dos_compilers/Zortech C++ v30r1/INCLUDE/COMPLEX.HPP
2024-07-02 08:01:21 -07:00

430 lines
11 KiB
C++

/*ident "@(#)complex.h 1.3 6/2/90" */
#ifndef __COMPLEX_H
#define __COMPLEX_H 1
/*
** (c) Copyright 1988-1990 by Dyad Software Corp.
** All Rights Reserved
**
** Authors: lwd, geb
*/
#include <math.h>
class ostream;
class istream;
class complex
{
public:
friend double real ( const complex& );
friend double imag ( const complex& );
friend complex cos ( const complex& );
friend complex cosh ( const complex& );
friend complex sin ( const complex& );
friend complex sinh ( const complex& );
friend complex tan ( const complex& );
friend complex tanh ( const complex& );
friend complex log ( const complex& );
friend complex log10 ( const complex& );
friend complex sqrt ( const complex& );
friend double abs ( const complex& );
friend complex conj ( const complex& );
friend double norm ( const complex& );
friend double modulus ( const complex& );
friend double arg ( const complex& );
friend complex asin ( const complex& );
friend complex acos ( const complex& );
friend complex atan ( const complex& );
friend complex asinh ( const complex& );
friend complex atanh ( const complex& );
friend complex exp ( const complex& );
friend complex polar ( double r, double theta = 0);
friend complex operator + ( const complex&, const complex& );
friend complex operator + ( double, const complex& );
friend complex operator + ( const complex&, double );
friend complex operator - ( const complex&, const complex& );
friend complex operator - ( double, const complex& );
friend complex operator - ( const complex&, double );
friend complex operator * ( const complex&, const complex& );
friend complex operator * ( double, const complex& );
friend complex operator * ( const complex&, double );
friend complex operator / ( const complex&, const complex& );
friend complex operator / ( double, const complex& );
friend complex operator / ( const complex&, double );
friend complex pow( const complex& lhs, double rhs );
friend complex pow( const complex& lhs, const complex & rhs );
friend complex pow( double lhs, const complex & rhs);
friend complex pow( const complex& lhs, int rhs);
friend int operator && ( const complex&, const complex& );
friend int operator && ( double, const complex& );
friend int operator && ( const complex&, double );
friend int operator || ( const complex&, const complex& );
friend int operator || ( double, const complex& );
friend int operator || ( const complex&, double );
friend int operator != ( const complex&, const complex& );
friend int operator != ( double, const complex& );
friend int operator != ( const complex&, double );
friend int operator == ( const complex&, const complex& );
friend int operator == ( double, const complex& );
friend int operator == ( const complex&, double );
friend ostream& operator << ( ostream& s, const complex& x);
friend istream& operator >> ( istream& s, complex& x);
public:
complex ( );
complex ( double r, double i ); /* this is not declared (double r, double i = 0)
to avoid implicit conversion. Binary operations
are explicitly declared thus avoiding potential
ambiguities. */
complex ( const complex & );
double& real ( );
double& imag ( );
complex& operator = ( const complex& );
complex& operator = ( double );
complex& operator += ( const complex& );
complex& operator += ( double );
complex& operator -= ( const complex& );
complex& operator -= ( double );
complex& operator *= ( const complex& );
complex& operator *= ( double );
complex& operator /= ( const complex& );
complex& operator /= ( double );
int operator ! () const;
complex operator - () const;
private:
double re;
double im;
};
inline complex::complex ( )
{
/* remove these comments for initialization to (0,0)
re = im = 0;
*/
}
inline complex::complex ( double r, double i ): re(r), im(i) {}
inline complex::complex( const complex& z)
{
re = z.re;
im = z.im;
}
inline double real ( const complex& z){ return z.re; }
inline double imag ( const complex& z){ return z.im; }
inline double& complex::real (){ return re; }
inline double& complex::imag (){ return im; }
/* operator + */
inline complex operator + ( const complex& lhs, const complex& rhs )
{
return complex ( lhs.re + rhs.re, lhs.im + rhs.im );
}
inline complex operator + ( double lhs, const complex& rhs )
{
return complex ( lhs + rhs.re, rhs.im );
}
inline complex operator + ( const complex& lhs, double rhs )
{
return complex ( lhs.re + rhs, lhs.im );
}
/* operator - */
inline complex operator - ( const complex& lhs, const complex& rhs )
{
return complex ( lhs.re - rhs.re, lhs.im - rhs.im );
}
inline complex operator - ( double lhs, const complex& rhs )
{
return complex ( lhs - rhs.re, - rhs.im );
}
inline complex operator - ( const complex& lhs, double rhs )
{
return complex ( lhs.re - rhs, lhs.im );
}
/* operator * */
inline complex operator * ( const complex& lhs, const complex& rhs )
{
return complex ( lhs.re * rhs.re - lhs.im * rhs.im,
lhs.re * rhs.im + lhs.im*rhs.re );
}
inline complex operator * ( double lhs, const complex& rhs )
{
return complex ( lhs * rhs.re, lhs * rhs.im );
}
inline complex operator * ( const complex& lhs, double rhs )
{
return complex ( lhs.re * rhs, lhs.im*rhs );
}
/* operator / */
inline complex operator / ( const complex& lhs, double rhs )
{
return complex( lhs.re / rhs, lhs.im /rhs );
}
/* unary operators */
inline complex complex::operator - ( ) const
{
return complex ( -re, -im );
}
inline int complex::operator ! ( ) const
{
return ( re == 0 ) && ( im == 0 ) ;
}
inline complex & complex::operator = ( const complex& z)
{
re = z.re;
im = z.im;
return *this;
}
inline complex & complex::operator = ( double x)
{
re = x;
im = 0;
return *this;
}
/* operator *= */
inline complex & complex::operator *= ( const complex& z)
{
*this = *this * z;
return *this;
}
inline complex & complex::operator *= ( double x )
{
re *= x;
im *= x;
return *this;
}
inline complex & complex::operator /= ( const complex& z)
{
*this = *this / z;
return *this;
}
inline complex & complex::operator /= ( double x)
{
re /= x;
im /= x;
return *this;
}
inline complex & complex::operator += ( const complex& z)
{
re += z.re;
im += z.im;
return *this;
}
inline complex & complex::operator += ( double x)
{
re += x;
return *this;
}
inline complex & complex::operator -= ( const complex& z)
{
re -= z.re;
im -= z.im;
return *this;
}
inline complex & complex::operator -= ( double x)
{
re -= x;
return *this;
}
/* operator && */
inline int operator && ( const complex & lhs, const complex & rhs )
{
return (( lhs.re != 0 ) || ( lhs.im != 0 )) &&
(( rhs.re != 0 ) || ( rhs.im != 0 )) ;
}
inline int operator && ( double lhs, const complex & rhs )
{
return ( lhs != 0 ) && (( rhs.re != 0 ) || ( rhs.im != 0 )) ;
}
inline int operator && ( const complex & lhs, double rhs )
{
return (( lhs.re != 0 ) || ( lhs.im != 0 )) && ( rhs != 0 ) ;
}
/* operator || */
inline int operator || ( const complex & lhs, const complex & rhs )
{
return (( lhs.re != 0 ) || ( lhs.im != 0 )) ||
(( rhs.re != 0 ) || ( rhs.im != 0 )) ;
}
inline int operator || ( double lhs, const complex & rhs )
{
return ( lhs != 0 ) || (( rhs.re != 0 ) || ( rhs.im != 0 )) ;
}
inline int operator || ( const complex & lhs, double rhs )
{
return (( lhs.re != 0 ) || ( lhs.im != 0 )) || ( rhs != 0 );
}
/* operator != */
inline int operator != ( const complex& lhs, const complex& rhs )
{
return ( lhs.re != rhs.re ) || ( lhs.im != rhs.im );
}
inline int operator != ( double lhs, const complex& rhs )
{
return ( lhs != rhs.re ) || ( 0 != rhs.im );
}
inline int operator != ( const complex& lhs, double rhs )
{
return ( lhs.re != rhs ) || ( lhs.im != 0 );
}
/* operator == */
inline int operator == ( const complex& lhs, const complex& rhs )
{
return ( lhs.re == rhs.re ) && ( lhs.im == rhs.im );
}
inline int operator == ( double lhs, const complex& rhs )
{
return ( lhs == rhs.re ) && ( 0 == rhs.im );
}
inline int operator == ( const complex& lhs, double rhs )
{
return ( lhs.re == rhs ) && ( lhs.im == 0 );
}
inline double arg( const complex& z)
{
return atan2(z.im,z.re);
}
inline complex atanh( const complex& z)
{
complex iz(-z.im, z.re);
complex ix = atan(iz);
return complex ( ix.im, -ix.re);
}
inline complex asinh( const complex& z)
{
complex iz(-z.im, z.re);
complex ix = asin(iz);
return complex ( ix.im, -ix.re);
}
inline double norm( const complex& z)
{
return z.re*z.re + z.im*z.im;
}
inline double modulus( const complex& z)
{
return abs(z);
}
inline complex conj( const complex& z)
{
return complex( z.re, -z.im );
}
inline complex cos( const complex& z )
{
return complex( cos(z.re) * cosh( z.im ), -( sin( z.re) * sinh(z.im)));
}
inline complex cosh( const complex& z )
{
return complex ( cosh(z.re) * cos(z.im), sinh(z.re) * sin(z.im) );
}
inline complex sin( const complex& z )
{
return complex ( sin(z.re) * cosh(z.im), cos(z.re) * sinh(z.im) );
}
inline complex sinh( const complex& z )
{
return complex ( sinh(z.re) * cos(z.im), cosh(z.re) * sin(z.im) );
}
inline complex tan( const complex& z )
{
double x = 2*z.re;
double y = 2*z.im;
double t = 1.0/(cos(x) +cosh(y));
return complex( t*sin(x), t*sinh(y) );
}
inline complex tanh( const complex& z )
{
double x = 2*z.re;
double y = 2*z.im;
double t = 1.0/(cosh(x) +cos(y));
return complex( t*sinh(x), t*sin(y) );
}
inline complex exp( const complex& z )
{
double x = exp(z.re);
return complex( x*cos(z.im), x*sin(z.im) );
}
inline complex log( const complex& z )
{
return complex( log( abs(z) ), arg( z ) );
}
inline complex log10( const complex& z )
{
return complex( 0.2171472409516259*log( norm(z) ), arg( z ) );
}
inline complex polar ( double r, double theta )
{
return complex ( r * cos(theta), r * sin(theta));
}
#endif