dos_compilers/Borland Turbo C++ v1/INCLUDE/COMPLEX.H
2024-07-02 07:34:51 -07:00

256 lines
6.5 KiB
C++

/* complex.h
Complex Number Library - Include File
class complex: declarations for complex numbers.
Copyright (c) Borland International 1990
All Rights Reserved.
All function names, member names, and operators have been borrowed
from AT&T C++, except for the addition of:
friend complex _Cdecl acos(complex&);
friend complex _Cdecl asin(complex&);
friend complex _Cdecl atan(complex&);
friend complex _Cdecl log10(complex&);
friend complex _Cdecl tan(complex&);
friend complex _Cdecl tanh(complex&);
complex _Cdecl operator+();
complex _Cdecl operator-();
*/
#ifndef __cplusplus
#error Must use C++ for the type complex.
#endif
#if !defined(_COMPLEX_H)
#define _COMPLEX_H 1
#include <math.h>
class complex {
public:
// constructors
complex(double __re_val, double __im_val=0);
complex();
// complex manipulations
friend double _Cdecl real(complex&); // the real part
friend double _Cdecl imag(complex&); // the imaginary part
friend complex _Cdecl conj(complex&); // the complex conjugate
friend double _Cdecl norm(complex&); // the square of the magnitude
friend double _Cdecl arg(complex&); // the angle in the plane
friend complex _Cdecl polar(double __mag, double __angle=0);
// Create a complex object given polar coordinates
// Overloaded ANSI C math functions
friend double _Cdecl abs(complex&);
friend complex _Cdecl acos(complex&);
friend complex _Cdecl asin(complex&);
friend complex _Cdecl atan(complex&);
friend complex _Cdecl cos(complex&);
friend complex _Cdecl cosh(complex&);
friend complex _Cdecl exp(complex&);
friend complex _Cdecl log(complex&);
friend complex _Cdecl log10(complex&);
friend complex _Cdecl pow(complex& __base, double __expon);
friend complex _Cdecl pow(double __base, complex& __expon);
friend complex _Cdecl pow(complex& __base, complex& __expon);
friend complex _Cdecl sin(complex&);
friend complex _Cdecl sinh(complex&);
friend complex _Cdecl sqrt(complex&);
friend complex _Cdecl tan(complex&);
friend complex _Cdecl tanh(complex&);
// Binary Operator Functions
friend complex _Cdecl operator+(complex&, complex&);
friend complex _Cdecl operator+(double, complex&);
friend complex _Cdecl operator+(complex&, double);
friend complex _Cdecl operator-(complex&, complex&);
friend complex _Cdecl operator-(double, complex&);
friend complex _Cdecl operator-(complex&, double);
friend complex _Cdecl operator*(complex&, complex&);
friend complex _Cdecl operator*(complex&, double);
friend complex _Cdecl operator*(double, complex&);
friend complex _Cdecl operator/(complex&, complex&);
friend complex _Cdecl operator/(complex&, double);
friend complex _Cdecl operator/(double, complex&);
friend int _Cdecl operator==(complex&, complex&);
friend int _Cdecl operator!=(complex&, complex&);
complex& _Cdecl operator+=(complex&);
complex& _Cdecl operator+=(double);
complex& _Cdecl operator-=(complex&);
complex& _Cdecl operator-=(double);
complex& _Cdecl operator*=(complex&);
complex& _Cdecl operator*=(double);
complex& _Cdecl operator/=(complex&);
complex& _Cdecl operator/=(double);
complex _Cdecl operator+();
complex _Cdecl operator-();
// Implementation
private:
double re, im;
};
// Inline complex functions
inline complex::complex(double __re_val, double __im_val)
{
re = __re_val;
im = __im_val;
}
inline complex::complex()
{
/* if you want your complex numbers initialized ...
re = im = 0;
*/
}
inline complex _Cdecl complex::operator+()
{
return *this;
}
inline complex _Cdecl complex::operator-()
{
return complex(-re, -im);
}
// Definitions of compound-assignment operator member functions
inline complex& _Cdecl complex::operator+=(complex& __z2)
{
re += __z2.re;
im += __z2.im;
return *this;
}
inline complex& _Cdecl complex::operator+=(double __re_val2)
{
re += __re_val2;
return *this;
}
inline complex& _Cdecl complex::operator-=(complex& __z2)
{
re -= __z2.re;
im -= __z2.im;
return *this;
}
inline complex& _Cdecl complex::operator-=(double __re_val2)
{
re -= __re_val2;
return *this;
}
inline complex& _Cdecl complex::operator*=(double __re_val2)
{
re *= __re_val2;
im *= __re_val2;
return *this;
}
inline complex& _Cdecl complex::operator/=(double __re_val2)
{
re /= __re_val2;
im /= __re_val2;
return *this;
}
// Definitions of non-member complex functions
inline double _Cdecl real(complex& __z)
{
return __z.re;
}
inline double _Cdecl imag(complex& __z)
{
return __z.im;
}
inline complex _Cdecl conj(complex& __z)
{
return complex(__z.re, -__z.im);
}
inline complex _Cdecl polar(double __mag, double __angle)
{
return complex(__mag*cos(__angle), __mag*sin(__angle));
}
// Definitions of non-member binary operator functions
inline complex _Cdecl operator+(complex& __z1, complex& __z2)
{
return complex(__z1.re + __z2.re, __z1.im + __z2.im);
}
inline complex _Cdecl operator+(double __re_val1, complex& __z2)
{
return complex(__re_val1 + __z2.re, __z2.im);
}
inline complex _Cdecl operator+(complex& __z1, double __re_val2)
{
return complex(__z1.re + __re_val2, __z1.im);
}
inline complex _Cdecl operator-(complex& __z1, complex& __z2)
{
return complex(__z1.re - __z2.re, __z1.im - __z2.im);
}
inline complex _Cdecl operator-(double __re_val1, complex& __z2)
{
return complex(__re_val1 - __z2.re, -__z2.im);
}
inline complex _Cdecl operator-(complex& __z1, double __re_val2)
{
return complex(__z1.re - __re_val2, __z1.im);
}
inline complex _Cdecl operator*(complex& __z1, double __re_val2)
{
return complex(__z1.re*__re_val2, __z1.im*__re_val2);
}
inline complex _Cdecl operator*(double __re_val1, complex& __z2)
{
return complex(__z2.re*__re_val1, __z2.im*__re_val1);
}
inline complex _Cdecl operator/(complex& __z1, double __re_val2)
{
return complex(__z1.re/__re_val2, __z1.im/__re_val2);
}
inline int _Cdecl operator==(complex& __z1, complex& __z2)
{
return __z1.re == __z2.re && __z1.im == __z2.im;
}
inline int _Cdecl operator!=(complex& __z1, complex& __z2)
{
return __z1.re != __z2.re || __z1.im != __z2.im;
}
// Complex stream I/O
#include <iostream.h>
ostream& _Cdecl operator<<(ostream&, complex&);
istream& _Cdecl operator>>(istream&, complex&);
#endif