar;

...
foo = bar;

will not, because both foo and bar are pointers and, therefore, are variables. See the
Lexicon entries for lvalue and rvalue for more information.

What does the message Identifier string is being redeclared mean?
If you use a function without declaring it, Let’s C assumes that it is an integer. If later in
your program you declare that function to be something other than an integer, your
declaration will clash with the implicit declaration you made earlier, and so trigger the error
message. You should check that your functions do not contradict themselves. It is a good
programing practice to declare explicitly all functions and variables your program will use.

What does the error message out of space mean?
Most likely, you created a function that is too large for the compiler to process. Break the
routine into smaller components.

If this error is generated by cc2, try recompiling your program with the option -vcc2l. This
tells cc to use a LARGE-model version of cc2; this version runs more slowly than the
normal SMALL-model version of cc2, but can handle larger programs.

What does Bad value in debug mean?
This error occurs only when you have used the -VCSD option, so that you can debug your
program with csd. Your program probably declared a pointer to a structure tag that does
not exist. Check the declaration of the structure or pointer.

How can I estimate how much stack I need?
Automatic variables and passed parameters go on the stack. Register variables do not go
onto the stack. Each level of call requires eight bytes in SMALL model, and 10 bytes in
LARGE model. The runtime startup routine needs about 200 bytes of stack, and printf
about 100 bytes.

The default stack size is two kilobytes (2,048 bytes). To change it, use the -ys option; for
example, to compile a program with 4,096 bytes (four kilobytes) of stack, use the following
command:

cc -ys 4096 example.c

How do execall and system differ?
execall sends a command and its list of arguments, or ‘‘tail’’, directly to MS-DOS; system,
on the other hand, sends a command through command.com.

execall looks for the executable file, loads it, executes it with the given tail as its
arguments, and returns its exit status code. Thus, it only works if command exits to its
caller rather than by executing the MS-DOS warm boot. MS-DOS built-in commands, such
as dir, do not work with execall for this reason. system passes a command line to
command.com, loads it, and executes it as if it had been typed at the MS-DOS command
level. system can be used with the MS-DOS built-in commands, as well as with commands
that rely on MS-DOS to parse the command line into the formatted parameter area. Note,
too, that system runs more slowly than execall, and it cannot pass to the calling program
what the called program returned upon exiting.

See the Lexicon entries for execall and system for more information and for example
programs that use these routines.

Let’s C

94 Questions and Answers

What does the runtime startup routine do?
This is a routine that is linked with a C program as the first part of the executable object
program. It initializes the stack and saves information necessary to return to the calling
program, and calls the C library function _main to parse the MS-DOS command tail into
the arguments argv, argc, and envp, which are expected by the C program.

How can I make ROMable code?
Use the following steps:

1. Use the option -VROM to move constant strings into the code segment.

2. Put the data segment into ROM, copy it to RAM, and have the data segment point to
where it is in RAM. This must be done explicitly, i.e., you must write a new runtime
startup routine.

3. STDIO routines are linked into a program even if they are not required. Use the cc
option -ns to exclude them from your program. This also gives the program a different
version of the exit command, which does not call fflush or fclose.

4. Tools for converting to Intel hex format and for burning PROMs must be purchased
from third-party vendors. Mark Williams Company does not supply them at present.

How can I declare an array of (row)*(col) elements?
Declare and initialize it to Array[row-1][col-1]. The first element of the array is Array[0][0].

How can I redirect error messages into a file?
Use the greater-than sign ‘>’ with MS-DOS. For example,

cc filename.c > errfile

will work for one file. For multiple compiles, say:

cc file1.c > errfile
cc file2.c >> errfile
cc file3.c >> errfile

This appends the error messages from subsequent compilations onto the error file.

The -A option to cc automatically redirects error messages into a buffer, and invokes the
MicroEMACS editor so you can fix your source file ‘‘on the spot’’. You may find this to be
more convenient than redirecting the error messages into a file. For more information on
this option, see the Lexicon entry for cc.

How can I redirect an object file to another directory?
The option -o filename redirects the object file into filename, whereas the option -xo
directory redirects it into directory.

How can I build pointers for segment and offset functions, like copy?
Use the function ptoreg to convert C pointers to processor register pairs. ptoreg converts a
pointer p relative to segment seg and stores the resulting segment:offset pair in the register
pair segreg:offreg.

The functions csreg, dsreg, esreg, and ssreg return the current segment register values. To
turn a register pair into a C pointer, use the function regtop.

Can I compile a program from within MicroEMACS?
Yes. Use the -A option to the cc command line. If an error occurs, you will be returned to
MicroEMACS automatically, with your source code displayed in one window and the
compiler’s error messages displayed in the other. When you have corrected the problem,
exiting from the editor with either the <ctrl-X><ctrl-S> or <ctrl-Z> automatically recompiles
your program.

Let’s C

Questions and Answers 95

Problems with running programs

My data are being corrupted inexplicably.

My computer is hanging.

My program is generating garbage.
These problems may have a number of causes; the most likely is improper allocation of
space. Often, the stack size is too small. If the stack grows too large for the space that has
been allocated for it, it will invade and corrupt the static data area. The default value for
stack size is two kilobytes (2,048 bytes), which is large enough for most functions; however,
but highly recursive functions (such as qsort) or programs that use large automatic arrays
(such as the sample program on page 29 of The C Programming Language, ed. 2) will quickly
exhaust the available stack space. There is no way to increase the size of the stack while a
program is running. To increase the stack, you must relink the program and allocate more
stack by using the -ys option to the cc command. For more information, see the Lexicon
entries for cc and stack.

Another common cause of data corruption is using a pointer without allocating space for
the object to which it points. This is called an uninitialized pointer. For instance, if your
program declares the variable str to be a pointer to a char, you cannot assign data to str
unless you ensure that str points to a place that can hold these data; otherwise, the results
will be unpredictable. You can make sure that a pointer works correctly either by
initializing it, or by allocating space with malloc or calloc.

Another cause of this problem is passing a function the wrong number or type of
parameters. Be sure that all functions have the correct number of arguments, and that all
arguments are of the correct type.

My output is not going to the screen as I expected.
MS-DOS buffers output to the console, and does not print it until it gets a newline
character. You can flush out the buffer whenever you want by using the function call
fflush(stdout), or you can use the Mark Williams functions getcnb and putcnb, which go
directly to the console.

getcnb doesn’t work right. Why? work right. Why?’>=29
Problems will arise when you combine getcnb with printf or any other normal STDIO
function. Let’s C follows the UNIX protocol, and buffers all of its STDIO functions. For
example, when you create a printf string, it waits in a buffer until something, such as a
newline character or a fflush instruction, pushes it out of the buffer and onto your screen.
Thus, if you use a printf call to print a prompt string, then use a getcnb call to get the
user’s response, you will not see the prompt until you type the carriage return in response
to the getcnb call. To solve this problem, either use putcnb to display the prompt, or follow
the printf call with fflush(stdout).

How do I clear the screen?
The easiest way to do this is to use the appropriate escape sequences defined in the file
ansi.sys, provided it is loaded by config.sys. You can also call the MS-DOS function that
clears the screen. See the Lexicon entry for ansi.sys for more information.

Can I open more than the default number of files at a time?
Yes. Simply insert the instruction

FILES=n

into the file config.sys, where n is the number of files you want to be able to open at any
given time. Because of the way MS-DOS is designed, no more than 20 files can be opened
by a program at any one time; this limit includes stdin, stdout, stderr, aux, and the

Let’s C

96 Questions and Answers

printer. Make sure that config.sys is on your boot disk, and then reboot your system.

Can I call any MS-DOS function or interrupt?
The function intcall, which is described in the Lexicon, provides a general interrupt calling
routine. See the Lexicon entry for interrupts for the number of the interrupt you need to
hand to intcall, the number of the function you wish to call, and any other information the
function requires. Also read the header file dos.h, which defines constants for most of the
interrupts and function numbers.

For a summary of how to handle interrupts, see the Lexicon entry for interrupt handling.

How can I position the cursor?
The easiest way is to use the escape sequences listed in the file ansi.sys. See the Lexicon
entry for ansi.sys for more information. MS-DOS interrupt 10 can also be used to move the
cursor. The MicroEMACS editor uses interrupt 10, and its source code (which is included
with Let’s C) demonstrates how to use this interrupt.

Can I link my masm routines with Let’s C output?
Yes, as long as you observe Let’s C’s linkage conventions. For more information, see the
Lexicon entry on calling conventions.

The command fixobj lets you edit object modules. With fixobj, you can edit modules
compiled or assembled by other language tools so that they can be linked with programs
generated by Let’s C. For more information, see the Lexicon entry for fixobj.

Where does Let’s C put things in memory?
See the entry on memory allocation in the Lexicon.

Limitations in i8086

What are the limits on the size of arrays?
Let’s C does not limit the size of an array; however, the architecture of the Intel i8086
microprocessor is such that it forbids the creation of a data structure that is larger than 64
kilobytes.

SMALL-model limitations
Programs are limited to 128 kilobytes of code and data combined. Within the 128 kilobytes,
the following limitations apply:

• No program can have more than 64 kilobytes of code.

• No program can have more than 64 kilobytes of data.

Data includes stack (automatic) data, static data, and dynamically allocated memory.

LARGE-model limitations
Programs are limited to one megabyte of code and data combined. Within the one
megabyte, the following limitations apply:

• No module can have more than 64 kilobytes of code.

• No module or library can have more than 64 kilobytes of static data.

• The stack size cannot exceed 64 kilobytes.

• No individual data structure can exceed 64 kilobytes.

Let’s C

#%2=0 .nr # 0

Error Messages

This chapter lists all of the error messages that can be produced by the compiler, the assembler as,
and make.

The messages are in alphabetical order, and each is marked to indicate which program generated it
(e.g., cc0, ccp). Each message from the compiler indicates whether it is a fatal, error, warning, or
strict condition. The compilation phases are cpp, the preprocessor; cc0, the parser; cc1, the code
generator; cc2, the optimizer; and cc3, the disassembler.

A fatal message usually indicates a condition that caused the compiler to terminate execution. Fatal
errors from the later phases of compilation often cannot be fixed, and may indicate problems in the
compiler.

An error message points to a condition in the source code that Let’s C cannot resolve. This almost
always occurs when the program does something illegal, e.g., has unbalanced braces.

Warning messages point out code that is compilable, but may produce trouble when the program is
executed. A strict message refers to a passage in the code that is unorthodox and may not be
portable.

add of two non-constants (as, error)
The present expression adds one or more elements that will be relocated.

address out of range (as, error)
jmp addresses must be to a place within 127 bytes.

address wraparound (ld, fatal)
A segment of the program has exceeded the size allowed by the microprocessor’s
architecture.

; after target or macroname (make, error)
A semicolon appeared after a target name or a macro name.

ambiguous reference to ‘‘string’’ (cc0, error)
string is defined as a member of more than one struct or union, is referenced via a pointer
to one of those structs or unions, and there is more than one offset that could be assigned.

argument list has incorrect syntax (cc0, error)
The argument list of a function declaration contains something other than a comma-
separated list of formal parameters.

string argument mismatch (cpp, error)
The argument string does not match the type declared in the function’s prototype. Either
the function prototype or the argument should be changed.

array bound must be a constant (cc0, error)
An array’s size can be declared only with a constant; you cannot declare an array’s size by
using a variable. For example, it is correct to say foo[5], but illegal to say

bar = 5;
foo[bar];

array bound must be positive (cc0, error)
An array must be declared to have a positive number of elements. The array flagged here
was declared to have a negative size, e.g., foo[-5].

97

98 Error Messages

array bound too large (cc0, error)
The array is too large to be compiled with 16-bit index arithmetic. You should devise a way
to divide the array into compilable portions.

array row has 0 length (cc0, error)
This message can be triggered by either of two problems. The first problem is declaring an
array to have a length of zero; e.g., foo[0]. The second problem is failing to declare the size
of a dimension other than the first in a multi-dimensional array. C allows you to declare an
indefinite number of array elements of n bytes each, but you cannot declare n array
elements of an indefinite length. For example, it is correct say foo[][5] but illegal to say
foo[5][].

#assert failure (cpp, error)
The condition being tested in a #assert statement has failed.

associative expression too complex (cc1, fatal)
An expression that uses associative binary operators (e.g., ‘+’) has too many operators; for
example, i=i1+i2+i3+ . . . +i30;. You should simplify the expression.

at beginning of macro (cpp, error)
Macro replacement lists may contain tokens that are separated by ##, but ## cannot
appear at the beginning or the end of the list. The tokens on either side of the ## are
pasted together into one token.

at end of macro (cpp, error)
Macro replacement lists may contain tokens that are separated by ##, but ## cannot
appear at the beginning or the end of the list. The tokens on either side of the ## are
pasted together into one token.

auto ‘‘string’’ is not addressable (cc0, error)
The identifier string cannot be addressed on the stack, probably because it is an
extraordinarily large automatic array. Large automatic arrays should usually be declared
global or static, not automatic.

bad argument storage class (cc0, error)
An argument was assigned a storage class that the compiler does not recognize. The only
valid storage class is register.

bad base type for field (cc0, error)
The expression uses a bitwise operator (i.e., ‘<<’, ‘>>’, ‘&’, or ‘|’) with an incorrect type of
variable. A bit field must be declared within a char, unsigned char, int, or unsigned int.
No other base type is allowed.

bad external storage class (cc0, error)
An extern has been declared with an invalid storage class, e.g., register or auto.

bad field width (cc0, error)
A field width was declared either to be negative or to be larger than the object that holds it.
For example, char foo:9 or char foo:-1 will trigger this error.

bad filler field width (cc0, error)
A filler field width was declared either to be negative or to be larger than the object that
holds it. For example, char foo:9 or char foo:-1 will trigger this error.

bad flexible array declaration (cc0, error)
A flexible array is missing an array boundary; e.g., foo[5][]. C permits you to declare an
indefinite number of array elements of n bytes each, but you cannot declare an array to
have n elements of an indefinite number of bytes each.

Let’s C

Error Messages 99

bad line number after # (as, error)
The present expression uses an incorrect line number after a ‘#’, e.g,. a negative number.

Bad macro name (make, error)
A bad macro name was used; for example, a macro name included a control character.

break not in a loop (cc0, error)
A break occurs that is not inside a loop or a switch statement.

call of non function (cc0, error)
What the program attempted to call is not a function. Check to make sure that you have
not accidentally declared a function as a variable; e.g., typing char *foo; when you meant
char *foo();.

cannot add pointers (cc0, error)
The program attempted to add two pointers. ints or longs may be added to or subtracted
from pointers, and two pointers to the same type may be subtracted, but no other
arithmetic operations are legal on pointers.

cannot apply unary ‘&’ to a bit field (cc0, error)
The program attempted to use the address of a bit within a byte, which is illegal. Only
bytes can be addressed, not the bits within them.

cannot apply unary ‘&’ to a register variable (cc0, error)
Because register variables are stored within registers, they do not have addresses, which
means that the unary & operator cannot be used with them.

cannot apply unary ‘&’ to an alien function (cc0, error)
The unary ‘&’ operator cannot be used with any function that has been declared to be of
type alien. alien functions cannot be called by pointers.

cannot cast double to pointer (cc0, error)
The program attempted to cast a double to a pointer. This is illegal.

cannot cast pointer to double (cc0, error)
The program attempted to cast a pointer to a double. This is illegal.

cannot cast structure or union (cc0, error)
The program attempted to cast a struct or a union. This is illegal.

cannot cast to structure or union (cc0, error)
The program attempted to cast a variable to a union or struct. This is illegal.

string: cannot create (as, error)
The assembler cannot create the output file it was requested to create. This often is due to
a problem with the output device; check and make sure that it is not full, and that it is
working correctly.

string: cannot create (cpp, fatal)
The preprocessor cpp cannot create the output file string that it was asked to create. This
often is due to a problem with the output device; check and make sure that it is not full and
that it is working correctly.

cannot declare array of functions (cc0, error)
For example, the declaration extern int (*f)[](); declares f to be an array of pointers to
functions that return ints. Arrays of functions are illegal.

cannot declare flexible automatic array (cc0, error)
The program does not explicitly declare the number of elements in an automatic array.

Let’s C

100 Error Messages

cannot fold this expression (as, error)
The assembler cannot fold an expression, e.g., (ax+bx). This can occur for any of several
reasons.

cannot initialize fields (cc0, error)
The program attempted to initialize bit fields within a structure. This is not supported.

cannot initialize unions (cc0, error)
The program attempted to initialize a union within its declaration. unions cannot be
initialized in this way.

cannot move ‘.’ back (as, error)
The assembler cannot move the location counter backward, only forward.

string: cannot open (cpp, cc0, fatal)
The compiler cannot open the file string of source code that it was asked to read. cpp may
not have been told the correct directory in which this file is to be found; check that the file
is located correctly, and that the -I options, if any, are correct.

cannot open include file string (cpp, cc0, fatal)
The program asked for file string, which was not found in the same directory as the source
file, nor in the default include directory specified by the environmental variable INCDIR,
nor in any of the directories named in -I options given to the cc command.

string: cannot reopen (cc2, fatal)
The optimizer in cc2 cannot reopen a file with which it has worked. Make sure that your
mass storage device is working correctly and that it is not full.

case not in a switch (cc0, error)
The program uses a case label outside of a switch statement. See the Lexicon entry for
case.

character constant overflows long (cc0, error)
The character constant is too large to fit into a long. It should be redefined.

character constant promoted to long (cc0, warning)
A character constant has been promoted to a long.

class not allowed in structure body (cc0, error)
A storage class such as register or auto was specified within a structure.

compound statement required (cc0, error)
A construction that requires a compound statement does not have one, e.g., a function
definition, array initialization, or switch statement.

conditional stack overflow (cpp, fatal)
A series of #if expressions is nested so deeply that it overflowed the allotted stack space.
You should simplify this code.

constant expression required (cc0, error)
The expression used with a #if statement cannot be evaluated to a numeric constant. It
probably uses a variable in a statement rather than a constant.

constant ‘‘number’’ promoted to long (cc0, warning)
The compiler promoted a constant in your program to long; although this is not strictly
illegal, it may create problems when you attempt to port your code to another system,
especially if the constant appears in an argument list.

Let’s C

Error Messages 101

constant used in truth context (cc0, strict)
A conditional expression for an if, while, or for statement has turned out to be always true
or always false. For example, while(1) will trigger this message.

construction not in Kernighan and Ritchie (cc0, strict)
This construction is not found in The C Programming Language; although it can be compiled
by Let’s C, it may not be portable to another compiler.

continue not in a loop (cc0, error)
The program uses a continue statement that is not inside a for for while loop.

data in bssd (as, error)
The program attempted to initialize something in the bssd segment, which can contain only
uninitialized data.

‘.’ declared as label (as, error)
The present expression uses as a label, e.g., ‘‘.:’’. This is illegal.

#define argument mismatch (cpp, warning)
The definition of an argument in a #define statement does not match its subsequent use.
One or the other should be changed.

declarator syntax (cc0, error)
The program used incorrect syntax in a declaration.

default label not in a switch (cc0, error)
The program used a default label outside a switch construct. See the Lexicon entry for
default.

divide by zero (cc0, warning)
The program will divide by zero if this code is executed. Although the program can be
parsed, this statement may create trouble if executed.

duplicated case constant (cc0, error)
A case value can appear only once in a switch statement. See the Lexicon entries for case
and switch.

#elif used without #if or #ifdef (cpp, error)
An #elif control line must be preceded by an #if, #ifdef, or #ifndef control line.

#elif used after #else (cpp, error)
An #elif control line cannot be preceded by an #else control line.

#else used without #if or #ifdef (cpp, error)
An #else control line must be preceded by an #if, #ifdef, or #ifndef control line.

empty switch (cc0, warning)
A switch statement has no case labels and no default labels. See the Lexicon entry for
switch.

#endif used without #if or #ifdef (cpp, error)
An #endif control line must be preceded by an #if, #ifdef, or #ifndef control line.

EOF in comment (cpp, fatal)
Your source file appears to end in mid-comment. The file of source code may have been
truncated, or you failed to close a comment; make sure that each open-comment symbol ‘/*’
is balanced with a close-comment symbol ‘*/’. Also, be sure that you did not accidentally
embed a <ctrl-Z> in the line.

Let’s C

102 Error Messages

EOF in macro string invocation (cpp, error)
Your source file appears to end in a macro call. The source file may have been truncated, or
you may have accidentally embedded a <ctrl-Z> in the line.

EOF in midline (cpp, warning)
Check to see that your source file has not been truncated accidentally. Also, make sure
that you did not accidentally embed a <ctrl-Z> in the line.

EOF in string (cpp ,error)
Your file appears to end in the middle of a quoted string literal. Check to see that your
source file has not been truncated accidentally. Also, check that you did not accidentally
embed a <ctrl-Z> in the line.

#error: string (cpp, fatal)
An #error control line has been expanded, printing the remaining tokens on the line and
terminating the program.

error creating address (as, error)
The object generator could not build an address in MS-DOS object format. Please contact
Mark Williams Company.

error in #define syntax (cpp, error)
The syntax of a #define statement is incorrect. See the Lexicon entry for #define for more
information.

error in enumeration list syntax (cc0, error)
The syntax of an enumeration declaration contains an error.

error in expression syntax (cc0, error)
The parser expected to see a valid expression, but did not find one.

error in #include syntax (cpp, error)
An #include directive must be followed by a string enclosed by either quotation marks (" ")
or angle brackets (<>). Anything else is illegal.

expected comma (as, error)
The assembler expected to find a comma in the present expression, but did not.

expected constant (as, error)
The assembler expected to find a constant in the present expression, but did not.

exponent overflow in floating point constant (cc0, warning)
The exponent in a floating point constant has overflowed. The compiler has set the
constant to the maximum allowable value, with the expected sign.

exponent underflow in floating point constant (cc0, warning)
The exponent in a floating point constant has underflowed. The compiler has set the
constant to zero, with the expected sign.

expression too complex (cc1, fatal)
The code generator cannot generate code for an expression. You should simplify your code.

external syntax (cc0, error)
This could be one of several errors, most often a missing ‘{’.

field too wide (cc0, error)
A field must fit within an int, so the declared field width must not be greater than 16.

file ends within a comment (cc0, error)
The source file ended in the middle of a comment. If the program uses nested comments, it
may have mismatched numbers of begin-comment and end-comment markers. If not, the

Let’s C

Error Messages 103

program began a comment and did not end it, perhaps inadvertently when dividing by
*something, e.g., a=b/*cd;.

function cannot return a function (cc0, error)
The function is declared to return another function, which is illegal. A function, however,
can return a pointer to a function, e.g., int (*signal(n, a))()

function cannot return an array (cc0, error)
A function is declared to return an array, which is illegal. A function, however, can return a
pointer to a structure or array.

functions cannot be parameters (cc0, error)
The program uses a function as a parameter, e.g., int q(); x(q);. This is illegal.

identifier string has too many arguments (cpp, error)
Too many actual parameters have been provided.

identifier ‘‘string’’ is being redeclared (cc0, error)
The program declares variable string to be of two different types. This often is due to an
implicit declaration, which occurs when a function is used before it is explicitly declared.
Check for name conflicts.

identifier ‘‘string’’ is not a label (cc0, error)
The program attempts to goto a nonexistent label.

identifier ‘‘string’’ is not a parameter (cc0, error)
The variable ‘‘string’’ did not appear in the parameter list.

identifier ‘‘string’’ is not defined (cc0, error)
The program uses identifier string but does not define it.

identifier ‘‘string’’ not bound to register (cc0, strict)
Let’s C allows two variables to be bound to registers. If more than two variables are
declared to be of type register, the first two will be bound to registers and all others defined
as ordinary autos. If a variable is declared register but does not fit in a 16-bit register, it is
defined as an auto.

identifier ‘‘string’’ not usable (cc0, error)
string is probably a member of a structure or union which appears by itself in an
expression.

illegal character constant (cc0, error)
A legal character constant consists of a a backslash ‘\’ followed by a, b, f, n, r, t, v, x, or up
to three octal digits.

illegal character (number decimal) (cc0, error)
A control character was embedded within the source code. number is the decimal value of
the character.

illegal # construct (cc0, error)
The parser recognizes control lines of the form #line_number (decimal) or #file_name.
Anything else is illegal.

illegal control line (cpp, error)
A ‘#’ is followed by a word that the compiler does not recognize.

illegal cpp character (n decimal) (cpp, error)
The character noted cannot be processed by cpp. It may be a control character or a non-
ASCII character.

Let’s C

104 Error Messages

illegal integer constant suffix (cc0, error)
Integer constants may be suffixed with u, U, l, or L to indicate unsigned, long, or unsigned
long.

illegal label ‘‘string’’ (cc0, error)
The program uses the keyword string as a goto label. Remember that each label must end
with a colon.

illegal operation on ‘‘void’’ type (cc0, error)
The program tried to manipulate a value returned by a function that had been declared to
be of type void.

illegal structure assignment (cc0, error)
The structures have different sizes.

illegal subtraction of pointers (cc0, error)
A pointer can be subtracted from another pointer only if both point to objects of the same
size.

illegal use of a pointer (cc0, error)
A pointer was used illegally, e.g., multiplied, divided, or &-ed. You may get the result you
want if you cast the pointer to a long.

illegal use of a structure or union (cc0, error)
You may take the address of a struct, access one of its members, assign it to another
structure, pass it as an argument, and return. All else is illegal.

illegal use of defined (cpp, error)
The construction defined(token) or defined token is legal only in #if, #elif, or #assert
expressions.

illegal use of floating point (cc0, error)
A float was used illegally, e.g., in a bit-field structure.

illegal use of ‘‘void’’ type (cc0, error)
The program used void improperly. Strictly, there are only void functions; Let’s C also
supports the cast to void of a function call.

illegal use of void type in cast (cc0, error)
The program uses a pointer where it should be using a variable.

improper operand pair (as, error)
The expression uses one or more improper operands to an instruction. For example, mov
a, b will trigger this message; the instruction should be rendered mov ax, b or mov a, ax.

string in #if (cpp, error)
A syntax error occurred in a #if declaration. string describes the error in detail.

= in or after dependency (make, error)
An equal sign ‘=’ appeared within or followed the definition of a macro name or target file;
for example, OBJ=atod.obj=factor.obj will produce this error.

inappropriate signed (cc0, error)
The signed modifier may only be applied to char, short, int, or long types.

include stack overflow (cpp, fatal)
A set of #include statements is nested so deeply that the allotted stack space cannot hold
them. Examines the files for a loop. You should try to fold some of the header files into
one, instead of having them call each other.

Let’s C

Error Messages 105

Incomplete line at end of file (make, error)
An incomplete line appeared at the end of the makefile.

(in|out)(b|) must be DX or constant (as, error)
The present expression must use either DX or a constant.

(in|out)(b|) must use AX or AL (as, error)
The present expression must use use AX or AL.

inappropriate ‘‘alien’’ modifier (cc0, error)
The alien type is used to interface C with non-C functions; your program tried to use alien
as an internal function rather than as a reference to an external function.

inappropriate ‘‘long’’ (cc0, error)
Your program used the type long inappropriately, e.g., to describe a char.

inappropriate ‘‘short’’ (cc0, error)
Your program used the type short inappropriately, e.g., to describe a char.

inappropriate ‘‘unsigned’’ (cc0, error)
Your program used the type unsigned inappropriately, e.g., to describe a double.

index by non-register (as, error)
The present expression attempted to index either by using a variable, or by using a non-
existent register.

indirection through non pointer (cc0, error)
The program attempted to use a scalar (e.g., a long or fBint) as a pointer; you must first
cast it to a pointer.

initializer too complex (cc0, error)
An initializer was too complex to be calculated at compile time. You should simplify the
initializer to correct this problem.

integer pointer comparison (cc0, strict)
The program compares an integer or long with a pointer without casting one to the type of
the other. Although this is legal, the comparison may not work on machines with non-
integer pointers, e.g., Z8001 or LARGE-model i8086, or on machines with pointers larger
than ints, e.g., the 68000.

integer pointer pun (cc0, strict)
The program assigns a pointer to an integer, or vice versa, without casting the right-hand
side of the assignment to the type of the left-hand side. For example,

char *foo;
long bar;
foo = bar;

Although this is permitted, it is often an error if the integer has less precision than the
pointer does, as in LARGE-model programs. Make sure that you properly declare all
functions that returns pointers.

internal compiler error (cc0, cc1, cc2, cc3, fatal)
The program produced a state that should not happen during compilation. Forward a copy
of the program, preferably on a machine-readable medium, to Mark Williams Company,
together with the version number of the compiler, the command line used to compile the
program, and the system configuration. For immediate advice during business hours,
telephone Mark Williams Company.

Let’s C

106 Error Messages

internal error, c=number in expr. (as, error)
The assembler has detected a situation that ‘‘should not occur’’. Please send a copy of the
source code that triggered this error to Mark Williams Company. For immediate help
during business hours, contact Mark Williams Company.

invalid floating-point register (as, error)
The present instruction addresses a floating-point register that does not exist.

invalid identifier (as, error)
The present expression uses an invalid identifier, e.g., 39xy.

invalid index (as, error)
The present expression attempted to index in a context where it is illegal.

invalid index register (as, error)
The present expression attempted to index using an incorrect register, e.g., cx, dx, sp, ip,
*s, *l, *h.

invalid local symbol (as, error)
The present expression uses an invalid local symbol, e.g., 21f.

invalid operand (as, error)
The program uses an invalid operand, e.g., mov ax, 39f.

invalid operand pair (as, error)
The expression uses one or two incorrect operands. For example, mov a, b will trigger this
message; this expression should be rendered mov ax, b or mov a, ax.

invalid operand type (as, error)
The present instruction uses an invalid operand type, e.g., or cs, cs’.

invalid symbol (as, error)
The present instruction uses an invalid symbol, i.e., either an undefined symbol or a symbol
that is illegal, such as an opcode or an assembler instruction.

‘‘string’’ is a enum tag (cc0, error)

‘‘string’’ is a struct tag (cc0, error)

‘‘string’’ is a union tag (cc0, error)
string has been previously declared as a tag name for a struct, union, or enum, and is now
being declared as another tag. Perhaps the structure declarations have been included
twice.

‘‘string’’ is not a tag (cc0, error)
A struct or union with tag string is referenced before any such struct or union is declared.
Check your declarations against the reference.

‘‘string’’ is not a typedef name (cc0, error)
string was found in a declaration in the position in which the base type of the declaration
should have appeared. string is not one of the predefined types or a typedef name. See the
Lexicon entry on typedef for more information.

‘‘string’’ is not an ‘‘enum’’ tag (cc0, error)
An enum with tag string is referenced before any such enum has been declared. See the
Lexicon entry for enum for more information.

class ‘‘string’’ [number] is not used (cc0, strict)
Your program declares variable string or number but does not use it.

Let’s C

Error Messages 107

jmp must be direct address (as, error)
The jmp instruction must be used with a direct address; the present expression violates
this rule.

label ‘‘string’’ undefined (cc0, error)
The program does not declare the label string, but it is referenced in a goto statement.

left side of ‘‘string’’ not usable (cc0, error)
The left side of the expression string should be a pointer, but is not.

lvalue required (cc0, error)
The left-hand value of a declaration is missing or incorrect. See the Lexicon entries for
lvalue and rvalue.

macro body too long (cpp, fatal)
The size of the macro in question exceeds 200 bytes, which is the limit designed into the
preprocessor. Try to shorten or split the macro.

Macro definition too long (make, error)
Macro definitions are limited to 128 characters.

macro expansion buffer overflow in string (cpp, fatal)
A macro call has expanded into more characters than cpp can handle. Try to shorten the
macro, or break it up.

macro string redefined (cpp, error)
The program redefined the macro string.

macro string requires arguments (cpp, error)
The macro calls for arguments that the program has not supplied.

macros nested number deep, loop likely (cpp, error)
Macros call each other number times; you may have inadvertently created an infinite loop.
Try to simplify the program.

member ‘‘string’’ is not addressable (cc0, error)
The array string has exceeded the machine’s addressing capability. Structure members are
addressed with 16-bit signed offsets on most machines.

member ‘‘string’’ is not defined (cc0, error)
The program references a structure member that has not been declared.

mismatched conditional (cc0, error)
In a ‘?:’ expression, the colon and all three expressions must be present.

misplaced ‘‘:’’ operator (cc1, error)
The program used a colon without a preceding question mark. It may be a misplaced label.

missing ‘‘(’’ (cc0, error)
The if, while, for, and switch keywords must be followed by parenthesized expressions.

missing ‘)’ (as, error)
The assembler expected to find a right parenthesis in the present expression, but did not.

missing ‘‘)’’ (cc0, error)
A right parenthesis ‘)’ is missing anywhere after a left parenthesis ‘(’.

missing ‘‘=’’ (cc0, warning)
An equal sign is missing from the initialization of a variable declaration. Note that this is a
warning, not an error: this allows Let’s C to compile programs with ‘‘old style’’ initializers,
such as int i 1. Use of this feature is strongly discouraged, and it will disappear when the

Let’s C

108 Error Messages

draft ANSI standard for the C language is adopted in full.

missing ‘‘,’’ (cc0, error)
A comma is missing from an enumeration member list.

missing ‘‘:’’ (cc0, error)
A colon ‘:’ is missing after a case label, after a default label, or after the ‘?’ in a ‘?’-‘:’
construction.

missing ‘‘;’’ (cc0, error)
A semicolon ‘;’ does not appear after an external data definition or declaration, after a struct
or union member declaration, after an automatic data declaration or definition, after a
statement, or in a for(;;) statement.

missing ‘]’ (as, error)
The assembler expected to find a right bracket in the present expression, but did not.

missing ‘‘]’’ (cc0, error)
A right bracket ‘]’ is missing from an array declaration, or from an array reference; for
example, foo[5.

missing ‘‘{’’ (cc0, error)
A left brace ‘{’ is missing after a struct tag, union tag, or enum tag in a definition.

missing ‘‘}’’ (cc0, error)
A right brace ‘}’ is missing from a struct, union, or enum definition, from an initialization,
or from a compound statement.

missing ‘‘while’’ (cc0, error)
A while command does not appear after a do in a do-while() statement.

missing #endif (cpp, error)
An #if, #ifdef, or #ifndef statement was not closed with an #endif statement.

missing label name in goto (cc0, error)
A goto statement does not have a label.

missing member (cc0, error)
A ‘.’ or ‘->’ is not followed by a member name.

missing output file (cpp, fatal)
The preprocessor cpp found a -o option that was not followed by a file name for the output
file.

missing right brace (cc0, error)
A right brace is missing at end of file. The missing brace probably precedes lines with
errors reported earlier.

missing ‘‘string’’ (cc0, error)
The parser cc0 expects to see token string, but sees something else.

missing semicolon (cc0, error)
External declarations should continue with ‘,’ or end with ‘;’.

missing type in structure body (cc0, error)
A structure member declaration has no type.

Multiple actions for name (make, error)
A target is defined with more than one single-colon target line.

Let’s C

Error Messages 109

multiple classes (cc0, error)
An element has been asigned to more than one storage class, e.g., extern register.

Multiple detailed actions for name (make, error)
A target is defined with more than one single-colon target line.

multiple #else’s (cpp, error)
An #if, #ifdef, or #ifndef expression can be followed by no more than one #else expression.

multiple types (cc0, error)
An element has been assigned more than one data type, e.g., int float.

multiply defined symbol (as, error)
The current line has re-defined or multiply defined a symbol.

must be CL or 1 (as, error)
The present expression must use CL or one, but does not.

must load address into register (as, error)
For example, lea y, x will trigger this message; this expression should be rendered lea ax x.

must load direct address (as, error)
For example, lea ax, (bx, si) will not work on an i8086.

Must use ‘::’ for name (make, error)
A double-colon target line was followed by a single-colon target line.

nested comment (cpp, warning)
The comment introducer sequence ‘/*’ has been detected within a comment. Comments do
not nest.

new line in string literal (cpp, error)
A newline character appears in the middle of a string. If you wish to embed a newline
within a string, use the character constant ‘\n’. If you wish to continue the string on a new
line, insert a backslash ‘\’ before the new line.

Newline after target or macroname (make, error)
A newline character appears after a target name or a macro name.

newline in macro argument (cpp, warning)
A macro argument contains a newline character. This may create trouble when the
program is run.

no ‘pop CS’ instruction (as, error)
The assembler expected to find a ‘pop CS’ instruction in the present expression, but did not.

no string in .ascii statement (as, error)
The present expression uses a .ascii instruction, but does not give it a string.

non scalar field (cc0, error)
A field must be declared within a char, unsigned char, int, or unsigned int. A field with an
array base type is not allowed.

non-constant in multiply (as, error)
The present expression attempts to multiply one or more elements that will be relocated.

non-constant in segment construction (as, error)
The present expression attempts to perform a logical OR on an element that will be
relocated.

Let’s C

110 Error Messages

nonterminated string or character constant (cc0, error)
A line that contains single or double quotation marks left off the closing quotation mark. A
newline in a string constant may be escaped with ‘\’.

not a direct address (as, error)
For example, [(bx)+5] will trigger this message.

not a direct address in this segment (as, error)
For example, the expression [x-y] is acceptable only if x and y are in the same segment.

‘::’ not allowed for name (make, error)
A double-colon target line was used illegally; for example, after single-colon target line.

number has too many digits (cc0, error)
A number is too big to fit into its type.

only one default label allowed (cc0, error)
The program uses more than one default label in a switch expression. See the Lexicon
entries for default and switch for more information.

::: or : in or after dependency list (make, error)
A triple colon is meaningless to make, and therefore illegal wherever it appears. A single
colon may be used only in a target line (which is also called the dependency list), and
nowhere else.

Out of core (adddep) (make, error)
This results from a system problem. Try reducing the size of your makefile.

Out of space (make, error)
System problem. Try reducing the size of your makefile.

Out of space (lookup) (make, error)
System problem. Try reducing the size of your makefile.

out of space (cpp, cc0, cc1, cc2, cc3, fatal)
The compiler ran out of space while attempting to compile the program. To remove this
error, examine your source and break up any functions that are extraordinarily large.

out of tree space (cc0, fatal)
The compiler allows a program to use up to 350 tree nodes; the program exceeded that
allowance.

output write error (cc2, error)
The optimizer cc2 cannot create its output file. Check to see if the output device is working
correctly, and has enough space to hold the file being created.

parameter string is not addressable (cc0, error)
The parameter has a stack frame offset greater than 32,767. Perhaps you should pass a
pointer instead of a structure.

parameter must follow # (cpp, error)
Macro replacement lists may contain # followed by a macro parameter name. The macro
argument is converted to a string literal.

phase error (as, error)
The value of a label changed during the assembly. An expression has a size that differs
between the first and second passes.

potentially nonportable structure access (cc0, strict)
A program that uses this construction may not be portable to another compiler.

Let’s C

Error Messages 111

preprocessor assertion failure (cpp, warning)
A #assert directive that was tested by the preprocessor cpp was found to be false.

string redefined (cpp, error)
cpp macros should not be redefined. You should check to see that you are not #includeing
two different versions of a file somehow, or attempting to use the same macro name for two
different purposes.

return type/function type mismatch (cc0, error)
What the function was declared to return and what it actually returns do not match, and
cannot be made to match.

return(e) illegal in void function (cc0, error)
A function that was declared to be type void has nevertheless attempted to return a value.
Either the declaration or the function should be altered.

risky type in truth context (cc0, strict)
The program uses a variable declared to be a pointer, long, unsigned long, float, or double
as the condition expression in an if, while, do, or ‘?’-‘:’. This could be misinterpreted by
some C compilers.

segment of improper symbol (as, error)
For example, es:ax will trigger this message.

segment override by non-segment register (as, error)
The present expression uses a non-segment register to set
a segment prefix.

size of string overflows size_t (cc0, strict)
A string was so large that it overran an internal compiler limit. You should try to break the
string in question into several small strings.

size of struct ‘‘string’’ is not known (cc0, error)
small strings.

size of union ‘‘string’’ is not known (cc0, error)
A pointer to a struct or union is being incremented, decremented, or subjected to array
arithmetic, but the struct or union has not been defined.

size of string too large (cc0, error)
The program declared an array or struct that is too big to be addressable, e.g., long
a[20000]; on a machine that has a 64-kilobyte limit on data size and four-byte longs.

sizeof truncated to unsigned (cc0, warning)
An object’s sizeof value has lost precision when truncated to a size_t integer.

sizeof(string) set to number (cc0, warning)
The program attempts to set the value of string by applying sizeof to a function or an
extern; the compiler in this instance has set string to number.

storage class not allowed in cast (cc0, error)
The program casts an item as a register, static, or other storage class.

string initializer not terminated by NUL (cc0, warning)
An array of chars that was initialized by a string is too small in dimension to hold the
terminating NUL character. For example, char foo[3] = "ABC".

structure ‘‘string’’ does not contain member ‘‘m’’ (cc0, error)
The program attempted to address the variable string.m, which is not defined as part of the
structure string.

Let’s C

112 Error Messages

structure or union used in truth context (cc0, error)
The program uses a structure in an if, while, or for, or ‘?:’ statement.

subtracting non-constant (as, error)
The present expression subtracts one or more elements that will be relocated.

switch of non integer (cc0, error)
The expression in a switch statement is not type int or char. You should cast the switch
expression to an int if the loss of precision is not critical.

switch overflow (cc1, fatal)
The program has more than ten nested switches.

symbol ‘‘string’’ truncated to 39 characters (cc2, warning)
A symbol name can have no more than 39 characters.

Syntax error (make, error)
The syntax of a line is faulty.

too many adjectives (cc0, error)
A variable’s type was described with too many of long, short, or unsigned.

too many arguments (cc0, fatal)
No function may have more than 30 arguments.

too many arguments in a macro (cpp, fatal)
The program uses more than the allowed ten arguments with a macro.

too many cases (cc1, fatal)
The program cannot allocate space to build a switch statement.

too many directories in include list (cpp, fatal)
The program uses more than the allowed ten #include directories.

too many initializers (cc0, error)
The program has more initializers than the space allocated can hold.

Too many macro definitions (make, error)
The number of macros you have created exceeds the capacity of your computer to process
them.

too many structure initializers (cc0, error)
The program contains a structure initialization that has more values than members.

trailing ‘‘,’’ in initialization list (cc0, warning)
An initialization statement ends with a comma, which is legal.

type clash (cc0, error)
The parser expected to find matching types but did not. For example, the types of e1 and
e2 in (x) ? e1 : e2 must either both be pointers or neither be pointers.

type of function ‘‘string’’ adjusted to string (cc0, warning)
This warning is given when the type of a numeric constant is widened to unsigned, long, or
unsigned long to preserve the constant’s value. The type of the constant may be explicitly
specified with the u or L constant suffixes.

type of parameter ‘‘string’’ adjusted to string (cc0, warning)
The program uses a parameter that the C language says must be adjusted to a wider type,
e.g., char to int or float to double.

Let’s C

Error Messages 113

type required in cast (cc0, error)
The type is missing from a cast declaration.

undefined local symbol string (as, error)
The program uses the symbol string, but never defines it.

unexpected end of enumeration list (cc0, error)
An end-of-file flag or a right brace occurred in the middle of the list of enumerators.

unexpected end of line (as, error)
The present expression ends abruptly, and may have been truncated.

unexpected EOF (cc0, cc1, cc2, cc3, fatal)
EOF occurred in the middle of a statement. The temporary file may have been corrupted or
truncated accidentally. Check your disk drive to see that it is working correctly. Also,
make sure that you did not accidentally embed a <ctrl-Z> in the line.

union ‘‘string’’ does not contain member m (cc0, error)
The program attempted to address the variable string m, which is not defined as part of the
structure string.

unknown operator (as, error)
The program used an operator that as does not recognize.

string: unknown option (cpp, fatal)
The preprocessor cpp does not recognize the option string. Try re-typing the cc command
line.

= without macro name or in token list (make, error)
An equal sign ‘=’ can be used only to define a macro, using the following syntax:
‘‘MACRO=definition’’. An incomplete macro definition, or the appearance of an equal sign
outside the context of a macro definition, will trigger this error message.

: without preceding target (make, error)
A colon appeared without a target file name, e.g., :string.

write error on output object file (cc2, fatal)
cc2 could not write the relocatable object module. Most likely, your mass storage device
has run out of room. Check to see that your disk drive or hard disk has enough room to
hold the object module, and that it is working correctly.

zero modulus (cc0, warning)
The program will perform a modulo operation by zero if the code just parsed is executed.
Although the program can be parsed, this statement may create trouble if executed.

Let’s C

114 Error Messages

Let’s C

#%2=0 .nr # 0

The Lexicon

The rest of this manual consists of the Lexicon. The Lexicon consists of several hundred articles,
each of which describes a function or command, defines a term, or otherwise gives you useful
information. The articles are organized in alphabetical order.

Internally, the Lexicon has a tree structure. The ‘‘root’’ entry is the one for Lexicon. It, in turn,
refers to a series of Overview entries. Each Overview entry introduces a group of entries; for
example, the Overview entry for string introduces all of the string functions and macros, lists them,
and gives a lengthy example of how to use them.

Each entry cross-references other entries. These cross-references point up the documentation tree,
to an overview article and, ultimately, to the entry for Lexicon itself; down the tree to subordinate
entries; and across to entries on related subjects. For example, the entry for getchar cross-
references STDIO, which is its Overview article, plus putchar and getc, which are related entries of
interest to the user. The Lexicon is designed so that you can trace from any one entry to any other,
simply by following the chain of cross-references up and down the documentation tree. Other
entries refer to The Art of Computer Programming and the first edition of The C Programming
Language.

For more information on how to use the Lexicon and how it is organized, see the entry in the
Lexicon on Lexicon.

115

116 Table of Contents

Let’s C

example — Example
Give an example of Mark Williams Lexicon format
#include <example.h>
char *example(int foo, long bar);

This is an example of the Mark Williams Lexicon format of software documentation. At this point,
each entry has a brief narration that discusses the topic in detail.

The lines in boldface describe how to use the function being described. The first line, #include
<example.h>, indicates that this function requires the imaginary header file example.h. The
second line gives the syntax of the function. char *example means that the imaginary function
example returns a pointer to a char. foo and bar are example’s arguments: foo must be declared to
be an int, and bar must be declared to be a long.

Example
The following program gives an example of an example.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

printf("Many entries include examples\n");
return EXIT_SUCCESS;

}

Cross-references
Standard, §a reference to the ANSI Standard
The C Programming Language, ed. 2, page number

See Also
Lexicon

Notes
If a Lexicon entry uses a technical term that you do not understand, look it up in the Lexicon. In
this way, you will gain a secure understanding of how to use Let’s C.

LEXICON

example 117

! to ~

! — Operator
Logical negation operator
!operand

The operator ! is the logical negation operator. Its operand must be an expression with scalar type.
! then inverts the logical result of its operand. This result has type int.

If operand is nonzero, !operand yields zero; if operand is zero, then !operand yields one.

The expression !operand is equivalent to (0==operand).

Cross-references
Standard, §3.3.3.3
The C Programming Language, ed. 2, p. 204

See Also
!=, ~, expressions

!= — Operator
Inequality operator
operand1 != operand2

The operator != compares operand1 with operand2. The result of this operation is one if the
operands are not equal, and zero if they are.

The operands must be one of the following:

• Arithmetic types.

• Pointers to compatible types (ignoring qualifiers on these types).

• A pointer to an object or incomplete type, and a pointer to void.

• A pointer and NULL.

If both operands have arithmetic type, they undergo usual arithmetic conversion before being
compared. If one operand is a pointer to an object and the other is a pointer to void, the pointer to
an object is converted to a pointer to void for purposes of the comparison.

Cross-references
Standard, §3.3.9
The C Programming Language, ed. 2, pp. 41, 207

See Also
!, ==, expressions

’’ — Punctuator
String literal character

The quotation mark ‘"’ marks the beginning and end of a string literal. To embed a quotation mark
within a string literal, use the escape sequence \".

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 194

LEXICON

118 ! — ’’

See Also
string literal

—
String-ize operator

The operator # is read and translated by the preprocessor. It must be followed by one of the formal
parameters of a function-like macro. The token sequence that would have replaced the formal
parameter in the absence of the # is instead converted to a string literal, and the string literal
replaces the both the # and the formal parameter. This process is called string-izing.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show((long)(abs(-5)), "abs(-5)");

The preprocessor replaced #x with a string literal that names the sequence of token that replaces x.

The following rules apply to interpreting the # operator:

1. If a sequence of white-space characters occurs within the preprocessing tokens that replace the
argument, it is replaced with one space character.

2. All white-space characters that occur before the first preprocessing token and after the last
preprocessing token is deleted.

3. The original spelling of the token that is stringized is retained in the string produced. This
means that as the string is formed, the translator appropriately escapes any backslashes or
quotation marks in the tokens.

Example
The following uses the operator # to display the result of several mathematics routines.

#include <errno.h>
#include <math.h>
#include <stddef.h>
#include <stdio.h>

void show(double value, char *name)
{

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = 0;
}

#define display(x) show((double)(x), #x)

main(void)
{

extern char *gets();
double x;
char string[64];

LEXICON

119

for(;;) {
printf("Enter a number: ");
fflush(stdout);
if(gets(string) == NULL)

break;

x = atof(string);
display(x);
display(cos(x));
display(sin(x));
display(tan(x));
display(acos(cos(x)));

}
}

Cross-references
Standard, §3.8.3.2
The C Programming Language, ed. 2, pp. 90, 230

See Also
##, #define, preprocessing

— Operator
Token-pasting operator

The operator ## is is used by the preprocessor. It can be used in both object-like and function-like
macros. When used immediately before or immediately after an element in the macro’s replacement
list, it joins the corresponding preprocessor token with its neighbor. This is sometimes called ‘‘token
pasting’’.

As an example of token pasting, consider the macro:

#define printvar(number) printf("%s\n", variable ## number)

When the preprocessor reads the following line

printvar(5);

it substitutes the following code for it:

printf("%s\n", variable5);

The preprocessor throws away all white space both before and after the ## operator.

The ## operator must not be used as the first or last entry in a replacement list.

All instances of the ## operator are resolved before further macro replacement is performed.

Cross-references
Standard, §3.8.3.3
The C Programming Language, ed. 2, pp. 90, 230

See Also
#, #define, preprocessing

Notes
Some pre-ANSI translators supported token pasting by replacing a comment in a macro replacement
list with no space. ANSI translators always replace a comment with one space, no matter where
that comment appears.

LEXICON

120 ##

The order of evaluation of multiple ## operators is unspecified.

#define — Preprocessing directive
Define an identifier as a macro
#define identifier replacement-list
#define identifier (parameter-list

opt
) replacement-list

The preprocessing directive #define tells the preprocessor to regard identifier as a macro.

#define can define two kinds of macros: object-like, and function-like.

Object-like Macros
An object-like macro has the syntax

#define identifier replacement-list

This type of macro is also called a manifest constant.

The preprocessor searches for identifier throughout the text of the translation unit, excluding
comments, string literals, and character constants, and replaces it with the elements of replacement-
list, which is then rescanned for further macro substitutions.

For example, consider the directive:

#define BUFFERSIZE 75

When the preprocessor reads the line

malloc(BUFFERSIZE);

it replaces it with:

malloc(75);

Function-like Macros
A function-like macro is more complex. The preprocessor looks for identifier(argument-list)
throughout the text of the translation unit, excluding comments, string literals, and character
constants. The number of comma-separated arguments in argument-list must match the number of
comma-separated parameters in the parameter-list of the macro’s definition. The list is optional in
the sense that some function-like macros do not have any parameters.

In the following description, argument means the sequence of tokens in argument-list that occupies
the same relative position as the parameter under discussion occupies in parameter-list. The
preprocessor replaces identifier(argument-list) with the replacement-list specified in the definition
after it performs the following substitutions: If a parameter is followed or preceded by the operator
##, then the parameter is replaced by the argument. If a parameter is preceded by #, then the #
and the parameter are replaced by a string literal that contains the argument. All other instances of
parameters are replaced by the argument after the argument has first been exhaustively scanned for
further preprocessor macro expansions. All instances of ## are converted to token-paste operations.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show((long)(abs(-5)), "abs(-5)");

LEXICON

#define 121

When an argument to a function-like macro contains no preprocessing tokens, or when an
argument to a function-like macro contains a preprocessing token that is identical to a
preprocessing directive, the behavior is undefined.

Macro Rescanning
As noted above, the preprocessor searches for macro identifiers throughout the text of the
translation unit, excluding comments, string literals, and character constants. The text of replaced
macros is also scanned for macro replacements, but it is not part of the text of the translation unit
(i.e., source file), so it does not follow the same rules.

After it replaces the identifier of an object-like macro or the identifier(argument-list) of a function-like
macro with the appropriate replacement-list, the preprocessor continues to scan for further macro
invocations, starting with the replacement-list.

While the preprocessor scans the replacement-list, it suppresses the definition of the macro that
produced the list. If the preprocessor recognizes a second macro invocation and replaces it before it
processes the tokens that replace the first invocation, then it suppresses the definitions of both the
first and the second macros while it processes the replacement-list of the second macro.

The preprocessor suppresses a definition as long as any of the tokens that remain to be processed
are derived directly from the original macro replacement or from further macro replacements that
use parts of the original macro replacement. Thus, when the object-like macro definition

#define RECURSE RE ## CURSE

is invoked by the token RECURSE, it is replaced by the token RECURSE formed by pasting RE and
CURSE together, but the scanning of the replacement list would not invoke the macro RECURSE a
second time. Likewise, the function-like macro definition

#define RECURSE(a, b) a ## b(a, b)

when invoked with the sequence RECURSE(RE, CURSE) would be replaced by the token sequence
RECURSE(RE, CURSE), but the scanning of the replaced token sequence would not invoke the
macro RECURSE() again.

Be warned that you should not test a PC-based compiler for compliance with these macro
definitions unless you are prepared to turn off your machine. If the compiler fails to detect the
recursion, it may become locked in an infinite loop, and there may be no other way to terminate the
substitution.

Example
For an example of using a function-like macro in a program, see #.

Cross-references
Standard, §3.8.3
The C Programming Language, ed. 2, pp. 229ff

See Also
#, ##, #undef, preprocessing

Notes
A macro expansion always occupies exactly one line, no matter how many lines are spanned by the
definition or the actual parameters.

A macro definition can extend over more than one line, provided that a backslash ‘\’ appears before
the newline character that breaks the lines. The size of a #define directive is therefore limited by
the maximum size of a logical source line, which can be up to at least 509 characters long.

LEXICON

122 #define

A macro may be redefined only if the new definition matches the old definition in all respects except
the spelling of white space.

#elif — Preprocessing directive
Include code conditionally
#elif constant-expression <newline> group

opt

The preprocessing directive #elif conditionally includes code within a program. It can be used after
any of the instructions #if, #ifdef, or #ifndef, and before #endif that ends the chain of conditional-
inclusion directives.

If the conditional expression of the preceding #if, #ifdef, or #ifndef directive is false and the
constant-expression that follows #elif is non-zero, then group is included within the program up to
the next #elif, #else, or #endif directive. An #if, #ifdef, or #ifndef directive may be followed by any
number of #elif directives.

The constant-expression must be an integral expression, and it cannot include a sizeof operator, a
cast, or an enumeration constant. All macro substitutions are performed upon the constant-
expression before it is evaluated. All integer constants are treated as long objects, and are then
evaluated. If constant-expression includes character constants, all escape sequences are converted
into characters before evaluation. The implementation defines whether the result of evaluating a
character constant in constant-expression matches the result of evaluating the same character
constant in a C expression. For example, it is up to the implementation whether

#elif ’z’ - ’a’ == 25

yields the same value as:

else if (’z’ - ’a’ == 25)

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#else, #endif, #if, #ifdef, #ifndef, preprocessing

#else — Preprocessing directive
Include code conditionally
#else newline group

opt

The preprocessing directive #else conditionally includes code within a program. It is preceded by
one of the directives #if, #ifdef, or #ifndef, and may also be preceded by any number of #elif
directives. If all preceding directives evaluate to false, then the code introduced by #else is included
within the program up to the #endif directive that concludes the chain of conditional-inclusion
directives.

A #if, #ifdef, or #ifndef directive can be followed by only one #else directive.

Example
For an example of using this directive in a program, see assert.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

LEXICON

#elif — #else 123

See Also
#elif, #endif, #if, #ifdef, #ifndef, preprocessing

#endif — Preprocessing directive
End conditional inclusion of code
#endif

The preprocessing directive #endif must follow any #if, #ifdef, or #ifndef directive. It may also be
preceded by any number of #elif directives and an #else directive. It marks the end of a sequence of
source-file statements that are included conditionally by the preprocessor.

Example
For an example of using this directive in a program, see assert.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #else, #if, #ifdef, #ifndef, preprocessing

#error — Preprocessing directive
Error directive
#error message newline

The preprocessing directive #error prints message when an error occurs.

Cross-references
Standard, §3.8.5
The C Programming Language, ed. 2, p. 233

See Also
preprocessing

#if — Preprocessing directive
Include code conditionally
#if constant-expression newline group

opt

The preprocessing directive #if tells the preprocessor that if constant-expression is true, then include
the following lines of code within the program until it reads the next #elif, #else, or #endif directive.

The constant-expression must be an integral expression, and it cannot include a sizeof operator, a
cast, or an enumeration constant. All macro substitutions are performed upon the constant-
expression before it is evaluated. All integer constants are treated as long objects, and are then
evaluated. If constant-expression includes character constants, all escape sequences are converted
into characters before evaluation.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #else, #endif, #ifdef, #ifndef, preprocessing

LEXICON

124 #endif — #if

Notes
The keyword defined determines whether a symbol is defined to #if. For example,

#if defined(SYMBOL)

or

#if defined SYMBOL

is equivalent to

#ifdef SYMBOL

except that it can be used in more complex expressions, such as

#if defined FOO && defined BAR && FOO==10

#ifdef — Preprocessing directive
Include code conditionally
#ifdef identifier newline group

opt

The preprocessing directive #ifdef checks whether identifier has been defined as a macro or manifest
constant. If identifier has been defined, then the preprocessor includes group within the program,
up to the next #elif, #else, or #endif directive. If identifier has not been defined, however, then
group is skipped.

An #ifdef directive can be followed by any number of #elif directives, by one #else directive, and
must be followed by an #endif directive.

Example
For an example of using this directive in a program, see assert.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#elif, #else, #endif, #if, #ifndef, defined, preprocessing

Notes
This is the same as:

#if defined IDENTIFIER

#ifndef — Preprocessing directive
Include code conditionally
#ifndef identifier newline group

opt

The preprocessing directive #ifndef checks whether identifier has been defined as a macro or
manifest constant. If identifier has not been defined, then the preprocessor includes group within
the program up to the next #elif, #else, or #endif directive. If identifier has been defined, however,
then group is skipped.

An #ifndef directive can be followed by any number of #elif directives, by one #else directive, and
by one #elif directive.

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

LEXICON

#ifdef — #ifndef 125

See Also
#elif, #else, #endif, #if, #ifndef, defined, preprocessing

Notes
This is the same as:

#if !defined IDENTIFIER

#include — Preprocessing directive
Read another file and include it
#include <file>
#include "file"

The preprocessing directive #include tells the preprocessor to replace the directive with the contents
of file.

The directive can take one of two forms: either the name of the file is enclosed within angle brackets
(<file>), or it is enclosed within quotation marks ("file"). The name of the file can be enclosed within
angle brackets (<file.h>) or quotation marks ("file.h"). Angle brackets tell the preprocessor to look
for file in the directories named with the -I options to the cc command line, and then in the
directory named by the environmental variable INCDIR. Quotation marks tell cpp to look for file.h
in the source file’s directory, then in directories named with the -I options, and then in the directory
named by the environmental variable INCDIR. #include directives may be nested up to at least
eight deep. That is to say, a file included by an #include directive may use an #include directive to
include a third file. That third file may also use a #include directive to include a fourth file, and so
on, up to at least eight files.

A subordinate header is sought relative to the original source file, rather than relative to the header
that calls it directly. For example, suppose that under the UNIX operating system, a file example.c
resides in directory /v/fred/src. If example.c contains the directive #include <header1.h>. The
operating system will look for header1.h in the standard directory, /usr/include. If header1.h
includes the directive #include <../header2.h> then the implementation should look for header2.h
not in directory /usr, but in directory /v/fred/src.

Some file systems allow characters to be used in file names that are used as delimiters in other file
systems. Therefore, if any of the characters ‘*’, ‘‘\’, or ‘,’ are part of a file name, behavior is
undefined. If ‘"’ is part of a file name between angle-bracket delimiters, behavior is also undefined.

A #include directive may also take the form #include string, where string is a macro that expands
into either of the two forms described above.

Cross-references
Standard, §2.2.4.1, §3.8.2
The C Programming Language, ed. 2, p. 88

See Also
header, header names, Language, preprocessing

Notes
Trigraphs that occur within a #include directive are substituted, because they are processed by an
earlier phase of translation than are #include directives.

LEXICON

126 #include

#line — Preprocessing directive
Reset line number
#line number newline
#line number filename newline
#line macros newline

#line is a preprocessing directive that resets the line number within a file. The Standard defines the
line number as being the number of newline characters read, plus one.

#line can take any of three forms. The first, #line number, resets the current line number in the
source file to number. The second, #line number filename, resets the line number to number and
changes the name of the file referred to by _ _FILE_ _ to filename. The third, #line macros, contains
macros that have been defined by earlier preprocessing directives. When the macros have been
expanded by the preprocessor, the #line instruction will then resemble one of the first two forms
and be interpreted appropriately.

number specifies the number of the next source line in the file, not the number of the #line
directive’s source line.

Cross-references
Standard, §3.8.4
The C Programming Language, ed. 2, p. 233

See Also
preprocessing

Notes
Most often, #line is used to ensure that error messages point to the correct line in the program’s
source code. A program generator may use this directive to associate errors in generated C code
with the original sources. For example, the program generator yacc uses #line instructions to link
the C code it generates with the yacc code written by the programmer.

#pragma — Preprocessing directive
Perform implementation-defined task
#pragma preprocessing-tokens

opt
newline

The preprocessing directive #pragma causes the implementation to behave in an implementation-
defined manner. A #pragma might be used to give a ‘‘hint’’ to the translator about the best way to
generate code, optimize, or diagnose errors. It may also pass information to the translator about the
environment, or add debugging information. The design of #pragma is left up to the
implementation.

Cross-references
Standard, §3.8.6
The C Programming Language, ed. 2, p. 233

See Also
preprocessing

Notes
An unrecognized pragma is ignored. Because of this subtlety, one should be careful when porting
code that contains pragmas to other implementations.

As of this writing, no Mark Williams compiler uses #pragma.

LEXICON

#line — #pragma 127

#undef — Preprocessing directive
Undefine a macro
#undef identifier

The preprocessing directive #undef tells the C preprocessor to disregard identifier as a manifest
constant or macro. It undoes the effect of the #define directive.

#undef does not give an error if identifier is not defined. It can also undefine macros that are
predefined by the implementation, other than those specified by the Standard to be unreadable.

Cross-references
Standard, §3.8.3.5
The C Programming Language, ed. 2, p. 230

See Also
#define, preprocessing

Notes
If an implementation has defined a function both as a macro and as a library function, then the
directive

#undef function

undefines the macro version, and forces the implementation to use the library version.

Some previous implementations allowed a user to ‘‘stack’’ macro definitions and ‘‘unstack’’ them by
#undefing them one level at a time. The Standard, however, states that one #undef directive
undefines all previous definitions.

% — Operator
Remainder operator
operand1 % operand2

The operator % divides operand1 by operand2 and yields the remainder.

Both operand1 and operand2 must have integral type. Both undergo the usual arithmetic
conversions before they are divided, and the type of the result is that to which the operands were
converted. If operand2 is zero, the behavior is undefined. If either operand is negative, the sign of
the result is implementation-defined.

The remainder operation normally throws away the quotient. The division operator / returns the
quotient of a division operation, and throws away the remainder. If you wish to obtain both
quotient and remainder, use the functions div or ldiv. To obtain the remainder from floating-point
division, use the function fmod.

Cross-references
Standard, §3.3.5
The C Programming Language, ed. 2, p. 205

See Also

LEXICON

128 #undef — 128

%= — Operator
Remainder assignment operator
operand1 %= operand2

The operator %= divides operand1 by operand2 and assigns the remainder to operand1. It is
equivalent to the expression:

operand1 = operand1 % operand2

Each operand must have an integral type. If the value of operand2 is zero, the result is undefined.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
%, expressions

& — Operator
&operand
operand1 & operand2
The operator & has two meanings, depending upon whether it has one operand or two. In the
former instance, it yields the address of its operand. In the latter instance, it performs a bitwise
AND operation upon its operands.

Address-of Operator
When used with one operand, & yields the value of the address of its operand in the form of a
pointer to the type of its operand. The operand must be an lvalue or function designator, with the
following restrictions: the operand may not be a bitfield, and it may not be declared with the
storage-class specifier register. The resulting pointer has the type ‘‘pointer to type’’, where type is
the type of the operand.

ANSI C allows you to take the address of a function or array.

Bitwise AND Operator
When used with two operands, & performs a bitwise AND operation. Each operand must have
integral type. Each undergoes the normal arithmetic conversions before the operation. & yields a
result whose type is the same as the promoted operands.

A bitwise AND operation compares the operands bit by bit. It sets a bit in the object it creates only
if the corresponding bits in both operands are set.

For example, consider an environment that uses extended ASCII. Here, the character ‘)’ has the bit
pattern:

0010 1001

and the character ‘L’ has the bit pattern:

0100 1100

The operation ’)’&’L’ yields an object with the following bit pattern:

0000 1000

Only one bit was set in the result because in only one instance were both corresponding bits set in
the operands.

LEXICON

129= — & 129

The & operation is sometimes called the ‘‘intersection’’ of two bit sets.

Cross-references
Standard, §3.3.3.2, §3.3.10
The C Programming Language, ed. 2, pp. 48, 93

See Also
expressions

&& — Operator
Logical AND operator
operand1 && operand2

The operator && performs a logical AND operation. Both operand1 and operand2 must have scalar
type.

The result of this operation has type int. The result has a value of one if both operands are true (i.e.,
nonzero). If either operand is false (zero), then the result has a value of zero.

The operands are evaluated from left to right. If operand1 is false, then operand2 is not evaluated.
If operand2 is an expression that yields a side-effect, the results of the && operation may not be
what you expect. If operand1 is false, operand2 is not evaluated and its side-effect not generated.

Cross-references
Standard, §3.3.13
The C Programming Language, ed. 2, p. 207

See Also
||, expressions

&= — Operator
Bitwise-AND assignment operator
operand1 &= operand2

The operator &= performs a bitwise AND operation on operand1 and operand2 and assigns the
result to operand1. It is equivalent to the expression

operand1 = operand1 & operand2

Both operands must have integral type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
&, expressions

() — Punctuator
functionname (arguments)
(newtype) identifier
(primary expression)
The characters () have two uses in the C world: as punctuators and as operators. Parentheses must
be used in pairs.

When the parentheses follow an identifier, they indicate that it names a function. When used with a

LEXICON

130 && — ()

function declaration, a function prototype, or a function definition, the parentheses may enclose a
list of parameters for the function and the type of each parameter. When used with a function call,
they enclose a list of arguments to be passed to the function.

When parentheses precede an identifier and enclose a typename alone, then they function as the
cast operator. Here, the type of the identifier is changed, or cast, to the type enclosed within
parentheses.

Finally, when parentheses enclose an expression, that expression is by definition considered to be a
primary expression. This means that the expression is resolved before any outer expression is
evaluated.

To see the variety of uses for (), consider the following expression:

if ((fileptr = (void *)fopen("filename", "r")) == NULL)

The outermost pair of parentheses enclose the arguments to if. The next innermost pair of
parentheses enclose the expression

fileptr = (void *)fopen("filename", "r")

which must be resolved before it is compared with NULL. The pair of parentheses that enclose the
type void * casts the object returned by fopen to type void *. Finally, the parentheses that follow
fopen mark that identifier as a function and enclose the arguments that are passed to it, in this
case the string literals filename and r.

Cross-reference
Standard, §3.1.6, §3.3.2.2, §3.3.4

See Also
function calls, function definition, function prototype, operators, punctuators

Notes
Under ANSI C, parentheses affect the grouping of expressions. This is a quiet change from the
definition in the first edition of The C Programming Language, which allowed translators to
rearrange expressions in the presence of parentheses on expressions that involved commutative and
associative operators (binary + and *). The as if rule still applies in this case: if the translator can
produce the same results, it is free to rearrange expressions in the face of parentheses.

* — Operator
*pointer
typename * type-qualifier-list

opt
identifier

operand1 * operand2
The character * is used both as an operator and as a punctuator.

Multiplication Operator
When the * appears between two operands with arithmetic type, it is the multiplicative operator. It
multiplies its operands and yields the product. Both operands undergo normal arithmetic
conversion. The type of the result is the one to which both operands were converted.

Indirection Operator
When * is used before one operand that is of a pointer type, it dereferences the pointer. That is, it
yields the value of the object to which the pointer points. If the pointer points to a function, then
the result is a function designator. If the pointer points to an object, the resulting lvalue has the
type of the object to which the pointer points.

If indirection is performed on any pointer to an incomplete type, the behavior is undefined. This
means that no pointer with type void * can be dereferenced.

LEXICON

* 131

Pointer Punctuator
When the * is used in a declaration, it indicates that the variable being declared is a pointer. For
example, consider the following:

int example1;
int *example2;

Here, example1 has type int, and example2 has type ‘‘pointer to int’’.

Cross-references
Standard, §3.1.6, .3.3.2, §3.3.5, §3.5.4.1
The C Programming Language, ed. 2, pp. 94, 205

See Also
expressions, operators, pointer, punctuators

*/ — Comment delimiter
The characters */ together mark the end of a comment.

Cross-references
Standard, §3.1.9
The C Programming Language, ed. 2, p. 192

See Also
/*, comment

*= — Operator
Multiplication assignment operator
operand1 *= operand2

The operator *= multiplies operand1 by operand2 and assigns the product to operand1. It is
equivalent to the expression:

operand1 = operand1 * operand2

Each operand must have an arithmetic type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
*, expressions

+ — Operator
+operand
operand1 + operand2
The operator + has two uses, depending upon whether it is used with two operands or one. In the
former instance, it indicates that the given operand should be computed without any associative or
commutative regrouping that the translator might normally apply to expressions. In the latter, it
adds the two operands together.

The Unary + Operator
The unary operator + takes an operand that has a scalar type and yields its value. If the operand
has a negative value, then a negative value is returned. The operand undergoes integral promotion,

LEXICON

132 */ — +

and the type returned is that to which the operand is promoted.

The Addition Operator
The addition operator + adds two operands. Both operands may have arithmetic types, or one of the
operands may be a pointer and the other an integral type.

If both operands have arithmetic types, then each undergoes integral conversion before addition is
performed; the type of the result is the type to which both are converted.

When an integral type is added to a pointer, the value of the integral operand is first multiplied by
the size of the object to which the pointer points, in bytes, and then addition is performed. The
result of the addition operation returns a pointer that is appropriately offset from the pointer
operand.

Pointer addition is often used for pointers that point to arrays. Note the following rules for
incrementing a pointer to an array:

• If a pointer points to an array, then the result of addition will point to another member of the
same array — assuming that the array is large enough.

• If a pointer to an array is incremented and the resulting pointer does not point to a member of
the array or one past the last member, then behavior is undefined.

• Behavior is also undefined if the pointer operand and the result of the addition operation do
not point to the same array object and the result of the addition operation is then redirected
with the unary * operator. In other words, it is legal for a translator to test array bounds.

Cross-references
Standard, §3.3.3.3, §3.3.6
The C Programming Language, ed. 2, pp. 203, 205

See Also
++, -, expressions

++ — Operator
Increment operator
operand++
++operand

The operator ++ increments its operand. When it appears before its operand, it is called the pre-
increment operator; when it appears after its operand, it is called the post-increment operator. In both
cases, it is equivalent to operand = operand+1. operand must be a modifiable lvalue.

These operators differ as follows: with the prefix operator, the value of the operand is used after it is
incremented; whereas with the postfix operator, the value of the operand is used before it is
incremented.

The following example illustrates the difference between the preincrement and postincrement
operators.

#define MAX 10
int x = 0, count = 0;

/* loop 1 */
while (++x < MAX)

count++;

LEXICON

++ 133

/* loop 2 */
while (x++ < MAX)

count++;

The first loop will iterate nine times, the second will iterate ten times. The first loop preincrements
the loop variable x before using it within the conditional expression. The second loop, which uses
the postincrement operator, first uses the current value of x in the conditional, then increments its
value.

Cross-references
Standard, §3.3.2.4, §3.3.3.1
The C Programming Language, ed. 2, p. 46

See Also
--, expressions

+= — Operator
Addition assignment operator
operand1 += operand2

The operator += adds the value of operand1 with that of operand2 and stores the sum within
operand1. It is equivalent to the expression:

operand1 = operand1 + operand2

Both operands have arithmetic types, or operand1 has a pointer type and operand2 has integral
type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
-=, expressions

Notes
The lvalue operand1 is evaluated only once.

, — Operator
identifier1 , identifier2
expression1 , expression2
The character ‘,’ can be used as punctuator or an operator.

The Comma Punctuator
When it is used as a punctuator, the comma separates the parameters in a function declaration, the
parameters to a function-like macro, the arguments to a function call, or the items in a list of
identifiers. For example, in the expression

int foo, bar, baz;

the comma separates the identifiers being declared, all of which are of type int.

The Comma Operator
When used outside of a declaration or parameter list, the comma acts as an operator. The comma
operator evaluates its left argument first, then its right argument. The value and type of the comma
expression is that of the right operand.

LEXICON

134 += — ,

For example, the following shows how the comma operator is used in a loop:

int i, j;
. . .

for (i=j=0; i<10 && j<25; i++, j++);

This loop uses the comma operator to help increment two variables upon each iteration.

Cross-references
Standard, §3.3.17
The C Programming Language, ed. 2, p. 62

See Also
expressions

Notes
A comma expression cannot be an lvalue.

- — Operator
-operand
operand1 - operand2
The operator - has two uses, depending upon whether it is used with two operands or one. In the
former situation, it subtracts the operand to its right from the operand to its left. In the latter, it
returns the negated value of its operand.

Subtraction Operator
The operator - can subtract the following operands from each other:

• Two arithmetic types.

• Two pointers to objects that have compatible types and compatible qualification.

• Two pointers that point to objects that have compatible types, but not necessarily compatible
qualification.

• An integral type from a pointer.

When both operands have arithmetic type, each undergoes integral promotion. The type of the
result is that to which the operands were promoted. Its value is the difference when the right
operand is subtracted from the left.

When one pointer is subtracted from another, the result is of type ptrdiff_t. This type is defined in
the header stddef.h. If two pointers that do not point to the same array are subtracted from each
other, behavior is undefined. The only exception is the expression

(X+1) - X

where, if X points to the last member of the array, the result is one by definition.

If two pointers that point to the same array are subtracted from each other, the result is
automatically divided by the size of an array member. This yields a value that is the same as would
result if the two appropriate array subscripts had been subtracted from each other. If the result of
pointer subtraction points past the end of an array, the behavior is undefined. The sole exception,
again, is the expression given above.

When subtracting a scalar from a pointer, the result is as if the scalar were multiplied by the size of
the object pointed to by the pointer, and then subtracted.

LEXICON

- 135

Negation Operator
The unary operator - takes an operand with arithmetic type. The operand first undergoes normal
integral promotion. The type of the resulting expression is the one to which the operand was
promoted; and the value of the resulting expression is the negated value of the operand.

Cross-references
Standard, §3.3.3.3, §3.3.6
The C Programming Language, ed. 2, pp. 203, 205

See Also
+, --, expressions

-- — Operator
Decrement operator
operand--
--operand

The operator -- decrements its operand. When it appears before its operand, it is called the pre-
decrement operator; when it appears after its operand, it is called the post-decrement operator. In
both cases, it is equivalent to operand = operand - 1.

These operators differ as follows: with the prefix operator, the value of the operand is used after it is
decremented; whereas with the postfix operator, the value of the operand is used before it is
decremented.

Cross-references
Standard, §3.3.2.4, §3.3.3.1
The C Programming Language, ed. 2, p. 46

See Also
++, expressions

-= — Operator
Subtraction assignment operator
operand1 -= operand2

The operator -= subtracts the value of operand2 from that of operand1 and stores the difference
within operand1. It is equivalent to the expression:

operand1 = operand1 - operand2

Both operands have arithmetic types, or operand1 has pointer type and operand2 has integral type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
+=, expressions

-> — Operator
Select a member
objectpointer -> membername

The operator -> selects a member of a structure or a union through a pointer.

LEXICON

136 -- — ->

objectpointer must point to a structure or union. membername must name a member of the
structure or union to which objectpointer points. For example, consider the following:

struct example {
int member1;
long member2;
example *member3;

};

struct example structure;
struct example *pointer = &structure;

To select member1 within structure via pointer, use the expression:

pointer->member1

Behavior is implementation-defined if one member of a union is accessed after another member has
been stored within the union.

Cross-references
Standard, §3.3.2.3
The C Programming Language, ed. 2, p. 131

See Also
., expressions, operators

. — Operator
Member selection
objectname . membername

The operator . is used to select a member of a structure or a union.

objectname must name a structure or union. membername must be a member of the structure or
union that objectname names. For example, consider the following:

struct example {
int member1;
long member2;
example *member3;

};

struct example object;

To read member1 within object, use the expression:

object.member1

Cross-references
Standard, §3.3.2.3
The C Programming Language, ed. 2, p. 128

See Also
->, expressions, member

LEXICON

. 137

/ — Operator
Division operator
operand1 / operand2

The operator / divides operand2 by operand1 and yields the quotient. Each operand must have
arithmetic type and undergoes the usual arithmetic promotion before the operation is performed.
The result of the operation has the type to which the operands are promoted. If the result of X/Y
can be represented, then (X/Y)*Y+(X%Y) must equal X.

If operand2 is zero, the result is undefined. If either operand is negative, the result is either the
largest integer that is less than the algebraic quotient, or the smallest integer that is greater than
the algebraic quotient, whichever the implementation prefers. For example, in the expression

7 / -2

the algebraic quotient is -3.5. The implementation determines whether the result is -4 (the largest
integer less than the algebraic quotient) or -3 (the smallest integer greater than the algebraic
quotient).

The division operation normally throws away the remainder. The remainder operator % returns the
remainder of a division operation and throws away the quotient. If you wish to obtain both quotient
and remainder, use the functions div or ldiv.

Cross-references
Standard, §3.3.5
The C Programming Language, ed. 2, p. 205

See Also
%, div, expressions, ldiv

/* — Comment delimiter
The characters /* together mark the beginning of a comment.

Cross-references
Standard, §3.1.9
The C Programming Language, ed. 2, p. 192

See Also
*/, comment

/= — Operator
Division assignment operator
operand1 /= operand2

The operator /= divides operand1 by operand2, and assigns the quotient to operand1. It is
equivalent to the expression:

operand1 = operand1 / operand2

Each operand must have arithmetic type.

If the value of operand2 is zero, behavior is undefined.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

LEXICON

138 / — /=

See Also
/, expressions

: — Punctuator
When punctuator : follows an identifier, it marks the identifier as being a label. When it precedes
an integer constant in the declaration of a structure or union, it marks the constant as giving the
size of a bit-field.

Cross-reference
Standard, §3.1.6
The C Programming Language, ed. 2, p. 66

See Also
?:, bit-fields, goto, label, punctuators

; — Punctuator
The punctuator ; marks the end of a statement.

Cross-reference
Standard, §3.1.6

See Also
punctuators, statements

< — Operator
Less-than operator
operand1 < operand2

The operator < compares two operands. It yields one if operand1 is less than operand2, and zero if
operand1 is greater than or equal to operand2.

See operators for more information on the types of operands that can be compared.

Cross-references
Standard, §3.3.8
The C Programming Language, ed. 2, pp. 41, 206

See Also
<=, >, expressions

<< — Operator
Bitwise left-shift operator
operand1 << operand2

The operator << shifts the bits in operand1 to the left by operand2 places. This is called the bitwise
left shift operation.

Both operands must have integral types. Both undergo the usual arithmetic conversions, and the
result has the type to which the left operand was promoted.

A bitwise left-shift operation moves the bits of an object to the left, and fills the vacated bits with
zeroes. For example, consider an environment that uses extended ASCII. Here, the character
constant ’?’ has the bit pattern:

0011 1111

LEXICON

: — << 139

In this environment, the expression

’?’ << 4

yields the following pattern of bits:

0000 0011 1111 0000

The ‘‘nybbles’’ to the left result from the promotion of the char to type int. All bits are shifted four
places to the left, and the four vacated bits to the right are filled with zeroes.

The left-shift operation is sometimes called the ‘‘logical’’ shift operation, which will fill vacated bits
with zeroes.

If operand2 is negative or is larger than the number of bits in operand1, behavior is undefined.

Example
For a practical example of the operator <<, see rand().

Cross-references
Standard, §3.3.7
The C Programming Language, ed. 2, pp. 48, 207

See Also
<<=, >>, expressions

<<= — Operator
Bitwise left-shift assignment operator
operand1 <<= operand2

The operator <<= shifts the bits in operand1 to the left by operand2 places, and assigns the result to
operand1. It is equivalent to the expression:

operand1 = operand1 << operand2

Both operands must have integral type.

If operand2 is negative or has a value greater than the number of bits in operand1, behavior is
undefined.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
<<, expressions

<= — Operator
Less-than or equal-to operator
operand1 <= operand2

The operator <= compares two operands. It returns one if operand1 is less than or equal to
operand2, and it returns zero if operand1 is greater than operand2.

See operators for more information on the types of operands that can be compared.

Example
For an example of using this operator in a program, see bitwise operators.

LEXICON

140 <<= — <=

Cross-references
Standard, §3.3.8
The C Programming Language, ed. 2, pp. 41, 206

See Also
<, >=, expressions

= — Operator
Assignment operator
operand1 = operand2

The operator = copies the value of operand2 into operand1. The value of operand2 is converted to
the type of operand1 before they are copied.

The following types of operands are allowed:

• Both have an arithmetic type. operand1 may be qualified.

• Both are compatible structures or unions. operand1 may be qualified.

• Both are pointers to compatible types. operand1 may be a pointer to a qualified type.
operand2 may be NULL. Either may be of type void *, assuming the other points to an object
or an incomplete type.

operand1 must be a modifiable lvalue.

Cross-references
Standard, §3.3.16.1
The C Programming Language, ed. 2, pp. 50, 208

See Also
==, expressions

== — Operator
Equality operator
operand1 == operand2

The operator == compares operand1 with operand2. The result is one if the operands are equal, and
zero if they are not.

The operands must be one of the following:

• Arithmetic types.

• Pointers to compatible types (ignoring qualifiers on these types).

• A pointer to an object or incomplete type and a pointer to void.

• A pointer and NULL.

If both operands have arithmetic type, they undergo usual arithmetic conversion before being
compared. If one operand is a pointer to an object and the other is a pointer to void, the pointer to
an object is converted to a pointer to void for purposes of the comparison.

If two pointers to functions compare equal, then they point to the same function; likewise, if two
pointers to data objects compare equal, then they point to the same object. However, on machines
that provide separate spaces for instructions and data, a pointer to a function may compare equal to
a pointer to a data object. Therefore, you should not depend on being able to distinguish function
pointers from data object pointers by value. Further, on machines that allow many pointer values

LEXICON

= — == 141

to refer to the same object (e.g., i8086 LARGE model), two pointers that do not compare equal may
nonetheless point to the same object.

Cross-references
Standard, §3.3.9
The C Programming Language, ed. 2, pp. 41, 207

See Also
!=, expressions

Notes
Perhaps the commonest mistake made by C programmers is to use the assignment operator ‘=’ in
place of the equality operator ‘==’ where a conditional expression is expected. For example:

if (variable1 = variable2) /* WRONG */
dosomething();

Here, the value of variable2 is copied into variable1; whether the expression succeeds or not
depends upon the value of variable2 rather than the equality of the two variables. Hence, the
condition will be true as long as this operand has a value other than zero. This code will translate,
often without generating a warning message, but probably will not run correctly.

Type conversion will affect comparison, particularly if a char is being compared with an integral type
with a negative value. For example, consider the comparison:

char variable;
. . .

if (variable == -1)
dosomething();

Here, variable is promoted to an int before it is compared with -1. However, if char is unsigned by
default, when it is expanded, it can never compare equal to a negative number. For maximum
portability, when using chars that may take negative values, declare them as type int or type signed
char. All Mark Williams compilers used signed chars by default.

Comparing floats and doubles for equality is usually a mistake, especially as a control expression in
a loop. Implementations of floating-point arithmetic are often inexact.

> — Operator
Greater-than operator
operand1 > operand2

The operator > compares two operands. It returns one if operand1 is greater than operand2. It
returns zero if operand1 is less than, or equal to, operand2.

Cross-references
Standard, §3.3.8
The C Programming Language, ed. 2, pp. 41, 206

See Also
<, >=, expressions

>= — Operator
Greater-than or equal-to operator
operand1 >= operand2

LEXICON

142 > — >=

The operator >= compares two operands. It returns one if operand1 is greater than, or equal to,
operand2; it returns zero if operand1 is less than operand2.

Cross-references
Standard, §3.3.8
The C Programming Language, ed. 2, pp. 41, 206

See Also
<=, >, operators

>> — Operator
Bitwise right-shift operator
operand1 >> operand2

The operator >> shifts the bits in operand1 to the right by operand2 places. This is called the
bitwise right shift operation.

Both operands must have integral type. Both undergo the usual arithmetic conversions, and the
result has the type to which the left operand was promoted.

A bitwise right-shift operation moves the bits of an object to the right. The vacated bits are filled
with zeroes, unless operand1 is signed and has a negative value. In that case, the vacated bits will
propagate the sign bit (i.e., be filled with ones).

For example, consider an environment that uses extended ASCII. Here, the character constant ’?’
has the bit pattern:

0011 1111

In this environment, the expression

’?’ >> 4

yields the following pattern of bits:

0000 0000 0000 0011

The two ‘‘nybbles’’ to the right result from the promotion of the char to type int. All bits are shifted
four places to the right, and the four vacated bits to the left are filled with zeroes. The nybble 1111
disappears.

The right-shift operation is sometimes called the ‘‘arithmetic’’ shift operation.

If operand2 is negative or is larger than the number of bits in operand1, behavior is undefined.

Example
For an example of using this operator in a program, see srand.

Cross-references
Standard, §3.3.7
The C Programming Language, ed. 2, pp. 48, 207

See Also
<<, >>=, expressions

LEXICON

>> 143

>>= — Operator
Bitwise right-shift assignment operator
operand1 >>= operand2

The operator >>= shifts the bits in operand1 to the right by operand2 places, and assigns the result
to operand1. It is equivalent to the expression:

operand1 = operand1 >> operand2

Both operands must have integral type.

If operand2 is negative or has a value larger than the number of bits in operand1, behavior is
undefined.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
>>, expressions

?: — Operator
Conditional operator
conditional ? expression1 : expression2

The conditional operator ?: causes one or the other of two expressions to be executed.

If the conditional evaluates to true (nonzero), then expression1 is evaluated; otherwise, expression2
is evaluated. The operator as a whole yields the result of whichever expression is executed.

The logical-OR-expression must have a scalar type. The conditional operator may take the following
types:

• Both are arithmetic types. Each undergoes normal arithmetic conversion, and the result has
the type to which they are converted.

• Both have compatible structure or union types. They are converted to a common type, and the
result has that type.

• Both are void types. The result is of type void.

• Both are pointers to compatible types, whether qualified or unqualified. The result is a pointer
that is qualified by all the qualifiers of both operands.

• One is a pointer and the other NULL. The result is of the pointer’s type.

• One points to an object or incomplete type, and the other is type void *. Both operands are
converted to type void * before evaluation, and the result also has that type.

The logical expression can also be a scalar identifier, constant, or function.

Cross-references
Standard, §3.3.15
The C Programming Language, ed. 2, p. 51

See Also
expressions

LEXICON

144 >>= — ?:

Notes
The conditional operator does not yield an lvalue. For example:

int x, a, b;
(x ? a : b) = 5; /* WRONG */

is incorrect, but

int x;
int *ptr1, *ptr2;
(x ? ptr1 : ptr2) = 5; / RIGHT */

is correct.

[] — Operator
Array subscript operator
arrayname[size]

The array-subscript operator [] is used in different contexts. It is used to declare an array, with or
without the array size. It is used as a subscript operator, and it can also be used when passing an
array as an argument. arrayname is the name of the array to be accessed; size is the number of
objects in the array.

The Standard states that one of the items arrayname or size must be a pointer and the other an
integer. To calculate the address of an element within an array, the integer is multiplied by the size
of an element of the array, and the product added to value of the pointer. In most C programs,
arrayname gives the pointer and size the integer offset.

The operator [] can also be used to select an object within an array; the objects are numbered from
zero through size-1. For example, if arrayname points to an array of ints, and if size is equal to six,
then the expression

arrayname[4]

is equivalent to:

*(arrayname+4)

This expressions yields not an address, but the contents of the array at the requested point.

An array can be followed by more than one pair of brackets. Such arrays are called
multidimensional. To see how such an array works, consider the following multidimensional array:

#define DIMENSION1 5
#define DIMENSION2 10
int arrayname[DIMENSION1][DIMENSION2];

Here, dimension1 holds five objects, each of which is the size set by dimension2: in this instance,
ten ints. Thus, the expression

arrayname[3][5];

is equivalent to writing:

*(arrayname+(3*DIMENSION2)+5)

An expression of the form

arrayname[3];

indicates an entire row of the array. This is sometimes called a ‘‘slice’’.

LEXICON

[] 145

Cross-references
Standard, §3.3.2.1
The C Programming Language, ed. 2, pp. 97ff

See Also
array, expressions

Notes
Given the Standard’s description of how an array is accessed, the elements of an array access may
be reversed. For example, given the following code,

int arrayname[5];
int counter = 3;

the expressions

arrayname[counter]

and

counter[arrayname]

should yield the same result. Using these expressions interchangeably will result in programs that
are very hard to read and maintain.

^ — Operator
Bitwise exclusive OR operator
operand1 ^ operand2

The operator ^ performs an bitwise exclusive OR operation.

Each operand must have integral type, and each undergoes the usual arithmetic conversions. The
result has integral type.

A bitwise exclusive OR operation compares the bit patterns of the operands, then sets each bit in its
result if either, but not both, of the corresponding bits in the operands is set.

For example, consider an environment which uses extended ASCII. In this environment, the
character 9 is represented by the bit pattern

0011 1001

and the character w by the bit pattern:

0111 0111

Thus, the operation:

’9’ ^ ’w’;

yields the following bit pattern:

0000 0000 0100 1110

The extra ‘‘nybbles’’ to the left are created by the promotion of the character constants to type int. If
the corresponding bits in the operands were both set to one, the bit in the result was set to zero.

Example
For an example of using this operator in a program, see srand.

LEXICON

146 ^

Cross-references
Standard, §3.3.11
The C Programming Language, ed. 2, pp. 48, 207

See Also
^=, |, expressions

^= — Operator
Bitwise exclusive-OR assignment operator
operand1 ^= operand2

The operator ^= performs a bitwise exclusive-OR operation on operand1 and operand2, and assigns
the result to operand1. It is equivalent to the expression

operand1 = operand1 ^ operand2;

Both operands must have integral type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
^, expressions

_ _DATE_ _ — Manifest constant
Date of translation

_ _DATE_ _ is a manifest constant that is defined by the implementation. It represents the date that
the source file was translated. It is a string literal of the form

"Mmm dd yyyy"

where Mmm is the same three-letter abbreviation for the month as is used by asctime; dd is the
day of the month, with the first d being a space if translation occurs on the first through the ninth
day of the month; and yyyy is the current year. If the date of translation is not available, then a
valid, implementation-defined date must be supplied.

The value of _ _DATE_ _ remains constant throughout the processing of the translation unit. It may
not be the subject of a #define or #undef preprocessing directive.

Cross-references
Standard, §3.8.8
The C Programming Language, ed. 2, p. 233

See Also
_ _FILE_ _, _ _LINE_ _, _ _STDC_ _, _ _TIME_ _, preprocessing

__end — External data
extern char * __end;
__end is an external variable that points to the end of your program’s data space. It is set by the C
runtime startup, and can be incremented by the function sbrk.

See Also
Environment, malloc, maxmem, sbrk

LEXICON

^= — __end 147

_ _FILE_ _ — Manifest constant
Source file name

_ _FILE_ _ is a manifest constant that is defined by the implementation. It represents, as a string
constant, the name of the current source file being translated.

_ _FILE_ _ may not be the subject of a #define or #undef preprocessing directive, but it may be
altered with the #line preprocessing directive.

Cross-references
Standard, §3.8.8
The C Programming Language, ed. 2, p. 233

See Also
#line, _ _DATE_ _, _ _LINE_ _, _ _STDC_ _, _ _TIME_ _, preprocessing

_ _LINE_ _ — Manifest constant
Current line within a source file

_ _LINE_ _ is a manifest constant that is defined by the implementation. It represents the current
line within the source file. The Standard defines the current line as being the number of newline
characters read, plus one.

_ _LINE_ _ may not be the subject of a #define or #undef preprocessing directive.

Cross-references
Standard, §3.8.8
The C Programming Language, ed. 2, p. 233

See Also
_ _DATE_ _, _ _FILE_ _, _ _STDC_ _, _ _TIME_ _, preprocessing

_ _STDC_ _ — Manifest constant
Mark a conforming translator

_ _STDC_ _ is a manifest constant that is defined by the implementation. If it is defined to be equal
to one, then it indicates that the translator conforms to the Standard.

The value of _ _STDC_ _ remains constant throughout the entire program, no matter how many
source files it comprises. It may not be the subject of a #define or #undef preprocessing directive.

Example
For an example of using _ _STDC_ _ in a program, see assert.

Cross-references
Standard, §3.8.8
The C Programming Language, ed. 2, p. 233

See Also
_ _DATE_ _, _ _FILE_ _, _ _LINE_ _, _ _TIME_ _, preprocessing

Notes
If an implementation is not fully compatible with the Standard, then it should not define
_ _STDC_ _. A value greater than one may indicate compliance with a later version of the Standard.

LEXICON

148 _ _FILE_ _ — _ _STDC_ _

_ _TIME_ _ — Manifest constant
Time source file is translated

_ _TIME_ _ is a manifest constant that is defined by Let’s C. It represents the time that a source file
is translated. It is a string literal of the form:

"hh:mm:ss"

This is the same format used by the function asctime. If the time of translation is not available,
then a valid, implementation-defined string must be supplied.

The value of this remains constant throughout the processing of the translation unit. It may not be
the subject of a #define or #undef preprocessing directive.

Cross-references
Standard, §3.8.8
The C Programming Language, ed. 2, p. 233

See Also
_ _DATE_ _, _ _FILE_ _, _ _LINE_ _, _ _STDC_ _, preprocessing

_exit() — Extended function (libc)
Terminate a program
int _exit(int status);

_exit terminates a program directly. It returns status to the calling program, and exits.

Unlike the library function exit, _exit does not perform extra termination cleanup, such as flushing
buffered files and closing open files.

_exit should be used only in situations where you do not want buffers flushed or files closed, such
as when your program detects an irreparable error condition and you want to ‘‘bail out’’ to keep your
data files from being corrupted.

_exit should also be used with programs that do not use STDIO and have been compiled with the -
ns option to the cc command. Unlike exit, _exit does not use STDIO. This will help you create
programs that are extremely small when compiled.

See Also
exit, extended miscellaneous, runtime startup, system

_tolower() — Extended macro (xctype.h)
Convert letter to lower case
#include <xctype.h>
int _tolower(int c);

The macro _tolower converts c to lower case and returns it. If c is not a letter, the result is
undefined.

_tolower differs from its cousin tolower in that _tolower is a macro that does not check whether its
argument is in fact an alphanumeric character, whereas tolower is a function that does check its
argument.

Example
This example opens a file of text and reverses the cases of all characters. It demonstrates _tolower
and _toupper.

LEXICON

_ _TIME_ _ — _tolower() 149

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <xctype.h>

void
fatal(char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *fp;
int ch;

if (--argc != 1)
fatal("Usage: example filename");

if ((fp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open file for reading");

while ((ch = fgetc(fp)) != EOF) {
if ((isascii(ch) != 0) && ch != ’\r’)

fatal("Not a text file");

if (isalpha(ch) != 0)
fputc((isupper(ch) ? _tolower(ch) : _toupper(ch)),

stdout);
else

fputc(ch, stdout);
}
return EXIT_SUCCESS;

}

See Also
_toupper, character handling, tolower

Notes
To conform to the ANSI Standard, this macro has been moved from the header ctype.h to the
header xctype.h. This may require that some code be altered.

This macro is not described in the ANSI Standard. Any program that uses it does not conform
strictly to the Standard, and may not be portable to other compilers or environments.

_toupper() — Extended macro (xctype.h)
Convert letter to upper case
#include <xctype.h>
_toupper(int c);

The macro _toupper returns c converted to upper case. If c is not a letter, the result is undefined.

_toupper differs from its cousin toupper in that _toupper is a macro that does not check whether
its argument is in fact an alphanumeric character, whereas toupper is a function that does check
its argument.

Example
For an example of this routine, see the entry for _tolower.

LEXICON

150 _toupper()

See Also
_tolower, character handling, toupper

Notes
To conform to the ANSI Standard, this macro has been moved from the header ctype.h to the
header xctype.h. This may require that some code be altered.

This macro is not described in the ANSI Standard. Any program that uses it does not conform
strictly to the Standard, and may not be portable to other compilers or environments.

_zero() — i8086 support (libc)
Zero a block of memory
void _zero(unsigned offs, unsigned seg, unsigned n);

_zero zeros out n bytes of memory at the address given by the segment seg and the offset offs.

_zero requires the full offset/segment address to work properly. If your program is compiled into
SMALL model, you should use the macro PTR to ensure that a full address is used.

Example
The following example initializes a chunk of memory, displays it, and then zeroes it out.

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{

char foo[80] = "Here is a string.";
printf("Before _zero: %s\n", foo);

_zero(PTR(foo), 80);
printf("\nAfter _zero: %s\n", foo);
return EXIT_SUCCESS;

}

See Also
extended miscellaneous, PTR

{} — Punctuator
The punctuators {}, or ‘‘braces’’, are used to delimit a block, and to group initializers. Braces must
be used in pairs.

Cross-reference
Standard, §3.1.6

See Also
block, initialization, punctuators

| — Operator
Bitwise inclusive OR operator
operand1 | operand2

The operator | performs an bitwise inclusive OR operation. Each operand must have integral type.
Each undergoes the usual arithmetic conversions, and the result has integral type.

A bitwise inclusive OR operation compares the bit patterns of the operands. It then sets each bit in
the result if either, or both, of the corresponding bits in each of the operands is set.

LEXICON

_zero() — | 151

For example, consider an environment which uses extended ASCII. Here, the character 9 is
represented by the bit pattern

0011 1001

and the character w by the bit pattern:

0111 0111

Thus, the operation:

’9’ | ’w’

yields the following bit pattern:

0000 0000 0111 1111

The extra ‘‘nybbles’’ to the left are created by the promotion of the character constants to type int.

The bitwise inclusive OR operation is also called the ‘‘union’’ of two bitsets.

Cross-references
Standard, §3.3.12
The C Programming Language, ed. 2, pp. 48, 207

See Also
^, |=, expressions

|= — Operator
Bitwise inclusive-OR assignment operator
operand1 |= operand2

The operator |= performs a bitwise inclusive OR operation on operand1 and operand2, and assigns
the result to operand1. It is equivalent to the expression

operand1 = operand1 | operand2

Both operands must have integral type.

Cross-references
Standard, §3.3.16.2
The C Programming Language, ed. 2, pp. 50, 208

See Also
|, expressions

|| — Operator
Logical OR operator
operand1 || operand2

The operator || performs a logical OR operation. Both operand1 and operand2 must have scalar
type.

The result of the || operation has type int. The value of the result is one if either operand is true
(nonzero); if both operands are false (equal to zero), the result has a value of zero.

The operands are evaluated from left to right. If operand1 is true, then operand2 is not evaluated. If
operand2 is an expression that yields a side-effect, the results of the || operation may not be what
you expect: if operand1 is true, operand2 is not evaluated and its side-effect not generated.

LEXICON

152 |= — ||

Cross-references
Standard, §3.3.14
The C Programming Language, ed. 2, p. 208

See Also
&&, expressions

~ — Operator
Bitwise complement operator
~operand

The operator ~ is the bitwise complement operator. Its operand has an integral type, which
undergoes integral promotion. The result is an object whose type is that of the promoted operand
and whose bit pattern inverts that of the operand. This is also called a ‘‘one’s complement
operation’’.

For example, consider the object:

char example = ’a’;

In an environment that uses extended ASCII, example will have the following bit pattern:

0110 0001

Thus, the expression ~example promotes example to an int, and then generates an object with the
following bit pattern:

1111 1111 1001 1110

As can be seen, the lower eight bits have been flipped. The eight bits on the left were added when
the object was promoted to int. These new bits were initially set to zeroes when the character was
promoted to an int, then the complement operation flipped the zeroes to ones. In this case, the sign
bit is said to propagate.

Cross-references
Standard, §3.3.3.3
The C Programming Language, ed. 2, p. 204

See Also
!, expressions, integral promotion

LEXICON

~ 153

A

abort() — General utility (libc)
End program immediately
void abort(void)

abort terminates a program’s execution immediately. It is used to ‘‘bail out’’ of a program when a
severe, unrecoverable problem occurs. It does not return.

abort terminates the program by calling exit with status EXIT_FAILURE.

abort prints the relative address from the beginning of the program, so that you can look the
location up in the symbol table. See the entry for nm for more information on how to extract the
symbol table from an executable program.

Example
This example simply aborts itself. For an example that uses abort in a more realistic manner, see
signal.

#include <stdlib.h>
#include <stdio.h>

main(void)
{

puts("...Dave ... I can feel my memory going ...");
abort();

}

Cross-references
Standard, §4.10.4.1
The C Programming Language, ed. 2, p. 252

See Also
atexit, exit, general utilities, getenv, program termination, system

Notes
Some implementations of abort, specifically the one included with UNIX system V, permit it to
return. The Standard forbids abort to return.

abs() — General utility (libc)
Compute the absolute value of an integer
#include <stdlib.h>
int abs(int n);

abs returns the absolute value of integer n. The absolute value of a number is its distance from
zero. This is n if n>=0, and -n otherwise.

Example
This example checks whether abs is defined for all values on your implementation.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>

LEXICON

154 abort() — abs()

main(void)
{

if(INT_MAX != abs(INT_MIN))
printf("abs of %d is undefined\n", INT_MIN);

return(EXIT_SUCCESS);
}

Cross-reference
Standard, §4.10.6.1
The C Programming Language, ed. 2, p. 253

See Also
div, general utilities, labs, ldiv

Notes
On two’s complement machines, the absolute value of the most negative number may not be
representable.

abs was originally declared in the header math.h. The Standard moved this function to stdlib.h on
the grounds that it does not return double. This change may require that some existing code be
altered.

access() — Access checking (libc)
Check if a file can be accessed in a given mode
#include <access.h>
int access(char *filename, int mode);

access checks whether a file can be accessed in the mode you wish. filename is the full path name
of the file you wish to check. mode is the mode in which you wish to access filename, as follows:

1 AEXEC Execute the file
2 AWRITE Write into the file
4 AREAD Read the file

The header access.h defines the manifest constants that are commonly used with access.

access returns zero if filename can be accessed in the requested mode, and a number greater than
zero if it cannot.

Example
The following example checks if a file can be accessed in a particular manner.

#include <access.h>
#include <path.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *message)
{

sprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

LEXICON

access() 155

main(int argc, char *argv[])
{

char *env, *pathname;
extern char *getenv(), *path();
int mode;
extern int access();

if (argc != 3)
fatal("Usage: access filename mode");

switch(*argv[2]) {
case ’e’:
case ’E’:

mode = AEXEC;
break;

case ’w’:
case ’W’:

mode = AWRITE;
break;

case ’r’:
case ’R’:

mode = AREAD;
break;

default:
fatal("modes: e=execute, w=write, r=read");

}

env = getenv("PATH");
if ((pathname = path(env,argv[1],mode)) != NULL) {

printf("PATH = %s\n", env);
printf("pathname = %s\n", pathname);

if (access(pathname, mode) == 0)
printf("%s accessible in mode %s\n",

pathname, argv[2]);
else

printf("%s not accessible in mode %d\n",
pathname, mode);

} else {
printf("file %s of mode %d not found in path\n",

argv[1], mode);
exit(EXIT_FAILURE);

}
return EXIT_SUCCESS;

}

See Also
access checking, access.h, path

Notes
access is included mainly for compatibility with the UNIX operating system. The only meaningful
test that access can perform on the Atari ST is to check if a file is writable.

access.h — Header
Define manifest constants used by access()
#include <access.h>

access.h is a header file that defines the manifest constants used with the function access.

LEXICON

156 access.h

See Also
access, access checking, header

access checking — Overview
Let’s C includes the following routines to check the access to a given file:

access.h
access Check if a file can be accessed in a given mode

path.h
path Build a path name for a file

stat.h
stat Find file attributes

These routines are not described in the ANSI Standard. Any program that uses any of them does
not conform strictly to the Standard, and may not be portable to other compilers or environments.

See Also
Library

acos() — Mathematics (libm)
Calculate inverse cosine
#include <math.h>
double acos(double arg);

acos calculates the inverse cosine of arg, which should be in the range of from -1.0 to 1.0. Any
other argument will trigger a domain error.

acos returns the result, which is in the range of from zero to π radians.

Cross-references
Standard, §4.5.2.1
The C Programming Language, ed. 2, p. 251

See Also
asin, atan, atan2, cos, mathematics, sin, tan

address — Definition
An address designates a location in memory.

Example
The following prints the address and contents of a given byte of memory.

#include <stdio.h>
#include <stdlib.h>
main(void)
{

char byte = ’a’;
/* Note use of the ‘%p’ format specifier */
printf("Address==%p Contents==\"%c\"\n",

&byte, byte);
return EXIT_SUCCESS;

}

Cross-reference
The C Programming Language, ed. 2, p. 94

LEXICON

access checking — address 157

See Also
&, Definitions, pointer

alias — Definitions
An alias for an object is alternative way to access that object.

Because C uses pointers, it can be impossible for the translator to keep track of all possible aliases
for an object. Often, the translator must use ‘‘worst-case aliasing assumptions’’ when memory is
read. These assumption are explained below.

The Standard refers to aliasing in the section on expressions (3.3). It allows the translator to
assume that the only way to reference a given object is by an object of the same type, a pointer to an
object of that type, or by a character pointer. Type qualifiers and sign do not count in this situation.
The reason a character pointer is assumed to point to any type of object is one of historical practice.

By making use of this information concerning types, a translator is said to make more favorable
aliasing assumptions, and produce better code. For example, consider the following code fragment:

fn(int *ip, float *fp)
{

int i;
float f;

ip = &i; /* line 1 */
fp = f; / line 2 */

}

Normally in an assignment to a dereferenced pointer (line 2), the translator must assume that such
a statement can overwrite the values of all global variables and the values of all local variables that
have had their addresses taken.

Because fp is a pointer to float, the assignment to *fp need not invalidate the value of i. The
translator must assume only that the current values of other floats may have been changed.

Any attempt to trick the translator, such as with a statement of the form

*fp = (float) i;

generates undefined behavior.

See Also
Definitions, type qualifier

alien — C keyword
Name a non-standard function

The alien declaration tells Let’s C that the following function name is not a standard C function.

With the Mark Williams family of C compilers, alien indicates that a function uses the PL/M calling
conventions. These differ from C in a number of ways. First, the calling sequence for PL/M pushes
the leftmost argument first, whereas the calling sequence for C functions pushes the rightmost
argument first. In addition, PL/M arguments are popped by the called function, whereas C
arguments are popped by the calling function. Finally, when Let’s C compiles a C function, it
appends an underbar ‘_’ to the end of the function’s name.

Use of the alien keyword allows direct calls of most PL/M procedures and functions; that is, it can
generate PL/M calls as well as C calls. For example,

extern alien plmfn();

LEXICON

158 alias — alien

declares plmfn to be a function that uses PL/M calling conventions. Of course, the types of the
arguments to plmfn must correspond to the types of the arguments the PL/M functions expects.

To use the alien keyword in a program compiled with Let’s C, you must compile the program using
the -VALIEN option to the cc command.

See Also
C keywords, Language, statements

alignment — Definition
The term alignment refers to the fact that some environments require the addresses of certain data
types to be evenly divisible by a certain integer. Different processors have different alignment
requirements. For example, the Motorola 68000 requires that every int have an address that is even
(i.e., that is evenly divisible by two). The translator must ensure that data objects are aligned
properly so that fetches to memory will be performed efficiently and on the correct data types.

The environment may require that empty bytes of ‘‘padding’’ be inserted into structures to ensure
that every type is aligned properly. For example, on the M68000 the following structure

struct example {
char member1;
int member2;

};

will actually consist of four bytes: one byte to hold the char, two bytes to hold the int, and between
them, one byte of padding to ensure that the int is aligned properly. Often, the alignment of a
struct member will be the maximum alignment required to align any of its members’ data types.

Because different environments require different forms of alignment, a program that is intended to
be portable should not assume that the members of a structure abut each other.

An object of type char * has the least strict alignment.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, p. 185

See Also
char, Definitions, struct

arena — Definition
An arena is the area of memory that is available for a program to allocate dynamically at run time.
It consists of an area of memory that is divided into allocated and unallocated blocks. Normally,
SMALL model programs cannot increase the size of the arena at run time; however, LARGE model
programs can do so to a limited extent. The unallocated blocks together form the ‘‘free memory
pool.’’

Portions of the arena can be allocated using the functions malloc, calloc, or realloc; returned to the
free memory pool with free; or checked to see if they are allocated or not with notmem.

See Also
Definitions, extended STDIO, LARGE model, SMALL model, STDIO

LEXICON

alignment — arena 159

argc — Definition
argc is the conventional name for the first argument to the function main. It is of type int. It gives
the number of strings in the array pointed to by argv, which is the second argument to main.

By definition, the value of argc is never negative.

Cross-references
Standard, §2.1.2.2
The C Programming Language, ed. 2, p. 114

See Also
argv, Environment, envp, main

argument — Definition
An argument is an expression that appears between the parentheses of a function call or invocation
of a function-like macro. Multiple arguments are separated by commas. For example, the following
function call

example(arg1, arg2, arg3);

has three arguments.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, p. 201

See Also
conversions, Definitions, parameter

Notes
The Standard uses the term ‘‘argument’’ when it refers to the actual arguments of a function call or
macro invocation. It uses the term ‘‘parameter’’ to refer to the formal parameters given in the
definition of the function or macro.

argv — Definition
char *argv[];
argv is the conventional name for the second argument to the function main. It points to an array of
pointers to type char. The strings to which argv points are passed by the host environment. Each
may change the behavior of the program, and each may be modified by the program. Thus, the
strings are called program parameters.

The number of pointers in the argv array is given by argc, which is the first argument to main. By
definition, argv[0] always points to the name of the program. If the name is not available from the
environment, then *argv[0] must be a null character. argv[1] through argv[argc-1] point to the set
of program parameters; argv[argc] must be a null pointer.

Cross-references
Standard, §2.1.2.2
The C Programming Language, ed. 2, p. 114

See Also
argc, Environment, envp, main

LEXICON

160 argc — argv

array declarators — Definition
An array declarator declares an array. It can also establish the size of the array and cause storage
to be allocated for it.

For example, consider the declaration:

int example[10];

The brackets ‘[]’ establish that example is an array; the constant 10 establishes that example has
ten elements. Thus, example is established to be an array of ten ints; memory is reserved for the
ten members.

The constant expression that sets the size of an array must be an integral constant greater than
zero. It must be known by translation phase 7 so the appropriate amount of storage can be
allocated.

An array declarator may be empty; for example:

int example[];

In this case, example is an incomplete type. It will be completed when it is initialized.

Cross-references
Standard, §3.5.4.2
The C Programming Language, ed. 2, p. 216

See Also
[], declarators, initialization

Notes
For two array types to be compatible, the type of element in each, the number of dimensions in
each, and the size of each corresponding dimension (except the first) must be identical.

as — Command
i8086 assembler
as [-bglx] [-ofile] filename.s ...

as is a multipass assembler that will assemble functions written in i8086 assembly language. as
will assemble programs into either SMALL or LARGE model, and will generate an object module in
MS-DOS object format. It also supports i8087 opcodes, and it allows you to write functions in a
model-independent manner.

as is not intended to be used for full-scale assembly-language programming; therefore, it does not
include some of the more elaborate features found in full-fledged assemblers. For example, it has no
facility for conditional compilation or user-defined macros. However, Let’s C allows you to use
preprocessor instructions to perform conditional assembly and expand macros. In addition, as
optimizes branches to take advantage of short addressing forms, where the span of the branch
permits.

File Names
All files of assembly language must have the suffix .s or .m. A .s file contains only assembly
language, and may be assembled either directly by as using the command line shown below, or
through the cc command. If you ask as to assemble a file that does not have the suffix .s, it will
refuse to do so.

A file with the suffix .m is one that is passed through the C preprocessor cpp before it is assembled.
These files cannot be assembled directly by as, but must be passed to the compiler controller cc,

LEXICON

array declarators — as 161

which will first invoke cpp and then as. For example, to assemble the file foo.m, use the
instruction

cc foo.m

This allows you to use preprocessor instructions that conditionalize code within a file; for example,
the same file can contain code for SMALL model and LARGE model, with cpp selecting the correct
code when you assemble the file. An example of a .m file is given below. For more information on
.m files, see the Lexicon entry for larges.h.

Usage
To invoke as directly through MS-DOS, use the following command:

as [-bglsx] [-o file] filename.s ...

The named files are concatenated and the resulting object code is written either into the file
specified by the -o option, or into the file l.out if the -o option is not used.

The other options are as follows:

-b Create a LARGE-model object module. This module hs two segments: modname_code and
modname_data. By default, as creates an object module that is in SMALL model. See the
Lexicon entry for model for more information on how these differ.

-g Give all symbols that are undefined at the end of the first pass the type undefined external,
as though they had been declared with a .globl directive.

-l Generate a listing of your program. The listing is written to the standard output device; you
can redirect it to a file or to the printer by using the ‘>’ operator after the as command line.

-s Strip all non-global symbols from the symbol table. This option should be used with
programs whose symbol tables are large enough to cause the linker ld to fail.

-x Strip all non-global symbols that begin with the character ‘L’ from the symbol table of the
object module. This is a limited version of the -s option described above. It speeds up the
linking of files by removing compiler-generated labels from the symbol table.

Lexical Conventions
Assembler tokens consist of identifiers (also called ‘‘symbols’’ or ‘‘names’’), constants, and operators.

An identifier is a sequence of alphanumeric characters (including the period ‘.’ and the underscore
‘_’). The first character must not be numeric. Only the first 16 characters of the name are
significant; the remainder are quietly thrown away. Upper case and lower case are considered
different. The machine instructions, assembly directives, and frequently used built-in symbols are
in lower case.

The following lists the identifiers that represent the i8086 machine registers, which are predefined:

ax sp al ah cs
bx bp bl bh ds
cx si cl ch es
dx di dl dh ss

With regard to constants, the assembler uses the same syntax as the C compiler: A sequence of
digits with a leading ‘0’ is taken to be an octal constant. A sequence of digits with a leading ‘0x’ is
taken to be a hexadecimal constant; in this base, the letters ‘A’ through ‘F’ have the decimal values
10 through 15. Any strings of digits that do not begin with ‘0’ are taken to be decimal constants.

A character constant consists of an apostrophe followed by an ASCII character. The constant’s value
is the ASCII code for the character, which is right-justified in the machine word. For example, an
instruction to move the letter ‘A’ to the register al could be expressed in any of four equivalent

LEXICON

162 as

ways:

movb al $0x41 / hexadecimal
movb al $0101 / octal
movb al $’A / character
movb al $65 / decimal

The dollar sign indicates an immediate operand.

A blank space can be represented either as 0x20 (its ASCII value in hexadecimal), or as an
apostrophe followed by a space (’), which on the page or screen resembles an apostrophe alone.

as represents character constants with the following escape sequences:

\b backspace (0010)
\f form feed (0014)
\n newline (0012)
\r carriage return (0015)
\t tab (0011)
\v vertical tab (0013)
\nnn octal value (0nnn)

The semicolon character ‘;’ indicates a line break. This character must be used at the end of a line
in a .m file, because the ANSI definition of the C preprocessor assumes that multi-line macro
definitions are always a single logical line.

In the ANSI preprocessor, a macro expansion always occupies no more than one line, no matter how
many lines the definition or the actual parameters to the macro span; therefore, you must embed
semicolons in macros that you want to expand to more than one line. For example,

#define enter(n) .globl n;n: push si; push di

will be treated by as as if it read

.globl n
n: push si

push di

The following gives a more readable form of the macro enter:

#define enter(n) .globl n;\
n: push si;\

push di

Blanks and Tabs
Blanks and tab characters may be used freely between tokens, but not within identifiers. A blank
or a tabulation character is required to separate adjacent tokens not otherwise separated, e.g.,
between an instruction opcode and its first operand.

Comments
Comments are introduced by a slash (‘/’) and continue until the end of the line. All characters in
comments are ignored by the assembler.

Program Sections
as permits you to divide programs into sections, each corresponding to a functional area of the
address space. as gives each program section its own location counter during assembly.

Under SMALL model, a program can have up to eight program sections, which are organized into
three groups, as shown below:

LEXICON

as 163

code: shri shared instruction
prvi private instruction
bssi uninitialized instruction

data: prvd private data
bssd uninitialized data
shrd shared data
strn strings

tables: symt symbol table

All Mark Williams assemblers use the same set of sections. This contributes to the portability of
programs between operating systems. Not all the sections are distinct under MS-DOS, however; the
meanings of the sections under MS-DOS are as follows:

shri (shared instruction) is the same as prvi (private instruction); shared refers to the sharing of
physical memory between two or more concurrent processes, and this capability does not exist
under MS-DOS. prvi is used for all code generated by the C compiler.

There is no distinction between shrd and prvd. The latter is used by the compiler for all external
and static data that are explicitly initialized in a C program.

bssi and bssd are initialized to zero. Let’s C uses the bssd section for external or static data that
are not initialized: the C language guarantees that these data are in fact initialized to zeros. Let’s C
does not use the bssi section.

The strn (strings) section is actually a special part of the data section, that Let’s C uses to store
string constants. It is synonymous with prvd under MS-DOS.

The symt section contains the symbol table used by the linker. Both the C compiler and the
assembler generate symbol tables that go in this section.

In most cases, you need not worry about what all these program sections are, and can simply write
code under the keywords .prvi or .shri, and write data under the keywords .prvd or .shrd. Do not to
place items in the symt section, because the C compiler, the assembler, and the linker use it to
communicate among themselves.

Under LARGE model, the assembled module has two sections: filename_code and filename_data.
The former contains all code, that is,w hat goes into the shri, prvi, and bssi sections in SMALL
model. The latter contains all data, that is, what goes into the shrd, prvd, bssd, and strn sections
under SMALL model.

When a program is assembled, the sections of a program are concatenated so that in the assembly
listing the whole program looks like a solid block of code and data. All code sections are combined
into the i8086 code segment, and all data sections into the i8086 data segment. The symbol table
is not actually linked when the program is executed, and so is not assigned to any i8086 segment

The Current Location
The special symbol ‘.’ (dot) is a counter that represents the current location. The current location
can be changed by an assignment; for example:

. = .+START

The assignment must not cause the value to decrease, and it must not change the program section,
i.e., the right-hand operand must be defined in the same section as the current section.

Expressions
An expression is a sequence of symbols representing a value and a program section. Expressions
are made up of identifiers, constants, operators, and brackets. All binary operators have equal
precedence and are executed in a strict left-to-right order (unless altered by brackets).

LEXICON

164 as

Notice that brackets ‘[’ and ‘]’ group expression elements, because parentheses are used for indexed
register addressing.

Types
Every expression has a type determined by its operands. The simplest operands are symbols. The
following names the types of symbols available:

Undefined A symbol is defined if it is a constant or a label, or if it is assigned a defined value;
otherwise, it is undefined. A symbol may become undefined if it is assigned the
value of an undefined expression. It is an error to assemble an undefined
expression in pass 2. Pass 1 allows assembly of undefined expressions, but phase
errors may be produced if undefined expressions are used in certain contexts, such
as in a .blkw or .blkb.

Absolute An absolute symbol is one defined ultimately from a constant or from the difference
of two relocatable values.

Register These are the machine registers.

Relocatable All other user symbols are relocatable symbols in some program section. Each
program section is a different relocatable type.

Any keyword may be used in an expression to obtain the basic value of the keyword. This may be
useful when employing the keywords that define machine instructions. The basic value of a
machine operation by default has the highest opcode associated with it; for example

.word push

yields FF.

Note that the type of an expression does not include such attributes as length (word or byte), so the
assembler will not remember whether you defined a particular variable to be a word or a byte.
Addresses and constants have different types, but the assembler does not treat a constant as an
immediate value unless it is preceded by a dollar sign ‘$’. If you use a constant where an address is
expected, as will treat the constant like an address (and vice versa). You must distinguish between
variables and addresses or immediate values.

Operators
The following lists the operators that as recognizes:

+ addition
- subtraction
* multiplication
- unary negation
~ unary complement
^ type transfer
| segment construction

Expressions may be grouped with brackets. Parentheses are reserved for use in address mode
descriptions.

Type propagation
When operands are combined in expressions, the resulting type is a function of both the operator
and the types of the operands. The ‘*’, ‘~’, and unary ‘-’ operators can only manipulate absolute
operands and always yield an absolute result.

The ‘+’ operator signifies the addition of two absolute operands to yield an absolute result, and the
addition of an absolute to a relocatable operand to yield a result with the same type as the

LEXICON

as 165

relocatable operand.

The binary ‘-’ operator allows two operands of the same type, including relocatable, to be subtracted
to yield an absolute result; it also allows an absolute to be subtracted from a relocatable, to yield a
result with the same type as the relocatable operand.

The binary operator ‘^’ yields a result with the value of its left operand and the type of its right
operand. It can be used to create expressions, usually used in an assignment statement, with any
desired type.

Statements
A program consists of a sequence of statements separated by newlines or by semicolons. There are
four kinds of statements: null statements, assignment statements, keyword statements, and
machine instructions.

A statement can be proceded by any number of labels. There are two kinds of labels: name and
temporary.

A name label consists of an identifier followed by a colon (:). The program section and value of the
label are set to that of the current location counter. It is an error for the value of a label to change
during an assembly. This most often happens when an undefined symbol is used to control a
location counter adjustment.

A temporary label consists of a digit (‘’ toQ ’) followed by a colon ‘:’. It defines temporary symbols of
the form ‘nf’ and ‘nb’, where ‘n’ is the digit of the label. References of the form ‘nf’ refer to the first
temporary label ‘n:’ forward from the reference; those of the form ‘nb’ refer to the first temporary
label ‘n:’ backward from the reference. Such labels conserve symbol table space in the assembler.

A null statement is an empty line, or a line containing only labels or a comment. It can occur
anywhere. as ignores it, except in the case of a label, which as gives the current value of the
location counter.

An assignment statement consists of an identifier followed by an equal sign ‘=’ and an expression.
The value and program section of the identifier are set to that of the expression. Any symbol defined
by an assignment statement may be redefined, either by another assignment statement or by a
label. An assignment statement is equivalent to the equ keyword statement found in many
assemblers.

Assembler directives
Assembler directives allow you to pass instructions directly to as. Each directive begins with a
period, and most are followed by operands.

The following describes the directives that as recognizes:

.ascii string
The first non-white space character, typically a quotation mark, that appears after the
keyword is taken as a delimiter. Successive characters are assembled into successive bytes
until until the delimiter appears again. To include a quotation mark within a string, use
another character for the delimiter.

It is an error if a newline is encountered before reaching the second delimiter. To insert a
newline into a string, use the character constant ‘\n’, a described above.

.blkb/.blkw
Assemble blocks of bytes or words that are filled with zeroes. The size of the block is
expression bytes or words.

LEXICON

166 as

.bssd Change the current program section to bssd. The current location is reset to the value of the
bssd location counter.

.bssi Change the current program section to bssi. The current location is reset to the value of the
bssi location counter.

.byte The expressions in the list are truncated to byte size and assembled into successive bytes.
Expressions in the list are separated by commas.

.even/.odd
These insert a NULL byte, if necessary, to set the location counter to the next even or odd
location, respectively. They are used to force alignment.

.globl The identifiers in the comma-separated list are marked as global. If they are defined in the
current assembly, they may be referenced by other object modules; if they are undefined,
they must be resolved by the linker before execution.

.page Force the printed listing of your assembly-language program to skip to the top of a new page
by inserting a form-feed character into the file. The title is printed at the top of the page.

.prvd Change the current program section to prvd. The current location is reset to the value of
the prvd location counter.

.prvi Change the current program section to prvi. The current location is reset to the value of the
prvi location counter.

.shrd Change the current program section to shrd. The current location is reset to the value of the
shrd location counter.

.shri Change the current program section to shri. The current location is reset to the value of the
shri location counter.

.strn Change the current program section to strn. The current location is reset to the value of the
strn location counter.

.title string
Print string at the top of every page in the listing. This directive also causes the listing to
skip to a new page.

.word expression [, expression]
Truncate expressions to word length and assemble the resulting data into successive words.
Expressions in the list are separated by commas.

Address descriptors
The source and destination descriptors use the following syntax. r refers to a register and the
symbol e to an expression, as follows:

r: register
al, cl, dl, bl, ah, ch, dh, bh
ax, cx, dx, bx, sp, bp, si, di

e: direct address|
Any eight- or 16-bit number. Eight-bit numbers are sign extended.

(r): indexing
(si) (di) (bx)

fe(r): index displacement
e(si) e(di) e(bx): default segment is ds
e(bp): default segment is ss

LEXICON

as 167

(r,r): double index
(bx), si) (bx, di): default segment is ds
(bp, si) (bp, di): default segment is ss

e(r,r): double index with displacement
e(bx, si) e(bx, di): default segment is ds
e(bp, si) e(bp, di): default segment is ss

Re: immediate

s: segment register|
ss, ds, es, cs: allowed only where explicitliy stated.

Note that the dollar sign is always used to indicate an immediate value, even if the expression is a
constant.

A direct address is interpreted as either a direct address or a PC-relative displacement, depending
on the requirements of the instruction.

If an address descriptor indicates an indexing mode and the base expression is of type absolute, as
uses the shortest displacement length (zero, one, or two bytes) that can hold the expression’s value.
Relocatable base expressions, whose values cannot be completely determined until the program is
linked, are always assigned two-byte displacements.

Any address descriptor may be modified by a segment escape prefix. A segment escape prefix
consists of a segment register name followed by a colon ‘:’. The escape causes as to produce a
segment override prefix that uses the specified segment register as an operand. as does not produce
segment override prefixes unless explicitly required by an instruction.

Instructions
The following machine instructions are defined. The examples illustrate the general syntax of the
operands. Combinations that are syntactically valid may be forbidden for semantic reasons.

The examples use the following references:

a general address
al al register
ax ax register
cl cl register
d direct address
dx dx register
e expression
$e immediate expression
m memory address (not an immediate)
p port address

as treats as ordinary one-byte machine operations some operations that the Intel assembler ASM86
handles with special syntax; these include the lock and repeat prefixes. as makes no attempt to
prevent the generation of incorrect sequences of these prefix bytes.

Although every machine operation has a type and value associated with it, in most cases the value
was chosen to help as format the machine instructions.

For more information on these instructions, see the Intel ASM86 Assembly Language Reference
Manual.

aaa ASCII adjust AL after addition
aad ASCII adjust AX before division
aam ASCII adjust AX after multiply
aas ASCII adjust AL after subtraction

LEXICON

168 as

adcb r, a Add with carry, byte
adc r, a Add with carry, word
adcb a, r Add with carry, byte
adc a, r Add with carry, word
adcb a, $e Add with carry, byte
adc a, $e Add with carry, word
addb r, a Add, byte
add r, a Add, word
addb a, r Add, byte
add a, r Add, word
addb a, $e Add, byte
add a, $e Add, word
andb r, a Logical and, byte
and r, a Logical and, word
andb a, r Logical and, byte
and a, r Logical and, word
andb a, $e Logical and, byte
and a, $e Logical and, word
call d Near call, PC-relative
cbw Convert byte into word
clc Clear carry flag
cld Clear direction flag
cli Clear interrupt flag
cmc Complement carry flag
cmpb r, a Compare two operands, byte
cmp r, a Compare two operands, word
cmpb a, r Compare two operands, byte
cmp a, r Compare two operands, word
cmpb a, $e Compare two operands, byte
cmp a, $e Compare two operands, word
cmps Compare string operands, bytes
cmpsb Compare string operands, bytes
cmpsw Compare string operands, words
cwd Convert word to double
daa Decimal adjust AL after addition
das Decimal adjust AL after subtraction
decb a Decrement by one, byte
dec a Decrement by one, word
divb m Unsigned divide, byte
div m Unsigned divide, word
esc a Escape 0xD8
hlt Halt
icall a Near call, absolute offset at EA word
idivb m Signed divide, byte
idiv m Signed divide, word
ijmp a Jump short, absolute offset at EA word
imulb m Signed multiply, byte
imul m Signed multiply, word
inb al, p Input, byte
in ax, p Input, word
inb al, dx Input, byte
in ax, dx Input, word
incb a Increment by one, byte
inc a Increment by one, word

LEXICON

as 169

int e Call to interrupt
into Call to interrupt, overflow
iret Interrupt return
ja d Jump short if greater
jae d Jump short if greater or equal
jb d Jump short if less
jbe d Jump short if less or equal
jc d Jump short if carry
jcxz d Jump short if CX equals zero
je d Jump short if equal to
jg d Jump short if greater
jge d Jump short if greater or equal
jl d Jump short if less
jle d Jump short if less or equal
jmp d Jump short, PC-relative word offset
jmpb d Jump short, PC-relative byte offset
jmpl d Jump long
jna d Jump short if not above
jnae d Jump short if not above or equal
jnb d Jump short if not below
jnbe d Jump short if not below or equal
jnc d Jump short if not carry
jne d Jump short if not equal
jng d Jump short if not greater
jnge d Jump short if not greater or equal
jnl d Jump short if not less
jnle d Jump short if not less or equal
jno d Jump short if not overflow
jnp d Jump short if not parity
jns d Jump short if not sign
jnz d Jump short if not zero
jo d Jump short if overflow
jp d Jump short if parity
jpe d Jump short if parity even
jpo d Jump short if parity odd
js d Jump short if sign
jz d Jump short if zero
lahf Load flags into AH register
lds r, a Load double pointer into DS
lea r, a Load effective address offset
les r, a Load double pointer into ES
lock Assert BUS LOCK signal
lodsb Load byte into AL
lods Load byte into AL
lodsw Load byte into AL
loop d Loop; decrement CX, jump short if CX less than zero
loope d Loop; decrement CX, jump short if CZ not zero and equal
loopne d Loop; decrement CX, jump short if CX not zero and not equal
loopnz d Loop; decrement CX, jump short if CZ not zero and ZF equals zero
loopz d Loop; decrement CX, jump short if CX not zero and zero
movb r, a Move, byte
mov r, a Move, word
movb a, r Move, byte
mov a, r Move, word

LEXICON

170 as

movb a, $e Move, byte
mov a, $e Move, word
movb a, s Move, byte
mov a, s Move, word
movb s, a Move, byte
mov s, a Move, word
movsb Move string byte-by-byte
movs Move string word-by-word
movsw Move string word-by-word
mulb m Multiply, byte
mul m Multiply, word
negb a Two’s complement negation, byte
neg a Two’s complement negation, word
nop No operation
notb a One’s complement negation, byte
not a One’s complement negation, word
orb r, a Logical inclusive OR, byte
or r, a Logical inclusive OR, word
orb a, r Logical inclusive OR, byte
or a, r Logical inclusive OR, word
orb a, $e Logical inclusive OR, byte
or a, $e Logical inclusive OR, word
outb p, al Output to port, byte
out p, ax Output to port, word
outb dx, al Output to port, byte
out dx, ax Output to port, word
pop m Pop a word from the stack
pop s Pop a word from the stack
popf Pop fom stack into flags register
push m Push a word onto the stack
push s Push a word onto the stack
pushf Push flags register onto the stack
rclb a, $1 Rotate left $1 times, byte
rclb a, cl Rotate left CL times, byte
rcl a, $1 Rotate left $1 times, word
rcl a, cl Rotate left CL times, word
rcrb a, $1 Rotate right $1 times, byte
rcrb a, cl Rotate right CL times, byte
rcr a, $1 Rotate right $1 times, word
rcr a, cl Rotate right CL times, word
rep Repeat following string operation
repe Find nonmatching bytes
repne Repeat, not equal
repnz Repeat, not equal
repz Repeat, equal
ret Return from procedure
rolb a, $1 Rotate left, byte
rolb a, cl Rotate left, byte
rol a, $1 Rotate left, word
rol a, cl Rotate left, word
rorb a, $1 Rotate right, byte
rorb a, cl Rotate right, byte
ror a, $1 Rotate right, word
ror a, cl Rotate right, word

LEXICON

as 171

sahf Store AH into flags
salb a, $1 Shift left, byte
salb a, cl Shift left, byte
sal a, $1 Shift left, word
sal a, cl Shift left, word
sarb a, $1 Shift right, byte
sarb a, cl Shift right, byte
sar a, $1 Shift right, word
sar a, cl Shift right, word
sbbb r, a Integer subtract with borrow, byte
sbb r, a Integer subtract with borrow, word
sbbb a, r Integer subtract with borrow, byte
sbb a, r Integer subtract with borrow, word
sbbb a, $e Integer subtract with borrow, byte
sbb a, $e Integer subtract with borrow, word
scasb Compare string data, byte
scas Compare string data, word
shlb a, $1 Shift left, byte
shlb a, cl Shift left, byte
shl a, $1 Shift left, word
shl a, cl Shift left, word
shrb a, $1 Shift right, byte
shrb a, cl Shift right, byte
shr a, $1 Shift right, word
shr a, cl Shift right, word
stc Set carry flag
std Set direction flag
sti Set interrupt enable flag
stosb Store string data, byte
stos Store string data, byte or word
stosw Store string data, word
subb r, a Integer subtraction, byte
sub r, a Integer subtraction, word
subb a, r Integer subtraction, byte
sub a, r Integer subtraction, word
subb a, $e Integer subtraction, byte
sub a, $e Integer subtraction, word
testb r, a Logical compare, byte
test r, a Logical compare, word
testb a, r Logical compare, byte
test a, r Logical compare, word
testb a, $e Logical compare, byte
test a, $e Logical compare, word
wait Wait until BUSY pin is inactive
xcall d, d Far call, immediate four-byte address
xchgb r, a Exchange memory, byte
xchg r, a Exchange memory, word
xicall Far call, address at EA double word
xijmp Jump far, address at memory double word
xjmp d, d Jump far, immediate four-byte address
xlat Table look-up translation
xorb r, a Logical exclusive OR, byte
xor r, a Logical exclusive OR, word
xorb a, r Logical exclusive OR, byte

LEXICON

172 as

xor a, r Logical exclusive OR, word
xorb a, $e Logical exclusive OR, byte
xor a, $e Logical exclusive OR, word
xret Return, intersegment

i8087 instructions
as can also generate object files that use the i8087 mathematics co-processor. The example
instructions use the following references:

d direct address
st0 floating point register 0
st1 any floating point register except 0

The following lists the i8087 instructions:

fabs Absolute value
fadd st0, st1 Add real
fadd st1, st0 Add real
ffadd d Add real, float
fdadd d Add real, double
faddp Add real and pop
faddp st, st0 Add real and pop
fbld d Load packed decimal (BCD)
fbstp d Store packed decimal (BCD) and pop
fchs Change sign
fclex Clear exception
fnclex Clear exception
fcom Compare real
ffcom d Compare real, float
fdcom d Compare real, double
fcomp Compare real and pop
fcomp st1 Compare real and pop
ffcomp d Compare real and pop, float
fdcomp d Compare real and pop, double
fcompp Compare real and pop twice
fdecstp Decrement stack pointer
fdisi Disable interrupts
fndisi Disable interrupts, no operands
fdiv st0, st1 Divide real
fdiv st1, st0 Divide real
ffdiv d Divide real, float
fddiv d Divide real, double
fdivp Divide real and pop
fdivp st1 Divide real and pop
fdivr st0, st1 Divide real reversed
fdivr st1, st0 Divide real reversed
ffdivr d Divide real reversed, float
fddivr d Divide real reversed, double
fdivrp Divide real reversed and pop
fdivrp st1 Divide real reversed and pop
feni Enable interrupts
fneni Enable interrupts, no operands
ffree st1 Free register
fiadd d Integer add
fladd d Integer add, long
ficom d Integer compare

LEXICON

as 173

flcom d Integer compare, long
ficomp d Integer compare and pop
flcomp d Integer compare and pop, long
fidiv d Integer divide
fldiv d Integer divide, long
fidivr d Integer divide reversed
fldivr d Integer divide, long reversed
fild d Integer load
flld d Integer load, long
fqld d Integer load, quad
fimul d Integer multiply
flmul d Integer multiply, long
fincstp Increment stack pointer
finit Initialize processor
fninit Initialize processor
fist d Integer store
flst d Integer store, long
fistp d Integer store and pop
flstp d Integer store and pop, long
fqstp d Integer store and pop, quad
fisub d Integer subtract
flsub d Integer subtract, long
fisubr d Integer subtract reversed
flsubr d Integer subtract reversed, long
fld st1 Load real
ffld d Load real, float
fdld d Load real, double
ftld d Load real, temp
fldcw d Load control word
fldenv d Load environment
fldlg2 Load log(10)2
fldln2 Load log(e)2
fldl2e Load log(2)e
fldl2t Load log(2)10
fldpi Load pi
fldz Load +0.0
fld1 Load +1.0
fmul Multiply real
fmul st0, st1 Multiply real
ffmul st1, st0 Multiply real, float
fdmul d Multiply real, double
fmulp d Multiply real and pop
fnop st1 No operation
fpatan Partial arctangent
fprem Partial remainder
fptan Partial tangent
frndint Round to integer
frstor d Restore saved state
fsave d Save state
fnsave d Save state
fscale Scale
fsetpm Set protected mode
fsqrt Square root
fst st1 Store real

LEXICON

174 as

ffst d Store real, float
fdst d Store real, double
fstcw d Store control word
fnstcw d Store control word
fstenv d Store environment
fnstenv d Store environment
fstp st1 Store real and pop
ffstp d Store real and pop, float
fdstp d Store real and pop, double
ftstp d Store real and pop, temp
fstsw d Store status word
fnstsw d Store status word
fsub st0, st1 Subtract real
fsub st1, st0 Subtract real
ffsub d Subtract real, float
fdsub d Subtract real, double
fsubp Subtract real and pop
fsubp st1 Subtract real and pop
fsubr d Subtract real reversed
ffsubr d Subtract real reversed, float
fdsubr d Subtract real reversed, double
fsubrp Subtract real reversed and pop
fsubrp st1 Subtract real reversed and pop
ftst Test stack top against +0.0
fwait Wait while 8087 is busy
fxam Examine stack top
fxch st1 Exchange registers
fxch Exchange registers
fxtract Extract exponent and significance
fyl2x Y*log(2)X
fyl2xp1 Y*log(2)(X+1)

Examples
The first example executes the program hello.c in a model-independent assembly language. If
executed, it should be placed in a file called hello.m, and assembled through the cc command, as
follows:

cc -o hello hello.m

The cc command will pass the program first to the C preprocessor cpp, and then to as. For more
information, see the Lexicon entry for larges.h.

#include <larges.h>
.prvd

Hi: .ascii "Hello world.\n"
.shri
Enter(main_) /* Note use of C-style comments */
mov ax, $Hi /* push offset of msg */
push ax

#ifdef LARGEDATA
mov ax, $@Hi /* push segment of msg */
push ax

#endif
Gcall printf_
add sp, $RASIZE
Leave

LEXICON

as 175

The next example program, strchar.s defines a function strchar that returns the number of
occurrences of a character in a string.

FILE: strchar.s

/
/
/ Count and return the occurrences
/ of a character in a string.
/
/ int
/ strchar(s, c)
/ char *s;
/ int c;
/
/

.globl strchar_ / Make the name known externally.

strchar_:
push si / Standard C function
push di / linkage. Save the
push bp / si, di, and bp registers
mov bp, sp / and set up new frame pointer.

mov si, 8(bp) / String ptr -> si.
mov bx, 10(bp) / Char -> bx (actually bl).
sub ax, ax / Clear ax (count register).
sub cx, cx / Clear cx.

0: movb cl, (si) / Get character from string.
jcxz 2f / End of string?
cmpb bl, cl / No. Do chars match?
jnz 1f / No.
inc ax / Yes. Increment count.

1: inc si / Bump string pointer
jmp 0b / and loop again.

2: pop bp / Standard C return
pop di / linkage. Restore
pop si / saved registers and
ret / go home.

The following C program, main.c uses strchar The assembly language listing that follows, main.s
was produced from main.c by the -VASM option in cc. The listing has been edited, and comments
added, to illustrate what is happening.

/* FILE: main.c */

main()
{

int n;
n = strchar("aardvark", ’a’);

}

.shri / ‘‘code’’ program section.

.globl main_

main_:

.strn / ‘‘string’’ program section.

LEXICON

176 as

L2: .byte 0x61 / This is the string
.byte 0x61 / ‘‘aardvark’’
.byte 0x72
.byte 0x64
.byte 0x76
.byte 0x61
.byte 0x72
.byte 0x6B
.byte 0x00

.shri / Back to ‘‘code’’

push si / Standard C function
push di / linkage. Save registers,
push bp / set up new frame pointer (bp),
mov bp, sp / and make room on stack
sub sp, $0x02 / for the auto int, ‘‘n’’

mov ax, $0x61 / Push the
push ax / character ‘a’.
mov ax, $L2 / Push the address
push ax / of the string ‘‘aardvark’’
call strchar_ / Function call.
add sp, $0x04 / Remove args from stack.
mov -0x02(bp), ax / Assign result to auto ‘n’.

mov sp, bp / Standard C return
pop bp / linkage. Adjust stack
pop di / pointer, then restore
pop si / registers and
ret / go home.

See Also
C language, calling conventions, cc, larges.h, memory allocation

ASCII — Definition
ASCII is an acronym for the American Standard Code for Information Interchange. It is a table of
seven-bit binary numbers that encode the letters of the alphabet, numerals, punctuation, and the
most commonly used control sequences for printers and terminals.

The extended ASCII character set defines eight-bit encodings. The lower 127 characters are those of
standard ASCII, and the higher 127 characters are also defined.

Though the standard ASCII character set is used commonly throughout the United States, other
countries use the ISO 646 character set, which is an invariant subset of standard ASCII. See the
entry on trigraphs for a discussion of the representing C characters in environments in which not
all of the 127 ASCII characters are available.

The following table gives the lower 127 ASCII characters in octal, decimal, and hexadecimal
numbers.

000 0 0x00 NUL <ctrl-@> Null character
001 1 0x01 SOH <ctrl-A> Start of header
002 2 0x02 STX <ctrl-B> Start of text
003 3 0x03 ETX <ctrl-C> End of text
004 4 0x04 EOT <ctrl-D> End of transmission
005 5 0x05 ENQ <ctrl-E> Enquiry
006 6 0x06 ACK <ctrl-F> Positive acknowledgement
007 7 0x07 BEL <ctrl-G> Alert
010 8 0x08 BS <ctrl-H> Backspace

LEXICON

ASCII 177

011 9 0x09 HT <ctrl-I> Horizontal tab
012 10 0x0A LF <ctrl-J> Line feed
013 11 0x0B VT <ctrl-K> Vertical tab
014 12 0x0C FF <ctrl-L> Form feed
015 13 0x0D CR <ctrl-M> Carriage return
016 14 0x0E SO <ctrl-N> Shift out
017 15 0x0F SI <ctrl-O> Shift in
020 16 0x10 DLE <ctrl-P> Data link escape
021 17 0x11 DC1 <ctrl-Q> Device control 1 (XON)
022 18 0x12 DC2 <ctrl-R> Device control 2 (tape on)
023 19 0x13 DC3 <ctrl-S> Device control 3 (XOFF)
024 20 0x14 DC4 <ctrl-T> Device control 4 (tape off)
025 21 0x15 NAK <ctrl-U> Negative acknowledgement
026 22 0x16 SYN <ctrl-V> Synchronize
027 23 0x17 ETB <ctrl-W> End of transmission block
030 24 0x18 CAN <ctrl-X> Cancel
031 25 0x19 EM <ctrl-Y> End of medium
032 26 0x1A SUB <ctrl-Z> Substitute
033 27 0x1B ESC <ctrl-[> Escape
034 28 0x1C FS <ctrl-\> Form separator
035 29 0x1D GS <ctrl-]> Group separator
036 30 0x1E RS <ctrl-^> Record separator
037 31 0x1F US <ctrl-_> Unit separator
040 32 0x20 SP Space
041 33 0x21 ! Exclamation point
042 34 0x22 " Quotation mark
043 35 0x23 # Pound sign (sharp)
044 36 0x24 $ Dollar sign
045 37 0x25 % Percent sign
046 38 0x26 & Ampersand
047 39 0x27 ’ Apostrophe
050 40 0x28 (Left parenthesis
051 41 0x29) Right parenthesis
052 42 0x2A * Asterisk
053 43 0x2B + Plus sign
054 44 0x2C , Comma
055 45 0x2D - Hyphen (minus sign)
056 46 0x2E . Period
057 47 0x2F / Virgule (slash)
060 48 0x30 0
061 49 0x31 1
062 50 0x32 2
063 51 0x33 3
064 52 0x34 4
065 53 0x35 5
066 54 0x36 6
067 55 0x37 7
070 56 0x38 8
071 57 0x39 9
072 58 0x3A : Colon
073 59 0x3B ; Semicolon
074 60 0x3C < Less-than symbol (left angle bracket)
075 61 0x3D = Equal sign
076 62 0x3E > Greater-than symbol (right angle bracket)

LEXICON

178 ASCII

077 63 0x3F ? Question mark
0100 64 0x40 @ At sign
0101 65 0x41 A
0102 66 0x42 B
0103 67 0x43 C
0104 68 0x44 D
0105 69 0x45 E
0106 70 0x46 F
0107 71 0x47 G
0110 72 0x48 H
0111 73 0x49 I
0112 74 0x4A J
0113 75 0x4B K
0114 76 0x4C L
0115 77 0x4D M
0116 78 0x4E N
0117 79 0x4F O
0120 80 0x50 P
0121 81 0x51 Q
0122 82 0x52 R
0123 83 0x53 S
0124 84 0x54 T
0125 85 0x55 U
0126 86 0x56 V
0127 87 0x57 W
0130 88 0x58 X
0131 89 0x59 Y
0132 90 0x5A Z
0133 91 0x5B [Left bracket (left square bracket)
0134 92 0x5C \ Backslash
0135 93 0x5D] Right bracket (right square bracket)
0136 94 0x5E ^ Circumflex
0137 95 0x5F _ Underscore (underbar)
0140 96 0x60 ‘ Grave
0141 97 0x61 a
0142 98 0x62 b
0143 99 0x63 c
0144 100 0x64 d
0145 101 0x65 e
0146 102 0x66 f
0147 103 0x67 g
0150 104 0x68 h
0151 105 0x69 i
0152 106 0x6A j
0153 107 0x6B k
0154 108 0x6C l
0155 109 0x6D m
0156 110 0x6E n
0157 111 0x6F o
0160 112 0x70 p
0161 113 0x71 q
0162 114 0x72 r
0163 115 0x73 s
0164 116 0x74 t

LEXICON

ASCII 179

0165 117 0x75 u
0166 118 0x76 v
0167 119 0x77 w
0170 120 0x78 x
0171 121 0x79 y
0172 122 0x7A z
0173 123 0x7B { Left brace (left curly bracket)
0174 124 0x7C | Vertical bar
0175 125 0x7D } Right brace (right curly bracket)
0176 126 0x7E ~ Tilde
0177 127 0x7F DEL Delete

See Also
Definitions, trigraph sequences

asctime() — Time function (libc)
Convert broken-down time to text
#include <time.h>
char *asctime(const struct tm *timestruct);

The function asctime converts the data pointed to by timestruct into a text string of the form:

Wed Dec 10 13:57:33 1987\n\0

The structure pointed to by timestruct must first be initialized by either the function gmtime or the
function localtime before it can be used by asctime. See the entry for tm for further information on
this structure.

asctime returns a pointer to the string it creates.

Example
This example uses asctime to display Universal Coordinated Time.

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{

printf(asctime(gmtime(NULL)));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.3.1
The C Programming Language, ed. 2, p. 256

See Also
ctime, date and time, gmtime, localtime, strftime, time_t, tm

Notes
asctime writes its string into a static buffer that will be written by another call to either asctime or
ctime.

The name ‘‘asctime’’ is short for ‘‘ASCII time’’; its use, however, is not limited to implementations on
ASCII systems.

The Standard describes the following algorithm with which asctime can generate its string:

LEXICON

180 asctime()

char *
asctime(const struct tm *timeptr)
{

static const char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static const char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;
}

asin() — Mathematics (libm)
Calculate inverse sine
#include <math.h>
double asin(double arg);

asin calculates the inverse sine of arg, which must be in the range of from -1.0 to 1.0; any other
value will trigger a domain error.

asin returns the result, which is in the range π/2 to π.

Cross-references
Standard, §4.5.2.2
The C Programming Language, ed. 2, p. 251

See Also
acos, atan, atan2, cos, mathematics, sin, tan

assert() — Diagnostics (assert.h)
Check assertion at run time
#include <assert.h>
void assert(int expression);

assert checks the value of expression. If expression is false (zero), assert sends a message into the
standard error stream and calls abort. It is useful for verifying that a necessary condition is true.

The error message includes the text of the assertion that failed, the name of the source file, and the
line within the source file that holds the expression in question. These last two elements consist,
respectively, of the values of the preprocessor macros _ _FILE_ _ and _ _LINE_ _.

Because assert calls abort, it never returns.

To turn off assert, define the macro NDEBUG prior to including the header assert.h. This forces
assert to be redefined as

#define assert(ignore)

LEXICON

asin() — assert() 181

Example
This program generates an error if your implementation does not conform to the Standard.

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{
#ifdef STDC

assert(STDC);
#else

fprintf(stderr, "Not ANSI C\n");
#endif

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.2.1.1
The C Programming Language, ed. 2, p. 253

See Also
abort, assert.h, diagnostics, NDEBUG

Notes
The Standard requires that assert be implemented as a macro, not a library function. If a program
suppresses the macro definition in favor of a function call, its behavior is undefined.

Turning off assert with the macro NDEBUG will affect the behavior of a program if the expression
being evaluated normally generates side effects.

assert is useful for debugging, and for testing boundary conditions for which more graceful error
recovery has not yet been implemented.

assert.h — Header
Header for assertions
#include <assert.h>

assert.h is the header file that defines the macro assert.

Cross-references
Standard, §4.2
The C Programming Language, ed. 2, pp

See Also
assert, diagnostics, header

atan() — Mathematics (libm)
Calculate inverse tangent
#include <math.h>
double atan(double arg);

atan calculates the inverse tangent of arg, which may be any real number.

atan returns the result, which is in the range of from -π/2 to π/2 radians.

LEXICON

182 assert.h — atan()

Cross-references
Standard, §4.5.2.3
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan2, cos, mathematics, sin, tan

atan2() — Mathematics (libm)
Calculate inverse tangent
#include <math.h>
double atan2(double num, double den);

atan2 calculates the inverse tangent of the quotient of its arguments num and den. These may be
any real number except zero.

atan2 returns the result, which is in the range of from -π to π. The sign of the return value is
drawn from the signs of both arguments.

Cross-references
Standard, §4.5.2.4
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, cos, mathematics, sin, tan

Notes
atan2 is provided in addition to atan, to compute arc tangents for numbers that yield very large
results.

atexit() — General utility (libc)
Register a function to be performed at exit
#include <stdlib.h>
int atexit(void (*function)(void));

atexit registers a function to be executed when the program exits. function points to the function to
be executed. The registered function returns nothing. atexit provides a way to perform additional
clean-up operations before a program terminates.

The functions that atexit registers are executed when the program exits normally, i.e., when the
function exit is called or when main returns. The functions registered by atexit can perform clean-
up is needed, beyond what is ordinarily performed when a program exits.

atexit returns zero if function could be registered, and nonzero if it could not.

Example
This example sets one function that displays messages when a program exits, and another that
waits for the user to press a key before terminating.

#include <stdlib.h>
#include <stdio.h>

void
lastgasp(void)
{

perror("Type return to continue");
}

LEXICON

atan2() — atexit() 183

void
get1(void)
{

getchar();
}

main(void)
{

/* set up get1() as last exit routine */
atexit(get1);
/* set up lastgasp() as exit routine */
atexit(lastgasp);

/* exit, which invokes exit routines */
exit(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.4.2
The C Programming Language, ed. 2, p. 253

See Also
exit, general utility

Notes
atexit must be able to register at least 32 functions.

Functions registered by atexit are executed when exit is called. They are executed in reverse order
of registration.

atof() — General utility (libc)
Convert string to floating-point number
#include <stdlib.h>
double atof(const char *string);

atof converts the string pointed to by string into a double-precision floating point number, and
returns the number it has built. It is equivalent to the call

strtod(string, (char **)NULL);

string must point to the text representation of a floating-point number. It can contain a leading
sign, any number of decimal digits, and a decimal point. It can be terminated with an exponent,
which consists of the letters ‘e’ or ‘E’ followed by an optional leading sign and any number of
decimal digits. For example,

1.23
123e-2
123E-2

are strings that can be converted by atof.

atof ignores leading blanks and tabs; it stops scanning when it encounters any unrecognized
character.

Cross-references
Standard, §4.10.1.1
The C Programming Language, ed. 2, p. 251

LEXICON

184 atof()

See Also
atoi, atol, general utility, strtod, strtol, strtoul

Notes
The character that atof recognizes as representing the decimal point depends upon the program’s
locale, as set by the function setlocale. See localization for more information.

The functionality of atof has largely been subsumed by the function strtod, but the Standard
includes it because it is used so widely in existing code.

atoi() — General utility (libc)
Convert string to integer
#include <stdlib.h>
int atoi(const char *string);

atoi converts the string pointed to by string into an integer. It is equivalent to the call

(int)strtol(string, (char **)NULL, 10);

The string pointed to by string may contain a leading sign and any number of numerals. atoi
ignores all leading white space. It stops scanning when it encounters any non-numeral other than
the leading sign character and returns the int it has built.

Cross-references
Standard, §4.10.1.2
The C Programming Language, ed. 2, p. 251

See Also
atof, atol, general utilities, strtod, strtol, strtoul

Notes
The functionality of atoi has largely been subsumed by the function strtol, but the Standard
includes it because it is used so widely in existing code.

atol() — General utility (libc)
Convert string to long integer
#include <stdlib.h>
long atol(const char *string);

atol converts the string pointed to by string to a long. It is equivalent to the call

strtol(string, (char **)NULL, 10);

The string pointed to by string may contain a leading sign and any number of numerals. atol
ignores all leading white space. It stops scanning when it encounters any non-numeral other than
the leading sign and returns the long it has built.

Cross-references
Standard, §4.10.1.3
The C Programming Language, ed. 2, p. 251

See Also
atof, atol, general utilities, strtod, strtol, strtoul

Notes
The functionality of atol has largely been subsumed by the function strtol, but the Standard
includes it because it is used so widely in existing code.

LEXICON

atoi() — atol() 185

auto — C keyword
Automatic storage duration
auto type identifier

The storage-class specifier auto declares that identifier has automatic storage duration.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 210

See Also
storage-class specifiers, storage duration

aux — Operating system device
Logical device for serial port

MS-DOS gives names to its logical devices. Let’s C uses these names to access these devices via
MS-DOS.

aux is the logical device for the the serial port auxiliary device.

Example
The following example opens the auxiliary port and sends it the string hello, world.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

FILE *fp, *fopen();
if ((fp = fopen("aux", "w")) != NULL) {

printf("aux enabled\n");
fprintf(fp, "hello, world.\n");

}
else printf("aux: cannot open.\n");
return EXIT_SUCCESS;

}

See Also
com1, con, crts, lpt1, nul, operating system devices

LEXICON

186 auto — aux

B

behavior — Definition
The term behavior refers to the way an implementation reacts to a given construct. When a
construct conforms to the descriptions within the Standard, then its behavior should be predictable
from the Standard’s descriptions alone. When a construct does not conform to the descriptions
within the Standard, then one of the following four types of abnormal behavior results:

Unspecified behavior
This is behavior produced by a correct construct for which the Standard supplies no
description. An example is the order in which a program evaluates the arguments to a
function.

Undefined behavior
This is behavior produced by an erroneous construct for which the Standard supplies no
description. An example of a construct that generates undefined behavior is attempting to
divide by zero.

The Standard does not mandate how a conforming implementation reacts when it detects a
construct that will produce undefined behavior: it may pass over it in silence, with
unpredictable (and usually unwelcome) results; generate a diagnostic message and continue
to translate or execute; or stop translation or execution and produce a diagnostic message.

A portable program, however, should not depend upon undefined behavior performing in
any predictable way. Undefined behavior is precisely that: undefined. Whatever happens,
happens — from printing an error message to reformatting your hard disk.

Implementation-defined behavior
This is behavior produced by a correct construct that is specific to a given implementation.
An example is the number of register objects that can actually be loaded into machine
registers. The Standard requires that the implementation document all such behaviors.

Locale-specific behavior
This is behavior that depends upon the program’s locale. An example is the character that
the function atof recognizes as marking a decimal point. The Standard requires that an
implementation document all such behaviors.

Cross-reference
Standard, §1.6

See Also
compliance, Definitions

Notes
For a program to be maximally portable, it should not rely on any of the above deviants of behavior.

BIOS — Definition
BIOS is an acronym for basic input/output system. In most machines, the BIOS consists of a group
of routines carried in the read-only memory (ROM). These routines contain basic instructions for
accessing the various aspects of the hardware. MS-DOS uses these routines to help protect itself
from the peculiarities of the hardware on which it is running.

See Also
Definitions, STDIO

LEXICON

behavior — BIOS 187

bios.h — Header
Outline ROM BIOS data area

bios.h is a header file to be used with programs that directly access the IBM PC’s BIOS data area. It
declares a structure that defines the entire BIOS data area, for examination and alteration.

The sample program biosdata.c, which is included with Let’s C, uses bios.h to take a ‘‘snapshot’’ of
the BIOS data area and print a summary of it.

See Also
BIOS data area, header, peek, poke

bit — Definition
The term bit is an abbreviation for binary digit. It is the element of storage that can hold either of
exactly two values. A contiguous sequence of bits forms a byte. A byte consists of at least eight
bits. The macro CHAR_BIT specifies the number of bits that constitute a byte for the execution
environment.

On most machines a bit cannot be addressed directly; a byte is the smallest unit of storage that can
be addressed.

Cross-reference
Standard, §1.6

See Also
bit-field, bitwise operations, byte, Definitions

bit-fields — Definition
A bit-field is a member of a structure or union that is defined to be a cluster of bits. It provides a
way to represent data compactly. For example, in the following structure

struct example {
int member1;
long member2;
unsigned int member3 :5;

}

member3 is declared to be a bit-field that consists of five bits. A colon ‘:’ precedes the integral
constant that indicates the width, or the number of bits in the bit-field. Also, the bit-field declarator
must include a type, which must be one of int, signed int, or unsigned int. If a bit-field is declared
to be in type int, the implementation defines whether the highest bit is used to hold the bit-field’s
sign.

The Standard states, ‘‘An implementation may allocate any addressable storage unit large enough to
hold a bit-field.’’ This suggests that if a bit-field is defined as holding more bits than are normally
held by an int, then the implementation may place the bit-field into a larger data object, such as a
long.

If two bit-fields are declared side-by-side and together are small enough to fit into an int, then they
must be packed together. However, if together they are too large to fit into an int, then the
implementation determines whether they are in separate objects or if the second bit-field is partly
within the object that holds the first and partly within a second object.

The implementation also defines where the bit-field resides within its object — whether it is built
from the low-order bit up, or from the high-order bit down. For example, consider an
implementation in which an int has 16 bits. If a five-bit bit-field is declared to be part of an int,
and that bit-field is initialized to all ones, then the int may appear like this under one

LEXICON

188 bios.h — bit-fields

implementation:

0000 0000 0001 1111 /* low-order bits set */

and like this under another:

1111 1000 0000 0000 /* high-order bits set */

A bit-field that is not given a name may not be accessed. Such an object is useful as ‘‘padding’’
within an object so that it conforms to a template designed elsewhere.

A bit-field that is unnamed and has a length of zero can be used to force adjacent bit-fields into
separate objects. For example, in the following structure

struct example {
int member1;
int member2 :5;
int :0;
int member3 :5;

};

the zero-length bit-field forces member2 and member3 to be written into separate objects,
regardless of the default behavior of the implementation.

Finally, it is not allowed to take the address of a bit-field.

Cross-references
Standard, §3.5.2.1
The C Programming Language, ed. 2, pp

See Also
bit, bit map, byte, Definitions

Notes
Because bit-fields have many implementation-specific properties, they are not considered to be
highly portable. Bit-fields use minimal amounts of storage, but the amount of computation needed
to manipulate and access them may negate this benefit. Bit-fields must be kept in integral-sized
objects because many machines cannot access a quantity of storage smaller than a ‘‘word’’ (a word
is generally used to store an int).

bit map — Definition
A bit map is a string of bits in which each bit has a symbolic, rather than numeric, value.

See Also
bit, byte, Definitions

Notes
C permits the manipulation of bits within a byte through the use of bit field routines. These
generate code rather than calls to routines. Bit fields are generally less efficient than masking
because they always generate masking and shifting.

block — Definition
A block is a set of statements that forms one syntactic unit. It can have its own declarations and
initializations.

In C terminology, a block is marked off by braces ‘{ }’. Block-scoped variables are visible only in the
block in which they are declared.

LEXICON

bit map — block 189

Cross-references
Standard, §3.6.2
The C Programming Language, ed. 2, p. 55

See Also
auto, compound statement, Definitions, scope

Notes
Another term for ‘‘block’’ is compound statement.

break — C keyword
Exit unconditionally from loop or switch
break;

break is a statement that causes the program to exit immediately from the smallest enclosing
switch, while, for, or do statement.

Example
For an example of this statement, see printf.

Cross-references
Standard, §3.6.6.3
The C Programming Language, ed. 2, p. 64

See Also
C keywords, continue, goto, statements, return

bsearch() — General utility (libc)
Search an array
#include <stdlib.h>
void *bsearch(const void *item, const void *array, size_t number,

size_t size, int (*comparison)(const void *arg1, const char *arg2));

bsearch searches a sorted array for a given item.

item points to the object sought. array points to the base of the array; it has number elements, each
of which is size bytes long. Its elements must be sorted into ascending order before it is searched by
bsearch.

comparison points to the function that compares item with an element of array. comparison must
return zero if its arguments match, a number greater than zero if the element pointed to by arg1 is
numerically greater than the element pointed to by arg2, and a number less than zero if the element
pointed to by arg1 is numerically less than the element pointed to by arg2.

bsearch returns a pointer to the array element that matches item. If no element matches item, then
bsearch returns NULL. If more than one element within array matches item, which element is
matched is unspecified.

Example
This example uses bsearch to translate English into ‘‘bureaucrat-ese’’.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

LEXICON

190 break — bsearch()

struct syntab {
char *english, *bureaucratic;

} cdtab[] = {
/* The left column is in alphabetical order */

"affect", "impact",
"after", "subsequent to",
"building", "physical facility",
"call", "refer to as",
"do", "implement",

"false", "inoperative",
"finish", "finalize",
"first", "initial",
"full", "in-depth",
"help", "facilitate",

"lie", "inoperative statement",
"order", "prioritize",
"talk", "interpersonal communication",
"then", "at that point in time",
"use", "utilize"

};

int
comparator(key, item)
char *key;
struct syntab *item;
{

return(strcmp(key, item->english));
}

main(void)
{

struct syntab *ans;
char buf[80];

for(;;) {
printf("Enter an English word: ");
fflush(stdout);

if(gets(buf) || !strcmp(buf, "quit") == NULL)
break;

if((ans = bsearch(buf, (void *)cdtab,
sizeof(cdtab)/ sizeof(struct syntab),
sizeof(struct syntab),
comparator)) == NULL)

printf("%s not found\n");

else
printf("Don’t say \"%s\"; say \"%s\"!\n",

ans->english, ans->bureaucratic);
}

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.5.1
The C Programming Language, ed. 2, p. 253

LEXICON

bsearch() 191

See Also
qsort, searching-sorting

byte — Definition
A byte is a contiguous set of at least eight bits. It is the unit of storage that is large enough to hold
each character within the basic C character set. It is also the smallest unit of storage that a C
program can address.

The least significant bit is called the low-order bit, and the most significant bit is the high-order bit.

In terms of C programming, a byte is synonymous with the data type char: a char is defined to be
equal to one byte’s worth of storage. The macro CHAR_BIT gives the number of bits in a byte for
the execution environment.

Cross-reference
Standard, §1.6

See Also
bit, char, Definitions

byte ordering — Technical information
Describe order of bytes

Byte ordering is the order in which a given machine stores successive bytes of a multibyte data
item. Different machines order bytes differently.

The following example displays a few simple examples of byte ordering:

#include <stddef.h>
#include <stdio.h>
#include <stddef.h>

main(void)
{

union
{

char b[4];
int i[2];
long l;

} u;
u.l = 0x12345678L;

printf("%x %x %x %x\n",
u.b[0], u.b[1], u.b[2], u.b[3]);

printf("%x %x\n", u.i[0], u.i[1]);
printf("%lx\n", u.l);
return(EXIT_SUCCESS);

}

When run on the 68000 or the Z8000, the program gives the following results:

12 34 56 78
1234 5678
12345678

As you can see, the order of bytes and words from low to high memory is the same as is represented
on the screen.

When run on a PDP-11, however, the program gives these results:

LEXICON

192 byte — byte ordering

34 12 78 56
1234 5678
12345678

As you can see, the PDP-11 inverts the order of words in memory.

Finally, when the program is run on the i8086 you see these results:

78 56 34 12
5678 1234
12345678

The i8086 inverts both words and long words.

See Also
Language, technical information

LEXICON

byte ordering 193

C

cabs() — Extended function (libm)
Complex absolute value function
#include <xmath.h>
double cabs(struct { double r, i; } z);

cabs computes the absolute value, or modulus, of its complex argument z. The absolute value of a
complex number is the length of the hypotenuse of a right triangle whose sides are given by the real
part r and the imaginary part i. The result is the square root of the sum of the squares of the parts.

See Also
extended mathematics, hypot

Notes
To conform to the ANSI Standard, cabs has been moved from the header math.h to the header
xmath.h. This may require that some code be altered.

cabs is not described in the ANSI Standard. Any program that uses it does not conform strictly to
the Standard, and may not be portable to other compilers or environments.

calloc() — General utility (libc)
Allocate and clear dynamic memory
#include <stdlib.h>
void *calloc(size_t count, size_t size);

calloc allocates a portion of memory large enough to hold count items, each of which is size bytes
long. It then initializes every byte within the portion to zero.

calloc returns a pointer to the portion allocated. The pointer is aligned for any type of object. If it
cannot allocate the amount of memory requested, it returns NULL.

Example
For an example of this function, see stdarg.

Cross-references
Standard, §4.10.3.1
The C Programming Language, ed. 2, p. 167

See Also
alignment, free, general utilities, malloc, realloc

Notes
If count or size is equal to zero, then the behavior of calloc is implementation defined: calloc returns
either NULL or a unique pointer. This is a quiet change that may silently break some existing code.

case — C keyword
Mark entry in switch table
case expression:

case is a label that introduces an entry within the body of a switch statement. The value of the
switch statement’s conditional expression is compared with the value of every case label’s
expression. When the two match, then the program jumps to the point marked by that case label
and execution continues from there. Execution continues until a break statement is encountered.

LEXICON

194 cabs() — case

Each case label must mark an expression whose value differs from those of every other case label
for that switch statement. See switch for more information.

Example
For an example, see printf.

Cross-references
Standard, §3.6.1
The C Programming Language, ed. 2, p. 58

See Also
break, C keywords, default, statements, switch

Notes
Every conforming implementation must be able to accept at least 257 case labels within a switch
statement.

cc — Command
Compiler controller
cc [options] file . . .

cc is the program that controls compilation. It guides files of source and object code through each
phase of compilation and linking. cc has many options to assist in the compilation of C programs;
in essence, however, all you need to do to produce an executable file from your C program is type cc
followed by the name of the file or files that hold your program. It checks whether the file names
you give it are reasonable, selects the right phase for each file, and performs other tasks that ease
the compilation of your programs.

File Names
cc assumes that each file name that ends in .c or .h is a C program and passes it to the C compiler
for compilation.

cc assumes that each file argument that ends in .s is in Mark Williams assembly language and
processes it with the assembler as; and that every file with the suffix .asm is written in Microsoft
macro assembly language, and attempts to assemble it with the macro assembler MASM.

cc assumes that all files with the suffix .m are assembly-language files that also use C preprocessor
instructions. cc will pass these files to the C preprocessor cpp, and pass its output to the
assembler as. This hybrid allows you to write assembly-language programs that are model-
independent. For an example of a .m file, see the Lexicon entry for as, the assembler. For more
information on building .m files, see the entry for larges.h.

cc also passes all files with the suffixes .obj or .lib unchanged to the linker MS-LINK.

How cc Works
cc normally works as follows: First, it compiles or assembles the source files, naming the resulting
object files by replacing the .c, .s, .m, or .asm suffixes with the suffix .obj. Then, it links the object
files with the C runtime startup routine and the standard C library, and leaves the result in file
file.exe. If only one object file is created during compilation, it is deleted after linking; however, if
more than one object file is created, or if an object file of the same name existed before you began to
compile, then the object file or files are not deleted.

Arguments and Wildcards
The option -na (for ‘‘no arguments’’) tells Let’s C that a program does not take command-line
arguments. This option may be used with or without the -ns option, which suppresses the linking

LEXICON

cc 195

of STDIO into your program.

The option -w (for ‘‘wildcard’’) tells Let’s C to include code in your program that will allow it to
expand the wildcard characters ‘?’ and ‘*’ in command-line arguments. For example, if program
example.exe is not built with the -w option, the command

example *.c

results in an argument count of two, and an argument list that contains two non-NULL members. If
example.exe is built with the -w option, Let’s C will include code so that your program will
automatically expand the wildcard argument *.c. The argument count and argument list are altered
to reflect the number of such files and their names, respectively.

If a program defines a global array char _cmdname[] that gives the name of the command, the -w
option fills in argv[0] with the command name and looks for environmental variables of the form
<name>HEAD and <name>TAIL. If found, these are added to argv[] before and after command-line
arguments, respectively. This option limits your program to 256 arguments at any one time. If you
happen to need to use more than 256 arguments, use the program msdoscvt, which is presented as
an example in the entry for exargs.

For example, the wc command is built with the -w option and defines

_cmdname = "wc";

If the current directory contains files a.c and b.c, and environmental variable WCHEAD is set to -l,
the command

wc *.c

has the same effect as the command

wc -l a.c b.c

that is, it counts the lines in a.c and b.c.

The arguments to main are defined as

main(argc, argv)
int argc; char *argv[];

On some systems, a third argument is available:

main(argc, argv, envp)
int argc; char *argv[], *envp[];

The envp argument is a NULL-terminated array of pointers to environmental variables, each of the
form var=value. If a program is compiled without the -w option, Let’s C passes an empty list as
envp. If a program is compiled with the -w option, Let’s C passes an envp that contains MS-DOS
environmental variables.

Options
The following lists all of cc’s command-line options. cc passes some options through to the linker
MS-LINK unchanged, and correctly interprets to it the options -o, -u, -y/, -yf, -ym, -yn, -ys, and -
yu.

A number of the options are esoteric and normally are not used when compiling a C program. The
following are the most commonly used options:

LEXICON

196 cc

-A invoke MicroEMACS when errors occur
-f include floating-point printf
-lname pass library libname.lib to linker
-o name call executable file name
-V print details of compiler’s actions
-VASM generate assembly-language output

-A MicroEMACS option. If an error occurs during compilation, cc automatically invokes the
MicroEMACS screen editor. The error or errors are displayed in one window and the source
code file in the other, with the cursor set to the line number indicated by the first error
message. Typing <ctrl-X>> moves to the next error, <ctrl-X>< moves to the previous error.
To recompile, close the edited file with <ctrl-Z>. Compilation will continue either until the
program compiles without error, or until you exit from the editor by typing <ctrl-U> followed
by <ctrl-X><ctrl-C>.

-c Compile option. Suppress linking and the removal of the object files.

-cc2l Use a LARGE-model version of the code generator cc2. This allows the creation of extremely
large programs, but runs more slowly than the default cc2, which is in SMALL model.

-Dname[=value]
Define name to the preprocessor, as if set by a #define directive. If value is present, it is used
to initialize the definition.

-E Expand option. Run the C preprocessor cpp and write its output onto the standard output.

-f Floating point option. Include library routines that perform floating-point arithmetic.
Because the floating-point routines require approximately five kilobytes of memory, the
standard C library does not include them; the -f option tells the compiler to include them. If
a program is compiled without the -f option but attempts to print a floating point number
during execution by using the e, f, or g format specifications to printf, the message

You must compile with -f option for floating point

will be printed and the program will exit.

-Idirectory
Include option. Specify the directory the preprocessor should search for files given in
#include directives, using the following criteria: If the #include statement reads

#include "file.h"

cc searches for file.h first in the source directory, then in the directory named in the -
Idirectory option, and finally in the system’s default directories. If the #include statement
reads

#include <file.h>

cc searches for file.h first in the directory named in the -Idirectory option, and then in the
system’s default directories. Multiple -Idirectory options are executed in their order of
appearance.

-K Keep option. Do not erase the intermediate files generated during compilation. Temporary
files will be written into the current directory. The -K option takes precedence over the -xt
option: when -K is set, the temporary files are always written into the directory in which the
source code is kept.

LEXICON

cc 197

-l name
library option. Pass the name of a library to the linker. cc expands -lname into libname.a.

-m Mini-make option: Compile file of source code only if it has been changed since its identically
changed object file was last compiled.

-na No arguments option. The compiled program does not use argc or argv. See Arguments and
wildcards, above, for more information.

-ns Do not link in stdio. If the standard I/O library is not needed, the -ns option produces much
smaller object modules.

-o name
Output option. Rename the executable file from the default file.exe to name.

-U name
Undefine symbol name. Use this option to undefine symbols that the preprocessor defines
implicitly, such as the name of the native system or machine.

-V Verbose option. cc prints onto the standard output a step-by-step description of each action
it takes.

Vstring
Variant option. Toggle (i.e., turn on or off) the variant string during the compilation. Options
marked Strict: generate messages that warn of the conditions in question. If you name an
option once in the CCHEAD environmental variable and again on the cc command line, these
two togglings will cancel each other out. cc recognizes the following variants:

-V80186 Output code that uses the instructions native to the Intel i80186 and i80286
microprocessors. This switch also works with the assembler as: assembly-
language programs that contain i80186/286 instructions will be assembled
correctly when the assembler is invoked using this option. Programs compiled
with this option cannot be run on an IBM PC or strictly compatible machines,
but will take full advantage of the instruction set of the IBM AT and its
compatibles. The code will also execute correctly on the NEC V20 and V30
processors. Default is off.

-VALIEN Enable the alien keyword. Under Let’s C, the alien keyword allows direct calls
of PL/M, Pascal, and FORTRAN functions and procedures. These differ from C
functions in the following ways: (1) C pushes arguments from right to left; the
other languages push from left to right. (2) C arguments are popped by the
calling function, whereas under the other languages arguments are popped by
the called function. (3) Let’s C appends an underbar character to the end of
every function name, whereas the other languages do not. Default is off.

-VASM Output assembly-language code. It can be used with the -VLINES option,
described below, to generate a line-numbered file of assembly language. Default
is off.

-VCSD Generate debugging information for csd, the Mark Williams C Source Debugger.

-VFLOAT Include floating point printf routines. Same as -f option, above.

-VLARGE LARGE-model output. Default is off.

-VLINES Generate line number information. Can be used with the option -S, described
above to generate assembly language output that uses line numbers. Default is
off.

LEXICON

198 cc

-VNDP Generate i8087 floating-point code. The code generated with this option will run
only on machines that have an i8087 mathematics co-processor. If this option
is not used, Let’s C automatically uses libraries that sense the presence of the
i8087: if an i8087 is present, floating point routines will be run on it; but if one
is not present, they will be emulated in software. Default is off.

-VOPT Turn on optimization. Default is off.

-VPSTR Put strings into the shared segment, if possible. Used to generate ROMable
code. Default is off.

-VQUIET Suppress all messages. Default is off.

-VSBOOK Strict: note deviations from The C Programming Language, ed. 2. Default is off.

-VSLCON Strict: int constant promoted to long because value is too big. Default is on.

-VSMALL Generate SMALL-model output. Default is on.

-VSMEMB Strict: check use of structure/union members for adherence to standard rules of
C. Default is on.

-VSNREG Strict: register declaration reduced to auto. Default is on.

-VSPVAL Strict: pointer value truncated. Default is off.

-VSRTVC Strict: risky types in truth contexts. Default is off.

-VSTAT Give statistics on optimization.

-VSTRICT Turn on all strict checking. Default is on.

-VSUREG Strict: note unused registers. Default is off.

-VSUVAR Strict: note unused variables. Default is on.

-V3GRAPH
Translate ANSI trigraphs. Default is off.

-w Wildcards option: the compiled program can take wildcards in its command line. See
Arguments and wildcards, above, for more information.

-x<key><directory>
Use the given directory as the location for one of the following: for compiler files if key is c;
libraries if key is l; output files if key is o; or temporary files if key is t.

-y/switch
Pass switch directly to MS-LINK.

-yf Force MS-LINK to create a linker command file. For more information on what a linker
command file is, see the Lexicon entry for MS-LINK.

-ym Force MS-LINK to create a map file. For more information on what a map file is, see the
Lexicon entry for MS-LINK.

-yn Reset the MS-LINK segments to 1,024, using the form /segments=1024 required by MS-
LINK versions 3.02 and later.

-ysnumber
Force MS-LINK to set the stack size to number, where number gives the number of bytes of
stack required, in decimal figures.

LEXICON

cc 199

-yuname
Undefine name for MS-LINK.

-Z Pause between passes and prompt for disk change. Used with the compiler using single-
sided disks.

See Also
as, cc0, cc1, cc2, cc3, commands, cpp, ld

cc0 — Definition
cc0 is the Let’s C preprocessor and parser. It performs all preprocessing tasks, and parses C
programs using the method of recursive descent. It then translates the program into a logical-tree
format.

See Also
cc, cc1, cc2, cc3, cpp, Definitions, preprocessing

cc1 — Definition
cc1 is the Let’s C code generator. This phase generates code from the trees created by the parser,
cc0. Code generation is table driven, with entries for each operator and addressing mode.

See Also
cc, cc0, cc2, cc3, cpp, Definitions

cc2 — Definition
cc2 is the optimizer/object generator phase of Let’s C. It optimizes the code generated by cc1, and
writes the object code.

Let’s C uses multiple optimization algorithms. One optimizes jump sequences: it eliminates
common code, optimizes span-dependent jumps, and removes jumps to jumps. The other function
scans the generated code repeatedly to eliminate unnecessary instructions.

The cc option -cc2l uses a LARGE-model version of cc2. This allows you to create extremely large
programs, but runs more slowly than the default version of cc2, which is in SMALL model.

See Also
cc, cc0, cc1, cc3, cpp, Definitions

cc3 — Definition
cc3 is the output phase of Let’s C that writes a file of assembly language rather than a relocatable
object module. This phase is optional. It allows you to examine the code generated by the compiler.
To produce an assembly-language output of a C program, use the -VASM option on the cc
command line. For example,

cc -VASM foo.c

tells cc to produce a file of assembly language called foo.s, instead of an object module.

See Also
cc, cc0, cc1, cc2, cpp, Definitions

LEXICON

200 cc0 — cc3

CCTAIL — Environmental variable
Variables at end of compilation command

CCTAIL is an environmental variable that is read by the cc command. When you issue a cc
command, cc reads CCTAIL and appends it to the end of the list of arguments you have given cc.

You should set CCTAIL in autoexec.bat to add options routinely to your cc commands. For
example, adding the command

set CCTAIL=-lm

to autoexec.bat ensures that the mathematics library libm.lib is always linked into your C
programs. Thus, typing the command

cc foo.c

will have the same effect as typing

cc foo.c -lm

See Also
cc, CCHEAD, environmental variable

ceil() — Mathematics (libm)
Integral ceiling
#include <math.h>
double ceil(double z);

The function ceil returns the ‘‘ceiling’’ of a function, or the smallest integer less than z. For example,
the ceiling of 23.2 is 23, and the ceiling of -23.2 is -23.

ceil returns the value expressed as a double.

Cross-references
Standard, §4.5.6.1
The C Programming Language, ed. 2, p. 251

See Also
fabs, floor, fmod, mathematics

char — C keyword
The data type char is the smallest addressable unit of data. It consists of one byte of storage, and it
can encode all of the characters that can be used to write a C program. sizeof(char) returns one by
definition, with all other data types defined as multiples thereof.

A char may be either signed or unsigned; this is up to the implementation. Let’s C uses a signed
char by default. If a char holds any of the characters that make up the C character set, then it is
positive. ANSI C allows the corresponding types signed char and unsigned char. Programmers can
create signed and unsigned versions of char where needed.

The range of values that can be encoded within a char are set by the macros CHAR_MIN and
CHAR_MAX. These are defined in the header limits.h. The minimum values of these macros depend
upon whether the implementation sign-extends a char when it is used in an expression. If the
implementation does sign extend, then CHAR_MIN is equal to SCHAR_MIN (at least -127) and
CHAR_MAX is equal to SCHAR_MAX (at least +127). If it does not sign extend, however,
CHAR_MIN is equal to zero and CHAR_MAX is equal to UCHAR_MAX (at least +255).

LEXICON

CCTAIL — char 201

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 211

See Also
signed char, types, unsigned char

character constant — Definition
A character constant is a constant that encodes a character or escape sequence. A character
constant consists of one or more characters or escape sequences that are enclosed within
apostrophes ´. To include a literal apostrophe within a character constant, use the escape sequence
\’.

A character is regarded as having type char as it is read, and it yields an object with type int. If a
character constant contains one character or escape sequence, then the numeric value of that
character is written into an int-length object. For example, under an implementation that uses
ASCII, the character constant ’a’ yields an int-length object with the value of 0x61. If a character
constant contains more than one character or escape sequence, the result is implementation-
defined.

Because the constant being read is regarded as having type char, the value of a character constant
can change from implementation to implementation, depending upon whether the implementation
uses a signed or unsigned char by default. For example, in an environment in which a char has
eight bits and uses two’s-complement arithmetic, the character constant ’\xFF’ will yield an int
with a value of either -1 or +255, depending upon whether a char is, respectively, signed or
unsigned by default. Let’s C uses signed chars by default.

A wide-character constant is a character constant that is formed of a wide character instead of an
ordinary, one-byte character. It is marked by the prefix ‘L’. For example, in the following

L’m’;

stores the numeric value of ‘m’ in the form of a wide character.

Example
For an example of using character constants in a program, see putchar.

Cross-references
Standard, §3.1.3.4
The C Programming Language, ed. 2, p. 193

See Also
constants, escape sequences

Notes
Although octal escape sequences are limited to three octal digits, hexadecimal escape sequences can
be arbitrary length. However, when the value of a hexadecimal escape sequence exceeds that which
can be represented in an int, behavior is defined by the implementation.

character display semantics — Definition
The Standard describes the semantics by which characters are displayed on an output device. The
active position is where the output device will print the next character produced by the function
fputc. On a video terminal, it usually is marked by a cursor. The locale defines the direction of
printing, whether from left to right, from right to left, or from top to bottom.

The following escape sequences can be embedded within a string literal or character constant to

LEXICON

202 character constant — character display semantics

affect the behavior of an output device:

\a Generate an alert signal. The alert may take the form of ringing a bell or printing a visual
signal on a screen.

\b Backspace: move the active position back one position. If the active position is already at the
beginning of the line, the behavior is undefined.

\f Form feed: move the active position to the beginning of the next page. On a hard-copy printer,
it feeds a fresh sheet of paper. On a video terminal, it may take the form of clearing the screen
and moving the cursor to the ‘‘home’’ position.

\n Newline: move the active position to the beginning of the next line.

\r Return: move the active position to the beginning of the current line.

\t Horizontal tab: move the active position to the beginning of the next horizontal tabulation field.
If the active position is already at or past the last horizontal tabulation field on the current line,
the behavior is undefined.

\v Vertical tab: move the active position to the beginning of the next vertical tabulation field. If
the active position is already at or past the last vertical tabulation field, the behavior is
undefined.

Every implementation must define each of these escape sequences as being a unique value that can
be stored in one char object.

Cross-reference
Standard, §2.2.2

See Also
Environment, escape sequence, trigraph sequences

character handling — Overview
#include <ctype.h>
The Standard’s repertoire of library functions includes 13 that test or alter individual characters, as
follows:

Character testing
isalnum Check if a character is a numeral or letter
isalpha Check if a character is a letter
iscntrl Check if a character is a control character
isdigit Check if a character is a numeral
isgraph Check if a character is printable
islower Check if a character is a lower-case letter
isprint Check if a character is printable
ispunct Check if a character is a punctuation mark
isspace Check if a character is white space
isupper Check if a character is a upper-case letter
isxdigit Check if a character is a hexadecimal numeral

Case mapping
tolower Convert character to lower case
toupper Convert character to upper case

All are declared in the header ctype.h.

LEXICON

character handling 203

The operation of all character-handling functions (with the exception of isdigit and isxdigit) is
modified by the program’s locale, as set by the function setlocale. This allows these function to test
and modify characters using a locale-specific character set. The calls

setlocale(LC_CTYPE, locale);

or

setlocale(LC_ALL, locale);

force these functions to use the locale-specific character set. See localization for more information.

Cross-references
Standard, §4.3
The C Programming Language, ed. 2, p. 248

See Also
character, ctype.h, extended character handling, Library

Notes
Although these functions are described as ‘‘character handling,’’ they are defined as taking an
argument of type int to allow them to accept the special value of EOF and locale-specific character
sets.

clearerr() — STDIO (stdio.h)
Clear a stream’s error indicator
#include <stdio.h>
void clearerr(FILE *fp);

When a file is manipulated, a condition may occur that would cause trouble should the program
continue. This could be an error (e.g., a read error), or the program may have read to the end of the
file. Most environments use two indicators to signal that such a condition has occurred: the error
indicator and the end-of-file indicator.

When an error occurs, the error indicator is set to a value that indicates what error occurred. The
end-of-file indicator is set when the end of a file is read. By checking these indicators, a program
can see if all is going well. A file may not be manipulated further until both indicators have been
reset to their normal values.

clearerr resets to normal the error indicator and the end-of-file indicator for the stream pointed to
by fp.

Cross-references
Standard, §4.9.10.1
The C Programming Language, ed. 2, p. 248

See Also
feof, ferror, perror, STDIO

Notes
The indicators are cleared when a file is opened or when the file-position indicator is reset by the
function rewind. Successful calls to fseek, fsetpos, or ungetc clear the end-of-file indicator.

LEXICON

204 clearerr()

CLK_TCK — Manifest constant
#include <time.h>
CLK_TCK is a manifest constant that is defined in the header time.h. It represents the number of
‘‘ticks’’ in a second. A ‘‘tick’’ is the unit of time measured by the function clock.

clock returns the type clock_t. To determine how many seconds a program required to run to the
given point, divide the value returned by clock by the value of CLK_TCK.

Example
For an example of using this macro in a program, see clock.

Cross-references
Standard, §4.12.1
The C Programming Language, ed. 2, p. 255

See Also
clock, clock_t, date and time

clock() —
Get processor time used
#include <time.h>
clock_t clock(void);

clock calculates and returns the amount of processor time a program has taken to execute to the
current point. Execution time is calculated from the time the program was invoked. This, in turn,
is set as a point from the beginning of an era that is defined by the implementation. For example,
under the COHERENT operating system, time is recorded as the number of milliseconds since
January 1, 1970, 0h00m00s UTC.

The value clock returns is of type clock_t. This type is defined in the header time.h. The Standard
defines it merely as being an arithmetic type capable of representing time. If clock cannot
determine execution time, it returns -1 cast to clock_t.

To calculate the execution time in seconds, divide the value returned by clock by the value of the
macro CLK_TCK, which is defined in the header time.h.

Example
This example measures the number of times a for loop can run in one second on your system. This
is approximate because CLK_TCK can be a real number, and because the program probably will not
start at an exact tick boundary.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

clock_t finish;
long i;

/* finish = about 1 second from now */
finish = clock() + CLK_TCK;
for(i = 0; finish > clock(); i++)

;

LEXICON

CLK_TCK — clock() 205

printf("The for() loop ran %ld times in one second.\n", i);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.2.1
The C Programming Language, ed. 2, p. 255

See Also
CLK_TCK, clock_t, date and time, difftime, mktime

clock_t — Type
System time
#include <time.h>

clock_t is a data type that is defined in the header time.h. It is an arithmetic type, and is the type
returned by the function clock.

The unit that clock_t holds is implementation-defined. The manifest constant CLK_TCK expands
to a number that expresses how of many of these units constitute one second of real time.

Example
For an example of using this type in a program, see clock.

Cross-references
Standard, §4.12.1
The C Programming Language, ed. 2, p. 255

See Also
CLK_TCK, clock, date and time, time_t

close() — Extended function (libc)
Close a file
short close(short fd);

close closes the file identified by the file descriptor fd, which was returned by creat, dup, or open.
close frees the associated file descriptor.

close returns -1 if an error occurs, such as its being handed a bad file descriptor. Otherwise, it
returns zero.

Because each program can have only a limited number of files open at any given time, programs
that process many files should close files whenever possible.

Example
For an example of this function, see the entry for open.

See Also
creat, extended miscellaneous, open

Notes
When a program exits, Let’s C automatically closes all files that had been opened via the STDIO
function fopen. However, you must explicitly call close to close all files that had been opened with
open, or the unclosed file will be truncated to zero bytes when the program exits.

LEXICON

206 clock_t — close()

cmp — Command
Compare bytes of two files
cmp [-ls] file1 file2 [skip1 skip2]

cmp is a command that is included with Let’s C. It compares file1 and file2 character by character,
for equality. If file1 is ‘-’, cmp reads the standard input.

Normally, cmp notes the first difference and prints the line and character position, relative to any
skips. If it encounters EOF on one file but not on the other, it prints the message ‘‘EOF on filen’’.
The following are the options that can be used with cmp:

-l Each differing byte by printing the positions and octal values of the bytes of each file.

-s Print nothing, but return the exit status.

If the skip counts are present, cmp reads skip1 bytes on file1 and skip2 bytes on file2 before it
begins to compare the two files.

The exit status is zero for identical files, one for non-identical files, and two for errors, e.g., bad
command usage or inaccessible file.

See Also
commands

commands — Overview
Let’s C includes a number of commands. They are listed below, with the command given on the left
and a description on the right.

Commands included with Let’s C:

cc The compiler driver
cmp Compare two files
cpp The C preprocessor
egrep String search utility
exetocom Convert .exe files to .com files
fixobj Edit object modules to allow cross-linking
make Programming discipline
me Microemacs screen editor
mwlib Librarian for libraries in MS-DOS format
MWS Mark Williams shell
nm Print symbol tables
pr Paginate text for printing
size Print size of a file
strip Remove debug tables from some executables
tail Print the end of a file
wc Count words/lines in ASCII files

Additional commands included with Let’s C Utilities:

diff Compare two files
ed Line editor
m4 Macro processor
sort Sort ASCII files
uniq List/destroy duplicate lines

LEXICON

cmp — commands 207

For more information on any of these commands, see its entry within the Lexicon.

See Also
DOS-specific features, MWS

comment — Definition
A comment is text that is embedded with a program but is ignored by the translator. It is intended
to guide the reader of the code.

A comment is introduced by the characters /*. The only exceptions are when these characters
appear within a string literal or a character constant. In these instances, the characters /* have no
special significance. When /* is read, all text is ignored until the characters */ are read. Once a
comment is opened, the translator does nothing with the text except scan it for multi-byte
characters and for the characters */ that close the comment.

The translator replaces a comment with a single white-space character; this is done during phase 3
of translation.

Cross-references
Standard, §3.1.9
The C Programming Language, ed. 2, p. 192

See Also
/, /, lexical elements, translation phases

Notes
The Standard’s definition of a comment does not allow comments to ‘‘nest.’’ That is, you cannot have
a comment within a comment. This may require that some code be revised. If you wish to exclude
some code from translation temporarily, a sounder practice is to use the preprocessing directives
#ifdef and #endif. For example,

#ifdef DEBUG
. . .

#endif

will include code only if DEBUG has been defined as being a macro.

It is possible to open a comment inadvertently. For example, the code

int *intptr, int1, int2;
. . .

int2 = int1/*intptr;

inadvertently creates a comment symbol out of the division operator ‘/’ and the pointer-dereference
operator ‘*’. Caveat utilitor.

compatible types — Definition
To judge whether two types are compatible, several factors must be considered.

Scalar types
First, the base types must be identical. Second, all specifiers must match, except for
signedness (i.e., it does not matter whether either or both are signed or unsigned). Third,
all type qualifiers must match. There are special semantics to determine whether qualified
objects are compatible to ensure that qualified types are not ‘‘hidden’’. See the entry type
qualifiers for more information.

LEXICON

208 comment — compatible types

Structures
For two structures to be compatible, they must have the same ‘‘tagged type’’. For example,
the structures

FILE struct1;
FILE struct2;

are compatible, because the tagged type of each is FILE. On the other hand, in the following
code

struct s1 { int s1_i } s1;
struct s2 { int s2_i } s2;

the structures s1 and s2 are not compatible.

Pointers
For two pointers to be compatible, they must point to the same type of object. Other
pointers may be compatible if they are suitably cast.

Cross-reference
Standard, §3.1.2.6, §3.5.2-4

See Also
type specifier, types

compile —
To compile a program means to translate it with a compiler. A compiler is a translator that takes a
set of high-level source instructions (i.e., C code) and produces a set of machine instructions that
implement the behavior that the source instructions describe.

See Also
Definitions, interpret, link

compliance — Definition
Compliance refers to the degree to which a program and an implementation conform to the
Standard’s descriptions of the C language.

A strictly conforming program is one that uses only the features of the language and the library
routines that are described within the Standard. It does not produce any behavior that is
implementation defined, unspecified, or undefined. It does not exceed any minimum maximum set
by the Standard. A strictly conforming program should be maximally portable to any environment
for which a conforming implementation exists.

A conforming program is any program that can be translated by a conforming implementation. It
may use library functions other than those described in the Standard, it may evoke non-Standard
behavior, and it may use extensions to the language that are recognized by the implementation.

There are two varieties of conforming implementation: conforming hosted implementation and
conforming freestanding implementation. A conforming hosted implementation is one that can
translate any strictly conforming program. A conforming freestanding implementation is one that
can translate any strictly conforming program whose use of macros and functions is restricted to
those defined in the headers float.h, limits.h, stdarg.h, and stddef.h.

Cross-reference
Standard, §1.7

LEXICON

compile — compliance 209

See Also
behavior, Definitions, limits

con — Operating system device
Logical device for the console

MS-DOS gives names to its logical devices. Let’s C uses these names to allow its STDIO library
routines to access these devices via MS-DOS. con is the logical device for the console.

Example
The following example demonstrates how to open the console device.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

FILE *fp, *fopen();
if ((fp = fopen("con", "w")) != NULL)

fprintf(fp, "con enabled.\n");
else printf("con: cannot open.\n");
return EXIT_SUCCESS;

}

See Also
aux, com1, lpt1, nul, operating system devices

const — C keyword
Qualify an identifier as not modifiable

The type qualifier const marks an object as being unmodifiable. An object declared as being const
cannot be used on the left side of an assignment, or have its value modified in any way. Because of
these restrictions, an implementation may place objects declared to be const into a read-only region
of storage.

Judicious use of const allows the translator to optimize more thoroughly, for it does not have to
include code to check whether the object has been modified.

Most of the prototypes for library functions use const to mark identifiers that are not modified by
the function.

Cross-references
Standard, §3.5.3
The C Programming Language, ed. 2, p. 40

See Also
type qualifier, volatile

constant expressions — Definition
A constant expression is one that represents a constant. Constant expressions are required in a
variety of situations: when the value of an enumeration constant is set; when the size of an array is
declared; as a constant to be used in a case statement; or as the size of a bit-field declaration.

Every constant expression must return a value that is within the range representable by its type.
No constant expression can contain assignment operators, increment or decrement operators,
function calls, or the comma operator. The only exception is when it used as the operand to the
operator sizeof.

LEXICON

210 con — constant expressions

The Standard describes the following varieties of constant expressions:

Address constant expression
This type of constant is an expression that points to an object or a function. The operators
[], *, &, ., and -> may be used to create an address constant, as may a pointer cast.

Arithmetic constant expression
This type of constant has an arithmetic type, and is one the following:

• character constant

• enumeration constant

• floating constant

• integer constant

• sizeof expression

An arithmetic constant expression can be cast only to another arithmetic type, except
when it is an operand to sizeof.

Integral constant expression
This type of constant has integral type, and is one of the following:

• character constant

• enumeration constant

• a floating constant that is the immediate operand of a cast.

• integer constant

• sizeof constant

When a constant expression is used to initialize a static variable, it must resolve, when translated,
into one of the following:

• An address constant.

• An address constant for an object type, plus or minus an integral constant expression.

• An arithmetic constant expression.

Initializers on local variables that are not declared static are not so restrictive.

Cross-references
Standard, §3.4
The C Programming Language, ed. 2, p. 38

See Also
constants, expressions, initializers, Language, void expression

Notes
Constant expressions can be combined when translated. The precision and accuracy of such
translation-time evaluation must be at least those of the execution environment. This requirement
was designed with cross-compilers in mind, where the execution environment might differ from
translation environment.

A constant expression may be resolved into a constant by the translator. Therefore, it can be used
in any circumstance that calls for a constant. For this reason, the Standard forbids the use in an

LEXICON

constant expressions 211

#if statement in a constant expression that queries the run-time environment. A program that does
include a #if statement that queries the environment will not run the same when translated by an
ANSI-compatible translator.

constants — Overview
A constant is a lexical element that represents a set numerical value. The four categories of
constants are as follows:

character constants A character constant or wide-character constant
enumeration constants A constant used in an enum
floating constants A floating-point number
integer constants An integer

Each type is determined by the form of the token. For example,

5L

defines a constant of type long, and

5.03

is a floating-point constant.

Cross-references
Standard, §3.1.3
The C Programming Language, ed. 2, pp. 192ff

See Also
constant expressions, lexical elements

continue — C keyword
Force next iteration of a loop
continue;

continue forces the next iteration of a for, while, or do loop. It works only upon the smallest
enclosing loop.

continue forces a loop to iterate by jumping to the end of the loop, which is where iteration
evaluation is made. For example, the code

while(statement) {
. . .

if (statement)
continue;

. . .
}

is equivalent to:

while(statement) {
. . .

if (statement)
goto end;

. . .
end: ;

}

Example
For an example of this statement, see mktime.

LEXICON

212 constants — continue

Cross-references
Standard, §3.6.6.2
The C Programming Language, ed. 2, p. 64

See Also
break, C keywords, goto, return, statements

conversions — Definition
The term conversion means to change the type of an object, function, or constant, either explicitly or
implicitly. Explicit conversion occurs when an object or function is cast to another type by a cast
operator. Implicit conversion occurs when the type of the object or function is changed by an
operator without a cast operator being used.

When an object or function is converted into a compatible type, its value does not change.

The following paragraphs summarize conversion for different types of objects.

Enumeration constants
These constants are always converted implicitly to ints.

Floating types
When a floating type is converted to an integral type, the fractional portion is thrown away.
If the value of the integral part cannot be represented by the new type, behavior is
undefined.

When a float is promoted to double or long double, its value is unchanged. Likewise, when
a double is promoted to a long double, its value is unchanged.

A floating type may be converted to a smaller floating type. If its value cannot be
represented by the new type, behavior is undefined. If its value lies within the range of
values that can be represented by the smaller type but cannot be represented precisely,
then its value is rounded to the next highest or next lowest value, depending upon the
implementation.

Integral types
A char, a short int, an enumerated type, or a bit-field, whether signed or unsigned, may be
used in any situation that calls for an int. The type to be promoted is converted to an int if
an int can hold all of its possible values. If an int cannot hold all of its possible values,
then it is converted to an unsigned int. This rule is called integral promotion. This
conversion retains the value of the type to be promoted, including its sign. Thus, it is called
a value-preserving promotion.

Some current implementations of C use a scheme for promotion that is called unsigned
preserving. Under this scheme, an unsigned char or unsigned short is always promoted to
unsigned int. Under certain circumstances, a program that depends upon unsigned-
preserving promotion will behave differently when subjected to value-preserving promotion,
and probably without warning. This is a quiet change that may break some existing code.

An integral type may be converted to a floating type. If its value lies within the range of
values that can be represented by the floating type, but it cannot be represented precisely,
then its value is rounded to the next highest or next lowest value, depending upon the
implementation.

Signed and unsigned integers
The following rules apply when a signed or an unsigned integer is converted to another
integral type:

LEXICON

conversions 213

• When a positive, signed integer is promoted to an unsigned integer of the same or
larger type, its value is unchanged.

• When a negative integer is promoted to an unsigned integer of the same or larger type,
it is first promoted to the signed equivalent of the unsigned type. It is then converted
to unsigned by incrementing its value by one plus the maximum value that can be held
by the unsigned type. On two’s complement machines, the bit pattern of the promoted
object does not changed. The only exception is that the sign bit is copied to fill any
extra bits of new type, should it be larger than the old type.

• When a signed or unsigned integer is demoted to a smaller, unsigned type, its value is
the non-negative remainder that occurs when the value of the original type is divided
by one plus the maximum value that can be held by the smaller type.

• When a signed or unsigned integer is demoted to a smaller, signed type, if its value
cannot be represented by the new type, the result is implementation-defined.

• When an unsigned integer is converted to a signed type of the same size, if its value
cannot be represented by the new type, the result is implementation-defined.

Usual arithmetic conversions
Many binary operators convert their operands and yield a result of a type common to both.
The rules that govern such conversions are called the usual arithmetic conversions. The
following lists the usual arithmetic conversions. If two conflict, the rule higher in the list
applies:

• If either operand has type long double, the other operand is converted to long double.

• If either operand has type double, the other operand is converted to double.

• If either operand has type float, the other operand is converted to float.

• If either operand has type unsigned long int, then the other operand is converted to
unsigned long int.

• If one operand has the type long int and the other operand has type unsigned int, the
other operand is converted to long int if that type can hold all of the values of an
unsigned int. Otherwise, both operands are promoted to unsigned long int.

• If either operand has type long int, the other operand is converted to long int.

• If either operand has type unsigned int, the other operand is converted to unsigned
int.

• If none of the above rules apply, then both operands have type int.

Cross-references
Standard, §3.2
The C Programming Language, ed. 2, pp. 197ff

See Also
explicit conversion, function designator, implicit conversion, integral promotions, Language,
lvalue, null pointer constant, value preserving, void expression

Notes
The ‘‘as if’’ rule gives implementors some leeway in applying the rules for usual arithmetic
conversions. For example, the conversion rules specify that operands of type char must first be
widened to type int before the operation is performed; however, if the same result would be
produced by performing the operation on char operands, then the operands need not be widened.

LEXICON

214 conversions

Because the Standard now allows single-precision floating-point arithmetic on float operands, some
round-off error could occur. Casts will force the operands in question to be promoted, and the
operation to be carried out with the wider type.

cos() — Mathematics (libm)
Calculate cosine
#include <math.h>
double cos(double radian);

cos calculates and returns the cosine of its argument radian, which must be expressed in radians.

Example
For an example of this function, see sin.

Cross-references
Standard, §4.5.2.5
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, atan2, mathematics, sin, tan

cosh() — Mathematics (libm)
Calculate hyperbolic cosine
#include <math.h>
double cosh(double value);

cosh calculates and returns the hyperbolic cosine of value. A range error will occur if the argument
is too large.

Cross-references
Standard, §4.5.3.1
The C Programming Language, ed. 2, p. 251

See Also
mathematics, sinh, tanh

cpp — Command
C preprocessor
cpp [option...] [file...]

The command cpp calls the preprocessor/parser cc0 to perform C preprocessing on C programs. It
performs the operations described in section 3.8 of the Standard; these include file inclusion,
conditional code selection, constant definition, and macro definition. See the entry on
preprocessing for a full description of the C’s preprocessing language.

cpp reads each input file, or stdin if no file is specified; processes directives, and writes its product
on stdout. If the option -E is not used, cpp also writes into its output statements of the form #n
filename, so that the parser will be able to connect its error messages and debugger output with the
original line numbers in your source files.

Options
The following summarizes cpp’s options:

LEXICON

cos() — cpp 215

-DVARIABLE
Define VARIABLE for the preprocessor at compilation time. For example, the command

cc -DLIMIT=20 foo.c

tells the preprocessor to define the variable LIMIT to be 20. The compiled program acts as
though the directive #define LIMIT 20 were included before its first line.

-E Strip all comments and line numbers from the source code. This option is used to
preprocess assembly-language files or other sources, and should not be used with the other
compiler phases.

-I directory
C allows two types of #include directives in a C program, i.e., #include "file.h" and
#include <file.h>. The -I option tells cpp to search a specific directory for the files you have
named in your #include directives, in addition to the directories that it searches by default.
You can have more than one -I option on your cc command line.

-o file
Write output into file. If this option is missing, cpp writes its output onto stdout, which
may be redirected.

-UVARIABLE
Undefine VARIABLE, as if an #undef directive were included in the source program. This is
used to undefine the variables that cpp defines by default.

See Also
cc, preprocessing

creat() — Extended function (libc)
Create/truncate a file
short creat(char *file, short mode);

creat creates a new file or truncates an existing file. It returns a file descriptor that identifies file for
subsequent system calls. If file already exists, its contents are erased.

creat ignores its mode argument. This argument exists for compatibility with implementations of
creat under UNIX and related operating systems.

If the call is successful, creat returns a file descriptor. It returns -1 if it could not create the file,
typically because of insufficient system resources, or nonexistent path.

Example
For an example of this routine, see the entry for open.

See Also
extended miscellaneous, fopen, fdopen

csreg() — i8086 support (libc)
Get value from CS register
#include <dos.h>
unsigned csreg(void)

csreg returns the value from the i8086 CS register, which points to the base of the code segment.

Example
The following example uses the functions csreg, dsreg, esreg, and ssreg to print the contents of the
segment registers.

LEXICON

216 creat() — csreg()

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>

main(void)
{

printf("csreg=%04x\n", csreg());
printf("dsreg=%04x\n", dsreg());
printf("esreg=%04x\n", esreg());
printf("ssreg=%04x\n", ssreg());
return EXIT_SUCCESS;

}

See Also
dsreg, esreg, i8086 support, ssreg

ctime() — Time function (libc)
Convert calendar time to text
#include <time.h>
char *ctime(const time_t *timeptr);

The function ctime reads the calendar time pointed to by timeptr, and converts it into a string of the
form

Tue Dec 10 14:14:55 1987\n\0

ctime is equivalent to:

asctime(localtime(timeptr));

timeptr points to type time_t, which is defined in the header time.h.

Example
This example displays the current time.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

time_t t;
time(&t);

printf(ctime(&t));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.3.2
The C Programming Language, ed. 2, p. 256

See Also
asctime, date and time, gmtime, localtime, strftime, time_t

LEXICON

ctime() 217

ctype.h — Header
Header for character-handling functions
#include <ctype.h>

ctype.h is the header file that declares the functions used to handle characters. These are as
follows:

isalnum Check if a character is a numeral or letter
isalpha Check if a character is a letter
iscntrl Check if a character is a control character
isdigit Check if a character is a numeral
isgraph Check if a character is printable
islower Check if a character is a lower-case letter
isprint Check if a character is printable
ispunct Check if a character is a punctuation mark
isspace Check if a character is white space
isupper Check if a character is a upper-case letter
isxdigit Check if a character is a hexadecimal numeral
tolower Convert character to lower case
toupper Convert character to upper case

Cross-references
Standard, §4.3
The C Programming Language, ed. 2, p. 248

See Also
character handling, header, xctype.h

LEXICON

218 ctype.h

D

daemon — Definition
A daemon, in the context of C programming, is a process that is designed to perform a particular
task or control a particular device without requiring the intervention of a human operator.

See Also
Definitions, process

date and time — Overview
#include <time.h>
The Standard describes nine functions that can be used to represent date and time, as follows:

Time conversion
asctime Convert broken-down time to text
ctime Convert calendar time to text
gmtime Convert calendar time to Universal Coordinated Time
localtime Convert calendar time to local time
strftime Format locale-specific time

Time manipulation
clock Get processor time used by the program
difftime Calculate difference between two times
mktime Convert broken-down time into calendar time
time Get current calendar time

These functions use the following structures:

clock_t System time
time_t Calendar time
tm Broken-down time

Let’s C defines time_t as a 32-bit number that holds the number of seconds since January 1, 1970,
0h00m00s UTC.

The structure tm is defined as follows:

typedef struct tm {
int tm_sec; /* second [0-60] */
int tm_min; /* minute [0-59] */
int tm_hour;/* hour [0-23]: 0 = midnight */
int tm_mday;/* day of the month [1-31] */
int tm_mon; /* month [0-11]: 0=January */
int tm_year;/* year since 1900 A.D. */
int tm_wday;/* day of week [0-6]: 0=Sunday */
int tm_yday;/* day of the year [0-366] */
int tm_isdst;/* daylight savings time flag */

} tm_t;

The member tm_sec can hold 61 seconds. This is done so that it can hold the ‘‘leap seconds’’ that
are used internationally to help coordinate atomic clocks with pulsars and solar time.

Finally, the manifest constant CLK_TCK is used to convert the value returned by the function clock
into seconds of real time. It is defined as being equivalent to one tick of the system clock. On the
IBM PC and compatibles, this is equivalent to 18.206481933 milliseconds. This value does not
change on machines that run at speeds higher than the standard 4.77 megahertz.

To print the local time, a program must perform the following tasks: First, read the system time with

LEXICON

daemon — date and time 219

time. Then, it must pass time’s output to localtime, which breaks it down into the tm structure.
Next, it must pass localtime’s output to asctime, which transforms the tm structure into an ASCII
string. Finally, it must pass the output of asctime to printf, which displays it on the standard
output.

Let’s C also includes numerous extensions to the ANSI Standard’s time functions. These
extensions increase the scope and accuracy of the Standard, and ease calculation of some time
elements. See the entry on extended time for more information.

Cross-references
Standard, §4.12
The C Programming Language, ed. 2, pp. 255ff

See Also
broken-down time, calendar time, daylight saving time, extended time, local time, Library,
TIMEZONE, universal coordinated time

dayspermonth() — Extended function (libc)
Return number of days in a given month
#include <xtime.h>
int dayspermonth(int month, int year);

dayspermonth returns the number of days in a given month of a given year A.D. month is the
number of the month in question, from one to 12. year is the year A.D. in which month appears.
Note that there is no year 0.

See Also
extended time, isleapyear, xtime.h

Notes
To conform to the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be rewritten.

DBL_DIG — Manifest constant
#include <float.h>
DBL_DIG is a manifest constant that is defined in the header float.h. It is an expression that
defines the number of decimal digits of precision representable in an object of type double. It is
defined to be ten.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 258

See Also
float.h, numerical limits

decimal-point character — Definition
The decimal-point character as being the character that marks the beginning of the fraction in a
floating-point number. How this character is represented depends upon the program’s locale. The
locale specifier LC_NUMERIC describes how a particular locale represents the decimal-point
character. In the C locale, it is the period ‘.’.

This character is used by the functions that convert a floating-point number to a string, or read a
string and convert it to a floating-point number, i.e., atof, fprintf, fscanf, printf, scanf, sprintf,
sscanf, strtod, vfprintf, vprintf, and vsprintf. This character is not used within C source; for

LEXICON

220 dayspermonth() — decimal-point character

example,

sqrt(1,2);

passes two integer constants to sqrt, even if ‘,’ is the decimal-point character for the current locale.
Therefore, to print a C source file use the C locale, even if the program establishes another locale.

Cross-reference
Standard, §4.1.1

See Also
Definitions, localization

declarations — Overview
A declaration gives the type, storage class, linkage, and scope of a given identifier.

If a declaration also causes storage to be allocated for the object declared, then it is called a
definition.

Declarators may be within a list, separated by commas. Each declarator has the type given at the
beginning of the list, although a declarator may also have additional type information. For example,

int example1, *example2;

declares two variables: example1 has type int, whereas example2 has type ‘‘pointer to int.’’

Objects may be initialized when they are declared. See initialization for more information.

Cross-references
Standard, §3.5
The C Programming Language, ed. 2, pp. 210ff

See Also
bit-fields, declarators, definition, initialization, Language, linkage, scope, storage-class
specifiers, type qualifiers, type specifiers

declarators — Overview
A declarator consists of an object being declared plus its array, pointer, and function modifiers.

For example,

int arrayname[10];

declares an array.

int functionname(int arg1, int arg2, char *arg3);

declares a function.

int *pointername;

declares a pointer.

An implementation must be able to support at least 12 levels of declarators. Most implementations
had given a lower limit.

Cross-references
Standard, §3.5.4
The C Programming Language, ed. 2, pp. 215ff

LEXICON

declarations — declarators 221

See Also
array declarators, declarations, function declarators, pointer declarators

Notes
To clarify some terminology that may be confusing:

A declaration encompasses the object declared, plus its specifiers, qualifiers, and levels of
declarators.

A declarator consists of the object declared, plus its levels of specifiers (which set array dimensions,
functions, or pointers).

A definition is a declaration that allocates storage.

default — C keyword
Default entry in switch table

default is a label that marks the default entry in the body of a switch statement. If none of the
case labels match the value of the switch statement’s conditional expression, then the switch
statement jumps to the point marked by the default label, and begins execution from there.

Example
For an example of this label, see printf.

Cross-references
Standard, §3.6.1
The C Programming Language, ed. 2, p. 58

See Also
C keywords, case, statements, switch

Notes
A switch statement is not required to include a default label, but it is good programming practice to
include one.

defined — C keyword
Check if identifier is defined
defined(identifier)
defined identifier

The Standard describes a new C keyword, defined. This keyword is used to check if identifier has
been defined as macro or manifest constant. The preprocessing directives

#if defined(identifier)

and

#if defined identifier

have exactly the same effect as the directive:

#ifdef identifier

The defined operator is permitted only within #if and #elif expressions. It may not be used in any
other context.

defined is not a reserved word. It can be used in more complex conditional statements, i.e.:

LEXICON

222 default — defined

#if LEVEL==3 && defined FOO

Cross-references
Standard, §3.8.1
The C Programming Language, ed. 2, p. 91

See Also
#if, #ifdef, keywords, preprocessing

definition — Definition
A definition is a declaration that also allocates storage for the item declared. For example,

int example[];

declares that example names an array of ints. Because the declaration does not say how large of an
array example is, no memory is reserved; thus, this is a declaration but not a definition.

However, the declaration

int example[10];

declares that example names an array of ten ints. Because the declaration states how large
example is, an appropriately sized portion of memory is reserved for it. Thus, this declaration is
also a definition.

declaration and definition are easily confused, because the words are used in ways that are
somewhat contrary to their normal English meanings.

A function definition is a special kind of definition that operates by its own rules. See function
definition for more details.

Cross-references
Standard, §3.5
The C Programming Language, ed. 2, pp. 201, 210

See Also
declarations, function definition

Definitions — Overview
These definitions apply to topics throughout this Lexicon:

address
alias
alignment
argument
arena
ASCII
behavior
BIOS
bit
bit-fields
bit map
block
buffer
byte
compliance
cc0
cc1

LEXICON

definition — Definitions 223

cc2
cc3
cc4
daemon
decimal-point character
directory
domain error
executable file
false
field
file
file descriptor
interrupt
letter
link
manifest constant
nested comments
nybble
object format
object
parameter
pattern
port
portability
process
pun
quiet change
random access
range error
ranlib
read-only memory
record
register
rvalue
spirit of C
stack
Standard
standard error
standard input
standard output
stream
string
true
Universal Coordinated Time
wildcards

Cross-references
Standard, §1.6

See Also

LEXICON

224 Definitions

diagnostics — Overview
The term diagnostics has two meanings in the ANSI Standard. The first is a set of macros that are
used to test an expression at run time. The second refers to the way Let’s C warns a user that a
program contains an error.

Run-Time Diagnostics
The Standard describes a mechanism whereby an expression can be tested at run time. The macro
assert tests the value of a given expression as the program runs. If the expression is false, assert
prints a message into the standard error stream and then calls abort.

assert is defined in the header assert.h. This header also defines the manifest constant NDEBUG. If
you define this macro before including assert.h, assert is redefined as follows:

#define assert(ignore)

This turns off assert. If an expression evaluated by assert has any side effects, using NDEBUG will
change the program’s behavior.

Diagnostic Warnings
Let’s C produces a diagnostic for every translation unit that contains one or more errors of syntax
rules or syntax constraints. A diagnostic can be either a fatal error, which prints a message and
aborts translation, or simply a warning that prints a message and allows translation to proceed.

Cross-reference
Standard, §2.1.1.3

See Also
Library

difftime() — Time function (libc)
Calculate difference between two times
#include <time.h>
double difftime(time_t newtime, time_t oldtime);

difftime subtracts oldtime from newtime, and returns the difference in seconds.

Both arguments are of type time_t, which is defined in the header time.h.

Example
This example uses difftime to show an arbitrary time difference.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

time_t t1, t2;

time(&t1);
printf("Press enter when you feel like it.\n");
getchar();
time(&t2);

printf("You waited %f seconds\n", difftime(t2, t1));
return(EXIT_SUCCESS);

}

LEXICON

diagnostics — difftime() 225

Cross-references
Standard, §4.12.2.2
The C Programming Language, ed. 2, p. 256

See Also
clock, date and time, mktime, time_t

digit — Definition
A digit is any of the following characters:

0 1 2 3 4 5 6 7 8 9

Cross-reference
Standard, §3.1.2

See Also
identifiers, nondigit

directory — Definition
A directory is a table that maps names to files. In other words, it associates the names of a file
with their locations on the mass storage device. Under some operating systems, directories are also
files, and can be handled like a file.

Directories allow files to be organized on a mass storage device in a rational manner, by function or
owner.

See Also
Definitions, file, path

div() — General utility (libc)
Perform integer division
#include <stdlib.h>
div_t div(int numerator, int denominator);

div divides numerator by denominator. It returns a structure of the type div_t. This structure
consists of two int members, one named quot and the other rem. div writes the quotient into quot
and the remainder into rem.

The sign of the quotient is positive if the signs of the arguments are the same; it is negative if the
signs of the arguments differ. The sign of the remainder is the same as the sign of the numerator.

If the remainder is non-zero, the magnitude of the quotient is the largest integer less than the
magnitude of the algebraic quotient. This is not guaranteed by the operators / and %, which merely
do what the machine implements for divide.

Example
For an example of this function, see memchr.

Cross-references
Standard, §4.10.6.2
The C Programming Language, ed. 2, p. 253

See Also
/, div_t, general utilities, ldiv

LEXICON

226 digit — div()

Notes
The Standard includes this function to permit a useful feature found in most versions of FORTRAN,
where the sign of the remainder will be the same as the sign of the numerator. Also, on most
machines, division produces a remainder. This allows a quotient and remainder to be returned from
one machine-divide operation.

If the result of division cannot be represented (e.g., because denominator is set to zero), the behavior
of div is undefined.

div_t — Type
Type returned by div()
#include <stdlib.h>

div_t is a typedef that is declared in the header stdlib.h. It is the type returned by the function div.

div_t is a structure that consists of two int members, one named quot and the other rem. div
writes its quotient into quot and its remainder into rem.

Example
For an example of using this type in a program, see memchr.

Cross-references
Standard, §4.10.6.2
The C Programming Language, ed. 2, p. 253

See Also
div, general utilities, integer arithmetic, stdlib.h

do — C keyword
Loop construct
do { statement } while(condition);

do establishes conditional loop. Unlike the loops established by for and while, the condition in a do
loop is evaluated after the operation is performed. This guarantees that at least one iteration of the
loop will be executed.

do always works in tandem with while. For example

do {
puts("Next entry? ");
fflush(stdout);

} while(getchar() != EOF);

prints a prompt on the screen and waits for the user to reply. The do loop is convenient in this
instance because the prompt must appear at least once on the screen before the user replies.

Cross-references
Standard, §3.6.5.2
The C Programming Language, ed. 2, p. 63

See Also
break, C keywords, continue, for, statements, while

LEXICON

div_t — do 227

dos.h — Header
Define MS-DOS functions and devices
#include <dos.h>

dos.h is the header that defines MS-DOS functions and devices. It is used with functions that
directly interface with MS-DOS, such as intcall.

See Also
header, intcall, signals/interrupts

DOS-specific features — Overview
Let’s C includes many features that relate specifically to the IBM PC, including the following:

• Source code
• Commands to be used with Let’s C
• Example programs

This manual also includes a number of articles that given information about the i8086 and MS-
DOS. See the Lexicon entry technical information for a list of these articles.

See Also
Lexicon, archive, command, example, technical information

double — C keyword
A double is a data type that represents a double-precision floating-point number. It is defined as
being at least as large as a float and no larger than a long double.

Like all floating-point numbers, a double consists of one sign bit, which indicates whether the
number is positive or negative; bits that encode the number’s exponent; and bits that encode the
number’s mantissa, or the number upon which the exponent works. The exponent often uses a
bias. This is a value that is subtracted from the exponent to yield the power of two by which the
fraction will be increased. The format of a double and the range of values that it can encode are set
in the following macros, all of which are defined in the header limits.h:

DBL_DIG
This holds the number of decimal digits of precision. This must be at least ten.

DBL_EPSILON
Where b indicates the base of the exponent (default, two) and p indicates the precision (or
number of base b digits in the mantissa), this macro holds the minimum positive floating-
point number x such that 1.0 + x does not equal 1.0, b^1-p. This must be at least 1E-9.

DBL_MAX
This holds the maximum representable floating-point number. It must be at least 1E+37.

DBL_MAX_EXP
This is the maximum integer such that the base raised to its power minus one is a
representable floating-point number.

DBL_MAX_10_EXP
This holds the maximum integer such that ten raised to its power is within the range of
representable finite floating-point numbers. It must be at least +37.

DBL_MANT_DIG
This gives the number of digits in the mantissa.

LEXICON

228 dos.h — double

DBL_MIN
This gives the minimum value encodable within a double. This must be at least 1E-37.

DBL_MIN_EXP
This gives the minimum negative integer such that when the base is raised to that power
minus one is a normalized floating-point number.

DBL_MIN_10_EXP
This gives the minimum negative integer such that ten raised to that power is within the
range of normalized floating-point numbers. It must be at least -37.

For information on common floating-point formats, see float.

Cross-references
Standard, §2.2.4.2, §3.1.2.4, §3.1.3.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
float, long double, types

dsreg() — i8086 support (libc)
Get value from DS segment register
#include <dos.h>
unsigned dsreg(void)

dsreg returns the value from from the i8086 DS register, which points to the base of the data
segment.

Example
For an example of this function, see the entry for csreg.

See Also
csreg, esreg, i8086 support, ssreg

dup() — Extended function (libc)
Duplicate a file descriptor
short dup(short fd);

dup duplicates the existing file descriptor fd, and returns the new descriptor. The returned value is
the smallest file descriptor that is not already in use by the calling process. It returns a negative
number when an error occurs, such as a bad file descriptor or no file descriptor available.

See Also
dup2, extended miscellaneous, fdopen, open

dup2() — Extended function (libc)
Duplicate a file descriptor
short dup2(short fd, newfd);

dup2 duplicates the file descriptor fd. Unlike its cousin dup, dup2 allows you to specify a new file
descriptor newfd, rather than have the system select one. If newfd is already open, the system
closes it before assigning it to the new file. dup2 returns the duplicate descriptor. It returns a
number less than zero when an error occurs, such as a bad file descriptor or no file descriptor
available.

LEXICON

dsreg() — dup2() 229

See Also
dup, extended miscellaneous, fdopen, open

LEXICON

230 dup2()

E

ecvt() — Extended function (libc)
Convert floating-point numbers to strings
char *ecvt(double d, int prec, int *dp, int *signp);

ecvt converts d into a null-terminated ASCII string of numerals with the precision of prec. Its
operation resembles that of printf’s %e operator. ecvt rounds the last digit and returns a pointer to
the result. On return, ecvt sets dp to point to an integer that indicates the location of the decimal
point relative to the beginning of the string, to the right if positive, to the left if negative. It sets
signp to point to an integer that indicates the sign of d, zero if positive and nonzero if negative.

Example
The following program demonstrates ecvt, fcvt, and gcvt.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* prototypes for extended functions */
extern char *ecvt(double d, int prec, int *dp, int *signp);
extern char *fcvt(double d, int w, int *dp, int *signp);
extern char *gcvt(double d, int prec, char *buffer);

main(void)
{

char buf[64];
double d;
int i, j;
char *s;

d = 1234.56789;
s = ecvt(d, 5, &i, &j);
/* prints ecvt="12346" i=4 j=0 */
printf("ecvt=\"%s\" i=%d j=%d\n", s, i, j);

strcpy(s, fcvt(d, 5, &i, &j));
/* prints fcvt="123456789" i=4 j=0 */
printf("fcvt=\"%s\" i=%d j=%d\n", s, i, j);

s = gcvt(d, 5, buf);
/* prints gcvt="1234.56789" */
printf("gcvt=\"%s\"\n", s);

return EXIT_SUCCESS;
}

See Also
extended miscellaneous, fcvt, frexp, gcvt, ldexp, modf, printf

Notes
ecvt performs conversions within static string buffers that are overwritten by each execution.

egrep — Command
Extended pattern search
egrep [option ...] [pattern] [file ...]

The command egrep searches each file for occurrences of pattern (also called a regular expression).
If no file is specified, it searches what is typed into the standard input. Normally, it prints each line

LEXICON

ecvt() — egrep 231

matching the pattern.

Wildcards
The simplest patterns accepted by egrep are ordinary alphanumeric strings. egrep can also process
patterns that include the following wildcard characters:

^ Match beginning of line, unless it appears immediately after ‘[’ (see below).

$ Match end of line.

* Match zero or more repetitions of preceding character.

. Match any character except newline.

[chars]
Match any one of the enclosed chars. Ranges of letters or digits may be indicated using ‘-’.

[^chars]
Match any character except one of the enclosed chars. Ranges of letters or digits may be
indicated using ‘-’.

\c Disregard special meaning of character c.

| Match the preceding pattern or the following pattern. For example, the pattern cat|dog
matches either cat or dog. A newline within the pattern has the same meaning as ‘|’.
Under MS-DOS, the ‘|’ has special meaning, and must be enclosed within apostrophes.

+ Match one or more occurrences of the immediately preceding pattern element; it works like
‘*’, except it matches at least one occurrence instead of zero or more occurrences.

? Match zero or one occurrence of the preceding element of the pattern.

(...) Parentheses may be used to group patterns. For example, (Ivan)+ matches a sequence of
one or more occurrences of the four letters ‘I’ ‘v’ ‘a’ or ‘n’.

Because the metacharacters ‘*’ and ‘?’, are also special to MS-DOS, patterns that contain those
literal characters must be quoted by enclosing pattern within double quotation marks.

Options
The following lists the available options:

-b With each output line, print the block number in which the line started (used to search file
systems).

-c Print how many lines match, rather than the lines themselves.

-e The next argument is pattern (useful if the pattern starts with ‘-’).

-f The next argument is a file that contains a list of patterns separated by newlines; there is
no pattern argument.

-h When more than one file is specified, output lines are normally accompanied by the file
name; -h suppresses this.

-l Print the name of each file that contains the string, rather than the lines themselves. This
is useful when you are constructing a batch file.

-n When a line is printed, also print its number within the file.

-s Suppress all output, just return exit status.

LEXICON

232 egrep

-v Print a line only if the pattern is not found in the line.

-y Lower-case letters in the pattern match lower-case and upper-case letters on the input
lines. A letter escaped with ‘\’ in the pattern must be matched in exactly that case.

Diagnostics
egrep returns an exit status of zero for success, one for no matches, and two for error.

See Also
commands

Notes
egrep uses a deterministic finite automaton (DFA) for the search. It builds the DFA dynamically, so
it begins doing useful work immediately. This means that egrep is considerably faster than earlier
pattern-searching commands, on almost any length of file.

else — C keyword
Conditionally execute a statement
else statement;

else is the flip side of if: if the condition described in the if statement equals zero, then the
statement introduced by else is executed. If, however, the condition described in the if statement is
nonzero, then the statement it introduces is executed and the statement introduced by else is
ignored.

An else statement is associated with the first preceding else-less if statement that is within the
same block, but not within an enclosed block. For example,

if(conditional1) {
if(conditional2)

statement1
} else

statement2

the else is associated with the if statement that uses conditional1, not the one that uses
conditional2. On the other hand, in the code

if(conditional1)
if(conditional2)

statement1
else

statement2

which does not use braces, the else is associated with the if statement that uses conditional2, not
the one that uses conditional1.

Example
For an example of this statement, see exit.

Cross-references
Standard, §4.6.4.1
The C Programming Language, ed. 2, pp. 55ff

See Also
if, statements, switch

LEXICON

else 233

enum — C keyword
Enumerated data type
enum identifier { enumerations }

An enum is a data type whose possible values are limited to a set of constants.

For example,

enum opinion { yes, no, maybe };

declares type opinion to have one of three constant values; these are identified by the members yes,
no, and maybe.

The translator assigns values to the identifiers from left to right, beginning with zero and increasing
by one for each successive term. In the above example, the values of yes, no, and maybe are set,
respectively, to zero, one, and two. Thus, the following example

enum opinion guess;
. . .

guess = no;

sets the value of guess to one.

All enumerated identifiers must be distinct from all other identifiers in the program. The identifiers
act as constants and are used wherever constants are appropriate.

If a member of an enumeration is followed by an equal sign and an integer, the identifier is assigned
the given value and subsequent values increase by one from that value. For example,

enum opinion {yes, no=50, maybe};

sets the values of the members yes, no, and maybe to zero, 50, and 51, respectively. More than one
enumerator can have the same value. For example:

enum opinion {yes, no=50, nah=50, nope=50, maybe};

assigns duplicate values to the members no, nah, and nope.

An enumeration constant always has type int.

Cross-references
Standard, §3.5.2.2
The C Programming Language, ed. 2, p. 39

See Also
type specifier

Notes
Prior to the introduction of enumerated data types in C, programmers would create lists of manifest
constants whose values took the values that enumerated constants now take.

Unlike more strongly typed languages, in which enumerated constants are checked to ensure that
they are part of the specified set of values, enums in C are only required to be of type int. No
additional checking is performed on enumeration constants.

LEXICON

234 enum

enumeration constant — Definition
An enumeration constant is a member of an enumeration. This constant has type int.

For example, in the enumeration

enum example { blue, green, yellow };

blue is an enumeration constant.

Cross-references
Standard, §3.1.3.3
The C Programming Language, ed. 2, pp. 39, 194

See Also
constants, enum

environmental variable — Overview
An environmental variable is a variable that is set through the operating system, and which a
program can read at run time. These variables are most commonly used to change the way a
program behaves.

Let’s C uses the following environmental variables in its operation:

CCHEAD Variables at head of compilation command
CCTAIL Variables at tail of compilation command
INCDIR Directory that holds include files
LIBPATH Directories that hold libraries
PATH Directories that hold executable files
TIMEZONE Time zone information
TMPDIR Directory that holds temporary files

Because of the limited environment space available under many version of MS-DOS, the variables
INCDIR, LIBPATH, and TMPDIR often are not set. Instead, their information is placed into the file
ccargs, which is built automatically when you install Let’s C. You need to set the variable
TIMEZONE only if you are writing programs that need exact time zone information.

See Also
Environment

envp — Definition
Argument passed to main
char *envp[];

envp is an abbreviation for environmental parameter. It is the traditional name for a pointer to an
array of string pointers passed to a C program’s main function, and is by convention the third
argument passed to main.

The MS-DOS runtime startup routines always set envp to NULL, i.e., no envp is passed. Let’s C
calls main(argc, argv, NULL); however, envp is significant under some other operating systems,
including TOS, UNIX, and COHERENT.

See Also
argc, argv, Environment, main

LEXICON

enumeration constant — envp 235

EOF — Manifest constant
Indicate end of a file
#include <stdio.h>

EOF is an indicator that is returned by several STDIO functions to indicate that the current file
position is the end of the file. Its value is defined by the implementation, but a common value is -1
on many systems, which is also a common error return.

The actual bytes used to delineate the end of a file may vary between implementations.

Many STDIO functions, when they read EOF, set the end-of-file indicator that is associated with the
stream being read. Before more data can be read from the stream, its end-of-file indicator must be
cleared. Resetting the file-position indicator with the functions fseek, fsetpos, or ftell will clear the
indicator, as will returning a character to the stream with the function ungetc.

Example
For an example of this macro in a program, see tmpfile.

Cross-references
Standard, §4.3, §4.9.1; Rationale, §4.3
The C Programming Language, ed. 2, p. 151

See Also
file, stream, STDIO, stdio.h

errno — Macro
External integer that holds error status
#include <errno.h>

errno is a macro that is defined in the header errno.h. It expands to a global integer of type volatile
int.

When a program begins to execute, errno is initialized to zero. Thereafter, whenever a mathematics
function or other library function wishes to return information about any error that occurs during
its operation, it writes the appropriate error number into errno, where it can be read either by the
environment or by another function.

The functions perror and strerror can be used to translate the contents of errno into a text
message.

Example
For an example of using this macro in a program, see vfprintf.

Cross-references
Standard, §4.1.3
The C Programming Language, ed. 2, p. 248

See Also
EDOM, ERANGE, errno.h, errors, mathematics

Notes
Only certain library functions set errno, and then only if certain error conditions occur. Remember
that it is your responsibility to clear errno before the function in question is called. Other functions
may also set errno.

LEXICON

236 EOF — errno

Although it is widely believed that a program that checks the value of errno after each function is
more portable than one that does not, this is not necessarily true. Some implementations use in-
line expansion of library function to speed execution, and so forego the use of errno. The cautious
programmer is best advised to check the value of input arguments before calling a library function
and, of course, to check its return value before checking errno.

errno.h — Header
Define errno and error codes
#include <errno.h>

errno.h is a header that holds information which relates to the reporting of error conditions. It
defines the macro errno, which expands to global variable of type volatile int. If an error condition
occurs, a function can write a value into errno, to report just what type of error occurred.

For a list of the MS-DOS system errors described in errno.h, see errorcodes.

Cross-references
Standard, §4.1.3
The C Programming Language, ed. 2, p. 248

See Also
errno, error codes, errors

escape sequences — Definition
An escape sequence is a set of characters that, together, represent one character that may have a
special significance. The Standard recognizes the following escape sequences:

\’ Literal apostrophe
\" Literal quotation mark
\? Literal question mark
\\ Literal backslash
\a Alert; ring the bell or print visual alert

\b Horizontal backspace
\f Form feed; force output device to begin a new page
\n Newline; move to next line
\r Carriage return; move to beginning of line

\t Horizontal tabulation; move to next tabulation mark
\v Vertical tabulation; move to next tabulation mark
\NNN Octal number
\xNN Hexadecimal number

An escape sequence may be embedded within a character constant or a string literal. In a string
literal, the apostrophe may be represented either by itself or by its escape sequence, whereas in a
character constant the quotation mark may be represented by itself or by its escape sequence.

Two question marks together may introduce a trigraph, which is interpreted even within a string
literal. If you want to print two literal question marks, use the escape sequence \?\?. For more
information, see trigraph sequences.

The escape sequences \a through \v let you use characters that control the output device.

A backslash followed by one, two, or three octal digits encodes an octal number. For example, in
ASCII implementations of C, the escape sequence ’\141’ encodes the octal value 141 into an int-
length object. When interpreted under an environment that uses ASCII, this prints the letter ‘a’.
Likewise, the escape sequence \x followed by an arbitrary number of hexadecimal digits encodes a

LEXICON

errno.h — escape sequences 237

hexadecimal number.

Example
The following example demonstrates the use of the escape sequence \b, which prints a backspace
character. It prints a message, backspaces over it, and then prints another message.

#include <stdio.h>
main()
{

printf("BLINK!\b\b\b\b\b\bhello, world\n");
}

Cross-references
Standard, §2.2.2, §3.1.3.4
The C Programming Language, ed. 2, p. 193

See Also
character constant, constants, string literal, trigraph sequences

Notes
Previous releases of Let’s C defined the escape sequences \a and \x differently.

Some implementations of C permit the digit ‘8’ to be used with an octal number. For example, the
character constant ’\078’ is regarded by these implementations as being equivalent to octal 100.
Under ANSI C, ’\078’ will be interpreted as representing octal 7 plus the character constant ’8’.
This, too, is a quiet change that may break some existing code.

The escape sequence ‘\0’ is used by many existing implementations to represent the null character.

esreg() — i8086 support (libc)
Get value from ES segment register
#include <dos.h>
unsigned esreg(void)

esreg returns the value from from the i8086 ES register, which points to the base of the ‘‘extra’’
segment. In SMALL model, this register always holds the same value as the DS register.

Example
For an example of this function, see the entry for csreg.

See Also
csreg, dsreg, i8086 support, ssreg " ENVIRONMENTS: LC

exargs() — Extended miscellaneous (libc)
Get and parse a command line
int exargs(char *name, int argc, char *argv[],

char *xargv[], int maxarg);

exargs provides a uniform mechanism by which programs that are run under MS-DOS can read and
parse command lines. It cooperates with the C runtime startup to be as transparent as possible to
the user.

The parameters argc and argv are the usual parameters to main. They are parsed from the MS-DOS
command tail by _main in the C runtime startup routine. exargs simply takes all of a command’s
arguments from argv.

exargs parses command lines by breaking them into a list of arguments separated by white space
(i.e., a space or tab character). It expands wildcard arguments, writes pointers to the arguments

LEXICON

238 esreg() — exargs()

into the array xargv, and returns the number of arguments. exargs then puts a NULL pointer at the
end of the list, so xargv looks much like the argv parameter to main. maxarg is the maximum
number of arguments that a command can take, that is, the maximum number that will fit into the
array xargv.

exargs interprets a command line of the form @name as a file reference: it opens the file name and
reads command lines from it. Such files can also contain references to yet other files.

exargs uses getenv to search the environment for the strings nameHEAD and nameTAIL. If found,
it adds the value of nameHEAD at the beginning of the argument list and the value of nameTAIL at
the end. For example, the cc command uses exargs with a name argument of cc; accordingly, it
looks for CCHEAD and CCTAIL in the environment to provide command-specific information.

exargs returns the size of its argument list, which is suitable for assignment to argc.

Example
The following function converts UNIX and COHERENT utilities to MS-DOS utilities by changing argc
and argv via exargs.

#define MAXARGS 1023
#include <stdio.h>
#include <stdlib.h>

void
msdoscvt(int *argc, char *name, ***argv)
{

char **xargv;

if(NULL == (xargv = malloc((MAXARGS + 1)
* sizeof(char *))))
abort();

*argc = exargs(name, *argc, *argv, &xargv[1], MAXARGS) + 1;
xargv[0] = name;
*argv = realloc(xargv, (*argc + 1) * sizeof(char *));

}

/*
* Expand argument list and display it.
*/

#ifdef TEST
main(int argc, char **argv)
{

int i;

msdoscvt("test", &argc, &argv);
for(i = 0; i < argc; i++)

printf("Argument %d -- %s\n", i, argv[i]);
return EXIT_SUCCESS;

}
#endif

See Also
cc (-w option), end, extended miscellaneous, malloc, runtime startup

Diagnostics
exargs prints an appropriate message and aborts if it cannot open or read an indirect file, or if there
are too many arguments in a command line.

Notes
This routine is specific to MS-DOS, and cannot be ported to other compilers or operating systems.

LEXICON

exargs() 239

The -w (‘‘wildcards’’) option to the cc command uses a special runtime startup routine that gives
argv much of the functionality of exargs. See the entry for cc for more information.

exception — Definition
An exception is said to occur when an expression generates a result that cannot be represented by
the hardware or defined mathematically, e.g., division by zero. When an exception occurs, behavior
is undefined.

Cross-references
Standard, §3.3
The C Programming Language, ed. 2, p. 255

See Also
expressions

execall() — Extended function (libc)
Execute a subprogram
int execall(char *command, char *tail);

execall sends a command and its arguments (the ‘‘argument tail’’) directly to MS-DOS. Unlike its
cousin system, it does not work through command.com; therefore, it cannot execute any MS-DOS
built-in commands.

execall looks for the executable file pointed to by command, loads it into memory, and executes it
with the tail that is pointed to by tail. If command has no suffix, execall appends .exe onto it. When
command has finished executing, execall returns its exit status code to the program that called it.

execall works only if command exits by returning to its caller, rather than by executing the MS-DOS
system reset function warm boot. execall can only call programs that exist as executable files.
Therefore, it cannot call the MS-DOS built-in commands, such as dir, or commands that rely on
MS-DOS to parse the command line into the formatted parameter area. You should use system for
these programs.

Commands compiled by Let’s C always exit by returning to their callers and always return a useful
exit status. Therefore, you can use execall to call any program compiled by Let’s C.

An exit status code of zero (EXIT_SUCCESS) means that command executed successfully. An exit
status code other than zero (EXIT_FAILURE) means that it failed. If command cannot be located,
opened, or executed, an explanatory message is printed on the console, and execall returns 0177
(octal).

Example
The following example consists of two brief programs, one of which calls the other. The first
program, called one.c, does the calling:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

printf("This is ’one’\n");
printf("\n’two.exe’ exited with value %d.\n",

execall("two", ""));
printf("Good-bye.\n");
return EXIT_SUCCESS;

}

LEXICON

240 exception — execall()

The second program, two.c, is called by one.c, and returns a value to it:

#include <stdio.h>
#include <stdlib.h>

main(void)
{

printf("\nHere is ’two’.\n");
printf("I’m exiting with value %d\n", EXIT_SUCCESS);
exit(EXIT_SUCCESS);

}

Compile these programs, then run one.exe. It will call two.exe for execution.

See Also
exargs, extended miscellaneous, system

Notes
execall does not fill in the formatted parameter areas.

executable file — Definition
An executable file is one that can be loaded directly by the operating system and executed.
Normally, an executable file is one that has both been compiled, where it is rendered into machine
language, and linked, where the compiled program has received all operating system-specific
information and library functions.

See Also
Definitions, file

exit() — General utility (libc)
Terminate a program gracefully
#include <stdlib.h>
void exit(int status);

exit terminates a program gracefully. Unlike the function abort, exit performs all processing that is
necessary to ensure that buffers are flushed, files are closed, and allocated memory is returned to
the environment.

When it is called, exit does the following:

1. It executes all functions registered by the function atexit, in reverse order of registration.
These functions must execute as if main had returned. If any function accesses an auto, its
behavior is undefined.

2. It flushes all buffers associated with output streams, closes the streams, and removes all files
created by the function tmpfile.

3. It returns control to the host environment. If status is zero or EXIT_SUCCESS, then the
program indicates to the environment that the program terminated with success. If status is
set to EXIT_FAILURE, then the program indicates that the program terminated with failure.

exit does not return to its caller.

Example
This program exits, and returns the first argument on the command line to MS-DOS as an exit code.

LEXICON

executable file — exit() 241

#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

if(argc == 1)
exit(EXIT_SUCCESS);

else
exit(atoi(argv[1]));

}

Cross-references
Standard, §4.10.4.3
The C Programming Language, ed. 2, p. 252

See Also
_exit, abort, atexit, general utilities, getenv, system

explicit conversion — Definition
The term explicit conversion refers to the deliberate changing of an object’s type by means of a cast
operation.

For example, one type of pointer can be cast to another, as follows:

char *charptr;
int *intptr;

. . .
intptr = (int *)charptr;

A cast can be used to defeat optimizations performed by the translator. For instance, if an
implementation performs single-precision arithmetic on operands of type float, an explicit cast will
force the operation to be performed in the wider type double:

float f1, f2, f3;
. . .

f3 = (double) f1 * f2;

Cross-references
Standard, §3.2
The C Programming Language, ed. 2, p. 45

See Also
(), cast operators, conversions, implicit conversion

Notes
A cast is not an lvalue. This renders constructs such as

(int *)pointer++; /* WRONG */

invalid under ANSI C.

LEXICON

242 explicit conversion

extended character handling — Overview
#include <xctype.h>
In addition to the character-handling functions described in the Standard, Let’s C includes the
following extended character-handling functions and macros:

_tolower Change a character to lower case
_toupper Change a character to upper case
isascii See if a character is in the ASCII character set
toascii Convert a character to printable ASCII

These functions and macros are declared or defined in the header xctype.h. In previous releases of
Let’s C, they had been declared in the header ctype.h. This change was made to conform to the
Standard, and may require that some code be altered.

A program that uses any of these routines no longer conforms strictly to the Standard, and may not
be portable to other compilers or environments.

See Also
character handling, extended mathematics, extended miscellaneous, extended STDIO,
extended time, xctype.h

extended time — Overview
#include <xtime.h>
Let’s C includes a number of extensions to the ANSI Standard’s set of time functions. These are
designed to increase the scope and accuracy of the Standard, and to ease calculation of some time
elements.

To begin, Let’s C includes three variables that are used by the function localtime. It parses the
environmental variable TIMEZONE into the following:

timezone Seconds from UTC to give local time
dstadjust Seconds to local standard, if any
tzname Array with names of standard and daylight times

The following functions return information about the calendar:

isleapyear Is this year AD a leap year?
dayspermonth How many days in this historical month?

The way Let’s C models time is based on the method used by the COHERENT operating system. As
noted above, the variable time_t is defined as the number of seconds since January 1, 1970,
0h00m00s UTC. This moment, in turn, is rendered as day 2,440,587.5 on the Julian calendar.
This allows accurate calculation of time as far back as January 1, 4713 B.C.

Conversion to the Gregorian calendar is set to October 1582, when it was first adopted in Rome.
The issue of when a nation changed from the Julian to the Gregorian calendar is moot in the United
States, Canada (except Quebec), Asia, Africa, Australia, and the Middle East; however, users in
Quebec, Latin America, Europe, the Soviet Union, and European-influenced areas of Asia (e.g.,
India) may wish to to write their own functions to convert historical data properly from the Julian to
the Gregorian calendar.

The following functions assist in conversion from Julian to Gregorian time:

time_to_jday Convert time_t to the Julian date
jday_to_time Convert Julian date to time_t
tm_to_jday Convert tm structure to Julian date
jday_to_tm Convert Julian date to tm structure

LEXICON

extended character handling — extended time 243

These functions are not described in the ANSI Standard. A program that uses any of these
functions does not conform strictly to the Standard, and may not be portable to other compilers or
environments.

See Also
date and time, extended character handling, extended mathematics, extended miscellaneous,
extended STDIO, Library, xtime.h

Notes
To conform to the ANSI Standard, all of these functions were moved from the header time.h to the
header xtime.h. This may require that some code be altered.

extern — C keyword
External linkage
extern type identifier

The storage-class specifier extern declares that identifier has external linkage.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, pp. 210, 211

See Also
linkage, storage-class specifiers

external definitions — Overview
A definition is a declaration that reserves storage for the thing declared. An external definition is a
definition whose identifier is defined outside of any function. This makes the object available
throughout the file or the program, depending upon whether it has, respectively, internal or external
linkage.

If an identifier has external linkage and is used in an expression (except as an operand to the sizeof
operator), then an external definition must exist for that identifier somewhere in the program.

There are two varieties of external definition: function definitions and object definitions. See the
appropriate entries for more information.

Cross-references
Standard, §3.7
The C Programming Language, ed. 2, p. 226

See Also
declaration, definition, function definition, linkage, object definition

external name — Definition
An external name is an identifier that has external linkage. The number and range of characters
that may form an external name depends upon the implementation. The minimum maximum for
the length of an external name is six characters, and an implementation is not obliged to recognize
both upper-case and lower-case characters. An implementation may exceed these limits.

Cross-references
Standard, §3.1.2
The C Programming Language, ed. 2, p. 35

LEXICON

244 extern — external name

See Also
identifiers, internal name, linkage

LEXICON

external name 245

F

fabs() — Mathematics (libm)
Compute absolute value
#include <math.h>
double fabs(double z);

fabs calculates and returns the absolute value for a double-precision floating-point number. It
returns z if z is zero or positive, and it returns -z if z is negative.

Example
For an example of this function, see sin.

Cross-references
Standard, §4.5.6.2
The C Programming Language, ed. 2, p. 251

See Also
abs, ceil, floor, fmod, mathematics

false — Definition
In the context of a C program, an expression is false if it is zero.

See Also
Definitions, true

fclose() — STDIO (libc)
Close a stream
#include <stdio.h>
int fclose(FILE *fp);

fclose closes the stream pointed to by fp.

fclose flushes all of fp’s output buffers. Unwritten buffered data are handed to the host
environment for writing into fp, and unread, buffered data are thrown away. It then dissociates the
stream pointed to by fp from the file (i.e., ‘‘closes’’ the file). If the buffer associated with fp was
allocated, it is then de-allocated.

The function exit calls fclose to close all open streams.

fclose returns zero if it closed fp correctly, and EOF if it did not.

Example
For an example of this function, see fopen.

Cross-references
Standard, §4.9.5.1
The C Programming Language, ed. 2, p. 162

See Also
fclose, fflush, fopen, freopen, setbuf, setvbuf, STDIO

Notes
The function exit closes all open streams, which flushes their buffers.

LEXICON

246 fabs() — fclose()

fcvt() — Extended function (libc)
Convert floating-point numbers to strings
char *fcvt(double d, int w, int *dp, int *signp);

fcvt converts floating point numbers to ASCII strings. Its operation resembles that of the %f
operator to printf. It converts d into a null-terminated string of decimal digits with a precision (i.e.,
the number of characters to the right of the decimal point) of w. It rounds the last digit and returns
a pointer to the result.

On return, fcvt sets dp to point to an integer that indicates the location of the decimal point relative
to the beginning of the string: to the right if positive, and to the left if negative. Finally, it sets signp
to point to an integer that indicates the sign of d: zero if positive, and nonzero if negative. fcvt
rounds the result to the FORTRAN F-format.

Example
For an example of this function, see the entry for ecvt.

See Also
ecvt, extended miscellaneous, frexp, gcvt, ldexp, modf, printf

Notes
fcvt performs conversions within static string buffers that are overwritten by each execution.

fdopen() — Extended function (libc)
Open a stream for standard I/O
#include <xstdio.h>
FILE *fdopen(short fd, char *type);

fdopen allocates and returns a FILE structure, or stream, for the file descriptor fd, as obtained from
open, creat, or dup.

type is the manner in which you wish to open fd, as follows:

r Read a file
w Write into a file
a Append onto a file

fdopen returns NULL if it cannot allocate a FILE structure.

Example
The following example obtains a file descriptor with open, and then uses fdopen to build a pointer
to the FILE structure.

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <xstdio.h>

/* prototype for extended function */
extern int open(char *file, int type);

fatal(char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

LEXICON

fcvt() — fdopen() 247

main(int argc, char *argv[])
{

extern FILE *fdopen();
FILE *fp;
short fd;
short holder;

if (--argc != 1)
fatal("Usage: example filename");

if ((fd = open(argv[1], 0)) == -1)
fatal("open failed.");

if ((fp = fdopen(fd, "r")) == NULL)
fatal("fdopen failed.");

while ((holder = fgetc(fp)) != EOF) {
if ((holder > ’\177’) && (holder < ’ ’))

switch(holder) {
case ’\t’:
case ’\n’:

break;
default:

fprintf(stderr, "Seeing char %d\n", holder);
exit(EXIT_FAILURE);

}

fputc(holder, stdout);
}
return(EXIT_SUCCESS);

}

See Also
creat, dup, fopen, open, STDIO

Notes
Currently, 20 FILE structures can be allocated per program, including stdin, stdout, and stderr.

To conform to the ANSI Standard, this function has been moved from the header stdio.h to the
header xstdio.h. This may require that some code be altered.

fdopen is not described in the ANSI Standard. Programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or environments.

feof() — STDIO (stdio.h)
Examine a stream’s end-of-file indicator
#include <stdio.h>
int feof(FILE *fp);

feof examines the end-of-file indicator for the stream pointed to by fp. It returns zero if the indicator
shows that the end of file has not been reached, and returns a number other than zero if the
indicator shows that it has.

Examples
This example checks whether a file can be read directly to the end.

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>

LEXICON

248 feof()

main(int argc, char *argv[])
{

long size;
FILE *ifp;

if(argc != 2) {
printf("usage: example inputfile\n");
exit(EXIT_FAILURE);

}

if((ifp = fopen(argv[1], "rb")) == NULL) {
printf("Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

for(size = 0; fgetc(ifp) != EOF; size++)
;

if(feof(ifp))
printf("EOF at character %ld\n", size);

if(ferror(ifp)) {
printf("Error at character %ld\n", size);
perror(NULL);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.10.2
The C Programming Language, ed. 2, p. 176

See Also

Notes
feof is often used with getw or fgetw, to distinguish a value of -1 from EOF.

ferror() — STDIO (libc)
Examine a stream’s error indicator
#include <stdio.h>
int ferror(FILE *fp);

ferror examines the error indicator for the stream pointed to by fp. It returns zero if an error has
occurred on fp, and a number other than zero if one has not.

Cross-references
Standard, §4.9.10.3
The C Programming Language, ed. 2, p. 164

See Also
clearerr, feof, perror, STDIO

Notes
Any error condition noted by ferror will persist either until the stream is closed, until clearerr is
used to clear it, or until the file-position indicator is reset with rewind.

LEXICON

ferror() 249

fflush() — STDIO (libc)
Flush output stream’s buffer
#include <stdio.h>
int fflush(FILE *fp);

fflush flushes the buffer associated with the file stream pointed to by fp. If fp points to an output
stream, then fflush hands all unwritten data to the host environment for writing into fp. If, however,
fp points to an input stream, behavior is undefined.

With Let’s C, stdout is buffered. Here, fflush can be used to write a prompt that is not terminated
by a newline.

fflush returns zero if all goes well, and returns EOF if a write error occurs.

The function exit calls fclose to flush all output buffers before the program exits.

Example
This example asks for a string and returns it in reply.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

static char reply[80];
char *
askstr(char *msg)
{

printf("Enter %s ", msg);
/* required by the absence of a \n */
fflush(stdout);
if(gets(reply) == NULL)

exit(EXIT_SUCCESS);
return(reply);

}

main(void)
{

for(;;)
if(!strcmp(askstr("a string"), "quit"))

break;
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.5.2
The C Programming Language, ed. 2, p. 242

See Also
fclose, fopen, freopen, setbuf, setvbuf, STDIO

fgetc() — STDIO (libc)
Read a character from a stream
#include <stdio.h>
int fgetc(FILE *fp);

fgetc reads a character from the stream pointed to by fp. Each character is read initially as an
unsigned char, then converted to an int before it is passed to the calling function. fgetc then
advances the file-position indicator for fp.

LEXICON

250 fflush() — fgetc()

fputc returns the character read from fp. If the file-position indicator is beyond the end of the file to
which fp points, fputc returns EOF and sets the end-of-file indicator. If a read error occurs, fgetc
returns EOF and the stream’s error indicator is set.

Example
For an example of this function, see tmpfile.

Cross-references
Standard, §4.9.7.1
The C Programming Language, ed. 2, p. 246

See Also
fgets, fgetw, getc, getchar, gets, getw, STDIO

fgetpos() — STDIO (libc)
Get value of file-position indicator
#include <stdio.h>
int fgetpos(FILE *fp, fpos_t *position);

fgetpos copies the value of the file-position indicator for the file stream pointed to by fp into the area
pointed to by position. position is of type fpos_t, which is defined in the header stdio.h. The
information written into position can be used by the function fsetpos to return the file-position
indicator to where it was when fgetpos was called.

fgetpos returns zero if all went well. If an error occurred, fgetpos returns nonzero and sets the
integer expression errno to the appropriate value. See errno for more information on its use.

Example
This example seeks to a random line in a very large file.

#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void
fatal(char *format, ...)
{

va_list argptr;

if(errno)
perror(NULL);

if(format != NULL) {
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

int c;
long count;
FILE *ifp, *tmp;
fpos_t loc;

LEXICON

fgetpos() 251

if(argc != 2)
fatal("usage: fscanf inputfile\n");

if((ifp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open %s\n", argv[1]);

if((tmp = tmpfile()) == NULL)
fatal("Cannot build index file");

/* seed random-number generator */
srand((unsigned int)time(NULL));

for(count = 1;!feof(ifp); count++) {
/* for monster files */
if(fgetpos(ifp, &loc))

fatal("fgetpos error");

if(fwrite(&loc, sizeof(loc), 1, tmp) != 1)
fatal("Write fail on index");

rand();
while(’\n’ != (c = fgetc(ifp)) && EOF != c)

;
}

count = rand() % count;
fseek(tmp, count * sizeof(loc), SEEK_SET);

if(fread(&loc, sizeof(loc), 1, tmp) != 1)
fatal("Read fail on index");

fsetpos(ifp, &loc);
while((c = fgetc(ifp)) != EOF) {

if(’@’ == c)
putchar(’\n’);

else
putchar(c);

if(’\n’ == c)
break;

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.9.1
The C Programming Language, ed. 2, p. 248

See Also
fseek, fsetpos, ftell, rewind, STDIO

Notes
The Standard introduced fgetpos and fsetpos to manipulate a file whose file-position indicator
cannot be stored within a long. Under MS-DOS, fgetpos behaves the same as the function ftell.

fgets() — STDIO (libc)
Read a line from a stream
#include <stdio.h>
char *fgets(char *string, int n, FILE *fp);

fgets reads characters from the stream pointed to by fp into the area pointed to by string until either
n-1 characters have been read, a newline character is read, or the end of file is encountered. It
retains the newline, if any, and appends a null character to the end of of the string.

LEXICON

252 fgets()

fgets returns the pointer string if its read was performed successfully. It returns NULL if it
encounters the end of file or if a read error occurred. When a read error occurs, the contents of
string are indeterminate.

Example
This example displays a text file. It breaks up lines that are longer than 78 characters.

#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void
fatal(char *format, ...)
{

va_list argptr;

if(errno)
perror(NULL);

if(format!=NULL) {
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

char buf[79];
FILE *ifp;

if(argc != 2)
fatal("usage: fgets inputfile\n");

if((ifp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open %s\n", argv[1]);

while(fgets(buf, sizeof(buf), ifp) != NULL) {
printf("%s", buf);
if(strchr(buf, ’\n’) == NULL)

printf("\\\n");
}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.2
The C Programming Language, ed. 2, p. 247

See Also
fgetc, fgetw, getc, getchar, gets, getw, STDIO

fgetw() — Extended function (libc)
Read integer from stream
#include <xstdio.h>
short fgetw(FILE *fp);

LEXICON

fgetw() 253

fgetw is a function that reads and returns a word (short int) from the stream pointed to by fp.

fgetw returns EOF if an error occurs. A call to feof or ferror may be necessary to distinguish this
value from a genuine end-of-file signal.

Example
This example copies one binary file into another. It demonstrates the functions fgetw and fputw.

#include <stdio.h>
#include <stdlib.h>
#include <xstdio.h>

void fatal(char *message)
{

fprintf(stderr, "%s\n"), message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *fpin, *fpout;
int word;

if(argc != 3)
fatal("Usage: example sourcefile newfile");

if ((fpin = fopen(infile, "rb")) == NULL)
fatal("Cannot open output file");

if ((fpout = fopen(outfile, "wb")) != NULL)
fatal("Cannot open output file");

while ((word = fgetw(fpin)) != EOF) {
fputw(word, fpout);
if (!ferror(fpin))

fatal("Read error");
}

fclose(fpin);
fclose(fpout);
return(EXIT_SUCCESS);

}

See Also
extended STDIO, fputw

Notes
To conform to the ANSI Standard, this function has been moved from the header stdio.h to the
header xstdio.h. This may require that some code be altered.

fgetw is not described in the ANSI Standard. Programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or environments.

field — Definition
A field is an area that is set apart from whatever surrounds it, and that is defined as containing a
particular type of data. In the context of C programming, a field is either an element of a structure,
or a set of adjacent bits within an int.

See Also
bit field, Definitions, struct

LEXICON

254 field

file — Definition
A file is a mass of bits that has been named and stored on a mass-storage device.

Opening a File
To read a file, alter its contents, or add data to it, a C program must use a stream. The term
opening a file means to establish a stream through which the program can access the file. The
stream governs the way data are accessed. The information the stream needs to access the file are
encoded within a FILE object. Because environments vary greatly in the information they need to
access a file, the Standard does not describe the internals of the FILE object. If a file does not exist
when a program attempts to open it, then it is created. Because some environments distinguish the
format for a text file from that for a binary file, the Standard distinguishes between opening a
stream into text mode and opening it into binary mode.

To open a file, use the functions fopen or freopen. The former simply opens a file and assigns a
stream to it. The latter reopens a file; that is, it takes the stream being used to access one file,
assigns it to another file, and closes the original file. freopen can also be used to change the mode
in which a file is accessed.

Buffering
When a file is opened, it is assigned a buffer. Access to the file are made through the buffer. Data
written or, in some instances, read from the file are kept in the buffer temporarily, then transmitted
as a block. This increases the efficiency with which programs communicate with the environment.
To change the type of buffering performed, the size of the buffer used, or to redirect buffering to a
buffer of your own creation, use the functions setbuf or setvbuf. See the entry for buffer for more
information on the types of buffers used with files.

File-position Indicator
A file has a file-position indicator associated with it; this indicates the point within the file where it is
being written to or read. Use of this indicator allows a program to walk smoothly through a file
without having to use internal counters or other means to ensure that data are received
sequentially. It also allows a program to access any point within a file ‘‘randomly’’ — that is, to
access any given point in the file without having to walk through the entire file to reach it.

The manipulation of the file-position indicator can vary sharply between binary and text files. In
general, the file-position indicator for a binary file is simply incremented as a character is read or
written. For a text file, however, manipulation of the file-position indicator is defined by the
implementation. This is due to the fact that different implementations represent end-of-line
characters differently. To read the file-position indicator, use the functions fgetpos or ftell; to set it
directly, use the functions fseek or fsetpos.

Error Conditions
When a file is being manipulated, a condition may occur that could cause trouble should the
program continue to read or write that file. This could be an error, such as a read error, or the
program may have read to the end of the file.

To help prevent such a condition from creating trouble, most environments use two indicators to
signal when one has occurred: the error indicator and the end-of-file indicator. When an error
occurs, the error indicator is set to a value that encodes the type of error that occurred; and when
the end of the file is read, then the end-of-file indicator is set. By reading these indicators, a
program may discover if all is going well. Under some implementations, however, a file may not be
manipulated further unless both indicators are reset to their normal values.

To discover the setting of the end-of-file indicator, use the function feof. To discover the setting of
the error indicator, use ferror. To reset the indicators to their normal values, use the function
clearerr.

LEXICON

file 255

Closing a File
When you have finished manipulating a file, you should close it. To close a file means to dissociate
it from the stream with which you had been manipulating it. When a file is closed, the buffer
associated with its stream is flushed to ensure that all data intended for the file are written into it.
To close a file, use the function fclose.

Cross-reference
Standard, §4.9.3

See Also
Definitions, STDIO, stdio.h, stream

Notes
When data are written into a binary file, the file is not truncated by the write. This allows writes to
binary files to be performed at random positions throughout the file without truncating the file at
the position written. Under Let’s C, the same is true for text files.

file descriptor — Definition
A file descriptor is an integer between 1 and 20 that indexes an area in _psbase, which, in turn,
points to the operating system’s internal file descriptors. It is used by routines like open, close, and
lseek to work with files. A file descriptor is not the same as a FILE stream, which is used by
routines like fopen, fclose, or fread.

See Also
Definitions, file, FILE
Advanced MS-DOS, page 261

FILENAME_MAX — Manifest constant
Maximum length of file name
#include <stdio.h>

FILENAME_MAX is a that is defined in the header stdio.h. It gives the maximum length of a file
name that the implementation can open.

Cross-references
Standard, §4.9.1
The C Programming Language, ed. 2, p. 242

See Also
fopen, STDIO, stdio.h

fileno() — Extended function (libc)
Get file descriptor
#include <xstdio.h>
short fileno(FILE *fp);

fileno returns the file descriptor associated with the file stream fp. The file descriptor is the integer
returned by open or creat. It is used by routines such as fopen used to create a FILE stream.

Example
This example reads a file descriptor and prints it on the screen.

LEXICON

256 file descriptor — fileno()

#include <stdio.h>
#include <stdlib.h>
#include <xstdio.h>

void fatal(char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *fp;
int fd;

if (argc !=2)
fatal("Usage: fd_from_fp filename");

if ((fp = fopen(argv[1], "rw")) == NULL)
fatal("Cannot open input file");

fd = fileno(fp);
printf("The file descriptor for %s is %d\n",

argv[1], fd);
return(EXIT_SUCCESS);

}

See Also
extended STDIO, FILE, file descriptor

Notes
To conform to the ANSI Standard, this function has been moved from the header stdio.h to the
header xstdio.h. This may require that some code be altered.

fileno is not described in the ANSI Standard. Programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or environments.

float — C keyword
A float is a data type that represents a single-precision floating-point number. It is defined as being
no larger than a double.

Like all floating-point numbers, a float consists of one sign bit, which indicates whether the number
is positive or negative; bits that encode the number’s exponent; and bits that encode the number’s
mantissa, or the number upon which the exponent works. The exponent often uses a bias. This is a
value that is subtracted from the exponent to yield the power of two by which the mantissa will be
increased. The format of a float and the range of values that it can encode are set in the following
macros, all of which are defined in the header limits.h:

FLT_DIG
This holds the number of decimal digits of precision. This must be at least ten.

FLT_EPSILON
Where b indicates the base of the exponent (default, two) and p indicates the precision (or
number of base b digits in the mantissa), this macro holds the minimum positive floating-
point number x such that 1.0 + x does not equal 1.0, b^1-p. This must be at least 1E-5.

FLT_MAX
This holds the maximum representable floating-point number. It must be at least 1E+37.

LEXICON

float 257

FLT_MAX_EXP
This is the maximum integer such that the value of FLT_RADIX raised to its power minus
one is a representable finite floating-point number.

FLT_MAX_10_EXP
This holds the maximum integer such that ten raised to its power is within the range of
representable finite floating-point numbers. It must be at least +37.

FLT_MANT_DIG
This gives the number of digits in the mantissa.

FLT_MIN
This gives the minimum value encodable within a float. This must be at least 1E-37.

FLT_MIN_EXP
This gives the minimum negative integer such that when the value of FLT_RADIX is raised
to that power minus one is a normalized floating-point number.

FLT_MIN_10_EXP
This gives the minimum negative integer such that ten raised to that power is within the
range of normalized floating-point numbers.

Several formats are used to encode floats, including IEEE, DECVAX, and BCD (binary coded
decimal). Let’s C uses IEEE format throughout.

The following describes DECVAX, IEEE, and BCD formats, for your information.

DECVAX Format
The 32 bits in a float consist of one sign bit, an eight-bit exponent, and a 24-bit mantissa, as
follows:

Sign Exponent 1 Mantissa
|s eeeeeee|e fffffff|ffffffff|ffffffff|

Byte 4 Byte 3 Byte 2 Byte 1

The exponent has a bias of 129.

If the sign bit is set to one, the number is negative; if it is set to zero, then the number is positive. If
the number is all zeroes, then it equals zero. An exponent and mantissa of zero plus a sign of one
(‘‘negative zero’’) is by definition not a number. All other forms are numeric values.

The most significant bit in the mantissa is always set to one and is not stored. It is usually called
the ‘‘hidden bit’’.

The format for doubles simply adds another 32 mantissa bits to the end of the float representation,
as follows:

Sign Exponent Mantissa
|s eeeeeee|e fffffff|ffffffff|ffffffff|

Byte 8 Byte 7 Byte 6 Byte 5

ffffffff|ffffffff|ffffffff|ffffffff|
Byte 4 Byte 3 Byte 2 Byte 1

IEEE Format
The IEEE encoding of a float is the same as that in the DECVAX format. Note, however, that the
exponent has a bias of 127, rather than 129.

Unlike the DECVAX format, IEEE format assigns special values to several floating point numbers.
In the following description, a tiny exponent is one that is all zeroes, and a huge exponent is one
that is all ones:

LEXICON

258 float

• A tiny exponent with a mantissa of zero equals zero, regardless of the setting of the sign bit.

• A huge exponent with a mantissa of zero equals infinity, regardless of the setting of the sign bit.

• A tiny exponent with a mantissa greater than zero is a denormalized number, i.e., a number
that is less than the least normalized number.

• A huge exponent with a mantissa greater than zero is, by definition, not a number. These
values can be used to handle special conditions.

An IEEE double, unlike DECVAX format, increases the number of exponent bits. It consists of a
sign bit, an 11-bit exponent, and a 53-bit mantissa, as follows:

Sign Exponent Mantissa
|s eeeeeee|eeee ffff|ffffffff|ffffffff|
Byte 8 Byte 7 Byte 6 Byte 5

ffffffff|ffffffff|ffffffff|ffffffff|
Byte 4 Byte 3 Byte 2 Byte 1

The exponent has a bias of 1,023. The rules of encoding are the same as for floats.

BCD Format
The BCD (‘‘binary coded decimal’’) format is used in accounting to eliminate rounding errors that
alter the worth of an account by a fraction of a cent. For that reason, BCD format consists of a sign,
an exponent, and a chain of four-bit numbers, each of which is defined to hold the digits zero
through nine.

A BCD float has a sign bit, seven bits of exponent, and six four-bit digits, as follows:

Sign Exponent Mantissa
|s eeeeeee| dddd dddd|dddd dddd|dddd dddd|

Byte 4 Byte 3 Byte 2 Byte 1

A BCD double has a sign bit, 11 bits of exponent, and 13 four-bit digits, as follows:

Sign Exponent Mantissa
|s eeeeeee|eeee dddd|dddd dddd|dddd dddd|

Byte 8 Byte 7 Byte 6 Byte 5

dddd dddd|dddd dddd|dddd dddd|dddd dddd|
Byte 4 Byte 3 Byte 2 Byte 1

Passing the hexadecimal numbers A through F in a digit yields unpredictable results.

The following rules apply when handling BCD numbers:

• A tiny exponent with a mantissa of zero equals zero.

• A tiny exponent with a mantissa of non-zero indicates a denormalized number.

• A huge exponent with a mantissa of zero indicates infinity.

• A huge exponent with a mantissa of non-zero is, by definition, not a number; these non-
numbers are used to indicate errors.

Example
For an example of a program that uses float, see sin.

Cross-references
Standard, §2.2.4.2, §3.1.2.4, §3.1.3.1, §3.5.2
The C Programming Language, ed. 2, p. 211

LEXICON

float 259

See Also
double, float.h, long double, types

Notes
Because the printf routines that print floating-point numbers are quite large, they are included only
optionally. If you wish to have printf print floats or doubles, you must compile your program with
the -f option to the cc command. See cc for more details.

float.h — Header
The header float.h defines a set of macros that return the limits for computation of floating-point
numbers.

The following lists the macros defined in float.h. With the exception of FLT_ROUNDS, each macro is
an expression; each value given is the minimum maximum that each expression must yield. The
prefixes DBL, FLT, and LDBL refer, respective, to double, float, and long double.

DBL_DIG
Number of decimal digits of precision. Must yield at least ten.

DBL_EPSILON
Smallest possible floating-point number x, such that 1.0 plus x does not test equal to 1.0.
Must be at most 1E-9.

DBL_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

DBL_MAX
Largest number that can be held by type double. Must yield at least 1E+37.

DBL_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less
than or equal to DBL_MAX.

DBL_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to DBL_MAX.

DBL_MIN
Smallest number that can be held by type double.

DBL_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater
than or equal to DBL_MIN.

DBL_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to DBL_MAX.

FLT_DIG
Number of decimal digits of precision. Must yield at least six.

FLT_EPSILON
Smallest floating-point number x, such that 1.0 plus x does not test equal to 1.0. Must be
at most 1E-5.

FLT_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

FLT_MAX
Largest number that can be held by type float. Must yield at least 1E+37.

LEXICON

260 float.h

FLT_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less
than or equal to FLT_MAX.

FLT_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to FLT_MAX.

FLT_MIN
Smallest number that can be held by type float.

FLT_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater
than or equal to FLT_MIN.

FLT_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to FLT_MIN.

FLT_RADIX
Base in which the exponents of all floating-point numbers are represented.

FLT_ROUNDS
Manner of rounding used by the implementation, as follows:

-1 Indeterminable, i.e., no strict rules apply
0 Toward zero, i.e., truncation
1 To nearest, i.e., rounds to nearest representable value
2 Toward positive infinity, i.e., always rounds up
3 Toward negative infinity, i.e., always rounds down

Any other value indicates that the manner of rounding is defined by the implementation.

LDBL_DIG
Number of decimal digits of precision. Must yield at least ten.

LDBL_EPSILON
Smallest floating-point number x, such that 1.0 plus x does not test equal to 1.0. Must be
at most 1E-9.

LDBL_MANT_DIG
Number of digits in the floating-point mantissa for base FLT_RADIX.

LDBL_MAX
Largest number that can be held by type long double. Must yield at least 1E+37.

LDBL_MAX_EXP
Largest integer such that the value of FLT_RADIX raised to its power minus one is less
than or equal to LDBL_MAX.

LDBL_MAX_10_EXP
Largest integer such that ten raised to its power is less than or equal to LDBL_MAX.

LDBL_MIN
Smallest number that can be held by type long double. Must be no greater than 1E-37.

LDBL_MIN_EXP
Smallest integer such that the value of FLT_RADIX raised to its power minus one is greater
than or equal to LDBL_MIN.

LDBL_MIN_10_EXP
Smallest integer such that ten raised to its power is greater than or equal to LDBL_MIN.

LEXICON

float.h 261

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
Environment, header, numerical limits

floating constant — Definition
A floating constant is a constant that represents a floating-point number. A floating constant has
three parts: the value, an exponent, and a suffix. Both the exponent and the suffix are optional.

The value section gives the value of the floating-point number. It also has three parts: a sequence of
decimal digits, a period, and another set of digits. The first set of digits gives the whole-number part
of the number, the period indicates the end of the whole-number part and the beginning of the
fractional part, and the second sequence of digits encodes the fractional part. The period (which is
sometimes called the ‘‘radix point’’) is always the character that marks the end of the whole-number
sequence, regardless of the character recognized by the program’s locale. In other words, the format
of the C language floating constant is not locale-sensitive.

The exponent is used when the floating constant uses exponential notation. Here, the exponent
gives the power of ten by which the base value is multiplied. For example,

1.05e10

represents the number

1.05*10^10

or

10,500,000,000

stored as a double. The exponent is introduced by the characters e or E followed by either + or -,
which indicates the sign of the exponent. There follows the exponent itself, which consists of a
sequence of decimal digits.

Finally, a floating constant may be followed by the suffixes f, F, l, or L. The first two indicate that
the constant is of type float; the latter two, that the constant is of type long double. If a floating
constant has no suffix, the translator assumes that it is of type double.

Cross-references
Standard, §3.1.3.1
The C Programming Language, ed. 2, p. 194

See Also
constants, float

floor() — Mathematics (libm)
Numeric floor
#include <math.h>
double floor(double z);

floor returns the ‘‘floor’’ of a number, or the largest integer not greater than z. For example, the floor
of 23.2 is 23, and the floor of -23.2 is -24.

floor returns the value expressed as a double.

LEXICON

262 floating constant — floor()

Cross-references
Standard, §4.5.6.3
The C Programming Language, ed. 2, p. 251

See Also
ceil, fabs, fmod, mathematics

fmod — Mathematics (libm)
Calculate modulus for floating-point number
#include <math.h>
double fmod(double number, double divisor);

fmod divides number by divisor and returns the remainder. If divisor is nonzero, the return value
will have the same sign as divisor. If divisor is zero, however, it will either return zero or set a
domain error.

Cross-references
Standard, §4.5.6.4
The C Programming Language, ed. 2, p. 251

See Also
ceil, fabs, floor, mathematics

fopen() — STDIO (libc)
Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (const char *file, const char *mode);

fopen opens the stream file, and allocates and initializes the data stream associated with it. This
makes the file available for STDIO operations. file may name either a file on a mass-storage device
or a peripheral device. file can be no more than FILENAME_MAX characters long.

mode points to a string that consists of one or more of the characters ‘‘rwab+’’; this indicates the
mode into which the file is to be opened. The following set of mode strings are recognized:

a Append, text mode
ab Append, binary mode
a+ Append, text mode
ab+ Append, binary mode
a+b Append, binary mode

r Read, text mode
rb Read, binary mode
r+ Update, text mode
rb+ Update, binary mode
r+b Update, binary mode

w Write, text mode
wb Write, binary mode
w+ Update, text mode
wb+ Update, binary mode
w+b Update, binary mode

Note the following:

LEXICON

fmod — fopen() 263

• Opening file into any of the ‘a’ (append) modes means that data can be written only onto the
end of the file. These modes set the file-position indicator to point to the end of the file. All
other modes set it to point to the beginning of the file.

• To open file into any of the ‘r’ (read) modes, it must already exist and contain data. If file does
not exist or cannot be opened, then fopen returns NULL.

• When a file is opened into any of the ‘w’ (write) modes, it is truncated to zero bytes if it already
exists, or created if it does not.

• Opening file into any of the ‘+’ (update) modes allows you to write data into it or read data from
it. When used with ‘r’ or ‘w’, data may be read from file or written into it at any point. When
used with ‘a’, data may be written into it only at its end. To switch from reading a file to
writing into it, either the stream’s input buffer must be flushed with fflush or the file-position
indicator repositioned with fseek, fsetpos, or rewind.

fopen returns a pointer to the FILE object that controls the stream. It returns NULL if the file
cannot be opened, for whatever reason.

fopen can open up to FOPEN_MAX files at once. This value is 20, including stdin, stdout, and
stderr.

Example
This example opens a test file and reports what happens.

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>

main(int argc, char *argv[])
{

FILE *fp;

if(argc != 3) {
fprintf(stderr, "usage: fopen filename mode\n");
exit(EXIT_FAILURE);

}

if((fp = fopen(argv[1], argv[2])) == NULL) {
perror("Fopen failure");
exit(EXIT_FAILURE);

}

fclose(fp);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.5.3
The C Programming Language, ed. 2, p. 160

See Also
fclose, fflush, freopen, setbuf, setvbuf, STDIO

Notes
To update an existing file, use the mode r+

fopen associates a fully buffered stream with file only if file does not access an interactive device.

A conforming implementation must support all of the modes described above. It may also offer
other modes in which to open a file.

LEXICON

264 fopen()

for — C keyword
Loop construct
for(initialization; condition; modification) statement

for introduces a conditional loop. It takes three expressions as arguments; these are separated by
semicolons ‘;’. initialization is executed before the loop begins. condition describes the condition
that must be true for the loop to execute. modification is the statement that modifies variable to
control the number of iterations of the loop. For example,

for (i=0; i<10; i++)

first sets the variable i to zero; then declares that the loop will continue as long as i remains less
than ten; and finally, increments i by one after every iteration of the loop. This ensures that the
loop will iterate exactly ten times (from i==0 through i==9). The statement

for(;;)

will loop until its execution is interrupted by a break, goto, or return statement.

The for statement is equivalent to:

initialization;
while(condition) {

statement
modification;

}

Example
For an example of this statement, see putc.

Cross-references
Standard, §3.6.5.3
The C Programming Language, ed. 2, pp. 60ff

See Also
break, C keywords, continue, do, statements, while

fpos_t — Type
Encode current position in a file

The type fpos_t is defined in the header stdio.h. It is used by the functions fgetpos and fsetpos to
encode the current position within a file (the file-position indicator). Its type may vary from
implementation to implementation.

fpos_t and its functions are designed to manipulate files whose file-position indicator cannot be
encoded within a long.

Cross-references
Standard, §4.9.1, §4.9.9.1, §4.9.9.3
The C Programming Language, ed. 2, p. 248

See Also
fgetpos, file, FILE, file-position indicator, fsetpos, STDIO, stdio.h

Notes
The Standard leaves the actual type of fpos_t to the implementation. The intent is to define a data
type that can be obtained by a call to fgetpos and used on later calls to fsetpos. It is not wise to try

LEXICON

for — fpos_t 265

to manipulate this type directly or to dissect it. Code that depends on specific properties of fpos_t
may not be portable.

fprintf() — STDIO (libc)
Print formatted text into a stream
#include <stdio.h>
int fprintf(FILE *fp, const char *format, ...);

fprintf constructs a formatted string and writes it into the stream pointed to by fp. It can translate
integers, floating-point numbers, and strings in a variety of text formats.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how a particular data type is to be converted
into text. Each conversion specification is introduced with the percent sign ‘%’. (To print a literal
percent sign, use the escape sequence ‘‘%%’’.) See printf for further discussion of the conversion
specification, and for a table of the type specifiers that can be used with fprintf.

After format can come one or more arguments. There should be one argument for each conversion
specification in format, and the argument should be of the type appropriate to the conversion
specification. For example, if format contains conversion specifications for an int, a long, and a
string, then format should be followed by three arguments, being, respectively, an int, a long, and a
char *.

If there are fewer arguments than conversion specifications, then fprintf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,
then the behavior of fprintf is undefined. Thus, presenting an int where fprintf expects a char *
may generate unwelcome results.

If it could write the formatted string, fprintf returns the number of characters written; otherwise, it
returns a negative number.

Example
This example prints two messages: one into stderr and the other into stdout.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

fprintf(stderr, "A message to stderr.\n");
printf("A message to stdout.\n");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.6.1
The C Programming Language, ed. 2, p. 243

See Also
printf, sprintf, STDIO, vfprintf, vprintf, vsprintf

Notes
fprintf can construct and output a string of up to at least 509 characters.

The character that fprintf uses to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

LEXICON

266 fprintf()

Because the printf routines that print floating-point numbers are quite large, they are included only
optionally. If you wish to have printf print floats or doubles, you must compile your program with
the -f option to the cc command. See cc for more details.

fputc() — STDIO (libc)
Write a character into a stream
#include <stdio.h>
int fputc(int character, FILE *fp);

fputc converts character to an unsigned char, writes it into the stream pointed to by fp, and
advances the file-position indicator for fp.

fputc returns character if it was written successfully; otherwise, it sets the error indicator for fp and
returns EOF.

Example
The following example uses fputc to copy the contents of one file into another.

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *format, ...)
{

va_list argptr;

if(errno)
perror(NULL);

if(format != NULL) {
va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *ifp, *ofp;
int ch;

if(argc != 3)
fatal("usage: fputc oldfile newfile\n");

if((ifp = fopen(argv[1], "r")) == NULL)
fatal("Cannot open %s\n", argv[1]);

if((ofp = fopen(argv[2], "w")) == NULL)
fatal("Cannot open %s\n", argv[2]);

while ((ch = fgetc(ifp)) != EOF)
if (fputc(ch, ofp) == EOF)

fatal("Write error for %s\n", argv[2]);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.3
The C Programming Language, ed. 2, p. 247

LEXICON

fputc() 267

See Also
fputs, fputw, putc, putchar, puts, putw, STDIO

fputs() — STDIO (libc)
Write a string into a stream
#include <stdio.h>
int fputs(char *string; FILE *fp);

fputs writes the string pointed to by string into the stream pointed to by fp. The terminating null
character is not written. Unlike the related function puts, it does not append a newline character to
the end of string.

fputs returns a non-negative number if it could write string correctly. If it could not, it returns
EOF.

Cross-references
Standard, §4.9.7.4
The C Programming Language, ed. 2, p. 247

See Also
fputc, putc, putw, putchar, puts, putw, STDIO

fputw() — Extended function (libc)
Write an integer to a stream
#include <xstdio.h>
short fputw(short word, FILE *fp);

fputw writes word into the file stream fp, and returns the value written.

fputw returns EOF when an error occurs. A call to ferror or feof may be needed to distinguish this
value from a valid end-of-file signal.

Example
For an example of this function, see the entry for fgetw.

See Also
extended STDIO, fgetw

Notes
To conform to the ANSI Standard, this function has been moved from the header stdio.h to the
header xstdio.h. This may require that some code be altered.

fputw is not described in the ANSI Standard. Programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or environments.

fread() — STDIO (libc)
Read data from a stream
#include <stdio.h>
size_t fread(void *buffer, size_t size, size_t n, FILE *fp);

fread reads up to n items, each being size bytes long, from the stream pointed to by fp and copies
them into the area pointed to by buffer. It advances the file-position indicator by the amount
appropriate to the number of bytes read.

fread returns the number of items read. If the value returned by fread is not equal to n, use the
functions ferror and feof to find, respectively, if an error has occurred or if the end of file has been

LEXICON

268 fputs() — fread()

encountered.

Example
This example reads data structures into an array of structures. It is more to be read than used.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#define COUNT 10

struct aStruct {
double d;
float f;
int i;

} arrayStruct[COUNT];

main(void)
{

int i;
FILE *ifp;

if((ifp = fopen("a.s", "rb")) == NULL) {
perror("Cannot open a.s");
exit(EXIT_FAILURE);

}

/* buffer blocksize count FILE */
i=fread(arrayStruct,sizeof(struct aStruct),COUNT,ifp);
if(i != COUNT) {

fprintf(stderr, "Only read %d blocks\n", i);
return(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.8.1
The C Programming Language, ed. 2, p. 247

See Also
fwrite, STDIO

Notes
If an error occurs while data are being read, then the value of the file-position indicator is
indeterminate. If either size or n is zero, then fread returns zero and reads nothing.

free() — General utility (libc)
Deallocate dynamic memory
#include <stdlib.h>
void free(void *ptr);

free deallocates a block of dynamic memory that had been allocated by malloc, calloc, or realloc.
Deallocating memory may make it available for reuse.

ptr points to the block of memory to be freed. It must have been returned by malloc, calloc, or
realloc. free marks the block indicated by ptr as unused, so the malloc search can coalesce it with
contiguous free blocks.

free returns nothing. It prints a message and calls abort if it discovered that the arena has been
corrupted. This most often occurs by storing data beyond he bounds of an allocated block.

LEXICON

free() 269

Cross-references
Standard, §4.10.3.2
The C Programming Language, ed. 2, p. 167

See Also
calloc, malloc, general utilities, realloc

Notes
If ptr does not point to a block of memory that had been allocated by calloc, malloc, or realloc, the
behavior of free is undefined.

If ptr is equivalent to NULL, then no action occurs.

Finally, if a program attempts to access memory that has been freed, its behavior is undefined.

freopen() — STDIO (libc)
Re-open a stream
#include <stdio.h>
FILE *freopen(const char *file, const char *mode, FILE *fp);

freopen opens file and associates it with the stream pointed to by fp, which is already in use. It
first tries to close the file currently associated with fp. Then it opens file, and returns a pointer to
the FILE object, through which other STDIO routines can access file. Under some execution
environments, freopen can be used to access a peripheral device as well as a file. Thus, freopen is
often used to change the device associated with the streams stdin, stdout, or stderr, as well as to
the change the access modes for an open file.

mode indicates the manner in which file is to be accessed. For a table of the modes described by the
Standard, see fopen.

freopen returns NULL if file could not be opened properly; otherwise, it returns fp.

Example
This example uses freopen to copy a list of files into one file.

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>

void
fatal(char *format, ...)
{

va_list argptr;

/* if there is a system message, display it */
if(errno)

perror(NULL);

/* if there is a user message, use it */
if(format != NULL) {

va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

LEXICON

270 freopen()

main(int argc, char *argv[])
{

FILE *ifp, *ofp;
int i, c;

if(argc < 3)
fatal("usage: freopen input1 input2 ... output\n");

if((ofp = fopen(argv[argc - 1], "wb")) == NULL)
fatal("Cannot open %s\n", argv[argc - 1]);

ifp = stdin;
for(i = 1; i < argc; i++) {

if((ifp = freopen(argv[i], "rb", ifp)) == NULL)
fatal("Cannot open %s\n", argv[i]);

while((c = fgetc(ifp)) != EOF)
fputc(c, ofp);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.5.4
The C Programming Language, ed. 2, p. 162

See Also
fclose, fflush, fopen, setbuf, setvbuf, STDIO

Notes
freopen will attempt to close the file currently associated with fp. However, if it cannot be closed,
freopen will still open file and associate fp with it.

frexp() — Mathematics (libm)
Fracture floating-point number
#include <math.h>
double frexp(double real, int *exp);

frexp breaks a double-precision floating-point number into its mantissa and exponent. It returns
the mantissa m of the argument real, such that 0.5 <= m < 1 or m=0, and stores the binary
exponent in the area pointed to by exp. The exponent is an integral power of two.

See float.h for more information about the structure of a floating-point number.

Cross-references
Standard, §4.5.4.3
The C Programming Language, ed. 2, p. 251

See Also
atof, ceil, fabs, floor, ldexp, mathematics, modf

fscanf() — STDIO (libc)
Read and interpret text from a stream
#include <stdio.h>
int fscanf(FILE *fp, const char *format, ...);

fscanf reads characters from the stream pointed to by fp, and uses the string pointed to by format to
interpret what it has read into the appropriate type of data. format points to a string that contains
one or more conversion specifications, each of which is introduced with the percent sign ‘%’. For a

LEXICON

frexp() — fscanf() 271

table of the conversion specifiers that may be used with fscanf, see scanf.

After format can come one or more arguments. There should be one argument for each conversion
specification in format, and the argument should point to a data element of the type appropriate to
the conversion specification. For example, if format contains conversion specifications for an int, a
long, and a string, then format should be followed by three arguments: respectively, a pointer to an
int, a pointer to a long, and an array of chars.

If there are fewer arguments than conversion specifications, then fscanf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding type specification,
then fscanf returns.

fscanf returns the number of input elements it scanned and formatted. If an error occurs while
fscanf is reading its input, it returns EOF.

Example
This example reads and displays data from a file of strings with the following format:

ABORT C 312 1-24-88 11:03a
ABS C 239 1-24-88 11:03a

This is the output of the MS-DOS command dir.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

int count;
long size;
char fname[8], ext[3];
FILE *ifp;

if(argc != 2) {
printf("usage: fscanf inputfile\n");
exit(EXIT_FAILURE);

}

if((ifp = fopen(argv[1], "r")) == NULL) {
printf("Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

while((count = fscanf(ifp, "%8s %3s %ld %*[^\n]",
fname, ext, &size)) != EOF)
if(count == 3)

printf("%s.%s %ld\n", fname, ext, size);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.6.2
The C Programming Language, ed. 2, p. 245

See Also
scanf, sscanf, STDIO

LEXICON

272 fscanf()

Notes
fscanf is best used to read data you are certain are in the correct format, such as strings previously
written out with fprintf.

The character that fscanf recognizes as representing the decimal point is affected by the program’s
locale, as set by the function setlocale. For more information, see localization.

fseek() — STDIO (libc)
Set file-position indicator
#include <stdio.h>
int fseek(FILE *fp, long int offset, int whence);

fseek sets the file-position indicator for stream fp. This changes the point where the next read or
write operation will occur.

offset and whence specify how the value of the file-position indicator should be re-set. offset is the
amount to move it, in bytes; this is a signed quantity. whence is the point from which to move it, as
follows:

SEEK_CUR From the current position
SEEK_END From the end of the file
SEEK_SET From the beginning of the file

The values of these macros are set in the header stdio.h.

fseek clears the end-of-file indicator and undoes the effects of a previous call to ungetc; the next
operation on fp may be input or output.

fseek returns a number other than zero for what the Standard calls an ‘‘improper request.’’
Presumably, this means attempting to seek past the end or the beginning of a file, attempting to
seek on an interactive device (such as a terminal), or attempting to seek on a file that does not exist.

Example
This example implements the UNIX game fortune. It randomly selects a line from a text file, and
prints it. Multi-line fortunes, such as poems, should have ‘@’s embedded within them to mark line
breaks.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(int argc, char *argv[])
{

FILE *ifp;
double randomAdj;
int c;

if(argc != 2) {
printf("usage: fseek inputfile\n");
exit(EXIT_FAILURE);

}

if ((ifp = fopen(argv[1], "r")) == NULL) {
printf("Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

fseek(ifp, 0L, SEEK_END);
randomAdj = (double)ftell(ifp)/((double)RAND_MAX);

LEXICON

fseek() 273

/* Exercise rand() to make number more random */
srand((unsigned int)time(NULL));
for(c = 0; c < 100; c++)

rand();

fseek(ifp, (long)(randomAdj * (double)rand()), SEEK_SET);
while(’\n’ != (c = fgetc(ifp)) && EOF != c)

;

if(c == EOF) {
printf("File does not end with newline\n");
exit(EXIT_FAILURE);

}

while(’\n’ != (c = fgetc(ifp))) {
if(EOF == c) {

fseek(ifp, 0L, SEEK_SET);
continue;

}

/* display multi-line fortunes */
if(’@’ == c)

c = ’\n’;
putchar(c);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.9.2
The C Programming Language, ed. 2, p. 248

See Also
fsetpos, ftell, STDIO

Notes
Although the Standard does not describe the behavior of fseek if you attempt to seek beyond the
end of a file, it does not result in an error condition until the corresponding read or write is
attempted.

Note, too, that fseek allows a user to seek past the beginning of a binary file as well as past its end.
Caveat utilitor.

fsetpos() — STDIO (libc)
Set file-position indicator
#include <stdio.h>
int fsetpos(FILE *fp, const fpos_t *position);

fsetpos resets the file-position indicator. fp points to the file stream whose indicator is being reset.
position is a value that had been returned by an earlier call to fgetpos; it is of type fpos_t, which is
defined in the header stdio.h.

Like the related function fseek, fsetpos clears the end-of-file indicator and undoes the effects of a
previous call to ungetc. The next operation on fp may read or write data.

fsetpos returns zero if all goes well. If an error occurs, it returns nonzero and sets the integer
expression errno to the appropriate error number.

LEXICON

274 fsetpos()

Example
For an example of this function, see fgetpos.

Cross-references
Standard, §4.9.9.3
The C Programming Language, ed. 2, p. 248

See Also
fgetpos, fseek, ftell, rewind, STDIO

Notes
The Standard designed fsetpos to be used with files whose file position cannot be represented
within a long. Under Let’s C, it behaves the same as fseek.

Note, too, that there is no given way to obtain the value of the file-position indicator other than by a
previous call to fgetpos.

ftell() — STDIO (libc)
Get value of file-position indicator
#include <stdio.h>
long int ftell(FILE *fp);

ftell returns the value of the file-position indicator for the stream pointed to by fp.

The information returned by ftell varies, depending upon the run-time environment and whether
the stream pointed to by fp was opened into text mode or binary mode. If fp was opened into binary
mode, then ftell returns the number of characters from the beginning of the file to the current
position. If fp was opened into text mode, however, ftell returns an implementation-defined
number.

For example, in UNIX-style environments, ftell returns the number of characters the current
position is from the beginning; whereas under MS-DOS, where lines are terminated by a carriage
return-newline pair, ftell counts each carriage return and each newline as a character in its return
value.

If an error occurs, ftell returns -1L and sets the integer expression errno to the appropriate value.
An error will occur if, for example, you attempt to use ftell with a stream that is associated with a
device that is not file-structured.

Example
For an example of this function, see fseek.

Cross-references
Standard, §4.9.9.4
The C Programming Language, ed. 2, p. 248

See Also
errno, fgetpos, fseek, fsetpos, rewind, STDIO

function call library archive
function — Definition
A function is a construct that performs a task. It includes statements and related variables,
including those passed to it as arguments. A C program commonly consists of many functions,
each of which performs one or more tasks.

A function can be compiled and stored in a library or archive, from which it can be extracted by a

LEXICON

ftell() — function 275

linker.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, pp. 67ff

See Also
Definitions

function call — Definition
A function call invokes a function at a particular point in a program. A function call consists of an
identifier followed by a pair of parentheses ‘()’; between the parentheses may appear a list of
arguments.

The behavior of a function call is affected by the following: a function declaration, a function
prototype, and a function definition. Some or all of these may be visible to the translator when it
interprets the function call. The translator must respond appropriately to the presence or absence
of each when it translates the function call. The following paragraphs describe how these elements
affect the behavior of a function call.

Function Declaration
If a function declaration is visible when function is called, then the function is assumed to return
the type and to have the linkage noted in the declaration.

For example, the following declaration

static char *example();

declares that the function example has static linkage and returns a pointer to char.

If no function declaration is visible to the translator when it reads the function call, then it assumes
that the function has the declaration:

extern int example();

where example is the name of the function being called. This action is sometimes referred to as an
implicit declaration of a function. It declares the function to have external linkage and return type
int.

If a declaration, whether explicit or implict, does not match what the function actually returns, the
behavior is undefined.

Consider a function call of the form:

char *value;
value = example(argument1, argument2);

If the translator sees the declaration for example, then it knows that example returns a pointer to
char and reacts accordingly. If, however, it does not see the declaration for example, then it
implicitly declares example to return an int, and generates code appropriate for that. What
happens after this error occurs may vary from implementation to implementation.

A function declaration does not check the number or the type of arguments of the function call; to
check arguments, you should use a function prototype (described below). If the number and the
types of the arguments to a function call do not match those that the function requires, and if no
prototype is visible when the function is called, then behavior is undefined.

Function Prototype
A function prototype is a more detailed form of function declaration. A function prototype lists not
only the linkage and the return value of a function, but also its parameters and the type of each.

LEXICON

276 function call

This allows the translator to check each function call to ensure that it has the correct number of
arguments and that each argument has the correct type. See function prototype for a full
description.

Function Definition
A function definition defines code for a function. In effect, the function definition is where the
function ‘‘lives’’.

A function definition begins with a declarator, which includes a list of the parameters the function
needs. Behavior is undefined if a function call’s list of arguments does not match the function
declaration’s list of parameters, both in number and in type, and no prototype is visible. A function
call in the presence of a prototype-style function definition will be prototype-checked against this
declaration.

Let’s C Calling Conventions
The following presents the calling conventions for Let’s C.

The design of the calling conventions had to take into account the fact that C does not require that
the number of arguments passed to a function be the same as the number of arguments specified in
the function’s declaration. Routines with a variable number of arguments are not uncommon; for
example, printf and scanf can take a variable number of arguments. Another consideration was the
availability of register variables.

Therefore, Let’s C uses the following calling sequence. The function arguments are pushed onto the
stack from the first, or rightmost, through the last, or leftmost. longs are pushed high-half first.
This makes the word order compatible with the dd instruction. doubles are pushed so that the byte
order on the stack is compatible with the i8087 co-processor. The function is then called with a
NEAR call (either directly or indirectly) for SMALL model, or a FAR call for LARGE model. An add
instruction after the call removes the arguments from the stack.

For example, the function call

int a;
long b;
char c;

foo(void)
{

example(a, b, c);
}

generates the code

movb al,c
cbw
push ax
push b+2
push b
push a
call example_
add sp,8

An underbar character ‘_’ has been appended to the function name. This serves two purposes.
First, it makes it harder to accidentally call routines written in other languages. Second, it means
that two routines with the same name can be called from C and another language in identical
fashions.

The parameters and local variables in the called function are referenced as offsets from the BP
register. In SMALL model, the arguments begin at offset 8 and continue toward higher addresses,
whereas the local variables begin at offset -2 and continue toward lower addresses.

LEXICON

function call 277

The SP register points the local variable with the lowest address. Thus, when example_ is reached
in the above model, the SMALL-model stack frame resembles the following:

High +-----------------------+
| c (widened to a word) |
+-----------------------+
| high half of b |
+-----------------------+
| low half of b |
+-----------------------+
| a |

Low +-----------------------+

In LARGE model, the return address occupy two words.

Functions return ints in the AX register, longs in the DX:AX register pair, pointers in the AX
register for SMALL model and in DX:AX for LARGE model, and doubles on the top of the i8087’s
stack. The following program

example(int a, b, c)
{

return (a * b - c);
}

when compiled with the -VASM option, produces the following assembly language program:

.shri

.globl example_

example_:
push si
push di
push bp
mov bp, sp
mov ax, 10(bp)
imul 8(bp)
sub ax, 12(bp)
pop bp
pop di
pop si
ret

In SMALL model, the runtime startup initializes the registers CS, DS, ES, and SS, and the segment
registers remain unchanged. In LARGE model, the runtime startup initializes registers SS and SP.
The generated code loads the other segment registers as needed. As noted above, a C function
preserves registers SI, DI, BP, and SP, plus the segment registers in SMALL model; other registers
may be overwritten.

Source code for some runtime startup routines is included with the sample programs that come
with your copy of Let’s C.

Let’s C pushes function arguments as follows.

LEXICON

278 function call

char Widened to int, then pushed
double Pushed in i8087 order
float Widened to double, then pushed
int Pushed in machine word order
long double Same as double
double Pushed in i8087 order
struct Pushed in memory order
union Pushed in memory order
pointer SMALL: offset pushed

LARGE: base pushed, then offset pushed

Functions return values as follows:

char In AL
double On i8087 stack
float Same as double
int In AX
long In DX:AX
long double Same as double
struct SMALL: pointer in AX

LARGE: pointer in DX:AX
union SMALL: pointer in AX

LARGE: pointer in DX:AX
pointer SMALL: in AX

LARGE: in DX:AX

A function that returns a struct or union actually returns a pointer. The code generated for the
function call block-moves the result to its destination. Functions that return a float or double
return it on the i8087 stack if your computer has an i8087 co-processor; otherwise, they return it in
the global double fpac_.

For example, consider the call

example(int i, long l, char c, char *cp);

where example declares two automatic ints. After execution of the call and the prologue of
example, the SMALL-model stack contains the following 11 words:

LEXICON

function call 279

High +------------------+
| cp |
+------------------+
| c |
+------------------+
| high word of l |
+------------------+
| low word of l |
+------------------+
| i |
+------------------+
| return address |
+------------------+
| saved SI |
+------------------+
| saved DI |
+------------------+
| saved BP |
+------------------+
| space for auto 1 |
+------------------+
| space for auto 2 |

Low +------------------+

The following example performs a simple function call:

main(void)
{

example(1, 2); /* call sample routine */
}

example(int p1, int p2)
{

int a, b;

a = 3;
b = 4;

}

When the function example is about to return, the stack appears as follows:

LEXICON

280 function call

SMALL LARGE
High +------------------+

| 2 | parm 2 10(bp) 12(bp)
+------------------+
| 1 | parm 1 8(bp) 10(bp)
+------------------+
| Return Address: |
| 2 words in |
| LARGE model, |
| 1 in SMALL model | ret.addr. 6(bp) 6(bp)
| 1 in SMALL model |
+------------------+
| main’s SI | 4(bp) 4(bp)
+------------------+
| main’s DI | 2(bp) 2(bp)
+------------------+
| main’s BP | (bp) (bp)
+------------------+
| 3 | a -2(bp) -2(bp)
+------------------+
| 4 | SP b -4(bp) -4(bp)

Low +------------------+

Cross-references
Standard, §3.3.2.2
The C Programming Language, ed. 2, p. 201

See Also
(), function declarators, function definition, function prototype, operators

Notes
C passes arguments by value; this is known as call-by-value semantics. This means that C always
passes a copy of an argument to the called function. If the called function alters the value of its
copy, the original argument will not change. The only way the called function can change the value
of the original argument is if it is passed the address of that argument.

C does not specify the order of evaluation of arguments. Hence, for maximally portable code, you
should not rely on any specific order of evaluation.

The Rationale notes that the original syntax for calling a function through a pointer to a function

(*example)();

has been augmented to allow the pointer to be automatically deferenced as:

example();

This means that pointers to functions stored in structures may be called with the syntax

example.funcmember();

instead of the more cluttered:

(*structure.funcmember)();

Such an expression cannot be used as an lvalue.

The order of evaluation of a function’s arguments is undefined.

LEXICON

function call 281

function declarators — Definition
A function declarator declares a function.

A function declarator is marked by the use of parentheses ‘()’ after the identifier. Function
declarators come in two varieties.

In the first form, the parentheses enclose a list of parameters and their types. The list may end with
an ellipsis ‘...’. This indicates that the function takes an indefinite number of arguments. The list
may also consist merely of void, which indicates that the function takes no arguments.

This form of function declaration is called a parameter type list. It is also called a function prototype,
because a succeeding call to the function can be checked against it to ensure that the call uses the
correct number of arguments and that the type of each is correct. It is also referred to as a new-
style function declarator. See function prototype for more information.

The second form of function declarator names the arguments to a function, but does not give their
types. No prototype checking can be performed against a declarator of this sort. This form is called
a function identifier list. It is also called an old-style function declarator, because the Standard states
that this form is obsolescent.

Either style of function declaration will be checked against any prototype that had been declared
previously and that is within scope.

Finally, a function declarator may consist simply of two parentheses with nothing between them.
This indicates that the identifier names a function, but says nothing about the number or the type
of arguments that the function takes.

Cross-references
Standard, §3.5.4.3
The C Programming Language, ed. 2, p. 218

See Also
(), declarators, function definition, function prototype

function definition — Definition
A definition is a declaration that reserves storage for the thing declared.

A program or its associated libraries must define exactly once each function it uses. A compound-
statement is the code that forms the body of the function.

The declaration-specifiers give the function’s storage class and return type. The storage class may
be either extern or static. If no storage class is specified, then the function is extern by default.
The return type may be any type except an array. This means that a function may return a
structure, which was illegal under Kernighan and Ritchie’s definition of C. If no return type is
specified, the function is assumed to return type int.

The declarator names the function and its formal parameters. A function’s parameters can be
described in either of two ways. The first is to use declaration-specifiers. These name the function’s
parameters and give the type of each. For example, the function fopen has the following
declaration:

FILE *fopen (const char *file, const char *mode);

Here, const char *file and const char *mode name fopen’s parameters and give the type of each.

Each declaration specifier must have both a type and an identifier. The only exception is when a
function takes no parameters; then the type void may be used without an identifier. A declarator of
this form serves as a function prototype for all subsequent calls to this function.

LEXICON

282 function declarators — function definition

The second way to declare a function’s parameters is to use a declaration-list. Here, the declarator
contains only the parameter’s name. Each formal parameter is then declared in a list that follows
the declarator. For example, if fopen used a declaration list, it would appear as follows:

FILE *fopen (file, mode);
const char *file;
const char *mode;

In this example, the declaration list gives the types of the identifiers file and mode. If an identifier
appears in the declarator but is not named in the following identifier list, it is assumed to be of type
int. A declaration list can contain no storage-class specifier except register, and no identifier may
be initialized in the identifier list.

A declarator of this type cannot be used as a function prototype for subsequent calls. The Standard
considers this type of function definition to be obsolete and expects that it will disappear over time.

With either manner of definition, all parameters have automatic storage (as indicated by the fact
that the only storage-class specifier allowed is register). When an argument is read, it is converted
to an object of the type of the corresponding parameter.

Finally, every parameter is considered to be an lvalue.

Cross-references
Standard, §3.7.1
The C Programming Language, ed. 2, p. 225

See Also
conversions, definition, external definitions, function calls, function declarators, function
prototypes, object definition, prototype

Notes
If a function takes an indefinite number of parameters, and its function definition does not use a list
of declaration specifiers that ends with the ellipsis operator ‘...’, the behavior is undefined.

function designator — Definition
A function designator is any expression that has a function type.

A function designator whose type is ‘‘function that returns type’’ is normally converted to the type
‘‘pointer to function that returns type.’’ One exception is when the function designator is the
operand to the unary & operator. In this case, the use of & states explicitly that the address of the
function designator is to be taken, so implicit conversion is not necessary.

Cross-references
Standard, §3.2.2.1
The C Programming Language, ed. 2, p. 201

See Also
conversions, implicit conversion

function prototype — Definition
A function prototype is a sophisticated form of function declaration. A function prototype lists not
only the linkage and the return value of a function, but also lists its arguments and the types of
each. This allows the translator to check each argument in a function call to see that it is of the
correct type.

Function prototypes are normally kept in a header. The header must be explicitly included in the
source module for the prototype to be visible to the translator as it translates the module. For

LEXICON

function designator — function prototype 283

example, consider the following function prototype:

extern char *example(int argument1, long argument2);

This declares that the function example has external linkage; that it returns a pointer to char; and
that it takes two arguments, the first of which is an int and the second of which is a long. The
names of the arguments given in the function prototype are used only in the prototype. They are
not visible outside of it, and so will not affect any other use of those names in your program.

A function prototype may end with an ellipsis ‘...’. This indicates that the function takes a variable
number of arguments. For example, consider the following prototype for the function fprintf:

int fprintf(FILE *fp, const char *format, ...);

The prototype declares that fprintf takes at least two arguments, one of which is a pointer to an
object of type FILE and the other is a pointer to char. The ellipsis at the end of the list of arguments
indicates that a variable number of arguments may follow.

When the translator reads a call to fprintf, it compares the first two arguments against their
declared types. All further arguments in the function call are not checked. Every function that
takes a variable number of arguments must have a function prototype; otherwise, its behavior is
undefined.

Another advantage of function prototypes is that arguments do not undergo the default argument
promotions. Normally, the translator promotes arguments as follows: char and short int are
promoted to int (if it can hold the value encoded within the variable), or to unsigned int (if int
cannot hold the value). float is always to double. This is discussed more fully below.

If a function takes no arguments, its prototype should be of the form:

extern char *example(void);

The type specifier void between the parentheses indicates that the function takes no arguments.
This is not the same as:

extern char *example();

This latter declaration says merely that you have nothing to say about the function’s arguments.

When a function prototype is not visible where the function is called, then the following rules apply:

• The arguments of the function call undergo the default argument promotions. Behavior is
undefined when the number of arguments does not match the number of parameters in the
function definition, regardless of whether the prototype is visible where the function is defined.

• If the function prototype is not visible where the function is defined, then the parameters of the
function definition also undergo default argument promotion. Behavior is undefined when the
type of a promoted argument does not match that of its corresponding promoted parameter.

• If the function prototype is visible where the function is defined, then behavior is undefined
either when the type of a promoted argument does not match that of its corresponding
parameter, or when the function prototype ends with an ellipse ‘...’.

When, however, the function prototype is visible both where the function is defined and where it is
called, each argument of the function call is implicitly converted to the type of its corresponding
parameter. If the function prototype ends in an ellipsis, then such promotion of arguments ends
with the last declared parameter; all arguments thereafter undergo default argument promotion.

For example, consider the following function call:

int fprintf(FILE *fp, const char *format, ...);
. . .

LEXICON

284 function prototype

float argument;
. . .

fprintf(stderr, "%3.2f\n", argument);

The first two arguments in the function call are cast to the types given in the prototype. The third
argument, which is indicated by the ellipsis in the function prototype, undergoes the usual
promotion double before being passed to fprintf.

The last situation allows you to write code like:

#include <math.h>
. . .

d = cos(2);

This works correctly, because the prototype

double cos(double d);

in the header tells the translator to promote the integer constant 2 to double rather than passing an
int to the function, as it would do otherwise.

Cross-references
Standard, §3.1.2.1, §3.3.2.2, §3.5.4.3, §3.7.1
The C Programming Language, ed. 2, p. 202

See Also
function call, function declarators, function definition

fwrite() — STDIO (libc)
Write data into a stream
#include <stdio.h>
size_t fwrite(const void *buffer, size_t size, size_t n, FILE *fp);

fwrite writes up to n items, each being size bytes long, from the area pointed to by buffer into the
stream pointed to by fp. It increments the file-position indicator by the amount appropriate to the
number of bytes written.

fwrite returns the number of items written. This will be equal to n, unless a write error occurs. If a
write error occurs, the value of the file-position indicator is indeterminate.

Example
For an example of this function, see fgetpos.

Cross-references
Standard, §4.9.8.2
The C Programming Language, ed. 2, p. 247

See Also
fread, STDIO

LEXICON

fwrite() 285

G

gcvt() — Extended function (libc)
Convert floating-point numbers to strings
char *gcvt(double d, int prec, char *buffer);

gcvt converts a floating point number into an ASCII string. Its operation resembles that of the %g
operator to printf. gcvt converts its argument d into a null-terminated string of decimal numerals
with a precision (i.e., the number of numerals to the right of the decimal point) of prec. Unlike its
cousins ecvt and fcvt, gcvt uses a buffer that is defined by the caller. buffer must point to a buffer
large enough to hold the result; 64 characters will always be sufficient.

When generating its output, gcvt will mimic fcvt if possible. Otherwise, it mimics ecvt.

gcvt returns buffer.

Example
For an example of this function, see the entry for ecvt.

See Also
ecvt, extended miscellaneous, fcvt, frexp, ldexp, modf, printf

general utilities — Overview
#include <stdlib.h>
The ANSI standard describes a set of general utilities. As its name implies, this set is a grab-bag of
utilities that do not fit neatly anywhere else. In accordance with the Standard’s principle that every
function must be declared in a header, the Committee created the header stdlib.h to hold the
general utilities and their attendant macros and types.

The general utilities are as follows:

Environment communication
abort End program immediately
atexit Register a function to be performed at exit
exit Terminate a program gracefully
getenv Get environment variable
system Suspend program and execute another

Integer arithmetic functions
abs Compute absolute value of an integer
div Perform integer division
labs Compute absolute value of a long integer
ldiv Perform long integer division

Memory management
calloc Allocate and clear dynamic memory
free De-allocate dynamic memory
malloc Allocate dynamic memory
realloc Reallocate dynamic memory

Multibyte character functions
mblen Compute length of a multibyte character
mbstowcs Convert sequence of multibyte characters to wide characters
mbtowc Convert multibyte character to wide character
wcstombs Convert sequence of wide characters to multibyte characters
wctomb Convert wide character to multibyte character

LEXICON

286 gcvt() — general utilities

Pseudo-random number functions
rand Generate pseudo-random numbers
srand Seed pseudo-random number generator

Searching-sorting
bsearch Search an array
qsort Sort an array

String conversion functions
atof Convert string to floating-point number
atoi Convert string to integer
atol Convert string to long integer
strtod Convert string to double-precision floating-point number
strtol Convert string to long integer
strtoul Convert string to unsigned long integer

Cross-references
Standard, §4.10.1
The C Programming Language, ed. 2, pp. 251ff

See Also
div_t, ldiv_t, Library, stdlib.h, wchar_t

getc() — STDIO (stdio.h)
Read a character from a stream
#include <stdio.h>
int getc(FILE *fp);

getc reads a character from the stream pointed to by fp. The character is read as an unsigned char
converted to an int.

If all goes well, getc returns the character read. If it reads the end of file, it returns EOF and sets
the end-of-file indicator. If an error occurs, it returns EOF and sets the error indicator.

Cross-references
Standard, §4.9.7.5
The C Programming Language, ed. 2, p. 247

See Also
fgetc, getchar, gets, putc, putchar, puts, STDIO, ungetc

Notes
Let’s C implements getc as a macro, which means that fp could be evaluated more than once.
Therefore, one should beware of the side-effects of evaluating the argument more than once,
especially if the argument itself has side-effects.

getchar() — STDIO (stdio.h)
Read a character from the standard input stream
#include <stdio.h>
int getchar(void);

getchar reads and returns a character from the file or device associated with stdin. It is equivalent
to:

getc(stdin);

LEXICON

getc() — getchar() 287

If getchar reads the end of file, it returns EOF and sets the file’s end-of-file indicator. Likewise, if an
error occurs, it returns EOF and sets the file’s error indicator.

Example
This example copies onto the standard-output device whatever is typed upon the standard-input
device. To exit, type EOF; what this character is depends upon the operating system that your
computer is running.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

int c;

while((c = getchar()) != EOF)
putchar(c);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.9.7.6
The C Programming Language, ed. 2, p. 247

See Also
getc, gets, putc, putchar, puts, STDIO, ungetc

getenv() — General utility (libc)
Read environmental variable
#include <stdlib.h>
char *getenv(const char *variable);

The environment itself can make information available to a program. This information often is
available in the form of an environment variable, which is a string that forms a definition. For
example, under the UNIX operating system the environment variable TERM indicates the type of
terminal the user has. The variable TERM=myterm indicates that the user is typing on a myterm
variety of terminal. When a program reads that declaration, it knows to use the coding proper for
that terminal.

The environment variables together form the environment list. Given the heterogeneous
environments under which C is implemented, the Standard does not define the mechanism by
which the environment list is passed to a program.

The function getenv scans the environment list and looks for the variable that is named in the
string pointed to by variable.

getenv returns a pointer to the string that defines the variable. It returns NULL if the variable
requested cannot be found.

Example
This program looks up words in the environment and displays them.

#include <stdio.h>
#include <stdlib.h>

LEXICON

288 getenv()

main(void)
{

for(;;) {
char buf[80], *is;

printf("Enter an environmental variable: ");
fflush(stdout);

if(gets(buf) == NULL)
exit(EXIT_SUCCESS);

if((is = getenv(buf)) == NULL)
printf("Can’t find %s\n", buf);

else
printf("%s = %s\n", buf, is);

}

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.4.4
The C Programming Language, ed. 2, p. 253

See Also
environment list, general utilities

Notes
getenv uses a static area to hold the environment variable requested. This buffer will be overwritten
by subsequent calls to getenv.

gets() — STDIO (libc)
Read a string from the standard input stream
#include <stdio.h>
char *gets(char *buffer);

gets reads characters from the standard input stream and stores them in the area pointed to by
buffer. It stops reading as soon as it detects a newline character or the end of file. gets discards the
newline or EOF and appends a null character onto the end of the string it has built.

If all goes well, gets returns buffer. When it has encountered the end of file without having placed
any characters into buffer, it returns NULL and leaves the contents of buffer unchanged. If a read
error occurs, gets returns NULL and the contents of buffer may or may not be altered.

Example
This example echoes whatever is typed upon the standard-input device.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

char buf[100];

while(gets(buf) != NULL)
puts(buf);

return(EXIT_SUCCESS);
}

LEXICON

gets() 289

Cross-references
Standard, §4.9.7.7
The C Programming Language, ed. 2, p. 247

See Also
fgets, getc, getchar, putc, putchar, puts, STDIO, ungetc

Notes
gets stops reading the input string as soon as it detects a newline character. If a previous read from
the standard input stream left a newline character in the standard input buffer, gets will read it and
immediately stop accepting characters. To the user, it will appear as if gets is not working at all.

For example, if getchar is followed by gets, the first character gets will receive is the newline
character left behind by getchar. A simple statement will remedy this:

while (getchar() != ’\n’)
;

This discards the newline character left behind by getchar. gets will now work correctly. You
should use this only when you know that a newline will be left in the buffer. Otherwise, the desired
line will be lost

getw() — Extended function (libc)
Read word from file stream
#include <xstdio.h>
int getw(FILE *fp);

getw reads a word (an int) from the file stream fp, and returns it. It differs from the related function
getc in that getc returns either a char promoted to an int, or EOF.

getw returns EOF on errors; however, you must call feof or ferror distinguish this value from a
valid end-of-file signal.

Example
For an example of this function, see the entry for inb.

See Also
extended STDIO, getc

Notes
getw assumes that the bytes of the word it receives are in the natural byte ordering of the machine.
See the entry on byte ordering for more information. This means that such files might not be
portable between machines.

To conform to the ANSI Standard, this function has been moved from the header stdio.h to the
header xstdio.h. This may require that some code be altered.

getw is not described in the ANSI Standard. A program that uses it does not comply strictly with
the Standard, and may not be portable to other compilers or operating systems.

gmtime() — Time function (libc)
Convert calendar time to universal coordinated time
#include <time.h>
struct tm *gmtime(const time_t *caltime);

The function gmtime takes the calendar time pointed to by caltime and breaks it down into a
structure of the type tm, converting it into universal coordinated time.

LEXICON

290 getw() — gmtime()

gmtime returns a pointer to the structure tm that it creates. This structure is defined in the
header time.h. If universal coordinated time cannot be computed, then gmtime returns NULL.

Example
This example shows Universal Coordinated Time in a message of the form ‘‘12/22/88 15:27:33’’.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

time_t now;
char buffer[80];

time(&now);
strftime(buffer, sizeof(buffer),

"%m/%d/%y %H:%M:%S\n", gmtime(&now));
printf(buffer);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.3.3
The C Programming Language, ed. 2, p. 256

See Also
asctime, ctime, date and time, localtime, strftime, tm, universal coordinated time

Notes
The name ‘‘gmtime’’ reflects the term ‘‘Greenwich Mean Time.’’ the Standard prefers the term
‘‘universal coordinated time,’’ although for all practical purposes the two are identical.

gmtime is useful only on a system whose time is set to UTC rather than to local time. The Let’s C
time routines read the environmental variable TIMEZONE to translate UTC automatically into your
local time, should you wish. See the entry for TIMEZONE for more information on how this works.

gmtime returns a pointer to a statically allocated data area that is overwritten by successive calls.

goto — C keyword
Unconditionally jump within a function
goto label;

The goto statement forces a program’s execution to jump to the point marked by label. A goto can
jump only to a point within the current function. To jump beyond a function boundary, use the
functions longjmp and setjmp.

The most common use for goto is to exit from nested control structures or go to the top of a control
block. It is used most often to write ‘‘ripcord’’ routines, i.e., routines that are executed when a error
occurs too deeply within a program for the program to disentangle itself correctly.

Example
For an example of this statement, see name space.

Cross-references
Standard, §4.6.6.1
The C Programming Language, ed. 2, p. 65

LEXICON

goto 291

See Also
break, C keywords, continue, label name, non-local jumps, return, statements

Notes
The C Programming Language describes goto as ‘‘infinitely-abusable.’’ Caveat utilitor.

LEXICON

292 goto

H

header — Overview
The Standard mandates that every function be declared in a header, whose contents are available to
the program through the #include preprocessor directive. A header usually is a file, but it may also
be built into the translator.

The Standard describes 15 headers, as follows:

assert.h Run-time assertion checking
ctype.h Character-handling functions
errno.h errno and related macros
float.h Limits to floating-point numbers
limits.h General implementation limits
locale.h Establish or modify a locale
math.h Mathematics function
setjmp.h Non-local jumps
signal.h Signal-handling functions
stdarg.h Handle variable numbers of arguments
stddef.h Common definitions
stdio.h Standard input and output
stdlib.h General utilities
string.h String-handling functions
time.h Date and time functions

Each header contains only those functions described within the Standard, plus attending data types
and macros. Every external identifier in every header is reserved for the implementation. Also
reserved is every external identifier that begins with an underscore character ‘_’, whether it is
described in the Standard or not. If a reserved external name is redefined, behavior is undefined,
even if the function that replaces it has the same specification as the original. This is done to
assure the user that moving code from one implementation to another will not generate unforeseen
collisions with implementation-defined identifiers. It is also done to assure the implementor that
functions called by other library functions will not be derailed by user-defined external names.

Every header can be included any number of times, and any number of headers can be included in
any order without triggering problems.

Let’s C also includes the following, implementation-specific headers:

access.h Define manifest constants used by access()
bios.h Outline ROM BIOS data area
canon.h Canonical conversion for the 68000
dos.h Define MS-DOS functions and devices
larges.h Support model-independent assembly language
mtype.h List processor code numbers
path.h Declare path()
stat.h Definitions and declarations to obtain file status
xctype.h Declare/define extended character handling routines
xmath.h Declare extended mathematics functions
xstdio.h Declare/define extended STDIO routines
xtime.h Declare/define extended date and time routines

Cross-references
Standard, §4.1.3
The C Programming Language, ed. 2, p. 241

LEXICON

header 293

See Also
header names, Library

header names — Definition
A header name is a token that gives the name of a header. There are two varieties of header name:
<filename.h> and "filename.h".

The two varieties of header names are both searched in an implementation-defined manner. The
name of the file can be enclosed within angle brackets (<file.h>) or quotation marks ("file.h"). Angle
brackets tell Let’s C to look for file.h in the directories named with the -I options to the cc
command, and then in the directory named by the environmental variable INCDIR. Quotation
marks tell Let’s C to look for file.h in the source file’s directory, then in directories named with the -
I options, and then in the directory named by the environmental variable INCDIR.

If any of the characters ’, \, , or /* appear between the ‘<’ and ‘>’ of a bracketed header name,
behavior is undefined. Likewise, if any of the characters ’, \, or /* appear between the ‘"’ and the ‘"’
of a quoted header name, behavior is undefined.

Cross-references
Standard, §3.1.7

See Also
#include, header, lexical elements

hypot() — Extended function (libm)
Compute hypotenuse of right triangle
#include <xmath.h>
double hypot(double x, double y);

hypot computes the hypotenuse, or distance from the origin, of its arguments x and y. The result is
the square root of the sum of the squares of x and y.

See Also
cabs, extended mathematics

Notes
hypot is not described in the ANSI Standard. Any program that uses it does not conform strictly to
the Standard, and may not be portable to other compilers or environments.

LEXICON

294 header names — hypot()

I

i8086 support — Overview
Let’s C includes a number of routines that support the i8086 microprocessor. They are as follows:

_copy Copy memory from one address to another
csreg Read the CS segment register
dsreg Read the DS segment register
esreg Read the ES segment register
exargs Parse the command line
execall Pass a command to command.com
getanb Get unbuffered input from aux device
getcnb Get unbuffered input from con device
in Read a word from a port
inb Read a byte from a port
intcall Call an MS-DOS interrupt
out Output a word to a port
outb Output a byte to a port
ptoreg Convert C ponters to register pairs
PTR Expand pointers to offset/segment
putanb Send unbuffered output to aux device
putcnb Send unbuffered output to con device
regtop Set a pointer to value of register pair
ssreg Read the SS segment register
_zero Zero out a segment of memory

See Also
i8087, Library

Notes
These functions are not described in the ANSI Standard. A program that uses any of them does not
conform strictly to the Standard, and may not be portable to other compilers or environments.

i8087 — Technical information
Floating-point co-processor

The Intel i8087 is the mathematics coprocessor for the i8086/88 family of microprocessors. It
greatly accelerates the computation of floating-point numbers.

Let’s C includes two sets of libraries for use with the i8087: the sensing and the non-sensing
libraries.

If your compiled program is always going to run on a computer system that includes an i8087, you
should compile and link programs with the -VNDP option. This program will use the non-sensing
libraries. These libraries contain instructions that perform floating point operations directly on the
i8087 coprocessor; programs compiled with them will not operate correctly on a system which does
not include an i8087.

You should not compile and link programs with the -VNDP option if your system does not include
an i8087 coprocessor or if you want the compiled program to run on target systems that might or
might not contain an i8087.

If you do not use the -VNDP option, Let’s C by default will use its sensing libraries. These libraries
check if an i8087 is present on the system on which the compiled program is being run. If one is
present, the libraries use it to perform floating-point operations. If one is not present, the libraries
emulate i8087 floating-point operations in software. The compiled program will be somewhat larger

LEXICON

i8086 support — i8087 295

than the same program compiled with the -VNDP option, because it will include the code to perform
software floating point, and will run slightly slower. The program must be linked with the -VROM
option if it is to run in ROM.

A program that uses floating-point numbers will not necessarily yield the same results when
executed on systems with and without an i8087 coprocessor. In particular, the i8087 represents
floating-point numbers internally with an 80-bit representation (64 fraction bits, 15 exponent bits,
one sign bit), whereas Let’s C software floating point uses the 64-bit IEEE representation internally
(52 fraction bits, 11 exponent bits, one sign bit). Thus, the low-order digits of floating point
computations may differ on systems with and without an i8087.

Compatability With Previous Versions
Versions of Let’s C prior to 4.0 used DECVAX format rather than IEEE format for software floating
point operations. Any program using software floating point that was compiled by a previous
version must be recompiled with the current version to use IEEE software floating point. Binary
files that include DECVAX format floating point data are not compatible with the current IEEE
floating point version.

Checking Presence of the i8087
In i8087 sensing mode, the C runtime startup routine discovers whether an i8087 is present on the
machine. This datum is written into the global char _has8087. Zero indicates that an i8087 is
absent, and a value other than zero indicates that it is present.

If you wish, you can read and change this variable. If you wish to test how a program would work
without an i8087, it is easier to clear this byte than to pull the i8087 chip out of your computer. If,
however, you set this byte to a non-zero value and an i8087 is not present, your computer will hang
when it tries to use the non-existent i8087.

See Also
float, double, technical information

Notes
The assembler as will assemble programs that use i8087 opcodes. For a full table of these opcodes,
see the entry for as.

identifiers — Overview
An identifier names one of the following lexical elements:

• Functions

• Labels

• Macros

• Members of a structure, a union, or an enumeration

• Objects

• Tags

• typedefs

An identifier with internal linkage may have up to at least 31 characters, which may be in either
upper or lower case. An identifier with external linkage, however, may have up to at least six
characters, and it is not required to recognize both upper and lower case. These limits are defined
by the implementation, and may be increased by it.

An identifier is a string of digits and non-digits, beginning with a non-digit. For a translator to know
that two identifiers refer to the same entity, the identifiers must be identical. If two identifiers are

LEXICON

296 identifiers

meant to refer to the same entity yet differ in any character, the behavior is undefined.

Keywords in C are reserved. Therefore, no identifier may match a keyword.

The Standard allows the programmer to use leading underscores ‘_’ to name internal identifiers, but
reserves for the implementation all external identifiers with leading underscores. To reduce ‘‘name
space pollution,’’ the implementor should not reserve anything that is not explicitly defined in the
Standard and that does not begin with a leading underscore.

Identifiers have both scope and linkage. The scope of an identifier refers to the portion of a program
to which it is ‘‘visible.’’ An identifier can have program scope, file scope, function scope, or block
scope; for more information, see the entry for scope. The linkage of an identifier describes whether it
is joined only with its name-sakes within the same file, or can be joined to other files. Linkage can
be external, internal, or none. For more information, see the entry for linkage.

Cross-references
Standard, §3.1.2
The C Programming Language, ed. 2, p. 192

See Also
digit, external name, function prototype, internal name, lexical elements, linkage, name
space, nondigit, scope, storage duration, string literal, types

if — C keyword
Conditionally execute an expression
if(conditional) statement;

if is a C keyword that conditionally executes an expression. If conditional is nonzero, then statement
is executed. However, if conditional is zero, then statement is not executed.

conditional must use a scalar type. It may be a function call (in which case if evaluates what
function returns), an integer, the result of an arithmetic operation, or the value returned by a
relational expression.

An if statement can be followed by an else statement, which also introduces a statement. If
conditional is nonzero, then the statement introduced by if is executed and the one introduced by
else is ignored; whereas if conditional is equal to zero, then the statement introduced by if is ignored
and the one introduced by else is executed.

Example
For an example of this statement, see exit.

Cross-references
Standard, §4.6.4.1
The C Programming Language, ed. 2, pp. 55ff

See Also
else, statements, switch

Notes
If the statement controlled by an if statement is accessed via a label, the statement controlled by an
else statement associated with the if statement is not executed.

LEXICON

if 297

implicit conversions — Definition
The term implicit conversion means that the type of an object is changed by the translator without
the direct intervention of the programmer. For a list of the rules for implicit conversion, see
conversion.

Cross-reference
Standard, §3.2

See Also
conversions, explicit conversion

inb() — Extended function (libc)
Read from a port
int inb(int port);

inb provides a C interface to the i8086 machine instruction in. It reads a byte (eight bits) from port,
and returns it as an integer (16 bits).

Example
This example writes a file to the serial port. It uses inb to read the current status of the port.

#include <stdio.h>
#include <stdlib.h>

/* DOS magic numbers */
#define PRINTER_STATUS 0x3BD
#define PRINTER_OUT 0x3BC
#define PRINTER_BUSY 0x80

main(int argc, char *argv[])
{

FILE *fp;
int data;

if(argc != 2)
printf("Usage: print filename\n");

else if ((fp = fopen(argv[1], "r")) == NULL) {
printf("Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}

else while((data = getw(fp)) != EOF) {
while(inb(PRINTER_STATUS) & PRINTER_BUSY)

;
outb(PRINTER_OUT, data);

}
return EXIT_SUCCESS;

}

See Also
extended miscellaneous, in, out, outb

INCDIR — Environmental variable
Directory that holds include files

INCDIR names the default directory where Let’s C seeks its header files. For example, the
command

LEXICON

298 implicit conversions — INCDIR

set INCDIR=a:\include

tells cc to look for header files in directory include on drive A. This directory is searched, as is the
directory that holds the C source files and the directories named with -I options to the cc command,
if any.

It is recommended that you set INCDIR in autoexec.bat to ensure that it is always set correctly.

See Also
cc, environmental variable

index() — Extended function (libc)
Find a character in a string
char *index(char *string, char character);

index is identical to the ANSI function strchr. It scans the given string for the first occurrence of
character. If it finds character, it returns a pointer to it. If it does not find character, index returns
NULL.

Having index search for a null character will always produce a pointer to the end of a string. For
example,

char *string;
assert(index(string, 0)==string+strlen(string));

will never fail.

Example
For an example of this function, see the entry for strncpy.

See Also
extended miscellaneous, memchr, pnmatch, rindex, strchr, strpbrk

Notes
index is not described in the ANSI Standard. It is recommended that you use strchr instead of
index so your programs will more closely approach strict conformity with the Standard.

initialization — Definition
The term initialization refers to setting a variable to its first, or initial, value.

Rules of Initialization
Initializers follow the same rules for type and conversion as do assignment statements.

If a static object with a scalar type is not explicitly initialized, it is initialized to zero by default.
Likewise, if a static pointer is not explicitly initialized, it is initialized to NULL by default. If an
object with automatic storage duration is not explicitly initialized, its contents are indeterminate.

Initializers on static objects must be constant expressions; greater flexibility is allowed for
initializers of automatic variables. These latter initializers can be arbitrary expressions, not just
constant expressions. For example,

double dsin = sin(30);

is a valid initializer, where dsin is declared inside a function.

To initialize an object, use the assignment operator ‘=’. The following sections describe how to
initialize different classes of objects.

LEXICON

index() — initialization 299

Scalars
To initialize a scalar object, assign it the value of a expression. The expression may be enclosed
within braces; doing so does not affect the value of the assignment. For example, the expressions

int example = 7+12;

and

int example = { 7+12 };

are equivalent.

Unions and Structures
The initialization of a union by definition fills only its first member.

To initialize a union, use an expression that is enclosed within braces:

union example_u {
int member1;
long member2;
float member3;

} = { 5 };

This initializes member1 to five. That is to say, the union is filled with an int-sized object whose
value is five.

To initialize a structure, use a list of constants or expressions that are enclosed within braces. For
example:

struct example_s {
int member1;
long member2;
union example_u member3;

};

struct example_s test1 = { 5, 3, 15 };

This initializes member1 to five, initializes member2 to three, and initializes the first member of
member3 to 15.

Strings and Wide Characters
To initialize a string pointer or an array of wide characters, use a string literal.

The following initializes a string:

char string[] = "This is a string";

The length of the character array is 17 characters: one for every character in the given string literal
plus one for the null character that marks the end of the string.

If you wish, you can fix the length of a character array. In this case, the null character is appended
to the end of the string only if there is room in the array. For example, the following

char string[16] = "This is a string";

writes the text into the array string, but does not include the concluding null character because
there is not enough room for it.

The same rules apply to initializing an array of wide characters. For example, the following:

wchar_t widestring[] = L"This is a string";

LEXICON

300 initialization

fills widestring with the wide characters corresponding to the characters in the given string literal.
The appropriate form of the null character is then appended to the end of the array, and the size of
the array is (17*sizeof(wchar_t)). The prefix L indicates that the string literal consists of wide
characters.

A pointer to char can also be initialized when the pointer is declared. For example:

char *strptr = "This is a string";

initializes strptr to point to the first character in This is a string. This declaration automatically
allocates exactly enough storage to hold the given string literal, plus the terminating null character.

Arrays
To initialize an array, use a list of expressions that is enclosed within braces. For example, the
expression

int array[] = { 1, 2, 3 };

initializes array. Because array does not have a declared number of elements, the initialization fixes
its number of elements at three. The elements of the array are initialized in the order in which the
elements of the initialization list appear. For example, array[0] is initialized to one, array[1] to two,
and array[2] to three.

If an array has a fixed length and the initialization list does not contain enough initializers to
initialize every element, then the remaining elements are initialized in the default manner: static
variables are initialized to zero, and other variables to whatever happens to be in memory. For
example, the following:

int array[3] = { 1, 2 };

initializes array[0] to one, array[1] to two, and array[2] to zero.

The initialization of a multi-dimensional array is something of a science in itself. The Standard
defines that the ranks in an array are filled from right to left. For example, consider the array:

int example[2][3][4];

This array contains two groups of three elements, each of which consists of four elements.
Initialization of this array will proceed from example[0][0][0] through example[0][0][3]; then from
example[0][1][0] through example[0][1][3]; and so on, until the array is filled.

It is easy to check initialization when there is one initializer for each ‘‘slot’’ in the array; e.g.,

int example[2][3] = {
1, 2, 3, 4, 5, 6

};

or:

int example[2][3] = {
{ 1, 2, 3 }, { 4, 5, 6 }

};

The situation becomes more difficult when an array is only partially initialized; e.g.,

int example[2][3] = {
{ 1 }, { 2, 3 }

};

which is equivalent to:

LEXICON

initialization 301

int example[2][3] = {
{ 1, 0, 0 }, { 2, 3, 0 }

};

As can be seen, braces mark the end of initialization for a ‘‘cluster’’ of elements within an array. For
example, the following:

int example[2][3][4] = {
5, { 1, 2 }, { 5, 2, 4, 3 }, { 9, 9, 5 },
{ 2, 3, 7 } };

is equivalent to entering:

int example[2][3][4] = {
{ 5, 0, 0, 0 },
{ 1, 2, 0, 0 },
{ 5, 2, 4, 3 },

{ 9, 9, 5, 0 },
{ 2, 3, 7, 0 },
{ 0, 0, 0, 0 }

};

The braces end the initialization of one cluster of elements; the next cluster is then initialized. Any
elements within a cluster that have not yet been initialized when the brace is read are initialized in
the default manner.

The final entry in a list of initializers may end with a comma. For example:

int array[3] = { 1, 2, 3, };

will initialize array correctly. This is a departure from many current implementations of C.

ANSI C requires that the initializers of a multi-dimensional array be parsed in a top-down manner.
Some implementations had parsed such initializers in a bottom-up manner. Code that expects
bottom-up parsing may behave differently under ANSI C, and probably without warning. This is a
quiet change that may require that some code be rewritten.

Cross-references
Standard, §3.5.7
The C Programming Language, ed. 2, pp. 218ff

See Also
array, declarations

int — C keyword
The type int holds an integer. It is usually the same size as a word (or register) on the target
machine.

int is a signed integral type. This type can be no smaller than an short and no greater than a long.

A int can encode any number between INT_MIN and INT_MAX. These are macros that are defined
in the header limits.h;

The types signed and signed int are synonyms for int.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

LEXICON

302 int

See Also
types

Notes
Because ints may be the size of shorts on some machines and the size of longs on others, programs
that are meant to be portable can avoid bugs by explicitly declaring all ints to be either short or
long.

intcall() — i8086 support (libc)
Call MS-DOS interrupt
#include <dos.h>
int intcall(struct reg *srcreg, struct reg *destreg, int intnum);

intcall lets you call MS-DOS interrupts. The arguments srcreg and destreg point to elements in the
structure reg, which is defined in the header file dos.h, as follows:

struct reg {
unsigned r_ax;
unsigned r_bx;
unsigned r_cx;
unsigned r_dx;
unsigned r_si;
unsigned r_di;
unsigned r_ds;
unsigned r_es;
unsigned r_flags;

};

intcall sets the processor registers to the values given in srcreg, without setting the processor flags.
Then it calls the interrupt specified by intnum to perform the desired system function. Most often,
the manifest constant DOSINT (0x21) is used, although intcall can handle almost all MS-DOS
interrupts. Finally, it sets the structure pointed to by destreg to the values of those registers, and
returns.

Example
The following program uses function 8 of interrupt 21, which receives raw input from the keyboard
and does not echo it on the screen. The program receives up to 80 characters typed at the
keyboard, and echoes them to the screen either when the carriage return is pressed or when the
limit of 80 characters is exceeded.

The sample program fdir.c, which is included with your copy of Let’s C, also demonstrates intcall.

#include <dos.h>
#include <stdio.h>
#include <stdlib.h>

char getch(void)
{

struct reg r;

r.r_ax = CONRAW;
intcall(&r, &r, DOSINT);

/* mask off top of ax pair */
return (r.r_ax & 0xff);

}

LEXICON

intcall() 303

main(void)
{

char string[80];
int i;

for(i = 0; i <80; i++)
if((string[i] = getch()) == ’\r’)

break;

printf("%s\n", string);
return(EXIT_SUCCESS);

}

See Also
dos.h, i8086 support, ptoreg, PTR, regtop, signals/interrupts

Notes
Registers that are not included in the structure reg cannot be passed to a system routine explicitly.

incall cannot use interrupts 25 and 26, absolute disk read and write, because they do not restore
the stack correctly when they exit.

integer constant — Definition
An integer constant is a constant that holds an integer. An integer constant has the following
structure:

• It begins with a digit.

• It has no period or exponent.

• It may have a prefix that indicates its base, as follows: 0X and 0x both indicate hexadecimal. 0
(zero) indicates octal.

• It may have a suffix that indicates its type. u and U indicate an unsigned integer; l and L
indicate a long integer.

A hexadecimal number may consist of the digits ‘0’ through ‘9’ and the letters ‘a’ through ‘f’ or ‘A’
through ‘F’. An octal number may consist of the digits ‘0’ through ‘7’.

When an integer constant initializes a variable, the form of the constant should match that of the
variable as closely as possible. For example, when an integer constant initializes a long int, the
constant should have the suffix l or L. If the constant does not have this suffix, the variable may not
be initialized correctly.

The type of an integer constant is fixed by the following rules:

• A decimal integer constant that has no suffix is given the first of the following types that can
represent its value: int, long int, or unsigned long int.

• A hexadecimal or octal integer constant that has no suffix is given the first of the following
types that can represent its value: int, unsigned int, long int, or unsigned long int.

• An integer constant with the prefixes u or U is given the first of the following types that can
represent its value: unsigned int or unsigned long int.

• An integer constant with the prefixes l or L is given the first of the following types that can
represent its value: long int or unsigned long int.

• An integer constant with both the unsigned and the long suffixes is an unsigned long int.

These rules, as they preserve the value of a given constant, are part of what is known as the value-

LEXICON

304 integer constant

preserving rules.

Cross-references
Standard, §3.1.3.2
The C Programming Language, ed. 2, p. 193

See Also
constants, conversions

internal name — Definition
An internal name is an identifier that has internal linkage. The minimum maximum for the length
of an internal name is 31 characters, and an implementation must distinguish upper-case and
lower-case characters.

Cross-references
Standard, §3.1.2
The C Programming Language, ed. 2, p. 35

See Also
external name, identifiers, linkage

interrupt — Definition
An interrupt is an interruption of the sequential flow of a program. It can be generated by the
hardware, from within the program itself, or from the operating system.

See Also
Definitions, intcall, interrupt handling, interrupts

isalnum() — Character handling (ctype.h)
Check if a character is a numeral or letter
#include <ctype.h>
int isalnum(int c);

The macro isalnum tests whether c is a letter or a numeral. A letter is any character for which
isalpha returns true; likewise, a numeral is any character for which isdigit returns true. c must be
a value that is representable as an unsigned char or EOF.

isalnum returns nonzero if c is a letter or a numeral, and zero if it is not.

Cross-references
Standard, §4.3.1.1
The C Programming Language, ed. 2, pp

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

LEXICON

internal name — isalnum() 305

isalpha() — Character handling (ctype.h)
Check if a character is a letter
#include <ctype.h>
int isalpha(int c);

The macro isalpha tests whether c is a letter. In the C locale, a letter is any of the characters ‘a’
through ‘z’ or ‘A’ through ‘Z’. In any other locale, a letter is any character for which the functions
iscntrl, isdigit, ispunct, and isspace all return false. c must be a value that is representable as an
unsigned char or EOF.

isalpha returns nonzero if c is an alphabetic character, and zero if it is not.

Cross-references
Standard, §4.3.1.2
The C Programming Language, ed. 2, p. 249

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

isascii() — Extended macro (xctype.h)
Check if a character is an ASCII character
#include <xctype.h>
int isascii(c) int c;

The macro isascii tests whether the argument c is an ASCII character (0 <= c <= 0177). It returns a
number other than zero if c is an ASCII character, and zero if it is not. Many other ctype macros
will fail if passed a non-ASCII value other than EOF.

See Also
extended character handling

Notes
To conform to the ANSI Standard, this macro has been moved from the header ctype.h to the
header xctype.h. This may require that some code be altered.

This macro is not described in the ANSI Standard. Any program that uses it does not conform
strictly to the Standard, and may not be portable to other compilers or environments.

iscntrl() — Character handling (ctype.h)
Check if a character is a control character
#include <ctype.h>
int iscntrl(int c);

The macro iscntrl tests whether c is a control character under the implementation’s character set.
The Standard defines a control character as being a character in the implementation’s character
that cannot be printed. c must be a value that is representable as an unsigned char or EOF.

iscntrl returns nonzero if c is a control character, and zero if it is not.

Cross-references
Standard, §4.3.1.3

LEXICON

306 isalpha() — iscntrl()

The C Programming Language, ed. 2, p. 249

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

isdigit() — Character handling (ctype.h)
Check if a character is a numeral
#include <ctype.h>
int isdigit(int c);

The macro isdigit tests whether c is a numeral (any of the characters ‘0’ through ‘9’). c must be a
value that is representable as an unsigned char or EOF.

isdigit returns nonzero if c is a numeral, and zero if it is not.

Cross-references
Standard, §4.3.1.4
The C Programming Language, ed. 2, p. 249

See Also
character handling

isgraph() — Character handling (ctype.h)
Check if a character is printable
#include <ctype.h>
int isgraph(int c);

The macro isgraph tests whether c is a printable letter within the Let’s C character set, but
excluding the space character. The Standard defines a printable character as any character that
occupies one printing position on an output device. c must be a value that is representable as an
unsigned char or EOF.

isgraph returns nonzero if c is a printable character (except for space), and zero if it is not.

Cross-references
Standard, §4.3.1.5
The C Programming Language, ed. 2, p. 249

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

islower() — Character handling (ctype.h)
Check if a character is a lower-case letter
#include <ctype.h>
int islower(int c);

The macro islower tests whether c is a lower-case letter. In the C locale, a lower-case letter is any of
the characters ‘a’ through ‘z’. In any other locale, this is a character for which the functions iscntrl,

LEXICON

isdigit() — islower() 307

isdigit, ispunct, isspace, and isupper all return false. c must be a value that is representable as
an unsigned char or EOF.

islower returns nonzero if c is is a lower-case letter, and zero if it is not.

Cross-references
Standard, §4..1.6
The C Programming Language, ed. 2, p. 249

See Also
character handling, character set

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

isprint() — Character handling (ctype.h)
Check if a character is printable
#include <ctype.h>
int isprint(int c);

The macro isprint tests whether c is a printable letter within the implementation’s character set,
including the space character. The Standard defines a printable character as any character that
occupies one printing position on an output device. c must be a value that is representable as an
unsigned char or EOF.

isprint returns nonzero if c is a printable character, and zero if it is not.

Cross-references
Standard, §4.3.1.7
The C Programming Language, ed. 2, p. 249

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

ispunct() — Character handling (ctype.h)
Check if a character is a punctuation mark
#include <ctype.h>
int ispunct(int c);

The macro ispunct tests whether c is a punctuation mark in the implementation’s character set.
The Standard defines a punctuation mark as being any printable character, except the space
character, for which the function isalnum returns false. c must be a value that is representable as
an unsigned char or EOF.

ispunct returns nonzero if c is a punctuation mark, and zero if it is not.

Cross-references
Standard, §4.3.1.8
The C Programming Language, ed. 2, p. 249

LEXICON

308 isprint() — ispunct()

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

isspace() — Character handling (ctype.h)
Check if character is white space
#include <ctype.h>
int isspace(int c);

The macro isspace tests whether c represents a white-space character. In the C locale, a white-
space character is any of the following: space (‘ ’), form feed (‘\f’), newline (‘\n’), carriage return (‘\r’),
horizontal tab (‘\t’), or vertical tab (‘\v’). In any other locale, a white-space character is one for
which the functions isalnum, iscntrl, isgraph, and ispunct all return false. c must be a value that
is representable as an unsigned char or EOF.

isspace returns nonzero if c is a space character, and zero if it is not.

Cross-references
Standard, §4.3.1.1
The C Programming Language, ed. 2, p. 249

See Also
character handling

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
For example, Middle-Eastern languages use alternate characters to denote white space. See
localization for more information.

isupper() — Character handling (ctype.h)
Check if a character is an upper-case letter
#include <ctype.h>
int isupper(int c);

The macro isupper tests whether c is a upper-case letter. In the C locale, a upper-case letter is any
of the characters ‘A’ through ‘Z’. In any other locale, this is a character for which the functions
iscntrl, isdigit, islower, ispunct, and isspace all return false. c must be a value that is
representable as an unsigned char or EOF.

isupper returns nonzero if c is an upper-case letter, and zero if it is not.

Cross-references
Standard, §4.3.1.6
The C Programming Language, ed. 2, p. 249

See Also
character handling, character sets

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

LEXICON

isspace() — isupper() 309

isxdigit() — Character handling (libc)
Check if a character is a hexadecimal numeral
#include <ctype.h>
int isxdigit(int c);

isxdigit tests whether c is a hexadecimal numeral (any of the characters ‘0’ through ‘9’, any of the
letters ‘a’ through ‘d’, or any of the letters ‘A’ through ‘D’). c must be a value that is representable as
an unsigned char or EOF.

isxdigit returns nonzero if c is a hexadecimal numeral, and zero if it is not.

Cross-references
Standard, §4.3.1.11
The C Programming Language, ed. 2, p. 249

See Also
character handling

LEXICON

310 isxdigit()

J

j0() — Extended function (libm)
Compute Bessel function
#include <xmath.h>
double j0(double z);

j0 computes the Bessel function of the first kind for order 0, for its argument z.

Example
This example, called bessel.c, demonstrates the Bessel functions j0, j1, and jn. Compile it with the
following command line

cc -f bessel.c -lm

to include floating-point functions and the mathematics library.

#include <math.h>
#include <stdlib.h>
#include <xmath.h>
dodisplay(double value, char *name)
{

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = 0;
}

#define display(x) dodisplay((double)(x), #x)

main()
{

extern char *gets();
double x;
char string[64];

for(;;) {
printf("Enter number: ");
if(gets(string) == 0)

break;
x = atof(string);

display(x);
display(j0(x));
display(j1(x));
display(jn(0,x));

display(jn(1,x));
display(jn(2,x));
display(jn(3,x));

}
}

See Also
extended mathematics, j1, jn

Notes
j0 is not described in the ANSI Standard. Any program that uses it does not conform strictly to the
Standard, and may not be portable to other compilers or environments.

LEXICON

j0() 311

j1() — Extended function (libm)
Compute Bessel function
#include <xmath.h>
double j1(double z);

j1 takes the argument z and computes the Bessel function of the first kind for order 1.

Example
For an example of this function, see the entry for j0.

See Also
extended mathematics, j0, jn

Notes
j1 is not described in the ANSI Standard. Any program that uses it does not conform strictly to the
Standard, and may not be portable to other compilers or environments.

jday_to_time() — Extended function (libc)
Convert Julian date to system time
#include <time.h>
#include <xtime.h>
time_t jday_to_time(jday_t time);

jday_to_time converts Julian time to system time.

time is the Julian time to be converted. It is of type jday_t, which is defined in the header xtime.h.
jday_t is a structure that consists of two unsigned longs. The first gives the number of the Julian
day, which is the number of days since the beginning of the Julian calendar (January 1, 4713 B.C.).
The second gives the number of seconds since midnight of the given Julian day.

jday_to_time returns the Julian time as converted to type time_t. This type is defined in the header
time.h as being equivalent to a long. Let’s C defines the current system time as being the number
of seconds from January 1, 1970, 0h00m00s GMT, which is equivalent to the Julian day
2,440,587.5.

See Also
extended time, jday_to_tm, time_to_jday, tm_to_jday, xtime.h

Note
This function is of use mainly to astronomers, geographers, and historians.

To conform to the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be altered.

jday_to_tm() — Extended function (libc)
Convert Julian date to system calendar format
#include <time.h>
#include <xtime.h>
tm *jday_to_tm(jday_t time);

jday_to_tm converts Julian time to the system calendar format.

time is the Julian time to be converted. It is of type jday_t, which is defined in the header xtime.h.
jday_t is a structure that consists of two unsigned longs. The first gives the number of the Julian
day, which is the number of days since the beginning of the Julian calendar (January 1, 4713 B.C.).

LEXICON

312 j1() — jday_to_tm()

The second gives the number of seconds since midnight of the given Julian day.

jday_to_tm returns a pointer to a copy of the structure tm, which is defined in the header file
time.h. For more information on this structure, see the Lexicon entry for time.

See Also
extended time, jday_to_time, time_to_jday, tm_to_jday, xtime.h

Note
This function is of use mainly to astronomers, geographers, and historians.

To conform to the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be altered.

jmp_buf — Type
Type used with non-local jumps
#include <setjmp.h>

jmp_buf is a type defined in the header setjmp.h. It is the type used to hold the current
environment to enable a non-local jump. The usual contents of the jmp_buf array will be the
contents of registers; however, its contents are defined by the implementation.

Cross-references
Standard, §4.6
The C Programming Language, ed. 2, p. 254

See Also
non-local jumps, setjmp.h

Notes
Because jmp_buf usually does not contain anything except the current contents of the registers, one
should not expect values of local variables or register variables to restored properly.

Historically, code has been written that calls setjmp and longjmp with an argument of type
jmp_buf, but without taking its address. This code works because an array passed as a parameter
is automatically converted to a pointer. Because structures can now be passed by value, such
arguments are no longer converted to pointers. However, because both setjmp and longjmp expect
a pointer argument, the type of jmp_buf is restricted to an array type in order to preserve existing
code.

If jmp_buf must be a structure of heterogeneous elements, then it could be defined as a one-element
array of such structures.

jn() — Extended function (libm)
Compute Bessel function
#include <xmath.h>
double jn(short n, double z);

jn takes an argument z and computes the Bessel function of the first kind for order n.

Example
For an example of this function, see the entry for j0.

See Also
extended mathematics, j0, j1

LEXICON

jmp_buf — jn() 313

Notes
jn is not described in the ANSI Standard. Any program that uses it does not conform strictly to the
Standard, and may not be portable to other compilers or environments.

LEXICON

314 jn()

K

keywords — Definition

A keyword is a word that has special significance to the C language. All keywords are reserved;
none may be used as an identifier.

The Standard defines the following as being C keywords:

auto break case char
const continue default defined
do double else enum
extern float for goto
if int long register
return short signed sizeof
static struct switch typedef
union unsigned void volatile
while

Let’s C also recognizes the keyword alien, which indicates that a function uses non-C calling
conventions.

Cross-references
Standard, §3.1.1
The C Programming Language, ed. 2, p. 192

See Also
lexical elements

Notes
The keywords const, enum, signed, void, and volatile are new to the C language, although some or
all of these have been used as common extensions to C. A program that uses any of these words as
an identifier may not translate properly under an implementation that conforms to the Standard.
Likewise, the Standard eliminates the keyword entry, which the first edition of The C Programming
Language defined as being unused.

The Standard recognizes that the keywords asm and fortran are common extensions to the C
language, and are recognized as such by many implementations of C.

LEXICON

keywords 315

L

label — Definition
A label is an identifier followed by a colon ‘:’ or that follows a goto statement. It marks a point
within a function to which a goto statement can jump.

Cross-references
Standard, §3.1.2.6
The C Programming Language, ed. 2, pp. 65

See Also
goto, name space

labs() — General utility (libc)
Compute the absolute value of a long integer
#include <stdlib.h>
int labs(long n);

labs computes the absolute value of the long integer n. The absolute value of a number is its
distance from zero. This is n if n>=0, and -n otherwise.

Cross-references
Standard, §4.10.6.3
The C Programming Language, ed. 2, p. 253

See Also
abs, general utilities

Language — Overview
The description of the language, both in the Standard and in this Lexicon, has the following topics,
which describe completely the syntax and semantics of the language:

• constant expressions

• conversions

• declarations

• expressions

• external definitions

• lexical elements

• preprocessing

• statements

Each of these topics is introduced by its own Lexicon article.

Implementation of the C Language
The following summarizes how Let’s C implements the C language.

LEXICON

316 label — Language

Identifiers:
Characters allowed: A-Z, a-z, _, 0-9
Case sensitive.
Number of significant characters in a variable name:

at compile time: 128
at link time: 16

Appends ‘_’ to end of external identifiers

Reserved identifiers (keywords):
alien extern signed
auto float sizeof
break for static
case goto struct
char if switch
continue int typedef
const long union
default readonly unsigned
do register void
double return volatile
else short while
enum

In conformity with the proposed ANSI standard, the keyword entry is no longer recognized. The
keywords const and volatile are now recognized, but not implemented. The compiler will produce a
warning message if the keyword volatile is used with the peephole optimizer.

Data formats (in bits):
char 8
double 64
float 32
int 16
long 32
long double 64
pointer (SMALL model) 16
pointer (LARGE model) 32
short 16
unsigned char 8
unsigned int 16
unsigned long 32
unsigned short 16

LEXICON

Language 317

float format:
IEEE floating point format:

1 sign bit
8-bit exponent
24-bit normalized fraction with hidden bit

IEEE double format:
1 sign bit
11-bit exponent
52-bit fraction

Reserved values:
+- infinity, -0

All floating-point operations are done as doubles.
Note that this will change when the ANSI standard is
adopted.

Limits:
Maximum bitfield size: 16 bits
Maximum number of cases in a switch: no formal limit
Maximum block nesting depth: no formal limit
Maximum parentheses nesting depth: no formal limit
Maximum structure size: 64 kilobytes
Maximum array size: 64 kilobytes

Structure name-spaces:
Supports both Berkeley, and Kernighan and Ritchie conventions
for structure in union.

Register variables:
Two available for ints (SMALL and LARGE models)
Two available for pointers (SMALL model only)

Function linkage:
Return values for ints: AX
Return values for longs: DX:AX
Return values for SMALL-model pointers: AX
Return values for LARGE-model pointers: DX:AX
Return values for doubles in DX:AX
Parameters pushed on stack in reverse order, chars and shorts pushed

as words, longs and pointers pushed as longs, structures
copied onto stack

Caller must clear parameters off stack
Stack frame linkage is done through SP register

Register usage:
AX: returned ints and SMALL-model pointers
BP: Frame pointer
DI: register variable (int or SMALL-model pointer)
DX:AX: returned longs and LARGE-model pointers
SI: register variable (int or SMALL-model pointer)

Note that registers not described above (BX, CX, DX, plus DS and ES in LARGE model) may be
freely overwritten by code that the compiler generates. Programs that include assembly-language
modules should take this into account.

Special features and optimizations:

LEXICON

318 Language

• Branch optimization is performed: this uses the smallest branch instruction for the required
range.

• Unreached code is eliminated.

• The contents of word registers are remembered by a peephole optimizer, to avoid reloading.

• Duplicate instruction sequences are removed.

• Jumps to jumps are eliminated.

• Multiplication and division by constant powers of two are changed to shifts when the results
are the same.

• Sequences that can be resolved at compile time are identified and resolved.

Cross-references
Standard, §3.0
The C Programming Language, ed. 2, pp. 191ff

See Also
byte ordering, declarations, function calls, keywords, Lexicon, Library, memory allocation,
types

LARGE model — Technical information
Intel multi-segment memory model

The i8086/88 microprocessor uses a segmented architecture. This means that memory is divided
into segments of 64 kilobytes each. No program or data element can exceed that limit.

Intel Corporation has devised a number of memory models for handling segmented memory.
Let’s C implements the two most useful of these: SMALL model and LARGE model.

In LARGE model, pointers consist of an offset and a segment. The address is calculated by left-
shifting the segment by four and adding the offset. Thus, LARGE model programs can access up to
1,048,576 bytes (one megabyte) of code and data. Because of the design of the IBM PC and
compatibles, however, the practical limit of memory is 640 kilobytes.

In terms of execution, LARGE-model programs are less efficient than SMALL-model programs, but
for many purposes the advantages of the expanded address space of the LARGE model outweigh the
decreased efficiency.

When the -VLARGE option is used with the cc command, the object program follows the rules of the
LARGE model. When you compile a program with the -VLARGE option, cc defines the global
variable LARGE to the C preprocessor. This allows you to use the preprocessor statement #ifdef
LARGE to flag model-dependent code.

See Also
model, pointer, SMALL model, technical information

LC_ALL — Manifest constant
All locale information
#include <locale.h>

LC_ALL is a manifest constant that is defined in the header locale.h. When passed to the function
setlocale, it queries or sets all information for a given locale. Information obtained with this macro
alters the operation of all functions that are affected by the program’s locale, as well as the contents
of the structure lconv. The following lists the functions affected by LC_ALL:

LEXICON

LARGE model — LC_ALL 319

Collation
strcoll
strxfrm

ctype
isdigit
isxdigit

Date and time
strftime

Formatted I/O
fprintf
fscanf
printf
sprintf
scanf
sscanf
vfprintf
vprintf
vsprintf

Multibyte characters
mblen
mbstowcs
mbtowc
wcstombs
wctomb

String conversion
atof
atoi
atol
strtod
strtol
strtoul

Cross-reference
Standard, §4.4

See Also
LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, LC_TIME, lconv, localization,
locale.h, setlocale

LC_COLLATE — Manifest constant
Locale collation information
#include <locale.h>

LC_COLLATE is a manifest constant that is defined in the header locale.h. When used with the
function setlocale, it queries or sets collation information for a given locale.

This information can affect the operation of the functions strcoll and strxfrm.

Cross-reference
Standard, §4.4

LEXICON

320 LC_COLLATE

See Also
LC_ALL, LC_CTYPE, LC_MONETARY, LC_NUMERIC, LC_TIME, localization, locale.h, setlocale

LC_CTYPE — Manifest constant
Locale character-handling information
#include <locale.h>

LC_CTYPE is a manifest constant that is defined in the header locale.h. When used with the
function setlocale, it sets or queries the character-handling information for a given locale. This
information helps determine the action of the functions declared in ctype.h, except isdigit and
isxdigit, as well as the multiple-byte character functions mblen, mbstowcs, mbtowc, wcstombs,
and wctomb.

Cross-reference
Standard, §4.4

See Also
LC_ALL, LC_COLLATE, LC_MONETARY, LC_NUMERIC, LC_TIME, lconv, localization, locale.h,
setlocale

LC_MONETARY — Manifest constant
Locale monetary information
#include <locale.h>

LC_MONETARY is a manifest constant that is defined in the header locale.h. When used with the
function setlocale, it queries or sets the monetary information for a given locale.

It affects all of the fields within the structure lconv, except decimal_point.

Cross-reference
Standard, §4.4

See Also
LC_ALL, LC_COLLATE, LC_CTYPE, LC_NUMERIC, LC_TIME, localization, locale.h, setlocale

LC_NUMERIC — Manifest constant
Locale numeric information
#include <locale.h>

LC_NUMERIC is a manifest constant that is defined in the header locale.h. When used with the
function setlocale, it queries or sets the information for formatting numeric strings.

This information will alter the operation of the following functions:

Formatted I/O
fprintf
fscanf
printf
sprintf
scanf
sscanf
vfprintf
vprintf
vsprintf

LEXICON

LC_CTYPE — LC_NUMERIC 321

String conversion
atof
atoi
atol
strtod
strtol
strtoul

This information also affects the following fields within the structure lconv:

decimal_point
thousands_sep
grouping

Cross-reference
Standard, §4.4

See Also
LC_ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_TIME, lconv, localization, locale.h,
setlocale

LC_TIME — Manifest constant
Locale time information
#include <locale.h>

LC_TIME is a manifest constant that is defined in the header locale.h. When used with the function
setlocale, it queries or sets the information for formatting time strings.

This information affects the operation of the function strftime.

Cross-reference
Standard, §4.4

See Also
LC_ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, lconv, localization, locale.h,
setlocale

lconv — Type
Hold monetary conversion information
#include <locale.h>

lconv is a structure that is defined in the header locale.h. Its members hold many details needed to
format monetary and non-monetary numeric information for a given locale.

To initialize lconv for any given locale, use the function localeconv. To change any aspect of the
locale information being used, use the function setlocale.

lconv contains the following fields:

char *currency_symbol
This points to a string that contains the symbol used locally to represent currency, e.g., the
‘$’. The C locale sets this to point to a null string.

char *decimal_point
This points to a string that contains the character used to indicate the decimal point. The C
locale sets this to point to ‘.’.

LEXICON

322 LC_TIME — lconv

char frac_digits
This is the number of fractional digits that can be displayed in a monetary string. The C
locale sets this to CHAR_MAX.

char grouping
This points to the string that indicates the grouping characteristics for non-monetary
amounts. Characters in the string can take the following values:

0 Use previous element for rest of digits
MAX_CHAR Perform no further grouping
2 through 9 No. of digits in current group

The C locale sets this to CHAR_MAX.

char *int_curr_symbol
This points to a string that contains the international currency symbol for the locale, as
defined in the publication ISO 4217 Codes for Representation of Currency and Funds. The C
locale sets this to point to a null string.

char *mon_decimal_point
This points to a string that contains the character used to indicate a decimal point in
monetary strings. The C locale sets this to point to a null string.

char mon_grouping
This points to the string of characters that indicate the grouping characteristics for
monetary amounts. Elements can take the following values:

0 Use previous element for rest of digits
MAX_CHAR Perform no further grouping
2 through 9 No. of digits in current group

The C locale sets this to CHAR_MAX.

char *mon_thousands_sep
This points to a string that contains the character used to separate groups of thousands in
monetary strings. The C locale sets this to point to a null string.

char n_cs_precedes
This indicates whether the symbol that indicates a negative monetary value precedes or
follows the numerals in the monetary string. Zero indicates that it follows the numerals
and one indicates that it precedes them. The C locale sets this to CHAR_MAX.

char n_sep_by_space
This indicates whether a space should appear between the symbol that indicates a negative
monetary value and the numerals of the monetary string. Zero indicates that it should not
appear, and one indicates that it should. The C locale sets this to CHAR_MAX.

char n_sign_posn
This indicates the position and formatting of the symbol that indicates a negative monetary
value, as follows:

0 Set parentheses around numerals and monetary symbol
1 Set negative sign before currency symbol and numerals
2 Set negative sign after currency symbol and numerals
3 Set negative sign immediately before monetary symbol
4 Set negative sign immediately after monetary symbol

The C locale sets this to CHAR_MAX.

LEXICON

lconv 323

char *negative_sign
This points to a string that contains the character that indicates a negative value in a
monetary string. The C locale sets this to point to a null string.

char p_cs_precedes
This indicates whether the currency symbol should precede or follow the numerals in the
string. Zero indicates that it precedes the digits and one indicates that it follows. The C
locale sets this to CHAR_MAX.

char p_sep_by_space
This indicates whether a space should appear between the monetary symbol and the
numerals of the monetary string. Zero indicates that a space should not appear, and one
indicates that it should. The C locale sets this to CHAR_MAX.

char p_sign_posn
This indicates the position and formatting of the symbol that indicates a positive monetary
value, as follows:

0 Set parentheses around numerals and monetary symbol
1 Set positive sign before currency symbol and numerals
2 Set positive sign after currency symbol and numerals
3 Set positive sign immediately before monetary symbol
4 Set positive sign immediately after monetary symbol

The C locale sets this to CHAR_MAX.

char *positive_sign
This points to a string that contains the character that indicates a non-negative value in a
monetary string. The C locale sets this to point to a null string.

char *thousands_sep
This points to a string that contains the character used to separate groups of thousands.
The C locale sets this to point to a null string.

Cross-reference
Standard, §4.4, §4.4.2.1

See Also
CHAR_MAX, locale.h, localeconv, localization, setlocale

ldexp() — Mathematics (libm)
Load floating-point number
#include <math.h>
double ldexp(double number, int n);

ldexp returns number times two to the n power.

See float.h for more information on the structure of a floating-point number.

Cross-references
Standard, §4.5.4.3
The C Programming Language, ed. 2, p. 251

See Also
exp, frexp, log, log10, mathematics, modf

LEXICON

324 ldexp()

ldiv() — General utility (libc)
Perform long integer division
#include <stdlib.h>
ldiv_t ldiv(long int numerator, long int denominator);

ldiv divides numerator by denominator. It returns a structure of the type ldiv_t, which consists of
two long members, one named quot and the other rem. ldiv writes the quotient into one long, and
it writes the remainder into the other.

The sign of the quotient is positive if the signs of the arguments are the same; it is negative if the
signs of the arguments differ. The sign of the remainder is the same as the sign of the numerator.

If the remainder is non-zero, the magnitude of the quotient is the largest integer less than the
magnitude of the algebraic quotient. This is not guaranteed by the operators / and %, which merely
do what the machine implements for divide.

Example
This example selects one random card out of a pack of 52.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

ldiv_t card;

card = ldiv((unsigned long)time(NULL) % 52, 13L);
printf("%c%c\n",

/* note useful addressing for strings */
"A23456789TJQK"[card.rem],
"HCDS"[card.quot]);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.6.2
The C Programming Language, ed. 2, p. 253

See Also
/, div, general utilities, ldiv_t

Notes
The Standard includes this function to provide a useful feature of FORTRAN. Also, on most
machines, division produces a remainder. This allows a quotient and remainder to be returned from
one machine-divide operation.

If the result of division cannot be represented (e.g., because denominator is set to zero), the behavior
of ldiv is undefined.

ldiv_t — Type
Type returned by ldiv()
#include <stdlib.h>

ldiv_t is a typedef that is declared in the header stdlib.h and is the type returned by the function
ldiv.

LEXICON

ldiv() — ldiv_t 325

ldiv_t is a structure that consists of two long members, one named quot and the other rem. ldiv
writes its quotient into quot and its remainder into rem.

Example
For an example of this type in a program, see ldiv.

Cross-references
Standard, §4.10.6.2
The C Programming Language, ed. 2, p. 253

See Also
general utilities, integer arithmetic, ldiv, stdlib.h

lexical elements — Overview
A lexical element is one of the elements from which a C program is built. It is the smallest unit with
which a translator can work. ‘‘Lexical’’ refers to the fact that a program is partitioned into tokens
during a translation phase that is usually called ‘‘lexical analysis.’’

A C program is built from the following lexical elements:

constants
header names
identifiers
keywords
operators
preprocessing numbers
punctuators
string literals

Cross-reference
Standard, §3.1

See Also
comment, constant, header name, identifier, keyword, Language, operators, preprocessing
number, punctuators, string literal, token

Lexicon — Introduction
The Mark Williams Lexicon is a new approach to documentation of computer software. The Lexicon
is designed to improve documentation and eliminate some limitations found in more conventional
documentation.

How to Use the Lexicon
The Lexicon consists of one large document that contains entries for every aspect of Let’s C. You
will not have to search through a number of different manuals to find the entry you are looking for.

Every entry in the Lexicon has the same structure. The first line gives the name of the topic being
discussed, followed by its type (e.g., Mathematics) and, where appropriate, the file in which it is
kept.

The next lines briefly describe the item, then give the item’s usage, where applicable. These are
followed by a brief discussion of the item, and an example.

Cross-references follow. These can be to other entries or to other texts, notably to the ANSI
Standard, The Art of Computer Programming and the second edition of The C Programming
Language. Diagnostics and notes, where applicable, conclude each entry.

LEXICON

326 lexical elements — Lexicon

Internally, the Lexicon has a tree structure. The ‘‘root’’ entry is the present entry, for Lexicon.
Below this entry comes the set of Overview entries. Each Overview entry introduces a group of
entries; for example, the Overview entry for string introduces all of the string functions and macros,
lists them, and gives a lengthy example of how to use them.

Each entry cross-references other entries. These cross-references point up the documentation tree,
toward an overview article and, ultimately, to the entry for Lexicon itself. They also point down the
tree to subordinate entries, and across to entries on related subjects. For example, the entry for
getchar cross-references STDIO, which is its Overview article, plus putchar and getc, which are
related entries of interest to the user. The Lexicon is designed so that you can trace from any one
entry to any other, simply by following the chain of cross-references up and down the
documentation tree.

Use the Lexicon
If, while reading an entry, you encounter a technical term that you do not understand, look it up in
the Lexicon. You should find an entry for it. For example, if a function is said to return a data type
float and you do not know exactly what a float is, look it up. You will find it described in full. In
this way, you should increase your understanding of Let’s C, and make your programming easier
and more productive.

libcxs87.lib — Library
Standard library, SMALL model/i8087 only

libcxs87.lib is the archive file that holds the SMALL-model version of the more commonly used C
functions, system calls, and compiler run-time support routines.

The routines in this library use the i8087 exclusively. They cannot be run on a computer that does
not contain an i8087.

To edit this library or create a table of its contents, use the librarian mwlib.

See Also
Library, mwlib

libm — Library
libm is the archive file that holds the mathematics library. For a summary of these routines, see
mathematics and extended mathematics.

libm’s table of contents can be printed and its contents altered with the archiver mwlib.

See Also
extended mathematics, Library, mathematics, math.h, mwlib, xmath.h

LIBPATH — Environmental variable
Directories that hold libraries

LIBPATH names the directories that cc searches to find the compiler’s executable programs and
libraries. make also searches these directories for the files mmacros and mactions.

For example, the command

set LIBPATH=\lib;\mwc

uses the MS-DOS command set to define LIBPATH as equalling \lib;\mwc. This definition of
LIBPATH tells cc to look for the compiler’s executable files first in directory lib, and then in
directory mwc.

LEXICON

libcxs87.lib — LIBPATH 327

You may wish to write this command into the file autoexec.bat, so that INCDIR will be set
automatically whenever you boot your system.

See Also
cc, environmental variables, make, PATH

limits.h — Header
The header limits.h defines a group of macros that set the numerical limits for the translation
environment.

The following table gives the macros defined in limits.h. Each value given is the macro’s minimum
maximum: a conforming implementation of C must meet these limits, and may exceed them.

CHAR_BIT
Number of bits in a char; must be at least eight.

CHAR_MAX
Largest value representable in an object of type char. If the implementation defines a char
to be signed, then it is equal to the value of the macro SCHAR_MAX; otherwise, it is equal
to the value of the macro UCHAR_MAX.

CHAR_MIN
Smallest value representable in an object of type char. If the implementation defines a char
to be signed, then it is equal to the value of the macro SCHAR_MIN; otherwise, it is zero.

INT_MAX
Largest value representable in an object of type int; it must be at least 32,767.

INT_MIN
Smallest value representable in an object of type int; it must be at most -32,767.

LONG_MAX
Largest value representable in an object of type long int; it must be at least 2,147,483,647.

LONG_MIN
Smallest value representable in an object of type long int; it must be at most
-2,147,483,647.

MB_LEN_MAX
Largest number of bytes in any multibyte character, for any locale; it must be at least one.

SCHAR_MAX
Largest value representable in an object of type signed char; it must be at least 127.

SCHAR_MIN
Smallest value representable in an object of type signed char; it must be at most -127.

SHRT_MAX
Largest value representable in an object of type short int; it must be at least 32,767.

SHRT_MIN
Smallest value representable in an object of type short int; it must be at most -32,767.

UCHAR_MAX
Largest value representable in an object of type unsigned char; it must be at least 255.

UINT_MAX
Largest value representable in an object of type unsigned int; it must be at least 65,535.

LEXICON

328 limits.h

ULONG_MAX
Largest value representable in an object of type unsigned long int; it must be at least
4,294,967,295.

USHRT_MAX
Largest value representable in an object of type unsigned short int; it must be at least
65,535.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
Environment, header, numerical limits

link — Definition
To link a program means to resolve external references among individual source files. External
references may refer to data or code that reside in another translation unit.

Some function calls may be resolved by the inclusion of the code for that function from a library,
which consists of implementation-defined or user-defined functions.

See Also
compile, Definitions, linkage

linkage — Definition
The term linkage refers to the matching of an identifier with its namesakes across blocks of code,
and among files of source code, pretranslated object modules, and libraries.

Identifiers can have internal linkage, external linkage, or no linkage. An identifier with external
linkage is known across multiple translation units. An identifier with internal linkage is known only
within one translation unit. An identifier with no linkage has no permanent storage allocated for it
and is local to a function or block.

The following describes each type of linkage in more detail:

External linkage
The following identifiers have external linkage:

• Any identifier for a function that either has no storage-class identifier or is marked
with the storage-class identifier extern, but excluding ones marked with the storage-
class identifier static.

• Any global identifier that either has no storage-class identifier or is marked extern.

Internal linkage
The following identifiers have internal linkage:

• Any identifier marked static.

• Any identifier for a function that has file scope and is marked static.

No linkage
The following identifiers have no linkage:

• An identifier for anything that is not an object or function; e.g., a structure member, a
union member, an enumeration constant, a tag, or a label.

LEXICON

link — linkage 329

• Any identifier declared to be a function parameter.

• An identifier local to a block (i.e., an auto object), that does not have file scope and is
not marked extern.

An identifier with internal linkage may be up to at least 31 characters long, and may use both
upper- and lower-case characters. An identifier with external linkage, however, may have up to at
least six characters, and is not required to use both upper- and lower-case characters. These limits
are implementation defined.

An object marked extern will have the same linkage as any previous declaration of the same object
within that translation unit. If there is no previous declaration, the object has external linkage.

If an object appears in the same source file with external and internal linkage declarations, behavior
is undefined. This is called a linkage conflict. It may occur if an object is first declared extern, then
later re-declared to be static.

Cross-references
Standard, §3.1.2.2
The C Programming Language, ed. 2, p. 228

See Also
identifiers, name space, scope

locale.h — Header
Localization functions and macros
#include <locale.h>

locale.h is a header that declares or defines all functions and macros used to manipulate a
program’s locale. The Standard describes the following items within this header:

Type
lconv Structure for numeric formatting

Manifest constants
LC_ALL All locale information
LC_COLLATE Locale collation information
LC_CTYPE Locale character-handling information
LC_MONETARY Locale monetary information
LC_NUMERIC Locale numeric information
LC_TIME Locale time information

Functions
localeconv initialize lconv structure
setlocale set/query locale

Cross-references
Standard, §4.4
The C Programming Language, ed. 2, pp

See Also
localization

LEXICON

330 locale.h

localeconv() — Localization (libc)
Initialize lconv structure
#include <locale.h>
struct lconv *localeconv(void);

localeconv initializes the structure lconv and returns a pointer to it. lconv describes the
formatting of numeric strings. For more information about this structure, see lconv.

The function setlocale establishes all or part of pre-defined locale as the current locale. A call to
setlocale with the macros LC_ALL, LC_MONETARY, or LC_NUMERIC may alter a portion of lconv.

Cross-reference
Standard, §4.4.2.1

See Also
lconv, localization, locale.h, setlocale

localization — Overview
The Standard introduced the concept of localization to C programming.

The Problem
C was originally designed to implement the UNIX operating system. As such, its formatting
functions assumed that the Latin alphabet would be used (that is, the only characters ‘a’ through ‘z’
and ‘A’ through ‘Z’), assumed that no accented characters would be required, and also assumed that
numeric strings would be formatted as they are in the United States. Since its invention, however,
C has grown out of its original setting and its original country: it is now used internationally to write
a wide range of application software.

The Standard recognizes that C internally is based on the English language. That is, C’s keywords
and library names reflect its origin in English, and will continue to do so. Localization, however,
allows an application program to use the character set and formatting information that is specific to
a given country in certain aspects of the language.

A locale can be selected when the program is run, so applications can be user-selectable. It may
include things like monetary formatting, but preserve the underlying data: only the presentation
differs. Locales provide a standard way for software developers to use locale-specific information
without having to ‘‘reinvent the wheel’’ for each locale.

If an implementation of C supports various locales, then that locale information need not be
gathered by programmers who write applications software. Rather than each software house writing
support for European collating conventions or Japanese monetary formatting conventions, the
support is provided once, by the implementor, and in a standard fashion.

Locale Functions
The Standard describes two functions that can be used to access information specific to a given
locale.

setlocale can be used in either of two ways: to set the current locale, or to query the current locale
settings. Either part or all of a locale’s strings can be set or queried.

localeconv initializes an instance of the structure lconv and returns a pointer to it. This structure
holds information that can be used to print numeric and monetary strings. For more information
on this structure, see the entry for lconv.

The macros that begin with LC_ are defined in the header locale.h, and represent the categories of
locales (also known as locale strings). The following describes the areas of C that are affected by

LEXICON

localeconv() — localization 331

locales.

Characters
A national character set may include characters that lie outside of the Latin alphabet.
Typically, these characters are not recognized as alphanumeric characters by functions like
isalpha. To tell the translator to use the alternative character table for a given locale, use
the call

setlocale(LC_CTYPE, locale);

The character-handling routines that are defined in the header ctype.h will use this locale
information. This will also affect the functions that handle multibyte characters, as
described below.

Collation
The sorting of strings that include national characters may present a problem. Normal
collation functions depend upon the ASCII character order, and therefore do not know
where additional, locale-specific characters go within the national character set. The
Standard describes two functions, strcoll and strxfrm, that may collate strings which
contain locale-specific characters. To set the locale information needed by these functions
(so they know which national character order is used), use the call

setlocale(LC_COLL, locale);

strcoll and strxfrm will work in accordance with the current locale setting.

Date and Time
Most countries have an idiomatic way to express the current date and time. To set the
locale information needed by the function strftime, use the call:

setlocale(LC_TIME, locale);

strftime can read the locale and format date and time strings accordingly.

Decimal Point
Different countries may use different characters to mark the decimal point. Occasionally,
one character is used to mark the point in a numeric string and another to mark it in a
string that describes money. The structure lconv contains the field decimal_point, which
points to the character used to mark the decimal point in a numeric string.

To set the locale for functions that read or print the decimal point, use the call:

setlocale(LC_NUMERIC, locale);

All functions that perform string conversion, formatted output, or formatted input must
interpret this information so these characters will be handled properly.

Money Each country has its own way to format monetary values. The character that represents
the national currency varies from country to country, as does such aspects as whether the
symbol goes before or after the numerals, how a negative value is rendered, what character
is used to express a monetary decimal point (it may not be the same as the numeric decimal
point), and how many digits are normally printed after the decimal point.

To set the locale information for money, use the call:

setlocale(LC_MONETARY, locale);

The structure lconv, which is initialized by the function localeconv, holds information
needed to render monetary strings correctly.

LEXICON

332 localization

Multibyte characters
Many countries, e.g., Japan and China, use systems of writing that use more characters
than can be represented within one byte. Many operating systems and terminal devices,
however, can receive only seven or eight bits at a time. To skirt this problem, the Standard
describes two ways to encode such extensive sets of characters: with wide characters and
multibyte characters.

A wide character is of type wchar_t. This type, in turn, is defined as being equivalent to the
integral type that can describe all of the unique characters in the character set. This type is
used mainly to store such characters in a device-independent manner.

A multibyte character, on the other hand, consists of two or more chars that together are
understood by the terminal device as forming a non-alphabetic character or symbol. One
wide character may map out to any number of multibyte characters, depending upon the
number of systems of multibyte characters that are commonly in use.

The Standard describes five functions that manipulate wide characters and multibyte
characters: mblen, mbstowcs, mbtowc, wcstombs, and wctomb. The actions of these
functions are determined by the locale, as set by setlocale. To set a locale for the
manipulation of multibyte characters, use the following call:

setlocale(LC_CTYPE, locale);

The Standard does not describe the mechanism by which tables of multibyte characters are
made available to these functions.

Thousands
Large numbers can be broken up into groups of thousands to make them easier to read.
The manner of grouping, including the number of items in each group and the character
used to indicate the start of a new group, is locale specific.

The structure lconv, which is initialized by the function localeconv, contains the fields
thousands_sep, mon_grouping, and grouping, which hold this information.

Default Locale
The only locale required of all conforming implementations is the C locale. This is the minimum set
of locale strings needed to translate C source code. For a listing of what constitutes the C locale, see
lconv.

When a C program begins, it behaves as if the call

setlocale(LC_ALL, "C");

had been issued.

Mechanism for Setting Locales
The Standard does not describe the mechanism by which setlocale makes locale information
available to other functions, and by which the other functions use locale information. It is left to the
implementation.

Cross-reference
Standard, §4.4

See Also
compliance, lconv, Library, locale.h

Notes
The Standard’s section on compliance states that any program that uses locale-specific information
does not conform strictly to the Standard. Therefore, a program that uses any locale other than the

LEXICON

localization 333

C locale is not strictly conforming. A programmer should not count on being able to port such a
program to any other implementation or execution environment.

localtime() — Time function (libc)
Convert calendar time to local time
#include <time.h>
struct tm *localtime(const time_t *timeptr);

localtime takes the calendar time pointed to by timeptr and breaks it down into a structure of type
tm. Unlike the related function gmtime, localtime preserves the local time of the system. This
local time includes conversion to daylight savings time, if applicable. The daylight savings time flag
indicates whether daylight savings time is now in effect, not whether it is in effect during some part
of the year. Note, too, that the time zone is set by localtime every time the value returned by

getenv("TIMEZONE")

changes. See the entry for TIMEZONE for more information on how Let’s C handles time zone
settings.

localtime returns a pointer to the structure tm that it creates. This structure is defined in the
header time.h.

Example
The following example recreates the function asctime.

#include <stdio.h>
#include <time.h>

char *month[12] = {
"January", "February" "March", "April",
"May", "June", "July", "August",
"September", "October", "November", "December"

};

char *weekday[7] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

main()
{

char buf[20];
time_t tnum;
struct tm *ts;
int hour = 0;

/* get time from system */
time(&tnum);

/* convert time to tm struct */
ts=localtime(&tnum);

if(ts->tm_hour==0)
sprintf(buf,"12:%02d:%02d A.M.",

ts->tm_min, ts->tm_sec);

LEXICON

334 localtime()

else
if(ts->tm_hour>=12) {

hour=ts->tm_hour-12;
if (hour==0)

hour=12;
sprintf(buf,"%02d:%02d:%02d P.M.",

hour, ts->tm_min,ts->tm_sec);

} else
sprintf(buf,"%02d:%02d:%02d A.M.",

ts->tm_hour, ts->tm_min, ts->tm_sec);

printf("\n%s %d %s 19%d %s\n",
weekday[ts->tm_wday], ts->tm_mday,
month[ts->tm_mon], ts->tm_year, buf);

printf("Today is the %d day of 19%d\n",
ts->tm_yday, ts->tm_year);

if(ts->tm_isdst)
printf("Daylight Saving Time is in effect.\n");

else
printf("Daylight Saving Time is not in effect.\n");

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.12.3.4
The C Programming Language, ed. 2, p. 256

See Also
asctime, ctime, date and time, gmtime, local time, strftime, TIMEZONE< tm

Notes
localtime returns a pointer to a statically allocated data area that is overwritten by each successive
call.

log() — Mathematics (libm)
Compute natural logarithm
#include <math.h>
double log(double z);

log computes and returns the natural (base e) logarithm of its argument z. It is the inverse of the
function exp.

Handing log an argument less than zero triggers a domain error. Handing it an argument equal to
zero triggers a range error.

Cross-references
Standard, §4.5.4.4
The C Programming Language, ed. 2, p. 251

See Also
exp, frexp, ldexp, log10, mathematics, modf

LEXICON

log() 335

log10() — Mathematics (libm)
Compute common logarithm
#include <math.h>
double log10(double z);

log10 computes and returns the common (base 10) logarithm of its argument z.

Handing log10 an argument less than zero triggers a domain error. Handing it an argument equal
to zero triggers a range error.

Cross-references
Standard, §4.5.4.5
The C Programming Language, ed. 2, p. 251

See Also
exp, frexp, ldexp, log, mathematics, modf

long double — Type
A long double is a data type that represents at least a double-precision floating-point number. It is
defined as being at least as large as a double. In some environments, extra precision can be gained
by representing values with it.

Like all floating-point numbers, a long double consists of one sign bit, which indicates whether the
number is positive or negative; bits that encode the number’s exponent; and bits that encode the
number’s mantissa, or the number upon which the exponent works. The exponent often uses a
bias. This is a value that is subtracted from the exponent to yield the power of two by which the
fraction will be increased. The structure of a long double and the range of values that it can encode
are set in the following macros, all of which are defined in the header limits.h:

LDBL_DIG
This holds the number of decimal digits of precision. This must be at least ten.

LDBL_EPSILON
Where b indicates the base of the exponent (default, two) and p indicates the precision (or
number of base b digits in the mantissa), this macro holds the minimum positive floating-
point number x such that 1.0 + x does not equal 1.0, b^1-p. This must be at least 1E-9.

LDBL_MAX
This holds the maximum representable floating-point number. It must be at least 1E+37.

LDBL_MAX_EXP
This is the maximum integer such that the base raised to its power minus one is a
representable finite floating-point number. No value is given for this macro.

LDBL_MAX_10_EXP
This holds the maximum integer such that ten raised to its power is within the range of
representable finite floating-point numbers. It must be at least +37.

LDBL_MANT_DIG
This gives the number of digits in the mantissa. No value is given for this macro.

LDBL_MIN
This gives the minimum value encodable within a long double. This must be at least 1E-37.

LDBL_MIN_EXP
This gives the minimum negative integer such that when the base is raised to that power
minus one is a normalized floating-point number. No value is given for this macro.

LEXICON

336 log10() — long double

LDBL_MIN_10_EXP
This gives the minimum negative integer such that ten raised to that power is within the
range of normalized floating-point numbers.

A long double constant is represented by the suffix l or L on a floating-point constant.

For information about common floating-point formats, see float.

Cross-references
Standard, §2.2.4.2, §3.1.2.4, §3.1.3.1, §3.5.2
The C Programming Language, ed. 2, p. 196

See Also
double, float, types

long int — Type
A long int is a signed integral type. This type can be no closer to zero than an int.

A long int can encode any number between LONG_MIN and LONG_MAX. These are macros that are
defined in the header limits.h. They are, respectively, -2,147,483,647 and 2,147,483,647.

The types long, signed long, and signed long int are synonyms for long int.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
int, short int, types

longjmp() — Non-local jumps (libc)
Execute a non-local jump
#include <setjmp.h>
void longjmp(jmp_buf environment, int rval);

A call to longjmp restores the environment that the function setjmp had stored within the array
jmp_buf. Execution then continues not at the point at which longjmp is called, but at the point at
which setjmp was called.

environment is the environment that had been saved by an earlier call to setjmp. It is of type
jmp_buf, which is defined in the header setjmp.h.

longjmp returns the value rval to the original call to setjmp, as if setjmp had just returned. rval
must be a number other than zero; if it is zero, then setjmp will return one.

Cross-references
Standard, §4.6.2.1
The C Programming Language, ed. 2, p. 254

See Also
non-local jumps, setjmp

Notes
Many user-level routines cannot be interrupted and reentered safely. For that reason, improper use
of longjmp and setjmp will result in the creation of mysterious and irreproducible bugs.

longjmp will work correctly ‘‘in the contexts of interrupts, signals and any of their associated

LEXICON

long int — longjmp() 337

functions.’’ Also, longjmp’s behavior is undefined if it is used from within a function called by signal
received during the handling of a different signal.

Experience has shown that longjmp should not be used within an exception handler. The Standard
does not guarantee that programs will work correctly when longjmp is used to exit interrupts and
signals. Experience has shown that even if the longjmp terminates the signal handler and returns
successfully to the context of the setjmp, the program can easily fail to complete the very next
function call it attempts, usually because the signal interrupted an update of a non-atomic data
structure. The Standard guarantees that the implementations of setjmp, longjmp, and signal will
work together; it cannot make any promises about the interactions of these services with other
library functions or with user code. Caveat utilitor.

lseek() — Extended function (libc)
Set read/write position
long lseek(short fd, short how, long where);

lseek sets the file-position indicator for stream fp. this changes the point where the next read or
write operation will occur.

fd is the file’s file descriptor, which is returned by open.

where and how describe the new seek position. where gives the number of bytes that you wish to
move the seek position. It is measured from the beginning of the file if how is zero, from the current
seek position if how is set to one, or from the end of the file if how is set to two.

A successful call to lseek returns the new seek position. For example,

position = lseek(filename, 100L, 0);

moves the seek position 100 bytes past the beginning of the file; whereas

position = lseek(filename, 0L, 1);

merely returns the current seek position, and does not change the seek position at all. lseek
returns -1L if an error occurs, such as seeking to a negative position.

lseek differs from its cousin fseek in that lseek is an MS-DOS call and uses a file descriptor,
whereas fseek is a library function and uses a FILE pointer.

See Also
extended miscellaneous, fseek, ftell

Notes
MS-DOS writes data at a physical address corresponding to the seek address. Thus, if you seek
10,000 bytes past the current end of file and write a string, the string will be written 10,000 bytes
past the old end of file, and all the intervening data will then be made part of the file.

Some operating systems, such as MS-DOS, set the displacement from the file descriptor in bytes;
others, such as VAX VMS, set the displacement in sectors. If you want your programs to be fully
portable, you should avoid handing an absolute value to lseek.

lseek is not described in the ANSI Standard. A program that uses it does not comply strictly with
the Standard, and may not be portable to other compilers or environments.

LEXICON

338 lseek()

lvalue — Definition
An lvalue designates an object in storage. An lvalue can be of any type, complete or incomplete,
other than type void.

A modifiable lvalue is any lvalue that is not of the following types:

• An array type.

• An incomplete type.

• Any type qualified by const.

• A structure or union with a member whose type is qualified by const, or with a member that is
a structure or union with a member that is so qualified.

Only a modifiable lvalue is permitted on the left side of an assignment statement.

An lvalue normally is converted to the value that is stored in the designated object. When this
occurs, it ceases to be an lvalue. For some lvalues, however, this does not occur, as follows:

• Any array type.

• When the lvalue is the operand of the operators sizeof, unary &, --, or ++.

• When the lvalue is the left operand of the . operator.

• When the lvalue is the left operand of any assignment operator.

An lvalue with an array type is normally converted to a pointer to the same type. The value of the
pointer is the address of the first member of the array. The exceptions to this operation are as
follows:

• When it is the operand of the operators sizeof or unary &.

• When it is a string literal that initializes an array of char.

• When it is a string literal of wide characters that initializes an array of wchar_t.

In addition to the restrictions listed above, the following are also not lvalues, and hence cannot
appear on the left side of an assignment statement:

• String literals.

• Character constants.

• Numeric constants.

Cross-references
Standard, §3.2.2.1
The C Programming Language, ed. 2, p. 197

See Also
conversions, function designator, rvalue

Notes
The term itself originally came from the phrase left value; in an expression like

object = value;

the element to the left of the ‘=’ is the object whose value is modified. Because the Standard
distinguishes between lvalues and modifiable lvalues, it prefers to define lvalue as being a
contraction of the phrase locator value.

LEXICON

lvalue 339

LEXICON

340 lvalue

M

main — Definition
main is the name of the function that is called when a program begins execution under a hosted
environment. A program must have one function named main. This function is special not only
because it marks the beginning of program execution, but because it is the only function that may
be called with either zero arguments or two arguments:

int main(void) { }

or

int main(int argc, char *argv[]) { }

Let’s C allows main to take three arguments. Programs that use more than two arguments to
main, however, do not conform strictly to the Standard.

The two standard arguments to main are called argc and argv. These names are used by
convention; a programmer may use any names he wishes.

argv points to an array of pointers to strings. These strings can modify the operation of the
program; thus, they are called program parameters. argc gives the number of strings in the array to
which argv points.

The third variable to main, which is specific to Let’s C, is envp. This variable points to an array of
pointers to environmental variables.

If main calls return, it is equivalent to its calling exit with the same parameter. For example, the
statement

return(EXIT_SUCCESS);

in main is equivalent to the call

exit(EXIT_SUCCESS);

If main returns without returning a value to the host environment, the value that is returned to the
host environment is undefined.

Cross-references
Standard, §2.1.2.2
The C Programming Language, ed. 2, pp. 6, 164

See Also
argc, argv, Environment, envp

main — Technical information
Introduce program’s main function

A C program consists of a set of functions, one of which must be called main. This function is called
from the runtime startup routine after the runtime environment has been initialized.

Programs can terminate in one of two ways. The easiest is simply to have the main routine return.
Control returns to the runtime startup; it closes all open file streams and otherwise cleans up, and
then returns control to the operating system, passing it the value returned by main as exit status.

In some situations (errors, for example), it may be necessary to stop a program, and you may not
want to return to main. Here, you can use exit; it cleans up the debris left by the broken program
and returns control directly to the operating system.

LEXICON

main — main 341

A second exit routine, called _exit, quickly returns control to the operating system without
performing any cleanup. This routine should be used with care, because bypassing the cleanup will
leave files open and buffers of data in memory.

Programs compiled by Let’s C return to the program that called them; if they return from main with
a value or call exit with a value, that value is returned to their caller. Programs that invoke other
programs through the system or execall functions check the returned value to see if these
secondary programs terminated successfully.

See Also
argc, argv, envp, exit, _exit, runtime startup

make — Command
Program building discipline
make [option ...] [argument ...] [target ...]

make helps you build programs that consist of more than one file of source code.

Complex programs often consist of several object modules, each of which is the product of compiling
a source file. A source file may refer to one or more include files, which can also be changed. Some
programs may be generated from specifications given to program generators, such as yacc.
Recompiling and relinking complicated programs can be difficult and tedious.

make regenerates programs automatically. It follows a specification of the structure of the program
that you write into a file called makefile. make also checks the date and time that MS-DOS has
recorded for each source file and its corresponding object module. To avoid unnecessary
recompilation, make will recompile a source file only if it has been altered since its object module
was last compiled.

The makefile
A makefile consists of three types of instructions: macro definitions, dependency definitions, and
commands.

A macro definition simply defines a macro for use throughout the makefile. For example, the macro
definition

FILES=file1.obj file2.obj file3.obj

The use of the equal sign ‘=’.

A dependency definition names the object modules used to build the target program, and source
files used to build each object module . It consists of the target name, or name of the program to be
created, followed by a colon ‘:’ and the names of the object modules that build it. For example, the
statement

example: $(FILES)

uses the macro FILES to name the object modules used to build the program example. Likewise,
the dependency definition

file1.obj: file1.c macros.h

defines the object module file1.obj as consisting of the source file file1.c and the header file
macros.h.

Finally, a command line details an action that make must perform to build the target program.
Each command line must begin with a space or tab character. For example, the command line

cc -o example $(FILES)

LEXICON

342 make

gives the cc command needed to build the program example. The cc command lists the object
modules to be used, not the source files.

Finally, you can embed comments within a makefile. make recognizes any line that begins with a
pound sign ‘#’ as being a comment, and ignores it.

make searches for makefile first in directories named in the environmental variable PATH, and
then in the current directory.

Dependencies
The makefile specifies which files depend upon other files, and how to recreate the dependent files.
For example, if the target file test depends upon the object module test.obj, the dependency is as
follows:

test: test.obj
cc -o test test.obj

make knows about common dependencies, e.g., that .obj files depend upon .c files with the same
base name. The target .SUFFIXES contains the suffixes that make recognizes.

make also has a set of rules to regenerate dependent files. For example, for a source file with suffix
.c and a dependent file with the suffix .obj, the target .c.obj gives the regeneration rule:

.c.obj:
cc -c $<

The -c option to the cc commands tells cc not to link or erase the compiled object module. $< is a
macro that make defines. It stands for the name of the file that causes the current action. The
default suffixes and rules are kept in the files mmacros and mactions. The dependencies can be
changed by editing these files.

Both of these must be kept in a directory named by the environmental variable LIBPATH. You can
set this variable with the set command. For example, placing the command

set LIBPATH=\bin;\lib

into autoexec.bat sets LIBPATH to \bin and \lib. If LIBPATH is not set, the default directory is
\lib.

Macros
To simplify the writing of complex dependencies, make provides a macro facility. To define a macro,
write

NAME = string

The string is terminated by the end-of-line character, so it can contain blanks. To refer to the value
of the macro, use a dollar sign ‘$’ followed by the macro name enclosed in parentheses:

$(NAME)

If the macro name is one character, parentheses are not necessary. make uses macros in the
definition of default rules:

.c.obj:
$(CC) $(CFLAGS) -c $<

where the macros are defined as

CC=cc
CFLAGS=-V

LEXICON

make 343

The other built-in macros are:

$* Target name, minus suffix
$@ Full target name
$< List of referred files
$? Referred files newer than target

Each command line argument should be a macro definition of the form

OBJECT=a.obj b.obj

You can override any built-in macro by resetting its value in the environment. For example, setting
the following environmental variable

set CFLAGS=-VLARGE, -VCSD

ensures that make will always interpret the macro CFLAGS as meaning -VLARGE, regardless of
how it is otherwise set in any file.

Options
The following lists the options that can be passed to make on its command line.

-d (Debug) Give verbose printout of all decisions and information going into decisions.

-f file file contains the make specification. If this option does not appear, make uses the file
makefile, which is sought first in the directories named in the PATH environmental
variable, and then in the current directory.

-i Ignore all errors from commands, and continue processing. Normally, make exits if a
command returns an error.

-n Test only; suppresses actual execution of commands.

-p Print all macro definitions and target descriptions.

-q Return a zero exit status if the targets are up to date. Do not execute any commands.

-r Do not use the built-in rules that describe dependencies.

-s Do not print command lines when executing them. Commands preceded by ‘@’ are not
printed, except under the -n option.

-t (Touch option) Force the dates of targets to be the current time, and bypass actual
regeneration.

See Also
as, cc, commands, ld

Diagnostics
make reports its exit status if it is interrupted or if an executed command returns error status. It
replies ‘‘Target name not defined’’ or ‘‘Don’t know how to make target name’’ if it cannot find
appropriate rules.

Notes
The order of items in mmacros\.SUFFIXES is significant. The consequent of a default rule (e.g.,
.obj) must precede the antecedent (e.g., .c) in the entry .SUFFIXES. Otherwise, make will not work
properly.

LEXICON

344 make

malloc() — General utility (libc)
Allocate dynamic memory
#include <stdlib.h>
void *malloc(size_t size);

malloc allocates a block of memory size bytes long.

malloc uses a circular, first-fit algorithm to select an unused block of at least size bytes, marks the
portion it uses, and returns a pointer to it. The function free returns allocated memory to the free
memory pool.

Each area allocated by malloc is rounded up to the nearest even number and preceded by an
unsigned int that contains the true length. Thus, if you ask for one byte, you will get four, and the
unsigned that precedes the newly allocated area will be set to four.

When an area is freed, its low order bit is turned on. Consolidation occurs when malloc passes over
an area as it searches for space. The end of each arena contains a block with a length of zero,
followed by a pointer to the next arena. Arenas point in a circle.

The most common problem with malloc occurs when a program modifies more space than it
allocates with malloc. This can cause later mallocs to go into a loop.

malloc returns a pointer to the block of memory it has allocated. The pointer is aligned for any type
of object. If it could not allocate the amount of memory requested, it returns NULL.

Example
For an example of this function, see realloc.

Cross-references
Standard, §4.10.3.3
The C Programming Language, ed. 2, p. 167

See Also
__end, alignment, arena, calloc, free, general utilities, lmalloc, realloc

Notes
If size is set to zero, the behavior of malloc is implementation defined: malloc returns either NULL
or a unique pointer. This is a quiet change that may silently break some existing code.

manifest constant — Definition
A manifest constant is a value that has been given a name.

The following demonstrates the definition of a manifest constant:

#define MAXFILES 9

Here, the constant MAXFILES is defined as having the value of nine. During the preprocessing
phase of translation, the translator will substitute the character ‘9’ for MAXFILES wherever it
appears — or behave as if it had made such a substitution.

These constants serve two purposes within a C program: First, a constant can be changed
throughout the program simply by changing its definition. Second, a programmer who reads the
program will find it easier to understand the meaning of a well-named manifest constant than to
understand its numeric analogue; for example, it is easy to grasp that MAXFILES represents the
maximum number of files, but it is not nearly as easy to understand what 9 means.

Manifest constants have file scope, unless undefined with an #undef directive.

LEXICON

malloc() — manifest constant 345

Cross-reference
The C Programming Language, ed. 2, p. 230

See Also
Definitions, macro, scope

Notes
The C Programming Language calls these constants symbolic constants.

math.h — Header
Header for mathematics functions
#include <math.h>

math.h is the header file that declares and defines mathematical functions and macros.

The Standard describes three manifest constants to be included in math.h, as follows:

EDOM Domain error
ERANGE Range error
HUGE_VAL Unrepresentable object

The first two are used to set the global variable errno to an appropriate value when, respectively, a
domain error or a range error occurs. HUGE_VAL is returned when any mathematics function
attempts to calculate a number that is too large to be encoded into a double.

Let’s C also includes 27 mathematics functions. For a listing of them, see mathematics.

Cross-references
Standard, §4.5
The C Programming Language, ed. 2, p. 250

See Also
header, mathematics

mathematics — Overview
The Standard describes 22 mathematics functions that are to be included with every conforming
implementation of C, as follows:

60u
Exponent-log functions

exp Compute exponential
frexp Fracture floating-point number
ldexp Load floating-point number
log Compute natural logarithm
log10 Compute common logarithm
modf Separate floating-point number

Hyperbolic functions
cosh Calculate hyperbolic cosine
sinh Calculate hyperbolic sine
tanh Calculate hyperbolic tangent

Integer, value, remainder
ceil Set integral ceiling of a number
fabs Compute absolute value
floor Set integral floor of a number
fmod Calculate modulus for floating-point number

LEXICON

346 math.h — mathematics

Power functions
pow Raise one number to the power of another
sqrt Calculate the square root of a number

Trigonometric functions
acos Calculate inverse cosine
asin Calculate inverse sine
atan Calculate inverse tangent
atan2 Calculate inverse tangent
cos Calculate cosine
sin Calculate sine
tan Calculate tangent

The Standard reserves all names that match those in this section and have a suffix of f or l, e.g.,
ftan or ltan. A future version of the Standard may provide additional library support for functions
that manipulate floats or long doubles.

Some existing implemetations may, on detection of domain or range errors, or other exceptional
conditions, allow the function in question to call a user-specified exception handler, matherr. UNIX
implementations have traditionally behaved this way. The Standard, in trying to accommodate a
wide range of floating-point implementations, does not allow this behavior.

Cross-references
Standard, §4.5
The C Programming Language, ed. 2, p. 250

See Also
domain error, range error, Library, math.h

Notes
The Standard excludes the functions ecvt, fcvt, and gcvt, on the grounds that everything they do
can be done more easily by the function sprintf.

maxmem — External data
extern unsigned int maxmem;
maxmem is an external variable that sets the maximum size of the program’s data area. You can
set maxmem in your program to protect a portion of memory from the memory allocation routine
sbrk. Otherwise, maxmem is set to the end of physical memory by the C runtime startup routine.

See Also
__end, Environment, malloc, sbrk

mblen() — General utility (libc)
Return length of a string of multibyte characters
#include <stdlib.h>
int mblen(const char *address, size_t number);

The function mblen checks to see if the number or fewer bytes of storage pointed to by address form
a legitimate multibyte character. If they do, it returns the number of bytes that comprise that
character. This function is equivalent to the call

mbtowc((wchar_t *)0, address, number);

If address is equivalent to NULL, then mblen returns zero if the current multibyte character set
does not have state-dependent encodings and nonzero if it does. If address is not NULL, then
mblen returns the following: (1) If address points to a null character, then mblen returns zero. (2)

LEXICON

maxmem — mblen() 347

If the number or fewer bytes pointed to by address forms a legitimate multibyte character, then
mblen returns the number of bytes that comprise the character. (3) Finally, if the number bytes
pointed to by address do not form a legitimate multibyte character, mblen returns -1. In no
instance is the value returned by mblen greater than number or the value of the macro
MB_CUR_MAX, whichever is less.

Cross-reference
Standard, §4.10.7.1

See Also
general utility, MB_CUR_MAX, mbtowc, wchar_t, wctomb

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

mbstowcs() — General utility (libc)
Convert sequence of multibyte characters to wide characters
#include <stdlib.h>
size_t mbstowcs(wchar_t *widechar, const char *multibyte, size_t number);

The function mbstowcs converts a sequence of multibyte characters to their corresponding wide
characters. It is the same as a series of calls of the type:

mbtowc(widechar, multibyte, MB_LEN_MAX);

except that the call to mbstowcs does not affect the internal state of mbtowc.

multibyte points to the base of the sequence of multibyte characters to be converted to wide
characters. widechars points to the area where the converted characters are written, and number is
the number of characters to convert. mbstowcs converts characters until either it reads a null
character, or until it has converted number characters. In the latter case, then, no null character is
written onto the end of the sequence of wide characters.

mbstowcs returns -1 cast to size_t if it encounters an invalid multibyte character before it has
converted number multibyte characters. Otherwise, it returns the number of multibyte characters it
converted to wide characters, excluding the null character that ends the sequence.

Cross-reference
Standard, §4.10.7.2

See Also
general utilities, wcstombs

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

mbtowc() — General utility (libc)
Convert a multibyte character to a wide character
#include <stdlib.h>
int mbtowc(wchar_t *charptr, const char *address, size_t number);

The function mbtowc converts number or fewer bytes at address from a multibyte character to a
wide character and stores the result in the area pointed to by charptr.

The behavior of mbtowc varies depending upon the values of address and charptr, as follows:

LEXICON

348 mbstowcs() — mbtowc()

1. If address and charptr each point to a value other than NULL, then mbtowc reads the area
pointed to by address and checks to see if number or fewer bytes comprise a legitimate
multibyte character.

If they do, then mbtowc stores the wide character that corresponds to that multibyte character
in the area pointed to by charptr and returns the number of bytes that form the multibyte
character.

If address does not point to the beginning of a legitimate multibyte character, then mbtowc
returns -1.

Finally, if address points to a null character, mbtowc returns zero.

In no instance does the value returned by mbtowc exceed number or value of the macro
MB_CUR_MAX, whichever is less.

2. If charptr is set to NULL and address is set to a value other than NULL, then mbtowc behaves
exactly like the function mblen: it examines the area pointed to by address but does not
convert the multibyte character to a wide character.

3. If address is set to NULL, or both address and charptr are set to NULL, then mbtowc checks to
see if the current multibyte character set have state-dependent encodings. mbtowc returns
zero if the set does not have state-dependent encodings, and a number greater than zero if it
does. It does not store anything in the area pointed to by charptr.

Cross-reference
Standard, §4.10.7.3

See Also
general utilities, MB_CUR_MAX, mblen, wchar_t, wctomb

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

me — Command
MicroEMACS screen editor
me [-e] [file ...]

me is the command for MicroEMACS, the screen editor used by Let’s C. With MicroEMACS, you
can insert text, delete text, move text, search for a string and replace it, and perform many other
editing tasks. MicroEMACS reads text from files and writes edited text to files. It can edit several
files simultaneously, while displaying the contents of each file in its own screen window.

Screen Layout
If the command me is used without arguments, MicroEMACS opens an empty buffer. If used with
one or more file name arguments, MicroEMACS will open each of the files named, and display its
contents in a window. If a file cannot be found, MicroEMACS will assume that you are creating it
for the first time, and create an appropriately named buffer and file descriptor for it.

The last line of the screen is used to print messages and inquiries. The rest of the screen is
portioned into one or more windows in which MicroEMACS displays text. The last line of each
window shows whether the text has been changed, the name of the buffer, and the name of the file
associated with the window.

MicroEMACS notes its current position. It is important to remember that the current position is
always to the left of the cursor, and lies between two letters, rather than at one letter or another.

LEXICON

me 349

For example, if the cursor is positioned at the letter ‘k’ of the phrase ‘‘Mark Williams’’, then the
current position lies between the letters ‘r’ and ‘k’.

Commands and Text
The printable ASCII characters, from <space> to ‘~’, can be inserted at the current position. Control
characters and escape sequences are recognized as commands, described below. A control character
can be inserted into the text by prefixing it with <ctrl-Q> (that is, hold down the <control> key and
type the letter ‘Q’).

There are two types of commands to remove text. Delete commands remove text and throw it away,
whereas kill commands remove text but save it in the kill buffer. Successive kill commands append
text to the previous kill buffer. Moving the cursor before you kill a line will empty the kill buffer,
and write the line just killed into it.

Search commands prompt for a search string terminated by <return> and then search for it. Case
sensitivity for searching can be toggled with the command <esc>@. Typing <return> instead of a
search string tells MicroEMACS to use the previous search string.

Some commands manipulate words rather than characters. MicroEMACS defines a word as
consisting of all alphabetic characters, plus ‘_’ and ‘$’. Usually, a character command is a control
character and the corresponding word command is an escape sequence. For example, <ctrl-F>
moves forward one character and <esc>F moves forward one word. The MicroEMACS commands
are not case sensitive. For example, <ctrl-F> and <ctrl-f> are identical.

Text can also be handled in blocks. MicroEMACS defines a block of text as all the text that lies
between the mark and the current position of the cursor. For example, typing <ctrl-W> kills all text
from the mark to the current position of the cursor. This is useful when moving text from one file to
another. When you invoke MicroEMACS, the mark is set at the beginning of the file. You can reset
the mark to the cursor’s current position by typing <ctrl-@>.

Using MicroEMACS With the Compiler
MicroEMACS can be invoked automatically by the compiler command cc to help you repair all
errors that occur during compilation. The -A option to cc causes MicroEMACS to be invoked
automatically when an error occurs. The compiler error messages are displayed in one window, the
source code in the other, and the cursor is at the line on which the first error occurred. When the
text is altered, exiting from MicroEMACS automatically recompiles the file.

This cycle will continue either until the file compiles without error, or until you break the cycle by
typing <ctrl-U> <ctrl-X> <ctrl-C>.

The option -e to the me command allows you to invoke the error buffer by hand.

The MicroEMACS Help Facility
MicroEMACS has a built-in help facility. With it, you can ask for information either for a word that
you type in, or for a word over which the cursor is positioned. The MicroEMACS help file contains
the bindings for all library functions and macros included with Let’s C.

For example, consider that you are preparing a C program and want more information about the
function fopen. Type <ctrl-X>?. At the bottom of the screen will appear the prompt

Topic:

Type fopen. MicroEMACS will search its help file, find its entry for fopen, then open a window and
print the following:

Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;

LEXICON

350 me

If you wish, you can kill the information in the help window and copy it into your program, to
ensure that you prepare the function call correctly.

Consider, however, that you are checking a program written earlier, and you wish to check the call
for a call to fopen. Simply move the cursor until it is positioned over one of the letters in fopen,
then type <esc>?. MicroEMACS will open its help window, and show the same information it did
above.

To erase the help window, type <esc>2.

Options
The following list gives the MicroEMACS commands. They are grouped by function, e.g., Moving the
cursor. Some commands can take an argument, which specifies how often the command is to be
executed. The default argument is 1. The command <ctrl-U> introduces an argument. By default,
it sets the argument to four. Typing <ctrl-U> followed by a number sets the argument to that
number. Typing <ctrl-U> followed by one or more <ctrl-U>s multiplies the argument by four.

Moving the Cursor

<ctrl-A> Move to start of line.

<ctrl-B> (Back) Move backward by characters.

<esc>B Move backward by words.

<ctrl-E> (End) Move to end of line.

<ctrl-F> (Forward) Move forward by characters.

<esc>F (Forward) Move forward by words.

<esc>G Go to an absolute line number in a file. Same as <ctrl-X>G.

<ctrl-N> (Next) Move to next line.

<ctrl-P> (Previous) Move to previous line.

<ctrl-V> Move forward by pages.

<esc>V Move backward by pages.

<ctrl-X>= Print the current position.

<ctrl-X>G Go to an absolute line number in a file. Can be used with an argument. Otherwise, it
will prompt for a line number. Same as <esc>G.

<esc>! Move the current line to the line within the window given by argument. The position is
in lines from the top if positive, in lines from the bottom if negative, and the center of
the window if zero.

<esc>< Move to the beginning of the current buffer.

<esc>> Move to the end of the current buffer.

Killing and Deleting

<ctrl-D> (Delete) Delete next character.

<esc>D Kill the next word.

LEXICON

me 351

<ctrl-H> If no argument, delete previous character. Otherwise, kill argument previous
characters.

<ctrl-K> (Kill) With no argument, kill from current position to end of line; if at the end, kill the
newline. With argument set to one, kill from beginning of line to current position.
Otherwise, kill argument lines forward (if positive) or backward (if negative).

<ctrl-W> Kill text from current position to mark.

<ctrl-X><ctrl-O>
Kill blank lines at current position.

<ctrl-Y> (Yank back) Copy the kill buffer into text at the current position. Set current position
to the end of the new text.

<esc><ctrl-H>
Kill the previous word.

<esc>
Kill the previous word.

 If no argument, delete the previous character. Otherwise, kill argument previous
characters.

Windows

<ctrl-X>1 Display only the current window.

<ctrl-X>2 Split the current window into two windows. This command is usually followed by
<ctrl-X>B or <ctrl-X><ctrl-V>.

<ctrl-X>N (Next) Move to next window.

<ctrl-X>P (Previous) Move to previous window.

<ctrl-X>Z Enlarge the current window by argument lines.

<ctrl-X><ctrl-N>
Move text in current window down by argument lines.

<ctrl-X><ctrl-P>
Move text in current window up by argument lines.

<ctrl-X><ctrl-Z>
Shrink current window by argument lines.

Buffers

<ctrl-X>B (Buffer) Prompt for a buffer name, and display the buffer in the current window.

<ctrl-X>K (Kill) Prompt for a buffer name and delete it.

<ctrl-X><ctrl-B>
Display a window showing the change flag, size, buffer name, and file name of each
buffer.

<ctrl-X><ctrl-F>
(File name) Prompt for a file name for current buffer.

<ctrl-X><ctrl-R>
(Read) Prompt for a file name, delete current buffer, and read the file.

LEXICON

352 me

<ctrl-X><ctrl-V>
(Visit) Prompt for a file name and display the file in the current window.

Saving Text and Exiting

<ctrl-X><ctrl-C>
Exit without saving text.

<ctrl-X><ctrl-S>
(Save) Save current buffer to the associated file.

<ctrl-X><ctrl-W>
(Write) Prompt for a file name and write the current buffer to it.

<ctrl-Z> Save current buffer to associated file and exit.

Compilation Error Handling

<ctrl-X>> Move to next error.

<ctrl-X>< Move to previous error.

Search and Replace

<ctrl-R> (Reverse) Incremental search backward. A pattern is sought as each character is
typed.

<esc>R (Reverse) Search toward the beginning of the file. Waits for entire pattern before search
begins.

<ctrl-S> (Search) Incremental search forward. A pattern is sought as each character is typed.

<esc>S (Search) Search toward the end of the file. Waits for entire pattern before search
begins.

<esc>% Search and replace. Prompt for two strings, then search for the first string and replace
it with the second.

<esc>/ Search for next occurrence of a string entered with the <esc>S or <esc>R commands.
This remembers whether the previous search had been forward or backward.

<esc>@ Toggle case sensitivity for searches. By default, searches are case insensitive.

Keyboard Macros

<ctrl-X>(Begin a macro definition. MicroEMACS collects everything typed until the next <ctrl-
X>) for subsequent repeated execution. <ctrl-G> breaks the definition.

<ctrl-X>) End a macro definition.

<ctrl-X>E (Execute) Execute the keyboard macro.

Change Case of Text

<esc>C (Capitalize) Capitalize the next word.

<ctrl-X><ctrl-L>
(Lower) Convert all text from current position to mark into lower case.

<esc>L (Lower) Convert the next word to lower case.

LEXICON

me 353

<ctrl-X><ctrl-U>
(Upper) Convert all text from current position to mark into upper case.

<esc>U (Upper) Convert the next word to upper case.

White Space

<ctrl-I> Insert a tab.

<ctrl-J> Insert a new line and indent to current level. This is often used in C programs to
preserve the current level of indentation.

<ctrl-M> (Return) If the following line is not empty, insert a new line. If empty, move to next
line.

<ctrl-O> Open a blank line; that is, insert newline after the current position.

<tab> With argument, set tab fields at every argument characters. An argument of zero
restores the default of eight characters. Setting the tab to any character other than
eight causes space characters to be set in your file instead of tab characters.

Send Commands to Operating System

<ctrl-C> Suspend MicroEMACS and pass commands to MS-DOS. Typing exit returns you to
MicroEMACS and allows you to resume editing.

<ctrl-X>! Prompt for an MS-DOS command and execute it.

Setting the Mark

<ctrl-@> Set mark at current position.

<esc>. Set mark at current position.

<ctrl><space>
Set mark at current position.

Help Window

<ctrl-X>? Prompt for word for which information is needed.

<esc>? Search for word over which cursor is positioned.

<esc>2 Erase help window.

Miscellaneous

<ctrl-G> Abort a command.

<ctrl-L> Redraw the screen.

<ctrl-Q> (Quote) Insert the next character into text; used to insert control characters.

<esc>Q (Quote) Insert the next control character into the text. Same as <ctrl-Q>.

<ctrl-T> Transpose the characters before and after the current position.

<ctrl-U> Specify a numeric argument, as described above.

<ctrl-U><ctrl-X><ctrl-C>
Abort editing and re-compilation. Use this command to abort editing and return to
MS-DOS when you are using the -A option to the cc command.

LEXICON

354 me

<ctrl-X>F Set word wrap to argument column. If argument is one, set word wrap to cursor’s
current position.

<ctrl-X><ctrl-X>
Mark the current position, then jump to the previous setting of the mark. This is
useful when moving text from one place in a file to another.

MicroEMACS prints error messages on the bottom line of the screen. It prints informational
messages (enclosed in square brackets ‘[’ and ‘]’ to distinguish them from error messages) in the
same place.

MicroEMACS manipulates text in memory rather than in a file. The file on disk is not changed until
you save the edited text. MicroEMACS prints a warning and prompts you whenever a command
would cause it to lose changed text.

See Also
commands

Notes
Because MicroEMACS keeps text in memory, it does not work for extremely large files. It prints an
error message if a file is too large to edit. If this happens when you first invoke a file, you should
exit from the editor immediately. Otherwise, your file on disk will be truncated. If this happens in
the middle of an editing session, however, delete text until the message disappears, then save your
file and exit. Due to the way MicroEMACS works, saving a file after this error message has appeared
will take more time than usual.

This version of MicroEMACS does not include many facilities available in the original EMACS
display editor, which was written by Richard Stallman at M.I.T. In particular, it does not include
user-defined commands or pattern search commands.

The current version of MicroEMACS, including source code, is proprietary to Mark Williams
Company. The code may be altered or otherwise changed for your personal use, but it may not be
used for commercial purposes, and it may not be distributed without prior written consent by Mark
Williams Company.

MicroEMACS is based upon the public domain editor by David G. Conroy.

member — Definition
A member names an element within a structure or a union. It can be accessed via the member-
selection operators ‘.’ or ’->’. For example, consider the following:

struct example {
int member1;
long member2;
example *member3;

};

struct example object;
struct example *pointer = &object;

To read the contents of member1 within object, use the ‘.’, as follows:

object.member1

On the other hand, to read the contents of member1 via pointer, use the ‘->’ operator:

pointer->member1

The same is true for a union, but with the following restriction: if a value is stored in one member of
a union, then attempting to read another member of the union generates implementation-defined

LEXICON

member 355

behavior. This restriction has one exception. If the union consists of several structures that have a
common initial sequence, then that common sequence can be read when a value is written into any
of the structures.

Cross-references
Standard, §3.1.2.6, §3.3.2.3
The C Programming Language, ed. 2, p. 128

See Also
->, ., name space, struct, union

memchr() — String handling (libc)
Search a region of memory for a character
#include <string.h>
void *memchr(const void *region, int character, size_t n);

memchr searches the first n characters in region for character. It returns a pointer to character if it
is found, or NULL if it is not.

Unlike the string-search function strchr, memchr searches a region of memory. Therefore, it does
not stop when it encounters a null character.

Example
The following example deals a random hand of cards from a standard deck of 52. The command line
takes one argument, which indicates the size of the hand you want dealt. It uses an algorithm
published by Bob Floyd in the September 1987 Communications of the ACM.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define DECK 52

main(int argc, char *argv[])
{

char deck[DECK], *fp;
int deckp, n, j, t;

if(argc != 2 ||
52 < (n = atoi(argv[1])) ||
1 > n) {

printf("usage: memchr n # where 0 < n < 53\n");
exit(EXIT_FAILURE);

}

/* exercise rand() to make it more random */
srand((unsigned int)time(NULL));
for(j = 0; j < 100; j++)

rand();

deckp = 0;
/* Bob Floyd’s algorithm */
for(j = DECK - n; j < DECK; j++) {

t = rand() % (j + 1);
if((fp = memchr(deck, t, deckp)) != NULL)

*fp = (char)j;
deck[deckp++] = (char)t;

}

LEXICON

356 memchr()

for(t = j = 0; j < deckp; j++) {
div_t card;

card = div(deck[j], 13);
t += printf("%c%c ",

/* note useful string addressing */
"A23456789TJQK"[card.rem],
"HCDS"[card.quot]);

if(t > 50) {
t = 0;
putchar(’\n’);

}
}

putchar(’\n’);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.1
The C Programming Language, ed. 2, p. 250

See Also
strchr, strcspn, string handling, strpbrk, strrchr, strspn, strstr, strtok

memcmp() — String handling (libc)
Compare two regions
#include <string.h>
int memcmp(const void *region1, const void *region2, size_t count);

memcmp compares region1 with region2 character by character for count characters.

If every character in region1 is identical to its corresponding character in region2, then memcmp
returns zero. If it finds that a character in region1 has a numeric value greater than that of the
corresponding character in region2, then it returns a number greater than zero. If it finds that a
character in region1 has a numeric value less than less that of the corresponding character in
region2, then it returns a number less than zero.

For example, consider the following code:

char region1[13], region2[13];
strcpy(region1, "Hello, world");
strcpy(region2, "Hello, World");
memcmp(region1, region2, 12);

memcmp scans through the two regions of memory, comparing region1[0] with region2[0], and so
on, until it finds two corresponding ‘‘slots’’ in the arrays whose contents differ. In the above
example, this will occur when it compares region1[7] (which contains ‘w’) with region2[7] (which
contains ‘W’). It then compares the two letters to see which stands first in the character table used
in this implementation, and returns the appropriate value.

Cross-references
Standard, §4.11.4.1
The C Programming Language, ed. 2, p. 250

See Also
strcmp, strcoll, string handling, strncmp, strxfrm

LEXICON

memcmp() 357

Notes
memcmp differs from the string comparison routine strcmp in the following ways:

First, memcmp compares regions of memory rather than strings; therefore, it does not stop when it
encounters a null character.

Second, memcmp takes two pointers to void, whereas strcmp takes two pointers to char. The
following code illustrates how this difference affects these functions:

char carray[10];
int iarray[10];
char *s = "hi";

. . .
strcmp(carray, s) /* RIGHT */
memcmp(carray, s, 3) /* RIGHT */
strcmp(iarray, s) /* WRONG, 1st arg not char * */
memcmp(iarray, s, 3) /* RIGHT, args converted to void * */

It is wrong to use strcmp to compare an int array with a char array because this function compares
strings. Using memcmp to compare an int array with a char array is permissible because
memcmp simply compares areas of data.

memcpy() — String handling (libc)
Copy one region of memory into another
#include <string.h>
void *memcpy(void *region1, const void *region2, size_t n);

memcpy copies n characters from region2 into region1. Unlike the routines strcpy and strncpy,
memcpy copies from one region to another. Therefore, it will not halt automatically when it
encounters a null character.

memcpy returns region1.

Example
The following example copies a structure and displays it.

#include <string.h>
#include <stdio.h>

struct stuff {
int a, b, c;

} x, y;

main(void)
{

x.a = 1;
/* this would stop strcpy or strncpy. */
x.b = 0;
x.c = 3;

/* y = x; would do the same */
memcpy(&y, &x, sizeof(y));
printf("a =%d, b =%d, c =%d\n", y.a, y.b, y.c);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.2.1
The C Programming Language, ed. 2, p. 250

LEXICON

358 memcpy()

See Also
memmove, strcpy, string handling, strncpy

Notes
If region1 and region2 overlap, the behavior of memcpy is undefined. region1 should point to
enough reserved memory to hold n bytes of data; otherwise, code or data will be overwritten.

memmove() — String handling (libc)
Copy region of memory into area it overlaps
#include <string.h>
void *memmove(void *region1, const void *region2, size_t count);

memmove copies count characters from region2 into region1. Unlike memcpy, memmove correctly
copies the region pointed to by region2 into that pointed by region1 even if they overlap. To
‘‘correctly copy’’ means that the overlap does not propagate, not that the moved data stay intact.
Unlike the string-copying routines strcpy and strncpy, memmove continues to copy even if it
encounters a null character.

memmove returns region1.

Example
The following example rotates a block of memory by one byte.

#include <string.h>
#include <stddef.h>
#include <stdio.h>

char *
rotate_left(char *region, size_t len)
{

char sav;

sav = *region;
/* with memcpy this might propagate the last char */
memmove(region, region + 1, --len);
region[len] = sav;
return(region);

}

char nums[] = "0123456789";
main(void)
{

printf(rotate_left(nums, strlen(nums)));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.2.2 The C Programming Language, ed. 2, p. 250

See Also
memcpy, strcpy, string handling, strncpy

Notes
region1 should point to enough reserved memory to hold the contents of region2. Otherwise, code or
data will be overwritten.

LEXICON

memmove() 359

memset() — String handling (libc)
Fill an area with a character
#include <string.h>
void *memset(void *buffer, int character, size_t n);

memset fills the first n bytes of the area pointed to by buffer with copies of character. It casts
character to an unsigned char before filling buffer with copies of it.

memset returns the pointer buffer.

Example
The following example fills an area with ‘X’, and prints the result.

#include <stdio.h>
#include <string.h>
#define BUFSIZ 20

main(void)
{

char buffer[BUFSIZ];

/* fill buffer with ’X’ */
memset(buffer, ’X’, BUFSIZ);

/* append null to end of buffer */
buffer[BUFSIZ-1] = ’\0’;

/* print the result */
printf("%s\n", buffer);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.6.1
The C Programming Language, ed. 2, p. 250

See Also
memchr, memcmp, memcpy, memmove, string handling

mktemp() — Extended function (libc)
Generate a temporary file name
char *mktemp(char *pattern);

mktemp generates a unique file name. It can be used, for example, to name intermediate data files.

The pattern argument consists of a string that includes a capital ‘X’. mktemp replaces this X with
‘A’ through ‘Z’ to create up to 26 unique file names. It is normal practice to place temporary files in
the directory \tmp. The start of the file name identifies the program that uses the file; for example,
\tmp\sortX creates a temporary file to be used by sort. mktemp returns pattern.

The functions tmpnam and tempnam each assemble a temporary file name and then call mktemp.
These routines ease the difficulty in creating a proper name for a temporary file.

See Also
extended miscellaneous, tempnam, tmpnam

LEXICON

360 memset() — mktemp()

mktime() — Time function (libc)
Turn broken-down time into calendar time
#include <time.h>
time_t mktime(struct tm *timeptr);

mktime reads broken-down time from the structure pointed to by timeptr and converts it into
calendar time of the type time_t. It does the opposite of the functions localtime and gmtime, which
turn calendar time into broken-down time.

mktime manipulates the structure tm as follows:

1. It reads the contents of the structure, but ignores the fields tm_wday and tm_yday.

2. The original values of the other fields within the tm structure need not be restricted to the
values described in the article for tm. This allows you, for example, to increment the member
tm_hour to discover the calendar time one hour hence, even if that forces the value of tm_hour
to be greater than 23, its normal limit.

3. When calculation is completed, the values of the fields within the tm structure are reset to
within their normal limits to conform to the newly calculated calendar time. The value of
tm_mday is not set until after the values of tm_mon and tm_year.

4. The calendar time is returned.

If the calendar time cannot be calculated, mktime returns -1 cast to time_t.

Example
This example gets the date from the user and writes it into a tm structure.

#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define BAD_TIME ((time_t)-1)

/* ask for a number and return it. */
int
askint(char * msg)
{

char buf[20];

printf("Enter %s ", msg);
fflush(stdout);

if(gets(buf) == NULL)
exit(EXIT_SUCCESS);

return(atoi(buf));
}

main(void)
{

struct tm t;

for(;;) {
t.tm_mon = askint("month");
t.tm_mday = askint("day");
t.tm_year = askint("year");
t.tm_hour = t.tm_min = t.tm_sec = 1;

LEXICON

mktime() 361

if(BAD_TIME == mktime(&t)) {
printf("Invalid date\n");
continue;

}

printf("Day of week is %d\n", t.tm_wday);
break;

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.12.2.3
The C Programming Language, ed. 2, p. 256

See Also
clock, date and time, difftime

Notes
The above description may appear to be needlessly complex. However, the Committee intended that
mktime be used to implement a portable mechanism for determining time and for controlling time-
dependent loops. This function is needed because not every environment describes time internally
as a multiple of a known time unit.

model — Technical information
In the context of C programming, a model is a memory format that can be used on the i8086
microprocessor. Intel Corporation has defined six models for use on the i8086: TINY, SMALL,
COMPACT, MEDIUM, LARGE, and HUGE. Mark Williams C compilers currently implement the
SMALL and LARGE models, which experience shows can handle practically any programming task
that can be executed with reasonable efficiency on the i8086.

In SMALL model, a program has two segments, each no larger than 64 kilobytes. One segment, the
code segment, contains the code generated by the compiler. The other, the data segment, contains
all pure and impure data, the stack, and the arena. ‘‘Pure’’ data are user data that have not yet
been altered by the program, whereas ‘‘impure’’ data are user data that have been altered. In
SMALL model, pointers are two chars (16 bits) long, which limits their addressing to 64 kilobytes.

In LARGE model, pointers consist of an offset and a segment. The actual address is calculated by
shifting the segment left four and adding the offset. This can address up to one megabyte, although
on the IBM PC the practical limit of memory is 640 kilobytes.

Code that is properly written can, in most instances, be ported from SMALL to LARGE model
without modification. Routines that have integer-pointer puns, however, will run correctly under
SMALL model but might fail under LARGE model.

See Also
LARGE model, pointer, pun, SMALL model, technical information

modf() — Mathematics (libm)
Separate floating-point number
#include <math.h>
double modf(double real, double *ip);

modf breaks the floating-point number real into its integer and fraction.

modf stores the integer in the location pointed to by ip, and returns the fraction real. Both the
integer and the fraction have the same sign. f in the range 0 <= f < 1.

LEXICON

362 model — modf()

Cross-references
Standard, §4.5.4.6
The C Programming Language, ed. 2, p. 251

See Also
exp, frexp, ldexp, log, log10, mathematics, modf

mtype.h — Header
List processor code numbers

The header file mtype.h assigns a code number to each of the processors supported by Mark
Williams C compilers. These include the Intel i8086, i8088, i80186, and i80286; the Zilog Z8001
and Z8002; the DEC PDP-11 and VAX; the IBM 370; and the Motorola 68000.

See Also
header, portability

multibyte characters — Overview
C was invented at Bell Laboratories as a portable language for implementing the UNIX operating
system. Since then, C has grown into a language used throughout the world, for both operating
systems and applications.

The character sets of many nations are too large to be encoded within one eight-bit byte. The
Japanese Kanji characters form one such set; the ideograms of Mandarin Chinese form another.
For the sake of brevity, the following discussion will call such sets large-character sets. A character
from a large character set will be called a large character.

Wide Characters
The Standard describes two ways to encode a large character: by using a multibyte character or a
wide character.

wchar_t is a typedef that is declared in the header stdlib.h. It is defined as the integral type that
can represent all characters of given national character set.

The following restrictions apply to objects of this type: (1) The null character still has the value of
zero. (2) The characters of the standard C character set must have the same value as they would
when used in ordinary chars. (3) EOF must have a value that is distinct from every other character
in the set.

wchar_t is a typedef of an integral type, whereas a multibyte character is a bundle of one or more
one-byte characters. The format of a multibyte character is defined by the implementation, whereas
a wchar_t can be used across implementations.

Wide characters are used to store large character sets in a device-independent manner. Multibyte
characters are used most often to pass large characters to a terminal device. Most terminal devices
can receive only one byte at a time. Thus, passing the pieces of a wide character to a terminal
would undoubtedly create problems; the individual characters of a multibyte character, however,
can be passed safely. This is also important because the Standard does not describe any function
that reads more than one byte from a stream at any time — there is no Standard version of fgetw or
fputw.

Multibyte Characters
The Standard describes multibyte characters as follows:

LEXICON

mtype.h — multibyte characters 363

• A multibyte character may not contain a null character or 0xFF (-1, or EOF) as one of its bytes.

• All of the characters in the C character set must be present in any set of multibyte characters.

• An implementation of multibyte characters may use a shift state or a special sequence of
characters that marks when a sequence of multibyte characters begins and when it ends.
Depending upon the shift state, the bytes of a multibyte character may either be read as
individual characters or as forming one multibyte character. Note, too, that a shift state may
allow state-dependent coding, by which one of a number of possible sets of multibyte characters
is indicated by the shift state.

• A comment, string literal, or character constant must begin and end in the same shift state.
For example, a comment cannot consist of multibyte characters mixed with single-byte
characters; it must be all one or all the other. If a comment, string literal, or character
constant is built of multibyte characters, each such character must be valid.

Multibyte Character Functions
The support added to the C language for multibyte characters thus far is limited to character
constants, string literals, and comments. The Standard describes five functions that handle
multibyte characters:

mblenCompute length of a multibyte character
mbstowcs Convert sequence of multibyte characters to wide characters
mbtowc Convert multibyte character to wide character
wcstombs Convert sequence of wide characters to multibyte characters
wctomb Convert a wide character to a multibyte character

As mentioned above, a wide character is encoded using type wchar_t. The macro MB_CUR_MAX
holds the largest number of characters of any multibyte character for the current locale. It is never
greater than the value of the macro MB_LEN_MAX. wcstombs and mbstowcs convert sequences of
characters from one type to the other.

All of the above are defined in the header stdlib.h.

Localization
The sets of multibyte characters and wide characters recognized by the above functions are
determined by the program’s locale, as set by the function setlocale.

To load the appropriate sets of multibyte characters and wide characters, use the call

setlocale(LC_CTYPE, locale);

or

setlocale(LC_ALL, locale);

See the entry for localization for more information.

Cross-reference
Standard, §2.2.1.2, §4.10.7

See Also
general utilities

Notes
Because compiler vendors are active in Asia, and because there is an active Japanese standards
organization, a future version of the Standard may include more extensive support for multibyte
characters, such as additional library functions. The support added to the C language for multibyte
characters thus far is limited to character constants, string literals, and comments.

LEXICON

364 multibyte characters

At present, all function names that begin with wcs are reserved. They should not be used if you
wish your code to be maximally portable.

LEXICON

multibyte characters 365

N

name space — Definition
The term name space refers to the ‘‘list’’ where the translator records an identifier. Each name
space holds a different set of identifiers. If two identifiers are spelled exactly the same and appear
within the same scope but are not in the same name space, they are not considered to be identical.

The four varieties of name space, as follows:

Label names
The translator treats every identifier followed by a colon ‘:’ or that follows a goto statement
as a label.

Tags A tag is the name that follows the keywords struct, union, or enum. It names the type of
object so declared.

Members
A member names a field within a structure or a union. A member can be accessed via the
operators ‘.’ or ‘->’. Each structure or union type has a separate name space for its
members.

Ordinary identifiers
These name ordinary functions and variables. For example, the expression

int example;

declares the ordinary identifier example to name an object of type int.

The Standard reserves external identifiers with leading underscores to the implementor. To reduce
‘‘name-space pollution,’’ the implementor should not reserve anything that is not explicitly defined
in the Standard (macros, typedefs, etc.) and that does not begin with a leading underscore.

Example
The following program illustrates the concept of name space. It shows how the identifier foo can be
used numerous times within the same scope yet still be distinguished. This is extremely poor
programming style. Please do not write programs like this.

#include <stdio.h>
#include <stdlib.h>

/* structure tag */
struct foo {

/* structure member */
struct foo *foo;
int bar;

};

main(void)
{

/* ordinary identifier */
struct foo *foo;
int i = 0;

foo = (struct foo *)malloc(sizeof(foo));
foo->bar = ++i;
foo->foo = NULL;

LEXICON

366 name space

/* label */
foo: printf("Chain, chain, chain -- chain of \"foo\"s.\n");

if (foo->foo == NULL) {
foo->foo = (struct foo *)malloc(sizeof(foo));
foo->foo->foo = NULL;
foo->foo->bar = ++i;
goto foo;

}

printf("The foo loop executed %d times\n", foo->foo->bar);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §3.1.2.3

See Also
identifiers, linkage, scope

Notes
Pre-ANSI implementations disagree on the name spaces of structure/union members. The
Standard adopted the ‘‘Berkeley’’ rules, which state that every unique structure/union type has its
own name space for its members. It rejected the rules of the first edition of The C Programming
Language, which state that the members of all structures/unions reside in a common name space.

nested comments — Definition
Both The C Programming Language, ed. 2 and the draft ANSI standard declare that comments
cannot be nested. Earlier versions of Let’s C included a switch, called -VCNEST, that allowed a
programmer to nest comments. This switch has been removed. Current and future versions of
Let’s C abort compilation when they detect nested comments.

See Also
Definitions, Language

nm — Command
Print a program’s symbol table
nm [-adgnopru] file ...

nm prints the symbol table of each file. Each file argument must be a Let’s C object module.

The first argument selects one of several options. It is optional; if present, it must begin with ‘-’.
The options are as follows:

-a Print all symbols. Normally, nm prints names that are in C-style format and ignores symbols
with names inaccessible from C programs.

-d Print only defined symbol.

-g Print only global symbols.

-n Sort numerically rather than alphabetically. nm uses unsigned compares when sorting
symbols with this option.

-o Append the file name to the beginning of each output line.

-p Print symbols in the order in which they appear within the symbol table.

LEXICON

nested comments — nm 367

-r Sort in reverse-alphabetical order.

-u Print only undefined symbols.

By default, nm sorts symbol names alphabetically. Each symbol is followed by its value and its
OMF segment.

See Also
cc, commands, ld, size, strip

nondigit — Definition
In the context of identifiers, a nondigit is any one of the following characters:

_ a b c d e f g h
i j k l m n o p q
r s t u v w x y z
A B C D E F G H I
J K L M N O P Q R
S T U V W X Y Z

Cross-reference
Standard, §3.1.2

See Also
digit, identifiers

non-local jumps — Overview
At times, exceptional conditions arise in a program that make it desirable to jump to a previous
point within the program. goto can jump from one point to another within the same function, but it
does not permit a jump from one function to another. The setjmp/longjmp mechanism was
created to allow a program to jump immediately from one function to another, i.e., to perform a non-
local jump.

The macro setjmp reads the machine environment and stores the environment in the array
jmp_buf, which must be an array. The ‘‘machine environment’’ consists of the elements that
determine the behavior of the machine, e.g., the contents of machine registers. What constitutes the
machine environment will vary greatly from machine to machine. It may be impossible on some
machines to save such elements of the machine environment as register variables and the contents
of the stack or to restore the machine environment from within an extraordinarily complex
computation.

For example, consider the following:

{
int status[3][3][3], fn();
jmp_buf buf;
status[fn(1)][fn(2)][fn(3)] = setjmp(buf);

}

Here, the translator is trying to store the return value of setjmp into an array element with
extremely complex index computations. It cannot be guaranteed that on every machine, the proper
array element will be overwritten on reentry. For this reason, the Standard states that setjmp can
be expected to save the machine environment only if used in a simple expression, such as in an if or
switch statement.

The function longjmp jumps back to the point marked by the earlier invocation of setjmp. It
restores the machine environment that setjmp had saved. This allows longjmp to perform a non-
local jump.

LEXICON

368 nondigit — non-local jumps

A non-local jump can be dangerous. For example, many user-level routines cannot be interrupted
and reentered safely. Thus, improper use of longjmp and setjmp with them will create mysterious
and irreproducible bugs.

The Standard mandates that longjmp work correctly ‘‘in the contexts of interrupts, signals and any
of their associated functions.’’ Experience has shown, however, that longjmp should not be used
within an exception handler that interrupts STDIO routines.

longjmp must not restore the machine environment of a routine that has already returned.

Cross-references
Standard, §4.6
The C Programming Language, ed. 2, p. 254

See Also
jmp_buf, Library, setjmp.h

Notes
longjmp’s behavior is undefined if it is invoked from within a function that is called by a signal that
is received during the handling of another signal. See signal handling for more information on
signals.

notmem() — Extended function (libc)
Check if memory is allocated
int notmem(char *ptr);

notmem checks if a memory block has been allocated by calloc, malloc, or realloc. ptr points to the
block to be checked.

notmem searches the arena for ptr. It returns one if ptr is not a memory block obtained from
malloc, calloc, or realloc, and zero if it is.

See Also
arena, calloc, extended miscellaneous, free, malloc, realloc, setbuf

null directive — Definition
Directive that does nothing

A null directive is a preprocessing directive that consists only of a ‘#’ followed by <newline>. It does
nothing.

Cross-reference
Standard, §3.8.7

See Also
preprocessing

null pointer constant — Definition
A null pointer constant is an integral constant expression with the value of zero, or such a constant
that has been cast to type void *. When the null pointer constant is compared with a pointer for
equality, it is converted to the same type as the pointer before they are compared.

The null pointer constant always compares unequal to a pointer to an object or function. Two null
pointers will always compare equal, regardless of any casts.

LEXICON

notmem() — null pointer constant 369

Cross-references
Standard, §3.2.2.3
The C Programming Language, ed. 2, p. 102

See Also
conversions, NULL

null statement — Definition
A null statement is one that consists only of a semicolon ‘;’. Its syntax is as follows:

null statement:
;

A null statement performs no operations.

Cross-references
Standard, §3.6.3
The C Programming Language, ed. 2, p. 222

See Also
Definitions, statements

numerical limits — Overview
The Standard describes numerical limits for every arithmetic type. For integral types, it sets the
largest and smallest values that can be held in the given environment. For floating types, it also
gives values for the manner in which a floating-point number is encoded.

These limits are recorded in two groups of macros: one for integral types, and the other for floating
types. The groups of macros are kept, respectively, in the headers limits.h and float.h. The Lexicon
entries for these headers lists the Standard’s numerical limits.

Cross-references
Standard, §2.2.4.2
The C Programming Language, ed. 2, p. 257

See Also
Environment

Notes
The ANSI Committee has tried to keep its numerical limits compatible with those given in IEEE
document 754, which describes a floating-point standard for binary number systems.

nybble — Definition
A nybble is four bits, or half of an eight-bit byte. The term is generally used to refer to the low four
bits or the high four bits of a byte. Thus, a byte may be said to have a ‘‘low nybble’’ and a ‘‘high
nybble’’. One nybble encodes one hexadecimal digit.

See Also
bit, byte, Definitions

LEXICON

370 null statement — nybble

O

object — Definition
An object is an area of memory that can contain one or more values. With the exception of a bit-
field, an object consists of a byte or a contiguous group of bytes. The significance of each byte’s
value is defined by the program or the implementation. Objects that are variables are interpreted
according to their type.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, p. 197

See Also
Definitions

object definition — Definition
A definition is a declaration that reserves storage for the thing declared. An object definition defines
an object and makes it available throughout either the translation unit (if it has internal linkage) or
throughout the program (if it has external linkage).

The term ‘‘tentative definition’’ refers to a definition to which more information is added by a later re-
definition of the same object. The extra information may be a storage-class specifier, or it may
initialize the object. The term, although somewhat misleading, is meant to show that every object
has only one definition, but that definition can be refined during the course of translation.

Only one definition can contain an initializer. If an object is not initialized by the end of a file, it is
initialized to zero.

A tentative definition of a static, incomplete object is disallowed semantically:

static int array[];
. . .

int array[] = {3, 4, 5, 6}; /* Non-portable */

Because the Standard does not forbid an implementation to support such code, it may not generate
an error message; however, this code is not portable.

The following is allowed semantically:

int array[];
. . .

static int array[] = {3, 4, 5, 6}; /* RIGHT */

However, it may create a linker conflict in some implementations, such as in one-pass compilers.

To be assured that your code is maximally portable, declare the storage class and size of each object
before you use it.

Cross-references
Standard, §3.7.2
The C Programming Language, ed. 2, p. 197

See Also
definition, external definitions, function definition, linkage, object

LEXICON

object — object definition 371

object format — Definition
An object format describes the form of compiled program that contains relocation information. The
linker reads files in object format to create executable files.

See Also
Definitions, ld, n.out

object types — Definition
The object types are the set of types that describe objects. This set includes the integral types, the
floating types, the pointer types, and the aggregate types.

Cross-reference
Standard, §3.1.2.5

See Also
function type, incomplete type, pointer, types

obsolescent — Definition
The term obsolescent refers to any feature of the C language that is widely used, but that may be
withdrawn from future editions of the Standard. For example, consider the practice of first defining
a function and then following the definition with a list of parameter declarations:

int example(parm1, parm2, parm3)
long parm1;
char *parm2;
int parm3;
{

. . .
}

The Standard regards this as obsolete, and may eventually withdraw recognition of it in favor of the
following syntax:

int example(long parm1, char *parm2, int parm3)
{

. . .
}

The Standard regards three features of the language as being obsolete. The first is the use of
separate lists of parameters identifiers and declaration lists, as described above. The second is the
use of function declarators with empty parentheses; if a function takes no arguments, the word void
should appear between the parentheses. The third is the placing of storage-class specifier at any
point other than at the beginning of the declaration specifiers.

Cross-reference
Standard, §1.8, §3.9

See Also
Definitions, function declarators, storage-class specifiers

open() — Extended function (libc)
Open a file
short open(char *file, short type);

LEXICON

372 object format — open()

open prepares a file to receive data, or to have its data read. When it can open file, open returns a
file descriptor, which is a small, positive integer that identifies the opened file for subsequent calls to
read, write, close, dup, or dup2.

type determines how the file is opened, as follows:

0 Read only
1 Write
2 Read and write

Once file is opened, reading or writing begins at byte 0.

open returns -1 if the file is nonexistent, or if a system resource is exhausted.

Example
This example copies the file named in argv[1] to the one named in argv[2].

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#define BUFSIZE (20*512)
char buf[BUFSIZE];

/* prototypes for extended functions */
extern short close(short fd);
extern short open(char *file, short type);
extern short read(short fd, char *buffer, short n);
extern short write(short fd, char *buffer, short n);

void
fatal(char *message)
{

fprintf(stderr, "copy: %s\n", message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

register short ifd, ofd;
register unsigned short n;

/* Check number of arguments */
if (argc != 3)

fatal("Usage: copy source destination");

/* Open files */
if ((ifd = open(argv[1], 0)) == -1)

fatal("cannot open input file");
if ((ofd = creat(argv[2], 0)) == -1)

fatal("cannot open output file");

/* Read and write text */
while ((n = read(ifd, buf, BUFSIZE)) != 0) {

if (n == -1)
fatal("read error");

if (write(ofd, buf, n) != n)
fatal("write error");

}

LEXICON

open() 373

if (close(ifd) == -1 || close(ofd) == -1)
fatal("cannot close");

exit(EXIT_SUCCESS);
}

See Also
close, extended miscellaneous, file descriptor, fopen

Notes
open is a low-level call that passes data directly to MS-DOS. It should not be mixed with high-level
calls, such as fread, fwrite, or fopen.

open is not described in the ANSI Standard. Any program that uses it does not comply strictly with
the Standard, and may not be portable to other compilers or environments.

operating system devices — Overview
Logical devices for system peripherals

MS-DOS gives names to its logical devices. Let’s C uses these names to access these devices via
MS-DOS.

MS-DOS includes the following logical devices:

aux Auxiliary (serial) port
com1 Serial port
con Console
lpt1 Parallel port; not always implemented
nul Null device (the ‘‘bit bucket’’)
prn Parallel port

You can use the function fopen to open these devices, just as if they were files. However, if you
attempt to seek on a device, undefined behavior will occur.

See Also
Environment

operators — Overview
An operator specifies an operation performed upon one or two operands. The operation yields a
value, performs designation, produces a side effect, or performs any combination of these.

The C language uses the following operators:

! Not
!= Compare two arithmetic operands for inequality
Substitute preprocessor token (‘‘stringize’’)
Token-paste preprocessor tokens
% Modulus operation on two arithmetic operands
%= Modulus operation and assign result
& Bitwise AND operation
&& Logical AND for two expressions
&= Bitwise AND operation and assign result
() Cast operators
* Multiply two arithmetic operands
*= Multiply two arithmetic operands and assign result
+ Add two arithmetic operands
++ Increment a scalar operand
+= Add two operands and assign result

LEXICON

374 operating system devices — operators

, Evaluate an rvalue
- Subtract two scalar operands, unary minus
-- Decrement a scalar operand
-= Subtract two operands and assign result
-> Offset from structure/union pointer
. Select member from structure/union
/ Divide two arithmetic operands
/= Divide two arithmetic operands and assign result
< Less than
<< Bitwise left shift
<<= Bitwise left shift and assign result
<= Less than or equality
= Assignment operator
== Equality
> Greater than
>= Greater than or equal
>> Bitwise right shift
>>= Bitwise right shift and assign result
? : Perform if/else operation
[] Array subscript
^ Perform bitwise exclusive OR operation
^= Perform bitwise exclusive OR and assign result
defined Check if a macro is defined
sizeof Size of operand in bytes
| Perform bitwise OR operation
|= Perform bitwise OR and assign result
|| Logical OR for two expressions
~ One’s complement

The term precedence refers to the default order in which the operators in an expression are
evaluated. The following list gives the default precedence of operators. Precedence is always
overridden by the operators (), which, by default, enclose a primary expression:

Operator Associativityı () [] -> . Left to rightı ! ~ ++ -- - (operand) * & sizeof Right to leftı * / % Left to rightı + - Left to rightı << >> Left to rightı < <= > >= Left to rightı == != Left to rightı & Left to rightı ^ Left to rightı | Left to rightı && Left to rightı || Left to rightı ?: Right to leftı = += -= *= /= %= Right to leftı , Left to rightı
Cross-references
Standard, §3.1.5
The C Programming Language, ed. 2, pp. 41ff

See Also
lexical elements, punctuators

ordinary identifier — Definition
An ordinary identifier names all identifiers except labels, tags, and members. For example, the
expression

int example;

declares the ordinary identifier example to name an object of type int.

LEXICON

ordinary identifier 375

Cross-references
Standard, §3.1.2.6
The C Programming Language, ed. 2, p. 192

See Also
name space

outb() — Extended function (libc)
Write to a port
int outb(int port, int data);

outb provides a C interface to the i8086 machine instruction out. It writes the least significant byte
of the 16-bit word data to port, and returns data.

Example
For an example of this function, see the entry for inb.

See Also
extended miscellaneous, inb, inw, outw

LEXICON

376 outb()

P

parameter — Definition
The term parameter refers to an object that is declared with a function or a function-like macro.

With a function, a parameter is declared within a function declaration or definition. It acquires a
value when the function is entered. For example, in the following declaration

FILE *fopen (const char *file, const char *mode);

file and mode are both objects that are declared within the function declaration. Both parameters
will acquire their values when fopen is called.

With a function-like macro, a parameter is one of the identifiers that is bracketed by parantheses
and separated by commas. For example, in the following example:

#define getchar(parameter) getc(stdin, parameter)

parameter is the identifier used with the macro getchar.

The scope of a function parameter is the block within which it is enclosed. The scope of a parameter
to a function-like macro is the logical source line of the macro’s definition.

Cross-references
Standard, §1.6
The C Programming Language, ed. 2, p. 202

See Also
argument, Definitions, function definition, scope

Notes
The Standard uses the term ‘‘argument’’ when it refers to the actual arguments of a function call or
macro invocation. It uses the term ‘‘parameter’’ to refer to the formal parameters given in the
definition of the function or macro.

PATH — Environmental variable
Directories that hold executable files

PATH names a default set of directories that are searched by MS-DOS when it seeks an executable
file. You can set PATH with the MS-DOS command path. For example, typing

path c:\bin;a:\bin

tells MS-DOS to search for executable files first in c:\bin, and then in a:\bin.

For more information on the path command, see your MS-DOS user’s manual.

See Also
environmental variable, path.h

path() — Access checking (libc)
Build a path name for a file
#include <path.h>
#include <stdio.h>
char *path(char *path, char *filename, int mode);

The function path builds a path name for a file.

LEXICON

parameter — path() 377

path points to the list of directories to be searched for the file. You can use the function getenv to
obtain the current definition of the environmental variable PATH, or use the default setting of PATH
found in the header file path.h, or, you can define path by hand.

filename is the name of the file for which path is to search. mode is the mode in which you wish to
access the file, as follows:

1 Execute the file
2 Write to the file
4 Read the file

path uses the function access to check the access status of filename. If path finds the file you
requested and the file is available in the mode that you requested, it returns a pointer to a static
area in which it has built the appropriate path name. It returns NULL if either path or filename are
NULL, if the search failed, or if the requested file is not available in the correct mode.

Example
This example accepts a file name and a search mode. It then tries to find the file in one of the
directories named in the PATH environmental variable.

#include <path.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

char *env, *pathname;
int mode;

if (argc != 3)
fatal("Usage: findpath filename mode");

if(((mode=atoi(argv[2]))>4) || (mode==3) || (mode<1))
fatal("modes: 1=execute, 2=write, 3=read");

env = getenv("PATH");
if ((pathname = path(env, argv[1], mode)) != NULL) {

printf("PATH = %s\n", env);
printf("pathname = %s\n", pathname);
return(EXIT_SUCCESS);

} else
fatal("search failed");

}

See Also
access, access checking, access.h, PATH, path.h

path.h — Header
Declare path()
#include <path.h>

path.h is a header that declares the function path. It also contains a number of default definitions
for variables, including PATH and LIBPATH.

LEXICON

378 path.h

See Also
access checking, header, LIBPATH, path, PATH

pattern — Definition
A pattern is any combination of ASCII characters and wildcard characters that can be interpreted
by a command.

The function pnmatch compares two patterns and signals if they match.

See Also
Definitions, egrep, pnmatch, wildcard

peek() — Extended function (libc)
Extract a word from memory
unsigned peek(unsigned offs, unsigned seg);

peek examines an arbitrary location in memory. It reads a word (two bytes) located at the offset offs
and segment seg.

If your program is compiled into SMALL model, you can supply the offset/segment pair by using the
macro PTR.

The header file bios.h declares a structure that defines the entire MS-DOS BIOS data area. You can
use it to access an area within the BIOS data area for peeking or pokeing.

Example
This example reads the address where the IBM PC stores the current memory size.

#include <stdio.h>
#include <stdlib.h>
#define MEMSIZELOC 0x13

main(void)
{

extern unsigned peek();
int size;

size = (int)peek(MEMSIZELOC, 0x0);
printf("Memory size = %d Kbytes\n",size);
return EXIT_SUCCESS;

}

See Also
BIOS data area, bios.h, extended miscellaneous, peekb, poke, pokeb

peekb() — Extended function (libc)
Extract a byte from memory
unsigned peekb(unsigned offs, unsigned seg);

peekb examines an arbitrary location in memory. It reads a byte located at the offset offs and
segment seg.

Note that if your program is compiled into SMALL model, you can supply the offset/segment pair by
using the macro PTR.

Example
This example reads the MS-DOS location that holds the amount of memory on your machine.

LEXICON

pattern — peekb() 379

#include <stdio.h>
#include <stdlib.h>

main(void)
{

extern unsigned peekb();
unsigned hbyte, lbyte, word;

hbyte = peekb(0x14,0x0);
lbyte = peekb(0x13,0x0);
word = ((hbyte << 8) | lbyte);
printf("Memory size = %d Kbytes\n",(int)word);
return EXIT_SUCCESS;

}

See Also
_copy, csreg, extended miscellaneous, peek, poke, pokeb, PTR, _zero

perror() — STDIO (libc)
Write error message into standard error stream
#include <stdio.h>
void perror(const char *string);

perror checks the integer expression errno, then writes the message associated with the value of
errno into the standard error stream.

string points to a string that will prefix the error message, followed by a colon. For example, the call

perror("example");

ensures that the string

example:

will appear before any message that perror writes. If string is set to NULL, then the message will
have no prefix.

Example
For an example of this function, see feof.

Cross-references
Standard, §4.9.10.4
The C Programming Language, ed. 2, p. 248

See Also
clearerr, errno, error codes, feof, ferror, STDIO, strerror

Notes
perror differs from the related function strerror in that it writes the error message directly into the
standard error stream, instead of returning a pointer to the message.

The text of the message returned by strerror and the error-specific part of the message produced by
perror should be the same for any given error number.

The external array sys_errlist gives the list of messages used by perror. The external variable
sys_nerr gives the number of messages in the list.

LEXICON

380 perror()

picture() — Example
Format numbers under mask
double picture(double number, const char *mask, char *output);

picture uses a mask to format a double-precision number. It is designed to be used with programs
that require precise formatting of printed numbers.

picture formats a given number by using a mask string. It writes its output into the area pointed to
by output.

mask may contain any characters; however, only a few have special significance. Non-special
characters in mask are printed if, during execution, they are preceded by one or more numerals.
Trailing non-special characters print if the displayed number is negative.

picture returns all overflow as a double. For example, attempting to print -1234 with mask (ZZZ)
gives (234) and returns -1.

The following lists the special characters that control formatting within a mask:

9 Provides a slot for a number. For example, 5 with mask 999 CR gives 005<sp><sp><sp>,
whereas printing -5 with mask 999 CR gives 005 CR. ‘C’ and ‘R’ are not special characters,
but are taken literally.

Z Provide a slot for a number but supress leading zeroes. For example, printing 1034 with
mask ZZZ,ZZZ gives <sp><sp>1,034. The comma is not a special character, but is printed
literally.

J Provide a slot for a number but shrink out leading zeroes. For example, printing 1034 with
mask JJJ,JJJ gives 1,034.

K Provide a slot for a number but shrink out all zeroes. For example, printing 070884 with
mask K9/K9/K9 gives 7/8/84.

$ Print a dollar sign to the front of the displayed number. For example, printing 105 with
mask $Z,ZZZ gives <sp><sp>$105.

. Separate the number between decimal and integer portions. For example, printing 105.67
with mask ZZZ.999 gives 105.670.

T Provide a slot for a number, but supress trailing zeroes. For example, printing 105.670
with mask ZZ9.9TT gives 105.67<sp>.

S Provide a slot for a number, but shrink out trailing zeroes. For example, printing 105.600
with mask ZZ9.9SS gives 105.6.

- If you place a hyphen to the left of the mask, it is printed at the beginning of the number,
but only if it is negative. For example, printing 105 with mask -Z,ZZZ yields <sp><sp>105,
whereas printing -105 yields <sp><sp>-105.

(This character acts like the minus sign ‘-’, but prints a ‘(’. For example, printing 105 with
mask (ZZZ) gives <sp>105<sp>, whereas printing -5 gives <sp><sp>(5).

+ If placed to the left of the mask, this character floats to the front like the minus sign ‘-’, but
is replaced by a ‘-’ if the number is minus. For example, printing 5 with mask +ZZZ gives
<sp><sp>+5, whereas printing -5 gives <sp><sp>-5. Placed behind the mask, it is printed if
the number is positive, but is replaced by a minus sign ‘-’ if the number is negative. For
example, printing 5 with mask ZZZ+ gives <sp><sp>5+, whereas printing -5 gives
<sp><sp>5-.

LEXICON

picture() 381

* When placed to the left of the mask, this character fills all leading spaces to its right. For
example, printing 104.10 with mask *ZZZ,ZZZ.99 gives *****104.10, and printing 104.10
with mask *$ZZ,ZZZ.99 gives ****$104.10.

Example
For an example of picture, compile the source program picture.c with the option -DTEST.

See Also
example

Notes
For the source code of picture, see the file picture.c, which is included with Let’s C. picture is not
included in a library.

pnmatch() — Extended function (libc)
Match string pattern
short pnmatch(char *string, char *pattern, short flag);

pnmatch matches string with pattern, which is a regular expression.

pnmatch returns a positive number if pattern matches string, and zero if it does not.

Each character in pattern must exactly match a character in string. However, the wildcards ‘*’, ‘?’, ‘[’,
and ‘]’ can be used in pattern to expand the range of matching. See wildcards for more information
on what these symbols mean.

The flag argument must be either zero or one: zero means that pattern must match string exactly,
whereas one means that pattern can match any part of string. In the latter case, the wildcards ‘^’
and ‘$’ can also be used in pattern.

Example
This example looks for the pattern given by argv[1] in standard input or in file argv[2].

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MAXLINE 128
char buf[MAXLINE];

void
fatal(char *message)
{

fprintf(stderr, "pnmatch: %s\n", message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

/* Check that number of arguments is OK */
if (argc != 2 && argc != 3)

fatal("Usage: pnmatch pattern [file]");
if (argc==3 && freopen(argv[2], "r", stdin)==NULL)

fatal("cannot open input file");

LEXICON

382 pnmatch()

/* Get string, check with pattern */
while (fgets(buf, MAXLINE, stdin) != NULL)
{

if (pnmatch(buf, argv[1], 1))
printf("%s", buf);

}

if (!feof(stdin))
fatal("read error");

exit(EXIT_SUCCESS);
}

See Also
extended miscellaneous, strcmp, strncmp, strstr, wildcards

Notes
flag must be zero or one for pnmatch to yield predictable results.

pnmatch is not described in the ANSI standard. Programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or other environments.

pointer — Definition
A pointer is an object whose value is the address of another object. The name ‘‘pointer’’ derives from
the fact that its contents ‘‘point to’’ another object. A pointer may point to any type, complete or
incomplete, including another pointer. It may also point to a function, or to nowhere.

The term pointer type refers to the object of a pointer. The object to which a pointer points is called
the referenced type. For example, an int * (‘‘pointer to int’’) is a pointer type; the referenced type is
int. Constructing a pointer type from a referenced type is called pointer type derivation.

The Null Pointer
A pointer that points to nowhere is a null pointer. The macro NULL, which is defined in the header
stddef.h, defines the null pointer for a given implementation. The null pointer is an integer
constant with the value zero, or such a constant cast to the type void *. It compares unequal to a
pointer to any object or function.

Declaring a Pointer
To declare a pointer, use the indirection operator ‘*’. For example, the declaration

int *pointer;

declares that the variable pointer holds the address of an int-length object.

Likewise, the declaration

int **pointer;

declares that pointer holds the address of a pointer whose contents, in turn, point to an int-length
object. See declarations for more information.

Wild Pointers
Pointers are omnipresent in C. C also allows you to use a pointer to read or write the object to
which the pointer points; this is called pointer dereferencing. Because a pointer can point to any
place within memory, it is possible to write C code that generates unpredictable results, corrupts
itself, or even obliterates the operating system if running in unprotected mode. A pointer that aims
where it ought not is called a wild pointer.

When a program declares a pointer, space is set aside in memory for it. However, this space has not
yet been filled with the address of an object. To fill a pointer with the address of the object you wish

LEXICON

pointer 383

to access is called initializing it. A wild pointer, as often as not, is one that is not properly initialized.

Normally, to initialize a pointer means to fill it with a meaningful address. For example, the
following initializes a pointer:

int number;
int *pointer;

. . .
pointer = &number;

The address operator ‘&’ specifies that you want the address of an object rather than its contents.
Thus, pointer is filled with the address of number, and it can now be used to access the contents of
number.

The initialization of a string is somewhat different than the initialization of a pointer to an integer
object. For example,

char *string = "This is a string."

declares that string is a pointer to a char. It then stores the string literal This is a string in memory
and fills string with the address of its first character. string can then be passed to functions to
access the string, or you can step through the string by incrementing string until its contents point
to the null character at the end of the string.

Another way to initialize a pointer is to fill it with a value returned by a function that returns a
pointer. For example, the code

extern void *malloc(size_t variable);
char *example;

. . .
example = (char *)malloc(50);

uses the function malloc to allocate 50 bytes of dynamic memory and then initializes example to
the address that malloc returns.

Reading What a Pointer Points To
The indirection operator ‘*’ can be used to read the object to which a pointer points. For example,

int number;
int *pointer;

. . .
pointer = &number;

. . .
printf("%d\n", *pointer);

uses pointer to access the contents of number.

When a pointer points to a structure, the elements within the structure can be read by using the
structure offset operator ‘->’. See the entry for -> for more information.

Pointers to Functions
A pointer can also contain the address of a function. For example,

char *(*example)();

declares example to be a pointer to a function that returns a pointer to a char.

This declaration is quite different from:

char **different();

LEXICON

384 pointer

The latter declares that different is a function that returns a pointer to a pointer to a char.

The following demonstrates how to call a function via a pointer:

(*example)(arg1, arg2);

Here, the ‘*’ takes the contents of the pointer, which in this case is the address of the function, and
uses that address to pass to a function its list of arguments.

A pointer to a function can be passed to another function as an argument. The library functions
bsearch and qsort both take function pointers as arguments. A program may also use of arrays of
pointers to functions.

void *
void * is the generic pointer; it replaces char * in that role. A pointer may be cast to void * and
then back to its original type without any change in its value. void * is also aligned for any type in
the execution environment.

For more information on the use of the generic pointer, see void.

Pointer Conversion
One type of pointer may be converted, or cast, to another. For example, a pointer to a char may be
cast to a pointer to an int, and vice versa.

Any pointer may be cast to type void * and back again without its value being affected in any way.
Likewise, any pointer of a scalar type may be cast to its corresponding const or volatile version.
The qualified pointers are equivalent to their unqualified originals.

Pointers to different data types are compatible in expressions, but only if they are cast appropriately.
Using them without casting produces a pointer-type mismatch. The translator should produce a
diagnostic message when it detects this condition.

Pointer Arithmetic
Arithmetic may be performed on all pointers to scalar types. Pointer arithmetic is quite limited and
consists of the following:

1. One pointer may be subtracted from another.

2. An int or a long, either variable or constant, may be added to a pointer or subtracted from it.

3. The operators ++ or -- may be used to increment or decrement a pointer.

No other pointer arithmetic is permitted.

Cross-references
Standard, §3.1.2.5, §3.2.2.1, §3.2.2.3, §3.3.2.2-3, §3.5.4.1
The C Programming Language, ed. 2, pp. 93ff

See Also
NULL, types, void

Notes
The Rationale cautions against using NULL as an explicit argument to any function that expects a
pointer on the grounds that, under some environments, pointers to different data types may be of
different lengths. All such problems will be avoided if a function prototype is within the scope of the
function call. Then, NULL will be transformed automatically to the proper type of pointer. See
function prototype for more information.

LEXICON

pointer 385

pointer declarators — Definition
A pointer declarator declares a pointer.

An asterisk ‘*’ marks an identifier as being a pointer. For example:

int *example;

states that example is a pointer to int. Likewise, the use of two asterisks marks an identifier as
being a pointer to a pointer. For instance,

int **example;

declares a pointer to a pointer to an int. It is sometimes helpful to read a C declarator backwards,
i.e., from right to left, to decipher it.

A pointer declarator may be modified by the type qualifiers const or volatile. For example, the
declarator

int *const example;

declares that example is a constant pointer to a variable value of type int, whereas the declaration

const int *example;

declares that example is a variable pointer to a constant integer value. The same syntax applies to
volatile. The declaration

const int *const example;

declares a constant pointer to a constant int.

Cross-references
Standard, §3.5.4.1
The C Programming Language, ed. 2, p. 94

See Also
*, declarators, pointer

poke() — Extended function (libc)
Insert a word into memory
unsigned poke(unsigned offs, unsigned seg, unsigned data);

poke writes a word (two bytes) into an arbitrary location in memory. It writes the word data into
the memory location given by the segment seg and offset offs, and returns data.

If your program is compiled into SMALL model, you can supply the full offset/segment pair by using
the macro PTR. See its entry in the Lexicon for more information.

Example
This program will print a reverse video ‘A’ on an IBM-PC monochrome screen.

#include <stdlib.h>
main(void)
{

/* ’70’ = reverse video, ’41’= ’A’ */
poke(0x000, 0xB000, 0x7041);
return EXIT_SUCCESS;

}

LEXICON

386 pointer declarators — poke()

See Also
extended miscellaneous, pokeb, PTR, _zero

Notes
Because memory is not protected on the i8086, be careful that you have the correct memory
location when using poke.

pokeb() — Extended function (libc)
Insert a byte into memory
unsigned pokeb(unsigned offs, unsigned seg, unsigned data);

pokeb writes a byte of data into an arbitrary location of memory. It writes data into the memory
location given by the segment seg and offset offs, and returns data.

If your program is compiled into SMALL model, you can supply the full offset/segment pair by using
the macro PTR. See its entry in the Lexicon for more information.

Example
This program will print a ‘W’ in the upper left-hand corner of an IBM-PC monochrome screen.

#include <stdlib.h>
main(void)
{

pokeb(0x0000, 0xB000, 0x57);
return EXIT_SUCCESS;

}

See Also
extended miscellaneous, poke, PTR

Notes
Because memory is not protected on the i8086, be careful that you have the correct memory
location when using pokeb.

pokeb is not described in the ANSI Standard. All programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or environments.

port — Definition
A port passes data to and receives data from a remote device.

See Also
aux, com1, fclose, FILE, fopen, lpt1, prn, stream

portability — Definition
The term portability refers to a program’s ability to be translated and executed under more than one
environment. The Standard is designed so that if you adhere to it strictly, you will, in the words of
the Rationale, ‘‘have a ‘fighting chance’ to make powerful C programs that are also highly portable
....’’

Although true portability is an ideal that is difficult to realize, you can take a number of practical
steps to ensure that your code is portable:

• Do not assume that an integer and a pointer have the same size. Remember that undeclared
functions are assumed to return an int.

LEXICON

pokeb() — portability 387

• Do not write routines that depend on a particular order of code evaluation, particular byte
ordering, or particular length of data types, except for those specified within the Standard.

• Do not write routines that play tricks with a machine’s ‘‘magic characters’’. For example,
writing a routine that depends on a file’s ending with <ctrl-Z> instead of EOF ensures that that
code can run only under operating systems that recognize this magic character.

• Always use constant such as EOF and make full use of #define statements.

• Use headers to hold all machine-dependent declarations and definitions.

• Declare everything explicitly. In particular, be sure to declare functions as void if they do not
return a value. This avoids unforeseen problems with undefined return values.

• Do not assume that all varieties of pointer are the same or can point anywhere. On some
machines, for example, a char * is longer than an int *. On others, a function pointer aims at a
different space than does a data pointer.

• NULL should not be used as an explicit argument to any function that expects a pointer
because, under some environments, pointers to different data types may be of different lengths.
All such problems are avoided if a function prototype is within the scope of the function call.
Then, NULL is transformed automatically to the proper type of pointer.

• Always exit or return explicitly from main, even when the program has run successfully to its
end.

• int is the register size of the machine. Use short or long wherever size is a consideration.

• Inevitably, you will have code that is not 100% portable. Try to separate code that is machine-
specific or operating-system specific into its own file.

Cross-reference
The C Programming Language, ed. 2, p. 3

See Also
behavior, Definitions

pow() — Mathematics (libm)
Raise one number to the power of another
#include <math.h>
double pow(double z, double x);

pow calculates and returns z raised to the power of x.

Cross-references
Standard, §4.5.5.1
The C Programming Language, ed. 2, p. 251

See Also
mathematics, sqrt

Notes
A domain error occurs if z equals zero, if x is less than or equal to zero, or if z is less than zero and x
is not an integer.

LEXICON

388 pow()

pr — Command
Paginate and print files
pr [options] [file ...]

The command pr paginates each file and writes it into the standard output. The file name ‘-’ means
standard input. If no file is specified, pr reads the standard input.

On each page, pr writes a header that gives the date, file name, and page and line numbers. pr may
be used with the following options.

+n Skip the first n pages of each input file.

-n Print the text in n columns. This is used to print out material that was typed in one or
more columns.

-h header
Use header in place of the text name in the title. If header is more than one word long, it
must be enclosed within quotation marks.

-ln Set the page length to n lines (default, 66).

-m Print the texts simultaneously in separate columns. Each text will be assigned an equal
amount of width on the page. Any lines longer than that will be truncated. This is used to
print several similar texts or listings simultaneously.

-n Number each line as it is printed.

-sc Separate each column by the character c. You can separate columns with a letter of the
alphabet, a period, or an asterisk. Normally, each column is left justified in a fixed-width
field.

-t Suppress the printing of the header on each page, as well as the header and footer space.

-wn Set the page width to n columns (default, 80). Text lines are truncated to fit the column
width. The maximum width is 256 columns.

See Also
commands

preprocessing numbers — Definition
A preprocessing number is one of the intermediate lexical elements handled during translation
phases 1 through 6. As semantic analysis occurs in translation phase 7, the set of valid
preprocessing numbers forms a superset of valid C numeric tokens.

A preprocessing number is any floating constant or integer constant. A preprocessing number
begins with either a digit or a period ‘.’, and may consist of digits, letters, periods, and the character
sequences e+, e-, E+, or E-.

Cross-reference
Standard, §3.1.8

See Also
lexical elements, preprocessing, token, translation phases

LEXICON

pr — preprocessing numbers 389

printf() — STDIO (libc)
Format and print text into the standard output stream
#include <stdio.h>
int printf(const char *format ...);

printf constructs a formatted string and writes it into the standard output stream.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how a particular type is to be converted into text.

Each conversion specification is introduced by the percent sign ‘%’, and is followed, in order, by one
or more of the following:

• A flag, which modifies the meaning of the conversion specification.

• An integer, which sets the minimum width of the field upon which the text is printed.

• A period and an integer, which sets the precision with which a number is printed.

• One of the following modifiers: h, l, or L. Their use is discussed below.

• Finally, a character that specifies the type of conversion to be performed. These are given
below. This is the only element required after a ‘%’.

After format can come one or more arguments. There should be one argument for each conversion
specification within format of the type appropriate to its conversion specifier. For example, if format
contains conversion specifications for an int, a long, and a string, then format should be followed by
three arguments, being, respectively, an int, a long, and a pointer to char.

If there are fewer arguments than conversion specifications, then printf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,
then the behavior of printf is undefined.

If it writes the formatted string correctly, printf returns the number of characters written;
otherwise, it returns a negative number. printf can generate a string that is up to at least 509
characters long.

The following sections describe in detail the elements of the conversion specification.

Conversion Specifiers
If format includes any conversion specifiers other than the ones shown below, the behavior is
undefined. If a union, an aggregate, or a pointer to a union or an aggregate is used as an
argument, behavior is undefined.

c Convert the int or unsigned int argument to a character.

d Convert the int argument to signed decimal notation.

D Convert the long argument to signed decimal. This specifier is not described in the Standard.
Programs that use it do not comply strictly with the Standard, and may not be portable to
other compilers or environments.

e Convert the double argument to exponential form. The format is

[-]d.dddddde+/-dd

At least one digit always appears to the left of the decimal point and as many as precision digits
to the right of it (default, six). If the precision is zero, then no decimal point is printed.

LEXICON

390 printf()

E Same as e, except that ‘E’ is used instead of ‘e’.

f Convert the double argument to a string of the form

[-]d.dddddd

At least one digit always appears to the left of the decimal point, and as many as precision
digits to the right of it (default, six). If the precision is zero, then no decimal point is printed.

g Convert the double argument to either of the formats e or f. The number of significant digits is
equal to the precision set earlier in the conversion specification. Normally, this conversion
selects conversion type f. It selects type e only if the exponent that results from such a
conversion is either less than -4 or greater than the precision.

G Same as g, except that it selects between conversion types E and f.

i Same as d.

n This conversion specification takes a pointer to an integer, into which it writes the number of
characters printf has generated to the current point within format. It does not affect the string
printf generates.

o Convert the int argument to unsigned octal digits.

O Convert the long argument to unsigned octal. This specifier is not described in the ANSI
Standard. Programs that use it do not conform strictly to the Standard, and may not be
portable to other compilers or environments.

p This conversion sequence takes a pointer to void. It translates the pointer into a set of
characters and prints them. What it generates is defined by the implementation.

r The next argument points to an array of new arguments that may be used recursively. The
first argument of the list is a char * that contains a new format string. When the list is
exhausted, the routine continues from where it left off in the original format string. This is
roughly equivalent to the library function vprintf.

This specifier is not described in the ANSI Standard. Programs that use it do not conform
strictly to the Standard, and may not be portable to other compilers or environments.

s Print the string to which the corresponding argument points; the argument must point to a C
string. It prints either the number of characters set by the precision, or to the end of the
string, whichever is less. If no precision is specified, then the entire string is printed.

u Convert the int argument to unsigned decimal digits.

U Convert the long argument to unsigned decimal. This specifier is not described in the ANSI
Standard. Programs that use it do not conform strictly to the Standard, and may not be
portable to other compilers or environments.

x Convert the int argument to unsigned hexadecimal characters. The values 10, 11, 12, 13, 14,
and 15 are represented, respectively, by ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’.

X Same as x, except that the values 10, 11, 12, 13, 14, and 15 are represented, respectively, by
‘A’, ‘B’, ‘C’, ‘D’, and ‘E’. In previous releases of Let’s C, this specifier converted a long to
unsigned hexadecimal characters. This change was made to conform to the ANSI Standard,
and may require that some code be rewritten.

The description of each conversion specifier assumes that it will be used with an argument whose
type matches the type that the specifier expects. If the argument is of another type, it is cast to the
type expected by the specifier. For example,

LEXICON

printf() 391

float f;
printf("%d\n", f);

will truncate f to an int before printing its value.

Flags
The ‘%’ that introduces a conversion specification may be followed immediately by one or more of
the following flags:

- Left-justify text within its field. The default is to right-justify all output text within its field.

+ Precede a signed number with a plus or minus sign. For example,

printf("%+d %+d\n", -123, 123);

yields the following when executed:

-123 +123

<space>
If the first character of a signed number is its sign, then that sign is appended to the
beginning of the text string generated; if it is not a sign, then a space is appended to the
beginning of the text string. For example,

printf("% d\n", -123);
printf("% d\n", 123);

generates the following:

-123
123

This flag can be used with every conversion specifier for a numeric data type. It forces
printf to use a special format that indicates what numeric type is being printed. The
following gives the effect of this flag on each appropriate specifier:

e always retain decimal point
E always retain decimal point
f always retain decimal point
F always retain decimal point
g always retain decimal point; keep trailing zeroes
G always retain decimal point; keep trailing zeroes
x print ‘0x’ before the number
X print ‘0X’ before the number

Any specified precision is expanded by the appropriate amount to allow for the printing of
the extra character or characters. Using ‘#’ with any other conversion specifier yields
undefined results.

0 When used with the conversion specifiers d, e, E, f, g, G, i, o, u, x, or X, a leading zero
indicates that the field width is to be padded with leading zeroes instead of spaces. If
precision is indicated with the specifiers d, i, o, u, x, X, then the 0 flag is ignored; it is also
ignored if it is used with the - flag. If this flag is used with any conversion specifier other
than the ones listed above, behavior is undefined.

Field Width
The field width is an integer that sets the minimum field upon which a formatted string is printed.

LEXICON

392 printf()

If a field width is specified, then that many characters-worth of space is reserved within the output
string for that conversion. When the text produced by the conversion is smaller than the field
width, spaces are appended to the beginning of the text to fill out the difference; this is called
padding. Beginning the field width with a zero makes the padding character a ‘0’ instead of a space.
When the text is larger than the allotted field width, then the text is given extra space to allow it to
be printed. Setting the field width never causes text to be truncated.

By default, text is set flush right within its field; using the ‘-’ flag sets the text flush left within its
field.

Using an asterisk ‘*’ instead of an integer forces printf to use the corresponding argument as the
field width. For example,

char *string = "Here’s a number:";
int width = 12;
int integer = 123;
printf("%s%*d\n", string, width, integer);

produces the following text:

Here’s a number: 123

Here, width was used to set the field width, so 12 spaces were used to pad the formatted integer.

Precision
The precision is indicated by a decimal point followed by a number. If a decimal point is used
without a following number, then it is regarded as equivalent to ‘.0’.

The precision sets the number of characters to be printed for each conversion specifier. Setting the
precision to n affects each conversion specifier as follows:

d print at least n digits
e print n digits after decimal point
E print n digits after decimal point
f print n digits after decimal point
g print no more than n significant digits
G print no more than n significant digits
i print at least n digits
o print at least n digits
s print no more than n characters
u print at least n digits
x print at least n digits
X print at least n digits

The precision differs from the field width in that the field width controls the amount of space set
aside for the text, whereas the precision controls the number of characters to be printed. If the
amount of padding called for by the precision conflicts with that called for by the field width, the
amount called for by the precision is used.

Using an asterisk ‘*’ instead of an integer forces printf to use the corresponding argument as the
precision.

For example, this code

LEXICON

printf() 393

int foo = 12345;
float bar = 12.345;
char *baz = "Hello, world";

printf("Example 1: %7.6d\n", foo);
printf("Example 2: %7.6f\n", bar);
printf("Example 3: %7.6s\n", baz);

produces the following text when executed:

Example 1: 012345
Example 2: 12.345000
Example 3: Hello,

Modifiers
The following three modifiers may be used before a conversion specifier:

h When used before the specifiers d, i, o, u, x, or X, it specifies that the corresponding
argument is a short int or an unsigned short int. When used before n, it indicates that
the corresponding argument is a short int. In implementations where short int and int
are synonymous, it is not needed; however, it is useful in writing portable code.

l When used before d, i, o, u, x, or X, it specifies that the corresponding argument is a long
int or an unsigned long int. When used before ‘n’, it indicates that the corresponding
argument is a long int. In implementations where long int and int are synonymous, it is
not needed; however, it is useful in writing portable code.

L When used before e, E, f, F, or G, it indicates that the corresponding argument is a long
double.

Using h, l, or L before a conversion specifier other than the ones mentioned above results in
undefined behavior.

Default argument promotions are performed on the arguments. There is no way to suppress this.

Example
This example implements a mini-interpreter for printf statements. It is a convenient tool for seeing
exactly how some of the printf options work. To use it, type a printf conversion specification at the
prompt. The formatted string will then appear. To reuse a format identifier, simply type <return>.

#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* the replies go here */
static char reply[80];

/* ask for a string and echo it in reply. */
char *
askstr(char *msg)
{

printf("Enter %s ", msg);
fflush(stdout);

if(gets(reply) == NULL)
exit(EXIT_SUCCESS);

return(reply);
}

LEXICON

394 printf()

main(void)
{

char fid[80], c;

/* initialize to an invalid format identifier */
strcpy(fid, "%Z");

for(;;) {
askstr("format identifier");
/* null reply uses previous FID */
if(reply[0])

/* leave the ’%’ */
strcpy(fid + 1, reply);

switch(c = fid[strlen(fid) - 1]) {
case ’d’:
case ’i’:

askstr("signed number");
if(strchr(fid, ’l’) != NULL)

printf(fid, atol(reply));
else

printf(fid, atoi(reply));
break;

case ’o’:
case ’u’:
case ’x’:
case ’X’:

askstr("unsigned number");
if(strchr(fid, ’l’) != NULL)

printf(fid, atol(reply));
else

printf(fid, (unsigned)atol(reply));
break;

case ’f’:
case ’e’:
case ’E’:
case ’g’:
case ’G’:

printf(fid, atof(askstr("real number")));
break;

case ’s’:
printf(fid, askstr("string"));
break;

case ’c’:
printf(fid, *askstr("single character"));
break;

case ’%’:
printf(fid);
break;

case ’p’:
/* print pointer to format id */
printf(fid, fid);
break;

LEXICON

printf() 395

case ’n’:
printf("n not implemented");
break;

default:
printf("%c not valid", c);

}

printf("\n");
}

}

Cross-references
Standard, §4.9.6.3
The C Programming Language, ed. 2, p. 244

See Also
fprintf, sprintf, STDIO, vfprintf, vprintf, vsprintf

Notes
printf can construct and output a string at least 509 characters long.

The character that printf prints to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

Because the printf routines that print floating-point numbers are quite large, they are included only
optionally. If you wish to have printf print floats or doubles, you must compile your program with
the -f option to the cc command. See cc for more details.

prn — Operating system device
MS-DOS logical device for parallel port

MS-DOS gives names to its logical devices. Let’s C uses these names, to allow the STDIO library
routines to access these devices via MS-DOS.

prn is the logical device for the the parallel port.

Example
The following example checks to see if the parallel port can be opened.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

FILE *fp, *fopen();
if ((fp = fopen("prn","w")) != NULL)

fprintf(fp,"prn enabled.\n");
else printf("prn cannot open.\n");
return EXIT_SUCCESS;

}

See Also
aux, com1, con, lpt1, nul, operating system device

LEXICON

396 prn

process — Definition
A process is a program in the state of execution.

See Also
daemon, Definitions, file

program startup — Definition
Program startup occurs when the execution environment invokes the program. Execution begins,
and continues until program termination occurs. A program’s execution may be suspended by the
environment and resumed at a later time. The program, however, only starts once.

Cross-reference
Standard, §2.1.2

See Also
Environment, program termination

program termination — Definition
Program termination occurs when a program stops executing and returns control to the execution
environment. Program termination may be triggered when the program calls either of the functions
abort or exit, when main returns, when the environment or hardware raises a signal, or when
program termination has been requested by some other program or event.

There are two types of termination: unsuccessful and successful.

Unsuccessful termination occurs either when a program aborts due to a significant problem in its
operation (such as memory violation or division by zero), or when the program did not function as
expected (such as when a requested file cannot be found).

A program indicates unsuccessful termination either by calling the function exit with the argument
EXIT_FAILURE, by calling the function abort, or by using the function raise to generate the signal
SIGABRT. exit is used to stop a program that cannot perform correctly, but does not threaten the
integrity of the environment. abort and raise are used to stop a program that has gone seriously
wrong.

Successful termination is declared to occur when the program runs to its conclusion correctly. A
program indicates successful termination by calling the function exit with the argument
EXIT_SUCCESS, or when main returns EXIT_SUCCESS.

Cross-reference
Standard, §2.1.2, §4.10.4.1, §4.10.4.3

See Also
abort, environment, execution environment, exit, EXIT_FAILURE, EXIT_SUCCESS, main,
program startup, signal

pun — Definition
In the context of C, a pun occurs when a programmer uses one data form interchangeably with
another. Puns are supported by C’s willingness to apply implicit conversion rules.

A pun most often occurs unintentionally when the programmer fails to prototype or declare a
function that returns a pointer. By default, the function is then assumed to return an int, and is
handled as such. No trouble will arise if the program is run on a machine that defines an int and a
pointer to have the same length (e.g., i8086 SMALL model); however, such code cannot be
transported to an environment in which this is not the case (e.g., i8086 LARGE model).

LEXICON

process — pun 397

See Also
Definitions, pointer, portability

punctuators — Overview
A punctuator is a symbol that has syntactic meaning but does not represent an operation that yields
a value. All lexical elements that do not fall into another meaningful category are lumped together
as punctuators.

Most often, a punctuator is used to mark or delimit an identifier or a portion of code, rather than
modify it.

The set of punctuators consists of the following:

[] Mark an array/delimit its size
() Mark a parameter/argument list
{} Delimit a block of code or a function
* Identify a pointer type in a declaration
, Delimit a function argument
: Delimit a label
; Mark end of a statement
... (ellipsis) Indicate function takes flexible number of arguments
Indicate a preprocessor directive

The punctuators

{ } [] ()

must be used in pairs.

A symbol that acts as a punctuator may also act as an operator, depending upon its context.

Cross-reference
Standard, §3.1.6

See Also
lexical elements, operators, statements

putc() — STDIO (stdio.h)
Write a character into a stream
#include <stdio.h>
int putc(int character, FILE *fp);

putc writes character into the stream pointed to by fp.

putc returns character if it was written correctly. Otherwise, it sets the error indicator for fp and
returns EOF.

Example
This example writes newline characters into a file until the disk is full. Because this example uses
the function tmpfile, the file it writes disappears when the program terminates. It is not
recommended that you run this program on a multi-user system.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

LEXICON

398 punctuators — putc()

main(void)
{

long count;
FILE *tmp;

if((tmp = tmpfile()) == NULL) {
fprintf(stderr, "Can’t open tmp file\n");
exit(EXIT_FAILURE);

}

for(count = 0; putc(’\n’, tmp) != EOF; count++)
;

fprintf(stderr, "We wrote %ld characters\n", count);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.8
The C Programming Language, ed. 2, p. 247

See Also
getc, getchar, gets, putchar, puts, STDIO, ungetc

Notes
Because putc is implemented as a macro, fp may be read more than once. Therefore, one should
beware of the side-effects of evaluating the argument more than once, especially if the argument
itself has side-effects. See the entry for macro for more information. Use fputc if this behavior is
not acceptable.

putchar() — STDIO (stdio.h)
Write a character into the standard output stream
#include <stdio.h>
int putchar(int character);

putchar writes a character into the standard output stream. It is equivalent to:

putc(character, stdout);

putchar returns character if it was written correctly. If character could not be written, putchar sets
the error indicator for the stream associated with stdout and returns EOF.

Example
This example prints all of the printable ASCII characters.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

char c;

for(c = ’ ’; putchar(c) <= ’}’; c++)
;

return(EXIT_SUCCESS);
}

LEXICON

putchar() 399

Cross-references
Standard, §4.9.7.9
The C Programming Language, ed. 2, p. 247

See Also
getc, getchar, gets, puts, STDIO, ungetc

puts() — STDIO (libc)
Write a string into the standard output stream
#include <stdio.h>
int puts(char *string);

puts replaces the null character at the end of string with a newline character, and writes the result
into the standard output stream.

puts returns a non-negative number if it could write string correctly; otherwise, it returns EOF. In
previous versions of Let’s C, puts returned nothing. This was changed to conform to the ANSI
Standard.

Example
This example uses puts to print a string into the standard output stream.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

puts("Hello world.");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.10
The C Programming Language, ed. 2, p. 247

See Also
putc, putchar, STDIO, ungetc

Notes
For historical reasons, fputs writes string unchanged, whereas puts appends a newline character.

putw() — Extended macro (xstdio.h)
Write word to stream
#include <xstdio.h>
short putw(short word, FILE *fp);

The macro putw writes word onto the file stream fp. It returns the value written.

putw differs from putc in that putw writes an int, whereas putc writes a char that is promoted to
an int.

putw returns EOF when an error occurs. You may need to call ferror to distinguish this value from
a genuine end-of-file flag.

See Also
extended STDIO, ferror, xstdio.h

LEXICON

400 puts() — putw()

Notes
Because putw is implemented as a macro, arguments with side effects may not work as expected.
The bytes of word are written in the natural byte order of the machine.

putw is not described in the ANSI Standard. A program that uses it does not conform strictly to the
Standard, and may not be portable to other compilers or environments.

The Standard requires that ANSI headers contain only functions that are described within the
Standard. Therefore, putw has been moved from stdio.h to xstdio.h.

LEXICON

putw() 401

Q

qsort() — General utility (libc)
Sort an array
void qsort(void *array, size_t number, size_t size, int (*comparison)

(const void *arg1, const void *arg2));

qsort sorts the elements within an array. array points to the base of the array being sorted; it has
number members, each of which is size bytes long. In practice, array is usually an array of pointers
and size is the sizeof the object to which each points.

comparison points to the function that compares two members of array. arg1 and arg2 each point to
a member within array. The comparison routine must return a negative number, zero, or a positive
number, depending upon whether arg1 is, respectively, less than, equal to, or greater than arg2. If
two or more members of array are identical, their ordering within the sorted array is unspecified.

Example
This example prints the command-line arguments in alphabetical order.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
compar(char *cp1[], char *cp2[])
{

return(strcmp(*cp1, *cp2));
}

main(int argc, char *argv[])
{

qsort((void *)++argv, (size_t)--argc, sizeof(*argv), compar);

while(argc--)
printf("%s ", *argv++);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.5.2
The C Programming Language, ed. 2, p. 87
The Art of Computer Programming, vol. 3

See Also
bsearch, general utilities

Notes
The name ‘‘qsort’’ reflects the fact that most implementations of this function (including Let’s C) use
C. A. R. Hoare’s ‘‘quicksort’’ algorithm. This algorithm is recursive and makes heavy use of the
stack. It is also specified by the Association for Computing Machinery’s algorithm 271.

Quicksort works on the basis of partitioning its input, and is highly dependent on the first element
that starts the partitioning process. Given appropriate data, it can have a worst-case performance of
O(n^2).

LEXICON

402 qsort()

R

raise() — Signal handling (libc)
Send a signal
#include <signal.h>
int raise(int signal);

raise sends signal to the program that is currently being executed. If called from within a signal
handler, the processing of this signal may be deferred until the signal handler exits.

Example
This example sets a signal, raises it itself, then allows the signal to be raised interactivly. Finally, it
clears the signal and exits.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

void gotcha(void);

void
setgotcha(void)
{

if(signal(SIGINT, gotcha) == SIG_ERR) {
printf("Couldn’t set signal\n");
abort();

}
}

void
gotcha(void)
{

char buf[10];

printf("Do you want to quit this program? <y/n> ");
fflush(stdout);
gets(buf);

if(tolower(buf[0]) == ’y’)
abort();

setgotcha();
}

main(void)
{

char buf[80];

setgotcha();
printf("Set signal; let’s pretend we get one.\n");
raise(SIGINT);

printf("Returned from signal\n");
/* <ctrl-c> may not work on all operating systems */
printf("Try typing <ctrl-c> to signal <enter> to exit");
fflush(stdout);
gets(buf);

LEXICON

raise() 403

if(signal(SIGINT, SIG_DFL) == SIG_ERR) {
printf("Couldn’t lower signal\n");
abort();

}

printf("Signal lowered\n");
exit(EXIT_SUCCESS);

}

Cross-references
Standard, §4.7.2.1
The C Programming Language, ed. 2, p. 255

See Also
signal, signal handling, signal.h

Notes
This function is derived from the UNIX function kill.

rand() — General utility (libc)
Generate pseudo-random numbers
#include <stdlib.h>
int rand(void)

rand generates and returns a pseudo-random number. The number generated is in the range of
zero to RAND_MAX, which equals 32,767.

rand will always return the same series of random numbers unless you change its seed, or
beginning-point, with srand. Without having first called srand, it is as if you had initially set seed
to one.

Example
This example produces a char that consists of random bits. The Standard’s description of rand
produces random ints, not random bits.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>

unsigned char
bitrand(void)
{

register int i, r;

for(i = r = 0; i < CHAR_BIT; i++) {
r <<= 1;
if(((long)rand() << 1) < (long)RAND_MAX)

r++;
}
return(r);

}

main(void)
{

printf("Random stuff %02x %02x %02x\n",
bitrand(), bitrand(), bitrand());

return(EXIT_SUCCESS);
}

LEXICON

404 rand()

Cross-references
Standard, §4.10.2.2
The C Programming Language, ed. 2, p. 252

See Also
general utilities, RAND_MAX, srand

random access — Definition
In the context of computing, random access means that an entity can be accessed at any point, not
just at the beginning. This means that all points within memory can be accessed equally quickly.
This contrasts with sequential access, in which entities must be accessed in a particular order, so
that some entities take longer to access than do others.

A tape drive is an example of a sequential access device, i.e., the order in which data are read is
dictated by the order in which they stream past the tape head. Random-access memory (RAM) is an
example of random access. Hard disks and floppy disks combine elements of random access and
sequential access.

RAM, which usually consists of semiconductor integrated circuits, is also strictly random access. In
this regard, the term ‘‘RAM’’ is slightly misleading; a more accurate name would be ‘‘read/write
memory’’, to contrast RAM with read-only memory (ROM), which is also random access memory.

See Also
Definitions, read-only memory

read() — Extended function (libc)
Read from a file
short read(short fd, char *buffer, short n);

read reads up to n bytes of data from the file descriptor fd and writes them into buffer. The amount
of data actually read may be less than that requested if read detects EOF. The data are read
beginning at the current seek position in the file, which was set by the most recently executed read
or lseek routine. read advances the seek pointer by the number of characters read.

With a successful call, read returns the number of bytes read. Thus, zero bytes signals the end of
the file. It returns -1 if an error occurs, such as bad file descriptor, bad buffer address, or physical
read error.

Example
For an example of how to use this function, see the entry for open.

See Also
extended miscellaneous, fread

Notes
read is a low-level call that passes data directly to MS-DOS. It should not be intermixed with high-
level calls, such as fread, fwrite, or fopen.

read is not described in the ANSI Standard. A program that uses it does not conform strictly to the
Standard, and may not be portable to other compilers or environments.

LEXICON

random access — read() 405

read-only memory — Definition
As its name suggests, read-only memory, or ROM, is memory that can be read but not overwritten.
It most often is used to store material that is used frequently or in key situations, such as a
language interpreter or a boot routine.

See Also
Definitions, random access

realloc() — General utility (libc)
Reallocate dynamic memory
#include <stdlib.h>
void *realloc(void *ptr, size_t size);

realloc reallocates a block of memory that had been allocated with the functions calloc or malloc.
This function is often used to change the size of a block of allocated memory.

ptr points to the block of memory to reallocate. If ptr is set to NULL, then realloc behaves exactly
the same as malloc: it allocates the requested amount of memory and returns a pointer to it. size is
the new size of the block. If size is zero and ptr is not NULL, then the memory pointed to is freed.

realloc returns a pointer to the block of size bytes that it has reallocated. The pointer it returns is
aligned for any type of object. If it cannot reallocate the memory, it returns NULL. It calls abort if it
discoveres that the arena has been corrupted, which most often occurs by storing past the bounds
of an allocated block.

Example
This example concatenates two strings that had been created with malloc.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *
combine(char **a, char **b)
{

if(NULL == *a) {
*a = *b;
*b = NULL;
return(*a);

}
else if(NULL == *b)

return(*a);

if((*a = realloc(*a, strlen(*a) + strlen(*b))) == NULL)
return(NULL);

return(strcat(*a, *b));
}

/* Copy a string into a malloc’ed hole. */
char *
copy(char *s)
{

size_t len;
char *ret;

LEXICON

406 read-only memory — realloc()

if(!(len = strlen(s)))
return(NULL);

if((ret = malloc(len)) == NULL)
return(NULL);

return(strcpy(ret, s));
}

main(void)
{

char *a, *b;

a = copy("A fine string. ");
b = copy("Another fine string. ");

puts(combine(&a, &b));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.3.4
The C Programming Language, ed. 2, p. 252

See Also
alignment, arena, calloc, free, general utility, lrealloc, malloc

Notes
If size is larger than the size of the block of memory that is currently allocated, the value of the
pointer that realloc returns is indeterminate — it may point to the old block of memory, or it may
not. If it is not, the contents of the old block of memory is copied to the new block.

record — Definition
A record is a set of data of a fixed length that has been given a unique identifier, and whose
structure conforms to an exact description. An example of a record is an entry in a file of names
and addresses: each entry has a fixed length, is marked by a unique identifier, and has a fixed
number of bytes set aside in fixed order to record name, address, city, state, and ZIP code.

What is called a ‘‘record’’ in Pascal is called a ‘‘structure’’ in C.

See Also
Definitions, field, struct

register — C keyword
Quick access required
register type identifier

The storage-class specifier register declares that identifier is to be accessed as quickly as possible.
Let’s C will keep it in a machine register, if one is available.

It is not permissible to take the address of an object declared with the register designator,
regardless of whether the implementation stores such an object in a machine register or not.

Example
For an example of using this specifier in a program, see srand.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 83

LEXICON

record — register 407

See Also
storage-class identifiers

Notes
An implementation must document how it handles variables declared to be register. Practice
currently ranges from ignoring register declarations completely, to allowing a few register
declarations for objects of an appropriate type (typically integer or pointer), to ignoring the
designator and implementing a full global register allocation scheme.

register — Definition
A register is special high-speed memory within a microprocessor that can be addressed concisely
and within which data can be stored and modified. The size and the configuration of a
microprocessor’s registers affect its computing potential. Registers can be manipulated much faster
than RAM.

The routines in the Let’s C libraries generally assume that they have been called from C programs.
Thus, they may freely overwrite any registers that the compiler overwrites in its generated code.
Thus, for the i8086, a library routine that returns int returns its value in AX, and preserves SI, DI,
BP; in SMALL model, it will also preserve DS and ES. It can freely overwrite BX, CX, DX; in LARGE
model it will also overwrite DS and ES.

See Also
Definitions

remove() — STDIO (libc)
Remove a file
#include <stdio.h>
int remove(const char *filename);

remove breaks the link between between filename and the actual file that it represents. In effect, it
removes a file. Thereafter, any attempt to use filename to open that file will fail. It is equivalent to
the function unlink.

If you attempt to remove a file that is currently open, remove will fail. remove returns zero if it
could remove filename, and nonzero if it could not.

Example
This example removes the file named on the command line.

#include <stdio.h>
#include <stdlib.h>
main(int argc, char *argv[])
{

if(argc != 1) {
fprintf(stderr, "usage: remove filename\n");
exit(EXIT_FAILURE);

}

if(remove(argv[1])) {
perror("remove failed");
exit(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

LEXICON

408 register — remove()

Cross-references
Standard, §4.9.4.1
The C Programming Language, ed. 2, p. 242

See Also
file operations, rename, tmpfile, tmpnam

rename() — STDIO (libc)
Rename a file
#include <stdio.h>
rename(const char *old; const char *new);

rename changes the name of a file, from the string pointed to by old to the string pointed to by new.
Both old and new must point to a valid file name. If new points to the name of a file that already
exists, the old file is replaced by the file being renamed.

rename returns zero if it could rename the file, and nonzero if it could not. If rename could not
rename the file, its name remains unchanged.

Example
This example renames the file named in the first command-line argument to the name given in the
second argument.

#include <stdio.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

if(argc != 3) {
fprintf(stderr, "usage: rename from to\n");
exit(EXIT_FAILURE);

}

if(rename(argv[1], argv[2])) {
perror("rename failed");
exit(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.4.2
The C Programming Language, ed. 2, p. 242

See Also
remove, STDIO, tmpfile, tmpnam

Notes
rename will fail if the file it is asked to rename is open, or if its contents must be copied in order to
rename it.

return — C keyword
Return to calling function
return;
return expression;

LEXICON

rename() — return 409

return is a statement that forces a function to return immediately to the function that called it.

return may also evaluate expression and pass its value to the calling function; the calling function
regards this value as the value of the called function.

return can return a value to the calling function only if the called function was not declared to have
a return type of void. The calling function is, of course, free to ignore the value return hands it.

If the called function is declared to return a type other than what return is actually returning, the
value passed by return will be altered to conform to what the function was declared to return. For
example,

main(void)
{

printf("%s\n", example());
}

char *example(void)
{

return "This is a string";
}

the pointer returned by example will be changed to an int before being returned to main. This is
because example is declared implicitly within main, and a function that is declared implicitly is
assumed to return an int. In environments where an int and a pointer are the same length, this
code will work correctly. However, it will fail in environments where an int and a pointer have
different lengths.

A function may have any number of return statements within it; however, a function can return
only one value to the function that called it.

Reaching the last ‘}’ in a function is equivalent to calling return without an expression.

Cross-references
Standard, §3.6.6.4
The C Programming Language, ed. 2, p. 70

See Also
break, C keywords, continue, goto, statements

Notes
If a program uses what is returned by a function as a value, and that function uses return without
an expression, the behavior of the program is undefined.

rewind() — STDIO (libc)
Reset file-position indicator
#include <stdio.h>
void rewind(FILE *fp);

rewind resets the file-position indicator to the beginning of the file associated with stream fp. It is
equivalent to:

(void)fseek(fp, 0L, SEEK_SET);

rewind, unlike fseek, clears the error indicator for fp.

In previous releases of Let’s C, rewind returned an int. It now returns nothing. This change was
made to conform with the ANSI Standard, and may force some code to be rewritten.

LEXICON

410 rewind()

Cross-references
Standard, §4.9.9.5
The C Programming Language, ed. 2, p. 248

See Also
fgetpos, file positioning, fseek, fsetpos, ftell

rindex() — Extended function (libc)
Find a character in a string
char *rindex(char *string, char character);

rindex scans string for the last occurrence of character. If it finds character, it returns a pointer to it.
If rindex does not find character, it returns NULL.

rindex is equivalent to the ANSI function strchr.

Example
This example uses rindex to help strip a sample file name of the path information. The path-name
separator is ‘\’. The separator must be doubled so that Let’s C will not interpret it as introducing
an escape character.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define PATHSEP ’\\’ /* path name separator */

char *
basename(char *path)
{

char *cp;
return (((cp = rindex(path, PATHSEP)) == NULL)

? path : ++cp);
}

main(void)
{

char *testpath = "A:\\foo\\bar\\baz";

printf("Before massaging: %s\n", testpath);
printf("After massaging: %s\n", basename(testpath));
return(EXIT_SUCCESS);

}

See Also
extended miscellaneous, index, memchr, strrchr

Notes
This function is identical to the ANSI function strrchr. It is recommended that you use strrchr
instead of rindex so that your programs will more closely approach strict conformity with the
Standard.

runtime startup — Overview
The C runtime startup is a routine that is linked with a C program as the first part of an executable
program. It performs the tasks needed to start and terminate the C environment. To begin the
program, it initializes the stack and calls main; to conclude the program, it calls exit with the
return value from main.

LEXICON

rindex() — runtime startup 411

Let’s C includes the following runtime startup routines:

crts0xs.obj SMALL model
crts0xl.obj LARGE model

The runtime startups used with the option -VCSD generate executable files that can be debugged
with the Mark Williams C source debugger csd.

All of the above routines call _main. Depending upon which options you use to the cc command,
these routines in turn can call one or more of the following object modules:

csdxl.obj LARGE model, debug information for csd
csdxs.obj SMALL model, debug information for csd

fxl.obj LARGE model, floating point/8087 sensing
fxs.obj SMALL model, floating point/8087 sensing

fxl87.obj LARGE model, floating point/8087 only
fxs87.obj SMALL model, floating point/8087 only

naxl.obj LARGE model, no arguments to command line
naxs.obj SMALL model, no arguments to command line

nsxl.obj LARGE model, no STDIO in executable
nsxs.obj SMALL model, no STDIO in executable

wxl.obj LARGE model, wildcards on command line
wxs.obj SMALL model, wildcards on command line

See the Lexicon entry for cc for more information on the no STDIO (-ns) and wildcards (-w) options.

See Also
Environment, exargs, execall, function call, _main

Notes
Source code is included for some of the runtime startup routines. Note, however, that this code
should be edited only by experienced systems programmers.

rvalue — Definition
An rvalue is the value of an expression. The name comes from the assignment expression E1=E2;
in which the right operand is an rvalue.

Unlike an lvalue, an rvalue can be either a variable or a constant.

Although the term ‘‘rvalue’’ is commonly used among programmers, the Standard prefers the term
‘‘value of an expression’’.

Cross-references
The C Programming Language, ed. 2, pp

See Also
Definitions, lvalue

Notes
All non-void expressions have an rvalue.

LEXICON

412 rvalue

S

sbrk() — Extended function (libc)
Increase a program’s data space
char *sbrk(unsigned short increment);

sbrk increases a program’s data space by increment bytes. It increments the variable __end; this
variable is set by the C runtime startup routine, and points to the end of the program’s data space.

The memory-allocation function malloc calls sbrk should you attempt to allocate more space than is
available in the program’s data space.

sbrk returns a pointer to the previous setting of __end if the requested memory is available, or
((char *)-1) if it is not.

See Also
__end, malloc, maxmem

Notes
sbrk will not increase the size of the program data area if the physical memory requested exceeds
the physical memory allocated by MS-DOS, or if the requested memory exceeds the limit set in the
user-defined variable maxmem. sbrk does not keep track of how space is used. Therefore, memory
seized with sbrk cannot be freed. Caveat utilitor.

This function is not described in the ANSI Standard. Programs that use it do not conform strictly to
the Standard, and may not be portable to other compilers or environments.

scanf() — STDIO (libc)
Read and interpret text from standard input stream
#include <stdio.h>
int scanf(const char *format, ...);

scanf reads characters from the standard input stream and uses the string format to interpret what
it has read into the appropriate types of data.

format is a string that consists of one or more conversion specifications, each of which describes
how a portion of text is to be interpreted. format is followed by zero or more arguments. There
should be one argument for each conversion specification within format, and each should point to
the data type that corresponds to the conversion specifier within its corresponding conversion
specification. For example, if format contains three conversion specifications that convert text into,
respectively, an int, a float, and a string, then format should be followed by three arguments that
point, respectively, to an int, a float, and an array of chars that is large enough to hold the string
being input. If there are fewer arguments than conversion specifications, then scanf’s behavior is
undefined. If there are more, then every argument without a corresponding conversion specification
is evaluated and then ignored. If an argument is not of the same type as its corresponding type
specification, then scanf returns.

scanf organizes the text read into a series of tokens. Each token is delimited by white space. White
space usually is thrown away, except in the case of the ‘c’ or ‘[’ conversion specifiers, which are
described below.

If an input error occurs during input or if EOF is read, scanf returns immediately. If it reads an
inappropriate character (e.g., an alphabetic character where it expects a digit), it returns
immediately. scanf returns the number of conversions it accomplished. If it could accomplish no
conversions, it returns EOF.

LEXICON

sbrk() — scanf() 413

Conversion Specifications
The percent sign character ‘%’ marks the beginning of a conversion specification. The ‘%’ will be
followed by one or more of the following:

• An asterisk ‘*’, which tells scanf to skip the next conversion; that is, read the next token but do
not write it into the corresponding argument.

• A decimal integer, which tells scanf the maximum width of the next field being read. How the
field width is used varies among conversion specifier. See the table of specifiers below for more
information.

• One of the three modifiers h, l, or L, whose use is described below.

• A conversion specifier, whose use is described below.

Modifiers
The following three modifiers may be used before a conversion specifier:

h When used before the conversion specifiers d, i, o, u, x, or X, it specifies that the
corresponding argument points to a short int or an unsigned short int. When used before
n, it indicates that the corresponding argument points to a short int. In implementations
where short int and int are synonymous, it is not needed. However, it is useful in writing
portable code.

l When used before the conversion specifiers d, i, o, u, x, or X, it specifies that the
corresponding argument points to a long int or an unsigned long int. When used before n,
it indicates that the corresponding argument points to a long int. In implementations
where long int and int are synonymous, it is not needed. However, it is useful in writing
portable code.

L When used before the conversion specifiers e, E, f, F, or G, it indicates that the
corresponding argument points to a long double.

If h, l, or L is used before a conversion specifier other than the ones mentioned above, it is ignored.
In previous releases of Let’s C, the modifier L meant that the corresponding argument pointed to a
long rather than to a long double, as it does now. This has been changed to conform to the ANSI
Standard, and may require that some code be rewritten.

Conversion Specifiers
The Standard describes the following conversion specifiers:

c Convert into chars the number of characters specified by the field width, and write them
into the array pointed to by the corresponding argument. The default field width is one.
scanf does not write a null character at the end of the array it creates. This specifier forces
scanf to read and store white-space characters and numerals, as well as letters.

d Convert the token to a decimal integer. The format should be equivalent to that expected by
the function strtol with a base argument of ten. The corresponding argument should point
to an int.

D Convert the token to a long. This conversion specifier is not described in the ANSI
Standard, and using it means that your program will not comply strictly with the Standard.

e Convert the token to a floating-point number. The format of the token should be that
expected by the function strtod for a floating-point number that uses exponential notation.
The corresponding argument should point to a double.

LEXICON

414 scanf()

E Same as e. Under earlier releases of Let’s C, this conversion specifier converted the token
to a double. This change has been made to conform to the ANSI Standard, and may require
that some code be rewritten.

f Convert the token to a floating-point number. The format of the token should be that
expected by the function strtod for a floating-point number that uses decimal notation. The
corresponding argument should point to a double.

F Same as f.

g Convert the token to a floating-point number. The format of the token should of that
expected by the function strtod for a floating-point number that uses either exponential
notation or decimal notation. The corresponding argument should point to a double.

G Same as g.

i Convert the token to a decimal integer. The format should be equivalent to that expected by
the function strtol with a base argument of zero. The corresponding argument should point
to an int.

n Do not read any text. Write into the corresponding argument the number of characters that
scanf has read up to this point. The corresponding argument should point to an int.

o Convert the token to an octal integer. The format should be equivalent to that expected by
the function strtol with a base argument of eight. The corresponding argument should
point to an int.

O Same as o, except that the corresponding argument points to a long. This conversion
specifier is not described in the ANSI Standard, and using it means that your program will
not comply strictly with the Standard.

p Pointer format: read a sequence of implementation-defined characters, convert them in an
implementation-defined way, and write them in an implementation-defined manner. The
vagueness of this description is unavoidable, because the pointer format will vary between
machines, and even on the same machine. The corresponding argument should point to a
void *. The sequence of characters recognized should be identical with that written by
printf’s p conversion specifier.

s Read a string of non-white space characters, copy them into the area pointed to by the
corresponding argument, and append a null character to the end. The argument should be
of type char *, and should point to enough allocated memory to hold the string being read
plus its terminating null character.

u Convert the token to an unsigned integer. The format should be equivalent to that expected
by the function strtoul with a base argument of ten. See strtoul for more information. The
corresponding argument should point to an unsigned int.

x Convert the token from hexadecimal notation to a signed integer. The format should be
equivalent to that expected by the function strtol with a base argument of 16. See strtol
for more information. The corresponding argument should point to an unsigned int.

X Same as x. In previous releases of Let’s C, the modifier X meant that the corresponding
argument pointed to a long instead of an int. This has been changed to conform to the
ANSI Standard, and may require that some code be rewritten.

% Match a single percent sign ‘%’. Make no conversion or assignment.

[/] Scan a scanset, which is a set of characters enclosed by brackets. A character that matches
any member of the scanset is copied into the area pointed to by the corresponding
argument, which should be a char * that points to enough allocated memory to hold the

LEXICON

scanf() 415

maximum number of characters that may be copied, plus the concluding null character.
Appending a circumflex ‘^’ to the scanset tells scanf to copy every character that does not
match a member of the scanset (i.e., complements the scanset). If the format string begins
with ‘]’ or ‘^]’, then ‘]’ is included in the scanset, and the set specifier is terminated by the
next ‘]’ in the format string. If a hyphen appears within the scanset, the behavior is
implementation-defined; often, it indicates a range of characters, as in [a-z].

For example, passing the string hello, world to

char array[50];
scanf("[^abcd]", array);

writes the string hello, worl into array.

Cross-references
Standard, §4.9.6.4
The C Programming Language, ed. 2, p. 246

See Also
fscanf, printf, sscanf, STDIO

Notes
scanf will read up to, but not through, a newline character. The newline remains in the standard
input device’s buffer until you dispose of it. Programmers have been known to forget to empty the
buffer before calling scanf a second time, which leads to unexpected results.

Experience has shown that scanf should not be used directly to obtain a string from the keyboard:
use gets to obtain the string, and sscanf to format it.

The character that scanf recognizes as representing the decimal point is affected by the program’s
locale, as set by the function setlocale. For more information, see localization.

scope — Definition
The term scope describes the portion of the program in which a given identifier is recognized, or
visible. Scope is similar to, but not identical to, linkage. Linkage refers to whether an identifier can
be joined, or linked, across files. Scope refers to the portion of a program that can recognize an
identifier.

There are four varieties of scope: block, file, function, and function prototype.

An identifier with block scope is visible only within the block of code where it is declared. When the
program reaches the ‘}’ that ends that block of code, then the identifier is no longer visible, and so
no longer ‘‘within scope’’.

An identifier with file scope is visible throughout the translation unit within which it is declared.
The only identifiers that have file scope are those that are declared globally, i.e., that are declared
outside the braces that enclose any function. If a function in one file uses an identifier that is
defined in another file, it must mark that identifier as being external, by using the storage-class
specifier extern.

An identifier with function scope is visible throughout a function, no matter where in the function it
is declared. A label is the only variety of identifier that has function scope.

An identifier with function-prototype scope is visible only within the function prototype where it is
declared. For example, consider the following function prototype:

void va_end(va_list listptr);

LEXICON

416 scope

The identifier listptr has function-prototype scope. It is recognized only within that prototype, and
is used only for purposes of documentation.

If an identifier is redeclared but is within an enclosing scope, it ‘‘hides’’ the outermost identifier and
renders it inaccessible. This condition is called ‘‘information hiding’’, and it holds true as long as
the inner declaration is within scope.

Example
The following program demonstrates scope, and shows how to hide information.

/* global i */
int i = 13;

void
function1(void)
{

/* local i; hides global i */
int i = 23;

for(;;) {
/* block-scope i; hides local and global i’s */
int i = 33;
/* print block-scope i */
printf ("block-scope i: %d\n", i);
break;

}
/* block-scope i has disappeared; print local i */
printf ("local i: %d\n", i);

}

void
function2(void)
{

/* local i has disappeared; print global i */
printf("global i: %d\n", i);

}

main(void)
{

function1();
function2();
return(EXIT_SUCCESS);

}

Cross-references
Standard, §3.1.2.1
The C Programming Language, ed. 2, p. 227

See Also
extern, identifiers, storage duration

Notes
If an identifier is declared both within a block and with the storage-class identifier extern, it has
block scope. An external declaration made within one block of code is not available outside that
block. If an identifier that is declared external within one block is referenced within another,
behavior is undefined.

A common extension to C automatically promotes to file scope all external identifiers that are
declared within a block. Under such implementations, the following will work correctly:

LEXICON

scope 417

/* non-ANSI code! */
function1()
{

extern float example();
. . .

}

function2()
{

float variable;
. . .

variable = example();
. . .

}

Under the Standard, however, this code will not work correctly: the declaration of the function
example has block scope; therefore, it cannot be seen in function2. In function2, therefore, the
translator properly assumes that example returns an int. The float that example actually returns
is altered, causing undefined behavior. ANSI C causes this code to behave differently than expected,
and an implementation may not issue a warning message. This is a quiet change that may break
existing code.

sequence point — Definition
A sequence point is any point in a program where all side effects are resolved. At every sequence
point, the environment of the actual machine must match that of the abstract machine. That is,
whatever optimizations or short-cuts an implementation may take, at every sequence point it must
be as if the machine executed every instruction as it appeared literally in the program. Sequence
points cause the program’s actual behavior to be synchronized with the abstract behavior that the
source code describes.

The sequence points are as follows:

• When all arguments to a function call have been evaluated.

• When the first operand of the following operators has been evaluated: logical AND ‘&&’, logical
OR ‘||’, conditional ‘?’, and comma ‘,’.

• When a variable is initialized.

• When the controlling expression or expressions are evaluated for the following statements: do,
for, if, return, switch, and while.

Cross-reference
Standard, §2.1.2.3

See Also
side effect, translation units

setbuf() — STDIO (libc)
Set alternative stream buffer
#include <stdio.h>
void setbuf(FILE *fp, char *buffer);

When the functions fopen and freopen open a stream, they automatically establish a buffer for it.
The buffer is BUFSIZ bytes long. BUFSIZ is a macro that is defined in the header stdio.h.

setbuf changes the buffer for the stream pointed to by fp from its default buffer to buffer. It sets
buffer to be BUFSIZ bytes long. To create a buffer of a size other than BUFSIZ, use setvbuf.

LEXICON

418 sequence point — setbuf()

You should use setbuf after fp has been opened, but before any data have been read from or written
to it.

If buffer is set to NULL, then fp will be unbuffered. For example, the call

setbuf(stdout, NULL);

ensures that all output to the standard output stream is unbuffered.

Cross-references
Standard, §4.9.5.5
The C Programming Language, ed. 2, p. 243

See Also
BUFSIZ, fclose, fflush, freopen, setbuf, setvbuf, STDIO

setjmp() — Non-local jump (setjmp.h)
Save environment for non-local jump
#include <setjmp.h>
int setjmp(jmp_buf environment);

setjmp copies the current environment into the array jump_buf. The environment can then be
restored by a call to the function longjmp.

environment is of type jmp_buf, which is defined in the header setjmp.h. Let’s C defines jmp_buf to
be an array of 11 longs.

setjmp returns zero if it is called directly. When it returns after a call to longjmp, however, it
returns longjmp’s argument rval. If rval is set to zero, then setjmp returns one. See longjmp and
non-local jumps for more information.

Cross-references
Standard, §4.6.1.1
The C Programming Language, ed. 2, p. 254

See Also
longjmp, jmp_buf, non-local jumps

Notes
Many user-level routines cannot be interrupted and reentered safely. For that reason, improper use
of setjmp and longjmp will result in the creation of mysterious and irreproducible bugs. The use of
longjmp to exit interrupt, exception, or signal handlers is particularly hazardous.

setjmp must be used as the controlling operand in a switch statement, as the controlling
expression in an if statement, or as an operand in an equality expression. Any other use generates
undefined behavior.

To conform with the Standard, setjmp is implemented as a macro.

setjmp.h — Header
Declarations for non-local jump
#include <setjmp.h>

setjmp.h is the header that contains declarations for the elements that perform a non-local jump.
It contains the prototype for the function longjmp, and it defines the macro setjmp and the type
jmp_buf.

LEXICON

setjmp() — setjmp.h 419

Cross-references
Standard, §4.6
The C Programming Language, ed. 2, p. 254

See Also
header, jmp_buf, longjmp, non-local jump, setjmp

setlocale() — Localization (libc)
Set or query a program’s locale
#include <locale.h>
char *setlocale(int portion, const char *locale);

setlocale is a function that lets you set all or a portion of the locale information used by your
program or query for information about the current locale.

portion is the portion of the locale that you wish to set or query. The Standard defines a number of
manifest constants for this purpose, as follows:

LC_ALL
Set or query all locale-specific information. Setting the locale affects all of the following
locale categories.

LC_COLLATE
Set or query information that affects collating functions. This affects the operation of the
functions strcoll and strxfrm.

LC_CTYPE
Set or query information about character handling. This affects he operation of all
character-handling functions, except for isdigit and isxdigit. It also affects the operation of
the functions that handle multibyte characters, i.e., mblen, mbtowc, mbstowcs, and
wcstombs, wctomb.

LC_MONETARY
Set or query all monetary-specific information as used in the structure lconv, which is
initialized by the function localeconv.

LC_NUMERIC
Set or query information for formatting numeric strings. This may change the decimal-point
character used by string conversion functions and functions that perform formatted input
and output. This may also affect the contents of the structure lconv.

LC_TIME
Set or query information for formatting time strings. This changes the operation of the
function strftime.

Setting locale to NULL tells setlocale that you wish to query information about the current locale
rather than set a new locale.

setlocale returns a pointer to a string that contains the information needed to set or examine the
locale. For example, the call

setlocale(LC_TIME, "");

returns a string that can be used to modify the time and date functions to conform to the
requirements of the native locale. setlocale returns NULL if it does not recognize either portion or
locale.

LEXICON

420 setlocale()

Cross-reference
Standard, §4.4.1.1

See Also
lconv, localeconv, localization

Notes
The Standard’s section on compliance states that any program that uses locale-specific information
does not strictly comply with the Standard. Therefore, any program that uses a locale other than
the C locale cannot be assumed to be portable to every environment for which a conforming
implementation of C has been written. Caveat utilitor.

setvbuf() — STDIO (libc)
Set alternative stream buffer
#include <stdio.h>
int setvbuf(FILE *fp, char *buffer, int mode, size_t size);

When the functions fopen and freopen open a stream, they automatically establish a buffer for it.
The buffer is BUFSIZ bytes long. BUFSIZ is a macro that is defined in the header stdio.h.

setvbuf alters the buffer used with the stream pointed to by fp from its default buffer to buffer.
Unlike the related function setbuf, it also allows you set the size of the new buffer as well as the
form of buffering.

buffer is the address of the new buffer. size is its size, in bytes. mode is the manner in which you
wish the stream to be buffered, as follows:

_IOFBF Fully buffered
_IOLBF Line-buffered
_IONBF No buffering

These macros are defined in the header stdio.h. For more information on what these terms mean,
see buffering.

You should call setvbuf after a stream has been opened but before any data have been written to or
read from the stream. For example, the following give fp a 50-byte buffer that is line-buffered:

char buffer[50];
FILE *fp;

fopen(fp, "r");
setvbuf(fp, buffer, _IOLBF, sizeof(buffer));

On the other hand, the following turns off buffering for the standard output stream:

setvbuf(stdout, NULL, _IONBF, 0);

setvbuf returns zero if the new buffer could be established correctly. It returns a number other
than zero if something went wrong or if an invalid parameter is given for mode or size.

Example
This example uses setvbuf to turn off buffering and echo.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

LEXICON

setvbuf() 421

main(void)
{

int c;

if(setvbuf(stdin, NULL, _IONBF, 0))
fprintf(stderr, "Couldn’t turn off stdin buffer\n");

if(setvbuf(stdout, NULL, _IONBF, 0))
fprintf(stderr, "Couldn’t turn off stdout buffer\n");

while((c = getchar()) != EOF)
putchar(c);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.9.5.6
The C Programming Language, ed. 2, p. 243

See Also
BUFSIZ, fclose, fflush, fopen, freopen, setbuf, STDIO

shellsort() — Extended function (libc)
Sort arrays in memory
void shellsort(char *data, short n, short size, short (*comp)());

shellsort is a generalized algorithm for sorting arrays of data in primary memory. It uses D. L.
Shell’s sorting algorithm. shellsort works with a sequential array of memory called data, which is
divided into n parts of size bytes each. In practice, data is usually an array of pointers or
structures, and size is the sizeof the pointer or structure.

Each routine compares pairs of items and exchanges them as required. The user-supplied routine
to which comp points performs the comparison. It is called repeatedly, as follows:

(*comp)(p1, p2)
char *p1, *p2;

Here, p1 and p2 each point to a block of size bytes in the data array. In practice, they are usually
pointers to pointers or pointers to structures. The comparison routine must return a negative, zero,
or positive result, depending on whether p1 is less than, equal to, or greater than p2, respectively.

See Also
general utilities, qsort
The Art of Computer Programming, vol. 3, pp. 84ff, 114ff

Notes
shellsort differs from the sort function qsort in that it uses an iterative algorithm that does not
require much stack.

short int — Type
A short int is a signed integral type. This type can be no smaller than a char, and no larger than
an int.

A short int can encode any number between SHRT_MIN and SHRT_MAX. These are macros that
are defined in the header limits.h. The former equals -32,767, and the latter +32,767.

The types short, signed short, and signed short int are all synonyms for short int.

LEXICON

422 shellsort() — short int

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
int, long int, types

side effect — Definition
A side effect is any change to the execution environment that is caused by the program that
accesses a volatile object, modifies an object, modifies a file, or calls a function that performs any of
these tasks. An expression may generate side effects; a void expression exists just for the side
effects it generates.

Cross-references
Standard, §2.1.2.3
The C Programming Language, ed. 2, p. 53

See Also
Environment, sequence point, translation phase

sig_atomic_t — Type
Type that can be updated despite signals

sig_atomic_t is an integral data type that is defined in the header signal.h. It defines the type of
‘‘atomic’’ object that can be accessed properly even if an asynchronous interrupt occurs.

Cross-reference
Standard, §4.7.1

See Also
signal handling, signal.h, volatile

Notes
When declaring objects of this type, you should use the type qualifier volatile; for example:

volatile sig_atomic_t save_state;

The volatile declaration tells the translator to re-read the object’s value from memory each time it is
used in an expression. When the program says to store the object, it should be stored immediately.

signal() — Signal handling (libc)
Set processing for a signal
#include <signal.h>
void (*signal(int signame, void (*function)(int)))(int);

signal is a function that tells the environment what to do when it detects a given interrupt, or
‘‘signal.’’ signame names the signal to be handled, and function points to the signal handler (the
function to be executed when signame is detected). signame may be generated by the environment
itself (when it detects an error condition, for example), by the hardware (to indicate a bus error,
timer event, or other hardware error condition), or by the program itself (by using the function
raise).

If signal is successful, it returns a pointer to the function that the environment previously used to
handle signame. If an error occurred, signal returns SIG_ERR and the global variable errno is set to
an appropriate value. For a list of the signals recognized, see signal handling.

LEXICON

side effect — signal() 423

signal can establish the following ways of handling a signame:

1. If it sets function to SIG_DFL, it tells the environment to execute the default signal-handling
function for signame.

2. Then, the equivalent of

(*function)(signame)

is executed, where function is the user-defined function installed with signal to handle
signame.

3. If it sets function to point to a user-defined function, then it tells the environment to execute
that function when it detects signame.

If signal is used to establish a user-defined function for a particular signal, then the following occurs
when that signal is detected:

1. The equivalent of

signal(signame, SIG_DFL);

is executed. If signame is equivalent to SIGILL (which indicates that an illegal instruction has
been found), then this step is optional, depending upon the implementation.

2. Then, the equivalent of

(*function)(signame)

is executed, where function points to a user-defined function. Some signals are reset to
STD_DFL, some are not. The exception handler should be reset by another call to signal if
subsequent signals are expected for that condition.

3. function can terminate either by returning to the calling function, or by calling abort, exit, or
longjmp. If function returns and signame indicates that a computational exception had
occurred (e.g., division by zero), then the behavior is undefined. Otherwise, the program which
responded to the signal will continue to execute.

Cross-references
Standard, §4.7.1.1
The C Programming Language, ed. 2, p. 255

See Also
raise, signal handling, signal.h

Notes
The signal handler pointed to by function should not be another library function. Also, the signal
handler should not attempt to modify external data other than those declared as type volatile
sig_atomic_t.

signal.h — Header
Signal-handling routines
#include <signal.h>

signal.h is the header that defines or declares all elements used to handle asynchronous interrupts,
or signals.

Signals vary from environment to environment. Therefore, the contents of signal.h will also vary
greatly from environment to environment, and from implementation to implementation. The
Standard mandates that it define the following elements to create a skeletal, portable suite of signal-

LEXICON

424 signal.h

handling routines:

Type
sig_atomic_t Type that can be accessed atomically

SIG_DFL Default signal-handling indicator
SIG_ERR Indicate error in setting a signal
SIG_IGN Indicate ignore a signal

SIGABRT Abort signal
SIGFPE Erroneous arithmetic signal
SIGILL Illegal instruction
SIGINT Interrupt signal
SIGSEGV Invalid access to storage signal
SIGTERM Program termination signal

Functions
raise Generate a signal
signal Set processing for a signal

Cross-references
Standard, §4.7
The C Programming Language, ed. 2, p. 255

See Also
signal handling

signal handling — Overview
#include <signal.h>
A signal is an asynchronous interrupt in a program. Its use allows a program to be notified of and
react to external conditions, such as errors that would otherwise force it either to abort or to
continue despite erroneous conditions.

To respond to a signal, a program uses a signal handler, which is a function that performs the
actions appropriate to a given signal. A signal handler usually is installed early in a program. It is
invoked either when the condition arises for which the signal handler was installed, or when the
program uses the function raise to raise a signal explicitly. A signal handler can be thought of as a
‘‘daemon,’’ or a process that lives in the background and waits for the right conditions to occur for it
to spring to life. Once the signal has been handled, the program may continue to execute.

Every conforming implementation of C must include at least a skeletal facility for handling signals.
The Standard describes two functions: raise, which generates (or ‘‘raises’’) a signal; and signal,
which tells the environment what function to execute in response to a given signal.

The suite of signals that can be handled varies from environment to environment. At a minimum,
the following signals must be recognized:

SIGABRT Abort
SIGFPE Erroneous arithmetic
SIGILL Illegal instruction
SIGINT Interrupt
SIGSEGV Invalid access to storage
SIGTERM Program termination request

All of these are positive integral expressions. An implementation is obliged to respond only if one of
these signals is raised explicitly via the function raise. This limitation is imposed because in some
environments it may be impossible for an implementation to ‘‘sense’’ the presence of such
conditions.

LEXICON

signal handling 425

signal tells the environment which function to execute in response to a signal by passing it a
pointer to that function. The Standard describes three macros that expand to constant expressions
that point to functions, as follows:

SIG_DFL Default signal-handling indicator
SIG_ERR Indicate error in setting a signal
SIG_IGN Indicate ignore a signal

The Standard describes a new data type, called sig_atomic_t. An object of this type can be updated
or read correctly, even if a signal occurs while it is being updated or read. Accesses to objects of this
type are atomic, i.e., uninterruptable.

All of the above are defined or declared in the header signal.h.

Cross-references
Standard, §4.7, §2.2.3
The C Programming Language, ed. 2, p. 255

See Also
Library, sequence points, signal.h, signals/interrupts

Notes
The name signal is derived from the electrical model of having a wire connected to the central
processing unit for an interrupt. When the level on the wire would rise, an interrupt would be
generated and the central processing unit would service the device that ‘‘raised’’ its ‘‘signal.’’

signals/interrupts — Definition
The Standard mandates the following restrictions upon the manner in which functions are
implemented. First, a signal must be able to interrupt a function at any time. Second, a signal
handler must be able to call a function without affecting the value of any object with automatic
duration created by any earlier invocation of the function. Third, the function image (that is, the set
of instructions that constitutes the executable image of the function) cannot be altered in any way
as it is executed. All variables must be kept outside of the function image.

MS-DOS Interrupts
MS-DOS makes available to the programmer a series of interrupts that can be used to perform all
manner of useful tasks. These interrupts and their functions can be accessed directly through the
C function intcall.

The header dos.h defines a set of manifest constants that use most MS-DOS interrupts. The
following table lists these constants, the interrupt and function number they define, and gives a
brief description of what each does. Some constants combine two interrupts to form one function.
For example, CLRIN combines interrupts 0x0C and 0x01.

Interrupt 10 (text mode)

GCDM 0x0F00 Get current display mode
IWDOWN 0x0700 Initialize window or scroll window down
IWUP 0x0600 Initialize window or scroll window up
RACCUR 0x0800 Read attribute & character at cursor
RDCP 0x0300 Read cursor positon
RGRPIX 0x0D00 Read graphics pixel
RLPP 0x0400 Read light pen position
SDP 0x0500 Select display page
SETCLR 0x0B00 Set color palette
SETCP 0x0200 Set cursor position

LEXICON

426 signals/interrupts

SETCT 0x0100 Set cursor type
SPALREG 0x1000 Set palette registers
WACCUR 0x0900 Write attribute and character at cursor
WCONLY 0x0A00 Write character only at cursor
WGRPIX 0x0C00 Write graphics pixel
WSTRING 0x1300 Write string (AT only)
WTELE 0x0E00 Write text in teletype mode

Interrupt 10 (graphics mode)

VM1620JR 0x0008 160x200 16-color graphics (PCjr)
VM3220C 0x0004 320x200 four-color graphics
VM3220CB 0x0005 320x200 four-color graphics color burst off
VM3220EG 0x000D 320x200 16-color graphics (EGA)
VM3220JR 0x0009 320x200 16-color graphics (PCjr)
VM4025BW 0x0000 40x25 black & white text, color ad.
VM4025C 0x0001 40x25 color text
VM64202 0x0006 640x200 two-color graphics
VM6420EG 0x000E 640x200 16-color graphics (EGA)
VM6420JR 0x000A 640x200 16-color graphics (PCjr)
VM64354E 0x0010 640x350 four- or 16-color graphics (EGA)RAM
VM6435EG 0x000F 640x350 monochrome graphics (EGA)
VM8025BW 0x0002 80x25 black & white text
VM8025C 0x0003 80x25 color text
VMMONOAD 0x0007 Monochome adapter text display

Interrupt 13

FORMDT 0x0500 Format disk track
GFDSS 0x0100 Get disk system status
RDFD 0x0200 Read disk
RSTFDS 0x0000 Reset disk system
VERDS 0x0400 Verify disk sectors
WRTDSK 0x0300 Write to disk

Interrupt 14

ITCOMP 0x0000 Initialize communications port
RCCOMP 0x0200 Read character from communications port
WCCOMP 0x0100 Write character to communications port

Interrupt 16

RCKEYB 0x0000 Read character from keyboard
RKEYST 0x0100 Read keyboard status
RTKEYF 0x0200 Return keyboard flags

Interrupt 17

INITPP 0x0100 Initialize printer port
PRNSRQ 0x0200 Request printer status
WCPRN 0x0000 Write character to printer port

Interrupt 21

ALLOC 0x4800 Allocate memory
BUFCON 0x0A00 Read console, buffered
CHDIR 0x3B00 Change current directory
CHMOD 0x4300 Change file mode

LEXICON

signals/interrupts 427

CLOSEF* 0x1000 Close a file
CLOSEH 0x3E00 Close a file
CLR_E 0x0C08 Clear console, accept input without echo
CLRBUF 0x0C0A Clear console, accept buffered input
CLRIN 0x0C01 Clear console, echo console input
CLRDIO 0x0C06 Clear console, perform direct console I/O
CLRRAW 0x0C07 Clear console, accept raw input
CONSTAT 0x0B00 Return console/s status
CREATH 0x3C00 Create a file
CTLBCHK 0x3300 Get/set Ctrl-Break flag
DELETE 0x4100 Delete a file
DELETEF* 0x1300 Delete a file
DUPH 0x4500 Duplicate a file handle
EXEC 0x4B00 Load or execute a program
FDUPH 0x4600 Force a duplicate of handle
FFIRST* 0x1100 Search for first match
FNEXT* 0x1200 Search for next match
FREE 0x4900 Free allocated memory
GETALTI 0x1B00 Get allocation table information
GETCDI 0x3800 Get country-dependent information
GETCDIR 0x4700 Get current directory
GETDATE 0x2A00 Get date
GETDISK 0x1900 Get default disk drive
GETDTA 0x2F00 Get address of disk transfer area
GETFREE 0x3600 Get free disk space
GETTIME 0x2C00 Get time
GETVEC 0x3500 Get interrupt vector
GETVER 0x3000 Get MS-DOS version number
GETVST 0x5400 Get verify state
GSDT 0x5700 Get/set a file’s date and time
IOCTLH 0x4400 I/O control for devices
LSEEKH 0x4200 Move file read/write pointer
MAKEF* 0x1600 Create or truncate a file
MKDIR 0x3900 Create a sub-directory
NEXIT 0x4C00 Terminate a process
NFFIRST 0x4E00 Search for first match
NFNEXT 0x4F00 Search for next match
OPENF* 0x0F00 Open a file
OPENH 0x3D00 Open a file
PROGSEG 0x2600 Create program segment
PUTSTR 0x0900 Output string, terminated with ‘$’
READB* 0x2700 Block read, random
READH 0x3F00 Read from a file or device
READR* 0x2100 Read, random
READS* 0x1400 Read sequential
RENAME 0x5600 Rename a file
RENAMEF* 0x1700 Rename a file
RESDSK 0x0D00 Reset disk system
RMDIR 0x3A00 Remove a sub-directory
SELDSK 0x0E00 Set default disk drive
SETBLK 0x4A00 Modify allocated memory blocks
SETDATE 0x2B00 Set date
SETDMAO 0x1A00 Set disk transfer address
SETINT 0x2500 Set interrupt vector

LEXICON

428 signals/interrupts

SETRREC* 0x2400 Set random record number
SETTIME 0x2D00 Set time
SIZEF* 0x2300 Compute size of file
TERMRES 0x3100 Terminate and remain resident
VERIFY 0x2E00 Disk write verification
WAIT 0x4D00 Get return code of subprocess
WRITEB* 0x2800 Block write, random
WRITEH 0x4000 Write to a file or device
WRITER* 0x2200 Write, random
WRITES* 0x1500 Write sequential

The interrupts marked with an asterisk ‘*’ use the file control block. These functions, in general,
have been replaced by other, similarly named functions that are easier to use. The file control block
is a structure, defined as follows:

typedef struct fcb_t {
unsigned char f_drive; /* drive code (A=1, etc.) */
char f_name[8], /* file name */

f_ext[3]; /* file suffix */
unsigned short f_block; /* current block

(=128 records) */
unsigned short f_recsz; /* record size in bytes

(=1) */
unsigned long f_size; /* file size, bytes

(system) */
unsigned int f_date; /* modif. date (system) */
char f_sys[10]; /* for system use */
unsigned char f_rec; /* current record in block */
unsigned long f_seek; /* random record position */

} fcb_t;

Calling DOS Interrupts
Let’s C offers two ways to use MS-DOS interrupts in your C programs.

The first is through the function intcall. intcall gives a convenient way to call an MS-DOS
interrupt directly from a C program. For more information and examples on how to use this
function, see the entry for intcall.

The other method is by using the programs int.c and intdis.m, whose source code is included with
Let’s C. Unlike intcall, which is a tool for calling MS-DOS interrupts, these programs allow i8086
interrupts to call you. Thus, they are a tool for building interrupt handlers. They also demonstrate
how to combine a C program with one written in assembly language.

The suffix ‘.m’ is unique to Mark Williams Company. It is used with a file of assembly language that
is first treated by cpp, a command that invokes the C preprocessor. Thus, a ‘.m’ file can contain
conditionalized code, manifest constants, and all other commands that are recognized by the
preprocessor. To compile such a file, assemble it through the cc command. For example, to
assemble foo.m, use the command:

cc foo.m

cc will automatically call cpp, and pass its output to the assembler as. The entry for as presents an
example of a .m program. See the entry on larges.h for more information on the .m format in
general.

Example
The following example, called example.c, uses routines in int.c and intdis.m to call several MS-
DOS interrupts. You should enter it into the directory where you have stored int.c and intdis.m,
and compile it with the following command line:

LEXICON

signals/interrupts 429

cc example.c int.c intdis.m

This program works in both LARGE and SMALL model. Compile it with the command line

cc -VLARGE example.c int.c intdis.m

to create a LARGE-model executable.

#include <stdio.h>
#include <stdlib.h>

#define INT_BREAK 0x1B /* keybd ctrl-break int */
#define INT_TICK 0x1C /* system timer tick int */
#define STACKSIZE 0x100 /* small stack for locals */

int breakid;
int timerid;

#define TRUE 1
#define FALSE 0

int breakflag = FALSE;
int timerflag = FALSE;

/*
* Service routine for the Ctrl-Break Interrupt (0x1B).
* Simply sets the breakflag to TRUE.
*/

breaktrp(void)
{

breakflag = TRUE;
return(0);

}

/*
* Service routine for Timer-Tick Interrupt (0x1C).
* This comes from the 8253-5 Programmable Interval Timer
* at a rate of 18.2 Hz. Thus every 91
* (= 18.2 * 5) interrupts
* or 5 seconds, set the timerflag to TRUE.
*/

timertrp(void)
{

static counter = 0;

if(++counter == 91) {
timerflag = TRUE;
counter = 0;

}

/* Link in case interrupt 0x1C did something already */
return(1);

}

void
fatal(char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

LEXICON

430 signals/interrupts

main(void)
{

int breaktrp();
int timertrp();

if ((breakid=setint(INT_BREAK, breaktrp,
STACKSIZE, 1)) == -1)
fatal("Error setting ctrl-break interrupt.");

printf("Ctrl-Break Interrupt Set.\n");

if((timerid=setint(INT_TICK, timertrp,
STACKSIZE, 1)) == -1)
fatal("Error setting timer-tick interrupt.");

printf("Timer-Tick Interrupt Set.0);

for (;;) {
if(breakflag == TRUE)

break;
if(timerflag == FALSE)

continue;
printf("Another 5 sec gone.\n");
timerflag = FALSE;

}
printf("Got the Ctrl-Break Key.\n");

if(clearint(breakid) != 0)
fatal("Unable to reset interrupt.");

printf("Ctrl-Break interrupt reset.\n");

if (clearint(timerid) != 0) {
fatal("Unable to reset Timer-Tick Interrupt.");

printf("Timer-Tick interrupt reset.\n");

return EXIT_SUCCESS;
}

Cross-references
Standard, §2.2.3 Advanced MS-DOS, pp 208ff, 272ff

See Also
Environment, signal handling

signed — Definition
The modifier signed indicates that a data type can contain both positive and negative values. In
some representations, the sign of a signed object is indicated by a bit set aside for the purpose. For
this reason, a signed object can encode an absolute value only half that of its unsigned counterpart.

The four integral data types can be marked as signed: char, short int, int, and long int.

The implementation defines whether a char is signed or unsigned by default. The Standard
describes the types signed char and unsigned char. These let the programmer use the type of char
other than that supplied by the implementation. short int, int, and long int are signed by default.
The declarations signed short int, signed int, and signed long int were created for the sake of
symmetry.

For information about converting one type of integer to another, see integral types.

If signed is used by itself, it is a synonym for int.

LEXICON

signed 431

Cross-references
Standard, §3.1.2.5, §3.2.1.2
The C Programming Language, ed. 2, p. 211

See Also
types, unsigned

signed char — Type
A signed char is a type that has the same size and the same alignment requirements as a plain
char. The Standard created this type for implementations whose char type is unsigned by default.

A signed char can encode values from SCHAR_MIN to SCHAR_MAX. These are macros that are
defined in the header limits.h. The former is set to -127, and the latter to +127.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.5.2
The C Programming Language, ed. 2, p. 44

See Also
char, types, unsigned char

sin() — Mathematics (libm)
Calculate sine
#include <math.h>
double sin(double radian);

sin calculates and returns the sine of its argument radian, which must be in radian measure.

Example
This example verifies the identity sin(2*x) == 2*sin(x)*cos(x) over a range of values. Then, it scans
the range of the worst error in smaller and smaller increments, until the precision of the floating
point will not allow any more.

#include <float.h>
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#define PI 0.31415926535897932e+01

main(void)
{

int ct;
double a, e, i, worstp;
double worste=0.0;
double f=-PI;

LEXICON

432 signed char — sin()

printf("Verify sin(2*x) == 2*sin(x)*cos(x)\n");
for(i = (PI / 100.0); (f + i) > f; i *= 0.01) {

for(ct = 200, a = f; --ct; a += i) {
e = fabs(sin(a+a)-(2.0*sin(a)*cos(a)));
if(e > worste) {

worste = e;
worstp = a;

}
}
f = worstp - i;

}

printf("Worst error %.17e at %.17e\n", worste, worstp);
printf("sin(2x)=%.17e 2*sin(x)*cos(x)=%.17e\n",

f=sin(worstp+worstp), 2.0*sin(worstp)*cos(worstp));
printf("Epsilon is %.17e\n", fabs(f) * DBL_EPSILON);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.5.2.6
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, atan2, cos, mathematics, tan

sinh() — Mathematics (libm)
Calculate hyperbolic sine
#include <math.h>
double sinh(double value);

sinh calculates and returns the hyperbolic sine of value. A range error will occur if the argument is
too large.

Cross-references
Standard, §4.5.3.2
The C Programming Language, ed. 2, p. 251

See Also
cosh, mathematics, tanh

size — Command
Print the size of an object module
size file...

size prints the size of each segment of each given file, which must be a relocatable object module or
an executable file. The total size is given in decimal, and the size of each segment is given in both
decimal and hexadecimal. All sizes are in bytes.

When it is used to size an executable file, size prints the size of the code segment and the data
segment separately (in LARGE model), or the code segment plus the data segment (in SMALL
model). Thus, size can help you to tell a SMALL-model program from one in LARGE model.

See Also
cc, commands, cpp, nm, strip

LEXICON

sinh() — size 433

sizeof — C keyword
The operator sizeof yields the size of its argument, in bytes. Its argument can be the name of a
type, an array, a function, a structure, or an expression that yields an object.

When the name of a type is used as the operand to sizeof, it must be enclosed within parentheses.
If any of the types char, signed char, or unsigned char are used as the argument to sizeof, the
result by definition is always one. When any complete type is used (i.e., a type whose size is known
by the translator), the result is the size of that type, in bytes. For example,

sizeof (long double);

returns the size of a long double in bytes.

If sizeof is given the name of an array, it returns the size of the array. For example, the code

int example[5];
. . . /* example[] is filled with some things */

sizeof example[] / sizeof int;

yields the number of members in example[].

When sizeof is given the name of a structure or a union, it returns the size of that object, including
padding used to align the objects within the structure, if any. This is especially useful when
allocating memory for a linked list; for example:

struct example {
int member1;
example *member2;

};
struct example *variable;
variable=(struct example *)malloc(sizeof(struct example));

If sizeof is used to measure either a function or an array that has been passed as an argument to a
function, it returns the size of a pointer to the appropriate object. This is because when an array
name or function name is passed as an argument to a function, it is converted to a pointer. See
function definition for more information.

sizeof always returns an object of type size_t; this type is defined in the header stddef.h. It is
intended to be an unsigned integral type.

sizeof must not be used with a function, with an object whose type is incomplete, or a bit-field.

Example
For an example of using this operator in a program, see bsearch.

Cross-references
Standard, §3.3.3.4
The C Programming Language, ed. 2, p. 204

See Also
expressions, operators, size_t

SMALL model — Technical information
Intel single-segment memory model

The i8086/88 microprocessor uses a segmented architecture. This means that the memory is divided
into segments of 64 kilobytes each; no program or data element can exceed that limit.

Intel Corporation has devised a number of memory models for handling segmented memory.

LEXICON

434 sizeof — SMALL model

Let’s C implements the two most useful of these: SMALL model and LARGE model.

SMALL model C programs use 16-bit pointers and NEAR calls. Because a 16-bit pointer can
address 65,536 bytes (64 kilobytes) of memory, SMALL model programs are limited to 64 kilobytes
(one segment) of code and 64 kilobytes of data.

The SMALL-model pointer consists only of the offset within a given segment, and does not include
the segment itself. If you use a function that requires the full offset/segment pair, e.g., _copy, peek,
or poke, you can supply the missing segment either by reading the contents of the DS segment
register with the function dsreg, or by using the macro PTR. See the entries for dsreg and PTR for
more information.

Note, too, that the SMALL-pointer is the same length as an int. This allows a programmer to use
these data types interchangably. Most often, this happens when a programmer fails to declare
properly a function that returns a pointer, so that the function is implicitly declared by the compiler
as returning an int. Programs with this error will run correctly when compiled into SMALL model,
but will fail to work when compiled into LARGE model. See the entry on pun for more information.

When Let’s C compiles a program with the -VSMALL option, the resulting object module follows the
rules of the SMALL model. This is the default setting for the compiler.

See Also
i8086 support, LARGE model, model, pun, technical information

source file — Definition
A source file is any file of C source text.

Cross-reference
Standard, §2.1.1.1

See Also
Environment, translation unit

sprintf() — STDIO (libc)
Print formatted text into a string
#include <stdio.h>
int sprintf(char *string, const char *format, ...);

sprintf constructs a formatted string in the area pointed to by string, and appends a null character
onto the end of what it constructs. It translates integers, floating-point numbers, and strings into a
variety of text formats.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how to convert a particular data type into text.
Each conversion specification is introduced with the percent sign ‘%’. (To print a literal percent
sign, use the escape sequence ‘‘%%’’.) See printf for further discussion of the conversion
specification, and for a table of the type specifiers that can be used with sprintf.

After format can come one or more arguments. There should be one argument for each conversion
specification in format. The argument should be of the type appropriate to the conversion
specification. For example, if format contains conversion specifications for an int, a long, and a
string, then format should be followed by three arguments, respectively, an int, a long, and a char
*.

If there are fewer arguments than conversion specifications, then sprintf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,

LEXICON

source file — sprintf() 435

then the behavior of sprintf is undefined. Thus, presenting an int where sprintf expects a char *
may generate unwelcome results.

sprintf returns the number of characters written into string, not counting the terminating null
character.

Cross-references
Standard, §4.9.6.5
The C Programming Language, ed. 2, p. 245

See Also
fprintf, printf, STDIO, vfprintf, vprintf, vsprintf

Notes
string must point to enough allocated memory to hold the string sprintf constructs, or you may
overwrite unallocated memory.

The character that sprintf uses to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

Because the printf routines that print floating-point numbers are quite large, they are included only
optionally. If you wish to have printf print floats or doubles, you must compile your program with
the -f option to the cc command. See cc for more details.

sqrt() — Mathematics (libm)
Calculate the square root of a number
#include <math.h>
double sqrt(double z);

sqrt calculates and returns the square root of z.

Example
This example calculates the time an object takes to fall to the ground at sea level. It ignores air
friction and the inverse square law.

#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

double
fallingTime(double meters)
{

double time;

errno = 0;
time = sqrt(meters * 2 / 9.8);
/*
* it would be simpler to test for (meters < 0) first,
* but this way shows how sqrt() sets errno
*/

if(errno) {
printf("Sorry, but you can’t fall up\n");
return(HUGE_VAL);

}
return(time);

}

LEXICON

436 sqrt()

main(void)
{

for(;;) {
char buf[80];
double height;

printf("Enter height in meters ");
fflush(stdout);
if(gets(buf) == NULL || !strcmp(buf, "quit"))

break;

errno = 0;
height = strtod(buf, (char **)NULL);

if(errno) {
printf("%s: invalid floating-point number\n");
continue;

}

printf("It takes %3.2f sec. to fall %3.2f meters\n",
fallingTime(height), height);

}

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.5.5.2
The C Programming Language, ed. 2, p. 251

See Also
domain error, mathematics, pow

Notes
If z is negative, a domain error occurs.

srand() — General utility (libc)
Seed pseudo-random number generator
#include <stdlib>
void srand(unsigned int seed);

srand uses seed to initialize the sequence of pseudo-random numbers returned by rand. Different
values of seed produce different sequences.

Example
This example uses the random-number generator to encrypt or decrypt a file. This example is for
illustration only. Do not use it if any serious attack is expected. This example also demonstrates a
simple form of hashing.

#include <stdio.h>
#include <stdlib.h>

/* Ask for a string and echo it. */
char *
ask(char *msg)
{

static char reply[80];

LEXICON

srand() 437

printf("Enter %s ", msg);
fflush(stdout);

if(gets(reply) == NULL)
exit(EXIT_SUCCESS);

return(reply);
}

main(void)
{

register char *kp;
register int c, seed;
FILE *ifp, *ofp;

if((ifp = fopen(ask("input filename"), "rb")) == NULL)
exit(EXIT_FAILURE);

if((ofp = fopen(ask("output filename"), "wb")) == NULL)
exit(EXIT_FAILURE);

/* hash encryption key into an int */
seed = 0;
for(kp = ask("encryption key"); c = *kp++;) {

/* don’t lose any bits */
if((seed <<= 1) < 0)

/* a number picked at random */
seed ^= 0xE51B;

seed ^= c;
}

/* initialize random-number stream */
srand(seed);

while((c = fgetc(ifp)) != EOF)
/*
* Use only the high byte of rand;
* its low-order bits are very non-random
*/

fputc(c ^ (rand() >> 8), ofp);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.10.2.2
The C Programming Language, ed. 2, p. 252

See Also
general utilities, rand

sscanf() — STDIO (libc)
Read and interpret text from a string
#include <stdio.h>
int sscanf(const char *string, const char *format, ...);

sscanf reads characters from string and uses the string pointed to by format to interpret what it has
read into the appropriate type of data. format points to a string that contains one or more
conversion specifications, each of which is introduced with the percent sign ‘%’. For a table of the
conversion specifiers that can be used with sscanf, see scanf.

After format can come one or more arguments. There should be one argument for each conversion
specification in format, and the argument should point to a data element of the type appropriate to

LEXICON

438 sscanf()

the conversion specification. For example, if format contains conversion specifications for an int, a
long, and a string, then format should be followed by three arguments, pointing, respectively, to an
int, a long, and an array of chars.

If there are fewer arguments than conversion specifications, then sscanf’s behavior is undefined. If
there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding type specification,
then sscanf returns.

sscanf returns the number of input elements it scanned and formatted. If an error occurs while
sscanf is reading its input, it returns EOF.

Example
This example reads a list of hexadecimal numbers from the standard input and adds them.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

main(void)
{

long h[5], total;
char buf[80];
int count, i;

printf("Enter a list of up to five hex numbers or quit\n");
while(gets(buf) != NULL) {

if(!strcmp("quit", buf))
break;

count = sscanf(buf, "%lx %lx %lx %lx %lx",
h, h+1, h+2, h+3, h+4);

for(i = total = 0; i < count; i++)
total += h[i];

printf("Total 0x%lx %ld\n", total, total);
}

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.9.6.6
The C Programming Language, ed. 2, p. 246

See Also
fscanf, printf, STDIO, scanf

Notes
sscanf is best used to read data you are certain are in the correct format, such as data previously
written with sprintf.

The character that sscanf recognizes as representing the decimal point is affected by the program’s
locale, as set by the function setlocale. For more information, see localization.

LEXICON

sscanf() 439

stack — Definition
The stack is the segment of memory that holds function arguments, local variables, function return
addresses, and stack frame linkage information.

If your program uses recursive algorithms, or declares large amounts of automatic data, or simply
contains many levels of functions calls, the stack may ‘‘overflow’’, and overwrite the program data.

By default, Let’s C sets the default stack size to 2,048 bytes (two kilobytes). To increase the amount
of stack available to your program, use the -ys option to the cc command. For example, to give the
program foo.c 10,000 bytes of stack, use the following cc command:

cc -ys10000 foo.c

See Also
cc, Definitions

Standard — Overview
The Standard is the document written by the American National Standards Institute committee
X3J11 to describe the programming language C. It is based on the following documents:

• Kernighan, B. W., Ritchie, D. M.: The C Programming Language. Englewood Cliffs, NJ:
Prentice-Hall Inc., 1978. The Standard bases its description of C syntax upon Appendix A of
this book.

• /usr/group Standard Committee: 1984 /usr/group Standard. Santa Clara, Calif.: /usr/group,
1984. This document was the basis for the Standard’s description of the C library.

• American National Dictionary for Information Processing Systems. Information Processing
Systems Technical Report ANSI X3/TR-1-82. 1982.

• ISO 646-1983 Invariant Code Set. This was used to help describe the C character set, and to
select the characters that need to be represented by trigraphs.

• IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985. This is
the basis for the Standard’s description of floating-point numbers.

• ISO 4217 Codes for Representation of Currency and Funds. This is the target for the
Standard’s description of locale-specific ways to represent money.

The first two, due to their fundamental effect upon the Standard, are referred to as the ‘‘base
documents’’.

Cross-reference
Standard, §1.3, §1.5

See Also
Definitions, Environment, Language, Library, DOS-specific features

standard error — Definition
When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. The standard error is the stream into which error messages are
written. In most implementations, the standard error stream is associated with the user’s terminal.

The macro stderr points to the FILE object through which the standard error device is accessed. It
is defined in the header stdio.h.

LEXICON

440 stack — standard error

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, pp. 151ff

See Also
standard input, standard output, stderr, STDIO

standard input — Definition
When a C program begins execution, it opens three text streams by default: the standard error, the
standard input, and the standard output. The standard input is the stream from which the program
receives input by default. In most implementations, the standard input stream is associated with
the user’s terminal.

The macro stdin points to the FILE object that accesses the standard input stream. It is defined in
the header stdio.h.

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, pp. 151ff

See Also
standard error, standard output, stdin, STDIO

standard output — Definition
When a C program begins execution, it opens three text streams by default: the standard output,
the standard input, and the standard error. The standard output is the stream into which a
program’s non-diagnostic output is written. In most implementations, the standard output stream
is associated with the user’s terminal.

The macro stdout points to the FILE object that accesses the standard output device. It is defined
in the header stdio.h.

Cross-references
Standard, §4.9.3
The C Programming Language, ed. 2, pp. 151ff

See Also
standard error, standard input, STDIO, stdout

stat() — Access checking (libc)
Find file attributes
#include <stat.h>
short stat(char *file, struct stat *statptr);

stat returns a structure that contains the attributes of a file. This function is included to maintain
compatibility with the UNIX and COHERENT operating systems.

file points to the path name of file, and statptr points to a structure of the type stat, as defined in
the header file stat.h.

The following summarizes the structure stat:

LEXICON

standard input — stat() 441

struct stat {
unsigned short st_mode; /* mode */
long st_size; /* size, in bytes */
struct dostime st_dostime; /* MS-DOS time and date */
time_t st_mtime; /* modification time */

};

The structure dostime is defined in the header file dosfind.h. The following lists the legal values for
st_mode, which sets the file’s attributes:

S_IFMT 0x0300 type
S_IFDIR 0x0100 directory
S_IFREG 0x0200 regular file
S_IREAD 0x0400 read permission; always 1
S_IWRITE 0x0800write permission

The entry st_size gives the size of the file, in bytes.

stat returns -1 if an error occurs, e.g., the file cannot be found. Otherwise, it returns zero.

Example
The following example, called test.c, demonstrates stat. When compiled, it will take a file name as
an argument; it will then search for the file and, if it is found, print a summary of its status.

#include <stat.h>
#include <stdio.h>
#include <stdlib.h>
char *_cmdname = "TEST";

void
fatal(char *error)
{

fprintf(stderr, "Fatal Error: %s\n", error);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

char *name;
struct stat status;

if (argc != 2)
fatal("Usage: command filename");

name = argv[1];
if (stat(name, &status) != 0)

fatal("Can’t find file");

printf("File: {%s}\n", name);
printf("st_mode: 0x%x\n", status.st_mode);
printf("st_size: %D\n", status.st_size);
printf("st_dostime: %02d-%02d-%02d %02d:%02d:%02d\n",

status.st_dostime.dos_month,
status.st_dostime.dos_day,
status.st_dostime.dos_year+80,
status.st_dostime.dos_hour,
status.st_dostime.dos_minute,
status.st_dostime.dos_twosec*2);

printf("st_mtime: %s", ctime(&status.st_mtime));
return EXIT_SUCCESS;

}

LEXICON

442 stat()

See Also
access checking, open, stat.h

stat.h — Header
Definitions and declarations to obtain file status
#include <stat.h>

stat.h is a header file that contains the declarations of several structures used by the routine stat,
which returns information about a file’s status.

See Also
access checking, header, stat

statements — Overview
A statement specifies an action to be performed. Unless otherwise specified, statements are
executed in the order in which they appear in the program.

The actions of some statements may be controlled by a full expression; this is an expression that is
not part of another expression. For example, do, if, for, switch, and while introduce statements
that are controlled by one or more full expressions. The return statement may also use a full
expression.

The Standard describes the following varieties of statements:

Compound statement

Expression statement

Iteration statements
do
for
while

Jump statements
break
continue
goto
return

Labelled statements
case
default

Null statement

Selection statements
if
else
switch

The set of compound, iteration, and selection statements is the foundation upon which many
programming languages are based. From these alone, a programmer can construct many useful
and interesting programs.

Let’s C also includes the keyword alien, which marks a function that uses non-C calling
conventions.

Cross-references
Standard, §3.6
The C Programming Language, ed. 2, pp. 222ff

LEXICON

stat.h — statements 443

See Also
alien, Language

static — C keyword
Internal linkage
static type identifier

The storage-class specifier static declares that identifier has internal linkage. This specifier may not
be used to declare a function that has block scope.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 83

See Also
linkage, storage-class identifiers

stdarg.h — Header
Header for variable numbers of arguments
#include <stdarg.h>

The header stdarg.h declares and defines routines that are used to traverse a variable-length
argument list. It declares the type va_list and the function va_end, and it defines the macros
va_start and va_arg.

Cross-references
Standard, §4.8
The C Programming Language, ed. 2, p. 254

See Also
header, variable arguments

stderr — Macro
Pointer to standard error stream
#include <stdio.h>

When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. stderr points to the FILE object through which the standard error
stream is accessed; this is the stream into which error messages are written. In most
implementations, the standard error stream is associated with the user’s terminal.

stderr is defined in the header stdio.h.

stderr is not fully buffered when it is opened.

Example
For an example of stderr in a program, see fprintf.

Cross-references
Standard, §4.9.1, §4.9.3
The C Programming Language, ed. 2, p. 243

See Also
stdin, stdout, standard error, STDIO, stdio.h

LEXICON

444 static — stderr

stdin — Macro
Pointer to standard input stream
#include <stdio.h>

When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. stdin points to the FILE object that accesses the standard input
stream; this is the stream from which the program receives input by default. In most
implementations, the standard input stream is associated with the user’s terminal.

stdin is defined in the header stdio.h.

Example
For an example of stdin in a program, see setvbuf.

Cross-references
Standard, §4.9.1, §4.9.3
The C Programming Language, ed. 2, p. 243

See Also
stderr, stdout, standard input, STDIO, stdio.h

STDIO — Overview
Standard input and output
#include <stdio.h>

STDIO is an acronym for standard input and output. Input-output can be performed on text files,
binary files, or interactive devices. It can be either buffered or unbuffered.

The Standard describes 41 functions that perform input and output, as follows:

Error handling
clearerr Clear a stream’s error indicator
feof Examine a stream’s end-of-file indicator
ferror Examine a stream’s error indicator
perror Write error message into standard error stream

File access
fclose Close a stream
fflush Flush an output stream’s buffer
fopen Open a stream
freopen Close and reopen a stream
setbuf Set an alternate buffer for a stream
setvbuf Set an alternate buffer for a stream

File operations
remove Remove a file
rename Rename a file
tmpfile Create a temporary file
tmpnam Generate a unique name for a temporary file

File positioning
fgetpos Get value of stream’s file-position indicator (fpos_t)
fseek Set stream’s file-position indicator
fsetpos Set stream’s file-position indicator (fpos_t)
ftell Get the value of the file-position indicator
rewind Reset stream’s file-position indicator

LEXICON

stdin — STDIO 445

Input-output
By character
fgetc Read a character from a stream
fgets Read a line from a stream
fputc Write a character into a stream
fputs Write a string into a stream
getc Read a character from a stream
getchar Read a character from the standard input stream
gets Read a string from the standard input stream
putc Write character into a stream
putchar Write a character into the standard output
puts Write a string into the standard output
ungetc Push a character back into the input stream

Direct
fread Read data from a stream
fwrite Write data into a stream

Formatted
fprintf Print formatted text into a stream
fscanf Read formatted text from a stream
printf Format and print text into standard output stream
scanf Read formatted text from standard input stream
sprintf Print formatted text into a string
sscanf Read formatted text from string
vfprintf Format and print text into a stream
vprintf Format and print text into standard output stream
vsprintf Format and print text into a string

The prototypes for these functions appear in the header stdio.h, along with definitions for the types
and macros they use.

All STDIO functions access a file or device through a stream. A stream is accessed via an object of
type FILE; this object contains all of the information needed to access the file or device under the
given environment. Because of the heterogeneous environments under which C has been
implemented, the Standard does not describe the interior workings of the FILE object. It states only
that this object contain all information needed to access a stream under the given environment.

Cross-references
Standard, §4.9
The C Programming Language, ed. 2, pp. 151ff, 241ff

See Also
close, create, extended STDIO, file, file-position indicator, Library, line, open, stdio.h, stream

Notes
Let’s C also includes the following extended functions and macros that perform STDIO tasks:

_exit Exit from a program without clean-up
close Close a file
creat Create a file
dup Duplicate a file descriptor
dup2 Duplicate a file descriptor
execall Pass arguments to a program
fdopen Use a file descriptor to open a stream
fgetw Read a word from a stream

LEXICON

446 STDIO

fileno Get a file descriptor
fputw Write a word into a stream
getanb Read unbuffered from auxiliary port
getcnb Read unbuffered from the console
getw Read a word from a stream
in Read a word from a port
inb Read a byte from a port
lseek Set stream’s file-position indicator
open Open a file
out Write a word to a port
outb Write a byte to a port
putanb Write unbuffered to auxiliary port
putcnb Write unbuffered to the console
putw Write a word into a stream
read Read data from a stream
regtop Convert register pair to pointer
tempnam Generate a unique name for a temporary file
unlink Remove a file
write Write data into a stream

The ANSI Standard forbids any ANSI header to declare or define any function or macro that is not
described within the Standard. Therefore, the routines fdopen, fgetw, fileno, fputw, getanb,
getcnb, getw, putanb, putcnb, putw, and regtop have been moved from header stdio.h into a new
header, xstdio.h.

Any programs that uses any of these extended functions will not comply strictly with the Standard,
and may not be portable to other compilers or environments.

stdio.h — Header
Declarations and definitions for STDIO

stdio.h is the header that holds the definitions, declarations, and function prototypes used by the
STDIO routines.

The following lists the types, macros, and manifest constants defined in stdio.h:

Types
FILE Hold descriptor for a stream
fpos_t Hold current position within a file

Cross-references
Standard, §4.9.1
The C Programming Language, ed. 2, pp. 151ff, 241ff

See Also
header, STDIO

stdlib.h — Header
General utilities
#include <stdlib.h>

stdlib.h is a header that declares the Standard’s set of general utilities and defines attending
macros and data types, as follows:

LEXICON

stdio.h — stdlib.h 447

Types
div_t Type of object returned by div
ldiv_t Type of object returned by ldiv

EXIT_FAILURE Value to indicate that program failed to execute properly
EXIT_SUCCESS Value to indicate that program executed properly
MB_CUR_MAX Largest size of multibyte character in current locale
MB_LEN_MAX Largest overall size of multibyte character in any locale
RAND_MAX Largest size of pseudo-random number

Functions
abort End program immediately
abs Compute the absolute value of an integer
atexit Register a function to be executed at exit
atof Convert string to floating-point number
atoi Convert string to integer
atol Convert string to long integer

bsearch Search an array

calloc Allocate dynamic memory

div Perform integer division

exit Terminate a program gracefully

free De-allocate dynamic memory to free memory pool

getenv Read environmental variable

labs Compute the absolute value of a long integer
ldiv Perform long integer division

malloc Allocate dynamic memory
mblen Compute length of a multibyte character
mbstowcs Convert multibyte-character sequence to wide characters
mbtowc Convert multibyte character to wide character

qsort Sort an array

rand Generate pseudo-random numbers
realloc Reallocate dynamic memory

strtod Convert string to floating-point number
strtol Convert string to long integer
strtoul Convert string to unsigned long integer
system Suspend a program and execute another

wcstombs Convert wide-character sequence to multibyte characters
wctomb Convert wide character to multibyte character

Cross-references
Standard, §4.10.1
The C Programming Language, ed. 2, p. 251

See Also
general utilities

LEXICON

448 stdlib.h

stdout — Macro
Pointer to standard output stream
#include <stdio.h>

When a C program begins, it opens three text streams by default: the standard error, the standard
input, and the standard output. stdout points to the FILE object that accesses the standard output
stream. This is the stream into which non-diagnostic output is written. Under Let’s C, the
standard output stream is associated with the user’s terminal.

stdout is defined in the header stdio.h.

Example
For an example of stdout in a program, see setvbuf.

Cross-references
Standard, §4.9.1, §4.9.3
The C Programming Language, ed. 2, p. 243

See Also
stdin, stderr, standard output, STDIO, stdio.h

stime() — Extended function (libc)
Set the operating system time
#include <time.h>
#include <xtime.h>
int stime(time_t *timep);

stime sets the operating system time, which Let’s C defines as being the number of seconds since
midnight of January 1, 1970, 0h00m00s UTC. The argument timep points to the new system time,
which is of the type time_t. This is defined in the header file time.h as being equivalent to a long.

stime returns -1 on error, zero otherwise.

Example
The following example prints the time, then uses stime to reset the time by one hour.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

time_t tp;

/* print current time */
time(&tp);
printf("%s\n", ctime(&tp));

/* subtract one hour (3600 seconds) from current time */
tp -= 3600;
if (stime(&tp) == -1) {

printf("Cannot reset time.\n");
exit(EXIT_FAILURE);

}

/* print altered time */
time(&tp);
printf("%s\n", ctime(&tp));

LEXICON

stdout — stime() 449

/* add one hour to current time, to correct above */
tp += 3600;
if (stime(&tp) == -1) {

printf("Cannot re-reset time.\n");
exit(EXIT_FAILURE);

}

/* print fixed time, to confirm correction */
time(&tp);
printf("%s\n", ctime(&tp));
return EXIT_SUCCESS;

}

See Also
extended time

Notes
To conform with the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be altered.

storage-class specifiers — Overview
A storage-class specifier specifies the manner in which an object is to be stored in memory. There
are five such specifiers:

auto Automatic storage duration
extern External linkage
register Quick access required
static Internal linkage
typedef Synonym for another type

Only one storage-class specifier is allowed per declaration. The Standard declares as ‘‘obsolescent’’
any declaration that does not have its storage class as the first specifier in a declaration.

Strictly speaking, typedef is not a storage-class specifier. The Standard bundles it into this group
for the sake of convenience.

Cross-references
Standard, §3.5.1
The C Programming Language, ed. 2, p. 210

See Also
declarations, storage class, storage duration

storage duration — Definition
The term storage duration refers to how long a given object is retained within memory. There are
two varieties of storage duration: static and automatic.

An object with static storage duration is retained throughout program execution. Its storage is
reserved, and the object is initialized only when the program begins execution. All string literals
have static duration, as do all objects that are declared globally — that is, declared outside of any
function.

An object with automatic duration is declared within a block of code. It endures within memory
only for the life of that block of code. Memory is allocated for the variable whenever that block is
entered and deallocated when the block is terminated, either by encountering the ‘}’ that closes the
block, or by exiting the block with goto, longjmp, or return.

LEXICON

450 storage-class specifiers — storage duration

A common practice is to declare all automatic variables at the beginning of a function. These
variables endure as long as the function is operating. If the function calls another function, then
these functions are stored away (usually in an special area of memory called the ‘‘stack’’), but they
cannot be accessed until the called function returns.

Cross-references
Standard, §3.1.2.4
The C Programming Language, ed. 2, p. 195

See Also
auto, identifiers, scope, static

strcat() — String handling (libc)
Append one string onto another
char *strcat(char *string1, const char *string2);

strcat copies all characters in string2, including the terminating null character, onto the end of the
string pointed to by string1. The null character at the end of string1 is overwritten by the first
character of string2.

strcat returns the pointer string1.

Example
The following example concatenates two strings.

#include <stdio.h>
#include <string.h>

char string1[80] = "The first string. ";
char string2[] = "The second string.";

main(void)
{

printf("result = %s\n", strcat(string1, string2));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.3.1
The C Programming Language, ed. 2, p. 250

See Also
string handling, strncat

Notes
string1 should point to enough reserved memory to hold itself and string2. Otherwise, data or code
will be overwritten.

strchr() — String handling (libc)
Find a character in a string
#include <string.h>
char *strchr(const char *string, int character);

strchr searches for character within string. The null character at the end of string is included within
the search. It is equivalent to the non-ANSI function index.

Internally, strchr converts character from an int to a char before searching for it within string.

LEXICON

strcat() — strchr() 451

strchr returns a pointer to the first occurrence of character within string. If character is not found, it
returns NULL.

Having strchr search for a null character will always produce a pointer to the end of a string. For
example,

char *string;
assert(strchr(string, ’\0’) == string + strlen(string));

will never fail.

Example
The following example creates functions called replace and trim. replace finds and replaces every
occurrence of an item within a string and returns the altered string. trim removes all trailing
spaces from a string, and returns a pointer to the altered string.

#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <stdio.h>

char *
replace(char *string, char item, char newitem)
{

char *start;

/* replacing 0 is too dangerous */
if ((start = string) == NULL || item == ’\0’)

return(start);
while ((string = strchr(string, item)) != NULL)

*string = newitem;
return(start);

}

char *
trim(char * str)
{

register char *endp;

if(str == NULL)
return(str);

/* start at end of string while in string and spaces */
for(endp = strchr(str, ’\0’);

endp != str && *--endp == ’ ’;)
*endp = ’\0’;

return(str);
}

char string1[] = "Remove trailing spaces ";
char string2[] = "Spaces become dashes.";
main(void)
{

printf("\"%s\"\n", trim(string1));
printf("%s\n", replace(string2, ’ ’, ’-’));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.2
The C Programming Language, ed. 2, p. 249

LEXICON

452 strchr()

See Also
index, memchr, strcspn, string handling, strpbrk, strrchr, strspn, strstr, strtok

strcmp() — String handling (libc)
Compare two strings
#include <string.h>
int strcmp(const char *string1, const char *string2);

strcmp lexicographically compares the string pointed to by string1 with the one pointed to by
string2. Comparison ends when a null character is encountered.

strcmp compares the two strings character by character until it finds a pair of characters that are
not identical. It returns a number less than zero if the character in string1 is less (i.e,. occurs
earlier in the character table) than its counterpart in string2. It returns a number greater than zero
if the character in string1 is greater (i.e,. occurs later in the character table) than its counterpart in
string2. If no characters are found to differ, then the strings are identical and strcmp returns zero.

Example
For an example of this function, see fflush.

Cross-references
Standard, §4.11.4.2
The C Programming Language, ed. 2, p. 250

See Also
memcmp, strcmp, strcoll, string handling, strncmp, strxfrm

Notes
strcmp differs from the memory-comparison routine memcmp in the following ways:

First, strcmp compares strings rather than areas of memory; therefore, it stops when it encounters
a null character.

Second, memcmp takes two pointers to void, whereas strcmp takes two pointers to char. The
following code illustrates how this difference affects these functions:

char carray[10];
int iarray[10];
char *s = "hi";

. . .
strcmp(carray, s) /* RIGHT */
memcmp(carray, s, 3) /* RIGHT */
strcmp(iarray, s) /* WRONG, 1st arg not char * */
memcmp(iarray, s, 3) /* RIGHT, args cast to void * */

It is wrong to use strcmp to compare an int array with a char array, because this function
compares strings. Using memcmp to compare an int array with a char array is permissible
because memcmp simply compares areas of data.

strcoll() — String handling (libc)
Compare two strings, using locale-specific information
#include <string.h>
int strcoll(const char *string1, const char *string2);

strcoll lexicographically compares the string pointed to by string1 with one pointed to by string2.
Comparison ends when a null character is read. strcoll differs from strcmp in that it uses
information concerning the program’s locale, as set by the function setlocale, to help compare

LEXICON

strcmp() — strcoll() 453

strings. It can be used to provide locale-specific collating. See localization for more information
about setting a program’s locale.

strcoll compares the two strings character by character until it finds a pair of characters that are
not identical. It returns a number less than zero if the character in string1 is less (i.e,. occurs
earlier in the character table) than its counterpart in string2. It returns a number greater than zero
if the character in string1 is greater (i.e,. occurs later in the character table) than its counterpart in
string2. If no characters are found to differ, then the strings are identical and strcoll returns zero.

Cross-references
Standard, §4.11.4.3
The C Programming Language, ed. 2, p. 250

See Also
localization, memcmp, strcmp, string handling, strncmp, strxfrm

Notes
The string-comparison routines strcoll, strcmp, and strncmp differ from the memory-comparison
routine memcmp in that they compare strings rather than regions of memory. They stop when they
encounter a null character, but memcmp does not.

strcpy() — String handling (libc)
Copy one string into another
#include <string.h>
char *strcpy(char *string1, const char *string2);

strcpy copies the string pointed to by string2, including the null character, into the area pointed to
by string1.

strcpy returns string1.

Example
For an example of this function, see realloc.

Cross-references
Standard, §4.11.2.3
The C Programming Language, ed. 2, p. 249

See Also
memcpy, memset, string handling, strncpy

Notes
If the region of memory pointed to by string1 overlaps with the string pointed to by string2, the
behavior of strcpy is undefined.

string1 should point to enough reserved memory to hold string2, or code or data will be overwritten.

strcspn() — String handling (libc)
Return length a string excludes characters in another
#include <string.h>
size_t strcspn(const char *string1, const char *string2);

strcspn compares string1 with string2. It then returns the length, in characters, for which string1
consists of characters not found in string2.

LEXICON

454 strcpy() — strcspn()

Example
The following example returns a pointer to the first white-space character in a string. White space
is defined as space, tab, or newline.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

char *
nextwhite(char *string)
{

size_t skipcount;

if(string == NULL)
return NULL;

skipcount = strcspn(string, "\t \n");
return(string + skipcount);

}

char string1[] = "My love is like a red, red, rose";

main(void)
{

printf(nextwhite(string1));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.3
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, string handling, strpbrk, strrchr, strspn, strstr, strtok

stream — Definition
The term stream is a metaphor for the flow of data between a C program and either an external I/O
device (e.g., a terminal) or a file stored on a semi-permanent medium (e.g., disk or tape). A program
can read data from a stream, write data into it, or (in the case of a file) directly access any named
portion of it.

The Standard describes two types of stream: the binary stream and the text stream.

A binary stream is simply a sequence of bytes. The Standard requires that once a program has
written a sequence of bytes into a stream, it should be able to read back the same sequence of bytes
unchanged from that stream — with the sole exception that, in some environments, one or more
null characters may be appended to the end of the sequence.

A text stream, on the other hand, consists of characters that have been organized into lines. A line
in turn, consists of zero or more characters terminated by a newline character. Under MS-DOS, a
text stream is practically identical to a binary stream, with the exception that it cannot read or write
characters other than alphanumeric characters, the null character, and the newline character.

The Standard mandates that when data are written into a binary file, the file is not truncated.
Under Let’s C, the same is true for text files.

The Standard also mandates that an implementation should be able to handle a line that is BUFSIZ
characters long, which includes the terminating newline character. BUFSIZ is a macro that is
defined in the header stdio.h, and must be defined to be equal to at least 256.

The maximum number of streams that can be opened at any one time is given by the macro

LEXICON

stream 455

FOPEN_MAX. Under Let’s C, this is 20, including stdin, stdout, and stderr.

Cross-references
Standard, §4.9.2
The C Programming Language, ed. 2, p. 241

See Also
buffer, file, line, STDIO, stdio.h

strerror() — String handling (libc)
Translate an error number into a string
#include <string.h>
char *strerror(int error);

strerror helps to generate an error message. It takes the argument error, which presumably is an
error code generated by an error condition in a program, and may return a pointer to the
corresponding error message.

The error numbers recognized and the texts of the corresponding error messages all depend upon
the implementation.

Example
This example prints the user’s error message and the standard error message before exiting.

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stddef.h>

fatal(char * msg)
{

int save;

save = errno;
/* this may clobber errno */
fprintf(stderr, "%s", msg);
if (save)

fprintf(stderr, ": %s", strerror(save));
fprintf(stderr, "\n");
exit(save);

}

main(void)
{

/* guaranteed wrong */
sqrt(-1.0);
fatal("What does sqrt say to -1?");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.6.2
The C Programming Language, ed. 2, p. 250

See Also
error codes, errors, perror, string handling

LEXICON

456 strerror()

Notes
strerror returns a pointer to a static array that may be overwritten by a subsequent call to strerror.

strerror differs from the related function perror in the following ways: strerror receives the error
number through its argument error, whereas perror reads the global constant errno. Also, strerror
returns a pointer to the error message, whereas perror writes the message directly into the standard
error stream.

The error numbers recognized and the texts of the messages associated with each error number
depend upon the implementation. However, strerror and perror return the same error message
when handed the same error number.

strftime() — Time function (libc)
Format locale-specific time
#include <time.h>
size_t strftime(char *string, size_t maximum, const char *format,

const struct tm *brokentime);

The function strftime provides a locale-specific way to print the current time and date. It also gives
you an easy way to shuffle the elements of date and time into a string that suits your preferences.

strftime references the portion of the locale that is affected by the calls

setlocale(LC_TIME, locale);

or

setlocale(LC_ALL, locale);

For more information on setting locales, see the entry for localization.

string points to the region of memory into which strftime writes the date and time string it
generates. maximum is the maximum number of characters that can be written into string. string
should point to an area of allocated memory at least maximum+1 bytes long; if it does not, reserved
portions of memory may be overwritten.

brokentime points to a structure of type tm, which contains the broken-down time. This structure
must first be initialized by either of the functions localtime or gmtime.

Finally, format points to a string that contains one or more conversion specifications, which guide
strftime in building its output string. Each conversion specification is introduced by the percent
sign ‘%’. When the output string is built, each conversion specification is replaced by the
appropriate time element. Characters within format that are not part of a conversion specification
are copied into string; to write a literal percent sign, use ‘‘%%’’.

strftime recognizes the following conversion specifiers:

a The locale’s abbreviated name for the day of the week.

A The locale’s full name for the day of the week.

b The locale’s abbreviated name for the month.

B The locale’s full name for the month.

c The locale’s default representation for the date and time.

d The day of the month as an integer (01 through 31).

H The hour as an integer (00 through 23).

LEXICON

strftime() 457

I The hour as an integer (01 through 12).

j The day of the year as an integer (001 through 366).

m The month as an integer (01 through 12).

M The minute as an integer (00 through 59).

p The locale’s way of indicating morning or afternoon (e.g, in the United States, ‘‘AM’’ or ‘‘PM’’).

S The second as an integer (00 through 59).

U The week of the year as an integer (00 through 53); regard Sunday as the first day of the week.

w The day of the week as an integer (0 through 6); regard Sunday as the first day of the week.

W The day of the week as an integer (0 through 6); regard Monday as the first day of the week.

x The locale’s default representation of the date.

X The locale’s default representation of the time.

y The year within the century (00 through 99).

Y The full year, including century.

Z The name of the locale’s time zone. If no time zone can be determined, print a null string.

Use of any conversion specifier other than the ones listed above will result in undefined behavior.

If the number of characters written into string is less than or equal to maximum, then strftime
returns the number of characters written. If, however, the number of characters to be written
exceeds maximum, then strftime returns zero and the contents of the area pointed to by string are
indeterminate.

Cross-references
Standard, §4.12.3.5
The C Programming Language, ed. 2, p. 256

See Also
asctime, ctime, date and time, gmtime, localtime, time_t, tm

Notes
strftime is modelled after the UNIX command date.

string.h — Header
#include <string.h>
string.h is the header that holds the declarations and definitions of all routines that handle strings
and buffers. For a list of these routines, see string handling.

Cross-references
Standard, §4.11
The C Programming Language, ed. 2, p. 249

See Also
header, string handling

LEXICON

458 string.h

string handling — Overview
#include <string.h>
The Standard describes 22 routines for handling strings and regions of memory. All are declared in
the header string.h.

String comparison
memcmp Compare two regions
strcmp Compare two strings
strcoll Compare two strings, using locale information
strncmp Compare one string with first n bytes of another
strxfrm Transform a string using locale information

String concatenation
strcat Concatenate two strings
strncat Concatenate one string with n bytes of another

String copying
memcpy Copy one region into another
memmove Copy one region into another with which it may overlap
strcpy Copy one string into another
strncpy Copy n bytes from one string into another

String miscellaneous
memset Fill a region with a character
strerror Return the text of a pre-defined error message
strlen Return the length of a string

String searching
memchr Find first occurrence of a character in a region
strchr Find first occurrence of a character in a string
strcspn Find how much of the initial portion of a string

consists of characters not found in another string
strpbrk Find first occurrence in one string of any character

from another string
strrchr Find last occurrence of a character within a string
strspn Find how much of the initial portion of string

consists only of characters from another string
strstr Find one string within another string
strtok Break a string into tokens

Cross-references
Standard, §4.11
The C Programming Language, ed. 2, p. 249

See Also
Library, string, string.h

Notes
Let’s C includes three additional functions for string searching: index, pnmatch, and rindex.

index and rindex are synonymous with, respectively, strchr and strrchr. They are included only to
support existing code, and it is recommended that they not be used in new code. pnmatch
resembles strstr, except that it allows you to include wildcards in the search pattern. See their
respective Lexicon entries for more information.

LEXICON

string handling 459

string literal — Definition
A string literal consists of zero or more characters that are enclosed by quotation marks ‘"’. For
example, the following is a string literal:

"This is a string literal."

Each character within a string literal is handled exactly as if it were within a character constant,
with the following exceptions: The apostrophe ´ may be represented either by itself or by the escape
sequence \´, and the quotation mark ‘"’ must be represented by the escape sequence \".

A string literal has static duration. Its type is array of char which is initialized to the string of
characters enclosed within the quotation marks.

If string literals are adjacent, the translator will concatenate them. For example, the string literals

"Here’s a string literal" "Here’s another string literal"

are automatically concatenated into one string literal.

If a string literal is not followed by another string literal, then the translator appends a null
character to the end of the string as a terminator.

If two or more string literals within the same scope are identical, then the translator may store only
one of them in memory and redirect to that one copy all references to any of the duplicate literals.
For this reason, a program’s behavior is undefined whenever it modifies a string literal.

A wide-character literal is a string literal that is formed of wide characters rather than ordinary, one-
byte characters. It is marked by the prefix ‘L’. For example, the following

L"This is a wide-character literal"

is stored in the form of a string of wide characters. See multibyte characters for more information
about wide characters.

Cross-references
Standard, §3.1.4
The C Programming Language, ed. 2, p. 194

See Also
", escape sequences, lexical elements, string, trigraphs

Notes
Because trigraph sequences are interpreted in translation phase 1, before string literals are parsed,
a string literal that contains trigraph sequences will be translated to a different string. This is a
quiet change that may break existing code.

strip — Command
Strip debug table from executable file
strip -drs file ...

strip removes the debug tables from a executable file that had been compiled with the -VCSD
option. It makes the executable file noticeably smaller.

See Also
cc, commands, nm, size

Notes
strip can be used only on fully linked files.

LEXICON

460 string literal — strip

strlen() — String handling (libc)
Measure the length of a string
size_t strlen(const char *string)

strlen counts the number of characters in string up to the null character that ends it. It returns the
number of characters in string, excluding the null character that ends it.

Example
The following example prints the length of an entered string.

#include <stddef.h>
#include <string.h>
#include <stdio.h>

main(void)
{

char buf[132];

printf("Enter something\n");
if(gets(buf) != NULL)

printf("You entered %lu characters\n",
(unsigned long)strlen(buf));

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.6.3
The C Programming Language, ed. 2, p. 250

See Also
string handling

strncat() — String handling (libc)
Append n characters of one string onto another
#include <string.h>
char *strncat(char *string1, const char *string2, size_t n);

strncat copies up to n characters from the string pointed to by string2 onto the end of the one
pointed to by string1. It stops when n characters have been copied or it encounters a null character
in string2, whichever occurs first. The null character at the end of string1 is overwritten by the first
character of string2.

strncat returns the pointer string1.

Example
The following example concatenates two strings to make a file name. It works for an operating
system in which a file name can have no more than eight characters, and a suffix of no more than
three characters.

#include <string.h>
#include <stdio.h>

LEXICON

strlen() — strncat() 461

char *
dosfilen(char *dosname, char *filename, char *filetype)
{

*dosname = ’\0’;
/* strncpy() doesn’t guarantee a NULL */
strncat(dosname, filename, 8);
strcat(dosname, ".");
return(strncat(dosname, filetype, 3));

}

main(void)
{

char dosname[13];

puts(dosfilen(dosname, "A_LONG_FILENAME",
"A_LONG_FILETYPE"));

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.3.2
The C Programming Language, ed. 2, p. 250

See Also
strcat, string handling

Notes
strncat always appends a null character onto the end of the concatenated string. Therefore, the
number of characters appended to the end of string1 could be as many as n+1. string1 should point
to enough allocated memory to hold itself plus n+1 characters; if it does not, data or code will be
overwritten.

strncmp() — String handling (libc)
Compare one string with a portion of another
#include <string.h>
int strncmp(const char *string1, const char *string2, size_t n);

strncmp compares string1 with n bytes of string2. Comparison ends when a null character is read.

strncmp compares the two strings character by character until it finds a pair of characters that are
not identical. It returns a number less than zero if the character in string1 is less (i.e,. occurs
earlier in the character table) than its counterpart in string2. It returns a number greater than zero
if the character in string1 is greater (i.e,. occurs later in the character table) than its counterpart in
string2. If no characters are found to differ, then the strings are identical and strncmp returns zero.
Comparison ends either when n bytes have been compared or a null character has been
encountered in either string. The null character is compared before strncmp terminates.

Example
The following example searches for a word within a string. It is a simple implementation of the
function strstr.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

LEXICON

462 strncmp()

void fatal(const char *string)
{

fprintf(stderr, "%s\n", string);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

int word, string, i;

if (--argc != 2)
fatal("Usage: example word string");

word = strlen(argv[1]);
string = strlen(argv[2]);
if (word >= string)

fatal("Word is longer than string being searched.");

/* walk down "string" and search for "word" */
for (i = 0; i < string - word; i++)

if (strncmp(argv[2]+i, argv[1], word) == 0) {
printf("%s is in %s.\n", argv[1], argv[2]);
exit(EXIT_SUCCESS);

}

/* if we get this far, "word" isn’t in "string" */
printf("%s is not in %s.\n", argv[1], argv[2]);
exit(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.4.4
The C Programming Language, ed. 2, p. 250

See Also
memcmp, strcmp, strcoll, string handling, strxfrm

Notes
The string-comparison routines strcoll, strcmp, and strncmp differ from the memory-comparison
routine memcmp in that they compare strings rather than regions of memory. They stop when they
encounter a null character, but memcmp does not.

strncpy() — String handling (libc)
Copy one string into another
#include <string.h>
char *strncpy(char *string1, const char *string2, size_t n);

strncpy copies n characters from the string pointed to by string2 into the area pointed to by string1.
Copying ends when n bytes have been copied or a null character is encountered in string2.

If string2 is less than n characters long, strncpy pads string1 with null characters until n characters
have been deposited.

strncpy returns string1.

Example
This example reads a file of names and changes them from the format

first_name [middle_initial] last_name

LEXICON

strncpy() 463

to the format:

last_name, first_name [middle_initial]

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NNAMES 512
#define MAXLEN 60
#define PERIOD ’.’
#define SPACE ’ ’
#define COMMA ’,’
#define NEWLINE ’\n’

char *array[NNAMES];
char gname[MAXLEN], lname[MAXLEN];

main(int argc, char *argv[])
{

FILE *fp;
int count, num;
char *name, string[MAXLEN], *cptr, *eptr;
unsigned glength, length;

/* check number of arguments */
if (--argc != 1) {

fprintf (stderr, "Usage: example filename\n");
exit(EXIT_FAILURE);

}

/* open file */
if ((fp = fopen(argv[1], "r")) == NULL) {

fprintf(stderr, "Cannot open %s\n", argv[1]);
exit(EXIT_FAILURE);

}
count = 0;

/* get line and examine it */
while (fgets(string, MAXLEN, fp) != NULL) {

if ((cptr = strchr(string, PERIOD)) != NULL) {
cptr++;
cptr++;

} else if ((cptr=strchr(string, SPACE))!=NULL)
cptr++;

else continue;

strcpy(lname, cptr);
eptr = strchr(lname, NEWLINE);
*eptr = COMMA;

strcat(lname, " ");
glength = (unsigned)(strlen(string)-strlen(cptr));
strncpy(gname, string, glength);

name = strncat(lname, gname, glength);
length = (unsigned)strlen(name);
array[count] = (char *)malloc(length + 1);

strcpy(array[count],name);
count++;

}

LEXICON

464 strncpy()

for (num = 0; num < count; num++)
printf("%s\n", array[num]);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.2.4
The C Programming Language, ed. 2, p. 249

See Also
memcpy, memset, strcpy, string handling

Notes
string1 should point to enough reserved memory to hold n characters. Otherwise, code or data will
be overwritten.

If the region of memory pointed to by string1 overlaps with the string pointed to by string2, then the
behavior of strncpy is undefined.

strpbrk() — String handling (libc)
Find first occurrence of a character from another string
#include <string.h>
char *strpbrk(const char *string1, const char *string2);

strpbrk returns a pointer to the first character in string1 that matches any character in string2. It
returns NULL if no character in string1 matches a character in string2. The set of characters that
string2 points to is sometimes called the ‘‘break string’’. For example,

char *string = "To be, or not to be: that is the question.";
char *brkset = ",;";
strpbrk(string, brkset);

returns the value of the pointer string plus six. This points to the comma, which is the first
character in the area pointed to by string that matches any character in the string pointed to by
brkset.

Example
This example finds the first white-space character or punctuation character in a string and returns
a pointer to it. White space is defined as tab, space, and newline. Punctuation is defined as the
following characters:

! @ # $ % ^ & * () - + = ‘ ~
{ } [] : ; ’ " | / , . ?

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

char *
findseparator(char *string)
{

static char separators[] =
" \n\t!@#$%^&*()-+=‘’~{}[]:;\"|\\/,.?";

if(string == NULL)
return(NULL);

LEXICON

strpbrk() 465

return strpbrk(string, separators);
}

char string1[]="I shall arise and go now/And go to Innisfree."

main(void)
{

printf(findseparator(string1));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.4
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string handling, strpbrk, strrchr, strspn, strstr, strtok

Notes
strpbrk resembles the function strtok in functionality, but unlike strtok, it preserves the contents
of the strings being compared. It also resembles the function strchr, but lets you search for any one
of a group of characters, rather than for one character alone.

strrchr() — String handling (libc)
Search for rightmost occurrence of a character in a string
#include <string.h>
char *strrchr(const char *string, int character);

strrchr looks for the last, or rightmost, occurrence of character within string. character is declared
to be an int, but is handled within the function as a char. Another way to describe this function is
to say that it performs a reverse search for a character in a string. It is equivalent to the non-ANSI
function rindex.

strrchr returns a pointer to the rightmost occurrence of character, or NULL if character could not be
found within string.

Example
This example truncates a string by replacing the character after the last terminating character with
a zero. It returns the truncated string.

#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

char *
truncate(char *string, char endat)
{

char *endchr;

if(string!=NULL && (endchr=strrchr(string, endat))!=NULL)
*++endchr = ’\0’;

return(string);
}

char string1[] = "Here we go gathering nuts in May.";

LEXICON

466 strrchr()

main(void)
{

puts(truncate(string1, ’,’));
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.5
The C Programming Language, ed. 2, p. 249

See Also
memchr, rindex, strchr, strcspn, string handling, strpbrk, strspn, strstr, strtok

strspn() — String handling (libc)
Return length a string includes characters in another
#include <string.h>
size_t strspn(const char *string1, const char *string2);

strspn returns the length for which string1 initially consists only of characters that are found in
string2. For example,

char *s1 = "hello, world";
char *s2 = "kernighan & ritchie";
strcspn(s1, s2);

returns two, which is the length for which the first string initially consists of characters found in the
second.

Example
This example returns a pointer to the first non-white-space character in a string. White space is
defined as a space, tab, or newline character.

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

char *
skipwhite(char *string)
{

size_t skipcount;

if (string == NULL)
return NULL;

skipcount = strspn(string, "\t \n");
return(string+skipcount);

}

char string1[] = "\t Inventor: One who makes an intricate\n";
char string2[] = "arrangement of wheels, levers, and springs,\n;
char string3[] = " and calls it civilization.\n";

main(void)
{

printf("%s", skipwhite(string1));
printf("%s", skipwhite(string2));
printf("%s", skipwhite(string3));
return(EXIT_SUCCESS);

}

LEXICON

strspn() 467

Cross-references
Standard, §4.11.5.6
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string handling, strpbrk, strrchr, strstr, strtok

strstr() — String handling (libc)
Find one string within another
#include <string.h>
char *strstr(const char *string1, const char *string2);

strstr looks for string2 within string1. The terminating null character is not considered part of
string2.

strstr returns a pointer to where string2 begins within string1, or NULL if string2 does not occur
within string1.

For example,

char *string1 = "Hello, world";
char *string2 = "world";
strstr(string1, string2);

returns string1 plus seven, which points to the beginning of world within Hello, world. On the
other hand,

char *string1 = "Hello, world";
char *string2 = "worlds";
strstr(string1, string2);

returns NULL because worlds does not occur within Hello, world.

Example
This function counts the number of times a pattern appears in a string. The occurrences of the
pattern can overlap.

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

size_t
countpat(char *string, char *pattern)
{

size_t found_count = 0;
char *found;

if((found = string)==NULL || pattern==NULL)
return 0;

while((found = strstr(found, pattern)) != NULL) {
/* move past beginning of this one */
found++;
/* count it */
found_count++;

}
return(found_count);

}

LEXICON

468 strstr()

char string1[] = "Badges, Badges -- we need no stinking Badges.";
char string2[] = "Badges";

main(void)
{

printf("%s occurs %d times in %s\n",
string2, countpat(string1, string2), string1);

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.11.5.7
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string handling, strpbrk, strrchr, strspn, strtok

strtod() — General utility (libc)
Convert string to floating-point number
#include <stdlib.h>
double strtod(const char *string, char **tailptr);

strtod converts the string pointed to by string to a double-precision floating-point number.

strtod reads the string pointed to by string, and parses it into three portions: beginning, subject
sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that will be converted into a floating-point number.
It begins when strtod reads a sign character, a numeral, or a decimal-point character. It can
include at least one numeral, at most one decimal point, and may end with an exponent marker
(either ‘e’ or ‘E’) followed by an optional sign and at least one numeral. Reading continues until
strtod reads either a second decimal-point character or exponent marker, or any other non-
numeral.

The tail continues from the end of the subject sequence to the null character that ends the string.

strtod ignores the beginning portion of the string. It then converts the subject sequence to a
double-precision number and returns it. Finally, it sets the pointer pointed to by tailptr to the
address of the first character of the string’s tail.

strtod returns the double generated from the subject sequence. If no subject sequence could be
recognized, it returns zero. If the number represented by the subject sequence is too large to fit into
a double, then strtod returns HUGE_VAL and sets the global constant errno to ERANGE. If the
number represented by the subject sequence is too small to fit into a double, then strtod returns
zero and again sets errno to ERANGE.

Example
For an example of using this function in a program, see sqrt.

Cross-references
Standard, §4.10.4
The C Programming Language, ed. 2, p. 251

See Also
atof, atoi, atol, errno, general utilities, strtol, strtoul

LEXICON

strtod() 469

Notes
The character that strtod recognizes as representing the decimal point depends upon the program’s
locale, as set by the function setlocale. See localization for more information.

Initial white space in the string pointed to by string is ignored. White space is defined as being all
characters so recognized by the function isspace; the current locale setting may affect the operation
of isspace.

strtok() — String handling (libc)
Break a string into tokens
#include <string.h>
char *strtok(char *string1, const char *string2);

strtok helps to divide a string into a set of tokens. string1 points to the string to be divided, and
string2 points to the character or characters that delimit the tokens.

strtok divides a string into tokens by being called repeatedly.

On the first call to strtok, string1 should point to the string being divided. strtok searches for a
character that is not included within string2. If it finds one, then strtok regards it as the beginning
of the first token within the string. If one cannot be found, then strtok returns NULL to signal that
the string could not be divided into tokens. When the beginning of the first token is found, strtok
then looks for a character that is included within string2. When one is found, strtok replaces it with
a null character to mark the end of the first token, stores a pointer to the remainder of string1
within a static buffer, and returns the address of the beginning of the first token.

On subsequent calls to strtok, set string1 to NULL. strtok then looks for subsequent tokens, using
the address that it saved from the first call. With each call to strtok, string2 may point to a different
delimiter or set of delimiters.

Example
The following example breaks command_string into individual tokens and puts pointers to the
tokens into the array tokenlist[]. It then returns the number of tokens created. No more than
maxtoken tokens will be created. command_string is modified to place ’\0’ over token separators.
The token list points into command_string. Tokens are separated by spaces, tabs, commas,
semicolons, and newlines.

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

tokenize(char *command_string, char *tokenlist[],
size_t maxtoken)

{
static char tokensep[]="\t\n ,;";
int tokencount;
char *thistoken;

if(command_string == NULL || !maxtoken)
return 0;

thistoken = strtok(command_string, tokensep);

for(tokencount = 0; tokencount < maxtoken &&
thistoken != NULL;) {

tokenlist[tokencount++] = thistoken;
thistoken = strtok(NULL, tokensep);

}

LEXICON

470 strtok()

tokenlist[tokencount] = NULL;
return tokencount;

}

#define MAXTOKEN 100
char *tokens[MAXTOKEN];
char buf[80];

main(void)
{

for(;;) {
int i, j;

printf("Enter string ");
fflush(stdout);
if(gets(buf) == NULL)

exit(EXIT_SUCCESS);

i = tokenize(buf, tokens, MAXTOKEN);
for(j = 0; j < i; j++)

printf("%s\n", tokens[j]);
}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.11.5.8
The C Programming Language, ed. 2, p. 250

See Also
memchr, strchr, strcspn, string handling, strpbrk, strrchr, strspn, strstr

strtol() — General utility (libc)
Convert string to long integer
#include <stdlib.h>
long strtol(const char *sptr, char **tailptr, int base);

strtol converts the string pointed to by sptr into a long.

base gives the base of the number being read, from 0 to 36. This governs the form of the number
that strtol expects. If base is zero, then strtol expects a number in the form of an integer constant.
See integer constant for more information. If base is set to 16, then the string to be converted may
be preceded by 0x or 0X.

strtol reads the string pointed to by sptr and parses it into three portions: beginning, subject
sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that will be converted into a long. It is introduced
by a sign character, a numeral, or an alphabetic character appropriate to the base of the number
being read. For example, if base is set to 16, then strtol will recognize the alphabetic characters ‘A’
through ‘F’ and ‘a’ to ‘f’ as indicating numbers. It continues to scan until it encounters any
alphabetic character outside the set recognized for the setting of base, or the null character.

The tail continues from the end of the subject sequence to the null character that ends the string.

strtol ignores the beginning portion of the string. It then converts the subject sequence to a long.
Finally, it sets the pointer pointed to by tailptr to the address of the first character of the string’s tail.

LEXICON

strtol() 471

strtol returns the long that it has built from the subject sequence. If it could not build a number,
for whatever reason, it returns zero. If the number it builds is too large or too small to fit into a
long, it returns, respectively, LONG_MAX or LONG_MIN and sets the global variable errno to the
value of the macro ERANGE.

Cross-references
Standard, §4.10.1.5
The C Programming Language, ed. 2, p. 252

See Also
atof, atoi, atol, errno, general utility, strtod, strtoul

Notes
Initial white space in the string pointed to by string is ignored. White space is defined as being all
characters so recognized by the function isspace; the current locale setting may affect the operation
of isspace.

strtoul() — General utility (libc)
Convert string to unsigned long integer
#include <stdlib.h>
unsigned long strtoul(const char *sptr, char **tailptr, int base);

strtoul converts the string pointed to by sptr into an unsigned long.

base gives the base of the number being read, from 0 to 36. This governs the form of the number
that strtoul expects. If base is zero, then strtoul expects a number in the form of an integer
constant. See integer constant for more information. If base is set to 16, then the string to be
converted may be preceded by 0x or 0X.

strtoul reads the string pointed to by sptr and parses it into three portions: beginning, subject
sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that will be converted into an unsigned long. It is
introduced by a sign character, a numeral, or an alphabetic character appropriate to the base of the
number being read. For example, if base is set to 16, then strtoul will recognize the alphabetic
characters ‘A’ through ‘F’ and ‘a’ to ‘f’ as indicating numbers. It continues to scan until it
encounters any alphabetic character outside the set recognized or the setting of base, or the null
character.

The tail continues from the end of the subject sequence to the null character that ends the string.

strtoul ignores the beginning portion of the string. It then converts the subject sequence to an
unsigned long. Finally, it sets the pointer pointed to by tailptr to the address of the first character of
the string’s tail.

strtoul returns the unsigned long that it has built from the subject sequence. If it could not build
a number, for whatever reason, it returns zero. If the number it builds is too large to fit into an
unsigned long, it returns ULONG_MAX and sets the global variable errno to the value of the macro
ERANGE.

Example
This example uses strtoul as a hash function for table lookup. It demonstrates both hashing and
linked lists. Hash-table lookup is the most efficient when used to look up entries in large tables;
this is an example only.

LEXICON

472 strtoul()

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
* For fastest results, use a prime about 15% bigger
* than the table. If short of space, use a smaller prime.
*/

#define HASHP 11
struct symbol {

struct symbol *next;
char *name;
char *descr;

} *hasht[HASHP], codes[] = {

NULL, "a286", "frogs togs",
NULL, "xy7800", "doughnut holes",
NULL, "z678abc", "used bits",
NULL, "xj781", "black-hole varnish",
NULL, "h778a", "table hash",
NULL, "q167", "log(-5.2)",
NULL, "18888", "quid pro quo",
NULL, NULL, NULL /* end marker */

};

void
buildTable(void)
{

long h;
register struct symbol *sym, **symp;

for(symp = hasht; symp != (hasht + HASHP); symp++)
*symp = NULL;

for(sym = codes; sym->descr != NULL; sym++) {
/*
* hash by converting to base 36. There are
* many ways to hash, but use all the data.
*/

h = strtoul(sym->name, NULL, 36) % HASHP;
sym->next = hasht[h];
hasht[h] = sym;

}
}

struct symbol *
lookup(char *s)
{

long h;
register struct symbol *sym;

h = strtoul(s, NULL, 36) % HASHP;
for(sym = hasht[h]; sym != NULL; sym = sym->next)

if(!strcmp(sym->name, s))
return(sym);

return(NULL);
}

LEXICON

strtoul() 473

main(void)
{

char buf[80];
struct symbol *sym;

buildTable();
for(;;) {

printf("Enter name ");
fflush(stdout);

if(gets(buf) == NULL)
exit(EXIT_SUCCESS);

if((sym = lookup(buf)) == NULL)
printf("%s not found\n", buf);

else
printf("%s is %s\n", buf, sym->descr);

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.1.5
The C Programming Language, ed. 2, p. 252

See Also
atof, atoi, atol, general utilities, strtod, strtol

Notes
This function has no historical usage, but provides greater functionality than does strtol.

Initial white space in the string pointed to by string is ignored. White space is defined as being all
characters so recognized by the function isspace. The current locale setting may affect the operation
of isspace.

struct — C keyword
The keyword struct introduces a structure. This is an aggregate data type that consists of a number
of fields, or members, each of which can have its own name and type.

The members of a structure are stored sequentially. Unlike the related type union, the elements of
a struct do not overlap. Thus, the size of a struct is the total of the sizes of all of its members, plus
any bytes used for alignment (if the implementation requires them). Aligning bytes may not be
inserted at the beginning of a struct, but may appear in its middle, or at the end. For this reason, it
is incorrect to assume that any two members of a structure abut each other in memory.

Any type may be used within a struct, including bit-fields. No incomplete type may be used; thus, a
struct may not contain a copy of itself, but it may contain a pointer to itself. A struct is regarded
as incomplete until its closing ‘}’ is read.

The members of a struct are stored in the order in which they are declared. Thus, a pointer to a
struct also points to the beginning of the struct’s first member.

The following is an example of a structure:

LEXICON

474 struct

struct person {
char name[30];
char st_address[25];
char city[20];
char state[2];
char zip[9];
char id_number[9];

} MYSELF;

This example defines a structure type person, as well as an instance of this type, called MYSELF.

Cross-references
Standard, §3.1.2.5, §3.5.2.1
The C Programming Language, ed. 2, pp. 127ff

See Also
alignment, member name, tag, types, union

strxfrm() — String handling (libc)
Transform a string
#include <string.h>
size_t strxfrm(char *string1, const char *string2, size_t n);

strxfrm transforms string2 using information concerning the program’s locale, as set by the
function setlocale. See localization for more information about setting a program’s locale.

strxfrm writes up to n bytes of the transformed result into the area pointed to by string1. It returns
the length of the transformed string, not including the terminating null character. The
transformation incorporates locale-specific material into string2.

If n is set to zero, strxfrm returns the length of the transformed string.

If two strings return a given result when compared by strcoll before transformation, they will return
the same result when compared by strcmp after transformation.

Cross-references
Standard, §4.11.4.5
The C Programming Language, ed. 2, p. 250

See Also
localization, memcmp, strcmp, strcoll, string handling, strncmp

Notes
If strxfrm returns a value equal to or greater than n, the contents of the area pointed to by string1
are indeterminate.

swab() — Extended function (libc)
Swap a pair of bytes
void swab(char *src, char *dest, unsigned short nb);

The ordering of bytes within a word differs from machine to machine. This may cause problems
when moving binary data between machines. swab interchanges each pair of bytes in the array src
that is n bytes long, and writes the result into the array dest. The length nb should be an even
number, or the last byte will not be touched. src and dest may be the same place.

LEXICON

strxfrm() — swab() 475

Example
This example prompts for an integer; it then prints the integer both as you entered it, and as it
appears with its bytes swapped.

#include <stdio.h>
#include <stdlib.h>
extern void swab(char *src, char *dest, unsigned short nb);

main(void)
{

short word;

printf("Enter an integer: \n");
scanf("%d", &word);
printf("The word is 0x%x\n", word);
swab(&word, &word, 2);
printf("The word with bytes swapped is 0x%x\n", word);
return(EXIT_SUCCESS);

}

See Also
byte ordering, extended miscellaneous

switch — C keyword
Select an entry in a table
switch (expression) statement

switch evaluates expression, jumps to the case label whose expression is equal to expression, and
continues execution from there. expression may evaluate to any integral type, not just an int. Every
case label’s expression is cast to the type of conditional before it is compared with expression.

If no case expression matches expression, switch jumps to the point marked by the default label. If
there is no default label, then switch does not jump and no statement is executed; execution then
continues from the ‘}’ that marks the end of the switch statement.

The program continues its execution from the point to which switch jumps, either until a break,
continue, goto, or return statement is read, or until the ‘}’ that encloses all of the case statements
is encountered.

All case labels are subordinate to the closest enclosing switch statement. No two case labels can
have expressions with the same value. However, if a case label introduces a secondary switch
statement, then that switch statement’s suite of case labels may duplicate the values used by the
case labels of the outer switch statement.

Example
For an example of this statement, see printf.

Cross-references
Standard, §3.6.4.2
The C Programming Language, ed. 2, pp. 58ff

See Also
break, case, default, if, statements

Notes
It is good programming practice always to use a default label with a switch statement. There may
be only one default label with any switch statement.

LEXICON

476 switch

The number of case labels that can be included with a switch statement may vary from
implementation to implementation. The Standard requires that every conforming implementation
allow a switch statement to have up to at least 257 case labels.

The first edition of The C Programming Language requires that conditional may evaluate to an int.
The Standard lifts this requirement: conditional may now be any integral type, from short to
unsigned long. Every expression associated with a case label will be altered to conform to the type
of conditional. Therefore, if a program depends upon conditional or any expression being an int, it
may work differently under a conforming translator. This is a quiet change that may break existing
code.

system() — General utility (libc)
Suspend a program and execute another
#include <stdlib.h>
int system(const char *program);

system provides a way to execute another program from within a C program. It suspends the
program currently being run, and passes the name pointed to by program to MS-DOS. When
program has finished executing, MS-DOS returns to the current program, which then continues its
operation.

If program is set to NULL, system checks to see if a command processor exists. In this case,
system returns zero if a command processor does not exist and nonzero if it does. If program is set
to any value other than NULL, then what system returns is defined by the implementation.

Example
This example execute system commands on request.

#include <stdio.h>
#include <stdlib.h>

syscmds(char * prompt)
{

for(;;) {
char buf[80];

printf(prompt);
fflush(stdout);
if(gets(buf) == NULL || !strcmp(buf, "exit"))

return;
system(buf);

}
}

main(void)
{

printf("Enter system commands: ");
syscmds(">");
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.10.4.5
The C Programming Language, ed. 2, p. 253

See Also
command processor, exit, general utilities

LEXICON

system() 477

T

tag — Definition
A tag is a name that follows the keywords struct, union, or enum. It names the type of object so
declared. For example, in the following code

struct STR {
. . .

};

the identifier STR is a tag. It defines a new type of structure called STR. It does not, however,
allocate any storage for any instance of this type.

Cross-references
Standard, §3.1.2.6
The C Programming Language, ed. 2, pp. 212ff

See Also
member, name space

tail — Command
Print the end of a file
tail [+n[bcl]] [file]
tail [-n[bcl]] [file]

tail copies the last part of file, or of the standard input if none is named, to the standard output.

The given number tells tail where to begin to copy the data. Numbers of the form +number count
from the beginning of the file; those of the form -number count from the end of the file.

A specifier of blocks, characters, or lines (b, c, or l, respectively) may follow the number; the default
is lines. If no number is specified, a default of -10 is assumed.

See Also
commands, egrep

Notes
Because tail buffers data measured from the end of the file, large counts may not work.

tan() — Mathematics (libm)
Calculate tangent
#include <math.h>
double tan(double radian);

tan calculates and returns the tangent of its argument radian, which must be in radian measure.

Cross-references
Standard, §4.5.2.7
The C Programming Language, ed. 2, p. 251

See Also
acos, asin, atan, atan2, cos, mathematics, sin

LEXICON

478 tag — tan()

tanh() — Mathematics (libm)
Calculate hyperbolic tangent
#include <math.h>
double tanh(double value);

tanh calculates the hyperbolic tangent of radian.

Cross-references
Standard, §4.5.3.3
The C Programming Language, ed. 2, p. 251

See Also
cosh, mathematics, sinh

technical information — Overview
The Lexicon includes the following articles that give technical information on the IBM PC and MS-
DOS:

ansi.sys Device driver for console
BIOS data area List magic areas within memory
byte ordering Describe ordering of bytes
i8087 Floating-point co-processor
keyboard Give keyboard scan codes
LARGE model Describe Intel multi-segment memory model
model Describe Intel memory models
SMALL model Describe Intel single-segment memory model

See Also
DOS-specific information

tempnam() — Extended function (libc)
Generate a unique name for a temporary file
char *tempnam(char *directory, char *name);

tempnam constructs a unique temporary name that can be used to name a file.

directory points to the name of the directory in which you want the temporary file written. If this
variable is NULL, tempnam reads the environmental variable TMPDIR and uses it for directory. If
neither directory nor TMPDIR is given, tempnam uses \tmp.

name points to the string of letters that will prefix the temporary name. This string should not be
more than three or four characters, to prevent truncation or duplication of temporary file names. If
name is NULL, tempnam will set it to t.

tempnam uses malloc to allocate a buffer for the temporary file name it returns. If all goes well, it
returns a pointer to the temporary name it has written. Otherwise, it returns NULL if the allocation
fails or if it cannot build a temporary file name successfully.

See Also
extended miscellaneous, mktemp, TMPDIR, tmpfile, tmpnam

Notes
tempnam is not described in the ANSI Standard. Programs that use it will not conform strictly the
Standard, and may not be portable to other compilers or environments.

LEXICON

tanh() — tempnam() 479

time() — Time function (libc)
Get current calendar time
#include <time.h>
time_t time(time_t *tp);

The function time returns the current calendar time. If tp is set a value other than NULL, then
time writes the result to the object pointed to by tp. Let’s C defines the current system time as the
number of seconds since January 1, 1970, 0h00m00s UTC.

time returns an object of the type time_t, which is defined in the header time.h. If the current
calendar time is not available, time returns -1 cast to type time_t.

Example
This example displays the time.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

main(void)
{

time_t t;

/* get the time */
if(-1 == time(&t))

printf("The time is unavailable?");
else

/* display it */
printf(ctime(&t));

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.12.2.4
The C Programming Language, ed. 2, p. 256

See Also
clock, date and time, difftime, mktime, time_t

time — Command
Print current time/Time execution of a command
time
time command
time " command arguments "

The command time performs two different tasks, depending upon whether it is used with or without
arguments.

When time is typed without any arguments, it prints the date and time. The date and time are
presented in a string of the form:

Thu Apr 7 10:35:53 1988 CDT

The extension ‘‘CDT’’ stands for ‘‘Central Daylight Time’’. Daylight savings time will be returned only
if the macro TIMEZONE is set properly in your profile. See TIMEZONE for more information.

If time is used with one or more arguments, it times the execution of a command. For example,
typing time ls prints the contents of the current directory, then prints a string of the form:

LEXICON

480 time() — time

00:00:02.340

which states how long the command took to execute.

If you wish to time a command that takes arguments, you must enclose the command and its
arguments within quotation marks. For example, to time how long it takes to compile the program
window.c with the -VGEM option to the compiler, use the command:

time "cc -VGEM window.c"

See Also
commands, date, msh, time (overview)

time.h — Header
Header for date and time
#include <time.h>

time.h is the header that declares the function and defines the types used to represent time. It
contains prototypes for the following nine functions:

asctime Convert broken-down time into text
clock Get processor time used by the program
ctime Convert calendar time to text
difftime Calculate difference between two times
gmtime Convert calendar time to Universal Coordinated Time
localtime Convert calendar time to local time
mktime Convert broken-down time into calendar time
strftime Format locale-specific time
time Get current calendar time

It also contains definitions for the following data types:

clock_t Encode system time
time_t Encode calendar time
tm Encode broken-down time

It contains a definition for the macro CLK_TCK, which is used to convert the value returned by the
function clock into seconds of real time.

Cross-references
Standard, §4.12
The C Programming Language, ed. 2, p. 255

See Also
CLK_TCK, date and time, header, xtime.h

time_t — Type
Calendar time
#include <time.h>

time_t is a data type that is defined in the header time.h. It is an arithmetic type that can represent
time.

time_t is used to hold the calendar time, as computed from the system time by the function time.
The functions localtime and gmtime use time_t to generate broken-down time, and the function
ctime uses it to create a string that states the current date and time. The function mktime reads
broken-down time and returns calendar time of type time_t.

LEXICON

time.h — time_t 481

Example
For an example of using this type in a program, see difftime.

Cross-references
Standard, §4.12.1
The C Programming Language, ed. 2, p. 255

See Also
broken-down time, calendar time, clock_t, date and time

time_to_jday() — Extended function (libc)
Convert system time to Julian date
#include <time.h>
#include <xtime.h>
jday_t time_to_jday(time_t time);

time_to_jday converts system time to Julian days. time is the current system time. It is declared to
be of type time_t, which is defined in the header file time.h as being equivalent to a long. Let’s C
defines the current system time as being the number of seconds from January 1, 1970, 0h00m00s
UTC. The function time returns the current system time in this format.

time_to_jday returns the structure jday_t, which is defined in the header xtime.h. jday_t consists
of two unsigned longs. The first gives the number of the Julian day, which is the number of days
since the beginning of the Julian calendar (January 1, 4713 B.C.). The second gives the number of
seconds since midnight of the given Julian day.

See Also
extended time, jday_to_time, jday_to_tm, tm_to_jday, xtime.h

Notes
To conform with the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be altered.

TIMEZONE — Environmental variable
Time zone information
TIMEZONE=standard:offset[:daylight: date:date:hour:minutes]

TIMEZONE is an environmental parameter that holds information about the user’s time zone. This
information is used by Let’s C’s time routines to construct their description of the current time and
day.

To set TIMEZONE, use the set command, as follows:

set TIMEZONE=description

where description is the string that describes your time zone. What this string consists of will be
described below. Most users write this command into the file AUTOEXEC.BAT, so that TIMEZONE
is set automatically whenever they reboot their system.

The Description String
A TIMEZONE description string consists of seven fields that are separated by colons. Fields 1 and 2
must be filled; fields 3 through 7 are optional.

Field 1 gives the name of your standard time zone. Field 2 gives the time zone’s offset from
Universal Coordinated Time (UTC) in minutes. Offsets are positive for time zones west of Greenwich
and negative for time zones east of Greenwich. For example, users in Chicago set these fields as
follows:

LEXICON

482 time_to_jday() — TIMEZONE

TIMEZONE=CST:360

CST is an abbreviation for Central Standard Time, that area’s time zone; and 360 refers to the fact
that Chicago’s time zone is 360 minutes (six hours) behind that of Greenwich.

Field 3 gives the name of the local daylight saving time zone. In Chicago, for example, this field
would be set as follows:

TIMEZONE=CST:360:CDT

CDT is an abbreviation for Central Daylight Time. The absence of this field indicates that your area
does not use daylight saving time.

Fields 4 and 5 specify the dates on which daylight saving time begins and ends. If field 3 is set but
fields 4 and 5 are not, changes between standard time and daylight saving time will be assumed to
occur at the times legislated in the United States in 1986: at 2 A.M. standard time on the first
Sunday in April, and at 2 A.M. daylight saving time on the last Sunday in October.

Fields 4 and 5 each consist of three numbers separated by periods. The first number specifies
which occurrence of the day in the month marks the change, counting positive occurrences from the
beginning of the month and negative occurrences from the the end of the month. The second
number specifies a day of the week, numbering Sunday as one. The third number specifies a month
of the year, numbering January as one. For example, in Chicago fields 4 and 5 are set to the
following:

TIMEZONE=CST:360:CDT:1.1.4:-1.1.10

If the first number in either field is set to zero, then the last two numbers are assumed to indicate
an absolute date. This is done because some countries switch to daylight saving time on the same
day each year, instead of a given day of the week.

Finally, fields 6 and 7 specify the hour of the day at which daylight saving time begins and ends,
and the number of minutes of adjustment. In Chicago, these are set as follows:

TIMEZONE=CST:360:CDT:1.1.4:-1.1.10:2:60

The ‘2’ of field 6 indicates that the switch to daylight savings time occurs at 2 A.M. The ‘‘60’’ of field
7 indicates that daylight savings time changes the local time by 60 minutes. Although 60 minutes
is the standard change, some regions of the world shift by 30, 45, 90, or 120 minutes; the last shift
is also called ‘‘double daylight saving time’’.

For an example of this variable’s use in a program, see the entry for asctime.

See Also
environmental variable, time

Notes
This environmental variable should be set only if you have set your computer system’s time to
conform with UTC. Otherwise, it will cause such functions as localtime to incorrectly offset the
time they return.

For those requiring more information on this subject, see Time Changes in the World, compiled by
Doris Chase Doane (three volumes, Hollywood, CA, Professional Astrologers, Inc., 1970).

LEXICON

TIMEZONE 483

tm — Type
Encode broken-down time
#include <time.h>

tm is the structure that holds the elements of broken-down time. It contains the following fields.
(The values representable are shown within parentheses):

int tm_sec Second (0-59)
int tm_min Minute (0-59)
int tm_hour Hour (0-23): 0 == midnight
int tm_mday Day of the month (1-31)
int tm_mon Month (0-11): 0 == January
int tm_year Year since 1900 A.D.
int tm_wday Day of week (0-6): 0 == Sunday
int tm_yday Day of the year (0-366)
int tm_isdst Daylight savings time flag

The field tm_isdst indicates whether daylight saving time is currently in effect. It is set to a positive
number if daylight saving time is in effect, to zero if it is not, and to a negative number if
information concerning daylight saving time is not available.

The functions localtime and gmtime read the calendar time, as returned by the function time, and
use it initialize tm; they then return a pointer to the structure.

The function strftime reads tm and uses it to build strings that present the date and time in a
locale-specific manner. Finally, the function mktime reads tm and uses its contents to compute
the corresponding calendar time.

Example
For an example of using this structure in a program, see localtime.

Cross-references
Standard, §4.12.1
The C Programming Language, ed. 2, p. 255

See Also
broken-down time, calendar time, clock_t, date and time, time_t

tm_to_jday() — Extended function (libc)
Convert calendar format to Julian time
#include <time.h>
#include <xtime.h>
jday_t tm_to_jday(tm *time);

tm_to_jday converts the system time, as described in the system calendar format, to Julian time.

time points to a copy of the structure tm, which is defined in the header time.h. The functions
gmtime and localtime return the current time in this format. For more information on tm, see the
entry for time.

tm_to_jday returns the structure jday_t, which is defined in the header xtime.h. jday_t to consist
of two unsigned longs. The first gives the number of the Julian day, which is the number of days
since the beginning of the Julian calendar (January 1, 4713 B.C.). The second gives the number of
seconds since midnight of the given Julian day.

LEXICON

484 tm — tm_to_jday()

See Also
extended time, jday_to_time, jday_to_tm, time, time_to_jday, xtime.h

Notes
To conform with the ANSI Standard, this function has been moved from the header time.h to the
header xtime.h. This may require that some code be altered.

TMPDIR — Environmental variable
Directory that holds temporary files

TMPDIR names the directory into which Let’s C writes its temporary files. If this variable is not set,
the default is the directory in which the source files are kept. Note that this variable need be set
only if space is a problem on the storage device that holds your current directory. For example, the
command

set TMPDIR=a:\tmp

typed at the system prompt tells cc to write temporary files in the directory tmp on drive A:.

It is a good idea to set TMPDIR in autoexec.bat, to ensure that it is always set correctly.

See Also
cc, environmental variable

tmpfile() — STDIO (libc)
Create a temporary file
#include <stdio.h>
FILE *tmpfile(void);

tmpfile creates a file to hold data temporarily. The file is opened into binary update mode (wb+)
and is removed automatically when it is closed or when the program ends. There is no way to
access the temporary file by name. If your program needs to do so, it should open a file explicitly.

tmpfile returns NULL if it could not create the temporary file. If it could, it returns a pointer to the
FILE associated with the temporary file. The function exit removes all files created by tmpfile.

Example
This example implements a primitive file editor that can edit large files. It uses two temporary files
to keep all changes. The editor accepts the following commands:

dn delete; d52 deletes line 52
in insert; i7 inserts line before line 7
pn print; p17 prints line 17
p print the entire file
w write the edited file and quit
q quit without writing the file

The entire temporary file is copied with each command.

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdarg.h>

FILE *fp, *tmp[2];
int linecount;

LEXICON

TMPDIR — tmpfile() 485

void
fatal(char *format, ...)
{

va_list argptr;

/* if there is a system message, display it */
if(errno)

perror(NULL);

/* if there is a user message, use it */
if(format != NULL) {

va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

/*
* Copy up to line number or EOF.
* Return number of lines copied.
*/

static int
copy(int line, FILE *ifp, FILE *ofp)
{

int i, c, count;

count = 0;
for(c=i=1; (i<line || line==-1) && c!=EOF; i++) {

while((c = fgetc(ifp)) != EOF && c != ’\n’)
fputc(c, ofp);

if(c == ’\n’) {
count++;
fputc(’\n’, ofp);

}
}
return(count);

}

/*
* Read a file until line number is read.
* Return 1 if line is found before EOF.
*/

static int
find(int line, FILE *ifp)
{

int i, c;

for(c=i=1; i<line && c!=EOF; i++)
while((c = fgetc(ifp)) != EOF && c != ’\n’)

;
return(c != EOF);

}

main(int argc, char *argv[])
{

int i, line, args;
char c, cmdbuf[80];

if(argc != 2)
fatal("usage: tmpfile filename\n");

LEXICON

486 tmpfile()

if((tmp[0]=tmpfile())==NULL||(tmp[1]=tmpfile())==NULL)
fatal("Error opening tmpfile\n");

if((fp = fopen(argv[1], "r")) == NULL)
fatal("Error opening %s\n", argv[1]);

linecount = copy(-1, fp, tmp[i = 0]);
fclose(fp);

/* one file pass per command */
for(;;) {

if(gets(cmdbuf) == NULL)
fatal("EOF on stdin\n");

if(!(args = sscanf(cmdbuf, "%c%d", &c, &line)))
continue;

fseek(tmp[i], 0L, SEEK_SET);

switch(c) {
/* Write edited file */
case ’w’:

if((fp = fopen(argv[1], "w")) == NULL)
fatal("Error opening %s\n", argv[1]);

copy(linecount + 1, tmp[i], fp);
fclose(fp);

/* Quit */
case ’q’:

exit(EXIT_SUCCESS);

/* Print entire file */
case ’p’:

if(args == 1) {
copy(linecount + 1, tmp[i], stdout);
continue;

}
if(find(line, tmp[i]))

copy(2, tmp[i], stdout);
continue;

/* Delete a line */
case ’d’:

if(args == 1)
printf("dn where n is a number\n");

else if(line > linecount)
printf("only %d lines\n", linecount);

else {
copy(line, tmp[i], tmp[i^1]);
if(find(2, tmp[i]))

copy(-1, tmp[i], tmp[i^1]);

linecount--;
fseek(tmp[i], 0L, SEEK_SET);
i ^= 1;

}
continue;

LEXICON

tmpfile() 487

/* Insert a line */
case ’i’:

if(1 == args)
printf("in where n is a number\n");

else if(line > linecount)
printf("only %d lines\n", linecount);

else {
copy(line, tmp[i], tmp[i^1]);
printf("Enter inserted line\n");
copy(2, stdin, tmp[i^1]);
copy(-1, tmp[i], tmp[i^1]);
linecount++;

fseek(tmp[i], 0L, SEEK_SET);
i ^= 1;

}
continue;

default:
printf("Invalid request\n");
continue;

}
}

}

Cross-references
Standard, §4.9.4.3
The C Programming Language, ed. 2, p. 243

See Also
mktemp, STDIO, tempnam, tmpnam

Notes
If a program exits abnormally or aborts, the files created by tmpfile may not be removed.

tmpnam() — STDIO (libc)
Generate a unique name for a temporary file
#include <stdio.h>
char *tmpnam(char *name);

tmpnam constructs a unique name for a file. The names returned by tmpnam generally are
mechanical concatenations of letters, and therefore are mostly used to name temporary files, which
are never seen by the user. Unlike a file created by tmpfile, a file named by tmpnam does not
automatically disappear when the program exits. It must be explicitly removed before the program
ends if you want it to disappear.

name points to the buffer into which tmpnam writes the name it generates. If name is set to NULL,
tmpnam writes the name into an internal buffer that may be overwritten each time you call this
function.

tmpnam returns a pointer to the temporary name. Unlike the related function tempnam, tmpnam
assumes that the temporary file will be written into directory \tmp and builds the name
accordingly.

Example
The following example uses tmpnam to generate some file names, opens one, and writes the rest of
the names into it.

LEXICON

488 tmpnam()

#include <stdio.h>
#include <stdlib.h>

void fatal(const char *string)
{

fprintf(stderr, "%s\n", string);
exit(EXIT_FAILURE);

}

main()
{

int i, files;
FILE *fp;
char buffer[L_tmpnam];

if ((fp = fopen(tmpnam(buffer), "w")) == NULL)
fatal("Cannot open temporary file");

printf("Temporary file name is %s\n", buffer);

/* put realistic limit on number of names */
100 > TMP_MAX ? files = TMP_MAX : files = 100;
for(i = 0; i < files; i++)

fprintf(fp, "%s\n", tmpnam(NULL));

fclose(fp);
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.4.4
The C Programming Language, ed. 2, p. 243

See Also
L_tmpnam, mktemp, STDIO, tempnam, tmpfile, TMP_MAX

Notes
If you want the file name to be written into buffer, you should allocate at least L_tmpnam bytes of
memory for it; L_tmpnam is defined in the header stdio.h.

tmpnam can be called at least TMP_MAX times to return unique file names. TMP_MAX is also set
in stdio.h.

toascii() — Extended macro (xctype.h)
Convert characters to ASCII
#include <xctype.h>
int toascii(int c);

toascii takes any integer value c, keeps the low seven bits unchanged, and changes the others to
zero. This, in effect, transforms the integer value to an ASCII character. toascii then returns the
transformed integer. If c is a valid ASCII character, it is returned unchanged.

Example
This example prompts for a file name. It then opens the file and prints its contents, while
converting all non-alphanumeric characters to alphanumeric.

#include <stdio.h>
#include <stdlib.h>
#include <xctype.h>

LEXICON

toascii() 489

main(void)
{

FILE *fp;
int ch;
int filename[20];

printf("Enter file name: ");
fflush(stdout);
gets(filename);

if ((fp = fopen(filename, "r")) != NULL) {
while ((ch = fgetc(fp) != EOF)

putchar(isascii(ch) ? ch : toascii(ch));
} else {

printf("Cannot open %s\n", filename);
exit(EXIT_FAILURE);

}
return(EXIT_SUCCESS);

}

See Also
extended character handling

Notes
To conform to the ANSI Standard, this macro has been moved from the header ctype.h to the
header ctype.h. This may require that some code be altered.

This macro is not described in the ANSI Standard. Any program that uses it does not conform
strictly to the Standard, and may not be portable to other compilers or environments.

token — Definition
A token is the basic, indivisible unit of text that is processed by the translator.

There are two varieties of token: lexical token and preprocessing token. When the Standard uses the
term ‘‘token,’’ it refers to what is here called a ‘‘lexical token.’’ Note, too, that the term ‘‘preprocessing
token’’ does not mean a token that is manipulated only by the preprocessor.

Preprocessing tokens form the following varieties of lexical elements:

• Character constant.

• Header name.

• Identifier.

• Operator.

• Preprocessing number.

• Punctuator.

• String literal.

• Each non-white space character that does not fall into one of the above categories.

White-space characters can appear only within a header name, a character constant, or a string
literal; in all other instances, white space separates tokens.

Preprocessing tokens are processed during phases 3 through 6 of translation. For details on
translation, see the entry for translation phases. In brief, all preprocessing directives are executed:
#include states are expanded, code is conditionally included, and macros are expanded. Each

LEXICON

490 token

comment is replaced with one white-space character.

Adjacent string literals are concatenated and clusters of text that are not separated by white space
are parsed. A cluster of text is always parsed into the longest possible sequence of characters that
forms a valid token. For example, the text

a+++++b

must be parsed into:

a ++ ++ + b

The preprocessor passes unchanged what it does not recognize as being a preprocessor token.

Lexical tokens (which the Standard calls simply ‘‘tokens’’) form the following types of lexical
elements:

• Constant.

• Identifier.

• Keyword.

• Operator.

• Punctuator.

• String literal.

Lexical tokens are parsed, analyzed, and linked.

Cross-references
Standard, §3.1
The C Programming Language, ed. 2, pp. 191, 229

See Also
lexical elements, translation phase

tolower() — Character handling (ctype.h)
Convert character to lower case
int tolower(int c);

The macro tolower converts the upper-case character c to its corresponding lower-case character, as
defined by the locale’s character set. The Standard defines an upper-case character as one for
which the function isupper returns true. c must be a value that is representable as an unsigned
char or EOF.

If c is an upper-case letter, then tolower returns the corresponding lower-case letter. If c is not a
letter or is already lower case, then tolower returns it unchanged.

Example
The following example demonstrates tolower and toupper. It reverses the case of every character in
a text file.

void fatal(const char *message)
{

fprintf(stderr, "%s\n", message);
exit(EXIT_FAILURE);

}

LEXICON

tolower() 491

#include <ctype.h>
#include <stdio.h>
void fatal(const char *string);

main(int argc, char *argv[])
{

FILE *fp;
int ch;

if (argc != 2)
fatal("usage: example filename");

if ((fp = fopen(argv[1], "r")) == NULL)
fatal("cannot open text file");

while ((ch = fgetc(fp)) != EOF)
putchar(isupper(ch) ? tolower(ch) : toupper(ch));

}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.3.2.1
The C Programming Language, ed. 2, p. 249

See Also
character handling, toupper

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

toupper() — Character handling (libc)
Convert character to upper case
int toupper(int c);

toupper converts the lower-case character c to its corresponding upper-case character. The
Standard defines an lower-case character as one for which the function islower returns true. c
must be either a value that is representable as an unsigned char or EOF.

If c is an lower-case letter, then toupper returns the corresponding upper-case letter for the locale’s
character set. If c is not a letter or is already upper case, then toupper returns it unchanged.

Example
For an example of this function, see tolower.

Cross-references
Standard, §4.3.2.2
The C Programming Language, ed. 2, p. 249

See Also
_toupper, character handling, tolower

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

LEXICON

492 toupper()

translation unit — Definition
A translation unit is the basic unit of code that is translated into executable form. It consists of a
source file, plus all headers that are requested with the preprocessing directive #include, and
excluding all code that is skipped by preprocessing conditional inclusion.

Cross-references
Standard, §2.1.1.1
The C Programming Language, ed. 2, p. 191

See Also
#include, conditional inclusion, Environment, source file

trigraph sequences — Definition
A trigraph sequence is a set of three characters that represents one character in the C character set.
The set of trigraph sequences was created to allow users to use the full range of C characters, even if
their keyboards do not implement the full C character set. Trigraph sequences are also useful with
input devices that reserve one or more members of the C character set for internal use.

Each trigraph sequence is introduced by two question marks. The third character in the sequence
indicates which character is being represented. The following table gives the set of trigraph
sequences:

Trigraph Character
Sequence Represented

??= #
??([
??/ \
??)]
??’ ^
??< {
??! |
??> }
??- ~

The characters represented are the ones used in the C character set but not included in the ISO 646
character set. ISO 646 describes an invariant sub-set of the ASCII character set.

Trigraph sequences are interpreted even if they occur within a string literal or a character constant.
This is because they are interpreted before the source code is tokenized; see translation phases for
more information. Thus, strings that uses a literal ‘‘??’’ will not work the same as under a non-ANSI
implementation of C. For example, the function call

printf("Feel lucky, punk??!\n");

would print:

Feel lucky, punk|

This is a silent change that may break existing code.

To print a pair of questions marks, use the escape sequence ‘\?\?’. For example:

printf("Feel lucky, punk\?\?!\n");

Cross-references
Standard, §2.2.1.1
The C Programming Language, ed. 2, p. 229

LEXICON

translation unit — trigraph sequences 493

See Also
Environment

true — Definition
In the context of a C program, an expression is true if it yields nonzero.

See Also
Definitions, false

typedef — C keyword
Synonym for another type

The storage-class specifier typedef names a synonym for a type.

The new synonym must include all qualifiers and storage-class specifiers. For example, the
declaration

typedef volatile unsigned long int giant;

states that the type giant is a synonym for volatile unsigned long int. Thus, the declaration

giant example();

declares, in effect, that the function example returns an volatile unsigned long int. An object
declared to be type giant and one declared to be type volatile unsigned long int behave exactly the
same.

typedef is often used to declare a structure type. For example, the structure declaration

typedef struct {
int member1, member2;
long member3;

} EXAMPLE;

declares that EXAMPLE is a type name, and that it is a synonym for the structure that precedes it.

Cross-references
Standard, §3.5.6
The C Programming Language, ed. 2, p. 146

See Also
storage-class specifiers, types

Notes
The term typedef also describes a type that is defined in a typedef statement.

The Standard does not allow benign redeclarations of typedefs. For example, if the declaration

typedef int SINT;

were included in a header and the same declaration appeared in a source file that included this
header, a diagnostic message should appear during translation.

type qualifier — Overview
A type qualifier is, as its name implies, a keyword that alters the nature of a type in a significant
way.

There are two type qualifiers:

LEXICON

494 true — type qualifier

const Qualify an identifier as not modifiable
volatile Qualify an identifier as changing frequently

The changes affected by a type qualifier take effect only in expressions that yield an lvalue.

No type qualifier may modify an identifier more than once, either directly or via a typedef. Also, two
types are considered to be compatible only if their qualifiers match.

Many quirks surround the use of qualifiers. For example:

const int *cip;
int *ip;

cip = ip; /* RIGHT */
ip = cip; /* WRONG */

In effect, assignments that serve to ‘‘hide’’ the qualified object must be diagnosed. Although the
above examples uses the qualifier const, the same restrictions apply to any combination of
qualifiers on an object.

Cross-references
Standard, §3.5.3
The C Programming Language, ed. 2, p. 211

See Also
declarations

Notes
Because type qualifiers can alter the manner in which an object is accessed, they can be considered
to be ‘‘access modifiers’’.

types — Overview
Type determines the meaning of a value stored in an object or returned by a function. For example,
if an object four bytes long were declared to be type long, the meaning of its contents is quite
different than if it were declared to be of type long *, or a pointer to a long. In the former instance,
the contents are regarded as an absolute value. In the latter, the contents are regarded as an
address of another object.

The Standard organizes types into a number of varieties and categories, as follows:

Aggregate types
All array and structure types.

Arithmetic types
The set of integral and floating types.

Array types
A set of objects that have the same type and are in contiguous memory.

Basic types
The set of char, the signed and unsigned integer types, and the floating types; i.e.,
arithmetic types but not enumerated types.

Composite type
A type constructed from two compatible types, one of which has additional type information.
For example, the declarations

int example;
. . .

LEXICON

types 495

const int example;

together form a composite type.

Derived declarator types
The set of array, function, and pointer types.

Derived types
The set of array, function, pointer, structure, and union types that are derived from the
basic types.

Enumerated type
A set of named integer constant values that comprise an enumeration.

Floating types
The types float, double, or long double.

Function types
The type that describes a given function with a specified return type and specified number
and types of parameters.

Incomplete types
A type for which the translator does not possess all necessary information. Examples are
an array of unknown size, or a structure or union of unknown content. An incomplete type
must be completed by the end of translation.

Integral types
The set of type char, the signed and unsigned integer types, and the enumerated types.

Object types
The set of types that describe objects, rather than functions.

Pointer type
A type that describes the type of object to which a pointer points. The two classes of
pointers are object pointers and function pointers. Object pointers are referred to by the
type of object to which they point.

Qualified type
A type whose top type is qualified with some combination of the type qualifiers const,
noalias, or volatile.

Scalar types
The set of arithmetic types and pointer types.

Signed integer types
Any of the types signed char, int, long int, or short int. Any of the last three types may
also use the prefix signed, but the addition of this prefix does not change them in any way.

Structure type
A type that describes a group of data objects that are contiguous; each object may have its
own specified type and its own name.

Top type
The top type of a basic type is the type itself. The top type of a derived type is the first type
used to describe the type; for example, the type int * is described as ‘‘pointer to int’’;
therefore, its top type is pointer.

union type
A type that describes a set of objects that overlap in memory. Each object may have its own
type and its own name.

LEXICON

496 types

Unqualified type
Any type whose top type is not qualified with the type qualifiers const, noalias, or volatile.

Unsigned integer types
Any of the types unsigned char, unsigned int, unsigned long int, and unsigned short int.

Basic Types
The following is the set of basic types. Those on the same line are synonyms:

char
double
float
int, signed int
long double
long int, long, signed long, signed long int
signed char
short int, short, signed short int, signed short
unsigned char
unsigned int
unsigned long int, unsigned long
unsigned short int, unsigned short

Data Formats
Mark Williams Company has written C compilers for a number of different computers. Each has a
unique architecture and defines data formats in its own way.

The following table gives the sizes, in chars, of the data types as they are defined by various
microprocessors.

i8086 i8086
Type SMALL LARGE Z8001 Z8002 68000 PDP11 VAX

char 1 1 1 1 1 1 1
double 8 8 8 8 8 8 8
float 4 4 4 4 4 4 4
int 2 2 2 2 2 2 4
long 4 4 4 4 4 4 4
long double8 8 8 8 8 8 8
pointer 2 4 4 2 4 2 4
short 2 2 2 2 2 2 2

Let’s C places some alignment restrictions on data, which conform to all restrictions set by the
microprocessor. Byte ordering is set by the microprocessor. See the Lexicon entry on byte ordering
for more information.

Type Checking
C is not strongly typed, which means that it allows different types to be mixed relatively freely, and
be changed (or cast) from one type to another.

Let’s C checks types more strictly than the C standard implies. Let’s C’s type checking can be
enabled or disabled in degrees, using -VSTRICT and other ‘‘variant’’ options with the cc command.

Type Promotion
In arithmetic expressions, Let’s C promotes one signed type to another signed type by sign
extension, and promotes one unsigned type to another unsigned type by zero padding. For example,
char promotes to int by sign extension, while unsigned char promotes to unsigned int by zero
padding.

LEXICON

types 497

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 195

See Also
identifiers, signed, struct, type specifiers, union, unsigned

Notes
On some machines, char is a synonym for signed char. On others, it is a synonym for unsigned
char. You should declare a char variable to be signed or unsigned if its behavior when promoted to
int is significant.

type specifier — Overview
A type specifier specifies the type of an object or function when it is declared.

The following lists the legal C type specifiers:

char
double
enum tag-name
float
int
long
signed
short
struct tag-name
unsigned
union tag-name
void

The type specifiers can be combined into any one of the following combinations. Those on the same
line are synonyms:

char
double
enum type-name
float
int, signed, signed int
long double
long int, long, signed long, signed long int
signed char
short int, short, signed short int, signed short
struct type-name
typedef name
union specifier
unsigned char
unsigned int, unsigned
unsigned long int, unsigned long
unsigned short int, unsigned short
void

Cross-references
Standard, §3.5.2
The C Programming Language, ed. 2, p. 211

LEXICON

498 type specifier

See Also
types, enum, struct, typedef, union, void

LEXICON

type specifier 499

U

ungetc() — STDIO (libc)
Push a character back into the input stream
#include <stdio.h>
int ungetc(int character, FILE *fp);

ungetc converts character to an unsigned char and pushes it back into the stream pointed to by fp,
where the next call to an input function will read it as the next character available from the stream.
ungetc clears the end-of-file indicator for the stream.

The Standard only guarantees that one character can safely be pushed back into fp at any given
time. A subsequent call to fflush, fseek, fsetpos, or rewind will discard the ‘‘ungotten’’ character.

ungetc returns character if it could be pushed back onto fp. Otherwise, it returns EOF. If character
is equivalent to EOF, ungetc will fail.

Example
The following example opens a file and returns how many lines and sentences it contains. A
sentence is defined as being any passage of text that ends in a period, a question mark, or an
exclamation point.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *message)
{

fprintf(stderr, "%s0, message);
exit(EXIT_FAILURE);

}

main(int argc, char *argv[])
{

FILE *fp;
int ch, nlines, nsents;
nlines = nsents = 0;

/* Check number of arguments */
if (argc != 2)

fatal("Usage: example filename");

/* Open file to be read */
if ((fp = fopen(argv[1], "r")) == NULL)

fatal("Cannot open file for reading");

else {
/* read lines of text */
while ((ch = fgetc(fp)) != EOF) {

/* increment line count */
if (ch == ’\n’) ++nlines;

LEXICON

500 ungetc()

else if (ch == ’.’ || ch == ’!’ || ch == ’?’) {
/* check if period is an ellipsis */
if ((ch = fgetc(fp)) != ’.’) {

/* if not, bump sentence count */
++nsents;
/* return extra char to stream */
ungetc(ch, fp);

}

/* skip ellipsis */
else for(ch=’.’; (ch=fgetc(fp))==’.’;)

;
}

}

printf("%d line(s), %d sentence(s).\n", nlines, nsents);
}
return(EXIT_SUCCESS);

}

Cross-references
Standard, §4.9.7.11
The C Programming Language, ed. 2, p. 247

See Also
fgetc, getc, getchar, scanf, STDIO

Notes
How ungetc affects the file-position indicator will vary, depending upon whether fp was opened into
text mode or binary mode. If fp was opened into binary mode, then its file-position indicator is
decremented with every successful call to ungetc. If, however, it was opened into text mode, then
the value of the file-position indicator after a successful call to ungetc is unspecified; the Standard
specifies only that when a character is pushed back and then re-read, the file position indicator has
same value as it did when the character was first read.

union — Type
A union is a data type whose members occupy the same region of storage. It is used when one
value may be used in a number of different circumstances. This is in contrast with a struct, which
is a set of data elements that are laid adjacent to each other. Each object within a union may have
its own name and distinct type.

Any object type may be contained within a union, including a bit-field. No incomplete object may be
used. Thus, a union may not contain a copy of itself, but it may contain a pointer to itself. A union
is regarded is incomplete until its closing ‘}’ is read.

The size of a union is that of its largest member. Thus, a pointer to a union can, if correctly cast,
be used as a pointer to each of the union’s members.

In effect, a union is a multiple declaration of a variable. For example, a union may be declared to
consist of an int, a double, and a char *. Any one of these three elements can be held by the union
at a time, and will be handled appropriately by it. For example, the declaration

union {
int number;
double bignumber;
char *stringptr;

} EXAMPLE;

LEXICON

union 501

allows EXAMPLE to hold either an int, a double, or a pointer to a char, whichever is needed at the
time. The elements of a union are accessed like those of a struct: for example, to access number
from the above example, type EXAMPLE.number.

unions are helpful in dealing with heterogeneous data, especially within structures. However, you
must keep track of what data type the union is holding at any given time. Assigning to a double
within a union and then reading the union as though it held an int will yield results that are
defined by the implementation.

A union initializer may only initialize the first member of the union.

Example
The following example uses a union to demonstrate the byte ordering of the machine upon which
the program is run. It assumes that an int is two bytes long, and a long is four bytes long.

#include <stdio.h>
#include <stdlib.h>

main(void)
{

union {
char bytes[4];
int words[2];
long longs;

} u;
u.l = 0x12345678L;

printf("%x %x %x %x\n",
u.bytes[0], u.bytes[1], u.bytes[2], u.bytes[3]);

printf("%x %x\n", u.words[0], u.words[1]);
printf("%lx\n", u.longs);
return EXIT_SUCCESS;

}

Cross-references
Standard, §3.1.2.5, §3.5.2.1
The C Programming Language, ed. 2, pp. 212ff

See Also
bit-field, member name, struct, tag, types

Notes
Oftentimes, union will be a member of a structure, and the preceding structure member will be a
‘‘tag’’ field, whose value indicates the type of object the union currently has stored. Though such a
tag is required in some languages (such as Pascal), it is not required in C.

universal coordinated time — Definition
Universal coordinated time (universel temps coordonne, or UTC) is a universal standard of time that
is based on study of an atomic clock, as corrected by comparison with pulsars. It is, for all practical
purposes, identical to Greenwich Mean Time, which is the mean solar time recorded at the
Greenwich Observatory in England, where by international convention the Earth’s zero meridian is
fixed.

Standard local time is usually calculated as an offset of UTC. For example, the time zone for
Chicago is six hours (360 minutes) behind UTC, so the standard time for Chicago is calculated by
subtracting 360 minutes from UTC. Calculating local time may not always be so easy, however. For
example, some Islamic countries calculate local time by dividing the time between sunrise and
sunset into 12 hours.

LEXICON

502 universal coordinated time

The function gmtime returns a pointer to the structure tm that has been initialized to hold the
current UTC. The name of this function reflects the older practice of referring to Greenwich Mean
Time instead of UTC.

Cross-reference
Standard, §4.12.1

See Also
broken-down time, calendar time, date and time, gmtime, local time, localtime

unlink() — Extended function (libc)
Remove a file
short unlink(char *name);

unlink removes the directory entry for the given file name, which in effect erases name from the
disk. name cannot be open when unlinked. The name is an historical artifact.

unlink returns -1 if it cannot remove a file, and zero if it can.

Example
This example removes the files named on the command line.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

/* prototype for extended function */
extern short unlink(char *name);

main(int argc, char *argv[])
{

int i;

for (i = 1; i < argc; i++)
{

if (unlink(argv[i]) == -1)
{

printf("Cannot unlink \"%s\"\n", argv[i]);
exit(EXIT_FAILURE);

}
}
exit(EXIT_SUCCESS);

}

See Also
extended miscellaneous, remove

Notes
unlink is not described in the ANSI Standard. Programs that use it do not strictly conform to the
ANSI Standard, and may not be portable to other compilers or other environments.

The ANSI function remove also removes files. It is recommended that you use it instead of unlink
so that your programs will conform more strictly to the Standard.

LEXICON

unlink() 503

unsigned — C keyword
When a declaration includes the modifier unsigned, it indicates that the type can hold only a non-
negative value.

There are four unsigned data types: unsigned char, unsigned int, unsigned long int, and
unsigned short int. If the modifier unsigned is not used, the translator assumes that int, long int,
and short int are signed. The implementation defines whether char is signed or unsigned by
default.

An unsigned data type takes the same amount of storage as the corresponding signed type, and has
the same alignment requirements.

Any value that can be represented by both a signed and an unsigned type will be represented the
same way in both. An unsigned type, however, cannot represent a negative value. The sign bit is
freed to hold a value. In this instance, an unsigned type can store a value of twice what can be
stored in its signed counterpart.

Arithmetic that involves unsigned types will never overflow. If an arithmetic operation produces a
value that is too large to fit into a particular unsigned type, that value is divided by one plus the
largest value that can be held in that unsigned type, and the remainder is then stored in the
unsigned type.

For information about converting one type of integer to another, see integral types.

When unsigned is used by itself, it is regarded as a synonym for unsigned int.

Cross-references
Standard, §3.1.2.5
The C Programming Language, ed. 2, p. 211

See Also
char, signed, types, unsigned

unsigned char — Type
An unsigned char is an unsigned integral type. It takes the same amount of storage as a char, and
has the same alignment requirements.

An unsigned char has the minimum value of zero, and a maximum value of UCHAR_MAX. The last
is a macro that is defined in the header limits.h. It is 255.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 44

See Also
char, signed char, types, unsigned

unsigned int — Type
An unsigned int is an unsigned integral type. It requires the same amount of storage as a int and
has the same alignment requirements.

An unsigned int has the minimum value of zero, and a maximum value of UINT_MAX. The last is a
macro that is defined in the header limits.h. It is 65,535.

The type unsigned is a synonym for unsigned int.

LEXICON

504 unsigned — unsigned int

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
int, types, unsigned

unsigned long int — Type
An unsigned long int is an unsigned integral type. It requires the same amount of storage as a
long int, and has the same alignment requirements.

An unsigned long int has the minimum value of zero, and a maximum value ULONG_MAX. The
last is a macro that is defined in the header limits.h. It is 4,294,967,295.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
long int, types, unsigned

unsigned short int — Type
An unsigned short int is an unsigned integral type. It requires the same amount of storage as a
short int, and has the same alignment requirements.

An unsigned short int has the minimum value of zero, and a maximum value of USHRT_MAX. The
last is a macro that is defined in the header limits.h. It is 65,535.

Cross-references
Standard, §2.2.4.2, §3.1.2.5, §3.2.1.1, §3.5.2
The C Programming Language, ed. 2, p. 211

See Also
short int, types, unsigned

LEXICON

unsigned long int — unsigned short int 505

V

va_arg() — Variable arguments (stdarg.h)
Return pointer to next argument in argument list
#include <stdarg.h>
typename *va_arg(va_list listptr, typename);

va_arg returns a pointer to the next argument in an argument list. It can be used with functions
that take a variable number of arguments, such as printf or scanf, to help write such functions
portably. It is always used with va_end and va_start within a function that takes a variable
number of arguments.

listptr is of type va_list, which is an object defined in the header stdarg.h. It must first be initialized
by the macro va_start.

typename is the name of the type for which va_arg is to return a pointer. For example, if you wish
va_arg to return a pointer to an integer, typename should be of type int.

va_arg can only handle ‘‘standard’’ data types, i.e., those data types that can be transformed to
pointers by appending an asterisk ‘*’.

Example
For an example of this macro, see the entry for variable arguments.

Cross-references
Standard, §4.8.1.2
The C Programming Language, ed. 2, p. 254

See Also
va_end, va_start, variable arguments

Notes
If there is no next argument for va_arg to handle, or if typename is incorrect, then the behavior of
va_arg is undefined.

va_arg must be implemented only as a macro. If its macro definition is suppressed within a
program, the behavior is undefined.

va_end() — Variable arguments (libc)
Tidy up after traversal of argument list
#include <stdarg.h>
void va_end(va_list listptr);

va_end helps to tidy up a function after it has traversed the argument list for a function that takes a
variable number of arguments. It can be used with functions that take a variable number of
arguments, such as printf or scanf, to help write such functions portably. It should be used with
the routines va_arg and va_start from within a function that takes a variable number of arguments.

listptr is of type va_list, which is declared in header stdarg.h. listptr must first have been initialized
by macro va_start.

The manner of ‘‘tidying up’’ that va_end performs will vary from one computing environment to
another. In many computing environments, va_end is not needed, and it may be implemented as
an empty function.

LEXICON

506 va_arg() — va_end()

Example
For an example of this function, see the entry for variable arguments.

Cross-references
Standard, §4.8.1.3
The C Programming Language, ed. 2, p. 254

See Also
va_arg, va_start, variable arguments

Notes
If va_list is not initialized by va_start, or if va_end is not called before a function with variable
arguments exits, then behavior is undefined.

va_list — Type
Type used to handle argument lists of variable length

va_list is a typedef declared in the header stdarg.h.

va_list is used to help implement functions like printf and scanf, which can take an indeterminate
number of arguments.

Example
For an example of this type, see the entry for variable arguments.

Cross-references
Standard, §4.8

See Also
va_arg, va_end, va_start, variable arguments

va_start() — Variable arguments (stdarg.h)
Point to beginning of argument list
#include <stdargs.h>
void va_start(va_list listptr, type rightparm);

va_start is a macro that points to the beginning of a list of arguments. It can be used with
functions that take a variable number of arguments, such as printf or scanf, to help implement
them portably. It is always used with va_arg and va_end from within a function that takes a
variable number of arguments.

listptr is of type va_list, which is a type defined in the header stdarg.h.

rightparm is the rightmost parameter defined in the function’s parameter list — that is, the last
parameter defined before the ... punctuator. Its type is set by the function that is using va_start.
Undefined behavior results if any of the following conditions apply to rightparm: if it has storage
class register; if it has a function type or an array type; or if its type is not compatible with the type
that results from the default argument promotions.

Example
For an example of this macro, see the entry for variable arguments.

Cross-references
Standard, §4.8.1.1
The C Programming Language, ed. 2, p. 254

LEXICON

va_list — va_start() 507

See Also
va_arg, va_end, va_list, variable arguments

Notes
va_start must be implemented only as a macro. If the macro definition of va_start is suppressed
within a program, the behavior is undefined.

value preserving — Definition
With respect to integral promotions, the Standard has adopted value-preserving rules. This may
quietly break some existing code that depended on unsigned-preserving rules, as many UNIX
implementations have done.

In most cases, there will be no difference in the results produced by unsigned-preserving rules and
those produced by value-preserving rules. There are, however, several instances in which different
results will be seen. For example:

long l;
unsigned int ui;

. . .
l = ui + l;

In this operation, before the addition is performed, ui will first be promoted to type long if a long
can hold the value contained in the unsigned int. The operation will then be performed as long
addition, assigning the result to the variable l.

If a long is not large enough to represent the value contained in ui, which may occur under an
implementation where ints and longs are the same size, then both ui and l are first converted to
unsigned long before the addition is performed. Because conversion is needed to preserve the value
(as opposed to the sign) of the operand as well as the result, the term ‘‘value preserving’’ is
appropriate.

As usual, code may have to be generated to perform the conversion, and a high-quality
implementation will usually issue a diagnostic message in such a case.

Cross-references
Standard, §3.2
The C Programming Language, ed. 2, pp

See Also
conversions, integral promotions

variable arguments — Overview
The Standard mandates the creation of a set of routines to help implement functions, such as printf
and scanf, that take a variable number of arguments. These routines are called from within another
function to help it handle its arguments. If the ellipsis punctuator ‘...’ appears at the end of the list
of arguments in a function’s prototype, then that a function can take a variable number of
arguments.

These routines are declared or defined in the header stdarg.h, and are as follows:

va_arg Return pointer to next argument in argument list
va_end Tidy up after an argument list has been traversed
va_start Initialize object that holds function arguments

va_arg and va_start must be implemented as macros; va_end must be implemented as a library
function. All three use the special type va_list, which is an object that holds the arguments to the
function being implemented.

LEXICON

508 value preserving — variable arguments

Example
The following example concatenates multiple strings into a common allocated string and returns the
string’s address.

#include <stdarg.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>

char *
multcat(int numargs, ...)
{

va_list argptr;
char *result;
int i, siz;

/* get size required */
va_start(argptr, numargs);
for(siz = i = 0; i < numargs; i++)

siz += strlen(va_arg(argptr, char *));

if ((result = calloc(siz + 1, 1)) == NULL) {
fprintf(stderr, "Out of space\n");
exit(EXIT_FAILURE);

}
va_end(argptr);

va_start(argptr, numargs);
for(i = 0; i < numargs; i++)

strcat(result, va_arg(argptr, char *));
va_end(argptr);
return(result);

}

int
main(void)
{

printf(multcat(5, "One ", "two ", "three ",
"testing", ".\n"));

return(EXIT_SUCCESS);
}

Cross-references
Standard, §4.8
The C Programming Language, ed. 2, p. 254

See Also
Library, stdarg.h, va_list

vfprintf() — STDIO (libc)
Print formatted text into stream
#include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE*fp, const char *format, va_list arguments);

vfprintf constructs a formatted string and writes it into the stream pointed to by fp. It translates
integers, floating-point numbers, and strings into a variety of text formats. vfprintf can handle a
variable list of arguments of various types. It is roughly equivalent to the ‘r’ conversion specifier to
fprintf.

LEXICON

vfprintf() 509

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how particular data type is converted into a
particular text format. Each conversion specification is introduced with the percent sign ‘%’. (To
print a literal percent sign, use the escape sequence ‘‘%%’’.) See printf for further discussion of the
conversion specification, and for a table of the type specifiers that can be used with vfprintf.

After format comes arguments. This is of type va_list, which is defined in the header stdarg.h. It has
been initialized by the macro va_start and points to the base of the list of arguments used by
vfprintf. For more information, see variable arguments. arguments should access one argument for
each conversion specification in format, of the type appropriate to its conversion specification.

For example, if format contains conversion specifications for an int, a long, and a string, then
arguments access three arguments, being, respectively, an int, a long, and a char *. arguments can
take only the data types acceptable to the macro va_arg; namely, basic types that can be converted
to pointers simply by adding a ‘*’ after the type name. See va_arg for more information on this
point.

If there are fewer arguments than conversion specifications, then vfprintf’s behavior is undefined.
If there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding conversion specifier,
then the behavior of vfprintf is undefined. Thus, presenting an int where vfprintf expects a char *
may generate unwelcome results.

If it writes the formatted string correctly, vfprintf returns the number of characters written.
Otherwise, it returns a negative number.

Example
This example sets up a standard multiargument error message. It is the source of the function
fatal, which is used throughout this manual.

#include <math.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(char *format, ...)
{

va_list argptr;

/* if there is a system message, display it */
if(errno)

perror(NULL);

/* if there is a user message, use it */
if(format != NULL) {

va_start(argptr, format);
vfprintf(stderr, format, argptr);
va_end(argptr);

}
exit(EXIT_FAILURE);

}

LEXICON

510 vfprintf()

main(void)
{

/*
* This is guaranteed to be wrong. It should push
* an error code into errno.
*/

sqrt(-1.0);

/* Now, show the messages */
fatal("A %s error message%c", "complex", ’\n’);

/* If we get this far, something is wrong */
return(EXIT_FAILURE);

}

Cross-references
Standard, §4.9.6.7
The C Programming Language, ed. 2, p. 245

See Also
fprintf, printf, sprintf, STDIO, vprintf, vsprintf

Notes
vfprintf can construct a string up to at least 509 characters long.

The character that vfprintf uses to represent the decimal point is affected by the program’s locale,
as set by the function setlocale. For more information, see localization.

void — C keyword
Empty type

The term void indicates the empty type. The following sections describe the ways it is used.

Function Type
void can be used in a function prototype or definition to indicate that a function returns no value.
For example, the declaration

void example();

indicates that the function example returns nothing. It would be an error for example to attempt
to return a value to a function that calls it, or for the calling function to use its value in an
expression.

Function Arguments
void can also be used in a function prototype or function declaration to indicate that a function has
no arguments. For example, the declaration

void example(void);

indicates that the function example not only returns nothing, but it takes no arguments as well.
The older practice of writing example() remains legal. But as before, it indicates merely that nothing
is said about arguments.

Void Expression
void can be used to indicate that the value of an expression is to be ignored. This is done by
casting the expression to type void. Prefacing an expression with the cast (void) throws away its
value (i.e., casts it into the void), although the expression is evaluated for possible side-effects.

LEXICON

void 511

void *
A void * (‘‘pointer to void’’) is a generic pointer. It is used in much the same way that char *
(‘‘pointer to char’’) was used in earlier descriptions of C. The new generic pointer type eliminates the
earlier confusion between a pointer to char (e.g., a string pointer) and a generic pointer.

Because by definition the void type includes no objects, a pointer to void may not be dereferenced.
That is, you should not directly access the object to which it points by using the indirection operator
‘*’. In the code

void *voidp;
. . .

if (*voidp > 0)
. . .

the behavior of dereferencing the pointer to void is undefined. It may or may not generate an error;
if it does not, the results may be unpredictable.

It is correct, however, to cast a pointer to void to a standard object pointer type and then
dereference it. For example, the code

void *voidp;
. . .

if (*(char *)voidp > 0)
. . .

is permitted.

The Standard guarantees that a pointer to void may be converted to a pointer to any incomplete
type or object type. It also guarantees that a pointer to any incomplete type or object type may be
converted into a pointer to void. Moreover, converting the result back to the original type results in
a pointer equal to the original pointer. That is, conversion of any object pointer type to void * and
back again does not change the representation of the pointer. However, if an object pointer is
converted to void * and then converted to a pointer to a type whose alignment is stricter than that of
the original type, behavior is undefined.

The Standard also guarantees that the pointer types char * and void * have the same
representation. This prevents the Standard from breaking existing code for functions with generic-
pointer arguments (previously defined using type char * but now defined with type void *).

The introduction of the generic pointer void * by the Standard serves several purposes in addition to
those noted above. The Standard no longer allows comparison between pointers of different types,
except that any object pointer may be compared to a void *. Casting object pointers with the
expression

(void *)

allows comparisons that would otherwise be illegal. Library functions that have commonly been
written with pointers of various types as arguments (such as fread) can be defined with a prototype
void * argument, which allows the arguments to be quietly converted to the correct type.

The generic pointer void * is also used as the type of the value returned by some functions (e.g.,
malloc), to indicate that the returned value is a pointer to something of indeterminate type.

Cross-references
Standard, §3.1.2.5, §3.2.2.2-3, §3.3.4, §3.5.2, §3.5.3.1, §3.5.4.3
The C Programming Language, ed. 2, pp. 199, 218

See Also
NULL, pointer, precedence, types

LEXICON

512 void

void expression — Definition
A void expression is any expression that has type void. By definition, it has no value; therefore, its
value cannot be assigned to any other expression. Normally, a void expression is used for its side-
effects.

If an expression of any other type is used in a situation that requires a void expression, the value of
that expression is discarded.

Cross-reference
Standard, §3.2.2.2

See Also
conversions

volatile — C keyword
Qualify an identifier as frequently changing

The type qualifier volatile marks an identifier as being frequently changed, either by other portions
of the program, by the hardware, by other programs in the execution environment, or by any
combination of these. This alerts the translator to re-fetch the given identifier whenever it
encounters an expression that includes the identifier. In addition, an object marked as volatile
must be stored at the point where an assignment to this object takes place.

Cross-references
Standard, §3.5.3
The C Programming Language, ed. 2, p. 211

See Also
const, type qualifier

Notes
volatile was created by the Committee for systems’ programs that deal with memory-mapped I/O or
ports where the program is not the only task that may modify the given port in memory. volatile
tells the translator that it does not know everything that is happening to the object.

Another use for volatile is for translators that perform optimizations, such as deferring storage of
registers or peephole optimization. volatile requires that the object be read and stored at exactly
those points where the program has specified these actions.

vprintf() — STDIO (libc)
Print formatted text into standard output stream
#include <stdarg.h>
#include <stdio.h>
int vprintf(const char *format, va_list arguments);

vprintf constructs a formatted string and writes it into the standard output stream. It translates
integers, floating-point numbers, and strings into a variety of text formats. vprintf can handle a
variable list of arguments of various types. It is roughly equivalent to the ‘r’ conversion specifier to
printf.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification defines how a particular data type is converted into a
particular text format. Each conversion specification is introduced with the percent sign ‘%’. (To
print a literal percent sign, use the escape sequence ‘‘%%’’.) See printf for further discussion of the
conversion specification and for a table of the type specifiers that can be used with vprintf.

LEXICON

void expression — vprintf() 513

After format comes arguments. This is of type va_list, which is defined in the header stdarg.h. It has
been initialized by the macro va_start and points to the base of the list of arguments used by
vprintf. For more information, see variable arguments. arguments should access one argument for
each conversion specification in format of the type appropriate to conversion specification.

For example, if format contains conversion specifications for an int, a long, and a string, then
arguments access three arguments, being, respectively, an int, a long, and a char *.

If there are fewer arguments than conversion specifications, then vprintf’s behavior is undefined. If
there are more, every argument without a corresponding conversion specification is evaluated and
then ignored. If an argument is not of the same type as its corresponding type specification, then
the behavior of vprintf is undefined; thus, accessing an int where vprintf expects a char * may
generate unwelcome results.

If it writes the formatted string correctly, vprintf returns the number of characters written;
otherwise, it returns a negative number.

Cross-references
Standard, §4.9.6.8
The C Programming Language, ed. 2, p. 245

See Also
fprintf, printf, sprintf, STDIO, vfprintf, vsprintf

Notes
vprintf can construct a string up to at least 509 characters long.

The character that vprintf uses to represent the decimal point is affected by the program’s locale, as
set by the function setlocale. For more information, see localization.

Each argument must have basic type, which can be converted to a pointer simply by adding an ‘*’
after the type name. This is the same restriction that applies to the arguments to the macro va_arg.

vsprintf() — STDIO (libc)
Print formatted text into string
#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *string, const char *format, va_list arguments);

vsprintf constructs a formatted string in the area pointed to by string. It translates integers,
floating-point numbers, and strings into a variety of text formats. vsprintf can handle a variable list
of arguments of various types. It is roughly equivalent to the ‘r’ conversion specifier to sprintf.

format points to a string that can contain text, character constants, and one or more conversion
specifications. A conversion specification describes how to convert a particular data type into a
particular text format. Each conversion specification is introduced with the percent sign ‘%’. (To
print a literal percent sign, use the escape sequence ‘‘%%’’.) See printf for further discussion of the
conversion specification and for a table of the type specifiers that can be used with vsprintf.

After format comes arguments. This is of type va_list, which is defined in the header stdarg.h. It has
been initialized by the macro va_start and points to the base of the list of arguments used by
vsprintf. For more information, see variable arguments. arguments should access one argument for
each conversion specification in format of the type appropriate to the conversion specification.

For example, if format contains conversion specifications for an int, a long, and a string, then
arguments access three arguments, being, respectively, an int, a long, and a char *.

LEXICON

514 vsprintf()

If there are fewer arguments than conversion specifications, then vsprintf’s behavior is undefined.
If there are more, then every argument without a corresponding conversion specification is evaluated
and then ignored. If an argument is not of the same type as its corresponding type specification,
then the behavior of vsprintf is undefined; thus, accessing an int where vsprintf expects a char *
may generate unwelcome results.

If it writes the formatted string correctly, vsprintf returns the number of characters written;
otherwise, it returns a negative number.

Cross-references
Standard, §4.9.6.7
The C Programming Language, ed. 2, p. 245

See Also
fprintf, printf, sprintf, STDIO, vprintf, vsprintf

Notes
vsprintf can construct a string up to at least 509 characters long.

The character that vsprintf uses to represent the decimal point is affected by the program’s locale,
as set by the function setlocale. For more information, see localization.

LEXICON

vsprintf() 515

W

wc — Command
Count words, lines, and characters in files
wc [-clw] [file...]

wc counts words, lines, and characters in each file named. If no file is given, wc uses the standard
input. If more than one file is given, wc also prints a total for all of the files.

A word is a string of characters surrounded by white space (blanks, tabs, or newlines).

Options control the printing of various counts:

-c Print a count of character.

-l Print a count of lines.

-w Print a count of words.

The default action is to print all counts.

See Also
commands

wcstombs() — General utility (libc)
Convert sequence of wide characters to multibyte characters
#include <stdlib.h>
size_t wcstombs(wchar_t *multibyte, const char *widechar, size_t number);

The function wcstombs converts a sequence of wide characters to their corresponding multibyte
characters. It is the same as a series of calls of the type:

wctomb(multibyte, *widechar);

except that the call to wcstombs does not affect the internal state of wctomb.

widechars points to the base of the sequence of wide characters to be converted to multibyte
characters. multibyte points to the area into which the characters will be written. The sequence
begins and ends in an initial shift state. number is the number of characters to be converted.
wcstombs converts characters either until it reads and converts the null character that ends the
sequence, or until it has converted number characters. In the latter case, no null character is
written at the end of the sequence of multibyte characters.

wcstombs returns -1 cast to size_t if it encounters an invalid wide character before it has converted
number characters. Otherwise, it returns the number of characters converted, excluding the null
character that ends the sequence.

Cross-reference
Standard, §4.10.7.4

See Also
general utilities, mbstowcs

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

LEXICON

516 wc — wcstombs()

wctomb() — General utility (libc)
Convert a wide character to a multibyte character
#include <stdlib.h>
int wctomb(char *string, wchar_t widecharacter);

wctomb converts widecharacter to its corresponding multibyte character and stores the result in
the area pointed to by string.

If string is set to NULL, then wctomb merely checks to see if the current set of multibyte characters
include state-dependent encodings. It returns zero if the set does not include state-dependent
codings, and a number other than zero if it does.

If string is set to a value other than NULL, then wctomb does the following:

1. It returns zero if widecharacter is zero.

2. It returns -1 if the value of widecharacter does not correspond to a legitimate multibyte
character for the present locale.

3. If the value of widecharacter does correspond to a legitimate multibyte character, then it
returns the number of bytes that comprise that character.

wctomb never returns a value greater than that of the macro MB_CUR_MAX.

Cross-reference
Standard, §4.10.7.5

See Also
general utilities, MB_CUR_MAX, mblen, mbtowc, wchar_t

Notes
The operation of this function is affected by the program’s locale, as set by the function setlocale.
See localization for more information.

The address pointed to by string should have MB_CUR_MAX bytes of storage allocated to it. If not,
you may overwrite memory currently in use.

while — C keyword
Loop construct
while(condition) statement

while introduces a conditional loop. Unlike a do loop, a while loop tests condition before execution
of statement. The loop ends when condition is no longer satisfied. Hence, the loop may not execute
at all, if condition is initially false.

For example,

while (variable < 10)

introduces a loop whose statements will continue to execute until variable is equivalent to ten or
greater. The statement

while (1)

will loop until interrupted by break, goto, or return.

Example
For an example of this statement, see sscanf.

LEXICON

wctomb() — while 517

Cross-references
Standard, §3.6.5.1
The C Programming Language, ed. 2, pp. 60ff

See Also
C keywords, do, for, statements, while

wildcards — Definition
Wildcards are characters that, under special circumstances, represent a range of ASCII characters.
Another name for them is ‘‘metacharacters’’. The wildcards available under MS-DOS are as follows:

? Match any one character.

* Match any number of characters, or no characters at all.

See Also
Definitions, egrep, patterns, pnmatch

write() — Extended function (libc)
Write into a file
short write(short fd, char *buffer, short n);

write writes n bytes of data, beginning at address buffer, into the file fd. Writing begins at the
current write position, as set by the last call to either write or lseek. write advances the position of
the file pointer by the number of characters written.

write returns -1 if an error occurred before the write operation commenced, such as if fd is bad or
buffer contains an invalid address. Otherwise, it returns the number of bytes actually written. It
should be considered an error if this number is not the same as n.

Example
For an example of how to use this function, see the entry for open.

See Also
extended miscellaneous

Notes
write is a low-level call that passes data directly to MS-DOS. It should not be intermixed with high-
level calls, such as fread, fwrite, or fopen without care.

write is not described in the ANSI Standard. Programs that use it do not conform strictly to the
Standard, and may not be portable to other compilers or to other environments.

LEXICON

518 wildcards — write()

X

xctype.h — Header

#include <xctype.h>
In addition to the character-handling functions described in the Standard, Let’s C includes the
following extended character-handling functions and macros:

_tolower Change a character to lower case
_toupper Change a character to upper case
isascii See if a character is in the ASCII character set
toascii Convert a character to printable ASCII

These functions and macros are declared or defined in the header xctype.h. In previous releases of
Let’s C, they had been declared in the header ctype.h. This change was made to conform to the
Standard, and may require that some code be altered.

A program that uses any of these routines no longer conforms strictly to the Standard, and may not
be portable to other compilers or environments.

See Also
ctype.h, extended character handling, header

XOFF — Manifest constant

XOFF is a flow-control signal used with asynchronous communications. Usually, it consists of a
<ctrl-S> character (octal 023). It is sent by the receiving device when its asynchronous buffer is
nearly full, or has reached the ‘‘high-water mark’’.

When XOFF is used to help control data transmission, binary files cannot be transmitted.

See Also
ASCII, Environment, XON

XON — Manifest constant

XON is a flow-control signal used with asynchronous communications. Usually, it consists of a
<ctrl-Q> character (octal 021). It is sent by the receiving device when its asynchronous buffer is
nearly empty, or has reached the ‘‘low-water mark’’.

When XON is used to help control data transmission, binary files cannot be transmitted.

See Also
ASCII, Environment, XOFF

xtime.h — Header

#include <xtime.h>
xtime.h is a header that holds prototypes for the extended time functions included with Let’s C:

Time conversion

timezone Seconds from UTC to give local time
dayspermonth How many days in this historical month?
dstadjust Seconds to local standard, if any
isleapyear Is this year AD a leap year?
tzname Array with names of standard and daylight times

Julian time

time_to_jday Convert time_t to the Julian date
jday_to_time Convert Julian date to time_t

LEXICON

xctype.h — xtime.h 519

tm_to_jday Convert tm structure to Julian date
jday_to_tm Convert Julian date to tm structure

xtime.h also declares the structure jday.

See Also
extended time, header, time.h

Notes
To conform to the ANSI Standard, these functions were moved from the header time.h to the header
xtime.h. This may require that some code be altered.

LEXICON

520 xtime.h

Appendix

The following lists all of the entries in the Lexicon in their logical order. The Lexicon is tree
structured, with the root entry being the one entitled Lexicon.

The logical structure of the Lexicon closely follows that of the ANSI Standard. Articles on related
topics are grouped together for easy access. In instances where an article describes an entity that
has more than one use (e.g., the operator ‘*’), the article’s position in the logic tree is based on a
judgement of how that entity is used most frequently by C programmers.

Each entry marked with an asterisk ‘*’ refers to a topic that is specific to the Atari ST or to Let’s C.

Lexicon
Definitions

address
alias
alignment
argument
arena*
ASCII
behavior
BIOS*
bit
bit-fields
bit map*
block
buffer
byte
compliance
cc0*
cc1*
cc2*
cc3*
cc4*
daemon*
decimal-point character
directory*
domain error
executable file*
false
field*
file
file descriptor*
interrupt*
letter
link
manifest constant
nested comments*
nybble*
object format*
object

521

522 Logic Tree

parameter
pattern*
port*
portability
process*
pun*
quiet change
random access*
range error
ranlib*
read-only memory*
record*
register*
rvalue
spirit of C
stack*
Standard
standard error
standard input
standard output
stream
string
true
Universal Coordinated Time
wildcards*

Environment
__end*
argc
argv
character display semantics
diagnostics
envp*
main
maxmem*
XOFF*
XON*
environmental variable*

CCHEAD*
CCTAIL*
INCDIR*
LIBPATH*
PATH*
TIMEZONE*
TMPDIR*

numerical limits
float.h
limits.h

operating system device*
aux*
com1*
con*
lpt1*
nul*
prn*

Appendix

Logic Tree 523

program startup
program termination
runtime startup*

_main*
crts0xl*
crts0xs*

sequence points
side effects
signals/interrupts
source file
translation limits
translation phase
translation unit
trigraph sequences

Language
constant expressions
conversions

explicit conversion
function designator
implicit conversion
lvalue
null pointer constant
value preserving
void expression

declarations
definition
declarators

array declarators
function declarators
pointer declarators

initialization
storage-class specifiers

auto
extern
register
static
typedef

type names
type qualifier

const
volatile

type specifier
compatible types
enum

expressions
!
! =
%
% =
&
& &
& =
*
* =

Appendix

524 Logic Tree

+
+ +
+ =
,
-
- -
- =
->
.
/
/ =
<
< <
< < =
< =
=
= =
>
> >
> > =
> =
? :
[]
^
^ =
|
| |
| =
~
sizeof

external definitions
function definition
object definition

function call
function prototypes
lexical elements

comment
*/
/*

constants
character constant

escape sequence
enumeration constant
floating constant
integer constant

header names
identifiers

digit
external name
internal name
linkage
nondigit
name space

label

Appendix

Logic Tree 525

member
ordinary identifier
tag

scope
storage duration
types

char
double
float
int
long double
long int
pointer
short int
signed
signed char
struct
union
unsigned
unsigned char
unsigned int
unsigned long int
unsigned short int
void

keywords
operators
preprocessing numbers
punctuators

()
:
;
{ }

string literal
"

token
preprocessing

#
#
#define
#elif
#else
#endif
#error
#if
#ifdef
#ifndef
#include
#line
#pragma
#undef
_ _DATE_ _
_ _FILE_ _
_ _LINE_ _
_ _STDC_ _

Appendix

526 Logic Tree

_ _TIME_ _
defined
null directive

statements
alien*
break
case
continue
default
do
else
for
goto
if
null statement
return
switch
while

Library
libcxl*
libcxl87*
libcxs*
libcxs87*
libmxl*
libmxl87*
libmxs*
libmxs87*
NULL
offsetof()
ptrdiff_t
size_t
stddef.h
wchar_t
access checking*

access.h*
access()*
path.h*
path()*
stat.h*
stat()*

character handling
ctype.h
isalnum()
isalpha()
iscntrl()
isdigit()
isgraph()
islower()
isprint()
ispunct()
isspace()
isupper()
isxdigit()
tolower()

Appendix

Logic Tree 527

toupper()
date and time

time.h
CLK_TCK
clock_t
time_t
tm
asctime()
clock()
ctime()
difftime()
gmtime()
localtime()
mktime()
strftime()
time()

diagnostics
assert.h
assert()

errors
errno.h
errno

extended character handling
xctype.h*
_tolower()*
_toupper()*
isascii()*
toascii()*

extended mathematics
xmath.h
cabs()*
hypot()*
j0()*
j1()*
jn()*

extended miscellaneous
_exit()*
_zero()*
close()*
creat()*
dup()*
dup2()*
ecvt()*
exargs()*
execall()*
fcvt()*
gcvt()*
in()*
inb()*
index()*
mktemp()*
notmem()*
open()*
out()*

Appendix

528 Logic Tree

outb()*
peek()*
peekb()*
pnmatch()*
poke()*
pokeb()*
read()*
rindex()*
sbrk()*
shellsort()*
swab()*
tempnam()*
unlink()*
write()*

extended STDIO
xstdio.h
fdopen()*
fgetw()*
fileno()*
fputw()*
getanb()*
getcnb()*
getw()*
lseek()*
putanb()*
putcnb()*
putw()*

extended time
xtime.h*
dayspermonth()*
isleapyear()*
jday_to_time()*
jday_to_tm()*
stime()*
time_to_jday()*
tm_to_jday()*

general utilities
stdlib.h
div_t
ldiv_t
abort()
abs()
atexit()
atof()
atoi()
atol()
bsearch()
calloc()
div()
exit()
free()
getenv()
labs()
ldiv()

Appendix

Logic Tree 529

malloc()
mblen()
mbstowcs()
mbtowc()
qsort()
rand()
realloc()
srand()
strtod()
strtol()
strtoul()
system()
wcstombs()
wctomb()

header
bios.h*
larges.h*
mtype.h*

i8086 support*
dos.h*
PTR*
_copy()*
csreg()*
dsreg()*
esreg()*
intcall()*
ptoreg()*
regtop()*
ssreg()*

localization
locale.h
lconv
localeconv()
setlocale()

mathematics
math.h
acos()
asin()
atan()
atan2()
ceil()
cos()
cosh()
exp()
fabs()
floor()
fmod()
frexp()
ldexp()
log()
log10()
modf()
pow()
sin()

Appendix

530 Logic Tree

sinh()
sqrt()
tan()
tanh()

non-local jumps
setjmp.h
jmp_buf
longjmp()
setjmp()

signal handling
signal.h
sig_atomic_t
raise()
signal()

STDIO
stdio.h
EOF
FILE
fpos_t
stderr
stdin
stdout
clearerr()
fclose()
feof()
ferror()
fflush()
fgetc()
fgetpos()
fgets()
fopen()
fprintf()
fputc()
fputs()
fread()
freopen()
fscanf()
fseek()
fsetpos()
ftell()
fwrite()
getc()
getchar()
gets()
perror()
printf()
putc()
putchar()
puts()
rewind()
setbuf()
setvbuf()
remove()
rename()

Appendix

Logic Tree 531

scanf()
sprintf()
sscanf()
tmpfile()
tmpnam()
ungetc()
vfprintf()
vprintf()
vsprintf()

string handling
string.h
memchr()
memcpy()
memcmp()
memmove()
memset()
strcat()
strchr()
strcmp()
strcoll()
strcpy()
strcspn()
strerror()
strlen()
strncat()
strncmp()
strncpy()
strpbrk()
strrchr()
strspn()
strstr()
strtok()
strxfrm()

variable arguments
stdarg.h
va_list
va_arg()
va_end()
va_start()

DOS-specific features
command*

as*
cc*
cmp*
cpp*
egrep*
exetcom*
fixobj*
ld*
make*
me*
mwlib*
nm*
size*

Appendix

532 Logic Tree

strip*
tail*
wc*

example*
example*
picture*

technical information*
ansi.sys*
BIOS data area
byte ordering*
i8087*
keyboard
LARGE model
model
SMALL model

Appendix

Table of Contents 521

Index

to _

146

= . 147

! . 118
!= . 118

. 119
<newline> 369
. 120
#define 34, 121
#elif . 123
#else . 123
#endif . 124
#error . 124
#if . 124
#ifdef . 125
#ifndef . 125
#include 33, 126
#line. 127
#pragma . 127
#undef . 128

$* . 88
$< . 88
$? . 88
$@ . 88

% . 128
%=. 129

&. 129
&&. 130
&= . 130

() . 130

* . 45, 131
*/ . 132
*= . 132

+ . 132
++ . 133
+= . 134

, . 134

- . 86, 90, 135
--. 136
-= . 136
-> . 136
-VCSD . 49

. 137

.DEFAULT . 90

.IGNORE . 90

.m . 429

.SILENT. 90

.SUFFIXES. 87

/ . 138
/* . 138
/= . 138

: . 139

; . 139

< . 139
<< . 139
<<= . 140
<= . 140
<ctrl-@> . 60
<ctrl-A>. 56
<ctrl-B>. 56
<ctrl-D>. 58
<ctrl-E>. 56
<ctrl-F>. 56
<ctrl-G>. 65
<ctrl-L> . 62
<ctrl-N>. 56
<ctrl-P> . 57
<ctrl-T> . 62
<ctrl-U>. 68
<ctrl-V>. 57
<ctrl-W> . 60
<ctrl-X>. 67, 79
<ctrl-X>! . 78
<ctrl-X>(. 77
<ctrl-X>) . 77
<ctrl-X>1 72, 74
<ctrl-X>2 . 73
<ctrl-X>< . 78
<ctrl-X><ctrl-B>. 72
<ctrl-X><ctrl-C>. 57, 59
<ctrl-X><ctrl-F> 70
<ctrl-X><ctrl-N>. 75
<ctrl-X><ctrl-P> 75
<ctrl-X><ctrl-R>. 70
<ctrl-X><ctrl-S> 57
<ctrl-X><ctrl-V>. 71
<ctrl-X><ctrl-W> 67, 70
<ctrl-X><ctrl-Z> 74
<ctrl-X>> . 78
<ctrl-X>B. 75
<ctrl-X>E. 77
<ctrl-X>F . 63
<ctrl-X>K. 72
<ctrl-X>N. 74
<ctrl-X>P . 74
<ctrl-X>Z . 74
<ctrl-Y>. 59
<ctrl-Z>. 67
<ctrl> . 53
 . 59

INDEX

522 Table of Contents

<esc> . 53
<esc>! . 75
<esc>% . 66
<esc>2 . 79
<esc>< . 57
<esc> . 59
<esc>> . 57
<esc>? . 79
<esc>B . 56
<esc>C . 61
<esc>D . 58
<esc>F . 56
<esc>L . 61
<esc>R . 65
<esc>S . 64
<esc>U . 61
<esc>V . 57
<Num Lock> 56
<return> 55, 64-65

= . 141, 166
== . 141

> . 142
>= . 142
>> . 143
>>= . 144

?: . 144
??! . 493
??’ . 493
??(. 493
??) . 493
??- . 493
??/ . 493
??< . 493
??= . 493
??> . 493

[. 165
[] . 145

\ . 237
\’ . 237
\? . 237
\\ . 237
\a . 237
\b . 237
\f . 237
\n . 237
\NNN . 237
\r . 237
\t . 237
\v . 237
\x . 237
mactions . 87
mmacros . 87

] . 165

INDEX

_ _FILE_ _ 148
__DATE__. 147
__end . 147
__LINE__ . 148
__STDC__. 148
__TIME__ . 149
_exit() . 149
_tolower() . 149
_toupper() 150
_zero(). 151

A

abort(). 154
abs(). 154
absolute value, compute 246
absolute value, compute for integer 154
absolute value, compute for long integer . 316
absolute value, definition 154
access checking 157
access() . 155
access, quick, required. 407
access.h . 156
acos() . 157
active position 202
addition assignment operator 134
addition operator 132
address 27, 32, 157
address constant expression 210
address-of operator 129
alias. 158
alien. 158
alignment 159
allocate and clear dynamic memory 194
allocate dynamic memory 345
altering stack size. 48
AND operator, bitwise 129
append one string onto another . . . 451, 461
arena . 159
argc . 34, 160
argument. 30, 160
arguments . 68

default value 68
deleting . 69
increasing or decreasing 68
selecting values 69
with create window commands 74
with enlarge window command 75
with scrolling commands. 75
with shrink window command. 75

arguments, variable number of 508
argv . 34, 160
arithmetic constant expression 210
arithmetic conversions 213
arithmetic shift operation 143
array declarators 161
array slice 145
array subscript operator 145
array subscripting 145
array, incrementing pointer to, rules . . . 132

Table of Contents 523

array, search. 190
array, sort 402
arrow keys . 55
as . 48, 161

.m suffix. 429
suffixes 161

ASCII . 177
asctime() . 180
asin() . 181
assembler . 88

8087 op codes 173
address descriptors 167
blank between tokens. 163
comments. 163
current location counter 164
directives 166
expressions 164
instructions. 168
labels�name. 166
labels�temporary 166
operators 165
private data. 164
private instruction. 164
sections 163
shared data 164
shared instruction. 164
statements 166
strings section 164
symbol table 164
tabulation between tokens 163
type propagation. 165
uninitialized data 164
uninitialized instruction 164

assembler directive
ascii . 166
blkb . 166
blkw . 166
bssd . 166
bssi . 167
byte . 167
even . 167
globl . 167
odd. 167
page . 167
prvd . 167
prvi. 167
shrd . 167
shri. 167
strn . 167
title. 167
word . 167

assembler expressions
grouping. 165

assembler operators
* . 166
+ . 165
binary - 166
unary - 165
~ . 165

assembler statements

assignment 166
null . 166

assembler types
absolute 165
register 165
relocatable 165
undefined 165

assembly language 27
interfacing with C 429

assembly-language generator 43
assembly-language programs 47
assert() . 181
assert.h. 182
assertion, check at run time 181
assertions, define elements that test. . . . 182
assignment operator 141
atan() . 182
atan2() . 183
atexit() . 183
atod.c . 45
atof() . 184
atoi(). 185
atol(). 185
auto . 186
automatic mode 43, 78
automatic storage duration 186, 450
aux . 186

B

backspace key 55
backward

end of line. 56
one space 56
one word 56

base documents. 440
BCD format 259
begin macro command. 77
beginning of file, move file-position indicator410
beginning of text command 57
behavior . 187
bibliography . 3
binary search 190
binary stream 455
BIOS . 187
bios.h . 188
bit . 188
bit map . 189
bit-fields . 188
bitfield intersection 129
bitwise AND operator. 129
bitwise complement 153
bitwise exclusive OR operator. 146
bitwise exclusive-OR assignment operator 147
bitwise inclusive OR operator 151
bitwise inclusive-OR assignment operator 152
bitwise left-shift assignment operator . . . 140
bitwise left-shift operator 139
bitwise right-shift assignment operator . . 144
bitwise right-shift operator 143

INDEX

524 Table of Contents

bitwise-AND assignment operator 130
BLetsCP

description 1
environments. 1
hardware requirements 1
processors supported 1

block . 189
block kill command. 60
block scope 416
braces. 30, 151, 189
break . 190
break a string into tokens 470
Brian W. Kernighan 28
broken-down time, convert to text 180
broken-down time, encode. 484
broken-down time, turn into calendar time 361
bsearch() . 190
bssd. 164
bssi . 164
buffer

definition 69
delete . 72
for killed text 60
how differs from file 69
move text from one b. to another 71
name on command line. 55
naming . 69
need unique names 72
number allowed at one time 71
prompting for new name 72
replace with named file 70
status command 72
status window 72
switch b. 71
with windows. 75

buffer status command 72
use with windows 76

buffer status window 72
buffer, flush stream. 250
buffer, set alternative for stream . . . 418, 421
byte . 192
byte ordering. 192

C

C locale . 420
C preprocessor 43
C programming

introduction 27
cabs() . 194
calculate cosine 215
Calculate difference between two times . . 225
calculate floating-point modulus 263
calculate hyperbolic cosine 215
calculate inverse cosine 157
calculate inverse sine. 181
calculate inverse tangent 182-183
calculate sine 432
calculate tangent 478
calendar time 481

INDEX

calendar time, convert to local time 334
calendar time, convert to text 217
calendar time, convert to universal coordinated time290
calendar time, create from broken-down time361
calendar time, get current 480
call-by-value semantics 276
calloc() . 194
cancel a command 65
capitalization 61
carriage return 30
case . 194
cast operator. 130
cc . 43, 195

automatic mode 43
MicroEMACS 78
MicroEMACS mode 43

cc option
-ns . 50
-VCSD . 49
-VLARGE 48
-VSMALL 48
-yf: . 49
-ym. 49
-ys . 49
-yu . 49
\fB\-m\fP. 47
A . 43
na . 46
w . 46

cc0 . 43, 200
cc1 . 43, 200
cc2 . 43, 200
cc3 . 43, 200
ccargs. 11

editing . 11
CCHEAD . 50
CCTAIL 50, 201
ceil() . 201
ceiling. 201
char . 32, 201
character constant 202
character display semantics. 202
character handling 203
character, 308
character, check if numeral or letter. . . . 305
character, check if printable 307-308
character, check if white space 309
character, convert to lower case 491
character, convert to upper case 492
character, copy 358-359
character, fill an area with. 360
character, multibyte, return length of . . . 347
character, push back to stream. 500
character, read from standard input stream 287
character, read from stream. 250, 287
character, reverse search for 466
character, search for in region of memory 356
character, search for in string 451, 466
character, search string for 465
character, string literal. 118

Table of Contents 525

character, write into standard output stream399
character, write into stream. 267, 398
character-handling functions, header . . . 218
check assertion at run time 181
check if a character is a control character 306
check if a character is a letter. 306
check if a character is a numeral or letter 305
check if character is hexadecimal numeral 310
check if character is lower-case letter . . . 307
check if character is numeral 307
check if character is printable 307-308
check if character is punctuation mark . . 308
check if character is upper-case letter . . . 309
check if character is white space 309
clear dynamic memory 194
clear error indicator from stream. 204
clearerr() . 204
CLK_TCK . 205
clock(). 205
clock_t . 206
close a stream 246
close() . 206
cmp . 207
code generator. 43
code, conditional inclusion, end 124
code, include code conditionally 125
code, include conditionally 124
colon . 83, 88
comma . 134
command

error . 86, 90
printing . 86

command line 83, 86-87
buffer name. 55
changed file name 67
file name 55
file name changed 70
interpretation. 55
macro definition 86
options . 86
target specification 87

command processor 477
commands 207

arguments 68
block kill text 60
buffer status 72
cancel . 65
capitalization 61
cursor movement display. 56
exiting from MicroEMACS 66
file and buffer 70
giving c. to MS-DOS. 77
increase power 68
keyboard macros. 77
lowercase 61
MicroEMACS 55
move text 60
program interrupt 78
redraw screen 62
saving text 66

search and replace. 66
searching 64
switch buffers 71
uppercase. 61
window manipulation 73
word wrap. 63

comment 31, 84, 208
common logarithm, compute 336
compare strings 454, 467
compare two regions 357
compare two strings 453, 462
compatible types 208
compile . 209
compiler . 209
compiling and debugging 78
compiling with BLetsCP 43
compiling without linking 47
compliance. 209
compound statement. 189
compute a power of a number 388
compute absolute value 246
compute common logarithm 336
compute square root 436
compute the absolute value of a long integer316
compute the absolute value of an integer . 154
computer language 27
con . 210
concatenate strings. 451, 461
conditional inclusion of code, end 124
conditional operator 144
conditionally execute expression 297
conditionally execute statement 233
conforming freestanding implementation . 209
conforming hosted implementation 209
conforming implementation 209
conforming program 209
conforming translator, mark 148
const . 210
constant expressions. 210
constant, hexadecimal 304
constant, octal. 304
constants. 212
continue . 212
control character, check if a character is . 306
control characters. 53
control key . 53
conversions 213
convert a wide character to a multibyte character517
convert broken-down time to text 180
convert calendar time to local time. 334
convert calendar time to text 217
convert calendar time to universal coordinated time290
convert character to lower case 491
convert character to upper case 492
convert multibyte character to wide character348
convert sequence of multibyte characters to wide characters348
convert sequence of wide characters to multibyte characters516
convert string to floating-point number184, 469
convert string to integer 185
convert string to long integer 185, 471

INDEX

526 Table of Contents

convert string to unsigned long integer . . 472
copy a region of memory 358-359
copy header into program 126
copy one string into another 454, 463
copying text 76
cos() . 215
cosh() . 215
cosine, calculate. 215
cosine, hyperbolic. 215
cpp . 43, 215
creat() . 216
create a temporary file 485
create linker command file 49
csd . 21, 49
csdxl.obj . 412
csdxs.obj . 412
csreg(). 216
ctime() . 217
ctype.h . 218
curly brackets 189
current line within source file. 148
current position in file, encode 265
cursor movement

arrow keys 55
back . 56
beginning of text 57
end of text. 57
forward . 56
left . 56
line position 56
move within window. 75
next line. 56
previous line 57
right . 56
screen down 57
screen up 57
scroll down 75
scroll up. 75

D

daemon. 219, 425
data structure 32
data type, enumerated 234
data, read from stream. 268
date and time 219
date and time, header 481
date of translation 147
date, print 217
dayspermonth() 220
DBL_DIG . 220
deallocate dynamic memory. 269
debug option. 86
debugging information 49
decimal-point character 220
declaration list. 282
declarations 221
declarations and definitions for STDIO . . 447
declarator 282
declarators 221

INDEX

declare signal-handling routines 424
decrement operator 136
DECVAX format 258
default . 222
default argument promotions 276, 283
default entry in switch table 222
default locale 420
default rules 87
deference a pointer 131
define common error codes 237
define elements that test assertions 182
defined . 222
definition . 223
definition, function 282
definition, object 371
Definitions 223
delete buffer command. 72
delete key. 59
delete text

versus killing 58
deleting with arguments 69
Dennis Ritchie. 28
dereferencing, pointer 383
diagnostics. 225
difftime() . 225
digit . 226
directory . 226
directory specification options 10
display

capitalization, transpose, redraw, return indent61
commands 64
file and buffer commands 70
keyboard macro commands 77
kill and move commands 60
killing and deleting 58
movement commands. 56
text and exiting 66

div() . 226
div(), type it returns 227
div_t. 227
division assignment operator 138
division operator 138
division, integer 226
do . 227
document

beginning a new d. 55
DOS interrupts 426
DOS-specific features 228
dos.h 228, 426
double . 228
double colon 88
dsreg(). 229
dup() . 229
dup2(). 229
dynamic memory, allocate. 345
dynamic memory, allocate and clear. . . . 194
dynamic memory, deallocate 269
dynamic memory, reallocate. 406

E

Table of Contents 527

ecvt() . 231
egrep . 231
else . 40, 233
empty type 511
encode broken-down time 484
encode current position in file 265
end conditional inclusion of code. 124
end macro command 77
end of text command 57
end program immediately 154
end-of-file indicator. 236, 255
end-of-file indicator, examine for stream . 248
enlarge window command 74

with arguments 75
enum . 234
enumerated data type 234
enumeration constant 235
environment list. 288
environment variable, get 288
environment variables 50
environmental variable. 235
envp. 235
EOF . 39, 236
equality operator 141
erase text. 58

by line . 59
deletion of spaces 58
erasing spaces 58
to the left 59
to the right 58

errno . 236
errno, define 237
errno.h . 237
error codes, define 237
error directive 124
error indicator 255
error indicator, clear from a stream 204
error indicator, examine for a stream . . . 249
error message, return text of 456
error message, write into standard output 380
error messages 97
error status 86, 90
error status, external integer that holds. . 236
errors . 90
escape key . 53
escape sequences 237
esreg(). 238
examine stream status. 249
examine stream’s end-of-file indicator . . . 248
example. 117
exargs() . 238
exception . 240
execall() . 240
executable file 241
executable files 44
executable program. 43
execute macro command 77
execute non-local jump 337
exit . 37

exit status . 90
exit unconditionally from loop or switch . 190
exit(). 241
exit, register a function to be performed. . 183
exiting from MicroEMACS 66
explicit conversion 242
expression, conditionally execute. 297
extended character handling 243
extended commands 67
extended time 243
extern. 244
external definitions 244
external integer that holds error status . . 236
external linkage 244, 329
external name 244

F

fabs() . 246
factor.c . 45
false . 246
fclose() . 246
fcvt(). 247
fdopen(). 247
feof . 39
feof(). 248
ferror() . 249
fflush() . 250
fgetc() . 250
fgetpos() . 251
fgets. 33
fgets() . 252
fgetw . 363
fgetw(). 253
field . 254
FILE. 32
file . 255

definition 69
how differs from buffer 69
name on command line. 55
naming . 69
rename . 70
replace buffer with named f. 70
with windows. 75
write to new f. 70

file descriptor 256
file modification time 86
file name, maximum length 256
file option. 86
file scope . 416
file stream, read line from 252
file, create a temporary file 485
file, definition 255
file, generate name for temporary file . . . 488
file, indicate end of 236
file, remove. 408
file, rename 409
file, source, include. 126
file-position indicator. 255
file-position indicator, encode. 265

INDEX

528 Table of Contents

file-position indicator, get value . . . 251, 275
file-position indicator, set 273-274
file-position indicator, set to top of file. . . 410
FILENAME_MAX 256
fileno() . 256
fill an area with a character 360
find one string within another 468
float . 257
float.h. 260
floating constant 262
floating-point

modulus. 263
floating-point number, convert from string 184
floating-point number, create from string. 469
floating-point number, fracture. 271
floating-point number, load 324
floating-point number, separate 362
floating-point numbers. 44
floating-point numbers, formula 260
floor() . 262
flush stream buffer 250
fmod . 263
fopen 33, 35-36
fopen() . 263
for 33, 37-38, 265
force next iteration of loop. 212
format and print text into standard output stream390
format locale-specific time 457
forward

end of line. 56
one space 56
one word 56

fpos_t . 265
fprintf() . 266
fputc(). 267
fputs(). 268
fputw . 363
fputw() . 268
fracture floating-point number 271
fread() . 268
free(). 269
freopen() . 270
frexp() . 271
fscanf() . 271
fseek(). 273
fsetpos(). 274
ftell(). 275
full expression. 443
function 29, 275
function call 276
function declarators 282
function definition 282
function designator. 283
function image 426
function prototype 283
function punctuator 130
function scope. 416
function, jump within 291
function, pointer to 383
function, register to perform at exit 183

INDEX

function, return to 409
function-prototype scope 416
fwrite() . 285
fxl.obj . 412
fxl87.obj . 412
fxs.obj. 412
fxs87.obj . 412

G

gcvt() . 286
general utilities 286
generate name for temporary file 488
generate pseudo-random numbers. 404
get current calendar time 480
get value of file-position indicator . . 251, 275
getc() . 287
getchar() . 287
getcnb. 40
getenv() . 288
gets() . 289
getw() . 290
GMT. 502
gmtime() . 290
goto . 291
goto, non-local. 368
goto, nonlocal, execute. 337
goto, nonlocal, type 313
greater-than operator. 142
greater-than or equal-to operator. 142
Greenwich Mean Time 502

H

handle regions. 459
handle strings 459
hashing. 437
hashing, example 472
header . 293
header file 29, 33
header for assertions 182
header for character handling. 218
header names 294
header, copy into program. 126
header, localization functions and macros 330
header, mathematics functions. 346
header, non-local jump 419
header, signal-handling routines 424
header, STDIO declarations and definitions 447
help

in MicroEMACS 79
help window 79
hexadecimal constant 304
hexadecimal numeral, check if character is 310
high-level language 27
high-order bit 192
hyperbolic cosine 215
hyperbolic sine 433
hyperbolic tangent 479
hyphen . 86

Table of Contents 529

hypot() . 294

I

i80186 . 198
i80286 . 198
i8086 references. 5
i8086 support 295
i8087 173, 295
i8087 programs 49
identifier list 282
identifier requires quick access 407
identifier, define as macro 121
identifiers 296
IEEE document 754 370
IEEE format 258
if . 39, 297
ignore errors option. 86, 90
implementation-defined behavior. 187
implementation-defined preprocessing directive127
implicit conversions 298
implicit declaration, problems 409
impure data 362
inb() . 298
INCDIR . 298
include code conditionally 123-125
include source file 126
inclusion of code, conditional, end 124
increment operator 133
incrementing pointer to array, rules 132
index() 299, 451
inequality operator 118
information hiding 416
initialization 299
initialization of pointers 383
initialize lconv structure 331
instruction set. 27
instructions 27
int . 35, 302
int.c . 429
intcall . 429
intcall() . 303
intdis.s . 429
integer constant. 304
integer division 226
integer, compute absolute value 154
integer, convert from string 185
integral ceiling. 201
integral constant expression 210
internal linkage 329, 444
internal name 305
interrupt 90, 305
introduction . 1
introduction to C programming. 27
inverse cosine, calculate 157
inverse sine, calculate 181
inverse tangent, calculate 182-183
isalnum() . 305
isalpha() . 306
isascii() . 306

iscntrl() . 306
isdigit() . 307
isgraph() . 307
islower(). 307
ISO 646. 493
isprint() . 308
ispunct() . 308
isspace() . 309
isupper() . 309
isxdigit() . 310

J

j0(). 311
j1(). 312
jday_to_time() 312
jday_to_tm() 312
jmp_buf. 313
jn(). 313
jump, nonlocal, execute 337
jump, nonlocal, save environment for . . . 419
jump, nonlocal, type 313
jump, within a function 291

K

keyboard macros 77
keywords . 315
kill text

block. 60
versus deleting 58

L

label. 316
label names 366
labs() . 316
Language. 316
LARGE model 48, 319, 362
LC_ALL . 319
LC_COLLATE 320
LC_CTYPE 321
LC_MONETARY 321
LC_NUMERIC 321
LC_TIME . 322
lconv . 322
lconv, . 331
ldexp(). 324
ldiv(). 325
ldiv_t . 325
ldivision, long integer. 325
left-shift operation 139
length, return of multibyte character . . . 347
less than, operator 139
less-than or equal-to operator 140
Lets C

changes in release 4.0 1
letter, check if character is 305-306
letter, lower case, check if character is . . 307
letter, upper case, check if character is . . 309

INDEX

530 Table of Contents

lexical elements 326
Lexicon . 326

introduction 115
libcxs87.lib. 327
libm . 45, 327
LIBPATH . 327
library. 29, 88-89
limits.h . 328
line . 455
line control. 127
line numbering, reset. 127
line, read from stream 252
link . 329
linkage . 329
linkage conflict 329, 371
linkage, external 244
linkage, internal. 444
linked list, example 472
linker . 43
linking without compiling 46
literal, wide character 202
literal, wide string. 460
load floating-point number 324
local time, make from calendar time 334
locale, all information 319
locale, change or query. 420
locale, character-handling information . . 321
locale, collation information. 320
locale, format locale-specific time 457
locale, monetary information 321-322
locale, numeric information 321
locale, time information 322
locale-specific behavior. 187
locale-specific string transformation. . . . 475
locale.h . 330
localeconv(). 331
localization. 331
localization functions and macros 330
localtime() 334
log() . 335
log10() . 336
logarithm, common, compute. 336
logarithm, natural, compute 335
logical AND operator 130
logical negation operator. 118
logical OR operator 152
logical shift operation 139
long . 337
long double 336
long int . 337
long integer division 325
long integer, compute absolute value . . . 316
long integer, convert from string 185
long integer, create from string 471
longjmp() . 337
loop . 33
loop construct 265, 517
loop construct 227
loop, exit unconditionally 190
loop, force next iteration 212

INDEX

low-order bit 192
lower case, convert character to 491
lower-case letter, check if character is. . . 307
lowercase text 61
lseek() . 338
lvalue . 339

M

macro . 29, 86
definition 84, 86
printing . 86

macro, undefine. 128
macros . 77
main 29, 31, 341
make . 342
makefile 83, 86
malloc() . 345
manifest constant. 121, 345
manual

how to use 2
user reaction report 3

map file . 49
mark a conforming translator. 148
mark entry in switch table. 194
math.h . 346
mathematics. 346
mathematics functions, declare. 346
mathematics library 45
maximum length of file name 256
maxmem . 347
mblen() . 347
mbstowcs() 348
mbtowc() . 348
me. 13, 349
measure length of string 461
member. 355
member selection 136-137
member, access 136
members, structure. 366
memchr() . 356
memcmp() 357
memcpy() . 358
memmove(). 359
memory models 48
memory, copy 358-359
memory, dynamic, allocate 345
memory, dynamic, allocate and clear . . . 194
memory, dynamic, deallocate 269
memory, dynamic, reallocate 406
memset() . 360
message

[Done] . 64
[End macro]. 77
[Mark set] 61
[Old buffer] 71
[Read XX lines] 71, 73
[Start macro] 77
[Wrap at column XX] 63
[Wrote XX lines] 57, 67, 70

Table of Contents 531

Arg: X 63, 68
Buffer name: 72
Discard changes [y/n]? 72
failing i-search forward 64
i-search forward 64
Kill buffer:. 72
MS-DOS command 78
Name: . 70
Not found 65
Not now . 77
Quit [y/n]? 59
Read file: 70-71
Reverse search [xxxxx]: 65
Search: . 64
Use buffer: 76
Visit file:. 71, 73
Write file: 67, 70

messages
New string 66
Old string 66
Query replace [oldstring] -> [newstring] . 66

meta characters 53
MicroEMACS. 13, 349

advanced editing with. 67
beginning to use 53
does support arrow keys 56
exiting from. 66
invoking . 55
quit without saving text. 59
saving text 57

microprocessor 27
mktemp() . 360
mktime() . 361
model . 362
modf() . 362
modifiable lvalue 339
modification time 86
monetary conversion information 322
move

cursor . 55
text. 60
text from one buffer to another 71
within window command. 75

MS-DOS interrupts 426
MS-DOS references. 5
MS-LINK . 29
mtype.h. 363
multibyte character, convert to wide character348
multibyte character, create from wide character517
multibyte character, return length of . . . 347
multibyte characters 363
multibyte characters, convert sequence to wide characters348
multibyte characters, convert sequence wide characters to516
multiple copying of killed text. 60
multiple source files 45
multiplication assignment operator 132
multiplication operator. 131
MWS . 12

N

name space 366
name, generate for temporary file 488
natural logarithm, compute 335
naxl.obj. 412
naxs.obj . 412
NEC V20 . 198
NEC V30 . 198
negation operator 135
nested comments 367
new-style function declarator 282
next error. 78
next line command 56
nm. 367
no execution option. 86
no linkage 329
no rules option 86
non-local goto 368
non-local jumps. 368
non-local jumps, type 313
nondigit. 368
not modifiable, type qualifier 210
notmem() . 369
nsxl.obj . 412
nsxs.obj . 412
NULL . 36
null directive. 369
null pointer 383
null pointer constant. 369
null statement. 370
number lock key 56
number of arguments, variable 508
number of buffers allowed. 71
numeral, check if character is 305, 307
numeric floor 262
numerical limits. 370
nybble . 370

O

object . 371
object definition 371
object format. 372

BLetsCP . 49
object module 43, 47
object types 372
obsolescent 372
octal constant 304
old-style function declarator 282
one’s complement operation. 153
onexit . 183
open a stream 263
open() . 372
operand. 374
operating system devices 374
operator, addition. 132
operator, addition assignment 134
operator, array subscript 145
operator, assignment. 141
operator, bitwise complement. 153

INDEX

532 Table of Contents

operator, bitwise exclusive OR 146
operator, bitwise exclusive-OR assignment 147
operator, bitwise inclusive OR 151
operator, bitwise inclusive-OR assignment 152
operator, bitwise left shift 139
operator, bitwise left-shift assignment. . . 140
operator, bitwise right shift 143
operator, bitwise right-shift assignment. . 144
operator, bitwise-AND assignment 130
operator, cast 130
operator, comma 134
operator, conditional 144
operator, decrement 133, 136
operator, division 138
operator, division and assign 138
operator, equality 141
operator, greater than 142
operator, greater than or equal to 142
operator, indirection 131
operator, inequality. 118
operator, less than 139
operator, less than or equal to 140
operator, logical AND. 130
operator, logical negation 118
operator, logical OR. 152
operator, multiplication 131
operator, multiplication and assign 132
operator, negation 135
operator, precedence 374
operator, remainder 128
operator, remainder and assign. 129
operator, return address of operand 129
operator, stringize. 119
operator, subtraction. 135
operator, subtraction assignment 136
operator, token-pasting 120
operators 28, 165, 374
optimization 43
optimizer/object generator 43
options . 86
ordinary identifier. 375
ordinary identifiers 366
outb() . 376
output conversion. 43

P

parameter 377
parser. 43
PATH . 377
path() . 377
path.h. 378
pattern . 379
peek() . 379
peekb() . 379
perror() . 380
phases . 29
picture() . 381
PL/M86. 158
pnmatch() 382

INDEX

pointer 29, 383
pointer declarators 386
pointer dereferencing. 131, 383
pointer punctuator 131
pointer to array, incrementing, rules . . . 132
pointer to function 276
pointer to standard error stream 444
pointer to standard input stream. 445
pointer to standard output stream. 449
pointer to void 511
pointer type 383
pointer type derivation 383
pointer-type mismatch 383
poke() . 386
pokeb() . 387
port . 387
portability 387
post-decrement operator. 136
post-increment operator 133
pow() . 388
power, compute for a number. 388
pr . 389
pragma directive 127
pre-decrement operator 136
pre-increment operator. 133
precedence of operators 374
preprocessing directive, do nothing 369
preprocessing directive, implementation defined127
preprocessing directive, include source file 126
preprocessing directive, reset line number 127
preprocessing numbers 389
previous error 78
previous line command 57
print current date and time 217
print formatted text into standard output stream390, 513
print formatted text into stream . . . 266, 509
print formatted text into string 435, 514
print option 86
printf . 30, 33
printf() . 390
printing. 86
prn . 396
process . 397
program

maintenance 89
specification 83, 86

program interrupt command 78
program startup. 397
program termination 397
program, return time needed to execute. . 205
program, suspend and execute another . . 477
program, terminate gracefully. 241
propagation 153
prvd . 164
prvi . 164
pseudo-random numbers 404
pseudo-random numbers, seed. 437
pun . 397
punctuation mark, check if character is . 308
punctuator, comma. 134

Table of Contents 533

punctuator, function 130
punctuator, pointer. 131
punctuators 398
pure data. 362
push back character to input stream . . . 500
putc() . 398
putchar() . 399
puts() . 400
putw() . 400

Q

qsort() . 402
query locale 420
quick access required 407
quit without saving text 57
quitting MicroEMACS 57
quotation mark 118

R

radix point 262
raise() . 403
RAM. 405
rand() . 404
random access. 405
random numbers 404
random numbers, seed. 437
read a character from standard input stream287
read a string from the standard input stream289
read and interpret text from standard input stream413
read and interpret text from stream 271
read and interpret text from string. 438
read character from stream 250, 287
read data from stream 268
read line from stream 252
read() . 405
read-only memory. 406
realloc() . 406
reallocate dynamic memory 406
record. 407
redirection operator. 131
redraw screen 62
reentrancy 426
referenced type 383
region handling 459
region of memory, copy 358-359
region of memory, search for character . . 356
regions, compare 357
register 27, 407-408
register a function to be performed at exit 183
remainder assignment operator. 129
remainder operator 128
remove a file 408
remove() . 408
rename a file 409
rename file . 70
rename() . 409
reopen a stream. 270
replace buffer with named file. 70

reset line number 127
restore (yank back) killed text. 59
return. 409
return character to input stream. 500
return indent 62
return to calling function 409
return value 90
reverse search 65
reverse search for character in string . . . 466
rewind(). 410
right-shift operation 143
rindex() 411, 466
ROM . 406
rules option 86
run time, check assertion 181
runtime startup 411
rvalue . 412

S

save environment for non-local jump . . . 419
saving text 57, 66
sbrk() . 413
scanf(). 413
scope . 416
screen backwards movement 57
screen down command. 57
screen editor 13
screen forward movement 57
screen redraw 62
screen up command 57
scroll down command 75

with arguments 75
scroll up command 75
search

forward . 64
reverse. 65

search an array 190
search and replace command 66
search for character in a string 451, 466
search for character in region of memory . 356
search string for character 465
seed pseudo-random number generator. . 437
select a member. 136-137
select entry in table. 476
semicolon . 30
send a signal. 403
separate floating-point number. 362
sequence point 418
set file-position indicator 273-274
set file-position indicator to top of file . . . 410
set locale . 420
set processing for a signal 423
set stack size 49
setbuf() . 418
setjmp() . 419
setjmp.h . 419
setlocale(). 420
setting stack size 49
setvbuf() . 421

INDEX

534 Table of Contents

shell. 12
shellsort(). 422
shift state 363
short . 422
short int . 422
shrd . 164
shri . 164
shrink window command 74

with arguments 75
side effect. 423
sig_atomic_t 423
sign bit . 504
signal handler, definition 425
signal handling 425
signal() . 423
signal, send 403
signal, set processing. 423
signal, type that can be updated despite . 423
signal.h. 424
signals/interrupts 426
signed. 302, 431
signed char 432
signed int. 302
signed long. 337
signed long int. 337
signed short 422
signed short int 422
silent option 86, 90
sin() . 432
sine, calculate 432
sinh() . 433
size . 433
sizeof . 434
slice . 145
SMALL model 48, 362, 434
sort an array. 402
source debugging 49
source file 47, 435
source file inclusion 126
source file name. 148
source file, current line 148
source file, time translated 149
special targets 90
specification 83, 86
sprintf() . 435
sqrt() . 436
square root, compute. 436
srand() . 437
sscanf() . 438
stack 440, 450

setting size 49
stack size. 48
Standard . 440
standard error 440
standard error stream, pointer 444
standard input 441
standard input and output 445
standard input stream, pointer 445
standard input stream, read a string from 289
standard input stream, read and interpret text from413

INDEX

standard input stream, read character from 287
standard output. 441
standard output stream, format and print text390
standard output stream, pointer 449
standard output stream, print formatted text513
standard output stream, write a character into399
standard output stream, write string into. 400
startup . 411
stat() . 441
stat.h . 443
state-dependent coding 363
statement, conditionally execute 233
statements 443
static . 444
static storage duration 450
stdarg.h. 444
stderr . 444
stdin . 445
STDIO. 50, 445
STDIO declarations and definitions 447
stdio.h 33, 447
stdlib.h . 447
stdout. 449
stime() . 449
storage duration. 450
storage duration, automatic. 186
storage-class specifiers. 450
store command 67
strcat() . 451
strchr() . 451
strcmp(). 453
strcoll() . 453
strcpy() . 454
strcspn() . 454
stream . 455

write to 285
stream, clear error indicator 204
stream, close. 246
stream, examine end-of-file indicator . . . 248
stream, examine error indicator 249
stream, flush buffer. 250
stream, open. 263
stream, print formatted text. 266, 509
stream, push back character to. 500
stream, read and interpret text from. . . . 271
stream, read character from. 250, 287
stream, read data from. 268
stream, read line from 252
stream, reopen 270
stream, set alternative buffer 418, 421
stream, write character onto 267
stream, write character to 398
stream, write string into 268
strerror() . 456
strftime() . 457
strictly conforming program. 209
string . 30
string handling 459
string literal 460
string transformation, locale specific . . . 475

Table of Contents 535

string, break into tokens. 470
string, compare two. 453, 462
string, comparison 454, 467
string, concatenate two 451, 461
string, convert to floating-point number184, 469
string, convert to integer. 185
string, convert to long integer. 185, 471
string, convert to unsigned long integer. . 472
string, copy one into another 454, 463
string, find one within another 468
string, measure length of 461
string, multibyte characters, return length of347
string, print formatted text 435, 514
string, read and interpret text from 438
string, read from the standard input stream289
string, reverse search for character 466
string, search for character 465
string, search for character in 451, 466
string, write into standard output stream. 400
string, write into stream 268
string-ize operator 119
string.h . 458
strip . 460
strlen() . 461
strn . 164
strncat() . 461
strncmp() . 462
strncpy() . 463
strpbrk() . 465
strrchr(). 466
strspn() . 467
strstr() . 468
strtod() . 469
strtok() . 470
strtol(). 471
strtoul() . 472
struct . 474
structure . 474
structure members 366
structured programming. 28
strxfrm() . 475
subject sequence 469, 471-472
subtraction assignment operator 136
subtraction operator 135
successful termination. 397
suffix

.m . 429
suffixes

assembler 161
suspend a program and execute another . 477
swab(). 475
switch. 476
switch buffer command 75
switch, default entry in 222
switch, exit unconditionally 190
switch, mark entry in table 194
symt. 164
synonym for another type 494
system time 206
system(). 477

T

table, select entry in 476
tag. 478
tags . 366
tail. 478
tan() . 478
tangent, calculate. 478
tanh() . 479
target . 87, 90

line . 88
printing . 86
program . 87
specification 87

technical information. 479
tempnam() 479
temporary file, create. 485
temporary file, generate name 488
tentative definition 371
terminate a program gracefully 241
test suites . 89
text

block kill 60
capitalize 61
erase . 58
erase to left 59
erase to right 58
kill by lines 59
lowercase 61
move . 60
move from one buffer to another 71
multiple copying of killed t. 60
restore (yank back) 59
saving . 66
saving t. 57
uppercase. 61
write to new file 67
yank back (restore) 59

text of error message, return 456
text stream. 455
text, format and print into standard output stream390
text, print formatted into standard output stream513
text, print formatted into stream . . . 266, 509
text, print formatted into string. . . . 435, 514
text, read and interpret 271
text, read and interpret from standard input stream413
text, read and interpret from string 438
The C Programming Languag 28
time . 480
time and date, header 481
time source file is translated 149
time() . 480
time, broken-down, convert to text. 180
time, calculate difference between two times225
time, calendar, convert to local time 334
time, calendar, convert to text 217
time, calendar, convert to universal coordinated time290
time, calendar, get current 480
time, format locale specific 457

INDEX

536 Table of Contents

time, measure amount needed to execute program205
time, print 217
time, return amount needed to execute program205
time.h. 481
time_t . 481
time_to_jday() 482
TIMEZONE. 482
tm . 484
tm_to_jday() 484
TMPDIR. 485
tmpfile(). 485
tmpnam(). 488
toascii() . 489
token . 490
token pasting 120
token, break a string into sequence of. . . 470
tolower() . 491
top of file, reset file-position indicator to . 410
touch option 86
toupper() . 492
transform a string. 475
translation unit 493
translation, date. 147
translator, mark conforming 148
transpose characters 62
trigraph sequences 493
true . 494
turn broken-down time into calendar time 361
type qualifier. 494
type qualifier, not modifiable 210
type returned by div(). 227
type specifier. 498
type, pointer 383
type, referenced 383
type, synonym. 494
type, updateable despite signals 423
typedef . 494
types . 495

U

unary + operator 132
unconditionally jump within function . . . 291
undefine a macro 128
undefine name 49
undefined behavior 187
ungetc(). 500
union . 501
union of two bitsets. 151
universal coordinated time 502
universal coordinated time, make from calendar time290
unlink() 408, 503
unsigned . 504
unsigned char 504
unsigned int 504
unsigned long int 505
unsigned long integer, create from string . 472
unsigned short int 505
unspecified behavior 187
unsuccessful termination 397

INDEX

upper case, convert characters to 492
upper-case letter, check if character is . . 309
uppercase text. 61
user reaction report 3
using MWS. 12
usual arithmetic conversions 213
UTC . 502

V

V20 . 198
V30 . 198
va_arg() . 506
va_end(). 506
va_list. 507
va_start() . 507
value preserving. 508
value, return. 409
value-preserving rules 304
variable arguments 508
variable, environmental, get 288
vfprintf() . 509
visible . 416
visit command. 71

creating new file 73
moving text between buffers 71
prompting for buffer name 72

void . 511
void * . 511
void expression 513
volatile . 513
vprintf() . 513
vsprintf() . 514

W

wc . 516
wcstombs() 516
wctomb() . 517
while . 517
white space, check if character is 309
wide character, convert to multibyte character517
wide character, create from multibyte character348
wide characters 363
wide characters, convert sequence of multibyte characters to348
wide characters, convert to sequence of multibyte characters516
wide-character literal. 202
wide-string literal 460
wild pointer 383
wildcard

* . 45
? . 45

wildcards. 518
window

buffer status 72
buffer status command use 76
copying text among 76
definition 73
enlarge. 74
move within. 75

Table of Contents 537

moving text among 76
multiple w. 73
number possible 74
one w. 74
saving text 76
scroll down 75
scroll up. 75
shifting between 74
shrink . 74
use with editing 75
using multiple buffers. 75

word. 188
word wrap . 63
write a character into standard output stream399
write character into stream 267, 398
write data into stream 285
write error message into standard output. 380
write string into standard output stream . 400
write string into stream 268
write text to new file 67, 70
write() . 518
wxl.obj . 412
wxs.obj . 412

X

xctype.h . 519
XOFF . 519
XON. 519
xtime.h . 519

Y

yank back text. 59, 69

{} . 151

| . 151
|= . 152
|| . 152

~ . 153

INDEX

